2011年八年级上期末数学模拟试卷五

合集下载

八年级上数学期末试卷

八年级上数学期末试卷

八年级上数学期末试卷 一、选择题1.4的平方根是( )A .2B .2±C .2D .2± 2.若a 满足3a a =,则a 的值为( ) A .1 B .0 C .0或1 D .0或1或1-3.若1(2,)A y ,2(3,)B y 是一次函数31y x =-+的图象上的两个点,则1y 与2y 的大小关系是( )A .12y y <B .12y y =C .12y y >D .不能确定4.如图,∠AOB=60°,OA=OB ,动点C 从点O 出发,沿射线OB 方向移动,以AC 为边在右侧作等边△ACD ,连接BD ,则BD 所在直线与OA 所在直线的位置关系是( )A .平行B .相交C .垂直D .平行、相交或垂直5.如图,在锐角三角形ABC 中2AB =,45BAC ∠=︒,BAC ∠的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM MN +的最小值是( )A .1B 2C .2D 66.已知一次函数()1y m x =-的图象上两点11(,)A x y ,22(,)B x y ,当12x x >时,有12y y <,那么m 的取值范围是( )A .0m >B .0m <C .1m >D .1m < 7.若2149x kx ++是完全平方式,则实数k 的值为( ) A .43 B .13 C .43± D .13± 8.估计(130246的值应在( ) A .1和2之间B .2和3之间C .3和4之间D .4和5之间 9.下列各数中,无理数的是( )A .0B .1.01001C .πD 410.如图,在R △ABC 中,∠ACB =90°,AC =6,BC =8,E 为AC 上一点,且AE =85,AD 平分∠BAC 交BC 于D .若P 是AD 上的动点,则PC +PE 的最小值等于( )A .185B .245C .4D .265二、填空题11.若△ABC 的三边长分别为a ,b ,c .下列条件:①∠A =∠B ﹣∠C ;②a 2=(b +c )(b ﹣c );③∠A :∠B :∠C =3:4:5;④a :b :c =5:12:13.其中能判断△ABC 是直角三角形的是_____(填序号).12.某厂现在的年产值是15万元,计划今后每年增加2万元,年产值y 与年数x 之间的函数关系为________.13.如果2x -有意义,那么x 可以取的最小整数为______.14.已知,点(,1)A a 和点(3,)B b 关于原点O 对称,则+a b 的值为__________.15.如图,在ABC 中,AB AC =,AB 的垂直平分线交AB 于点D ,交AC 于点E ,且50A ∠=︒,则EBC ∠的度数是__________.16.如图,在ABC ∆中,AB AC =,4BC =,其面积为12,AC 的垂直平分线EF 分别交AB ,AC 边于点E ,F .若点D 为BC 边的中点,点P 为线段EF 上的一个动点,则PCD ∆周长的最小值为______.17.如图①,四边形ABCD 中,//,90BC AD A ∠=︒,点P 从A 点出发,沿折线AB BC CD →→运动,到点D 时停止,已知PAD △的面积s 与点P 运动的路程x 的函数图象如图②所示,则点P 从开始到停止运动的总路程为________.18.化简 2(0,0)3b a b a>≥结果是_______ . 19.如图,等边△ABC 的周长是18,D 是AC 边上的中点,点E 在BC 边的延长线上.如果DE =DB ,那么CE 的长是_____.20.如图,在ABC ∆中,AC AD BD ==,28B ∠=,则CAD ∠的度数为__________.三、解答题21.如图,在平面直角坐标系xOy 中,已知正比例函数43y x =与一次函数7y x =-+的 图像交于点A .(1)求点A 的坐标;(2)在y 轴上确定点M ,使得△AOM 是等腰三角形,请直接写出点M 的坐标;(3)如图,设x 轴上一点P (a ,0),过点P 作x 轴的垂线(垂线位于点A 的右侧),分别交43y x =和7y x =-+的图像于点B 、C ,连接OC ,若BC =145OA ,求△ABC 的面积及点B 、点C 的坐标;(4)在(3)的条件下,设直线7y x =-+交x 轴于点D ,在直线BC 上确定点E ,使得△ADE 的周长最小,请直接写出点E 的坐标.22.如图,△ABC 中,B C ∠=∠,点D 、E 在边BC 上,且AD AE =,求证:BE CD =23.如图,四边形ABCD 中,AB =20,BC =15,CD =7,AD =24,∠B =90°.(1)判断∠D 是否是直角,并说明理由.(2)求四边形ABCD 的面积.24.如图,在△ABC 中,∠ACB=90°,∠B=30°,CD ,CE 分别是AB 边上的中线和高.(1)求证:AE=ED ;(2)若AC=2,求△CDE 的周长.25.如图所示,AC=AE ,∠1=∠2,AB=AD .求证:BC=DE .四、压轴题26.某校七年级数学兴趣小组对“三角形内角或外角平分线的夹角与第三个内角的数量关系”进行了探究.(1)如图1,在△ABC 中,∠ABC 与∠ACB 的平分线交于点P ,∠A =64°,则∠BPC = ;(2)如图2,△ABC 的内角∠ACB 的平分线与△ABC 的外角∠ABD 的平分线交于点E .其中∠A =α,求∠BEC .(用α表示∠BEC );(3)如图3,∠CBM 、∠BCN 为△ABC 的外角,∠CBM 、∠BCN 的平分线交于点Q ,请你写出∠BQC 与∠A 的数量关系,并说明理由;(4)如图4,△ABC 外角∠CBM 、∠BCN 的平分线交于点Q ,∠A=64°,∠CBQ ,∠BCQ 的平分线交于点P ,则∠BPC= ゜,延长BC 至点E ,∠ECQ 的平分线与BP 的延长线相交于点R ,则∠R= ゜.27.在平面直角坐标系中,点A 、B 在坐标轴上,其中()0,A a 、(),0B b 满足|21|280a b a b --++-=.(1)求A 、B 两点的坐标;(2)将线段AB 平移到CD ,点A 的对应点为()2,C t -,如图1所示,若三角形ABC 的面积为9,求点D 的坐标;(3)平移线段AB 到CD ,若点C 、D 也在坐标轴上,如图2所示.P 为线段AB 上的一动点(不与A 、B 重合),连接OP 、PE 平分OPB ∠,2BCE ECD ∠=∠.求证:3()BCD CEP OPE ∠=∠-∠.28.已知在△ABC 中,AB =AC ,∠BAC =α,直线l 经过点A (不经过点B 或点C ),点C 关于直线l 的对称点为点D ,连接BD ,CD .(1)如图1,①求证:点B ,C ,D 在以点A 为圆心,AB 为半径的圆上;②直接写出∠BDC 的度数(用含α的式子表示)为 ;(2)如图2,当α=60°时,过点D 作BD 的垂线与直线l 交于点E ,求证:AE =BD ;(3)如图3,当α=90°时,记直线l 与CD 的交点为F ,连接BF .将直线l 绕点A 旋转的过程中,在什么情况下线段BF 的长取得最大值?若AC =22a ,试写出此时BF 的值.29.如图,以直角△AOC 的直角顶点O 为原点,以OC ,OA 所在直线为x 轴和y 轴建立平面直角坐标系,点A (0,a ),C (b ,0)满足280a b b -++-=.(1)点A 的坐标为________;点C 的坐标为________.(2)已知坐标轴上有两动点P ,Q 同时出发,P 点从C 点出发沿x 轴负方向以每秒2个单位长度的速度匀速移动,Q 点从O 点出发沿y 轴正方向以每秒1个单位长度的速度匀速移动,点P 到达O 点整个运动随之结束.AC 的中点D 的坐标是(4,3),设运动时间为t 秒.问:是否存在这样的t ,使得△ODP 与△ODQ 的面积相等?若存在,请求出t 的值;若不存在,请说明理由.(3)在(2)的条件下,若∠DOC=∠DCO ,点G 是第二象限中一点,并且y 轴平分∠GOD .点E 是线段OA 上一动点,连接接CE 交OD 于点H ,当点E 在线段OA 上运动的过程中,探究∠GOA ,∠OHC ,∠ACE 之间的数量关系,并证明你的结论(三角形的内角和为180°可以直接使用).30.如图,以ABC 的边AB 和AC ,向外作等腰直角三角形ABE △和ACF ,连接 EF ,AD 是ABC 的高,延长DA 交EF 于点G ,过点F 作DG 的垂线交DG 于点H .(1)求证:FHA ADC ≌△△;(2)求证:点G 是EF 的中点.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据平方根的定义直接作答.【详解】解:4的平方根是2±故选:D【点睛】本题考查平方根的定义,掌握一个正数有两个平方根,它们互为相反数是本题的解题关键.2.C解析:C【解析】【分析】只有0和1的算术平方根与立方根相等.【详解】 3a a =∴a 为0或1.故选:C .【点睛】本题考查了立方根:如果一个数的立方等于a ,那么这个数叫做a 的立方根或三次方根.也考查了算术平方根.3.C解析:C【解析】【分析】根据一次函数的性质,此一次函数系数k <0,y 随x 增大而减小,然后观察A 、B 两点的坐标,据此判断即可.【详解】解:∵一次函数1y =+的系数k <0,y 随x 增大而减小,又∵两点的横坐标2<3,∴12y y >故选C.【点睛】本题考查了一次函数的性质,解决本题的关键是理解本题题意,熟练掌握一次函数的增减性.4.A解析:A【解析】【分析】先判断出OA=OB ,∠OAB=∠ABO ,分两种情况判断出△AOC ≌△ABD ,进而判断出∠ABD=∠AOB=60°,即可得出结论.【详解】∵∠AOB=60°,OA=OB ,∴△OAB 是等边三角形,∴OA=AB ,∠OAB=∠ABO=60°①当点C 在线段OB 上时,如图1,∵△ACD 是等边三角形,∴AC=AD ,∠CAD=60°,∴∠OAC=∠BAD ,在△AOC 和△ABD 中,OA BA OAC BAD AC AD =⎧⎪∠=∠⎨⎪=⎩, ∴△AOC ≌△ABD ,∴∠ABD=∠AOC=60°,∴∠ABE=180°﹣∠ABO ﹣∠ABD=60°=∠AOB ,∴BD ∥OA ;②当点C 在OB 的延长线上时,如图2,∵△ACD 是等边三角形,∴AC=AD ,∠CAD=60°,∴∠OAC=∠BAD ,在△AOC和△ABD中,OA BAOAC BADAC AD=⎧⎪∠=∠⎨⎪=⎩,∴△AOC≌△ABD,∴∠ABD=∠AOC=60°,∴∠ABE=180°﹣∠ABO﹣∠ABD=60°=∠AOB,∴BD∥OA,故选A.【点睛】本题考查了等边三角形的判定和性质,全等三角形的判定和性质,求出∠ABD=60°是解本题的关键.5.B解析:B【解析】【分析】通过构造全等三角形,利用三角形的三边的关系确定线段和的最小值.【详解】解:如图,在AC上截取AE=AN,连接BE,∵∠BAC的平分线交BC于点D,∴∠EAM=∠NAM,在△AME与△AMN中,===AE ANEAM NAMAM AM∴△AME≌△AMN(SAS),∴ME=MN.∴BM+MN=BM+ME≥BE,当BE是点B到直线AC的距离时,BE⊥AC,此时BM+MN有最小值,∵2AB=,∠BAC=45°,此时△ABE为等腰直角三角形,∴,即BE ,∴BM+MN .故选:B .【点睛】本题考察了最值问题,能够通过构造全等三角形,把BM+MN 进行转化,是解题的关键.6.D解析:D【解析】【分析】先根据12x x >时,有12y y <判断y 随x 的增大而减小,所以x 的比例系数小于0,那么m-1<0,解出即可.【详解】解:∵当12x x >时,有12y y <∴ y 随x 的增大而减小∴m-1<0∴ m <1故选 D.【点睛】此题主要考查了一次函数的图像性质,熟记k >0,y 随x 的增大而增大;k <0,y 随x 的增大而减小.7.C解析:C【解析】【分析】本题是已知平方项求乘积项,根据完全平方式的形式可得出k 的值.【详解】由完全平方式的形式(a±b )2=a 2±2ab+b 2可得: kx=±2•2x•13, 解得k=±43. 故选:C【点睛】本题关键是有平方项求乘积项,掌握完全平方式的形式(a±b )2=a 2±2ab+b 2是关键. 8.B解析:B【解析】【分析】先利用分配律进行计算,然后再进行化简,根据化简的结果即可确定出值的范围.【详解】(==2,而,-<3,所以2<2所以估计(2和3之间,故选B.【点睛】本题主要考查二次根式的混合运算及估算无理数的大小,熟练掌握运算法则以及“夹逼法”是解题的关键.9.C解析:C【解析】【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数.【详解】解:A.0是整数,属于有理数;B.1.01001是有限小数,属于有理数;C.π是无理数;=,是整数,属于有理数.2故选:C.【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有ππ的数.10.D解析:D【解析】【分析】如图,作点E关于AD的对称点E′,连接CE′交AD于P′,连接EP′,此时EP′+CP′的值最小,作CH⊥AB于H.求出CE′即可.【详解】如图,作点E关于AD的对称点E′,连接CE′交AD于P′,连接EP′,此时EP′+CP′的值最小,作CH⊥AB于H.∵∠ACB=90°,AC=6,BC=8,∴AB22AC BC+2268+,∴CH=AC BCAB⋅=245,∴AH22AC CH-=222465⎛⎫- ⎪⎝⎭185,∴AE=AE′=85,∴E′H=AH-AE′=2,∴P′C+P′E=CP′+P′E′=CE22CH E H'+222425⎛⎫+⎪⎝⎭=265,故选:D.【点睛】此题主要考查利用对称性以及勾股定理的运用,解题关键是做好辅助线,转换等量关系.二、填空题11.①②④【解析】【分析】根据三角形的内角和定理和勾股定理的逆定理逐个判断即可.【详解】解:∵∠A=∠B﹣∠C,∴∠A+∠C=∠B,∵∠A+∠C+∠B=180°,∴∠B=90°,∴△A解析:①②④【解析】【分析】根据三角形的内角和定理和勾股定理的逆定理逐个判断即可.【详解】解:∵∠A=∠B﹣∠C,∴∠A+∠C=∠B,∵∠A+∠C+∠B=180°,∴∠B=90°,∴△ABC是直角三角形,故①符合题意;∵a2=(b+c)(b﹣c)∴a2+c2=b2,∴△ABC是直角三角形,故②符合题意;∵∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴∠A=45°,∠B=60°,∠C=75°,∴△ABC不是直角三角形,故③不符合题意;∵a:b:c=5:12:13,∴a2+b2=c2,∴△ABC是直角三角形,故④符合题意;故答案为:①②④.【点睛】此题主要考查直角三角形的判定,解题的关键是熟知勾股定理逆定理与三角形的内角和定理的运用.12.y=15+2x【解析】【分析】根据年产值y(万元)=现在的年产值+以后每年增加的年产值求解.【详解】解:∵某厂现在的年产值是15万元,计划今后每年增加2万元,∴年产值y与年数x之间的函数解析:y=15+2x【解析】【分析】根据年产值y(万元)=现在的年产值+以后每年增加的年产值求解.【详解】解:∵某厂现在的年产值是15万元,计划今后每年增加2万元,∴年产值y与年数x之间的函数关系为:y=15+2x,故答案为:y=15+2x.【点睛】此题主要考查一次函数在实际问题的应用,找到所求量的等量关系是解决问题的关键.13.2【解析】【分析】根据被开方数大于等于0列式求解即可.【详解】根据题意得,x-2≥0,解得x≥2,∴x 可以取的最小整数为2.故填:2.【点睛】本题考查了二次根式有意义的条件,根据解析:2【解析】【分析】根据被开方数大于等于0列式求解即可.【详解】根据题意得,x-2≥0,解得x ≥2,∴x 可以取的最小整数为2.故填:2.【点睛】本题考查了二次根式有意义的条件,根据被开方数大于等于列式求解即可,比较简单.14.【解析】【分析】根据关于原点对称的点坐标的特点,即可得到答案.【详解】解:∵点和点关于原点对称,∴,,∴;故答案为:.【点睛】本题考查了关于原点对称的点坐标特点,解题的关键是熟记解析:4-【解析】【分析】根据关于原点对称的点坐标的特点,即可得到答案.【详解】解:∵点(,1)A a 和点(3,)B b 关于原点O 对称,∴3a =-,1b =-,∴3(1)4a b +=-+-=-;故答案为:4-.【点睛】本题考查了关于原点对称的点坐标特点,解题的关键是熟记平面直角坐标系中任意一点P (x ,y ),关于原点的对称点是(-x ,-y ),即关于原点的对称点,横纵坐标都变成相反数,比较简单.15.15°【解析】【分析】根据等边对等角和三角形的内角和定理,即可求出∠ABC,然后根据垂直平分线的性质和等边对等角即可求出∠EBA,从而求出的度数.【详解】解:∵,∴∠ABC=∠ACB=(解析:15°【解析】【分析】根据等边对等角和三角形的内角和定理,即可求出∠ABC ,然后根据垂直平分线的性质和等边对等角即可求出∠EBA ,从而求出EBC ∠的度数.【详解】解:∵AB AC =,50A ∠=︒∴∠ABC=∠ACB=12(180°-∠A )=65° ∵ED 垂直平分线段AB∴EA=EB ∴∠EBA=∠A=50°∴EBC ∠=∠ABC -∠EBA=15°故答案为:15°.【点睛】此题考查的是等腰三角形的性质、垂直平分线的性质和三角形的内角和,掌握等边对等角、垂直平分线的性质和三角形的内角和定理是解决此题的关键.16.8【解析】【分析】连接AP ,AD ,根据等腰三角形三线合一可知AD 为△ABC 的高线,求出AD 的长度.根据垂直平分线的性质AP=PC,由两点之间线段最短可知AP+PD 最短AD,由此可求周长的最小值解析:8【解析】【分析】连接AP ,AD ,根据等腰三角形三线合一可知AD 为△ABC 的高线,求出AD 的长度.根据垂直平分线的性质AP=PC,由两点之间线段最短可知AP+PD 最短AD,由此可求PCD ∆周长的最小值【详解】解:如下图,连接AP ,AD.∵△ABC 是等腰三角形,点D 是BC 边的中点,∴AD ⊥BC ,DC=122BC =, 1141222ABC S BC AD AD ∴=⋅=⨯⨯=, 解得AD=6, ∵EF 是线段AC 的垂直平分线,∴AP=PC,∴DP+PC=DP+AP≥AD=6.∴PCD ∆周长=DP+PC+DC,当DP+PC=6时周长最短,最短为6+2=8.故答案为:8.【点睛】本题考查等腰三角形的性质,垂直平分线的性质,两点之间线段最短.能根据垂直平分线的性质和两点之间线段最短求得DP+PC 的最小值是解决此题的关键.17.11【解析】【分析】根据函数图象可以直接得到AB 、BC 和三角形ADB 的面积,从而可以求得AD 的长,作辅助线CE ⊥AD,从而可得CD 的长,进而求得点P 从开始到停止运动的总路程,本题得以解决.【解析:11【解析】【分析】根据函数图象可以直接得到AB、BC和三角形ADB的面积,从而可以求得AD的长,作辅助线CE⊥AD,从而可得CD的长,进而求得点P从开始到停止运动的总路程,本题得以解决.【详解】解:作CE⊥AD于点E,如下图所示,由图象可知,点P从A到B运动的路程是3,当点P与点B重合时,△PAD的面积是212,由B到C运动的路程为3,∴321 222 AD AB AD⨯⨯==解得,AD=7,又∵BC//AD,∠A=90°,CE⊥AD,∴∠B=90°,∠CEA=90°,∴四边形ABCE是矩形,∴AE=BC=3,∴DE=AD-AE=7-3=4,∴2222345,CD CE DE=+=+=∴点P从开始到停止运动的总路程为: AB+BC+CD=3+3+5=11.故答案为:11【点睛】本题考查了根据函数图象获取信息,解题的关键是明确题意,能从函数图象中找到准确的信息,利用数形结合的思想解答问题.18.【解析】【分析】首先将被开方数的分子和分母同时乘以3a,然后再依据二次根式的性质化简即可.【详解】解:原式=,故答案为:.【点睛】本题主要考查的是二次根式的性质与化简,熟练掌握相关知【解析】【分析】首先将被开方数的分子和分母同时乘以3a,然后再依据二次根式的性质化简即可.【详解】解:原式=.【点睛】本题主要考查的是二次根式的性质与化简,熟练掌握相关知识是解题的关键.19.3【解析】【分析】由△ABC为等边三角形,D为AC边上的中点可得∠DBE=30°,由DE=DB得∠E =30°,再证出∠CDE=∠E,得出CD=CE=AC=3即可.【详解】∵△ABC为等边解析:3【解析】【分析】由△ABC为等边三角形,D为AC边上的中点可得∠DBE=30°,由DE=DB得∠E =30°,再证出∠CDE=∠E,得出CD=CE=12AC=3即可.【详解】∵△ABC为等边三角形,D为AC边上的中点,∴BD为∠ABC的平分线,且∠ABC=60°,∴∠DBE=30°,又DE=DB,∴∠E=∠DBE=30°,∵等边△ABC的周长为18,∴AC=6,且∠ACB=60°,∴∠CDE=∠ACB-∠E=30°,∴∠CDE=∠E,∴CD=CE=12AC=3.故答案为:3.【点睛】此题考查了等边三角形的性质、等腰三角形的判定以及三角形的外角性质等知识;熟练掌握等边三角形的性质,证明CD=CE是解题的关键.20.68°【解析】【分析】由在△ABC中,AC=AD=BD,∠B=28°,根据等腰三角形的性质,即可求得∠ADC 的度数,接着求得∠C的度数,可得结论.【详解】解:∵AD=BD,∴∠BAD=∠解析:68°【解析】【分析】由在△ABC中,AC=AD=BD,∠B=28°,根据等腰三角形的性质,即可求得∠ADC的度数,接着求得∠C的度数,可得结论.【详解】解:∵AD=BD,∴∠BAD=∠B=28°,∴∠ADC=∠B+∠BAD=28°+28°=56°,∵AD=AC,∴∠C=∠ADC=56°,∴∠CAD=180°-∠ADC-∠C=180°-56°-56°=68°,故答案为:68°.【点睛】此题考查了等腰三角形的性质与三角形外角的性质.此题难度不大,注意掌握数形结合思想的应用.三、解答题21.(1)(3,4);(2)点M为(0,5)、(0,﹣5)、(0,8)、(0,258);(3)点B(9,12)、C(9,﹣2);(4)点E坐标为(9,1).【解析】试题分析:(1)联立方程组,求解.(2)分类讨论在y轴上确定点OM= OA,OM=AM,总共有4种可能性.(3)设点B(a,43a),C(a,﹣a+7),利用BC=145OA,求a值.过点A作AQ⊥BC,求得△ABC的面积及点B、点C的坐标.(4)利用对称求最小值.试题解析:解:(1)联立得:437y xy x⎧=⎪⎨⎪=-+⎩,解得:34xy=⎧⎨=⎩,则点A的坐标为(3,4).(2)根据勾股定理得:OA=2234+=5,如图1所示,分四种情况考虑:当OM1=OA=5时,M1(0,5);当OM2=OA=5时,M2(0,﹣5);当AM3=OA=5时,M3(0,8);当OM4=AM4时,M4(0,258),综上,点M为(0,5)、(0,﹣5)、(0,8)、(0,258);(3)设点B(a,43a),C(a,﹣a+7),∵BC=145OA=145×5=14,∴43a﹣(﹣a+7)=14,解得:a=9,过点A作AQ⊥BC,如图2所示,∴S△ABC=12BC•AQ=12×14×(9﹣3)=42,当a=9时,43a=43×9=12,﹣a+7=﹣9+7=﹣2,∴点B(9,12)、C(9,﹣2).(4)如图3所示,作出D关于直线BC的对称点D′,连接AD′,与直线BC交于点E,连接DE,此时△ADE 周长最小,对于直线y=﹣x+7,令y=0,得到x=7,即D(7,0),由(3)得到直线BC为直线x=9,∴D′(11,0),设直线AD′解析式为y=kx+b,把A与D′坐标代入得:34110k bk b+=⎧⎨+=⎩,解得:12112kb⎧=-⎪⎪⎨⎪=⎪⎩,∴直线AD′解析式为y=﹣12x+112,令x=9,得到y=1,则此时点E坐标为(9,1).点睛:1.平面上最短路径问题(1)归于“两点之间的连线中,线段最短”.凡属于求“变动的两线段之和的最小值”时,大都应用这一模型.(2)归于“三角形两边之差小于第三边”.凡属于求“变动的两线段之差的最大值”时,大都应用这一模型.(3)平面图形中,直线同侧两点到直线上一点距离之和最短问题.2.平面直角坐标系下,两个一次函数图像的交点坐标问题,可以看作二元一次方程组的解的问题.3.待定系数法求函数的解析式.22.见解析.【解析】【分析】根据等边对等角的性质可得∠ADC=∠AEB,然后利用“角角边”证明△ABE和△ACD全等,然后根据全等三角形对应边相等即可证明.【详解】证明:∵AD=AE,∴∠ADC=∠AEB(等边对等角),∵在△ABE和△ACD中,ABC ACBAEB ADCAE AD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△ACD(AAS),∴BE=CD(全等三角形的对应边相等).【点睛】本题考查了全等三角形的判定与性质及等腰三角形的性质,根据等边对等角的性质得到三角形全等的条件是解题的关键.23.(1)∠D是直角.理由见解析;(2)234.【解析】【分析】(1)连接AC,先根据勾股定理求得AC的长,再根据勾股定理的逆定理,求得∠D=90°即可;(2)根据△ACD和△ACB的面积之和等于四边形ABCD的面积,进行计算即可.【详解】(1)∠D是直角.理由如下:连接AC .∵AB =20,BC =15,∠B =90°,∴由勾股定理得AC 2=202+152=625.又∵CD =7,AD =24,∴CD 2+AD 2=625,∴AC 2=CD 2+AD 2,∴∠D =90°.(2)四边形ABCD 的面积=12AD •DC +12AB •BC =12×24×7+12×20×15=234.【点睛】考查了勾股定理以及勾股定理的逆定理的综合运用,解决问题时需要区别勾股定理及其逆定理.通过作辅助线,将四边形问题转化为三角形问题是关键.24.(1)证明见解析;(2)33+【解析】【分析】(1)根据直角三角形斜边上的中线等于斜边的一半,得CD=AD ,根据直角三角形的两个锐角互余,得∠A=60°,从而判定△ACD 是等边三角形,再根据等腰三角形的三线合一的性质即可证明;(2)结合(1)中的结论,求得CD=2,DE=1,只需根据勾股定理求得CE 的长即可.【详解】 (1)证明:∵∠ACB=90°,CD 是AB 边上的中线,∴CD=AD=DB .∵∠B=30°,∴∠A=60°.∴△ACD 是等边三角形.∵CE 是斜边AB 上的高,∴AE=ED .(2)解:由(1)得AC=CD=AD=2ED ,又AC=2,∴CD=2,ED=1.∴2213CE =-=.∴△CDE 的周长=21333CD ED CE ++=+=.25.证明见解析.【解析】试题分析:由1=2∠∠,可得,CAB EAD ∠=∠,,AC AE AB AD ==则可证明ABC ADE ≅,因此可得.BC DE =试题解析:1=2∠∠,12,EAB EAB ∴∠+∠=∠+∠即CAB EAD ∠=∠,在ABC 和ADE 中,{AC AECAB EAD AB AD=∠=∠=(),ABC ADE SAS ∴≅.BC DE ∴=考点:三角形全等的判定.四、压轴题26.(1) 122°;(2)12BEC α∠=;(3)01902BQC A ;(4)119,29 ; 【解析】【分析】(1)根据三角形的内角和角平分线的定义;(2)根据三角形的一个外角等于与它不相邻的两个内角的和,用A ∠与1∠表示出2∠,再利用E ∠与1∠表示出2∠,于是得到结论;(3)根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义表示出EBC ∠与ECB ∠,然后再根据三角形的内角和定理列式整理即可得解;(4)根据(1),(3)的结论可以得出∠BPC 的度数;根据(2)的结论可以得到∠R 的度数.【详解】解:(1)BP 、CP 分别平分ABC ∠和ACB ∠,12PBC ABC ∴∠=∠,12PCB ACB ∠=∠, 180()BPC PBC PCB ∴∠=︒-∠+∠11180()22ABC ACB =︒-∠+∠, 1180()2ABC ACB =︒-∠+∠, 1(180180)2A =︒-︒-∠, 1180902A =-︒+︒∠, 9032122,故答案为:122︒;(2)如图2示,CE 和BE 分别是ACB ∠和ABD ∠的角平分线,112ACB ∴∠=∠,122ABD ∠=∠, 又ABD ∠是ABC ∆的一外角,ABD A ACB ∴∠=∠+∠,112()122A ABC A ∴∠=∠+∠=∠+∠, 2∠是BEC ∆的一外角,112111222BEC A A α∴∠=∠-∠=∠+∠-∠=∠=; (3)1()2QBC A ACB ∠=∠+∠,1()2QCB A ABC ∠=∠+∠, 180BQC QBC QCB ∠=︒-∠-∠,11180()()22A ACB A ABC =︒-∠+∠-∠+∠, 11180()22A A ABC ACB =︒-∠-∠+∠+∠, 结论1902BQC A ∠=︒-∠. (4)由(3)可知,119090645822BQCA , 再根据(1),可得180()BPCPBC PCB 1118022QBC QCB 1180902Q 118090582119;由(2)可得:11582922R Q ;故答案为:119,29.【点睛】本题考查了三角形的外角性质与内角和定理,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.27.(1)A ,B 两点的坐标分别为()0,2,()3,0;(2)点D 的坐标是141,3⎛⎫-⎪⎝⎭;(3)证明见解析【解析】【分析】(1)根据非负数的性质得出二元一次方程组,求解即可;(2)过点B 作y 轴的平行线分别与过点A ,C 作x 轴的平行线交于点N ,点M ,过点C 作y 轴的平行线与过点A 作x 轴的平行线交于点T ,根据三角形ABC 的面积=长方形CMNT 的面积-(三角形ANB 的面积+三角形ATC 的面积+三角形CMB 的面积)列出方程,求解得出点C 的坐标,由平移的规律可得点D 的坐标;(3)过点E 作//EF CD ,交y 轴于点F ,过点O 作//OG AB ,交PE 于点G ,根据两直线平行,内错角相等与已知条件得出3BCD CEF ∠=∠,同样可证OGP OPE ∠=∠,由平移的性质与平行公理的推论可得FEP OGP ∠=∠,最后根据CEP CEF FEP ∠=∠+∠,通过等量代换进行证明.【详解】解:(1)21280a b a b --+-=, 又∵|21|0a b --≥280a b +-, |21|0a b ∴--=280a b +-=,即210280a b a b --=⎧⎨+-=⎩, 解方程组2128a b a b -=⎧⎨+=⎩得23a b =⎧⎨=⎩, A ∴,B 两点的坐标分别为()0,2,()3,0;(2)如图,过点B 作y 轴的平行线分别与过点A ,C 作x 轴的平行线交于点N ,点M ,过点C 作y 轴的平行线与过点A 作x 轴的平行线交于点T ,∴三角形ABC 的面积=长方形CMNT 的面积-(三角形ANB 的面积+三角形ATC 的面积+三角形CMB 的面积),根据题意得,11195(2||)232(2||)5||222t t t ⎡⎤=⨯+-⨯⨯+⨯⨯++⨯⨯⎢⎥⎣⎦, 化简,得3||42t =, 解得,83t =±, 依题意得,0t <, 83t ∴=-,即点C 的坐标为82,3⎛⎫-- ⎪⎝⎭, ∴依题意可知,点C 的坐标是由点A 的坐标先向左平移2个单位长度,再向下平移143个单位长度得到的,从而可知,点D 的坐标是由点B 的坐标先向左平移2个单位长度,再向下平移143个单位长度得到的, ∴点D 的坐标是141,3⎛⎫- ⎪⎝⎭;(3)证明:过点E 作//EF CD ,交y 轴于点F ,如图所示,则ECD CEF ∠=∠,2BCE ECD ∠=∠,33BCD ECD CEF ∴∠=∠=∠,过点O 作//OG AB ,交PE 于点G ,如图所示,则OGP BPE ∠=∠,PE 平分OPB ∠,OPE BPE ∴∠=∠,OGP OPE ∴∠=∠,由平移得//CD AB ,//OG FE ∴,FEP OGP ∴∠=∠,FEP OPE ∴∠=∠,CEP CEF FEP ∠=∠+∠,CEP CEF OPE ∴∠=∠+∠,CEF CEP OPE ∴∠=∠-∠,3()BCD CEP OPE ∴∠=∠-∠.【点睛】本题综合性较强,考查非负数的性质,解二元一次方程组,平行线的性质,平移的性质,坐标与图形的性质,第(3)题巧作辅助线构造平行线是解题的关键.28.(1)①详见解析;②12α;(2)详见解析;(3)当B 、O 、F 三点共线时BF 最长,(10+2)a【解析】【分析】(1)①由线段垂直平分线的性质可得AD=AC=AB ,即可证点B ,C ,D 在以点A 为圆心,AB 为半径的圆上;②由等腰三角形的性质可得∠BAC=2∠BDC ,可求∠BDC 的度数;(2)连接CE ,由题意可证△ABC ,△DCE 是等边三角形,可得AC=BC ,∠DCE=60°=∠ACB ,CD=CE ,根据“SAS”可证△BCD ≌△ACE ,可得AE=BD ;(3)取AC 的中点O ,连接OB ,OF ,BF ,由三角形的三边关系可得,当点O ,点B ,点F 三点共线时,BF 最长,根据等腰直角三角形的性质和勾股定理可求10BO a =,2OF OC a ==,即可求得BF【详解】(1)①连接AD ,如图1.∵点C 与点D 关于直线l 对称,∴AC = AD .∵AB = AC ,∴AB = AC = AD .∴点B ,C ,D 在以A 为圆心,AB 为半径的圆上.②∵AD=AB=AC ,∴∠ADB=∠ABD,∠ADC=∠ACD,∵∠BAM=∠ADB+∠ABD,∠MAC=∠ADC+∠ACD,∴∠BAM=2∠ADB,∠MAC=2∠ADC,∴∠BAC=∠BAM+∠MAC=2∠ADB+2∠ADC=2∠BDC=α∴∠BDC=12α故答案为:12α.(2连接CE,如图2.∵∠BAC=60°,AB=AC,∴△ABC是等边三角形,∴BC=AC,∠ACB=60°,∵∠BDC=12α,∴∠BDC=30°,∵BD⊥DE,∴∠CDE=60°,∵点C关于直线l的对称点为点D,∴DE=CE,且∠CDE=60°∴△CDE是等边三角形,∴CD=CE=DE,∠DCE=60°=∠ACB,∴∠BCD=∠ACE,且AC=BC,CD=CE,∴△BCD≌△ACE(SAS)∴BD=AE,(3)如图3,取AC的中点O,连接OB,OF,BF,,F是以AC为直径的圆上一点,设AC中点为O,∵在△BOF中,BO+OF≥BF,当B、O、F三点共线时BF最长;如图,过点O作OH⊥BC,∵∠BAC=90°,2a , ∴24BC AC a ==,∠ACB=45°,且OH ⊥BC ,∴∠COH=∠HCO=45°,∴OH=HC , ∴2OC HC =, ∵点O 是AC 中点,AC 2a , ∴2OC a =, ∴OH HC a ==,∴BH=3a , ∴10BO a =,∵点C 关于直线l 的对称点为点D ,∴∠AFC=90°,∵点O 是AC 中点, ∴2OF OC a ==, ∴102BF a =, ∴当B 、O 、F 三点共线时BF 最长;最大值为102)a .【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,等腰三角形的性质,勾股定理,三角形的三边关系,灵活运用相关的性质定理、综合运用知识是解题的关键.29.(1)(0,6),(8,0);(2)存在t=2.4时,使得△ODP 与△ODQ 的面积相等;(3)2∠GOA+∠ACE=∠OHC ,理由见解析.【解析】【分析】(1)根据算术平方根的非负性,绝对值的非负性即可求解;(2)根据运动速度得到OQ=t ,OP=8-2t ,根据△ODP 与△ODQ 的面积相等列方程求解即可;(3)由∠AOC=90°,y 轴平分∠GOD 证得OG ∥AC ,过点H 作HF ∥OG 交x 轴于F ,得到∠FHC=∠ACE ,∠FHO=∠GOD ,从而∠GOD+∠ACE=∠FHO+∠FHC ,即可证得2∠GOA+∠ACE=∠OHC.【详解】(1280a b b -+-=,∴a-b+2=0,b-8=0,∴a=6,b=8,∴A(0,6),C(8,0);故答案为:(0,6),(8,0);(2)由(1)知,A(0,6),C(8,0),∴OA=6,OB=8,由运动知,OQ=t,PC=2t,∴OP=8-2t,∵D(4,3),∴114222ODQ DS OQ x t t=⨯=⨯=△,11823123 22ODP DS OP y t t=⨯=-⨯=-△(),∵△ODP与△ODQ的面积相等,∴2t=12-3t,∴t=2.4,∴存在t=2.4时,使得△ODP与△ODQ的面积相等;(3)2∠GOA+∠ACE=∠OHC,理由如下:∵x轴⊥y轴,∴∠AOC=∠DOC+∠AOD=90°,∴∠OAC+∠ACO=90°.又∵∠DOC=∠DCO,∴∠OAC=∠AOD.∵x轴平分∠GOD,∴∠GOA=∠AOD.∴∠GOA=∠OAC.∴OG∥AC,如图,过点H作HF∥OG交x轴于F,∴HF∥AC,∴∠FHC=∠ACE.∵OG∥FH,∴∠GOD=∠FHO,∴∠GOD+∠ACE=∠FHO+∠FHC,即∠GOD+∠ACE=∠OHC,∴2∠GOA+∠ACE=∠OHC.【点睛】此题考查算术平方根的非负性,绝对值的非负性,坐标系中的动点问题,平行线的判定及性质定理,是一道较为综合的题型.30.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)先利用同角的余角相等得到一对角相等,再由一对直角相等,且AF AC =,利用AAS 得到AFH CAD ∆≅∆;(2)由(1)利用全等三角形对应边相等得到FH AD =,再EK AD ⊥,交DG 延长线于点K ,同理可得到AD EK =,等量代换得到FK EH =,再由一对直角相等且对顶角相等,利用AAS 得到FHG EKG ≅△△,利用全等三角形对应边相等即可得证.【详解】证明:(1) ∵FH AG ⊥,90AEH EAH ∴∠+∠=︒,90FAC ∠=︒,90FAH CAD ∴∠+∠=︒,AFH CAD ∴∠=∠,在AFH ∆和CAD ∆中,90AHF ADC AFH CADAF AC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ()AFH CAD AAS ∴∆≅∆,(2)由(1)得AFH CAD ∆≅∆,FH AD ∴=,作FK AG ⊥,交AG 延长线于点K ,如图;同理得到AEK ABD ∆≅∆,EK AD ∴=,FH EK ∴=,在EKG ∆和FHG ∆中,90EKG FHG EGK FGHEK FH ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ()EKG FHG AAS ∴∆≅∆,EG FG ∴=.即点G 是EF 的中点.【点睛】此题考查了全等三角形的判定与性质,熟练掌握K 字形全等进行证明是解本题的关键.。

八年级上册期末考试数学模拟试卷含详细答案

八年级上册期末考试数学模拟试卷含详细答案

八年级上册期末考试数学模拟试卷含详细答案一、选择题1.如图,一位同学用直尺和圆规作出了△ABC中BC边上的高AD,则一定有()A.PA=PC B.PA=PQ C.PQ=PC D.∠QPC=90°2.如图,有A,B两个正方形,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为5和16,则正方形A,B的面积之和为()A.11 B.9 C.21 D.233.下列计算结果正确的是()A.3x+2x=5x2B.(﹣a3b)2=a6b2C.﹣m2•m4=m6D.(a3)3=a64.如图,已知∠AOB=10°,且OC=CD=DE=EF=FG=GH,则∠BGH=()A.50°B.60°C.70°D.80°5.墨墨发现从某多边形的一个顶点出发,可以作5条对角线,则这个多边形的内角和是()A.1260°B.1080°C.900°D.720°6.如图,直线a,b,c表示三条公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A.一处B.两处C.三处D.四处7.多边形的每一个内角都等于150°,则此多边形从一个顶点出发的对角线共有( ).A.7条B.8条C.9条D.10条8.已知关于x 的分式方程23(3)(6)36mx x x x x +=----无解,关于y 的不等式组21(42)44y y y m ≥⎧⎪⎨--⎪⎩<的整数解之和恰好为10,则符合条件的所有m 的和为( ) A .92 B .72 C .52 D .329.若ABC 的三边a ,b ,c 满足()()0)(a b b c c a ---=那么ABC 的形状一定是( ).A .等腰三角形B .直角三角形C .等边三角形D .锐角三角形10.如图,已知12,AC AD ∠=∠=,增加下列条件,不能肯定ABC AED ≌的是( )A .C D ∠=∠B .B E ∠=∠C . AB AE =D .BC ED =二、填空题11.如图所示,已知∠1=22°,∠2=28°,∠A=56°,则∠BOC 的度数是___________.12.若关于x 的分式方程221a a x +=+无解,则a 的值为_____. 13.已知23a =,26b =,212c=,则2a c b +-=________. 14.等腰三角形一腰上的高与另一腰的夹角为60°,那么这个等腰三角形的底角为__________. 15.在Rt △ABC 中,∠A =90°,∠C =60°,点P 是直线AB 上不同于A 、B 的一点,且PC =4,∠ACP =30°,则PB 的长为_____.16.如图,在等边△ABC 中,D 、E 分别是AB 、AC 上的点,且AD=CE ,则∠BCD+∠CBE= 度.17.如图,在矩形ABCD 中,6,8AB AD ==,以A 为圆心,任意长为半径画弧交,AB AC 于,M N ,再分别以,M N 为圆心,大于12MN 为半径画弧,两弧交于点G ,连接,AG 交边BC 于,E 则AEC 的周长为_________.18.如图,在△ABC 中,CD 是∠ACB 的平分线,DE ∥BC 交AC 于点E ,若DE =6cm ,AE =5cm ,则AC =_____cm .19.小敏设计了一种衣架,如图,在使用时能轻易收拢,然后套进衣服后松开即可,衣架杆18OA OB cm ==,若衣架收拢时,60AOB ∠=,则A 、B 的距离为_____cm .20.一个多边形的每个外角的度数都是60°,则这个多边形的内角和为______.三、解答题21.如图所示,△ABC 中,AB=BC ,DE ⊥AB 于点E ,DF ⊥BC 于点D ,交AC 于F . ⑴若∠AFD=155°,求∠EDF 的度数;⑵若点F 是AC 的中点,求证:∠CFD=12∠B .22.如图,AD ,AE 和AF 分别是ABC ∆的高、角平分线和中线.(1)对于下面的五个结论:①2BC BF =;②12CAE CAB ∠=∠;③BE CE =;④AD BC ⊥;⑤AFB AFC S S ∆∆=. 其中正确的是 (只填序号)(2)若66C ∠=︒,30ABC ∠=︒,求DAE ∠的度数.23.在图中,利用网格点和三角板画图或计算:(1)在给定方格纸中画出平移后的A B C ''';(2)画出AB 边上的中线CD ;(3)画出BC 边上的高线AE ;(4)记网格的边长为1,则A B C '''的面积为___________.24.已知:如图,在Rt ABC ∆中,90C ∠=︒,30A ∠=︒,(1)作B 的平分线BD ,交AC 于点D ;作AB 的中点E ;(要求:尺规作图,保留作图痕迹,不必写作法和证明)(2)连接DE ,求证:ADE BDE ∆≅∆.25.如图,∠ADB =∠ADC ,∠B =∠C .(1)求证:AB =AC ;(2)连接BC ,求证:AD ⊥BC .26.设2244322M x xy y x y =-+-+,则M 的最小值为______.27.已知:如图,AD 垂直平分BC ,D 为垂足,DM ⊥AB ,DN ⊥AC ,M 、N 分别为垂足.求证:DM=DN .28.如图,在Rt △ABC 中,∠BAC =90°,AD ⊥BC 于点D ,BF 平分∠ABC 交AD 于点E ,交AC 于点F .(1)求证:AE =AF ;(2)过点E 作EG ∥DC ,交AC 于点G ,试比较AF 与GC 的大小关系,并说明理由.29.如图,在四边形ABCD 中,AD ∥BC ,E 为CD 的中点,连接AE 、BE ,延长AE 交BC 的延长线于点F .(1)求证:△DAE ≌△CFE ;(2)若AB =BC +AD ,求证:BE ⊥AF .30.如图,如果AD ∥BC ,∠B =∠C ,那么AD 是∠EAC 的平分线吗?请说明你判别的理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】利用基本作法,作了线段CQ的垂直平分线,则根据线段垂直平分线的性质可对各选项进行判断.【详解】由作法得AD垂直平分CQ,所以PQ=PC.故选C.【点睛】本题考查了作图-基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).2.C解析:C【解析】【分析】设A正方形的边长为a,B正方形的边长为b,根据图形得到a2+b2=5+2ab,ab=8,得到答案.【详解】解:设A正方形的边长为a,B正方形的边长为b,由图甲可知,a2﹣b2﹣b(a﹣b)×2=5,即a2﹣2ab+b2=5,∴a2+b2=5+2ab,由图乙可知,(a+b)2﹣a2﹣b2=16,即ab=8,∴a2+b2=5+2ab=21,故选:C.【点睛】本题考查的是完全平方公式的几何背景,掌握平方差公式和完全平方公式是解题的关键.3.B解析:B【解析】【分析】根据合并同类项法则、积的乘方、同底数幂的乘法、幂的乘方分别计算,逐项判断即可求解.【详解】解:A、3x+2x=5x,故原题计算错误;B、(﹣a3b)2=a6b2,故原题计算正确;C、﹣m2•m4=﹣m6,故原题计算错误;D、(a3)3=a9,故原题计算错误.故选:B.【点睛】本题考查了合并同类项、积的乘方、同底数幂的乘法、幂的乘方等知识,熟知相关运算法则是解题关键.4.B解析:B【解析】【分析】根据三角形外角和内角的关系以及等腰三角形的性质,逐步推出∠BGH的度数.【详解】解:∵∠AOB=10°,OC=CD=DE=EF=FG=GH,∴∠ODC=10°,∴∠BCD=∠AOB+∠ODC=20°,∵CD=DE,∴∠DEC=∠BCD=20°,∴∠ADE=∠CED+∠AOB=30°,∵ED=EF,∴∠EFD=30°,∴∠BEF=∠EFD+∠AOB=40°,∵FE=FG,∴∠FGE=40°,∴∠GFH=∠FGE+∠AOB=50°,∵GF=GH,∴∠GHF=50°,∴∠BGH=∠GHF+∠AOB=60°,故选B.【点睛】本题综合考查了等腰三角形的性质、三角形外角性质.此类题考生应该注意的是外角性质的运用.5.B解析:B【解析】【分析】首先根据从一个多边形的一个顶点出发,一共可以作5条对角线,可以得到是八边形,然后利用多边形的内角和定理即可求解.【详解】解:根据题意,多边形的边数是5+3=8,则内角和是(8-2)×180=1080°.故选:B.【点睛】本题考查了多边形的内角和定理和多边形的边数与对角线的条数之间的关系,理解多边形是八边形是关键.6.D解析:D【解析】【分析】根据角平分线上的点到角两边的距离相等作图即可得到结果.【详解】解:如图所示,可供选择的地址有4个,故选:D【点睛】本题主要考查的是角平分线的性质,掌握角平分线上的点到角两边的距离相等是解题的关键.7.C解析:C【解析】【分析】根据邻补角的定义可求出每个外角的度数,根据多边形外角和定理即可得出多边形的边数,根据多边形从一个顶点出发的对角线共有n-3条,即可求得对角线的条数.【详解】∵此多边形的每一个内角都等于150°,∴此多边形的每一个外角都等于180°-150°=30°,∵多边形的外角和为360°,∴此多边形的边数为:360°÷30°=12,∴从一个顶点出发的对角线共有12-3=9条.故选C.【点睛】本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟记的内容.多边形从一个顶点出发的对角线共有n-3条.8.C解析:C【解析】【分析】 分别求解23(3)(6)36mx x x x x +=----,21(42)44y y y m ≥⎧⎪⎨--⎪⎩<,然后得到m 的值,然后进行求解即可.【详解】 解:由23(3)(6)36mx x x x x +=----得:()()2633mx x x +-=-,即()13m x -=, 分式方程无解,∴当10m -=时,得1m =,当10m -≠时,得331m =-或361m =-,解得:32m =,2m =, 由()214244y y y m ≥⎧⎪⎨--⎪⎩<得:07+2y y m ≥⎧⎪⎨⎪⎩<,即702y m ≤+<, 不等式组的整数解之和恰好为10,得到整数解为0,1,2,3,4, ∴74+52m ≤<,解得1322m ≤<, 则符合题意m 的值为1和32,之和为52; 故选C .【点睛】本题主要考查分式方程及一元一次不等式组,关键是根据分式无解的问题及含参数的一元一次不等式组的解法得到参数的解. 9.A解析:A【解析】试题解析:∵(a-b )(b-c )(c-a )=0,∴(a-b )=0或(b-c )=0或(c-a )=0,即a=b 或b=c 或c=a ,因而三角形一定是等腰三角形.故选A.10.D解析:D【解析】【分析】根据等式的性质可得∠CAB=∠DAE,然后再结合判定两个三角形全等的一般方法SSS、SAS、ASA、AAS、HL分别进行分析.【详解】解:∵∠1=∠2,∴∠1+∠EAB=∠2+∠EAB,∴∠CAB=∠DAE,A、添加∠C=∠D可利用ASA定理判定△ABC≌△AED,故此选项符合题意;B、添加∠B=∠E可利用AAS定理判定△ABC≌△AED,故此选项符合题意;C、添加AB=AE可利用SAS定理判定△ABC≌△AED,故此选项符合题意;D、添加CB=DE不能判定△ABC≌△AED,故此选项符合题意.故选:D.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL,解题关键是:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.二、填空题11.106°【解析】【分析】利用了三角形中一个外角等于与它不相邻的两个内角和即可求解.【详解】如图,连接AO,延长AO交BC于点D.根据三角形中一个外角等于与它不相邻的两个内角和,可得:解析:106°【解析】【分析】利用了三角形中一个外角等于与它不相邻的两个内角和即可求解.【详解】如图,连接AO,延长AO交BC于点D.根据三角形中一个外角等于与它不相邻的两个内角和,可得:∠BOD=∠1+∠BAO,∠DOC=∠2+∠OAC,∵∠BAO+∠CAO=∠BAC=56°,∠BOD+∠COD=∠BOC,∴∠BOC=∠1+∠2+∠BAC=22°+28°+56°=106°.故答案为:106°.【点睛】本题考查了三角形的内角和定理,三角形的外角的性质,关键是利用了三角形中一个外角等于与它不相邻的两个内角和求解.12.﹣1或0【解析】【分析】分式方程无解有两种情况:(1)原方程存在增根;(2)原方程约去分母化为整式方程后,整式方程无解,据此解答即可.【详解】解:去分母,得ax+a=2a+2,整理,得a解析:﹣1或0【解析】【分析】分式方程无解有两种情况:(1)原方程存在增根;(2)原方程约去分母化为整式方程后,整式方程无解,据此解答即可.【详解】解:去分母,得ax+a=2a+2,整理,得ax=a+2,当a=0时,方程无解;当a≠0时,x=2aa+.∵当x=﹣1时,分式方程无解,∴2aa+=﹣1,解得:a=﹣1.故答案为:﹣1或0.【点睛】本题考查了分式方程无解的情况,解题的关键是既要考虑分式方程有增根的情形,又要考虑整式方程无解的情形.13.【解析】【分析】先计算,再逆运用同底数幂的乘除法法则,代入求值即可.【详解】∵2b=6,∴(2b)2=62.即22b=36.∵2a+c -2b=2a×2c÷22b=3×12÷36=解析:【解析】【分析】先计算22b ,再逆运用同底数幂的乘除法法则,代入求值即可.【详解】∵2b =6,∴(2b )2=62.即22b =36.∵2a+c-2b=2a ×2c ÷22b=3×12÷36=1,∴20a c b +-=.故答案为:0.【点睛】本题考查了同底数幂的乘除法法则及幂的乘方法则,熟练掌握同底数幂的乘除法法则及逆运用,是解决本题的关键.14.或【解析】【分析】首先根据题意画出图形,然后分别从锐角三角形与钝角三角形分析求解即可求得答案.【详解】解:根据题意得:AB=AC ,BD⊥AC,如图(1),∠ABD=60°,则∠A=3解析:75︒或15︒【解析】【分析】首先根据题意画出图形,然后分别从锐角三角形与钝角三角形分析求解即可求得答案.【详解】解:根据题意得:AB=AC,BD⊥AC,如图(1),∠ABD=60°,则∠A=30°,∴∠ABC=∠C=75°;如图(2),∠ABD=60°,∴∠BAD=30°,∴∠ABC=∠C=12∠BAD=15°.故这个等腰三角形的底角是:75°或15°.故答案为:75︒或15︒.【点睛】此题考查了等腰三角形的性质.此题难度适中,注意掌握分类讨论思想与数形结合思想的应用.15.4或8【解析】【分析】分两种情形分别画出图形即可解问题.【详解】分两种情况讨论:①如图,当点P在线段AB上时.∵∠CAP=90°,∠ACB=60°,∠ACP=30°,∴∠APC=60解析:4或8【解析】【分析】分两种情形分别画出图形即可解问题.【详解】分两种情况讨论:①如图,当点P在线段AB上时.∵∠CAP=90°,∠ACB=60°,∠ACP=30°,∴∠APC=60°,∠B=30°.∵∠APC=∠B+∠PCB,∴∠PCB=∠B=30°,∴PB=PC=4.②当点P'在BA的延长线上时.∵∠P'CA=30°,∠ACB=60°,∴∠P'CB=∠P'CA+∠ACB=90°.∵∠B=30°,P'C=4,∴BP'=2P'C=8.故答案为:4或8.【点睛】本题考查了含30°角的直角三角形,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.16.【解析】试题分析:根据等边三角形的性质,得出各角相等各边相等,已知AD=CE,利用SAS判定△ADC≌△CEB,从而得出∠ACD=∠CBE,所以∠BCD+∠CBE=∠BCD+∠ACD=∠ACB=解析:【解析】试题分析:根据等边三角形的性质,得出各角相等各边相等,已知AD=CE,利用SAS判定△ADC≌△CEB,从而得出∠ACD=∠CBE,所以∠BCD+∠CBE=∠BCD+∠ACD=∠ACB=60°.解:∵△ABC是等边三角形∴∠A=∠ACB=60°,AC=BC∵AD=CE∴△ADC≌△CEB∴∠ACD=∠CBE∴∠BCD+∠CBE=∠BCD+∠ACD=∠ACB=60°.故答案为60.考点:等边三角形的性质;全等三角形的判定与性质.17.15+3【解析】【分析】作,根据角平分线的性质得到BE=EP ,利用勾股定理求解即可;【详解】作,根据题意可知AE 是的角平分线,∴BE=EP ,在△ABE 和△APE 中,,∴,∴AB解析:15+35【解析】【分析】作EP ⊥AC ,根据角平分线的性质得到BE=EP ,利用勾股定理求解即可;【详解】作EP ⊥AC ,根据题意可知AE 是BAC ∠的角平分线,∴BE=EP ,在△ABE 和△APE 中,BAE PAE B APE BE PE ⎧∠=∠⎪∠=∠⎨⎪=⎩,∴△△ABE APE ≅,∴AB=AP ,设BE=x ,则PE=x ,∵6,8AB AD ==,∴10AC =,∴1064PC =-=,8EC x =-,在Rt △PEC 中,222PE PC EC +=,∴()22248x x +=-, 解得3x =,∴5EC =,∴222226345AE AP PE =+=+=, ∴AE =∴△15AEC C AE AC PE =++=+故答案是【点睛】本题主要考查了角平分线的性质应用,准确分析是解题的关键.18.11【解析】【分析】由CD 是∠ACB 的平分线,可得∠ACD=∠BCD,而DE∥BC,则∠BCD=∠EDC,于是∠ACD=∠EDC,再利用等角对等边可求出DE=CE ,从而求出AC 的长.【详解】解析:11【解析】【分析】由CD 是∠ACB 的平分线,可得∠ACD=∠BCD ,而DE ∥BC ,则∠BCD=∠EDC ,于是∠ACD=∠E DC ,再利用等角对等边可求出DE=CE ,从而求出AC 的长.【详解】∵CD 是∠ACB 的平分线,.∴∠ACD=∠BCD ,.又∵DE ∥BC ,.∴∠BCD=∠EDC ..∴∠ACD=∠EDC ..∴DE=CE ..∴AC=AE+CE=5+6=11..故答案为11.【点睛】本题利用了角平分线性质以及等腰三角形的性质、平行线的性质.对线段的等量代换是正确解答本题的关键.19.18【解析】【分析】证明△AOB 是等边三角形,得出AB=OA=18cm 即可.【详解】解:连接,如图所示:∵,,∴是等边三角形,∴,故答案为:18.【点睛】本题考查了等边三角形解析:18【解析】【分析】证明△AOB 是等边三角形,得出AB=OA=18cm 即可.【详解】解:连接AB ,如图所示:∵OA OB =,60AOB ∠=,∴AOB ∆是等边三角形,∴18AB OA cm ==,故答案为:18.【点睛】本题考查了等边三角形的判定与性质;熟练掌握等边三角形的判定方法是解题的关键. 20.720°【解析】【分析】多边形的外角和计算公式为:边数×外角的度数=360°,根据公式即可得出多边形的边数,然后再根据多边形的内角和公式求出它的内角和,n 边形内角和等于(n-2) ×180°.解析:720°【解析】【分析】多边形的外角和计算公式为:边数×外角的度数=360°,根据公式即可得出多边形的边数,然后再根据多边形的内角和公式求出它的内角和,n 边形内角和等于(n -2) ×180°.【详解】解:∵任何多边形的外角和是360°,此正多边形每一个外角都为60°,边数×外角的度数=360°,∴n=360°÷60°=6,∴此正多边形的边数为6,则这个多边形的内角和为(n -2) ×180°,(6-2)×180°=720°,故答案为720°.【点睛】本题主要考查了多边形内角和及外角和定理,熟知“任何多边形的外角和是360°,n 边形内角和等于(n -2) ×180°”是解题的关键.三、解答题21.(1)50°;(2)见解析【解析】试题分析:⑴根据等腰三角形的性质、三角形的内角和定理与四边形的内角和为360°,可求得所求角的度数.⑵连接BF ,根据三角形内角和定理与等腰三角形三线合一,可知12CFD ABC ∠=∠. 试题解析:⑴ ∵∠AFD =155°,∴∠DFC =25°,∵DF ⊥BC ,DE ⊥AB ,∴∠FDC =∠AED =90°,在Rt △EDC 中,∴∠C =90°﹣25°=65°,∵AB =BC ,∴∠C =∠A =65°,∴∠EDF=360°﹣65°﹣155°﹣90°=50°.⑵ 连接BF ,∵AB =BC ,且点F 是AC 的中点,∴BF ⊥AC ,12ABF CBF ABC ∠=∠=∠, ∴∠CFD +∠BFD =90°,∠CBF +∠BFD =90°,∴∠CFD =∠CBF , ∴12CFD ABC ∠=∠. 22.解:(1)①②④⑤;(2)18DAE ∠=︒【解析】【分析】(1)根据三角形的高、角平分线和中线的定义即可得到AD ⊥BC ,∠CAE=12∠CAB ,BC=2BF ,S △AFB =S △AFC .(2)先根据三角形内角和得到∠CAB=180°-∠ABC-∠C=84°,再根据角平分线与高线的定义得到∠CAE=12∠CAB=42°,∠ADC=90°,则∠DAC=90°-∠C=24°,然后利用∠DAE=∠CAE-∠DAC 计算即可.【详解】(1)∵AD ,AE 和AF 分别是△ABC 的高、角平分线和中线,∴AD ⊥BC ,∠CAE=∠BAE=12∠CAB ,BF=CF ,BC=2BF , ∵S △AFB =12BF•AD ,S △AFC =12CF•AD , ∴S △AFB =S △AFC ,故①②④⑤正确,③错误,故答案为①②④⑤;(2)∵∠C=66°,∠ABC=30°,∴∠CAB=180°-∠ABC-∠C=84°,∴∠CAE=12∠CAB=42°, ∵∠ADC=90°,∠C=66°,∴∠DAC=24°∴∠DAE=∠CAE-∠DAC=42°-24°=18°.【点睛】本题考查了三角形的高、角平分线和中线的定义,三角形内角和为180°.也考查了三角形的面积.正确的识别图形是解题的关键.23.(1)见解析;(2)见解析;(3)见解析;(4)8【解析】【分析】(1)连接BB ′,过A 、C 分别做BB ′的平行线,并且在平行线上截取AA ′=CC ′=BB ′,顺次连接平移后各点,得到的三角形即为平移后的三角形;(2)作AB 的垂直平分线找到中点D ,连接CD ,CD 就是所求的中线.(3)从A 点向BC 的延长线作垂线,垂足为点E ,AE 即为BC 边上的高;(4)根据三角形面积公式即可求出△A ′B ′C ′的面积.【详解】解:(1)如图所示:A B C '''∆即为所求;(2)如图所示:CD 就是所求的中线;(3)如图所示:AE 即为BC 边上的高;(4)4421628A B C S '''∆=⨯÷=÷=.故A B C '''∆的面积为8.【点睛】本题主要考查了根据平移变换作图,以及三角形的中线,高的一些基本画图方法.平移作图的一般步骤为:①确定平移的方向和距离,先确定一组对应点;②确定图形中的关键点;③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形.24.(1)见解析;(2)见解析【解析】【分析】(1)①以B 为圆心,任意长为半径画弧,交AB 、BC 于F 、N ,再以F 、N 为圆心,大于12FN 长为半径画弧,两弧交于点M ,过B 、M 画射线,交AC 于D ,线段BD 就是∠B 的平分线;②分别以A 、B 为圆心,大于12AB 长为半径画弧,两弧交于X 、Y ,过X 、Y 画直线与AB 交于点E ,点E 就是AB 的中点;(2)首先根据角平分线的性质可得∠ABD 的度数,进而得到∠ABD =∠A ,根据等角对等边可得AD =BD ,再加上条件AE =BE ,ED =ED ,即可利用SSS 证明△ADE ≌△BDE .【详解】解:(1)作出B 的平分线BD ; 作出AB 的中点E .(2)证明:160302ABD ∠=⨯︒=︒,30A ∠=︒, ABD A ∴∠=∠,AD BD ∴=,在ADE ∆和BDE ∆中,AE BE ED ED AD BD =⎧⎪=⎨⎪=⎩()ADE BDE SSS ∴∆≅∆.【点睛】此题主要考查了复杂作图,以及全等三角形的判定,关键是掌握基本作图的方法和证明三角形全等的判定方法.25.(1)见解析;(2)见解析【解析】【分析】(1)根据题意证明△ADB ≌△ADC 即可证明AB =AC ;(2)连接BC ,由中垂线的逆定理证明即可.【详解】证明:(1)∵在△ADB 和△ADC 中,==ADB ADC B CAD AD ∠⎧⎪∠∠⎨⎪=⎩, ∴△ADB ≌△ADC (AAS ),∴AB =AC ;(2)连接BC ,∵△ADB ≌△ADC ,∴AB =AC ,BD =CD ,∴A 和D 都在线段BC 的垂直平分线上,∴AD 是线段BC 的垂直平分线,即AD ⊥BC .【点睛】本题主要考查全等三角形的判定与性质以及中垂线的逆定理,熟记相关定理是解题关键.26.38- 【解析】【分析】把M 化成完全平方的形式,再示出其最小值即可.【详解】2244322M x xy y x y =-+-+22112224x y y y ⎛⎫=--++- ⎪⎝⎭ 22111132224488x y y ⎛⎫⎛⎫=--++--≥- ⎪ ⎪⎝⎭⎝⎭ 当且仅当14y =-,316x =表达式取得最小值. 故答案为:38-. 【点睛】考查了完全平方公式,解题关键是把整式化成完全平方的形式.27.见解析.【解析】【分析】根据垂直平分线的性质得到AC=AB ,再利用等腰三角形的性质得到AD 是角平分线,最后利用角平分线的性质即可得到结论.【详解】证明:∵AD 垂直平分BC ,∴AC=AB ,即ABC 是等腰三角形,∴AD 平分∠BAC ,∵DM ⊥AB ,DN ⊥AC ,∴DM=DN .【点睛】本题考查了垂直平分线的性质,等腰三角形的判定与性质,角平分线的性质,熟练掌握各性质判定定理是解题的关键.28.(1)见解析;(2)AF =GC ,理由见解析.【解析】【分析】(1)根据直角三角形的性质和角平分线的定义可得∠BED =∠AFB ,然后根据对顶角的性质和等量代换可得∠AEF =∠AFB ,进一步即可推出结论;(2)如图,过F 作FH ⊥BC 于点H ,根据角平分线的性质可得AF =FH ,进而可得AE =FH ,易得FH ∥AE ,然后根据平行线的性质可得∠EAG=∠HFC ,∠AGE=∠C ,进而可根据AAS 证明△AEG ≌△FHC ,再根据全等三角形的性质和线段的和差即可得出结论.【详解】(1)证明:∵∠BAC =90°,∴∠ABF +∠AFB=90°,∵AD⊥BC,∴∠EBD+∠BED=90°,∵BF平分∠ABC,∴∠ABF=∠EBD,∴∠BED=∠AFB,∵∠BED=∠AEF,∴∠AEF=∠AFB,∴AE=AF;(2)AF=GC;理由如下:如图,过F作FH⊥BC于点H,∵BF平分∠ABC,且FH⊥BC,AF⊥BA,∴AF=FH,∵AE=AF,∴AE=FH,∵FH⊥BC,AD⊥BC,∴FH∥AE,∴∠EAG=∠HFC,∵EG∥BC,∴∠AGE=∠C,∴△AEG≌△FHC(AAS),∴AG=FC,∴AF=GC.【点睛】本题考查了直角三角形的性质、角平分线的性质、全等三角形的判定和性质、平行线的性质以及等腰三角形的判定等知识,涉及的知识点多,但难度不大,熟练掌握上述知识、灵活应用全等三角形的判定和性质是解题的关键.29.(1)见解析;(2)见解析【解析】【分析】(1)根据AD ∥BC 可知∠ADC=∠ECF ,再根据E 是CD 的中点可求出△ADE ≌△FCE ; (2)由(1)知△ADE ≌△FCE ,得到AE=EF ,AD=CF ,由于AB=BC+AD ,等量代换得到AB=BC+CF ,即AB=BF ,证得△ABE ≌△FBE ,即可得到结论.【详解】证明:(1)∵AD ∥BC (已知),∴∠ADC =∠ECF (两直线平行,内错角相等),∵E 是CD 的中点(已知),∴DE =EC (中点的定义).∵在△ADE 与△FCE 中,ADC ECF DE ECAED CEF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ADE ≌△FCE (ASA );(2)由(1)知△ADE ≌△FCE ,∴AE =EF ,AD =CF ,∵AB =BC +AD ,∴AB =BC +CF ,即AB =BF ,在△ABE 与△FBE 中,AB BF AE EF BE BE =⎧⎪=⎨⎪=⎩, ∴△ABE ≌△FBE (SSS ),∴∠AEB =∠FEB =90°,∴BE ⊥AF .【点睛】主要考查了平行线的性质,全等三角形的判定与性质,等腰三角形的“三线合一”的性质.30.AD 是∠EAC 的平分线,理由见解析【解析】【分析】根据平行线和等腰三角形的性质可证得∠EAD=∠DAC ,可得出结论.【详解】AD 是∠EAC 的平分线,∵AD ∥BC ,∴∠EAD =∠B ,∠DAC =∠C ,又∵∠B =∠C ,∴∠EAD =∠DAC ,∴AD是∠EAC的平分线.【点睛】本题主要考查了等腰三角形的性质和平行线的性质,掌握等边对等角和平行线的性质是解题的关键.。

苏州市2010–2011学年八年级(上)期末数学模拟试题含答案

苏州市2010–2011学年八年级(上)期末数学模拟试题含答案

2010-2011学年第一学期初二数学期末复习试卷(试卷满分:120分)一、精心选一选(本大题共有8小题,每小题3分,共24分.)1、下列4个图案中,既是轴对称图形又是中心对称图形的有 ( )A .1个B .2个C .3个D .4个 2、给出下列长度的四组线段:①1,2,2;②5,13,12;③6,7,8;④3,4,5.其中能组成直角三角形的有 ( ) A .①② B .②③ C .②④ D .③④3、八年级(1)班的10名同学的期末体育测试成绩如下: 80,86,86,86,86,87,88,89,89,95,这些成绩的众数是( ) A .85 B .86 C .86.5 D .904、若点P 关于x 轴的对称点的坐标是(2,3),则点P 关于原点的对称点的坐标是( )A .(-3,-2)B .(2,-3)C .(-2,-3)D .(-2,3) 5、已知等腰三角形的两边长分别为2cm 和4cm ,则它的周长为( )A .6cmB .8cmC .10cmD .8cm 或10cm 6、下列判断错误..的是( ) A .对角线互相垂直的平行四边形是正方形 B .四个角都相等的四边形是矩形 C .四条边都相等的四边形是菱形 D .一组对边平行且一组对角相等的四边形是平行四边形7、直线l 1:y =k 1x +b 与直线l 2:y =k 2x 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 1x +b >k 2x 的解为( ) A .x >-1 B .x <-1 C .x <-2 D .无法确定8、如图,直线l 是一条河,P 、Q 两地相距8千米,P 、Q 两地到l 的距离分别为2千米、5千米,欲在l 上的某点M 处修建一个水泵站,向P 、Q 两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则铺设的管道最短的是( )二、细心填一填(本大题共有10小题,每小题3分,共30分.) 9、25的平方根为 ;9的算术平方根是 ; 的立方根为-2. 10、2010年“元旦”期间无锡市旅游人数达136 000人次,数据“136 000”用科学记数法表示 人. 11、已知点P 1(a ,3)与P 2(-2,b )关于y 轴对称,则ab 的值为 . 12、如图,在△ABC 中,∠C =90°,DE 是AB 的垂直平分线,∠A =30°,则∠CBD= °.13、在某校艺术节舞蹈比赛中,六名评委对八(1)班舞蹈队打分如下:7.5分,8.3分,7.7分,9.2分,8.1分, 7.9分,去掉一个最高分和一个最低分后的平均分是___________分.14、一次函数y =-2x +6与x 轴的交点坐标是________,与y 轴的交点坐标是________,与坐标轴围成的三角形的面积为 . 15、直角三角形三边长分别为3,4,m ,则m= .16、如图,矩形ABCD 的对角线AC 和BD 相交于点O ,过点O 的直线分别交AD 和BC 于点E 、F ,AB =2,BC =3,则图中阴影部分的面积为 . 17、在△ABC 中,∠A =50°,当∠B 的度数= 时,△ABC 是等腰三角形...P Q l (第8题图) A . .l M . P Q .l M . P Q P ′ B . .l M . PQ C . .l M .P Q D . O xy y =k 1x +by =k 2x(第7题图) -1 -2 A B C D F OE (第16题)(第18题)DA CB (第12题) D AC E B18、如图,在梯形ABCD 中,AD ∥BC ,∠B=90°,AB =4cm ,AD =18cm ,BC =21cm ,点P 从点A 出发,沿边AD 向点D 以2cm/s 的速度移动,点Q 从点C 出发沿边CB 向点B 以6cm/s 的速度移动,P 、Q 同时出发,若有一点运动到端点时,另一点也随之停止.则①CD =_____cm ;②经过______秒后,PQ=CD .三、认真答一答(本大题共6小题,共54分.)19、(本小题满分8分)如图,正方形网格中的每个小正方形边长都是1.(利用网格线进行画图) ⑴在图1中画出以格点为顶点面积为5的正方形; ⑵在图2中已知线段AB 、CD ,画线段EF ,使它与AB 、CD 组成轴对称图形;⑶在图3中①画出一个以格点为端点直角边长为2、3的直角△ABC (∠C =90°);②在AB 上找一点D ,使得D 到CB 、CA 的距离相等; ③在射线CD 上找一点E 到三角形某两点的距离相等.(友情提醒:别忘了标上字母噢!)20、(本小题满分8分)一家公司对A 、B 、C 三名应聘者进行了创新、综合知识和语言三项素质测试,他们的成绩如下表所示:(1)如果根据三项测试的平均成绩确定录用人选,你选谁?请说明理由; (2)根据实际需要,广告公司给出了选人标准:将创新、综合知识和语言三项测试得分按4:3:1的比例确定各人的测试成绩.你选谁?请说明理由.21、(本小题满分8分)已知,如图,四边形ABCD 中∠B =90°,AB =9,BC =12,AD =8,CD =17.试求:(1)AC 的长;(2)四边形ABCD 的面积;22、(本小题满分10分)温度与我们的生活息息相关,你仔细观察过温度计吗?如图是一个温度计实物示意图,左边的刻度是摄氏温度(℃),右边的刻度是华氏温度(°F),设摄氏温度为x (℃),华氏温度为y (°F),且y 是x 的一次函数. (1)仔细观察图中数据,试求出y 与x 之间的函数表达式; (2)当摄氏温度为零下15℃时,求华氏温度为多少?测试项目测试成绩A B C创新 72 85 67综合知识 50 74 70语言 88 45 67(第22题图)DCB A(第21题图) (图3) (图1) (图2) A D C B(第19题图)23、(本小题满分10分)如图,在Rt △ABC 中,∠ABC =90°将Rt △ABC 绕点C顺时针方向旋转60°得到△DEC 点E 在AC 上,再将Rt △ABC 沿着AB 所在直线翻转180°得到△ABF 连接AD . (1)求证:四边形AFCD 是菱形;(2)连接BE 并延长交AD 于G 连接CG ,请问: 四边形ABCG 是什么特殊平行四边形?为什么?24、(本小题满分10分)在一次远足活动中,某班学生分成两组,第一组由甲地匀速步行到乙地后原路返回,第二组由甲地匀速步行经乙地继续前行到丙地后原路返回,两组同时出发,设步行的时间为t (h ),两组离乙地的距离分别为S 1(km )和S 2(km ),下图中的折线分别表示S 1、S 2与t 之间的函数关系. (1)甲、乙两地之间的距离为 km ,乙、丙两地之间的距离为 km ;(2)求第二组由甲地出发首次到达乙地及由乙地到达丙地所用的时间分别是多少?(3)求图中线段AB 所表示的S 2与t 间的函数关系式,并写出自变量t 的取值范围.四、实践与探索(本大题只有1小题,满分12分.)25、(本小题满分12分)某加油站五月份营销一种油品的销售利润y (万元)与销售量x (万升)之间函数关系的图象如图中折线所示,该加油站截止到13日调价时的销售利润为4万元,截止至15日进油时的销售利润为5.5万元. (销售利润=(售价-成本价)×销售量)请你根据图象及加油站五月份该油品的所有销售记录提供的信息,解答下列问题:(1)求销售量x 为多少时,销售利润为4万元; (2)分别求出线段AB 与BC 所对应的函数关系式;(3)我们把销售每升油所获得的利润称为利润率,那么,在OA 、AB 、BC三段所表示的销售信息中,哪一段的利润率最大?(直接写出答案)1日:有库存6万升,成本价4元/升,售价5元/升. 13日:售价调整为5.5元/升. 15日:进油4万升,成本价4.5元/升.五月份销售记录C B DAEFG(第23题图)Ox(万升) y (万元)CBA4 5.5 10 (第25题图)(第24题图)参考答案一、精心选一选1、A ;2、C ;3、B ;4、D ;5、C ;6、A ;7、B ;8、A. 二、细心填一填9、±5;3;-8 10、1.36×105 11、6 12、30° 13、814、(3,0);(0,6);9 15、5或7 16、3 17、65°或50°或80°18、5;3或49三、认真答一答 19、20、(1)根据三项测试的平均成绩计算:A 的最后成绩为(72+50+88)÷3=70;同理B 的最后成绩为68;C 的最后成绩为68,∵68=68<70,录用A .(2)按4:3:1的比例确定各人的测试成绩:A 的最后成绩为818883508472⨯+⨯+⨯=65.75;同理B 的最后成绩为75.875;C 的最后成绩为68.125,∵65.75<68.125<75.875,录用B .21、(1)∵△ABC 中,∠B =90°,∴AB 2+BC 2=AC 2, ∵AB =9,BC =12,∴AC =15. (2)∵AC 2=225,AD 2=64,CD 2=289, ∴AC 2+AD 2=CD 2, ∴∠DAC =90°,∴四边形ABCD 的面积=DAC ABC S S ∆∆+=21×9×12+21×8×15=114.22、(1)设y =kx +b (k ≠0),由题意:当x =0时,y =32;当x =20时,y =68;∴⎩⎨⎧+==b k b 206832,解得⎩⎨⎧==325/9b k ,∴3259+=x y ;(2)在3259+=x y 中,令x =-15时,y =5(°F ) 23、(1)证明:Rt △DEC 是由Rt △ABC 绕C 点旋转60°得到,∴AC =DC ,∠ACB =∠ACD =60°, ∴△ACD 是等边三角形,∴AD =DC =AC又∵Rt △ABF 是由Rt △ABC 沿AB 所在直线翻转180°得到, ∴AC =AF ,∠ABF =∠ABC =90°, ∴∠FBC 是平角 ∴点F 、B 、C 三点共线 ∴△AFC 是等边三角形∴AF =FC =AC ∴AD =DC =FC =AF ∴四边形AFCD 是菱形. (2)四边形ABCG 是矩形.证明:由(1)可知:△ACD 是等边三角形,DE ⊥AC 于E ∴AE =ECC B DAE E'F(F')EDC B A∵AG ∥BC ∴∠EAG =∠ECB ,∠AGB =∠EBC ,∴△AEG ≌△CEB ∴AG =BC ∴四边形ABCG 是平行四边形,而∠ABC =90°, ∴四边形ABCG 是矩形.24、(1)8km ,2km ;(2)由题意,第二组学生的速度为(8+2)÷1=10km/h ∴第二组由甲地出发首次到达乙地所用的时间为: 8÷10=0.8小时第二组由乙地到达丙地所用的时间为: 2÷10=0.2小时(3)由题意A (0.8,0)、B (1,2) 设线段AB 为S 2=kt +b 则⎩⎨⎧+=+=b k b k 28.00,解得⎩⎨⎧-==810b k∴S 2=10t -8.(0.8≤t ≤1)25、(1)根据题意,当销售利润为4万元,销售量4÷(5-4)=4(万升)答:销售量x 为4万升时,销售利润为4万元。

苏教版数学八年级上册期末试卷

苏教版数学八年级上册期末试卷
16.如图8-19,已知△ABC中,AB=AC=26,DE是AB的垂直平分线,交AB于点E,交AC于点D,且△BDC的周长为46,则BC=_______________.
17.如图所示,一次函数图象经过点A,且与正比例函数 的图象交于点B,则该一次函数的表达式为.
18.如图,已知矩形ABCD,AD在y轴上,AB=2,BC=3,点A的坐标为(0,1),在AB边上有一点E(2,1),过点E的直线与CD交于点F.若EF平分矩形ABCD的面积,则直线EF的解析式为.
,解得 ,
与 的函数关系式为 .
当 时, .
点 的纵坐标为60,
表示因故停车检修,
交点 的纵坐标为60.
把 代入 中,有 ,解得 ,
交点 的坐标为(3,60).
交点 表示第一次相遇,
乙车出发 小时,两车在途中第一次相遇.10分
八年级数学抽测试卷
时间100分钟总分150分
一、选择题:(40分)
题号
1
2
3
4
5
6
7
8
9
10
答案
1.下列图形中,是中心对称图形而不是轴对称图形的是()
A.平行四边形B.矩形C.菱形D.正方形
2.下列命题中假命题的是()
A.平行四边形对角线互相平分;B.对角线互相平分的四边形是平行四边形;
C.矩形的对角线相等;D.对角线相等的四边形是矩形;
3.在四边形ABCD中,从①AB∥CD;②AB=CD;③BC∥AD;④BC=AD中任选两个使四边形ABCD为平行四边形的选法有()
27.(1)设乙车所行路程 与时间 的函数关系式为 ,把(2,0)和(10,480)代入,得 ,解得
与 的函数关系式为 .3分

北师大版八年级上册数学期末模拟试卷

北师大版八年级上册数学期末模拟试卷

5621624++八年级上册数学期末模拟试卷1一、选择题1.144的平方根是( ).A .12±B .12C 12-D .32±4.如图,已知射线OP 的端点O 在直线MN 上,∠2比∠1的2倍少30°,设∠2的度数为x ,∠1的度数为y ,则x 、y 满足的关系为( )示的两个天平处于平衡状态,要使第三个天平也保持平衡,则需在它的右盘中放置()的体育锻炼情况绘制的条形统计图,则这个班50名同学一周参加体育锻炼时间的众数与中位数分别为( )2,3),嘴唇C 点的坐标为(﹣1,1),则将此“QQ ”笑脸向右平移3个单位后,右眼B 的坐标是()数是()只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行( )二、填空题11.在实数3.14,-36.0,-66,0.13241324…,39 ,-π,32中,无理数的个数是=________13.黄老师在数学课上给出了6道练习题,要求每位同学独立完成.现则这些同学平均答对 _________ 道题. 14.△ABC 绕着点C 顺时针方向旋转50°后得到△A ′B ′C ′.若∠A=40°,∠B ′=110°,则∠BCA ′的度数是 ____ .15.(2012•漳州一模)将一副学生用三角板按如图所示的方式放置,若AE ∥BC ,则∠CAD 的度数是 _________ 度. 16.如图,在△ABC 中,AD 为高,AE 为角平分线,∠B=70°,∠C=30°,则∠DAE 的度数为 _____ .17.如图,正方形OABC 的边长为1,以点A 为圆心,AC 为半径画弧交数轴与点D,则点D对应的数是 _________ .18.已知(x ﹣2y )2+|x+y+3|=0,则xy= _________ .19.一辆汽车要在规定的时间内从甲地赶往乙地,如果每小时行驶45千米,就要迟到0.5小时;如果每小时行驶50千米,就会早0.5小时.若设甲、乙两地间的距离为x 千米,规定的时间为y 小时,则可列方程组为 _________ .20.把二元一次方程2x+3y ﹣4=0化为y=kx+m 的形式,则m ﹣k= _________ . 三、解答题21.22.已知方程组的解使x 和y 互为相反数,求a 的值.23.一个两位数,十位上的数字比个位上的数字小2,如果把这个两位数数位上的数字交换位置,所得的新两位数与原两位数的和是176.求这个两位数.24.如图,△ABC中,∠ACB=90°,CD是高,若AB=13cm,AC=5cm,求CD的长.25.已知一次函数y=(m﹣4)x+3﹣m,当m 为何值时,(1)y随x值增大而减小;(2)直线过原点;(3)直线与直线y=﹣2x平行;(4)直线与x轴交于点(2,0)(5)直线与y轴交于点(0,﹣1)26.如图,在平面直角坐标系中,△ABC的顶点坐标是A(﹣5,﹣5),B(﹣1,﹣3),C(﹣3,﹣1).(1)画出△ABC关于y轴对称的△A1B1C1;(2)以原点O为旋转中心,把△A1B1C1逆时针旋转90°,得到△A2B2C2;(3)若将△ABC向右平移4个单位,得到△A3B3C3;27.某中学开展“我的中国梦”演讲比赛活动,九(1)、九(2)班根据初赛成绩各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如下图所示.(1)根据如图,分别求出两班复赛的平均成绩和方差;(2)根据(1)的计算结果,分析哪个班级5名选手的复赛成绩波动小?28.测得一弹簧的长度L(cm)与悬挂物的质量x(kg)有下(1)用代数式表示悬挂质量为x kg 的物体时的弹簧长度L;(2)求所挂物体质量为10kg时,弹簧长度是多少?(3)若测得弹簧长度为19cm,判断所挂物体质量是多少千克?29.如图,已知DE⊥AC于点E,BC⊥AC于点C,FG⊥AB于点G,∠1=∠2,求证:CD⊥AB.30.如图,在平面直角坐标系中,一次函数y=kx+5的图象经过点A(1,4),点B是一次函数y=kx+5的图象与x轴的交点.(1)求点B的坐标.(2)求△AOB的面积.。

山东省青岛市局属四校八年级(上)期末数学试卷

山东省青岛市局属四校八年级(上)期末数学试卷
【解析】
解:根据题意,将 x=1 代入 x+y=3,可得 y=2, 将 x=1,y=2 代入 x+py=0,得:1+2p=0,
解得:p=- ,
故选:A. 将 x=1 代入方程 x+y=3 求得 y 的值,将 x、y 的值代入 x+py=0,可得关于 p 的 方程,可求得 p. 本题主要考查二元一次方程组的解的概念,根据方程组的解会准确将方程的 解代入是前提,严格遵循解方程的基本步骤求得方程的解是关键. 7.【答案】D
A. 0.4 与 0.5 之间 B. 0.5 与 0.6 之间 C. 0.6 与 0.7 之间 D. 0.7 与 0.8 之间
5. 将直角坐标系中的点(-1,-3)向上平移 4 个单位,再向右平移 2 个单位后的点的
坐标为( )
A. (3,−1)
B. (−5,−1)
C. (−3,1)
D. (1,1)
【解析】
解:根据题意得到:4a-3=1,2b+7=1, 解得 a=1,b=-3, 则 a+b=1-3=-2. 故答案是:-2.
第 9 页,共 16 页
解:根据题意得,-3+4=1, -1+2=1, 故平移后的点的坐标是(1,1). 故选:D. 根据向上平移纵坐标加,向右平移横坐标加,分别进行计算即可求解. 本题本题考查了坐标系中点的平移规律,在平面直角坐标系中,图形的平移 与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵 坐标上移加,下移减. 6.【答案】A
【解析】
解:由表可知,年龄为 15 岁与年龄为 16 岁的频数和为 x+10-x=10, 则总人数为:5+15+10=30,
故该组数据的众数为 14 岁,中位数为:

苏教版八年级数学上学期期末考前练习卷(含答案)

苏教版八年级数学上学期期末考前练习卷(含答案)

八年级数学上学期期末考前练习卷一.选择题(共4小题)1.如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为()A.B.C.D.2.如图,已知矩形ABCD,AB=4,BC=6,点M为矩形内一点,点E为BC边上任意一点,则MA+MD+ME的最小值为()A.3+2B.4+3C.2+2D.103.如图,在矩形ABCD中,AB=6,BC=8,点E是BC中点,点F是边CD上的任意一点,当△AEF的周长最小时,则DF的长为()A.1B.2C.3D.44.如图所示,在△ABC中,∠ABC与∠ACB的平分线交于点P,过点P作MN∥BC交AB 于点M,交AC于点N,那么下列结论:①BP=CP;②MN=BM+CN;③△BMP和△CNP都是等腰三角形;④△AMN的周长等于AB与AC的和,其中正确的有()A.②③④B.①②③④C.②③D.③二.填空题(共9小题)5.如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°.若BM=1,CN=3,则MN的长为.6.如图,在△ABC中,∠C=90°,AC=BC=5,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF,在此运动变化的过程中,△CEF周长的最小值是.7.如图所示,在四边形ABCD中,AD=3,CD=2,∠ABC=∠ACB=∠ADC=45°,则BD的长为.8.若一次函数y=kx+b(k,b是常数,k≠0)的图象经过点(1,3)和点(﹣1,2),则k2﹣b2的值为.9.如图,在平面直角坐标系中,点A、B的坐标分别为(1,4)、(n,4),若直线y=2x与线段AB有公共点,则n的取值范围为.10.在平面直角坐标系中,点A坐标为(﹣3,m+2),点B坐标为(1,m﹣2),若点C(t+1,n1)和点D(t﹣2,n2)均在直线AB上,则n1﹣n2=.11.已知点A(2m﹣1,4m+2015)、B(﹣n+,﹣n+2020)在直线y=kx+b上,则k+b 值为.12.在平面直角坐标系中,点P是一次函数y=x+b图象上的一个动点,O是坐标原点,连接OP,若OP的最小值为4.8,则b=.13.如图,在平面直角坐标系中,点A的坐标为(3,1),直线l与x轴,y轴分别交于点B (﹣3,0),C(0,3),当x轴上的动点P到直线l的距离PE与到点A的距离P A之和最小时,则点E的坐标是.三.解答题(共27小题)14.如图,已知一次函数y=﹣x+b的图象与x轴交于A(﹣6,0)与y轴相交于点B,动点P从A出发,沿x轴向x轴的正方向运动.(1)求b的值,并求出△P AB为等腰三角形时点P的坐标;(2)在点P出发的同时,动点Q也从点A出发,以每秒个单位的速度,沿射线AB 运动,运动时间为t(s)①求点Q的坐标;(用含t的表达式表示)②若点P的运动速度为每秒k个单位,请直接写出当△APQ为等腰三角形时k的值.15.如图,在平面直角坐标系中,已知A(2,0),以OA为一边在第四象限内画正方形OABC,D(m,0)为x轴上的一个动点(m>2),以BD为一直角边在第四象限内画等腰直角△BDE,其中∠DBE=90°.(1)试判断线段AE、CD的数量关系,并说明理由;(2)设DE的中点为F,直线AF交y轴于点G.问:随着点D的运动,点G的位置是否会发生变化?若保持不变,请求出点G的坐标;若发生变化,请说明理由.16.如图,直线MN与x轴,y轴正半轴分别交于A,C两点,分别过A,C两点作x轴,y 轴的垂线相交于B点,直线y=x与直线MN交于点P,已知AC=10,OA=8.(1)求P点坐标;(2)作∠AOP的平分线OQ交直线MN与点Q,点E、F分别为射线OQ、OA上的动点,连结AE与EF,试探索AE+EF是否存在最小值?若存在,请直接写出这个最小值;若不存在请说明理由;(3)在直线MN上存在点G,使以点G,B,C三点为顶点的三角形是等腰三角形,请直接写出G点的坐标.17.模型建立:如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于D,过B作BE⊥ED于E.(1)求证:BE=CD;(2)模型应用:①已知直线l1:y=﹣x﹣4与y轴交于A点,将直线l1绕着A点顺时针旋转45°至l2,如图2,求l2的函数解析式;②如图3,矩形ABCO,O为坐标原点,B的坐标为(﹣8,6),A、C分别在坐标轴上,P是线段BC上动点,点D是直线y=﹣2x﹣4上的一点,若△APD是不以点A为直角顶点的等腰Rt△,请求出点D的坐标.18.如图,在平面直角坐标系中,已知A(16,0)、B(16,8),C(0,8),D(0,﹣4),点E从点A出发,以每秒1个单位的速度沿AB运动到点B停止,过点E且与AD平行的直线l与y轴相交于点F,设运动时间为t秒(t>0).(1)设t=6时,求直线l的函数表达式;(2)若点E运动t秒后,直线l与x轴相交于点N,且CN=CE,求t的值;(3)记EF的中点为P,请你探求线段OP随点E运动所形成的图形,说明理由并求其面积.19.如图,已知A(a,0),B(0,b)分别为两坐标轴上的点,且a、b满足a2+b2﹣12a﹣12b+72=0,OC:OA=1:3.(1)求A、B、C三点的坐标;(2)若点D(1,0),过点D的直线分别交AB、BC于E、F两点,设E、F两点的横坐标分别为x E、x F,当BD平分△BEF的面积时,求x E+x F的值;(3)如图2,若M(2,4),点P是x轴上A点右侧一动点,AH⊥PM于点H,在BM 上取点G,使HG=HA,连接CG,当点P在点A右侧运动时,∠CGM的度数是否发生改变?若不变,请求其值,若改变,请说明理由.20.如图1,某物流公司恰好位于连接A,B两地的一条公路旁的C处.某一天,该公司同时派出甲.乙两辆货车以各自的速度匀速行驶.其中,甲车从公司出发直达B地;乙车从公司出发开往A地,并在A地用1h配货,然后掉头按原速度开往B地.图2是甲.乙两车之间的距离S(km)与他们出发后的时间x(h)之间函数关系的部分图象.(1)由图象可知,甲车速度为km/h;乙车速度为km/h.(2)已知最终乙车比甲车早到B地0.5h,求甲车出发1.5h后直至到达B地的过程中,S 与x的函数关系式及x的取值范围,并在图2中补全函数图象.21.已知甲、乙两地相距3200m,小王、小李分别从甲、乙两地同时出发,相向而行,两人相遇后立即返回到各自的出发地并停止行进.已知小李的速度始终是60m/min,小王在相遇后以匀速返回,但比小李晚回到原地.在整个行进过程中,他们之间的距离y(m)与行进的时间t(min)之间的函数关系如图中的折线段AB﹣BC﹣CD所示,请结合图象信息解答下列问题:(1)a=,b=;(2)当t为何值时,小王、小李两人相距800m?22.如图,在平面直角坐标系中,O是坐标原点,点A的坐标为(4,0),点B的坐标为(0,b)(b>0),点P是直线AB上位于第二象限内的一个动点,过点P作PC⊥x轴于点C,记点P关于y轴的对称点为Q,设点P的横坐标为a.(1)当b=3时,①求直线AB的解析式;②若QO=QA,求P点的坐标.(2)是否同时存在a、b,使得△QAC是等腰直角三角形?若存在,求出所有满足条件的a、b的值;若不存在,请说明理由.23.在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.(1)△ABC的面积为:;(2)若△DEF三边的长分别为、、,请在图1的正方形网格中画出相应的△DEF,并利用构图法求出它的面积;(3)如图2,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE 的面积分别为13,10,17,且△PQR、△BCR、△DEQ、△AFP的面积相等,求六边形花坛ABCDEF的面积.24.(1)如图①,在正方形ABCD中,E、F分别是BC、CD上的点且∠EAF=45°.猜测线段EF、BE、FD三者存在哪种数量关系?直接写出结论.(不用证明)结论:.(2)如图②,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是BC、CD 上的点,且∠EAF是∠BAD的一半.(1)中猜测的结论是否仍然成立?若成立,请证明;若不成立,请说明理由;25.(1)如图①,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD,求线段EF、BE、FD之间的数量关系小明提供了这样的思路:延长EB到G,使BG=DF,连结AG,根据小明的思路,请直接写出线段EF、BE、FD之间的数量关系:(2)如图②,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?说明理由;(3)如图③,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.26.如图,四边形ABCD中,∠ABC=∠ADC=45°,将△BCD绕点C顺时针旋转一定角度后,点B的对应点恰好与点A重合,得到△ACE.(1)求证:AE⊥BD;(2)若AD=2,CD=3,试求出四边形ABCD的对角线BD的长.27.已知:如图,△ABC、△CDE都是等边三角形,AD、BE相交于点O,点M、N分别是线段AD、BE的中点.(1)求证:AD=BE;(2)求∠DOE的度数;(3)求证:△MNC是等边三角形.28.如图,点O是等边△ABC内一点,D是△ABC外的一点,∠AOB=130°,∠BOC=α,△BOC≌△ADC,∠OCD=60°,连接OD.(1)求证:△OCD是等边三角形;(2)当α=150°时,试判断△AOD的形状,并说明理由;(3)探究:当α为多少度时,△AOD是等腰三角形.(直接写出答案)29.在△ABC中,AB=AC,点D是直线BC上一点(不与B,C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连结CE.(1)如图1,当点D在线段BC上时,如果∠BAC=90°,则∠BCE=°.(2)设∠BAC=α,∠BCE=β.①如图2,当点D在线段BC上移动时,α,β之间有怎样的数量关系?请说明理由.②当点D在直线BC上移动时,α,β之间有怎样的数量关系?请你在备用图上画出图形,并直接写出你的结论.30.图①是一张∠AOB=45°的纸片折叠后的图形,P、Q分别是边OA、OB上的点,且OP=2cm.将∠AOB沿PQ折叠,点O落在纸片所在平面内的C处.(1)①当PC∥QB时,OQ=cm;②在OB上找一点Q,使PC⊥QB(尺规作图,保留作图痕迹);(2)当折叠后重叠部分为等腰三角形时,求OQ的长.31.已知:如图,O为坐标原点,四边形OABC为长方形,A(10,0),C(0,4),点D 是OA的中点,点P在BC上运动,当△ODP是等腰三角形时.(1)求P点的坐标;(2)求满足条件的△ODP的周长最小值.(要有适当的图形和说明过程)32.已知:如图,∠BAC的平分线与BC的垂直平分线交于点D,DE⊥AB,DF⊥AC,垂足分别为E,F.(1)求证:BE=CF;(2)若AB=15,AC=9,求CF的长.33.如图,在△ABC中,AD平分∠BAC,DG⊥BC且平分BC于点G,DE⊥AB于点E,DF⊥AC交AC的延长线于点F.(1)求证:AE=AF;(2)求证:BE=CF;(3)如果AB=12,AC=8,求AE的长.34.如图,AD平分∠BAC,DG⊥BC于点G且平分BC,DF⊥AB于点F,DE⊥AC于点E.(1)求证:BF=CE;(2)求证:AB=AC+2CE.35.某培训中心有钳工20名,车工30名,现将这50名技工派往A,B两地工作,两地技工的月工资如下:钳工(元/月)车工(元/月)A地18001400B地16001500(1)若派往A地x名钳工,余下的技工全部派往B地,写出这50名技工的月工资总额y(元)与x之间的函数表达式,并写出x的取值范围;(2)若派往A地x名车工,余下的技工全部派往B地,写出这50名技工的月工资总额y(元)与x之间的函数表达式,并写出x的取值范围;(3)如何派遣这50名技工,可使他们的工资总额最高?直接写出结果.36.“低碳环保,绿色出行”的概念得到广大群众的接受,越来越多的人喜欢选择骑自行车作为出行工具.小军和爸爸同时骑车去图书馆,爸爸先以150米/分的速度骑行一段时间,休息了5分钟,再以m米/分的速度到达图书馆.小军始终以同一速度骑行,两人骑行的路程为y(米)与时间x(分钟)的关系如图.请结合图象,解答下列问题:(1)填空:a=;b=;m=.(2)若小军的速度是120米/分,求小军第二次与爸爸相遇时距图书馆的距离.(3)在(2)的条件下,爸爸自第二次出发后,骑行一段时间后与小军相距100米,此时小军骑行的时间为分钟.37.已知:如图∠ABC=∠ADC=90°,M,N分别是AC、BD的中点.(1)求证:MN⊥BD.(2)若∠BAD=45°,连接MB、MD,判断△MBD的形状,并说明理由.38.在Rt△ABC和Rt△ADC中,∠ABC=∠ADC=90°,E是AC中点(1)如图(1),求证:∠DEB=2∠DCB;(2)如图(2),上述结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由.39.已知:如图,∠ACB=∠ADB=90°,E为AB中点,连接DE、CE、CD.(1)求证:DE=CE;(2)若∠CAB=25°,∠DBA=35°,判断△DEC的形状,并说明理由;(3)当∠CAB+∠DBA=45°时,若CD=12,取CD中点F,求EF的长.40.如图,△ABC是正三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,使角的两边分别交AB、AC边于M、N两点,连接MN.①当MN∥BC时,求证:MN=BM+CN;②当MN与BC不平行时,则①中的结论还成立吗?为什么?③若点M、N分别是射线AB、CA上的点,其它条件不变,再探线段BM、MN、NC之间的关系,在图③中画出图形,并说明理由.答案与解析一.选择题(共4小题)1.如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为()A.B.C.D.【分析】根据折叠的性质可知AC=CD,∠A=∠CDE,CE⊥AB,Rt△ABC中根据勾股定理求得AB=5,再根据三角形的面积可求得B′F的长.【解答】解:∵Rt△ABC中,∠ACB=90°,AC=3,BC=4,∴AB=5,根据折叠的性质可知AC=CD,∠A=∠CDE,CE⊥AB,∴B′D=BC﹣CD=4﹣3=1,∠DCE+∠B′CF=∠ACE+∠BCF,∵∠ACB=90°,∴∠ECF=45°,∴△ECF是等腰直角三角形,∴EF=CE,∠EFC=45°,∴∠BFC=∠B′FC=135°,∴∠B′FD=90°,∵S△ABC=AC•BC=AB•CE,∴AC•BC=AB•CE,∴CE=,∴EF=,ED=AE==,∴DF=EF﹣ED=∴B′F==.故选:B.【点评】此题主要考查了翻折变换,勾股定理的应用等,根据折叠的性质求得相等的角是本题的关键.2.如图,已知矩形ABCD,AB=4,BC=6,点M为矩形内一点,点E为BC边上任意一点,则MA+MD+ME的最小值为()A.3+2B.4+3C.2+2D.10【分析】将△AMD绕点A逆时针旋转60°得到△AM’D’,MD=M’D’,易得到△ADD’和△AMM’均为等边三角形,推出AM=MM’可得MA+MD+ME=D’M+MM’+ME,共线时最短;由于点E也为动点,可得当D’E⊥BC时最短,此时易求得D’E=DG+GE 的值;【解答】解:将△AMD绕点A逆时针旋转60°得到△AM’D’,MD=M’D’,易得到△ADD’和△AMM’均为等边三角形,∴AM=MM’,∴MA+MD+ME=D’M+MM’+ME,∴D′M、MM′、ME共线时最短,由于点E也为动点,∴当D’E⊥BC时最短,此时易求得D’E=DG+GE=4+3,∴MA+MD+ME的最小值为4+3.故选:B.【点评】本题考查轴对称、旋转变换、矩形的性质等知识,解题的关键是学会添加常用辅助线,构造等边三角形解决问题,学会用转化的思想思考问题,属于中考选择题中的压轴题.3.如图,在矩形ABCD中,AB=6,BC=8,点E是BC中点,点F是边CD上的任意一点,当△AEF的周长最小时,则DF的长为()A.1B.2C.3D.4【分析】作点E关于直线CD的对称点E′,连接AE′交CD于点F,再根据△CE′F∽△BE′A即可求出CF的长,进而得出DF的长.【解答】解:作点E关于直线CD的对称点E′,连接AE′交CD于点F,∵在矩形ABCD中,AB=6,BC=8,点E是BC中点,∴BE=CE=CE′=4,∵AB⊥BC,CD⊥BC,∴=,即=,解得CF=2,∴DF=CD﹣CF=6﹣2=4.故选:D.【点评】本题考查的是轴对称﹣最短路线问题及相似三角形的判定与性质,根据题意作出E点关于直线CD的对称点,再根据轴对称的性质求出CE′的长,利用相似三角形的对应边成比例即可得出结论.4.如图所示,在△ABC中,∠ABC与∠ACB的平分线交于点P,过点P作MN∥BC交AB 于点M,交AC于点N,那么下列结论:①BP=CP;②MN=BM+CN;③△BMP和△CNP都是等腰三角形;④△AMN的周长等于AB与AC的和,其中正确的有()A.②③④B.①②③④C.②③D.③【分析】由平行线得到角相等,由角平分线得角相等,根据平行线的性质及等腰三角形的判定和性质.【解答】解:∵∠ABC、∠ACB的平分线相交于点P,∴∠MBP=∠PBC,∠PCN=∠PCB,∵MN∥BC,∴∠PBC=∠MPB,∠NPC=∠PCB,∴∠MBP=∠MPB,∠NPC=∠PCN,∴BM=MP,PN=CN,∴MN=MP+PN=BM+CN(②正确),∴△BMP和△CNP都是等腰三角形(③正确).∵△AMN的周长=AM+AN+MN,MN=BM+CN,∴△AMN的周长等于AB与AC的和(④正确).故选:A.【点评】本题考查了等腰三角形的性质及角平分线的性质及平行线的性质;题目利用了两直线平行,内错角相等,及等角对等边来判定等腰三角形的;等量代换的利用是解答本题的关键.二.填空题(共9小题)5.如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°.若BM=1,CN=3,则MN的长为.【分析】将△ABM逆时针旋转90°得到△ACF,连接NF,由条件可以得出△NCF为直角三角形,利用勾股定理就可以求出NF,通过证明三角形全等就可以MN=NF,求出NF即可.【解答】解:将△AMB逆时针旋转90°到△ACF,连接NF,∴CF=BM,AF=AM,∠B=∠ACF.∠2=∠3,∵△ABC是等腰直角三角形,AB=AC,∴∠B=∠ACB=45°,∠BAC=90°,∵∠MAN=45°,∴∠NAF=∠1+∠3=∠1+∠2=90°﹣45°=45°=∠NAF,在△MAN和△F AN中∴△MAN≌△F AN,∴MN=NF,∵∠ACF=∠B=45°,∠ACB=45°,∴∠FCN=90°,∵CF=BM=1,CN=3,∴在Rt△CFN中,由勾股定理得:MN=NF==,故答案为:.【点评】本题考查了旋转的性质的运用,勾股定理的运用,全等三角形的判定与性质,能正确作出辅助线是解此题的关键,难度适中.6.如图,在△ABC中,∠C=90°,AC=BC=5,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF,在此运动变化的过程中,△CEF周长的最小值是5+.【分析】连接CD,由SAS定理可证△CDF和△ADE全等,从而可证∠EDF=90°,DE =DF.所以△DFE是等腰直角三角形;当E、F分别为AC、BC中点时,EF取最小值,根据三角形的中位线的性质得到EF,于是得到结论.【解答】解:连接CD;∵△ABC是等腰直角三角形,∴∠DCB=∠A=45°,CD=AD=DB;在△ADE与△CFD中,,∴△ADE≌△CDF(SAS);∴ED=DF,∠CDF=∠EDA;∵∠ADE+∠EDC=90°,∴∠EDC+∠CDF=∠EDF=90°,∴△DFE是等腰直角三角形,∵∠C=90°,AC=BC=5,∴AB=5,∴当△CEF周长的最小时,EF取最小值,∴E、F分别为AC、BC中点时,EF的值最小,∴EF=AB=,∴△CEF周长的最小值=CE+CF+EF=AE+CE+EF=AC+EF=5+;故答案为:5+.【点评】此题主要考查了全等三角形的判定与性质,等腰三角形、直角三角形性质等知识,找到EF∥BC时取最小值是解题关键.7.如图所示,在四边形ABCD中,AD=3,CD=2,∠ABC=∠ACB=∠ADC=45°,则BD的长为.【分析】作AD′⊥AD,AD′=AD,连接CD′,DD′,易证∠BAD=∠CAD′,即可证明△BAD≌△CAD′,可得BD=CD′,∠DAD′=90°,根据勾股定理可求得DD'的值,再根据勾股定理可求得CD'的值,即可解题.【解答】解:作AD′⊥AD,AD′=AD,连接CD′,DD′,如图:∵∠BAC+∠CAD=∠DAD′+∠CAD,即∠BAD=∠CAD′,在△BAD与△CAD′中,,∴△BAD≌△CAD′(SAS),∴BD=CD′,∠DAD′=90°,由勾股定理得DD′==3,∠D′DA+∠ADC=90°,由勾股定理得CD′==,∴BD=CD′=.故答案为:.【点评】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,考查了直角三角形中勾股定理运用,本题中求证△BAD≌△CAD′是解题的关键.8.若一次函数y=kx+b(k,b是常数,k≠0)的图象经过点(1,3)和点(﹣1,2),则k2﹣b2的值为﹣6.【分析】将点(1,3)和点(﹣1,2)代入解析式可求k,b的值,即可求k2﹣b2的值.【解答】解:根据题意得:解得:∴k2﹣b2=﹣=﹣6故答案为:﹣6【点评】本题考查了一次函数图象上点的坐标特征,熟练掌握图象上点的坐标满足图象解析式是本题的关键.9.如图,在平面直角坐标系中,点A、B的坐标分别为(1,4)、(n,4),若直线y=2x与线段AB有公共点,则n的取值范围为n≥2.【分析】由直线y=2x与线段AB有公共点,可得出点B在直线上或在直线右下方,利用一次函数图象上点的坐标特征,即可得出关于n的一元一次不等式,解之即可得出n的取值范围.【解答】解:∵直线y=2x与线段AB有公共点,∴2n≥4,∴n≥2故答案为:n≥2【点评】本题考查了一次函数图象上点的坐标特征,用一次函数图象上点的坐标特征,找出关于n的一元一次不等式是解题的关键.10.在平面直角坐标系中,点A坐标为(﹣3,m+2),点B坐标为(1,m﹣2),若点C(t+1,n1)和点D(t﹣2,n2)均在直线AB上,则n1﹣n2=﹣3.【分析】先求出直线AB的解析式,把点C,点D坐标代入可求解.【解答】解:设直线AB解析式为:y=kx+b解得:k=﹣1,b=m﹣1∴直线AB解析式为:y=﹣x+m﹣1∵点C(t+1,n1)和点D(t﹣2,n2)均在直线AB上,∴n1=﹣t﹣1+m﹣1,n2=﹣t+2+m﹣1,∴n1﹣n2=﹣3故答案为:﹣3【点评】本题考查了一次函数图象上点的坐标特征,熟练掌握函数图象上的点的坐标满足函数解析式是本题的关键.11.已知点A(2m﹣1,4m+2015)、B(﹣n+,﹣n+2020)在直线y=kx+b上,则k+b 值为2019.【分析】把点A(2m﹣1,4m+2015)和点B(﹣,﹣n+2020)分别代入直线y=kx+b,经过整理变形,即可得到k的值,利用代入法,可求得b的值,即可得到答案.【解答】解:把点A(2m﹣1,4m+2015)代入直线y=kx+b得:4m+2015=k(2m﹣1)+b①,把点B(﹣,﹣n+2020)代入直线y=kx+b得:﹣n+2020=k(﹣+)+b②,①﹣②得:4m+n﹣5=k(2m),k==2,把k=2代入①得:4m+2015=2(2m﹣1)+b,解得:b=2017,则k+b=2+2017=2019,故答案为:2019.【点评】本题考查了一次函数图象上点的坐标特征,正确掌握代入法是解题的关键.12.在平面直角坐标系中,点P是一次函数y=x+b图象上的一个动点,O是坐标原点,连接OP,若OP的最小值为4.8,则b=±8.【分析】线段OP的最小值,就是原点到已知直线的距离,可以根据所构建的三角形面积一样来求OP;【解答】解:如图:∵y=x+b,①当b>0时;∴它与x的交点坐标是A(,0),与y轴的交点坐标是B(0,b)∴OA=;OB=b,根据勾股定理:AB==∵S△AOB=,OP=4.8,∴解得b=8;②当b<0时;∴它与x的交点坐标是A'(,0),与y轴的交点坐标是B'(0,b)∴OA'=﹣;OB'=﹣b,根据勾股定理:A'B'==﹣∵OP=4.8,∴解得b=﹣8;故答案填:±8.【点评】本题考查一次函数的综合运用,熟练运用两点之间的距离公式以及面积法是解决本题的关键.13.如图,在平面直角坐标系中,点A的坐标为(3,1),直线l与x轴,y轴分别交于点B (﹣3,0),C(0,3),当x轴上的动点P到直线l的距离PE与到点A的距离P A之和最小时,则点E的坐标是(﹣,).【分析】作点A关于x轴的对称点A',过A'作A'D⊥l,与x轴交于点P,则A'D即为所求最小值;求出直线BC和直线A'E的解析式,联立方程组,即可求出E点坐标;【解答】解:作点A关于x轴的对称点A',过A'作A'D⊥l,与x轴交于点P,则A'D即为所求最小值;∵A的坐标为(3,1),∴A'(3,﹣1),∵B(﹣3,0),C(0,3),直线BC所在的直线解析式y=x+3,∴A'E所在直线解析式y=﹣x+2,∴,∴,∴E(﹣,),故答案为(﹣,);【点评】本题考查一次函数图象及性质,轴对称求最短距离;将所求距离通过轴对称转化为A'E,借助方程组求解是关键.三.解答题(共27小题)14.如图,已知一次函数y=﹣x+b的图象与x轴交于A(﹣6,0)与y轴相交于点B,动点P从A出发,沿x轴向x轴的正方向运动.(1)求b的值,并求出△P AB为等腰三角形时点P的坐标;(2)在点P出发的同时,动点Q也从点A出发,以每秒个单位的速度,沿射线AB 运动,运动时间为t(s)①求点Q的坐标;(用含t的表达式表示)②若点P的运动速度为每秒k个单位,请直接写出当△APQ为等腰三角形时k的值.【分析】(1)把A(﹣6,0)代入y=﹣x+b得到b=﹣2,于是得到B(0,﹣2),AO =6,OB=2,AB==,根据等腰三角形的性质列方程即可得到结论;(2)①由点Q在直线y=﹣x+b上,设Q(a,﹣a﹣2),作QH⊥x轴于H,得到QH=a+2,AH=6+a,根据勾股定理得到AQ==(a+2),列方程即可得到结论;②由题意得到AQ=t,AP=kt,根据等腰三角形的性质列方程即可得到结论.【解答】解:(1)把A(﹣6,0)代入y=﹣x+b得,b=﹣2,∴B(0,﹣2),AO=6,OB=2,AB===2,∵△P AB为等腰三角形,∴当AP=AB时,AP=2,∴P(2﹣6,0);当BP=BA时,OP=OA=6,∴P(6,0);当P A=PB时,设OP=x,则P A=PB=6﹣x,在Rt△OPB中,∵OP2+OB2=PB2,∴x2+22=(6﹣x)2,解得:x=,∴P(﹣,0);综上所述,当△P AB为等腰三角形时点P的坐标为(2﹣6,0)或(6,0)或(﹣,0);(2)①∵点Q在直线y=﹣x+b上,∴设Q(a,﹣a﹣2),作QH⊥x轴于H,则QH=a+2,AH=6+a,∴AQ==(a+2),∵AQ=t,∴t=a+2,∴a=3t﹣6,∴Q(3t﹣6,﹣t);②由题意得,AQ=t,AP=kt,∵△APQ为等腰三角形,∴当AP=AQ时,t=kt,∴k=,当AQ=PQ时,即AH=AP,∴3t=kt,∴k=6;当P A=PQ时,在Rt△PQH中,∵HP2+HQ2=PQ2,∴(3t﹣kt)2+t2=(kt)2,∴k=,综上所述,当△APQ为等腰三角形时k的值为或6或.【点评】本题考查了待定系数法求函数的解析式,勾股定理,等腰三角形的性质,正确的理解题意是解题的关键.15.如图,在平面直角坐标系中,已知A(2,0),以OA为一边在第四象限内画正方形OABC,D(m,0)为x轴上的一个动点(m>2),以BD为一直角边在第四象限内画等腰直角△BDE,其中∠DBE=90°.(1)试判断线段AE、CD的数量关系,并说明理由;(2)设DE的中点为F,直线AF交y轴于点G.问:随着点D的运动,点G的位置是否会发生变化?若保持不变,请求出点G的坐标;若发生变化,请说明理由.【分析】(1)由正方形OABC,可得BC=BA,∠ABC=90°,由等腰直角三角形BDE,可得BD=BE,∠DBE=90°,再根据∠CBD=∠ABE,即可得到△CBD≌△ABE,进而得出CD=AE;(2)过点E作PQ∥OD,分别交直线AB,AF于点P,Q,判定△ADB≌△PBE,可得AD=PB,AB=PE,判定△ADF≌△QEF,可得AD=QE,依据AP=QP,可得∠AQP=45°,依据PQ∥OD,可得∠OAG=∠Q=45°,进而得到△AOG是等腰直角三角形,进而得到G(0,2),即点G的位置不会发生变化.【解答】解:(1)AE=CD.理由:由正方形OABC,可得BC=BA,∠ABC=90°,由等腰直角三角形BDE,可得BD=BE,∠DBE=90°,∴∠ABC+∠ABD=∠DBE+∠ABD,即∠CBD=∠ABE,∴△CBD≌△ABE,∴CD=AE;(2)点G的位置不会发生变化.理由:如图,过点E作PQ∥OD,分别交直线AB,AF于点P,Q,∵∠DAB=∠P=∠DBE=90°,∴∠ADB+∠ABD=∠PBE+∠ABD=90°,∴∠ADB=∠PBE,又∵DB=BE,∴△ADB≌△PBE,∴AD=PB,AB=PE,∵F是DE的中点,∴DF=EF,∵AD∥EQ,∴∠DAF=∠Q,又∵∠AFD=∠QFE,∴△ADF≌△QEF,∴AD=QE,∴AB+BP=PE+EQ,即AP=QP,∴∠AQP=45°,又∵PQ∥OD,∴∠OAG=∠Q=45°,∴△AOG是等腰直角三角形,∴GO=AO=2,∴G(0,2),即点G的位置不会发生变化.【点评】本题主要考查全等三角形的判定和性质、等边三角形的性质、坐标与几何图形的关系、正方形的性质等知识点,解题的难点在于作辅助线构造全等三角形,运用全等三角形的对应边相等得出△APG是等腰直角三角形.16.如图,直线MN与x轴,y轴正半轴分别交于A,C两点,分别过A,C两点作x轴,y 轴的垂线相交于B点,直线y=x与直线MN交于点P,已知AC=10,OA=8.(1)求P点坐标;(2)作∠AOP的平分线OQ交直线MN与点Q,点E、F分别为射线OQ、OA上的动点,连结AE与EF,试探索AE+EF是否存在最小值?若存在,请直接写出这个最小值;若不存在请说明理由;(3)在直线MN上存在点G,使以点G,B,C三点为顶点的三角形是等腰三角形,请直接写出G点的坐标.【分析】(1)由AC与OA的长,利用勾股定理求出OC的长,确定出C坐标,利用待定系数法求出直线MN解析式,与y=x联立求出交点P坐标即可;(2)作出相应的图形,如图1所示,作出A关于射线OQ的对称点A′,可得OA′=OA=8,过A′作A′F⊥OA,交射线OQ于点E,角射线OA于点F,此时A′E+EF=AE+EF存在最小值,求出即可;(3)在直线MN上存在点G,使以点G,B,C三点为顶点的三角形是等腰三角形,分三种情况考虑:①GC=GB,此时G为线段BC垂直平分线与直线MN的交点;②GC=BC=8;③GB=BC=8,分别求出G坐标即可.【解答】解:(1)∵AC=10,OA=8,∴OC===6,∴C(0,6);设直线MN的解析式是y=kx+b(k≠0),∵点A、C都在直线MN上,∴,解得:,∴直线MN的解析式为y=﹣x+6,∵P为y=﹣x+6与直线y=x的交点.∴﹣x+6=x,解得:x=,∴p的坐标为(,);(2)如图1所示:作出A关于射线OQ的对称点A′,可得OA′=OA=8,过A′作A′F⊥OA,交射线OQ于点E,角射线OA于点F,此时A′E+EF=AE+EF存在最小值,在Rt△A′OF中,∠A′OF=45°,设A′F=OF=x,根据勾股定理得:x2+x2=82,解得:x=4,则最小值为4;(3)如图2所示:∵A(8,0),C(0,6),∴根据题意得:B(8,6),∵G在直线MN:y=﹣x+6上,∴设G(a,﹣a+6),在直线MN上存在点G,使以点G,B,C三点为顶点的三角形是等腰三角形,分三种情况考虑:①当GC=GB时,G点为BC垂直平分线与MN交点,此时G1(4,3);②当GC=BC=8时,根据两点间的距离公式得:a2+(﹣a+6﹣6)2=64,解得:a=±,此时G2(﹣,),G3(,);③当GB=BC=8时,根据两点间的距离公式得:(a﹣8)2+(﹣a+6﹣6)2=64,解得:a=,可得﹣a+6=﹣,此时G4(,﹣),则符合条件的点G有:G1(4,3),G2(﹣,),G3(,),G4(,﹣).【点评】此题属于一次函数综合题,涉及的知识有:坐标与图形性质,两点间的距离公式,待定系数法确定一次函数解析式,等腰三角形的性质,利用了分类讨论的思想,熟练掌握公式及法则是解本题的关键.17.模型建立:如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于D,过B作BE⊥ED于E.(1)求证:BE=CD;(2)模型应用:①已知直线l1:y=﹣x﹣4与y轴交于A点,将直线l1绕着A点顺时针旋转45°至l2,如图2,求l2的函数解析式;②如图3,矩形ABCO,O为坐标原点,B的坐标为(﹣8,6),A、C分别在坐标轴上,P是线段BC上动点,点D是直线y=﹣2x﹣4上的一点,若△APD是不以点A为直角顶点的等腰Rt△,请求出点D的坐标.【分析】(1)先根据△ABC为等腰直角三角形得出CB=CA,再由AAS定理可知△ACD ≌△CBE;(2)①如图2中,设直线l1交x轴于B,作BP⊥AC于P,作PE⊥OB于E,PF⊥y轴于F.首先证明四边形PEOF是正方形,求出点P的坐标,利用待定系数法即可解决问题.(3)当点D为直角顶点,分点D在直线P A的上方或下方两种情况;点P为直角顶点,显然此时点D位于直线AP的上方,由此可得出结论.【解答】(1)证明:如图1中,∵△ABC为等腰直角三角形,∴CB=CA,∠ACD+∠BCE=90°,又∵AD⊥ED,BE⊥ED,∴∠D=∠E=90°,∠EBC+∠BCE=90°,∴∠ACD=∠EBC,在△ACD与△CBE中,。

2011-2012学年新人教版八年级(上)期末目标检测数学试卷(三)

2011-2012学年新人教版八年级(上)期末目标检测数学试卷(三)

倍多分八年级数学一、选择题(本大题共8小题,每小题3分,共24分。

在每小题只有一个选项正确)1、下列图案是几种名车的标志,请你指出,在这几个图案中是轴对称图形的共有()A、1个B、2个C、3个D、4个2、下列四个点中,在函数y=﹣2x+1的图象上的点是()A、(1,1)B、(﹣1,﹣3)C、(﹣2,3)D、(2,﹣3)3、(2007•巴中)下列各式计算正确的是()A、a2+a2=a4B、(3x)2=6x2C、(x2)3=x6D、(x+y)2=x2+y24、(2007•怀化)已知点P(﹣2,3)关于y轴的对称点为Q(a,b),则a+b的值是()A、1B、﹣1C、5D、﹣55、(2008•陕西)如图,直线AB对应的函数表达式是()A、y=﹣x+3B、y=x+3C、y=﹣x+3D、y=x+36、(2007•德阳)已知a+b=2,则a2﹣b2+4b的值是()A、2B、3C、4D、67、(2008•怀化)如图,韩老师早晨出门散步时离家的距离(y)与时间(x)之间的函数图象.若用黑点表示韩老师家的位置,则韩老师散步行走的路线可能是()A、B、C、D、8、一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③当x<3时,y1<y2中,正确的个数是()A、0B、1C、2D、3二、填空题(本题共9小题,每小题3分,共27分)9、(2011•常德)函数中自变量x的取值范围是_________.10、算术平方根是的数是_________.11、等腰三角形的一个外角等于110°,则底角为_________.12、(2009•辽宁)分解因式:3a2﹣27=_________.13、(2004•济宁)如图,AB、CD相交于点O,AD=CB,请你补充一个条件,使得△AOD≌△COB,你补充的条件是_________.14、3(2﹣)﹣|﹣2|=_________.15、(2004•龙岩)把一块周长为20cm的三角形铁片裁成四块形状、大小完全相同的小三角形铁片(如图示),则每块小三角形铁片的周长为_________cm.16、如图,直线y=kx+b经过点A(﹣1,﹣2)和点B(﹣2,0),直线y=2x过点A,则不等式2x<kx+b<0的解集为_________.17、观察下列等式:第一行3=4﹣1第二行5=9﹣4第三行7=16﹣9第四行9=25﹣16…按照上述规律,第n行的等式为_________.三、解答题18、在一次学校组织的游艺活动中,某同学在玩“碰碰撞”时,想通过击球A,使撞击桌边MN后反弹回来击中彩球B,请在图上标明使主球撞击在MN上哪一点,才能达到目的(不写作法,保留作图痕迹)19、如图,Rt△ABC中,∠C=90°,∠A=30°,BD平分∠ABC,且CD=5,求AD的长?20、先化简,再求值:3(a﹣1)2﹣(2a+1)(a﹣2),其中a=.21、如图,在△ABC中,AB=AC,D、E分别在AC、AB边上,且BC=BD,AD=DE=EB,求∠A的度数.22、(2009•衢州)如图,四边形ABCD是矩形,△PBC和△QCD都是等边三角形,且点P在矩形上方,点Q在矩形内.求证:(1)∠PBA=∠PCQ=30°;(2)PA=PQ.23、如图,2009个正方形由小到大套在一起,从外向里相间画上阴影,最外面一层画阴影,最里面一层画阴影,最外面的正方形的边长为2009cm,向里依次为2008cm,2007cm,…,1cm,那么在这个图形中,所有画阴影部分的面积和是多少?24、运动会前,小明和小强在学校400米环形跑道上进行某个项目的的训练,一次练习中,小明所跑的路程与所用时间的函数关系如图1所示,小强距离起点(终点)的路程与所用时间的函数关系如图2所示.(1)两人进行的是_________米赛跑训练;(2)若两人同时同地同向出发,求两人出发后多长时间第一次并列?25、(2007•成都)某校九年级三班为开展“迎2008年北京奥运会”的主题班会活动,派了小林和小明两位同学去学校附近的超市购买钢笔作为奖品.已知该超市的锦江牌钢笔每支8元,红梅牌钢每支4.8元,他们要购买这两种笔共40支.(1)如果他们两人一共带了240元,全部用于购买奖品,那么能买这两种笔各多少支?(2)小林和小明根据主题班会活动的设奖情况,决定所购买的锦江牌钢笔的数量要少于红梅牌钢笔的数量的,但又不少于红梅牌钢笔的数量的.如果他们买了锦江牌钢笔x支,买这两种笔共花了y元.①请写出y(元)关于x(支)的函数关系式,并求出自变量x的取值范围;②请帮他们计算一下,这两种笔各购买多少支时,所花的钱最少,此时花了多少元?26、(2009•临沂)数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点.∠AEF=90°,且EF交正方形外角∠DCG的平行线CF于点F,求证:AE=EF.经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证△AME≌△ECF,所以AE=EF.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.答案与评分标准一、选择题(本大题共8小题,每小题3分,共24分。

人教版数学八年级上册期中考试模拟试卷(一)(前3章)含答案

人教版数学八年级上册期中考试模拟试卷(一)(前3章)含答案

八年级上学期期中考试数学模拟试卷(一)(前3章)(人教版)(满分120分,考试时间100分钟)(附答案)学校____________ 班级________ 姓名___________一、选择题(每小题3分,共30分)1.如图分别是贵州、旅游、河北、黑龙江卫视的图标,其中属于轴对称图形的是()A.B.C.D.2.下列条件:①∠A+∠B=∠C;②∠A∶∠B∶∠C=1∶2∶3;③∠A=90°-∠B;④∠A=∠B-∠C,其中能确定△ABC是直角三角形的条件有()A.1个B.2个C.3个D.4个3.有长为2 cm,3 cm,4 cm,5 cm的四根木棒,选其中的3根作为三角形的边,可以围成的三角形的个数是()A.1个B.2个C.3个D.4个4.满足下列条件的两个三角形不一定全等的是()A.有一边相等的两个等边三角形B.有一腰和底边对应相等的两个等腰三角形C.周长相等的两个三角形D.斜边和直角边对应相等的两个等腰直角三角形5.已知∠AOB,作∠AOB的平分线OM,在射线OM上截取线段OC,分别以O,C为圆心,大于1OC的长为半径画弧,两弧相交于E,F,画直线EF,分别交OA于点D,交OB2于点G,那么△ODG一定是()A.锐角三角形B.钝角三角形C.等腰三角形D.直角三角形6.若等腰三角形一腰上的高与另一腰的夹角为25°,则顶角的度数是()A.65° B.55° C.125°或55° D.65°或115°7. 图中有三个正方形,其中构成的三角形中全等三角形的对数有( )A .2对B .3对C .4对D .5对8. 如图,将△ABC 纸片沿DE 折叠,使点A 落在点A '处,且A 'B 平分∠ABC ,A 'C 平分∠ACB .若∠BA 'C =110°,则∠1+∠2的度数为( ) A .80°B .90°C .100°D .110°9. 如图,在△ABC 中,点D 在BC 边上,过D 作DE ⊥BC 交AB 于点E ,P 为DC 上的一个动点,连接PA ,PE ,若PA +PE 最小,则点P 应该满足( ) A .PA =PCB .PA =PEC .∠APE =90°D .∠APC =∠DPE10. 如图所示,△ABC 的两条外角平分线AP ,CP 相交于点P ,PH ⊥AC 于H .若∠ABC =60°,则下面的结论:①∠ABP =30°;②∠APC =60°;③△ABC ≌△APC ;④P A ∥BC ;⑤∠APH =∠BPC ,其中正确结论的个数是( )A .2个B .3个C .4个D .5个A'21E D CBAAB CD EP二、填空题(每小题3分,共15分)11. 一个多边形的每一个外角都等于36°,则该多边形的内角和等于_______度.12. 已知点P (1,a )与点Q (b ,2)关于x 轴对称,点Q (b ,2)与点M (m ,n )关于y 轴对称,则m -n 的值为___________.13. 已知△ABC 三内角满足:3∠A >5∠B ,2∠B ≥3∠C ,则按角分类,△ABC 是__________三角形.14. 若满足∠AOB =30°,OA =4,AB =k 的△AOB 的形状与大小是唯一的,则k 的取值范围是_________.15. 如图,等边△ABC 的边长为2,CD 为AB 边上的中线,E 为线段CD 上的动点,以BE 为边,在BE 左侧作等边△BEF ,连接DF ,则DF 的最小值为_________.三、解答题(本大题共8个小题,满分75分)16. (8分)如图所示,两条笔直的公路AO 与BO 相交于点O ,村庄D 和E 在公路AO 的两侧,现要在公路AO 和BO 之间修一个供水站P 向D ,E 两村供水,使供水站P 到两公路的距离相等,且到D ,E 两村的距离也相等.请你在图中画出点P 的位置.(要求:尺规作图,不写作法,保留作图痕迹.)A B C D EPHA BCDEF17. (9分)如图,△ABC 三个顶点的坐标分别为A (1,1),B (4,2),C (3,4).(1)画出△ABC 关于y 轴的对称图形△A 1B 1C 1,并写出点B 1的坐标; (2)在x 轴上求作一点P ,使△PAB 的周长最小,并直接写出点P 的坐标.18. (9分)如图,∠A =∠B ,AE =BE ,点D 在AC 边上,∠1=∠2,AE 和BD 相交于点O .(1)求证:△AEC ≌△BED ; (2)若∠1=40°,求∠BDE 的度数.BOABCDEO1219. (9分)如图,在△ABC 中,∠BAC =120°,BC =26,AB ,AC 的垂直平分线分别交BC 于点E ,F ,与AB ,AC 分别交于点D ,G . (1)求∠EAF 的度数; (2)求△AEF 的周长.20. (9分)如图,在△ABC 中,∠ABC =45°,CD ⊥AB 于D ,BE 平分∠ABC ,且BE ⊥AC于E ,与CD 相交于点F ,H 是BC 边的中点,连接DH 与BE 相交于点G . (1)求证:BF =AC ;DGABCEF(2)求证:CE=12BF .21. (10分)已知:如图,AF 平分∠BAC ,BC ⊥AF ,垂足为E ,点D 与点A 关于点E 对称,PB 分别与线段CF ,AF 相交于点P ,M . (1)求证:AB =CD ;(2)若∠BAC =2∠MPC ,请你判断∠F 与∠MCD 的数量关系,并说明理由.H A BCD EFGPMFE D CBA22. (10分)如图,在等边△ABC 中,AB =BC =AC =12 cm ,∠B =∠C =60°,现有M ,N 两点分别从点A ,B 同时出发,沿△ABC 的边运动,已知点M 的速度为1 cm/s ,点N 的速度为2 cm/s ,当点N 第一次到达B 点时,M ,N 同时停止运动,设运动时间为t (s ). (1)当t 为何值时,M ,N 两点重合?两点重合在什么位置?(2)当点M ,N 在BC 边上运动时,是否存在使AM =AN 的位置?若存在,请求出此时点M ,N 运动的时间;若不存在,请说明理由.23. (11分)如图1,点C 在线段AB 上(点C 不与A ,B 重合),分别以AC ,BC 为边在AB同侧作等边三角形ACD 和等边三角形BCE ,连接AE ,BD 交于点P .N M(1)观察猜想:①AE 与BD 的数量关系为____________; ②∠APD 的度数为____________. (2)数学思考:如图2,当点C 在线段AB 外时,(1)中的结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明. (3)拓展应用:如图3,点E 为四边形ABCD 内一点,且满足∠AED =∠BEC =90°,AE =DE ,BE =CE ,对角线AC ,BD 交于点P ,AC =10,则四边形ABCD 的面积为_________.图1A BC DEP图2DAC P EB图3ABP DCE八年级上学期期中考试数学模拟试卷(一)(前3章)(人教版)【参考答案】一、选择题二、填空题11.1440.12.-3.13.钝角.14.k=2或k≥4.15.12.三、解答题16.如图,点P即为所求.17.(1)作图略,B1(-4,2);(2)P(2,0).18.(1)证明略;(2)70°.19.(1)∠EAF=60°;(2)△AEF的周长为26.20.(1)证明略;(2)证明略.21.(1)证明略;(2)∠F=∠MCD,理由略.22.(1)12 s,两点重合在C点;(2)存在,t=16 s.23.(1)①AE=BD;②60°;(2)成立,证明略;(3)50.。

2022-2023学年人教版八年级数学上册期末模拟测试题含答案

2022-2023学年人教版八年级数学上册期末模拟测试题含答案

2022-2023学年八年级上册期末数学模拟试卷一、选择题(本题共36分,每小题3分)在下列各题的四个备选答案中,只有一个符合题意.请将正确选项前的字母填在表格中相应的位置.1.(3分)如图所示的汽车标志中,不是轴对称图形的是()A.B.C.D.2.(3分)下列运算中正确的是()A.2x+3y=5xy B.x8÷x2=x4C.(x2y)3=x6y3D.2x3•x2=2x63.(3分)在平面直角坐标系xOy中,点P(﹣3,5)关于x轴的对称点的坐标是()A.(3,5)B.(3,﹣5)C.(5,﹣3)D.(﹣3,﹣5)4.(3分)若分式的值为0,则x的值为()A.0B.1C.﹣1D.±15.(3分)如图,将三角形纸片ABC沿直线DE折叠后,使得点B与点A重合,折痕分别交BC,AB于点D,E.如果AC=5cm,△ADC的周长为17cm,那么BC的长为()A.7cm B.10cm C.12cm D.22cm6.(3分)下列各式中,正确的是()A.B.C.D.7.(3分)某园林公司增加了人力进行园林绿化,现在平均每天比原计划多植树50棵,现在植树600棵所需的时间与原计划植树450棵所需的时间相同,如果设原计划平均每天植树x棵,那么下面所列方程中,正确的是()A.B.C.D.8.(3分)如图,把△ABC沿EF对折,叠合后的图形如图所示.若∠A=60°,∠1=95°,则∠2的度数为()A.24°B.25°C.30°D.35°9.(3分)在下列各式的计算中,正确的是()A.a2+a3=a5B.2a(a+1)=2a2+2aC.(ab3)2=a2b5D.(y﹣2x)(y+2x)=y2﹣2x210.(3分)已知等腰三角形的两边长分别为7和3,则第三边的长是()A.7B.4C.3D.3或711.(3分)化简结果正确的是()A.ab B.﹣ab C.a2﹣b2D.b2﹣a212.(3分)当x分别取﹣2014、﹣2013、﹣2012、….﹣2、﹣1、0、1、、、…、、、时,计算分式的值,再将所得结果相加,其和等于()A.﹣1B.1C.0D.2014二、填空题:(本题共24分,每小题3分)13.(3分)如果分式的值为0,那么x的值为.14.(3分)计算:=.15.(3分)分解因式:3a3﹣12a=.16.(3分)若关于x的二次三项式x2+kx+b因式分解为(x﹣1)(x﹣3),则k+b的值为.17.(3分)如图是两个全等三角形,图中的字母表示三角形的边长,那么根据图中提供的信息可知∠1的度数为 .18.(3分)约分:=.19.(3分)如图,△ABC ≌△DEF ,点F 在BC 边上,AB 与EF 相交于点P .若∠DEF =37°,PB =PF ,则∠APF = °.20.(3分)如图,图中的方格均是边长为1的正方形,每一个正方形的顶点都称为格点.图①~⑥这些多边形的顶点都在格点上,且其内部没有格点,象这样的多边形我们称为“内空格点多边形”. (1)当内空格点多边形边上的格点数为10时,此多边形的面积为 ;(2)设内空格点多边形边上的格点数为L ,面积为S ,请写出用L 表示S 的关系式 .三、解答题:(本题共14分,第21题9分,第22题5分) 21.(9分)(1)因式分解:3m 2﹣24m +48. (2)计算:. (3)解关于x 的方程:.22.(5分)已知,y =﹣2,求代数式(x +2y )2﹣(x ﹣2y )(x +2y )的值.四、解答题:(本题共9分,第23题4分,第24题5分)23.(4分)如图,点F 、C 在BE 上,BF =CE ,AB =DE ,∠B =∠E .求证:∠A =∠D .24.(5分)列方程解应用题2014年11月,APEC (“亚太经济合作组织”的简称)会议在中国北京成功召开.会议期间为方便市民出行,某路公交车每天比原来的运行增加30车次.经调研得知,原来这路公交车平均每天共运送乘客5600人,APEC 会议期间这路公交车平均每天共运送乘客8000人,且平均每车次运送乘客与原来的数量基本相同,问APEC 会议期间这路公交车每天运行多少车次? 五、解答题:(本题共17分,第25题5分,第26题6分,第27题6分) 25.(5分)已知:如图,△ABC ,射线AM 平分∠BAC .(1)尺规作图(不写作法,保留作图痕迹)作BC 的中垂线,与AM 相交于点G ,连接BG 、CG . (2)在(1)的条件下,∠BAC 和∠BGC 的等量关系为 ,证明你的结论.26.(6分)阅读:对于两个不等的非零实数a 、b ,若分式的值为零,则x =a 或x =b .又因为==x +﹣(a +b ),所以关于x 的方程x +=a +b 有两个解,分别为x 1=a ,x 2=b .应用上面的结论解答下列问题:(1)方程x +=6的两个解中较大的一个为 ; (2)关于x 的方程x +=的两个解分别为x 1、x 2(x 1<x 2),若x 1与x 2互为倒数,则x 1= ,x 2= ;(3)关于x 的方程2x +=2n +3的两个解分别为x 1、x 2(x 1<x 2),求的值.27.(6分)在△ABC 中,已知D 为直线BC 上一点,若∠ABC =x °,∠BAD =y °.(1)当D为边BC上一点,并且CD=CA,x=40,y=30时,则AB AC(填“=”或“≠”);(2)如果把(1)中的条件“CD=CA”变为“CD=AB”,且x,y的取值不变,那么(1)中的结论是否仍成立?若成立请写出证明过程,若不成立请说明理由.2022-2023学年八年级(上)期末数学模拟试卷参考答案与试题解析一、选择题(本题共36分,每小题3分)在下列各题的四个备选答案中,只有一个符合题意.请将正确选项前的字母填在表格中相应的位置.1.(3分)如图所示的汽车标志中,不是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,不合题意,故本选项错误;C、轴对称图形,不合题意,故本选项错误;D、轴对称图形,不合题意,故本选项错误;故选:A.2.(3分)下列运算中正确的是()A.2x+3y=5xy B.x8÷x2=x4C.(x2y)3=x6y3D.2x3•x2=2x6【解答】解:A、2x和5y不是同类项,不能合并,故本选项错误;B、x8÷x2=x6,原式计算错误,故本选项错误;C、(x2y)3=x6y3,计算正确,故本选项正确;D、2x3•x2=2x5,原式计算错误,故本选项错误.故选:C.3.(3分)在平面直角坐标系xOy中,点P(﹣3,5)关于x轴的对称点的坐标是()A.(3,5)B.(3,﹣5)C.(5,﹣3)D.(﹣3,﹣5)【解答】解:∵关于x轴对称的两点的横坐标相等,纵坐标互为相反数∴点P(﹣3,5)关于x轴的对称点的坐标是(﹣3,﹣5).故选:D.4.(3分)若分式的值为0,则x的值为()A.0B.1C.﹣1D.±1【解答】解:∵分式的值为0,∴x2﹣1=0,且x﹣1≠0,解得:x=﹣1.故选:C.5.(3分)如图,将三角形纸片ABC沿直线DE折叠后,使得点B与点A重合,折痕分别交BC,AB于点D,E.如果AC=5cm,△ADC的周长为17cm,那么BC的长为()A.7cm B.10cm C.12cm D.22cm【解答】解:∵将△ABC沿直线DE折叠后,使得点B与点A重合,∴AD=BD,∵AC=5cm,△ADC的周长为17cm,∴AD+CD=BC=17﹣5=12(cm).故选:C.6.(3分)下列各式中,正确的是()A.B.C.D.【解答】解:A分母中的a没除以b,故A错误;B异分母分式不能直接相加,故B错误;C分式的分子分母没同乘或除以同一个不为零整式,故C错误;D分式的分子分母都乘以(a﹣2),故D正确;故选:D.7.(3分)某园林公司增加了人力进行园林绿化,现在平均每天比原计划多植树50棵,现在植树600棵所需的时间与原计划植树450棵所需的时间相同,如果设原计划平均每天植树x棵,那么下面所列方程中,正确的是()A.B.C.D.【解答】解:设原计划平均每天植树棵x棵,现在每天植树(x+50)棵,依题意得,=.故选:B.8.(3分)如图,把△ABC沿EF对折,叠合后的图形如图所示.若∠A=60°,∠1=95°,则∠2的度数为()A.24°B.25°C.30°D.35°【解答】解:∵∠A=60°,∴∠AEF+∠AFE=180°﹣60°=120°,∴∠FEB+∠EFC=360°﹣120°=240°,∵由折叠可得:∠B′EF+∠EFC′=∠FEB+∠EFC=240°,∴∠1+∠2=240°﹣120°=120°,∵∠1=95°,∴∠2=120°﹣95°=25°,故选:B.9.(3分)在下列各式的计算中,正确的是()A.a2+a3=a5B.2a(a+1)=2a2+2aC.(ab3)2=a2b5D.(y﹣2x)(y+2x)=y2﹣2x2【解答】解:A、不是同类项,不能合并,故选项错误;B、正确;C、(ab3)2=a2b6,故选项错误;D、(y﹣2x)(y+2x)=y2﹣4x2,故选项错误.故选:B.10.(3分)已知等腰三角形的两边长分别为7和3,则第三边的长是()A.7B.4C.3D.3或7【解答】解:①7是腰长时,三角形的三边分别为7、7、3,能组成三角形,所以,第三边为7;②7是底边时,三角形的三边分别为3、3、7,∵3+3=6<7,∴不能组成三角形,综上所述,第三边为7.故选:A.11.(3分)化简结果正确的是()A.ab B.﹣ab C.a2﹣b2D.b2﹣a2【解答】解:==﹣ab.故选:B.12.(3分)当x分别取﹣2014、﹣2013、﹣2012、….﹣2、﹣1、0、1、、、…、、、时,计算分式的值,再将所得结果相加,其和等于()A.﹣1B.1C.0D.2014【解答】解:因为+=+=0,即当x分别取值,n(n为正整数)时,计算所得的代数式的值之和为0;而当x=0时,==﹣1.因此,当x分别取﹣2014、﹣2013、﹣2012、….﹣2、﹣1、0、1、、、…、、、时,计算分式的值,再将所得结果相加和﹣1,故选:A.二、填空题:(本题共24分,每小题3分)13.(3分)如果分式的值为0,那么x的值为3.【解答】解:x﹣3=0,且x+2≠0,x=3,故答案为:3. 14.(3分)计算:= ﹣1.【解答】解:==﹣1.故答案为:﹣1.15.(3分)分解因式:3a 3﹣12a = 3a (a +2)(a ﹣2) . 【解答】解:3a 3﹣12a =3a (a 2﹣4), =3a (a +2)(a ﹣2).故答案为:3a (a +2)(a ﹣2).16.(3分)若关于x 的二次三项式x 2+kx +b 因式分解为(x ﹣1)(x ﹣3),则k +b 的值为 ﹣1 . 【解答】解:由题意得:x 2+kx +b =(x ﹣1)(x ﹣3)=x 2﹣4x +3, ∴k =﹣4,b =3, 则k +b =﹣4+3=﹣1. 故答案为:﹣117.(3分)如图是两个全等三角形,图中的字母表示三角形的边长,那么根据图中提供的信息可知∠1的度数为 70° .【解答】解:根据三角形内角和可得∠2=180°﹣50°﹣60°=70°, 因为两个全等三角形, 所以∠1=∠2=70°, 故答案为:70°.18.(3分)约分:=. 【解答】解:原式==.故答案为.19.(3分)如图,△ABC ≌△DEF ,点F 在BC 边上,AB 与EF 相交于点P .若∠DEF =37°,PB =PF ,则∠APF = 74 °.【解答】解:∵△ABC ≌△DEF , ∴∠E =∠B =37°, ∵PB =PF ,∴∠PFB =∠B =37°, ∴∠APF =37°+37°=74°, 故答案为:74.20.(3分)如图,图中的方格均是边长为1的正方形,每一个正方形的顶点都称为格点.图①~⑥这些多边形的顶点都在格点上,且其内部没有格点,象这样的多边形我们称为“内空格点多边形”. (1)当内空格点多边形边上的格点数为10时,此多边形的面积为 4 ;(2)设内空格点多边形边上的格点数为L ,面积为S ,请写出用L 表示S 的关系式 S =L ﹣1 .【解答】解:(1)由图形可知当内空格点多边形边上的格点数为10时,此多边形的面积=4个小正方形的面积=4×1=4,(2)当格点为3时,内空格点三边形的面积为=×3﹣1;当格点为4时,内空格点四边形的面积为1=×4﹣1; 当格点为5时,内空格点五边形的面积为=×5﹣1; …依此类推,当内空格点多边形边上的格点数为L ,面积为S =L ﹣1,故答案为:4;S=L﹣1.三、解答题:(本题共14分,第21题9分,第22题5分)21.(9分)(1)因式分解:3m2﹣24m+48.(2)计算:.(3)解关于x的方程:.【解答】解:(1)3m2﹣24m+48,=3(m2﹣8m+16),=3(m﹣4)2;(2)÷•,=••,=;(3)=1+,方程两边都乘(x﹣1)(x+3),得x(x﹣1)=(x﹣1)(x+3)+2(x+3),解得:x=﹣,检验,当x=﹣时,(x﹣1)(x+3)≠0,所以x=﹣是原方程的解,即原方程的解是x=﹣.22.(5分)已知,y=﹣2,求代数式(x+2y)2﹣(x﹣2y)(x+2y)的值.【解答】解:原式=x2+4xy+4y2﹣(x2﹣4y2)=x2+4xy+4y2﹣x2+4y2=4xy+8y2,当x=,y=﹣2时,原式=4××(﹣2)+8×(﹣2)2=﹣4+32=28.四、解答题:(本题共9分,第23题4分,第24题5分)23.(4分)如图,点F、C在BE上,BF=CE,AB=DE,∠B=∠E.求证:∠A=∠D.【解答】证明:∵BF=CE,∴BF+FC=CE+FC,∴BC=EF,在△ABC和△DEF中,∴△ABC≌△DEF(SAS),∴∠A=∠D.24.(5分)列方程解应用题2014年11月,APEC(“亚太经济合作组织”的简称)会议在中国北京成功召开.会议期间为方便市民出行,某路公交车每天比原来的运行增加30车次.经调研得知,原来这路公交车平均每天共运送乘客5600人,APEC会议期间这路公交车平均每天共运送乘客8000人,且平均每车次运送乘客与原来的数量基本相同,问APEC会议期间这路公交车每天运行多少车次?【解答】解:设APEC会议期间这路公交车每天运行x车次,则原来的运行为(x﹣30)车次,由题意得,=,解得:x=100,经检验,x=100是原分式方程的解,且符合题意.答:APEC会议期间这路公交车每天运行100车次.五、解答题:(本题共17分,第25题5分,第26题6分,第27题6分)25.(5分)已知:如图,△ABC,射线AM平分∠BAC.(1)尺规作图(不写作法,保留作图痕迹)作BC的中垂线,与AM相交于点G,连接BG、CG.(2)在(1)的条件下,∠BAC和∠BGC的等量关系为互补,证明你的结论.【解答】解:(1)如图1;(2)互补.证明:作GD ⊥AB ,GK ⊥AC , ∵AG 为∠BAC 的平分线, ∴GD =GK ,∵EF 为BC 的垂直平分线, ∴GB =GC ,在△GBD 与△GCK 中,,∴△GBD ≌△GCK (HL ), ∴∠BGC =∠DGK , ∵∠DGK +∠BAC =180°, ∴∠BGC +∠BAC =180°, ∴∠BAC 和∠BGC 互补. 故答案为:互补.26.(6分)阅读:对于两个不等的非零实数a 、b ,若分式的值为零,则x =a 或x =b .又因为==x +﹣(a +b ),所以关于x 的方程x +=a +b 有两个解,分别为x 1=a ,x 2=b .应用上面的结论解答下列问题:(1)方程x +=6的两个解中较大的一个为 4 ;(2)关于x 的方程x +=的两个解分别为x 1、x 2(x 1<x 2),若x 1与x 2互为倒数,则x 1=,x 2= 2 ; (3)关于x 的方程2x +=2n +3的两个解分别为x 1、x 2(x 1<x 2),求的值.【解答】解:(1)方程x +=6变形得:x +=2+4,根据题意得:x 1=2,x 2=4, 则方程较大的一个解为4;(2)方程变形得:x +=+2,由题中的结论得:方程有一根为2,另一根为, 则x 1=,x 2=2;故答案为:(1)4;(2);2(3)方程整理得:2x ﹣1+=n ﹣1+n +3,得2x ﹣1=n ﹣1或2x ﹣1=n +3,可得x 1=,x 2=,则原式==.27.(6分)在△ABC 中,已知D 为直线BC 上一点,若∠ABC =x °,∠BAD =y °.(1)当D 为边BC 上一点,并且CD =CA ,x =40,y =30时,则AB = AC (填“=”或“≠”); (2)如果把(1)中的条件“CD =CA ”变为“CD =AB ”,且x ,y 的取值不变,那么(1)中的结论是否仍成立?若成立请写出证明过程,若不成立请说明理由.【解答】解:(1)∵CD =CA ,∠ABC =x °=40°,∠BAD =y °=30°,∴∠ADC=∠ABC+∠BAD=70°,∵CD=CA,∴∠CAD=∠CDA=70°,∴∠C=40°,∴∠C=∠ABC,∴AB=AC;故答案为:=;(2)成立.理由:在BC上取点E,使BE=CD=AB,连接AE,则∠AEB=∠EAB=(180°﹣40°)=70°,∴∠AEB=∠ADE=70°,∴AD=AE,∴∠ADB=∠AEC=180°﹣70°=110°,∵BD=BE﹣DE,CE=CD﹣DE,∴BD=EC,在△ADB和△AEC中,,∴△ADB≌△AEC(SAS),∴AB=AC.∴AB=AC=CD,由(1)可知,3x+2y=180.。

八年级上学期期末模拟测试数学试卷-附含有答案

八年级上学期期末模拟测试数学试卷-附含有答案

八年级上学期期末模拟测试数学试卷-附含有答案学校: 班级: 姓名: 考号:一、选择题(本题共16个小题,共 42分。

1~10小题各3分,11~16小题各2分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1. 自新冠肺炎疫情发生以来,全国人民共同抗疫,靖江市积极普及科学防控知识,下面是科学防控知识的图片,图片上有图案和文字说明,其中的图案是轴对称图形的是( )A. B. C. D. 2. 下列运算正确的是( )A. 632a a a ÷=B. 43()a a -=C. 33339ab a b =()D. 20202021112()22⨯-=- 3. 华为手机使用了自主研发的海思麒麟芯片,目前最新的型号是麒麟990.芯片是由很多晶体管组成的,而芯片技术追求是体积更小的晶体管,以便获得更小的芯片和更低的电力功耗,而麒麟990的晶体管栅极的宽度达到了0.000000007毫米,将数据0.000000007用科学记数法表示为( )A. 8710-⨯B. 9710-⨯C. 80.710-⨯D. 90.710-⨯4. 如果在△ABC 中,∠A =70°-∠B ,则∠C 等于( )A. 35°B. 70°C. 110°D. 140°5. 某同学用5cm 、7cm 、9cm 、13cm 的四根小木棒摆出不同形状的三角形的个数为( )A. 1B. 2C. 3D. 46. 下列不能用平方差公式直接计算的是( )A. ()()m n m n -+-B. ()()m n m n ---+ C ()()22x x +-D. ()()22x y x y -++ 7. 下列等式中,不成立的是( )A. x x x y y y -==--B. 1x y y x x+=+C. 2242(2)2y y y -=--D. 1x y y x x+-=- 8. 如图,OP 平分∠MON ,P A ⊥ON 于点A ,点Q 是射线OM 上的一个动点.若P A = 2,则PQ 的长不可能是( )A. 4B. 3.5C. 2D. 1.59. 如图,在 ∆ABC 中,ED / / BC ,∠ABC 和 ∠ACB 的平分线分别交 ED 于点 G 、F ,若 FG = 2 ,ED = 6 ,则EB + DC 的值为( )A. 6B. 7C. 8D. 9 10. 如图,在等边中,AD 、CE 是的两条中线5AD =,P 是AD 上一个动点,则PB PE+最小值的是( )A. 2.5B. 5C. 7.5D. 1011. 如图,已知∠ABD =∠BAC ,添加下列条件还不能判定△ABC ≌△BAD 的依据是( )A. AC =BDB. ∠DAB =∠CBAC. ∠C =∠DD. BC =AD12. 中国首列商用磁浮列车平均速度为km /h a ,计划提速20km /h ,已知从A 地到B 地路程为360km ,那么提速后从A 地到B 地节约的时间为( )A. 3600(20)a a -B. 3600(20)a a +C. 7200(20)a a +D. 7200(20)a a - 13. 如图,在△ABD 中,∠D =20°,CE 垂直平分AD ,交BD 于点C ,交AD 于点E ,连接AC ,若AB =AC ,则∠BAD 的度数是( )A. 100°B. 110°C. 120°D. 150°14. 如图,在△ABC 中,∠B =90°,∠A =30°,AC =a ,AB =m ,以点C 为圆心,CB 长为半径画弧交AC 于点D ,再以点A 为圆心,AD 长为半径画弧交AB 于点E ,则BE 的长为( )A. m ﹣2aB. a ﹣mC. 2a ﹣mD. m ﹣a15. 如图,将长方形ABCD 的各边向外作正方形,若四个正方形周长之和为24,面积之和为12,则长方形ABCD 的面积为( )A. 4B. 32C. 52D. 616. 如图,若x 为正整数,则表示分式22(2)(1)x x x x +++的值落在( )A. 线①处B. 线②处C. 线③处D. 线④处二.填空题(本大题共3题,总计 12分)17. 计算:101(2021)3π-⎛⎫+-= ⎪⎝⎭________. 18. 如图,ACB ∆中90C ∠=︒,30A ∠=︒分别以点A ,B 为圆心,以大于12AB 的长为半径画弧交于点M ,N ,直线MN 交AB 于点E ,交AC 于点D .若3CD =,则AD =__.19. 如图,在中90,,,ACB AC BC CE BE CE ∠=︒=⊥与AB 相交于点F ,且CD BE =,则ACD CBA DAF ∠∠∠、、之间的数量关系是_____________.三.解答题(共7题,总计66分,解答应写出文字说明、证明过程或演算步骤)20. (1)计算:()()()()22212141m m m m m +++--+(2)分解因式:32244a ab a b --+21. 先化简,再求值:(1)x y x y x y 2(23)(2)(2),其中x y 11,32. (2)222333691x x x x x x x x +-÷++++-,再求当1x +与6x +互为相反数时,代数式的值. 22. 如图,△ABC 三个顶点的坐标分别为A (﹣4,﹣2),B (﹣1,﹣1),C (﹣1,﹣4).(1)画出△ABC 关于y 轴对称的图形△A 1B 1C 1;(2)在x 轴上作出一点P ,使P A +PB 的值最小(保留作图痕迹)23. 如图,在中AB AC =,D 是BC 的中点,EF 垂直平分AC ,交AC 于点E ,交AB 于点F ,M 是直线EF 上的动点.(1)当MD BC ⊥时.①若1ME =,则点M 到AB 的距离为________②若30CMD ∠=︒,3CD =求BCM 的周长;(2)若8BC =,且的面积为40,则CDM 的周长的最小值为________.24. [阅读理解]我们常将一些公式变形,以简化运算过程.如:可以把公式“()2222a b a ab b +=++”变形成()2222a b a b ab +=+-或()()2222ab a b a b =+-+等形式问题:若x 满足()()203010x x --=,求()()222030x x -+-的值. 我们可以作如下解答;设20a x =-,30b x =-则()()203010x x ab --==即:()()2030203010a b x x +=-+-=-=-.所以()()()()222222203021021080x x a b a b ab -+-=+=+-=--⨯=.请根据你对上述内容的理解,解答下列问题:(1)若x 满足()()807010x x --=-,求()()228070x x -+-的值. (2)若x 满足()()22202020174051x x -+-=,求()()20202017x x --的值. 25. 刘峰和李明相约周末去科技馆看展览,根据他们的谈话内容,试求李明乘公交车、刘峰骑自行车每小时各行多少千米?刘峰:我查好地图了,你看看李明:好的,我家门口的公交车站,正好有一趟到科技馆那站停的车,我坐明天8:30的车.刘峰:从地图上看,我家到科技馆的距离比你家近10千米,我就骑自行车去了.李明:行,根据我的经验,公交车的速度一般是你骑自行车速度的3倍,那你明天早上8:00点从家出发,如顺利,咱俩同时到达.26. 如图,△ABC 是等边三角形,AB =6,P 是AC 边上一动点,由A 向C 运动(与A 、C 不重合),Q 是CB 延长线上一动点,与点P 同时以相同的速度由B 向CB 延长线方向运动(Q 不与B 重合),过P 作PE ⊥AB 于E ,连接PQ 交AB 于D .(1)证明:在运动过程中,点D 是线段PQ 的中点;(2)当∠BQD =30°时,求AP 的长;(3)在运动过程中线段ED 的长是否发生变化?如果不变,求出线段ED 的长;如果变化请说明理由.参考答案及解析一.选择题1.【答案】:C解析:A 、不是轴对称图形,不合题意;B 、不是轴对称图形,不合题意;C 、是轴对称图形,符合题意;D 、不是轴对称图形,不合题意.故选:C .2.【答案】:D解析:A 、633a a a ÷=故不符合题意;B 、43121()a a -=故不符合题意;C 、333(3)27=ab a b 故不符合题意;D 、20202021112()22⨯-=-故符合题意;故选:D .3.【答案】:B解析:解:0.000000007=7×10-9.故选:B .4.【答案】:C解析:解:∵∠A =70°-∠B∴∠A +∠B =70°∴∠C =180°-(∠A +∠B )=180°-70°=110°.故选C .5.【答案】:C解析:解:四条木棒的所有组合:5,7,9和5,9,13和5,7,13和7,9,13; 只有5,7,9和5,9,13和7,9,13能组成三角形.故选:C .6.【答案】:A解析:A. ()()m n m n -+-()2m n =--不符合平方差公式,符合题意 B. ()()m n m n ---+符合平方差公式,不符合题意C. ()()22x x +-符合平方差公式,不符合题意D. ()()22x y x y -++符合平方差公式,不符合题意故选:A. 7.【答案】:C解析:A 、x x x y y y -==--故A 不符合题意. B 、1x y y x x +=+故B 不符合题意. C 、22242(2)2(2)(2)2y y y y y --==---故C 符合题意. D 、1x y x x y y x x x+---==-故D 不符合题意. 故选:C .8.【答案】:D解析:解:当PQ ⊥OM 时,PQ 的值最小∵OP 平分∠MON ,P A ⊥ON ,P A =2∴PQ =P A =2所以PQ 的最小值为2所以A ,B ,D 不符合题意,D 符合题意;故选:D .9.【答案】:C解析:∵ED ∥BC∴∠EGB=∠GBC ,∠DFC=∠FCB∵∠GBC=∠GBE ,∠FCB=∠FCD∴∠EGB=∠EBG ,∠DCF=∠DFC∴BE=EG ,CD=DF∵FG=2,ED=6∴EB+CD=EG+DF=EF+FG+FG+DG=ED+FG=8 故选C .10.【答案】:B解析:解:连结PC∵△ABC 为等边三角形∴AB =AC∵AD 为中线∴AD ⊥BC ,BD =CD=12BC∵点P 在AD 上,BP =CP∴PE +PB=PE +PC∵PE +PC ≥CE∴C 、P 、E 三点共线时PE +CP 最短=CE ∵CE 为△ABC 的中线 ∴CE ⊥AB ,AE =BE =12AB∵△ABC 为等边三角形∴AB =BC ,∠ABC =60°∴BE =BD在△ABD 和△CBE 中AB CBABD CBE BD BE=⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△CBE (SAS )∴AD =CE =5∴PB +PE 的最小值为5.故选择B .11.【答案】:D解析:由题意得,∠ABD =∠BACA.在△ABC 与△BAD 中AC BD BAC ABD AB BA =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△BAD (SAS );故选项正确;B.在△ABC 与△BAD 中ABD BCA AB BADAB CBA ∠=∠⎧⎪=⎨⎪∠=∠⎩△ABC ≌△BAD (ASA )故选项正确;C.在△ABC 与△BAD 中C D BAC ABD AB BA ∠=∠⎧⎪∠=∠⎨⎪=⎩△ABC ≌△BAD (AAS )故选项正确;D.在△ABC 与△BAD 中BC =AD ,AB =BA ,∠BAC =∠ABD (SSA ),△ABC 与△BAD 不全等,故错误; 故选:D . 12.【答案】:C解析:解:由题意可得360360720020(20)a a a a -=++故选:C .13.【答案】:C解析:解:∵CE 垂直平分AD∴CA CD =∴20D CAD ∠=∠=︒∴40ACB D CAD ∠=∠+∠=︒∵AB =AC∴40ABC ACB ∠=∠=︒∴180100BAC ABC ACB ∠=︒-∠-∠=︒∴10020120BAD BAC CAD ∠=∠+∠=︒+︒=︒故选:C .14.【答案】:A解析:解:∵∠B =90°,∠A =30°,AC =a∴BC =12AC =12a ∵以点C 为圆心,CB 长为半径画弧交AC 于点D ∴CD =BC =12a ∵以点A 为圆心,AD 长为半径画弧交AB 于点E ∴AD =AE =AC -CD =12a ∵AB =m ∴BE =AB -AE =m -12a 故选:A .15.【答案】:B解析:解:设AB =a ,AD =b ,由题意得8a +8b =24,2a 2+2b 2=12即a +b =3,a 2+b 2=6∴()()222963222a b a b ab +-+-=== 即长方形ABCD 的面积为32 故选:B .16.【答案】:B解析:原式(2)(1(2))x x x x =+++∵x 为正整数∴20x +≠∴原式可化为:(1)xx +∵分子比分母小1,且x 为正整数∴(1)xx +是真分数,且最小值是12即,0.51x <<∴表示这个数的点落在线②处故选:B .二. 填空题17.【答案】: 4解析:解:原式=11(2021)3π-⎛⎫+- ⎪⎝⎭31=+4=故答案为:418.【答案】: 6解析:连接BD ,如图由作法得MN 垂直平分ABDA DB ∴=30ABD A ∴∠=∠=︒9060ABC A ∠=︒-∠=︒30CBD ∴∠=︒2236BD CD ∴==⨯=6AD BD ∴==.故答案为:6.19.【答案】: =ACD CBA DAF ∠∠∠+解析:先利用同角的余角相等得到ACD ∠=CBE ∠,再通过证,得到==90ADC CEB ∠︒∠即==90ADF CEB ∠︒∠,再 利用三角形内角和得=AFD ADF EFB FEB ︒--︒-∠-180∠∠180∠可得=DAF EBF ∠∠,最后利用角的和差即可得到答案,ACD ∠==++CBE CBA EFB CBA DAF ∠∠∠=∠∠.证明:∵90ACB ∠=︒ CE BE ⊥∴+90ACD ECB ∠=︒∠ +90CBE ECB ∠=︒∠∴ACD ∠=CBE ∠又∵AC BC = CD BE =∴ACD CBE ≌∴==90ADC CEB ∠︒∠即==90ADF CEB ∠︒∠∵=AFD EFB ∠∠∴=AFD ADF EFB FEB ︒--︒-∠-180∠∠180∠即=DAF EBF ∠∠∴ACD ∠==++CBE CBA EFB CBA DAF ∠∠∠=∠∠故答案为:=ACD CBA DAF ∠∠∠+.三.解答题20【答案】:(1)23m + (2)()22a a b -- 解析:【小问1解析】解:原式222444144m m m m m =+++---23m =+;【小问2解析】解:原式()2244a a b ab =-+-()22a a b =--. 21【答案】:(1)21210xy y + 12;(2)61x x ++,-1 解析:解:(1)x y x y x y 2(23)(2)(2)x xy y x y 22221294(4)x xy y x y 222212944 21210xy y =+ 当x y 11,32时 原式21210xy y =+211112()10()322=⨯⨯-+⨯-522=-+ 12=;(2)222333691xx x x x x x x +-÷++++-2226933=31xx x x x x x x ++-⨯+++-2(3)3(1)=3(1)(1)(1)x x x x x x x x +-⨯++++-33=11x x x ++++6=1x x ++由题意得160x x +++=27x =- 解得72x =- 当72x =-时 原式6=1x x ++6722=17--++=5 25 2 -1=-.22【答案】:(1)见解析.(2)见解析解析:【小问1解析】解:A1(4,﹣2),B1(1,﹣1),C1(1,﹣4).如图所示:△A1B1C1,即为所求;【小问2解析】解:如图所示:点P即为所求.23【答案】:(1)①1;②18(2)14解析:【小问1解析】①解:如图1,作MN AB⊥于N∵MD BC⊥,D是BC的中点∴MD是BC的垂直平分线∴BM CM = MBD MCD ∠=∠∵AB AC =∴A ABC CB =∠∠∵ABM ABC MBD ∠=∠-∠ ACM ACB MCD ∠=∠-∠∴ABM ACM ∠=∠在和中∵90NBM ECM BNM CEM BM CM ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴()NBM ECM AAS ≌∴1NM ME ==故答案为:1.②解:∵D 是BC 的中点MD BC ⊥∴MD 是BC 的垂直平分线26BC CD ==∴BM CM = 30BMD CMD ∠=∠=︒∴260BMC CMD ∠=∠=︒∴BCM 是等边三角形∴6BM MC BC ===∴BCM 的周长为18BC BM MC ++=故答案为:18.【小问2解析】解:如图2,连接AD∵1402ABC S BC AD =⨯= 8BC = 解得10AD =∵EF 垂直平分AC∴C 关于直线EF 的对称点为A ∴由两点之间线段最短可知AD 与直线EF 的交点即为M∴CDM 的周长的最小值为14CD CM DM CD AD ++=+=∴CDM 的周长的最小值为14.24【答案】:(1)120 (2)2021解析:【小问1解析】设80a x =- 70b x =-则10ab =- 807010a b x x +=-+-=所以,2222(80)(70)()2102(10)120x x a b ab -+-=+-=-⨯-=【小问2解析】设2020a x =- 2017b x =-则(2020)(2017)3a b x x -=---=所以2221(2020)(2017)()()2x x ab a b a b ⎡⎤--==+--⎣⎦ 21(40513)20212=-= 25【答案】:刘峰骑自行车每小时行20千米,李明乘公交车每小时行60千米 解析:解:设刘峰骑自行车每小时行x 千米,则李明乘公交车每小时行3x 千米根据题意,得203030360x x =+解得20x经检验,20x是所列分式方程的解,且符合题意 ∴360x =(千米/时)答:刘峰骑自行车每小时行20千米,李明乘公交车每小时行60千米.26【答案】:(1)见解析;(2)AP =2;(3)DE 的长不变,定值为3.解析:(1)过P 作PF ∥QC 交AB 于F ,则AFP ∆是等边三角形,根据AAS 证明三角形全等即可; (2)想办法证明BD =DF =AF 即可解决问题;(3)想办法证明12DE AB =即可解决问题.【解析】(1)证明:过P 作PF ∥QC 交AB 于F ,则AFP ∆是等边三角形∵P 、Q 同时出发,速度相同,即BQ =AP∴BQ =PF在DBQ ∆和DFP ∆中 DQB DPF QDB PDF BQ PF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()DBQ DFP AAS ∆∆≌∴DQ =DP ;(2)解:∵DBQ DFP ∆∆≌∴BD =DF∵60DBC BQD BDQ ∠∠+∠︒== 30BQD ∠︒=∴30BQD BDQ FDP FPD ∠∠∠∠︒====∴123BD DF PF FA AB ===== ∴AP =2;(3)解:由(2)知BD =DF∵AFP ∆是等边三角形,PE ⊥AB∴AE =EF∴DE =DF +EF1122BF FA =12AB ==3,为定值,即DE 的长不变.。

八年级上册期末考试数学试卷含答案(共5套,深圳市)

八年级上册期末考试数学试卷含答案(共5套,深圳市)

广东省深圳市宝安区八年级上学期期末数学试卷一、选择题(12*3=36分)1.下列各数中,无理数的是()A.B.C.D.3.14152.在军事演习中,利用雷达跟踪某一“敌方”目标,需要确定该目标的()A.方向 B.距离 C.大小 D.方向与距离3.一次函数的图象不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.在直角坐标系中,点A(a,3)与点B(﹣4,b)关于y轴对称,则a+b的值是()A.﹣7 B.﹣1 C.1 D.75.已知x=1,y=2是方程ax+y=5的一组解,则a的值是()A.﹣3 B.﹣2 C.3 D.76.如图所示:某商场有一段楼梯,高BC=6m,斜边AC是10米,如果在楼梯上铺上地毯,那么需要地毯的长度是()A.8m B.10m C.14m D.24m7.某特警队为了选拔“神枪手”,甲、乙、丙、丁四人进人射击比赛,每人10次射击成绩的平均数都是9.8环,方差分别为S甲2=0.63,S乙2=0.51,S丙2=0.42,S丁2=0.45,则四人中成绩最稳定的是()A.甲B.乙C.丙D.丁8.如图,AB∥CD,EF与AB、CD分别相交于点E、F,EP⊥EF,与∠EFD的平分线FP相交于点P,且∠BEP=40°,则∠EPF的度数是()A.25°B.65°C.75°D.85°9.下列命题中,假命题的是()A.同旁内角相等,两直线平行B.等腰三角形的两个底角相等C.同角(等角)的补角相等D.三角形的一个外角大于任何一个与它不相邻的内角10.2015年亚洲杯足球冠军联赛恒大队广州主场,小李在网上预订了小组赛和淘汰赛两个阶段的球票共10张,总价为5600元.其中小组赛球票每张500元,淘汰赛每张800元,问小李预定了小组赛和淘汰赛的球票各多少张?设小李预定了小组赛球票x张,淘汰赛球票y张,可列方程组()A.B.C.D.11.如图,长方形ABCD的边AB=1,BC=2,AP=AC,则点P所表示的数是()A.5 B.﹣2.5 C.D.12.一辆汽车在行驶过程中,路程y(千米)与时间x(小时)之间的函数关系如图4所示,已知开始1小时的行驶速度是60千米/时,那么1小时以后的速度是()A.70千米/时B.75千米/时C.105千米/时D.210千米/时二、填空题(3*4=12分)13.9的算术平方根是.14.如图,已知函数y=ax+b和y=kx的图象交于点P,根据图象可得,二元一次方程组的根是.15.去年“双11”购物节的快递量暴增,某快递公司要在街道旁设立一个派送还点,向A、B两居民区投送快递,派送点应该设在什么地方,才能使它到A、B的距离之和最短?快递员根据实际情况,以街道为x 轴,建立了如图所示的平面直角坐标系,测得坐标A(﹣2,2)、B(6,4),则派送点的坐标是.16.如图,△ABC中,AB=6,BC=8,AC=10,把△ABC沿AP折叠,使边AB与AC重合,点B落在AC 边上的B′处,则折痕AP的长等于.三、解答题17.计算(1)(2).18.(1)(2).19.迎接学校“元旦”文艺汇演,2015~2016学年度八年级某班的全体同学捐款购买了表演道具,经过充分的排练准备,最终获得了一等奖.班长对全体同学的捐款情况绘制成下表:捐款金额5元10元15元20元捐款人数10人15人5人由于填表时不小心把墨水滴在了统计表上,致使表中数据不完整,但知道捐款金额为10元的人数为全班人数的30%,结合上表回答下列问题:(1)该班共有名同学;(2)该班同学捐款金额的众数是元,中位数是元.(3)如果把该班同学的捐款情况绘制成扇形统计图,则捐款金额为20元的人数所对的扇形圆心角为度.20.如图,四边形ABCD中,点F是BC中点,连接AF并延长,交于DC的延长线于点E,且∠1=∠2.(1)求证:△ABF≌△ECF;(2)若AD∥BC,∠B=125°,求∠D的度数.21.列方程解应用题:小张第一次在商场购买A、B两种商品各一件,花费60元;第二次购买时,发现两种商品的价格有了调整:A商品涨价20%,B商品降价10%,购买A、B两种商品各一件,同样花费60元.求A、B两种商品原来的价格.22.某专营商场销售一种品牌电脑,每台电脑的进货价是0.4万元.图中的直线l1表示该品牌电脑一天的销售收入y1(万元)与销售量x(台)的关系,已知商场每天的房租、水电、工资等固定支出为3万元.(1)直线l1对应的函数表达式是,每台电脑的销售价是万元;(2)写出商场一天的总成本y2(万元)与销售量x(台)之间的函数表达式:;(3)在图的直角坐标系中画出第(2)小题的图象(标上l2);(4)通过计算说明:每天销售量达到多少台时,商场可以盈利.23.如图,长方形AOBC在直角坐标系中,点A在y轴上,点B在x轴上,已知点C的坐标是(8,4).(1)求对角线AB所在直线的函数关系式;(2)对角线AB的垂直平分线MN交x轴于点M,连接AM,求线段AM的长;(3)若点P是直线AB上的一个动点,当△PAM的面积与长方形OABC的面积相等时,求点P的坐标.广东省深圳市宝安区八年级上学期期末数学试卷参考答案一、选择题(12*3=36分)1.下列各数中,无理数的是()A.B.C.D.3.1415【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、是无理数,选项正确;B、=5是整数,是有理数,选项错误;C、是分数,是有理数,选项错误;D、3.1415是有限小数,是有理数,选项错误.故选A.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.在军事演习中,利用雷达跟踪某一“敌方”目标,需要确定该目标的()A.方向 B.距离 C.大小 D.方向与距离【考点】坐标确定位置.【分析】直接利用点的坐标确定位置需要知道其方向与距离进而得出答案.【解答】解:利用雷达跟踪某一“敌方”目标,需要确定该目标的方向与距离.故选:D.【点评】此题主要考查了点的坐标确定位置,正确利用点的位置确定方法是解题关键.3.一次函数的图象不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】一次函数图象与系数的关系.【分析】由k=>0,可知图象经过第一、三象限,又b=﹣1<0,直线与y轴负半轴相交,图象经过第四象限,由此得解即可.【解答】解:∵y=x﹣1,∴k=>0,图象经过第一、三象限,b=﹣1<0,直线与y轴负半轴相交,图象经过第四象限,即一次函数y=x﹣1的图象经过第一、三、四象限,不经过第二象限.故选B.【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b 所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.4.在直角坐标系中,点A(a,3)与点B(﹣4,b)关于y轴对称,则a+b的值是()A.﹣7 B.﹣1 C.1 D.7【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数解答即可.【解答】解:由题意得,a=4,b=3,则a+b=7,故选:D.【点评】本题考查的是关于x、y轴对称点的坐标特点,关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.5.已知x=1,y=2是方程ax+y=5的一组解,则a的值是()A.﹣3 B.﹣2 C.3 D.7【考点】二元一次方程的解.【分析】根据解方程解的定义,将x=1,y=2代入方程ax+y=5,即可求得a的值.【解答】解:根据题意,将x=1,y=2代入方程ax+y=5,得:a+2=5,解得:a=3,故选:C.【点评】本题考查了二元一次方程的解,要求理解什么是二元一次方程的解,并会把x,y的值代入原方程验证二元一次方程的解.6.如图所示:某商场有一段楼梯,高BC=6m,斜边AC是10米,如果在楼梯上铺上地毯,那么需要地毯的长度是()A.8m B.10m C.14m D.24m【考点】勾股定理的应用.【分析】先根据直角三角形的性质求出AB的长,再根据楼梯高为BC的高=6m,楼梯的宽的和即为AB的长,再把AB、BC的长相加即可.【解答】解:∵△ABC是直角三角形,BC=6m,AC=10m∴AB===8(m),∴如果在楼梯上铺地毯,那么至少需要地毯为AB+BC=8+6=14(米).故选:C.【点评】本题考查的是勾股定理的应用,解答此题的关键是找出楼梯的高和宽与直角三角形两直角边的等量关系7.某特警队为了选拔“神枪手”,甲、乙、丙、丁四人进人射击比赛,每人10次射击成绩的平均数都是9.8环,方差分别为S甲2=0.63,S乙2=0.51,S丙2=0.42,S丁2=0.45,则四人中成绩最稳定的是()A.甲B.乙C.丙D.丁【考点】方差.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定【解答】解:∵S甲2=0.63,S乙2=0.51,S丙2=0.42,S丁2=0.45,∴S甲2>S乙2>S2丁>S2丙,∴成绩最稳定的是丙.故选:C.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.8.如图,AB∥CD,EF与AB、CD分别相交于点E、F,EP⊥EF,与∠EFD的平分线FP相交于点P,且∠BEP=40°,则∠EPF的度数是()A.25°B.65°C.75°D.85°【考点】平行线的性质.【分析】由题可直接求得∠BEF,然后根据两直线平行,同旁内角互补可知∠DFE,根据角平分线的性质可求得∠EFP,最后根据三角形内角和求出∠EPF.【解答】解:∵EP⊥EF,∴∠PEF=90°,∵∠BEP=40°,∴∠BEF=∠PEF+∠BEP=130°,∵AB∥CD,∴∠EFD=180°﹣∠BEF=50°,∵FP平分∠EFD,∴∠EFP=0.5×∠EFD=25°,∴∠P=180°﹣∠PEF﹣∠EFP=65°;故选:B.【点评】本题考查了平行线的性质、三角形内角和定理、角平分线的定义;熟记:两直线平行,同旁内角互补;求出∠EFD的度数是解决问题的突破口.9.下列命题中,假命题的是()A.同旁内角相等,两直线平行B.等腰三角形的两个底角相等C.同角(等角)的补角相等D.三角形的一个外角大于任何一个与它不相邻的内角【考点】命题与定理.【分析】利用平行线的判定、等腰三角形的性质、补角的定义及三角形的外角的性质分别判断后即可确定正确的选项.【解答】解:A、同旁内角互补,两直线平行,故错误,是假命题;B、等腰三角形的两个底角相等,正确,是真命题;C、同角(等角)的补角相等,正确,为真命题;D、三角形的一个外角大于任何一个与它不相邻的内角,正确,为真命题.故选A.【点评】本题考查了命题与定理的知识,解题的关键是能够了解平行线的判定、等腰三角形的性质、补角的定义及三角形的外角的性质,难度不大.10.2015年亚洲杯足球冠军联赛恒大队广州主场,小李在网上预订了小组赛和淘汰赛两个阶段的球票共10张,总价为5600元.其中小组赛球票每张500元,淘汰赛每张800元,问小李预定了小组赛和淘汰赛的球票各多少张?设小李预定了小组赛球票x张,淘汰赛球票y张,可列方程组()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】设小李预定了小组赛和淘汰赛的球票各x张,y张,根据10张球票共5600元,列方程组求解.【解答】解:设小李预定了小组赛和淘汰赛的球票各x张,y张,由题意得,,故选C【点评】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.11.如图,长方形ABCD的边AB=1,BC=2,AP=AC,则点P所表示的数是()A.5 B.﹣2.5 C.D.【考点】实数与数轴.【分析】根据勾股定理求出长方形ABCD的对角线AC的长,即为AP的长,进而求出点P所表示的数.【解答】解:∵长方形ABCD的边AB=1,BC=2,∴AC==,∴AP=AC=,∴点P所表示的数为﹣.故选D.【点评】本题考查了实数与数轴,利用勾股定理求出长方形ABCD的对角线AC的长是解题的关键.12.一辆汽车在行驶过程中,路程y(千米)与时间x(小时)之间的函数关系如图4所示,已知开始1小时的行驶速度是60千米/时,那么1小时以后的速度是()A.70千米/时B.75千米/时C.105千米/时D.210千米/时【考点】一次函数的应用.【分析】直接利用函数图象得出汽车行驶3小时一共行驶210km,再利用开始1小时的行驶速度是60千米/时,进而得出1小时后的平均速度.【解答】解:由题意可得:汽车行驶3小时一共行驶210km,则一小时后的平均速度为:(210﹣60)÷2=75(km/h),故选:B.【点评】此题主要考查了一次函数的应用,根据图象得出正确信息是解题关键.二、填空题(3*4=12分)13.9的算术平方根是3.【考点】算术平方根.【分析】9的平方根为±3,算术平方根为非负,从而得出结论.【解答】解:∵(±3)2=9,∴9的算术平方根是|±3|=3.故答案为:3.【点评】本题考查了数的算式平方根,解题的关键是牢记算术平方根为非负.14.如图,已知函数y=ax+b和y=kx的图象交于点P,根据图象可得,二元一次方程组的根是.【考点】一次函数与二元一次方程(组).【分析】由图可知:两个一次函数的交点坐标为(﹣2,﹣1);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【解答】解:函数y=ax+b和y=kx的图象交于点P(﹣2,﹣1),即x=﹣2,y=﹣1同时满足两个一次函数的解析式.所以关于x,y的方程组的解是.故答案为:.【点评】此题考查一次函数与方程组问题,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.15.去年“双11”购物节的快递量暴增,某快递公司要在街道旁设立一个派送还点,向A、B两居民区投送快递,派送点应该设在什么地方,才能使它到A、B的距离之和最短?快递员根据实际情况,以街道为x轴,建立了如图所示的平面直角坐标系,测得坐标A(﹣2,2)、B(6,4),则派送点的坐标是(,0).【考点】轴对称-最短路线问题;坐标确定位置.【分析】可先找点A关于x轴的对称点C,求得直线BC的解析式,直线BC与x轴的交点就是所求的点.【解答】解:作A关于x轴的对称点C,则C的坐标是(﹣2,﹣2).设BC的解析式是y=kx+b,则,解得:,则BC的解析式是y=x﹣.令y=0,解得:x=.则派送点的坐标是(,0).故答案是(,0).【点评】本题考查了对称的性质以及待定系数法求函数的解析式,正确确定派送点的位置是关键.16.如图,△ABC中,AB=6,BC=8,AC=10,把△ABC沿AP折叠,使边AB与AC重合,点B落在AC 边上的B′处,则折痕AP的长等于3.【考点】翻折变换(折叠问题).【分析】首先证明∠B=90°,设PB=PB′=x,在RT△PB′C中利用勾股定理求出x,再在RT△APB中利用勾股定理求出AP即可.【解答】解:∵AB=6,BC=8,AC=10,∴AB2+BC2=AC2,∴∠B=90°∵△APB′是由APB翻折,∴AB=AB′=6,PB=PB′,∠B=∠AB′P=∠PB′C=90°设PB=PB′=x,在RT△PB′C中,∵B′C=AC﹣AB=4,PC=8﹣x,∴x2+42=(8﹣x)2,∴x=3,∴AP===3,故答案为3.【点评】本题考查勾股定理的逆定理、勾股定理、翻折不变性等知识,证明∠B=90°是解题的关键,属于2016届中考常考题型.三、解答题17.计算(1)(2).【考点】实数的运算;零指数幂.【分析】(1)直接利用二次根式乘法运算法则结合零指数幂的性质化简求出答案;(2)首先化简二次根式,进而合并求出答案.【解答】解:(1)=+2+1=+3;(2)=3﹣2﹣1=﹣1.【点评】此题主要考查了实数运算以及二次根式的化简,正确化简二次根式是解题关键.18.(1)(2).【考点】解二元一次方程组.【专题】计算题;一次方程(组)及应用.【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1),把①代入②得:x+4x﹣6=14,解得:x=5,把x=5代入①得:y=7,则方程组的解为;(2),①×3+②得:11x=﹣11,即x=﹣1,把x=﹣1代入①得:y=2,则方程组的解为.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.19.迎接学校“元旦”文艺汇演,2015~2016学年度八年级某班的全体同学捐款购买了表演道具,经过充分的排练准备,最终获得了一等奖.班长对全体同学的捐款情况绘制成下表:捐款金额5元10元15元20元捐款人数10人15人5人由于填表时不小心把墨水滴在了统计表上,致使表中数据不完整,但知道捐款金额为10元的人数为全班人数的30%,结合上表回答下列问题:(1)该班共有50名同学;(2)该班同学捐款金额的众数是10元,中位数是12.5元.(3)如果把该班同学的捐款情况绘制成扇形统计图,则捐款金额为20元的人数所对的扇形圆心角为86.4度.【考点】众数;扇形统计图;中位数.【分析】(1)由于知道捐款金额为10元的人数为全班人数的36%,由此即可求出该班共有多少人;(2)首先利用(1)的结果计算出捐15元的同学人数,然后利用中位数、众数的定义即可求出捐款金额的众数和中位数;(3)由于捐款金额为20元的人数为12人,由此求出捐款金额为20元的人数是总人数的百分比,然后乘以360°就知道扇形的圆心角.【解答】解:(1)∵18÷36%=50,∴该班共有50人;(2)∵捐15元的同学人数为50﹣(7+18+12+3)=10,∴学生捐款的众数为10元,又∵第25个数为10,第26个数为15,∴中位数为(10+15)÷2=12.5元;(3)依题意捐款金额为20元的人数所对应的扇形圆心角的度数为360°×=86.4°.故答案为:50,10,12.5,86.4.【点评】此题考查了一组数据的众数、中位数和扇形统计图等知识,解题的关键是从统计表中整理出有关解题信息,难度不大.20.如图,四边形ABCD中,点F是BC中点,连接AF并延长,交于DC的延长线于点E,且∠1=∠2.(1)求证:△ABF≌△ECF;(2)若AD∥BC,∠B=125°,求∠D的度数.【考点】全等三角形的判定与性质.【分析】(1)根据AAS即可判定△ABF≌△ECF.(2)利用平行四边形对角相等即可证明.【解答】(1)证明:在△ABF和△ECF中,,∴△ABF≌△ECF(AAS).(2)解:∵∠1=∠2(已知),∴AB∥ED(内错角相等,两直线平行),∵AD∥BC(已知),∴四边形ABCD是平行四边形(两组对边平行的四边形是平行四边形),∴∠D=∠B=125°(平行四边形的对角相等).【点评】本题考查全等三角形的判定和性质、平行四边形的判定和性质,利用平行四边形的性质证明角相等是解题的关键.属于2016届中考常考题型.21.列方程解应用题:小张第一次在商场购买A、B两种商品各一件,花费60元;第二次购买时,发现两种商品的价格有了调整:A商品涨价20%,B商品降价10%,购买A、B两种商品各一件,同样花费60元.求A、B两种商品原来的价格.【考点】二元一次方程组的应用.【分析】设A种商品原来的价格为x元,B种商品原来的价格为y元,根据题意列出两个二元一次方程,解方程组求出x和y的值即可.【解答】解:设A种商品原来的价格为x元,B种商品原来的价格为y元,根据题意可得:,整理得:,由①×1.2﹣②得.答:A商品原来的价格为20元,B商品价格为40元.【点评】本题考查了二元一次方程组的应用,解题的关键是读懂题意,找出之间的数量关系列出二元一次方程组,此题难度不大.22.某专营商场销售一种品牌电脑,每台电脑的进货价是0.4万元.图中的直线l1表示该品牌电脑一天的销售收入y1(万元)与销售量x(台)的关系,已知商场每天的房租、水电、工资等固定支出为3万元.(1)直线l1对应的函数表达式是y=0.8x,每台电脑的销售价是0.8万元;(2)写出商场一天的总成本y2(万元)与销售量x(台)之间的函数表达式:y2=0.4x+3;(3)在图的直角坐标系中画出第(2)小题的图象(标上l2);(4)通过计算说明:每天销售量达到多少台时,商场可以盈利.【考点】一次函数的应用.【分析】(1)由函数图象知,y与x成正比例函数关系且过(5,4),待定系数法可求得直线l1对应的函数表达式,再根据每台电脑售价=每天销售收入÷销售量可得;(2)根据:每天总成本=电脑的总成本+每天的固定支出,可列函数关系式;(3)根据(2)中函数关系式,确定两点(0,3),(5,5),作射线即可;(4)根据:商场每天利润=电脑的销售收入﹣每天的总成本,列出函数关系式,根据题意得到不等式、解不等式即可.【解答】解:(1)设y=kx,将(5,4)代入,得k=0.8,故y=0.8x,每台电脑的售价为:=0.8(万元);(2)根据题意,商场每天的总成本y2=0.4x+3;(3)如图所示,(3)商场每天的利润W=y﹣y2=0.8x﹣(0.4x+3)=0.4x﹣3,当W>0,即0.4x﹣3>0时商场开始盈利,解得:x>7.5.答:每天销售量达到8台时,商场可以盈利.【点评】本题主要考查一次函数的实际应用,熟悉一次函数解析式的求法、图象的画法及根据实际问题列函数关系式是一次函数的基础.23.如图,长方形AOBC在直角坐标系中,点A在y轴上,点B在x轴上,已知点C的坐标是(8,4).(1)求对角线AB所在直线的函数关系式;(2)对角线AB的垂直平分线MN交x轴于点M,连接AM,求线段AM的长;(3)若点P是直线AB上的一个动点,当△PAM的面积与长方形OABC的面积相等时,求点P的坐标.【考点】一次函数综合题.【分析】(1)由坐标系中点的意义结合图形可得出A、B点的坐标,设出对角线AB所在直线的函数关系式,由待定系数法即可求得结论;(2)由相似三角形的性质找到BM的长度,再结合OM=OB﹣BM得出OM的长,根据勾股定理即可得出线段AM的长;(3)先求出直线AM的解析式,设出P点坐标,由点到直线的距离求出AM边上的高h,再结合三角形面积公式与长方形面积公式即可求出P点坐标.【解答】解:(1)∵四边形AOBC为长方形,且点C的坐标是(8,4),∴AO=CB=4,OB=AC=8,∴A点坐标为(0,4),B点坐标为(8,0).设对角线AB所在直线的函数关系式为y=kx+b,则有,解得:,∴对角线AB所在直线的函数关系式为y=﹣x+4.(2)∵四边形AOBC为长方形,且MN⊥AB,∴∠AOB=∠MNB=90°,又∵∠ABO=∠MBN,∴△AOB∽△MNB,∴.∵AO=CB=4,OB=AC=8,∴由勾股定理得:AB==4,∵MN垂直平分AB,∴BN=AN=AB=2.===,即MB=5.OM=OB﹣MB=8﹣5=3,由勾股定理可得:AM==5.(3)∵OM=3,∴点M坐标为(3,0).又∵点A坐标为(0,4),∴直线AM的解析式为y=﹣x+4.∵点P在直线AB:y=﹣x+4上,∴设P点坐标为(m,﹣m+4),点P到直线AM:x+y﹣4=0的距离h==.△PAM的面积S△PAM=AM•h=|m|=S OABC=AO•OB=32,解得m=±,故点P的坐标为(,﹣)或(﹣,).【点评】本题考查了坐标系中点的意义、相似三角形的判定及性质、勾股定义、点到直线的距离、三角形和长方形的面积公式,解题的关键:(1)根据坐标系中点的意义,找到A、B点的坐标;(2)由相似三角形的相似比找出BM的长度;(3)结合点到直线的距离、三角形和长方形的面积公式找到关于m的一元一次方程.本题属于中等题,难度不大,(1)小问容易得出结论;(2)没有直接找OM长度,而是利用相似三角形找出BM的长度,此处部分学生可能会失分;(3)难度不大,运算量不小,这里尤其要注意点P有两个.广东省深圳市龙岗区八年级(上册)期末数学试卷一、选择题(每小题3分,共36分)1.数学,,π,,0.中无理数的个数是( )A.1 B.2 C.3 D.42.下列长度的线段不能构成直角三角形的是( )A.8,15,17 B.1.5,2,3 C.6,8,10 D.5,12,133.如图,笑脸盖住的点的坐标可能为( )A.(5,2)B.(3,﹣4)C.(﹣4,﹣6)D.(﹣1,3)4.点M(2,1)关于x轴对称的点的坐标是( )A.(1,﹣2)B.(﹣2,1)C.(2,﹣1)D.(﹣1,2)5.下列各式中,正确的是( )A.=±4 B.±=4 C.=﹣3 D.=﹣46.若函数y=(k﹣1)x|k|+b+1是正比例函数,则k和b的值为( )A.k=±1,b=﹣1 B.k=±1,b=0 C.k=1,b=﹣1 D.k=﹣1,b=﹣17.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是( )A.B.C.D.8.下列命题中,不成立的是( )A.两直线平行,同旁内角互补B.同位角相等,两直线平行C.一个三角形中至少有一个角不大于60度D.三角形的一个外角大于任何一个内角9.为筹备班级的初中毕业联欢会,班长对全班学生爱吃哪几种水果作了民意调查.那么最终买什么水果,下面的调查数据中最值得关注的是( )A.中位数B.平均数C.众数 D.加权平均数10.2016年“龙岗年货博览会”在大运中心体育馆展销,小丽从家出发前去购物,途中发现忘了带钱,于是打电话让妈妈马上从家里送来,同时小丽也往回走,遇到妈妈后聊了一会儿,接着继续前往大运中心体育馆.设小丽从家出发后所用时间为t,小丽与体育馆的距离为S,下面能反映S与t的函数关系的大致图象是( )A. B.C.D.11.如图,∠x的两条边被一直线所截,用含α和β的式子表示∠x为( )A.α﹣β B.β﹣α C.180°﹣α+βD.180°﹣α﹣β12.如图,把一个等腰直角三角形放在间距是1的横格纸上,三个顶点都在横格上,则此三角形的斜边长是( )A.3 B. C.2D.2二、填空题(每小题3分,共12分)13.16的平方根是__________.14.数据3,4,6,8,x,7的众数是7,则数据4,3,6,8,2,x的中位数是__________.15.观察下列各式:=﹣1,=,=2﹣…请利用你发现的规律计算:(+++…+)×(+)=__________.16.如图,在矩形ABCD中,AB=3,BC=4,现将点A、C重合,使纸片折叠压平,折痕为EF,那么重叠部分△AEF的面积=__________.三、解答题(第17题5分,第18题6分,第19题7分,第20题8分,第21题8分,第22题9分,第23题9分,共52分)17.计算:﹣||﹣4+.18.解方程组:.19.每年9月举行“全国中学生数学联赛”,成绩优异的选手可参加“全国中学生数学冬令营”,冬令营再选拔出50名优秀选手进入“国家集训队”.第31界冬令营已于2015年12月在江西省鹰谭一中成功举行.现将脱颖而出的50名选手分成两组进行竞赛,每组25人,成绩整理并绘制成如下的统计图:请你根据以上提供的信息解答下列问题:(1)请你将表格补充完整:平均数中位数众数方差一组74 __________ __________ 104二组__________ __________ __________ 72(2)从本次统计数据来看,__________组比较稳定.。

八年级(上)期末评价数学试卷(五) (1)

八年级(上)期末评价数学试卷(五) (1)

八年级(上)期末学业评价数学试卷一、选择题:(共10题,每题3分) 1.如图,笑脸盖住的点的坐标可能为( )A . (5,2)B . (﹣2,3)C . (﹣4,﹣6)D . (3,﹣4)2.如图,AB 、CD 相交于点O ,∠1=80°,如果DE ∥AB ,那么∠D 的度数为( )A . 110°B . 100°C . 90°D . 80°第1题 第2题 第3题3.若图示的两架天平都保持平衡,则对a 、b 、c 三种物体的重量判断正确的是( )A . a >cB . a <cC . a <bD . b < c4.下列四个几何体中,主视图是三角形的是( )A .B .C .D .5.一个等腰三角形的一个外角等于110°,则这个三角形的底角为( )A . 55°B . 70°C . 55°或40°D . 70°或55°6.某地区连续5天的最高气温(单位:℃)分别是:30,33,24,29,24.这组数据的中位数是( ) A . 29 B . 28 C . 24 D . 97.一个矩形被直线分成面积为x ,y 的两部分,则y 与x 之间的函数关系只可能是( )A .B .C .D . 8.一元一次不等式组的解集为x >a ,且a ≠﹣1,则a 取值范围是( )A . a >﹣1B . a <﹣1C . a >0D . a <0 9.若点A 的坐标为(6,3)O 为坐标原点,将OA 绕点O按顺时针方向旋转90°得到OA ′,则点A ′的坐标是( ) A . (3,﹣6) B . (﹣3,6) C . (﹣3,﹣6) D . (3,6)10.在今年我市初中学业水平考试体育学科的女子800米耐力测试中,某考点同时起跑的小莹和小梅所跑的路程S (米)与所用时间t (秒)之间的函数图象分别为线段OA 和折线OBCD ,下列说法正确的是( )A . 小莹的速度随时间的增大而增大B . 小梅的平均速度比小莹的平均速度大C . 在起跑后180秒时,两人相遇D .在起跑后50秒时,小梅在小莹的前面二、填空题:(每题3分,共30分)11.如图所示,在△ABC中,∠C=90°,EF∥AB,∠1=50°,则∠B的度数是_________度.第11题第14题第17题第18题第20题12.甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均数都是8.9环,方差分别是S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,则射箭成绩最稳定的是_________.13.点M(﹣2,1)关于x轴对称的点N的坐标是_________.14.如图是正方体的展开图,则原正方体相对两个面上的数字之和的最小值的是_________.15.如果x1与x2的平均数是4,那么x1+1与x2+5的平均数是_________.16.如果点P(x,y)的坐标满足x+y=xy,那么称点P为和谐点.请写出一个和谐点的坐标:_________.17.将一幅三角尺如图所示叠放在一起,若AB=14cm,则阴影部分的面积是_________cm2.18.如图,一次函数y=kx+b的图象与x轴的交点坐标为(2,0),则下列说法:①y随x的增大而减小;②b>0;③关于x的方程kx+b=0的解为x=2.其中说法正确的有_________(把你认为说法正确的序号都填上).19.如果关于x的不等式(2a﹣b)x+a﹣5b>0的解集为,则关于x的不等式ax>b的解集为______.20.如图1所示,在矩形ABCD中,动点P从点B出发,沿BC、CD、DA运动至点A停止,设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图2所示,那么△ABC的面积是_________.三.解答题:21.(6分)解下列不等式组并把它的解集表示在数轴上.22.(6分)如图是由7个相同的小正方体搭成的几何体,试画出它的三视图.23.(6分)如图,AD和BC交于点O,AB∥DC,OA=OB,试说明△OCD是等腰三角形.24.(6分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请作出△ABC关于y轴对称的△A′B′C′;(3)写出点B′的坐标.25.(6分)已知y﹣2与x成正比例关系,且当x=1时,y=5.(1)求y与x之间的函数解析式;(2)请画出这个函数的图象,算出图象与坐标轴的交点坐标.26.某工厂用如图甲所示的长方形和正方形纸板,做成如图乙所示的竖式与横式两种长方体形状的无盖纸盒 _________.(1)现有正方形纸板162张,长方形纸板340张.若要做两种纸盒共100个,设做竖式纸盒x 个. ①根据题意,完成以下表格:纸盒 纸板竖式纸盒(个) 横式纸盒(个)x 100﹣x正方形纸板(张) 2(100﹣x )长方形纸板(张) 4x②按两种纸盒的生产个数来分,有哪几种生产方案?(2)若有正方形纸162张,长方形纸板a 张,做成上述两种纸盒,纸板恰好用完.已知290<a <306.求a 的值.27.(10分)如图,一次函数y=kx+b 的图象与x 轴和y 轴分别交于点A (6,0)和B (0,),再将△AOB 沿直线CD 对折,使点A 与点B 重合.直线CD 与x 轴交于点C ,与AB 交于点D .(1)试确定这个一次函数的解析式;(2)求点C 的坐标;(3)在x 轴上有一点P ,且△PAB 是等腰三角形不需计算过程,直接写出点P 的坐标.2011-2012学年浙教版八年级(上)期末学业评价数学试卷参考答案与试题解析一、选择题:20分1.(3分)如图,笑脸盖住的点的坐标可能为()A.(5,2)B.(﹣2,3)C.(﹣4,﹣6)D.(3,﹣4)考点:点的坐标.专题:图表型.分析:笑脸盖住的点在第二象限内,那么点的横坐标小于0,纵坐标大于0,比较选项即可.解答:解:笑脸盖住的点在第二象限内,则其横坐标小于0,纵坐标大于0,那么结合选项笑脸盖住的点的坐标可能为(﹣2,3).故选B.点评:解决本题的关键是记住平面直角坐标系中各个象限内点的符号特点:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.(3分)(2008•海南)如图,AB、CD相交于点O,∠1=80°,如果DE∥AB,那么∠D的度数为()A.110°B.100°C.90°D.80°考点:平行线的性质;对顶角、邻补角.专题:计算题.分析:两直线平行,同旁内角互补,由题可知,∠D和∠1的对顶角互补,根据数值即可解答.解答:解:∵∠1=80°,∴∠BOD=∠1=80°∵DE∥AB,∴∠D=180﹣∠BOD=100°.故选B.点评:本题应用的知识点为:两直线平行,同旁内角互补及对顶角相等.3.(3分)若图示的两架天平都保持平衡,则对a、b、c三种物体的重量判断正确的是()A.a>c B.a<c C.a<b D.b<c考点:不等式的定义.分析:找出不等关系是解决本题的关键.解答:解:由图一可知:2a=3b,a>b;由图二可知:2b=3c,b>c.故a>b>c.故选A.点评:解决问题的关键是读懂图意,进而列出正确的不等式.4.(3分)(2011•台州)下列四个几何体中,主视图是三角形的是()A.B.C.D.考点:简单几何体的三视图.分析:主视图是从几何体的正面看,主视图是三角形的一定是一个锥体,是长方形的一定是柱体,由此分析可得答案.解答:解:主视图是三角形的一定是一个锥体,只有B是锥体.故选:B.点评:此题主要考查了几何体的三视图,主要考查同学们的空间想象能力.5.(3分)一个等腰三角形的一个外角等于110°,则这个三角形的底角为()A.55°B.70°C.55°或40°D.70°或55°考点:等腰三角形的性质.分析:根据题意有一内角是70°,它可能是底角,也可能为顶角,故分类讨论.解答:解:因为外角为110°,则与它相邻的内角等于70°.若此内角是顶角,则底角=110°÷2=55°;若此内角是底角,则底角为70°.故选D.点评:此题考查等腰三角形的性质及三角形内角和定理,需分类讨论.6.(3分)(2011•淮安)某地区连续5天的最高气温(单位:℃)分别是:30,33,24,29,24.这组数据的中位数是()A.29 B.28 C.24 D.9考点:中位数.专题:计算题.分析:求中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.解答:解:数据排序为:24、24、29、30、33,∴中位数为29,故选A.点评:注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.A.B.C.D.考点:一次函数的应用;一次函数的图象.分析:因为个矩形被直线分成面积为x,y的两部分,矩形的面积一定,y随着x的增大而减小,但是x+y=k(矩形的面积是一定值),由此可以判定答案.解答:解:因为x+y=k(矩形的面积是一定值),整理得y=﹣x+k,由此可知y是x的一次函数,图象经过二、四象限,x、y都不能为0,且x>0,y>0,图象位于第一象限,所以只有A符合要求.故选A.点评:此题主要考查实际问题的一次函数的图象与性质,解答时要熟练运用.8.(3分)一元一次不等式组的解集为x>a,且a≠﹣1,则a取值范围是()A.a>﹣1 B.a<﹣1 C.a>0 D.a<0考点:解一元一次不等式组.分析:根据同大取大,即可求出答案.解答:解:因为一元一次不等式组的解集为x>a,且a≠﹣1,x≥﹣1,所以a>﹣1,故选A.点评:本题考查不等式组解集的确定方法,注意这里的a的条件.9.(3分)(2011•泰安)若点A的坐标为(6,3)O为坐标原点,将OA绕点O按顺时针方向旋转90°得到OA′,则点A′的坐标是()A.(3,﹣6)B.(﹣3,6)C.(﹣3,﹣6)D.(3,6)考点:坐标与图形变化-旋转.专题:作图题.分析:正确作出A旋转以后的A′点,即可确定坐标.解答:解:由图知A点的坐标为(6,3),根据旋转中心O,旋转方向顺时针,旋转角度90°,画图,点A′的坐标是(3,﹣6).故选A.点评:本题考查了图形的旋转,抓住旋转的三要素:旋转中心O,旋转方向顺时针,旋转角度90°,通过画图得10.(3分)(2011•潍坊)在今年我市初中学业水平考试体育学科的女子800米耐力测试中,某考点同时起跑的小莹和小梅所跑的路程S(米)与所用时间t(秒)之间的函数图象分别为线段OA和折线OBCD,下列说法正确的是()A.小莹的速度随时间的增大而增大B.小梅的平均速度比小莹的平均速度大C.在起跑后180秒时,两人相遇D.在起跑后50秒时,小梅在小莹的前面考点:函数的图象.专题:数形结合.分析: A、由于线段OA表示所跑的路程S(米)与所用时间t(秒)之间的函数图象,由此可以确定小莹的速度是没有变化的,B、小莹比小梅先到,由此可以确定小梅的平均速度比小莹的平均速度是否小;C、根据图象可以知道起跑后180秒时,两人的路程确定是否相遇;D、根据图象知道起跑后50秒时OB在OA的上面,由此可以确定小梅是否在小莹的前面.解答:解:A、∵线段OA表示所跑的路程S(米)与所用时间t(秒)之间的函数图象,∴小莹的速度是没有变化的,故选项错误;B、∵小莹比小梅先到,∴小梅的平均速度比小莹的平均速度小,故选项错误;C、∵起跑后180秒时,两人的路程不相等,∴他们没有相遇,故选项错误;D、∵起跑后50秒时OB在OA的上面,∴小梅是在小莹的前面,故选项正确.故选D.点评:本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.二、填空题:30分11.(3分)如图所示,在△ABC中,∠C=90°,EF∥AB,∠1=50°,则∠B的度数是40度.考点:直角三角形的性质;平行线的性质.专题:探究型.分析:先根据∠1=50°得出∠CEF的度数,再由平行线的性质求出∠A的度数,根据直角三角形两锐角互补的性质即可求出∠B的度数.解答:解:∵∠1=50°,∴∠CEF=50°,∵EF∥AB,∴∠A=∠CEF=50°,故答案为:40.点评:本题考查的是直角三角形的性质及平行线的性质,考查的知识点为:两直线平行,同位角相等;直角三角形的两锐角互补.12.(3分)甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均数都是8.9环,方差分别是S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,则射箭成绩最稳定的是丁.考点:方差.分析:题须根据方差的意义先比较出甲、乙、丙、丁四人谁的方差最小则谁的成绩最稳定.解答:解:∵S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,丁的方差最小,∴射箭成绩最稳定的是:丁.故答案为:丁.点评:此题主要考查了方差的意义,在解题时要能根据方差的意义和本题的实际,得出正确结论是本题的关键.13.(3分)点M(﹣2,1)关于x轴对称的点N的坐标是N(﹣2,﹣1).考点:关于x轴、y轴对称的点的坐标.专题:计算题.分析:本题比较容易,考查平面直角坐标系中任意一点P(x,y),关于x轴对称的点的坐标是(x,﹣y),即横坐标相等,纵坐标互为相反数;据此可得答案.解答:解:根据题意,M与N关于x轴对称,则其横坐标相等,纵坐标互为相反数;所以N点坐标是(﹣2,﹣1).故答案为:(﹣2,﹣1).点评:本题考查关于x轴对称的两点的坐标之间的关系,关键是掌握两点关于x轴对称则横坐标相等,纵坐标互为相反数.14.(3分)(2011•菏泽)如图是正方体的展开图,则原正方体相对两个面上的数字之和的最小值的是6.考点:专题:正方体相对两个面上的文字.分析:根据相对的面相隔一个面得到相对的2个数,相加后比较即可.解答:解:易得2和6是相对的两个面;3和4是相对两个面;1和5是相对的2个面,∵2+6=8,3+4=7,1+5=6,所以原正方体相对两个面上的数字和最小的是6.故答案为:6.点评:本题考查了正方体相对两个面上的文字,解决本题的关键是根据相对的面的特点得到相对的两个面上的数字.考点:算术平均数.专题:计算题.分析:由平均数的定义得到x1+x2=4×2=8,x1+1与x2+5的平均数=,最后进行计算即可.解答:解:∵x1与x2的平均数是4,∴x1+x2=4×2=8,∴x1+1与x2+5的平均数===7.故答案为:7.点评:本题考查了平均数的概念:一组数据的平均数等于这组数据所有数据的和除以这组数据的个数.16.如果点P(x,y)的坐标满足x+y=xy,那么称点P为和谐点.请写出一个和谐点的坐标:(2,2).考点:点的坐标.专题:开放型.分析:由题意点P(x,y)的坐标满足x+y=xy,当x=2时,代入得到2+y=2y,求出y即可.解答:解:∵点P(x,y)的坐标满足x+y=xy,当x=2时,代入得:2+y=2y,∴y=2,故答案为:(2,2).点评:本题考查了和谐点的性质及等式求解,比较简单.17.(3分)(2010•吉林)将一幅三角尺如图所示叠放在一起,若AB=14cm,则阴影部分的面积是cm2.考点:解直角三角形.分析:由于BC∥DE,那么△ACF也是等腰直角三角形,欲求其面积,必须先求出直角边AC的长;Rt△ABC中,已知斜边AB及∠B的度数,易求得AC的长,进而可根据三角形面积的计算方法求出阴影部分的面积.解答:解:∵∠B=30°,∠ACB=90°,AB=14cm,∴AC=7cm.由题意可知BC∥ED,∴∠AFC=∠ADE=45°,∴AC=CF=7cm.故S△ACF=×7×7=(cm2).点评:发现△ACF是等腰直角三角形,并能根据直角三角形的性质求出直角边AC的长,是解答此题的关键.18.(3分)(2011•衡阳)如图,一次函数y=kx+b的图象与x轴的交点坐标为(2,0),则下列说法:③关于x的方程kx+b=0的解为x=2.其中说法正确的有①②③(把你认为说法正确的序号都填上).考点:一次函数的性质;一次函数的图象;一次函数与一元一次方程.专题:综合题.分析:根据一次函数的性质,结合一次函数的图形进行解答.解答:解:①因为一次函数的图象经过二、四象限,所以y随x的增大而减小,故本项正确②因为一次函数的图象与y轴的交点在正半轴上,所以b>0,故本项正确③因为一次函数的图象与x轴的交点为(2,0),所以当y=0时,x=2,即关于x的方程kx+b=0的解为x=2,故本项正确故答案为①②③.点评:本题主要考查一次函数的性质、一次函数的图象、一次函数与一元一次方程,关键是要熟练掌握一次函数的所有性质19.如果关于x的不等式(2a﹣b)x+a﹣5b>0的解集为,则关于x的不等式ax>b的解集为x<.考点:解一元一次不等式.专题:分类讨论.分析:先求出不等式的解集,根据不等式的解集为x<,建立关于a、b的关系式,求出a、b的比,再据此解答不等式ax>b的解集.解答:解:由关于x的不等式(2a﹣b)x+a﹣5b>0解得x<或x>,因为x<,所以2a﹣b<0,即2a<b,所以=,20a﹣10b=35b﹣7a,∴27a=45b,∴3a=5b,∵2a<b,即2a<a,∴a<0,化简得=.因为ax>b,解得:x<.点评:本题是一个方程与不等式的综合题目,要充分利用题目中的隐含条件﹣﹣﹣不等号的方向发生了改变,确定a、b同号,再解关于x的不等式.20.(3分)(2011•衡阳)如图1所示,在矩形ABCD中,动点P从点B出发,沿BC、CD、DA运动至点A停止,设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图2所示,那么△ABC的面积是10.考点:动点问题的函数图象.分析:本题需先结合函数的图象求出AB、BC的值,即可得出△ABC的面积.解答:解:∵动点P从点B出发,沿BC、CD、DA运动至点A停止,而当点P运动到点C,D之间时,△ABP 的面积不变,函数图象上横轴表示点P运动的路程,x=4时,y开始不变,说明BC=4,x=9时,接着变化,说明CD=9﹣4=5,∴AB=5,BC=4,∴△ABC的面积是:×4×5=10.故答案为:10.点评:本题主要考查了动点问题的函数图象,在解题时要能根据函数的图象求出线段的长度从而得出三角形的面积是本题的关键.三.解答题:21.(6分)解下列不等式组并把它的解集表示在数轴上.考点:解一元一次不等式组;在数轴上表示不等式的解集.专题:探究型.分析:分别求出各不等式的解集的解集,再求出其公共解集,x>在数轴上表示出来即可.解答:解:,由①得,x≤3,由②得,x>﹣1,故此不等式的解集为:﹣1<x≤3,在数轴上表示为:点评:本题考查的是解一元一次不等式组及在数轴上表示不等式的解集,解答此题时要注意实心圆点与空心圆点的区别.22.(6分)如图是由7个相同的小正方体搭成的几何体,试画出它的三视图.考点:作图-三视图.专题:作图题.分析:主视图有3列,每列小正方形数目分别为1,2,3;左视图有2列,每列小正方形数目分别为3,1;俯视图有3列,每行小正方形数目分别为1,1,2.解答:解:如图:点评:本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.23.(6分)如图,AD和BC交于点O,AB∥DC,OA=OB,试说明△OCD是等腰三角形.考点:等腰三角形的判定;平行线的性质.专题:证明题.分析:根据两直线平行,内错角相等求出∠A=∠D,∠B=∠C,再根据等边对等角∠A=∠B,所以∠C=∠D,因此△OCD 是等腰三角形.解答:解:∵AB∥CD,∴∠A=∠D,∠B=∠C,又∵OA=OB,∴∠A=∠B,∴∠C=∠D,∴△OCD是等腰三角形.点评:本题主要考查了平行线的性质和等腰三角形的判定;熟练掌握性质进行角的等量代换是解题的关键.24.(6分)(2011•永州)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请作出△ABC关于y轴对称的△A′B′C′;(3)写出点B′的坐标.考点:作图-轴对称变换;坐标与图形变化-对称.专题:作图题.分析:(1)易得y轴在C的右边一个单位,x轴在C的下方3个单位;(2)作出A,B,C三点关于y轴对称的三点,顺次连接即可;(3)根据所在象限及距离坐标轴的距离可得相应坐标.解答:解:(1)(2)如图;(3)点B′的坐标为(2,1).点评:本题考查轴对称作图问题.用到的知识点:图象的变换,看关键点的变换即可.25.(6分)已知y﹣2与x成正比例关系,且当x=1时,y=5.(1)求y与x之间的函数解析式;(2)请画出这个函数的图象,算出图象与坐标轴的交点坐标.考点:待定系数法求一次函数解析式;一次函数的图象.专题:作图题;待定系数法.分析:(1)根据y﹣2与x成正比例关系设出函数的解析式,再把当x=1时,y=5代入函数解析式即可求出k的值,进而求出y与x之间的函数解析式.(2)根据(1)中所求函数解析式,分别令y=0,x=0,求出直线与两坐标轴的交点即可.解答:解:(1)∵y﹣2与x成正比例关系∴设y﹣2=kx(k≠0),(1分)并把x=1,y=5代入,解得:k=3,(2分)∴原解析式为y ﹣2=3x ,即y=3x+2.(4分)(2)与y 轴交于(0,2),(5分)与x 轴交于.(6分)作图:点评: 此题考查的是用待定系数法求一次函数的解析式及用描点法画函数图象,比较简单.26.(2009•温州)某工厂用如图甲所示的长方形和正方形纸板,做成如图乙所示的竖式与横式两种长方体形状的无盖纸盒 .(1)现有正方形纸板162张,长方形纸板340张.若要做两种纸盒共100个,设做竖式纸盒x 个. ①根据题意,完成以下表格:纸盒 纸板竖式纸盒(个) 横式纸盒(个)x 100﹣x正方形纸板(张) 2(100﹣x )长方形纸板(张) 4x②按两种纸盒的生产个数来分,有哪几种生产方案?(2)若有正方形纸162张,长方形纸板a 张,做成上述两种纸盒,纸板恰好用完.已知290<a <306.求a 的值.考点: 一元一次不等式组的应用.专题: 方案型.分析: (1)①可根据竖式纸盒+横式纸盒=100个,每个竖式纸盒需1个正方形纸板和4个长方形纸板,每个横式纸盒需3个长方形纸板和2个正方形纸板来填空.②生产竖式纸盒用的正方形纸板+生产横式纸盒用的正方形纸板≤162张;生产竖式纸盒用的长方形纸板+生产横式纸盒用的长方形纸板≤340张.由此,可得出不等式组,求出自变量的取值范围,然后得出符合条件的方案.(2)设x 个竖式需要正方形纸板x 张,长方形纸板横4x 张;y 个横式需要正方形纸板2y 张,长方形纸板横3y 张,可列出方程组,再根据a 的取值范围求出y 的取值范围即可.解答: 解:(1)①如表:纸盒 竖式纸盒(个) 横式纸盒(个)纸板x 100﹣x正方形纸板(张)x 2(100﹣x)长方形纸板(张)4x 3(100﹣x)②由题意得,,解得38≤x≤40.又∵x是整数,∴x=38,39,40.答:有三种方案:生产竖式纸盒38个,横式纸盒62个;生产竖式纸盒39个,横式纸盒61个;生产竖式纸盒40个,横式纸盒60个;(2)如果设x个竖式需要正方形纸板x张,长方形纸板横4x张;y个横式需要正方形纸板2y张,长方形纸板横3y张,可得方程组,于是我们可得出y=,因为已知了a的取值范围是290<a<306,所以68.4<y<71.6,由y取正整数,则,当取y=70,则a=298;当取y=69时,a=303;当取y=71时,a=293.293或298或303(写出其中一个即可).点评:(1)根据竖式纸盒和横式纸盒分别所需的正方形和长方形纸板的个数求解即可;(2)根据生产两种纸盒分别共用的正方形纸盒的和及长方形纸盒的和的取值范围列出不等式组,求出其解集即可;(3)根据(1)中生产两种纸盒分别所需正方形及长方形纸板的比及两种纸板的张数,列出方程组,根据a的取值范围即可求出y的取值范围.本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.27.(10分)如图,一次函数y=kx+b的图象与x轴和y轴分别交于点A(6,0)和B(0,),再将△AOB沿直线CD对折,使点A与点B重合.直线CD与x轴交于点C,与AB交于点D.(1)试确定这个一次函数的解析式;(2)求点C的坐标;(3)在x轴上有一点P,且△PAB是等腰三角形不需计算过程,直接写出点P的坐标.考点:一次函数综合题;点的坐标;待定系数法求一次函数解析式;两条直线相交或平行问题;等腰三角形的性质.分析:(1)利用A、B两点的坐标,即可利用待定系数法求一次函数解析式;(2)OC=x,根据翻折变换的性质用x表示出BC的长,再根据勾股定理求解即可;(3)根据x轴上点的坐标特点设出P点的坐标,再根据两点间的距离公式解答即可.解答:解:(1)∵点A的坐标为(6,0),点B的坐标为(0,2),∴设y=kx+b,∴,∴y=﹣x+2;(2)连接BC,设OC=x,则AC=CB=6﹣x,∵∠BOA=90°,∴OB2+OC2=CB2,(2)2+x2=(6﹣x)2,解得x=2,∴C点坐标为:(2,0).(3)设P点坐标为(x,0),当PA=PB时,=,解得x=2;当PA=AB时,=,解得x=6﹣4或x=6+4;当PB=AB时,=,解得x=﹣6.∴P点坐标为(2,0),(6﹣4,0),(﹣6,0),(6+4,0).点评:此题主要考查了坐标轴上点的坐标特点、勾股定理及两点间的距离公式,在解(2)时要注意分类讨论,不要漏解.。

人教版八年级数学上册期末综合检测试卷带答案 (2)

人教版八年级数学上册期末综合检测试卷带答案 (2)

人教版八年级数学上册期末综合检测试卷带答案一、选择题1.下列四个图形中,轴对称图形有( )个.A .1B .2C .3D .42.6月15日,莉莉在网络上查到了小区PM 2.5的平均浓度为0.000038克/立方米,0.000038用科学记数法表示为( ) A .43.810-⨯B .43.810⨯C .53.810-⨯D .53.810⨯3.已知4=m x ,6n x =,则2-m n x 的值为( ) A .10 B .83C .32D .234.若分式12x x +-有意义,则x 的取值范围是( ) A .x ≥2B .x ≠2且x ≠-1C .x ≠2D .x ≠-15.下列因式分解正确的是( ) A .22(1)2x x x x -+=-+ B .329(9)x x x x -=- C .22324(1)a a a -=-++D .2222(1)(1)-=+-x x x6.下列变形中,正确的是( ) A .1-=--a bb aB .0.330.5252a b a ba b a b++=--C .21111a a a -=-+ D .22b bc a ac= 7.如图,AC BC =,下列条件不能判定....△ACD 与△BCD 全等的是( )A .AD BD =B .ACD BCD ∠=∠C .ADC BDC ∠=∠D .点O 是AB 的中点8.若关于x 的方程4233x mx x--=--有增根,则m 的值为( ) A .3B .0C .1D .任意实数9.勾股定理是人类早期发现并证明的重要数学定理之一,这是历史上第一个把数与形联系起来的定理,其证明是论证几何的发端.下面四幅图中,不能证明勾股定理的是( )A .B .C .D .10.如图,在等边△ABC 中,AC =3,点O 在AC 上,且AO =1.点P 是AB 上一点(可移动),连接OP ,以线段OP 为一边作等边△OPD ,且O 、P 、D 三点依次呈逆时针方向,当点D 恰好落在边BC 上时,则AP 的长是( )A .1B .2C .3D .4二、填空题11.若242x x -+的值为零,则x 的值为______.12.点P 1(4,m n -)与P 2(3,2m -)关于y 轴对称,则mn =______. 13.已知114ab-=,则aba b-的值是______. 14.已知3m a =,2n a =,则2m n a -的值为______.15.如图,在ABC ∆中,7AB cm =,5BC cm =,AC 的垂直平分线分别交AB ,AC 于点D ,E ,点F 是DE 上的任意一点,则BCF ∆周长的最小值是________cm .16.已知关于x 的二次三项式29x kx ++ 是完全平方式,则常数k 的值为_____. 17.若14x x+=,则221x x ⎛⎫+ ⎪⎝⎭的值是_________.18.如图,直线PQ 经过Rt △ABC 的直角顶点C ,△ABC 的边上有两个动点D 、E ,点D 以1cm /s 的速度从点A 出发,沿AC →CB 移动到点B ,点E 以3cm /s 的速度从点B 出发,沿BC →CA 移动到点A ,两动点中有一个点到达终点后另一个点继续移动到终点.过点D 、E 分别作DM ⊥PQ ,EN ⊥PQ ,垂足分别为点M 、N ,若AC =6cm ,BC =8cm ,设运动时间为t ,则当t =__________ s 时,以点D 、M 、C 为顶点的三角形与以点E 、N 、C 为顶点的三角形全等.三、解答题19.分解因式 (1)224x y ;(2)a 2(x -y )+16(y -x ).20.先化简,再求值:2223111x x x x -⎛⎫-÷ ⎪--⎝⎭,其中x =2021. 21.如图,已知△ABC ≌△DEB ,点E 在AB 上,AC 与BD 交于点F ,AB =6,BC =3,∠C =55°,∠D =25°. (1)求AE 的长度; (2)求∠AED 的度数.22.如图,在ABC 中,C B ∠>∠,AD BC ⊥,AE 平分∠BAC .(1)计算:若30B ∠=︒,60C ∠=°,求∠DAE 的度数; (2)猜想:若50C B ∠-∠=︒,则DAE =∠______; (3)探究:请直接写出∠DAE ,∠C ,∠B 之间的数量关系.23.某服装店老板到厂家选购A 、B 两种品牌的夏季服装,每袋A 品牌服装进价比B 品牌服装每袋进价多25元,若用4000元购进A 种服装的数量是用1500元购进B 种服装数量的2倍.(1)求A 、B 两种品牌服装每套进价分别是多少元?(2)若A 品牌服装每套售价为150元,B 品牌服装每套售价为100元,服装店老板决定一次性购进两种服装共100套,两种服装全部售出后,要使总的获利不少于3500元,则最少购进A品牌服装多少套?24.我们知道某些代数恒等式可用一些卡片拼成的图形面积来解释,例如:图A可以用来解释2()++=+,实际上利用一些卡片拼成的图形面积也可以对某些二次三项式进行因式a ab b a b分解.(1)图B可以解释的代数恒等式是;(2)现有足够多的正方形和矩形卡片(如图C),试画出..一个用若干张1号卡片、2号卡片和3号卡片拼成的矩形(每两块纸片之间既不重叠,也无空隙,拼出的图中必须保留拼图的痕迹),使该矩形的面积为2223++a ab b23a ab b++,并利用你所画的图形面积对22进行因式分解.25.如图①,在等边△ABC中,点D、E分别是AB、AC上的点,BD=AE,BE与CD交于点O.(1)填空:∠BOC=度;(2)如图②,以CO为边作等边△OCF,AF与BO相等吗?并说明理由;(3)如图③,若点G是BC的中点,连接AO、GO,判断AO与GO有什么数量关系?并说明理由.26.如图1,在平面直角坐标系xOy中,直线AB与x轴交于点A、与y轴交于点B,且∠ABO=45°,A(-6,0),直线BC与直线AB关于y轴对称.(1)求△ABC的面积;(2)如图2,D为OA延长线上一动点,以BD为直角边,D为直角顶点,作等腰直角△BDE,求证:AB⊥AE;(3)如图3,点E是y轴正半轴上一点,且∠OAE=30°,AF平分∠OAE,点M是射线AF上一动点,点N是线段AO上一动点,判断是否存在这样的点M,N,使OM+NM的值最小?若存在,请写出其最小值,并加以说明.【参考答案】一、选择题 2.C 解析:C【分析】根据轴对称图形的定义,逐项判断即可求解. 【详解】解∶第一个图形不是轴对称图形, 第二个图形是轴对称图形, 第三个图形是轴对称图形, 第四个图形是轴对称图形, ∴轴对称图形有3个. 故选:C【点睛】本题主要考查了轴对称图形的定义,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键.3.C解析:C【分析】绝对值小于1的数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n 由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:0.000038=53.810-⨯. 故选:C .【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为10n a -⨯,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.4.B解析:B【分析】4=m x 根据幂的乘方,可得要求形式,根据同底数幂的除法,可得答案. 【详解】解:xm =4, 两边平方可得, x 2m =16,∴2-m n x =x 2m ÷xn =16÷683=,故选:B .【点睛】题考查了同底数幂的除法,先利用了幂的乘方得出要求的形式,再利用同底数幂的除法得出答案.5.C解析:C【分析】根据分式有意义的条件:分母不等于0即可得出答案. 【详解】解:∴20x -≠, ∴2x ≠. 故选:C .【点睛】本题考查了分式有意义的条件,掌握分式有意义的条件:分母不等于0是解题的关键.6.D解析:D【分析】根据因式分解的概念以及方法逐项判断即可.【详解】A 、22(1)2x x x x -+-+=没有变为整式的积的形式,故A 选项错误; B 、32()()(9933)x x x x x x x -=-=+-,故B 选项错误;C 、()222413a a a -+=-+没有变为整式的积的形式,故C 选项错误; D 、22222(1)2(1)(1)x x x x -=-=+-,故D 选项正确, 故选:D .【点睛】本题考查了因式分解的概念,把一个多项式在实数范围内化为几个整式的积,这种式子变形叫做多项式的因式分解,掌握因式分解的概念是解答本题的关键.7.A0c 时,等号右边的式子没有意义,选项错误,不符合题意;A【点睛】此题考查了分式的性质,涉及了平方差公式,解题的关键是熟练掌握分式的有关性质.8.C解析:C【分析】根据全等三角形的判定定理,逐项判断即可求解. 【详解】解:∵AC BC =,CD =CD ,∴A 、可以利用边边边判定△ACD 与△BCD 全等,故本选项不符合题意;B、可以利用边角边判定△ACD与△BCD全等,故本选项不符合题意;C、不能判定△ACD与△BCD全等,故本选项符合题意;∠=∠,可以利用边角边判定△ACD与△BCD全D、因为点O是AB的中点,所以ACD BCD等,故本选项不符合题意;故选:C【点睛】本题主要考查了全等三角形的判定定理,等腰三角形的性质,熟练掌握全等三角形的判定定理,等腰三角形的性质是解题的关键.9.C解题的关键.10.D边正方形面积,∴4×12ab+(b﹣a)2=c2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;D、∵四个小图形面积和=大正方形面积,∴ab+ b2+ a2+ ab=(a+b)2,∴a2+ 2ab +b2=(a+b)2,根据图形证明完全平方公式,不能证明勾股定理,故本选项符合题意;故选:D.【点睛】本题考查利用面积推导勾股定理与完全平方公式,掌握利用面积推导勾股定理与完全平方公式是解题关键.11.B解析:B【分析】如图,通过观察,寻找未知与已知之间的联系.AO=1,则OC=2.证明△AOP≌△COD求解即可.【详解】解:∵△ABC和△ODP都是等边三角形,∴∠C=∠A=∠DOP=60°,OD=OP,∴∠CDO+∠COD=120°,∠COD+∠AOP=120°,∴∠CDO=∠AOP,∴△ODC≌△POA(AAS),∴AP=OC,∴AP=OC=AC﹣AO=2.故选:B.【点睛】此题考查了等边三角形的性质和全等三角形的性质与判定,解决本题的关键是利用全等把所求的线段转移到已知的线段上.二、填空题12.2【分析】直接利用分式的值为零则分子为零分母不为零进而得出答案.【详解】解:∵分式242xx-+的值为零,∴24x-=0且x+2≠0,即24x-=0且x≠-2,解得:x=2.故答案为:2.【点睛】本题主要考查了分式的值为零的条件,正确掌握相关定义是解题关键. 13.-2【分析】根据关于y 轴对称的点的特点解答即可.【详解】∵点P 1(4,m n -)与P 2(3,2m -)关于y 轴对称, ∴n =-2,m -4=-3m 解得:n =-2,m =1 则mn =-2 故答案为:-2【点睛】此题主要考查了关于y 轴对称的点的特点;用到的知识点为:两点关于y 轴对称,横坐标互为相反数,纵坐标不变. 14.14-##-0.25【点睛】本题主要考查了分式的加减法,解题的关键是通分,得出4ab=,是解题关键. 【详解】a 法法则是解题的关键.16.12【分析】当点于重合时,的周长最小,根据垂直平分线的性质,即可求出的周长.【详解】∵DE 垂直平分AC ,∴点C 与A 关于DE 对称, ∴当点于重合时,即A 、D 、B 三点在一条直线上时,BF+CF解析:12【分析】当F 点于D 重合时,BCF ∆的周长最小,根据垂直平分线的性质,即可求出BCF ∆的周长.【详解】∵DE 垂直平分AC ,∴点C 与A 关于DE 对称,∴当F 点于D 重合时,即A 、D 、B 三点在一条直线上时,BF +CF=AB 最小,(如图), ∴BCF ∆的周长为:BCF C BD CD BC ∆,∵DE 是垂直平分线, ∴AD CD =, 又∵7AB cm =,∴7cm BD AD BD CD , ∴7512cm BCFC ∆,故答案为:12.【点睛】本题考查最短路径问题以及线段垂直平分线的性质:垂直平分线上的点到线段两端的距离相等,熟练掌握最短路径的求解方法以及垂直平分线的性质是解题的关键.17.±6【分析】利用完全平方公式的结构特征判断即可. 【详解】解:∵关于x 的二次三项式是完全平方式, ∴;,则常数k 的值为±6. 故答案为:±6.【点睛】此题考查了完全平方式,熟练掌握解析:±6【分析】利用完全平方公式的结构特征判断即可.【详解】解:∵关于x 的二次三项式29x kx ++是完全平方式, ∴()22693x x x ++=+;()22693x x x -+=-, 则常数k 的值为±6. 故答案为:±6.【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.18.14【分析】根据即可求得其值.【详解】解:,故答案为:14.【点睛】本题考查了代数式求值问题,熟练掌握和运用代数式求值的方法是解决本题的关键. 解析:14 【分析】根据222211x x x x ⎛⎫=+- ⎪⎝⎫ ⎝⎭⎛+⎪⎭即可求得其值. 【详解】解:14x x+=, 221x x ⎛⎫∴+ ⎪⎝⎭ 212x x ⎛⎫=+- ⎪⎝⎭ 242=-=14 故答案为:14.【点睛】本题考查了代数式求值问题,熟练掌握和运用代数式求值的方法是解决本题的关键.19.1或或12【分析】由以点D 、M 、C 为顶点的三角形与以点E 、N 、C 为顶点的三角形全等.可知CE=CD ,而CE ,CD 的表示由E ,D 的位置决定,故需要对E ,D 的位置分当E 在BC 上,D 在AC 上时或当E 在解析:1或72或12 【分析】由以点D 、M 、C 为顶点的三角形与以点E 、N 、C 为顶点的三角形全等.可知CE =CD ,而CE ,CD 的表示由E ,D 的位置决定,故需要对E ,D 的位置分当E 在BC 上,D 在AC 上时或当E 在AC 上,D 在AC 上时,或当E 到达A ,D 在BC 上时,分别讨论.【详解】解:当E 在BC 上,D 在AC 上,即0<t ≤83时,CE =(8-3t )cm ,CD =(6-t )cm ,∵以点D 、M 、C 为顶点的三角形与以点E 、N 、C 为顶点的三角形全等.∴CD =CE ,∴8-3t =6-t ,∴t =1s ,当E 在AC 上,D 在AC 上,即83<t <143时,CE =(3t -8)cm ,CD =(6-t )cm ,∴3t -8=6-t ,∴t =72s , 当E 到达A ,D 在BC 上,即143≤t ≤14时,CE =6cm ,CD =(t -6)cm ,∴6=t -6,∴t =12s ,故答案为:1或72或12. 类,分别表示出每种情况下CD 和CE 的长.三、解答题20.(1)(2)(x ﹣y )(a+4)(a ﹣4)【分析】(1)直接利用公式法分解因式即可;(2)先提提取公因式,然后运用公式法分解因式即可.(1)解: =;(2)a2(x ﹣y )+16(解析:(1)(2)(2)x y x y +-(2)(x ﹣y )(a +4)(a ﹣4)【分析】(1)直接利用公式法分解因式即可;(2)先提提取公因式,然后运用公式法分解因式即可.(1)解:224x y =(2)(2)x y x y +-;(2)a 2(x ﹣y )+16(y ﹣x )=a 2(x ﹣y )-16(x ﹣y )=(x ﹣y )(a 2﹣16)=(x ﹣y )(a +4)(a ﹣4).【点睛】题目主要考查利用提公因式法及公式法分解因式,熟练掌握因式分解的方法是解题关键.21.,【分析】先把括号里的通分,再相减,把除法转化为乘法、分解因式,然后约分,最后把x 的值代入化简后的代数式计算即可.【详解】解:当x =2021时,原式.【点睛】本题主要考查了22.(1);(2).【分析】(1)先根据全等三角形的性质可得,再根据线段的和差即可得; (2)先根据全等三角形的性质可得,再根据三角形的外角性质即可得.【详解】解:(1)∵,∴,∵,解析:(1)3AE =;(2)80AED ∠=︒.【分析】(1)先根据全等三角形的性质可得3BE BC ==,再根据线段的和差即可得; (2)先根据全等三角形的性质可得55DBE C ∠=∠=︒,再根据三角形的外角性质即可得.【详解】解:(1)∵,3ABC DEB BC ≅=,∴3BE BC ==,∵6AB =,∴633AE AB BE =-=-=;(2)∵ABC DEB ≅△△,∴55DBE C ∠=∠=︒,∵25D ∠=︒,∴552580AED DBE D ∠=∠+∠=︒+︒=︒.【点睛】本题考查全等三角形的性质等知识点,熟练掌握全等三角形的对应角和对应边相等是解题关键.23.(1)(2)25°(3)【分析】(1)先根据三角形内角和定理可计算出∠BAC=180°-∠B-∠C=60°,再利用角平分线定义得∠CAE=∠BAC=30°,接着由AD ⊥BC 得∠ADC=9殊到一般,(3)中的结论为一般性结论. 24.(1)A 品牌服装每套进价是100元,B 品牌服装每套进价是75元(2)最少购进A 品牌服装40套【分析】(1)设A 品牌服装每套x 元,则B 品牌服装每袋进价为(x ﹣25)元,由题意:用4000元购进准等量关系,正确列出分式方程;(2)找出数量关系,正确列出一元一次不等式. 25.(1);(2)【详解】试题分析:(1)根据图所示,可以得到长方形长为2a ,宽为a+b ,面积为:2a (a+b ),或四个小长方形和正方形面积之和;(2)①根据题意,可以画出相应的图形然后完成因式解析:(1)2222()a ab a a b +=+;(2)()()22232a ab b a b a b ++=++【详解】试题分析:(1)根据图所示,可以得到长方形长为2a ,宽为a+b ,面积为:2a (a+b ),或四个小长方形和正方形面积之和;(2)①根据题意,可以画出相应的图形然后完成因式分解.试题解析:(1)()2222a ab a a b +=+(2)①根据题意,可以画出相应的图形,如图所示②因式分解为:()()22232a ab b a b a b ++=++26.(1)120;(2)相等,理由见解析;(3)AO=2OG .理由见解析【分析】(1)证明△EAB ≌△DBC (SAS ),可得结论.(2)结论:AF=BO ,证明△FCA ≌△OCB (SAS ),可得结 解析:(1)120;(2)相等,理由见解析;(3)AO =2OG .理由见解析【分析】(1)证明△EAB ≌△DBC (SAS ),可得结论.(2)结论:AF =BO ,证明△FCA ≌△OCB (SAS ),可得结论.(3)证明△AFO ≌△OBR (SAS ),推出OA =OR ,可得结论.【详解】解:(1)如图①中,∵△ABC 是等边三角形,∴AB =BC ,∠A =∠CBD =60°,在△EAB 和△DBC 中,AE BD A CBD AB BC =⎧⎪∠=∠⎨⎪=⎩, ∴△EAB ≌△DBC (SAS ),∴∠ABE =∠BCD ,∴∠BOD =∠BCD +∠CBE =∠ABE +∠CBE =∠CBA =60°,∴∠BOC =180°-60°=120°.故答案为:120.(2)相等.理由:如图②中,∵△FCO ,△ACB 都是等边三角形,∴CF =CO ,CA =CB ,∠FCO =∠ACB =60°,∴∠FCA =∠OCB ,在△FCA 和△OCB 中,CF CO FCA OCB CA CB =⎧⎪∠=∠⎨⎪=⎩, ∴△FCA ≌△OCB (SAS ),∴AF =BO .(3)如图③中,结论:AO =2OG .理由:延长OG 到R ,使得GR =GO ,连接CR ,BR .在△CGO 和△BGR 中,GC GB CGO BGR GO GR =⎧⎪∠=∠⎨⎪=⎩, ∴△CGO ≌△BGR (SAS ),∴CO =BR =OF ,∠GCO =∠GBR ,AF =BO ,∴CO ∥BR ,∵△FCA ≌△OCB ,∴∠AFC =∠BOC =120°,∵∠CFO =∠COF =60°,∴∠AFO =∠COF =60°,∴AF ∥CO ,∴AF ∥BR ,∴∠AFO =∠RBO ,在△AFO 和△OBR 中,AF OB AFO RBO FO BR =⎧⎪∠=∠⎨⎪=⎩, ∴△AFO ≌△OBR (SAS ),∴OA =OR ,∵OR =2OG ,∴OA =2OG .【点睛】本题属于三角形综合题,考查了等边三角形的判定和性质,全等三角形的判定和性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.27.(1)36;(2)证明见解析;(3)3,理由见解析.【分析】(1)根据直线与坐标轴的交点易得A,C 的坐标,从而得出AC=12,OB=6,根据三角形面积公式可求解;(2) 过E 作EF ⊥x 轴于点解析:(1)36;(2)证明见解析;(3)3,理由见解析.【分析】(1)根据直线与坐标轴的交点易得A,C 的坐标,从而得出AC=12,OB=6,根据三角形面积公式可求解;(2) 过E 作EF ⊥x 轴于点F ,延长EA 交y 轴于点H ,证△DEF ≌△BDO ,得出EF =OD =AF ,有EAF OAH OAB 45∠∠∠===︒,得出∠BAE =90°.(3)由已知条件可在线段OA 上任取一点N,再在AE 作关于OF 的对称点N ',当点N 运动时,´ON 最短为点O 到直线AE 的距离.再由OAE 30∠=︒,在直角三角形AO N '中,OM ON O N +='即可得解.【详解】解:(1)由已知条件得:AC=12,OB=6∴1126362ABC S =⨯⨯= (2)过E 作EF ⊥x 轴于点F ,延长EA 交y 轴于点H,∵△BDE 是等腰直角三角形,∴DE=DB, ∠BDE=90°,∴EDF BDO 90∠∠+=︒∵BOD 90∠=︒∴BDO DBO 90∠∠+=︒∴EDF DBO ∠∠=∵EF x ⊥轴,∴DEF BDO ≅∴DF=BO=AO,EF=OD∴AF=EF∴EAF OAH OAB 45∠∠∠===︒∴∠BAE =90°(3)由已知条件可在线段OA 上任取一点N,再在AE 作关于OF 的对称点N ',当点N 运动时,´ON 最短为点O 到直线AE 的距离,即点O 到直线AE 的垂线段的长,∵OAE 30∠=︒,OA=6,∴OM+ON=3【点睛】本题考查的知识点主要是直角三角形的性质及应用,轴对称在最短路径问题中的应用,弄懂题意,作出合理的辅助线是解题的关键.。

(五四制)哈尔滨道里区2010~2011学年度八年级(上)期末调研测试数学试卷

(五四制)哈尔滨道里区2010~2011学年度八年级(上)期末调研测试数学试卷

哈尔滨道里区2010~2011学年度八年级(上)期末调研测试数学试卷一.选择题(每题3分,共30分)1.下图中的轴对称图形有( )A.(1),(2)B.(1),(4)C.(2),(3)D.(3),(4)2.点P(4,5)关于x 轴对称点的坐标是( )A.(-4,-5)B.(-4,5)C.(4,-5)D.(5,4)3.下列函数中为正比例函数的是( ) A.4x y = B. 4y x= C.y=5x-3 D.y=6x 2-2x-1 4.在1x 、12、212x +、3xy π、3x y+中,分式的个数是( ) A.2 B.3 C.4 D.55.下列运算中正确的是( )A.3x 2+2x 3=5x 5B.x 3·x 3=x 6C.(x 2)3=x 5D.(x 2+y 2)2=x 2+y 46.如果把分式232x x y-中的x,y 都扩大3倍,那么分式的值( ) A.扩大3倍 B.缩小3倍 C.扩大2倍 D.不变7.已知等腰三角形的两条边长分别为2和5,则它的周长为( )A.5B.9C.12D.9或128.一辆汽车,开始匀速行驶,但中途汽车出了故障,只好停车修理,修好后,为了把耽误的时间补回来,因此比修车前加快了速度继续匀速行驶,下面是行驶路程S(米)关于时间t(分)的函数图象,那么符合这辆汽车行驶情况的图象是( )A B C D9.如图,在△ABC 中,AB=AC,DE 是AC 的垂直平分线,AB=8,BC=4,则△BDC 的周长是( )A.10B.12C.14D.1610.一次函数y 1=kx+b 与y 2=x+a 的图象如图,则下列结论①k <0;②a >0;③b >0;④当x <3时,y 1<y 2中,正确的个数是( )A.0B.1C.2D.3二.填空题(每题3分,共30分)11.分式1x +有意义,则x 的取值范围是 . 第8题图 第10题图12.计算:-4x 2·(3x -1)= .13.1纳米0.0000000001米,29纳米用科学记数法表示为 米.14.分解因式:3ax 2-3ay 2= .15.已知点(-4,y 1),(2,y 2)都在直线122y x =-+上,则y 1、y 2的大小关系是 . 16.若4x 2+mx +9是一个完全平方式,则m= .17.如图,四边形ABCD 沿直线l 对折后,点B 与D 互相重合,O 为AC 和BD 的交点.如果AD ∥BC,有下列结论:①AB ∥CD;②AB=CD;③AB ⊥BC;④AO=OC.其中正确的结论是 .(把你认为正确的序号都填上.18.如图,已知点P 在∠AOB 内,点M 、D 分别是点P 关于直线AO 、BO 的对称点,M 、D 的连线与OA 、OB 将于E 、F,若△PEF 的周长是29㎝,则线段MD 的长是 ㎝.19.观察下列图形:它们是按一定规律排列的,依照此规律,第9个图形中共有 ★.20.在△ABC 中, ∠B=30°,∠C=50°,D 为BC 边上一点,点F 是射线BA 上一点,DF 与射线CA 相交于点E,点G 是EF 的中点,∠DEC=∠C,则∠CAG= .三.解答题(本题共60分)21.(本题6分) 先化简代数式232224x x x x x x ⎛⎫-÷ ⎪-+-⎝⎭,然后请你选择一个适当的x 的值,并求此时代数式的值. 22. (本题6分)已知△ABC 在平面直角坐标系中的位置如图.(1)把△ABC 向右平移4个单位得△A 1B 1C 1,画出△A 1B 1C 1的图形;(2)画出△A 2B 2C 2,使△A 2B 2C 2与△ABC 关于y 轴对称;(3)写出C 1、C 2的坐标.23. (本题6分)如图,在△ABC 中,AB=AC,D 为BC 边上的一点,DE ⊥AB,DF ⊥AC,垂足为E 、F,请你添加一个条件,使DE=DF,并说明理由.解:需添加的条件是 .理由:第18题图第1个图 第2个图 第3个图 第4个图24. (本题6分)2010年9月,某校开展献爱心帮助贫困学生活动,该校学生积极捐款,已知六年级共捐款4800元,七年级共捐款6000元,七年级的人数比六年级人数多50人,且两个年级人均捐款数相等,那么这两个年级参加捐款的人数一共是多少?人均捐款多少元?25.(本题8分)如图,已知在△ABC中,∠ABC、∠ACB的角平分线相交于点D,过D作EF∥BC交AB于点E,交AC于点F,求证:BE+CF=EF.26.(本题8分)英华文具店的某种毛笔每支售价25元,书法练习本每本售价5元,该文具店为促销制定了两种优惠办法:甲种优惠办法:买一支毛笔就赠送一本书法练习本;乙种优惠办法:按购买金额打九折付款.实验中学要为校书法兴趣小组购买这种毛笔10支,书法练习本x(x≥10)本.(1)请写出用甲种优惠办法实际付款金额y甲(元)与x(本)之间的函数关系式;(2)请写出用乙种优惠办法实际付款金额y乙(元)与x(本)之间的函数关系式;(3)若购买同样多的书法练习本时,你会选择哪种优惠办法付款更省钱.27. (本题10分)已知在△ABC中,∠A=90°,AB=AC,D为BC的中点。

镇江市2010-2011学年八年级(上)期末数学试卷(含答案)

镇江市2010-2011学年八年级(上)期末数学试卷(含答案)

镇江市2010—2011学年度第一学期期末学情分析八 年 级 数 学 试 卷亲爱的同学:祝贺你完成了一学期的学习,现在是展示你学习成果的时候了,希望你能沉着应答,发挥出自己的最好水平.祝你成功!一、填空 (每题2分,共24分);2(= .2.A (3, -4)在第 象限,关于x 轴对称点的坐标是 . 3.已知y 4kx =-,当x =-2时,y =0,则k = ;y 随x 的增大而 . 4.在数据3,4,10,4,5,5,4,4,2中,众数是 ,中位数是 .5.如图,矩形ABCD 中,AE ⊥BD 于E ,AD=4cm,∠DAE =2∠BAE ,则∠DAE = o ;AE= cm . 6.如图,点E 在正方形ABCD 的边BC 的延长线上,如果BE=BD ,AB=1,那么∠E= ; CE= .(第5题图) (第6题图) (第7题图)7.如图,等腰梯形ABCD 中,AD ∥BC ,AD =5cm ,BC=11cm ,高DE=4cm ,该梯形的中位线长是 ;梯形的周长是 .8.已知一次函数(2)4y m x m =-++,当m = 时,它的图象与3y x =平行;当m= 时,它的图象过原点.9.在直角坐标系中,一次函数24y x =-+图象与x 轴交点为A,与y 轴的交点为B ,那么点B坐标为 ;△AOB 的面积为 .10.2010年上海世博会于10月31日结束,闭幕式上王岐山副总理宣布“在过去的184天里,大约有73080000名参观者参观了世博会.”将73080000用科学记数法表示为 (保留两个有效数字).CC EDECBA11.如图所示,两个全等菱形的边长为1厘米,一只蚂蚁由A 点开始按ABC D EFC G A 的顺序沿菱形的边循环运动,行走2010厘米后停下,则这只蚂蚁停在 点. 12.如图,矩形OBCD 的顶点C 的坐标为(1,3),则BD= .(第11题图)二、选择(每题2分,共20分)13.随着人们生活水平的不断提高,汽车越来越普及,在下面的汽车标志图形中,是中心对称图形但不是轴对称图形有……………………………………………………………( )(A ) (B )(C ) (D )14.下列各数中是无理数的是………………………………………………………………( )(A )32(B(C )(D )1π+15.下列一次函数中,y 随x 增大而增大的是……………………………………………( ) (A )y =x -2 (B )y =-3x(C )y =-2x +3(D )y =3-x16.一次函数y=2x+3的图象不经过的象限是 ……………………………………………( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限17.等腰三角形一个角等于50︒,则它的底角是…………………………………………( )(A )80︒(B )50︒(C )65︒(D )50︒或65︒18.如图,△AOB 中,∠B=25︒,将△AOB 绕点O 顺时针旋转 60︒,得到△A 'OB ',边A 'B '与边OB 交于点C (A '不在 OB 上),则∠A 'CO 的度数为……………………………………( )(A )85°(B )75°(C ) 95°(D )105°19.如图,把一个长方形纸片对折两次,然后剪下一个角.为了得到一个正方形,剪刀与折痕所成的角的度数应为………………………………………………………………………( )(A )60°(B )30°(C )45°(D )90°CAF DEBG(第18题图) (第19题图)20.下列说法中,正确的说法有……………………………………………………………( )①对角线相等的平行四边形是矩形;②等腰三角形中有两边长分别为3和2,则周长为8; ③依次连接等腰梯形各边中点所得的四边形是菱形; ④点P (3,-5)到x 轴的距离是3;⑤在数据1,3,3,0,2中,众数是3,中位数是3.(A )1个(B )2个(C )3个(D )4个21.如图,在ABC △中,点E D F ,,分别在边AB 、BC 、CA 上,且D E C A ∥,DF BA ∥.下列四个判断中,不正确...的是……………………………………………………………( ) (A )四边形AEDF 是平行四边形(B )如果90BAC ∠= ,那么四边形AEDF 是矩形 (C )如果AD 平分BAC ∠,那么四边形AEDF 是菱形 (D )如果AD BC ⊥且A B A C =,那么四边形AEDF 是正方形22.李明以每千克0.8元的价格从批发市场购进若干千克西瓜到市场销售,在销售了部分西瓜后,余下的每千克降价0.4元,全部售完,销售金额与卖瓜的千克数之间的关系如图所示,那么小李 赚了……………………………………………( )(A )32元 (B )36元 (C )38元(D )44元三、解答题:23.求各式中的实数x . (每小题4分,共8分)(1)2481x =; (2)3(10)27x +=-.ABOA 'B 'C)24.(6分)如图,A (-1,0),C (1,4),点B 在x 轴上,且(1)求点B 的坐标;(2)求△ABC 的面积.25.(8分)如图1,有一张菱形纸片ABCD ,8AC =,6BD =.(1)请沿着AC 剪一刀,把它分成两部分,把剪开的两部分拼成一个平行四边形,在图2中用实线画出你所拼成的平行四边 形;若沿着BD 剪开,请在图3中用实线画出拼成的平行四 边形;并直接写出这两个平行四边形的周长. (2)沿着一条直线剪开,拼成与上述两种都不全等的平行四边形,请在图4中用实线画出拼成的平行四边形.(注:图2、3、4中虚线所围成的图形就是原菱形纸片ABCD ;上述所画的平行四边形不限定在原菱形区域内,不能与原菱形全等).周长为 周长为DAC(图1)CCC(图2)(图3)(图4)26.(5分)已知:如图,四边形ABCD 是菱形,E 是BD 延长线上一点,F 是DB 延长线上一点,且DE=BF .请你以F 为一个端点,和图中已标明字母的某一点连成一条新的线段,猜想并证明它和图中已有的某一条线段相等(只须证明一组线段相等即可). (1)连结 ; (2)猜想: = ; (3)证明:27.(6分)如图,已知矩形ABCD 中,E 是AD 上的一点,F 是AB 上的一点,EF⊥EC,且EF=EC ,DE=4cm ,矩形ABCD 的周长为32cm ,求AE 的长.CAEDF28.(7分)某校七年级(1)班为了在王强和李军两同学中选班长,进行了一次“演讲”与“民主测评”活动,A、B、C、D、E五位老师作为评委对王强、李军的“演讲”打分;该班50名同学分别对王强和李军按“好”、“较好”、“一般”三个等级进行民主测评.统计结果如下图、表.计分规则:①“演讲”得分按“去掉一个最高分和一个最低分后计算平均分”;②“民主测评”分=“好”票数×2分+“较好”票数×1分+“一般”票数×0分;③综合分=“演讲”得分×40%+“民主测评”得分×60%.解答下列问题:(1)演讲得分,王强得分;李军得分;(2)民主测评得分,王强得分;李军得分;(3)以综合得分高的当选班长,王强和李军谁能当班长?为什么?29.(8分)如图,直线1l 过点A (0,4),点D (4,0),直线2l :112y x =+与x 轴交于点C ,两直线1l ,2l 相交于点B . (1)求直线1l 的函数关系式; (2)求点B 的坐标 (3)求△ABC 的面积.30.(8分)小聪和小明沿同一条路同时从学校出发到图书馆查阅资料,学校与图书馆的路程是4千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达图书馆,图中折线O-A-B-C和线段OD分别表示两人离学校的路程y(千米)与所经过的时间x(分钟)之间的函数关系,请根据图象回答下列问题:(1)小聪在图书馆查阅资料的时间为分钟,小聪返回学校的速度为千米/分钟.(2)请你求出小明离开学校的路程y(千米)与所经过的时间x(分钟)之间的函数关系;(3)当小聪与小明迎面相遇时,他们离学校的路程是多少千米?参考答案一、填空(每题2分)1、2;5;2、四;( 3, 4)3、-2、;减少4、4;45、60o ;26、67.5o1 7、8;26 8、5;-4 9、A (0,4);4 10、7.3×10711、C 12、二、选择13、B 14、D 15、A 16、D 17、D 18、A 19、C 20、B 21、D 22、B 三、23、(1)2819(2),(4)42x x ==±分分,写出1解给2分(2)解:x +10=-3(3分) x= -13 (4分)24、(1):B(2,0)或(-4,0)(4分,写出1点坐标给2分)(2):△ABC 的面积=13462⨯⨯=(6分) 25、解:(1)请沿着AC 剪一刀:画图1分,周长计算正确2分;请沿着BC 剪一刀:画图1分,周长计算正确2分;(2) 画图2分.26、解(1)连AF 或CF (1分) (2)AF=AE 或CF=AE (2分) (3)证明略(6分) 27.解:证出△AEF ≌△DCE (2分)AE=CD (3分)设AE=x cm 根据题意得:2(x+4+x )=32 (5分) x=6 (6分) AE 的长为6cm.28、(1)王强得 92 分;李军得 89 分; (2分,对一个得1分)(2)民主测评王强得 87 分; 李军得 92 分;(2分,对一个得1分)(3)王强综合分=92×40%+87×60%=89分(1分)李军综合分=89×40%+92×60%=90.8分(1分)∵90.8>89, ∴李军当班长. (1分)29、解:(1)设1l 的函数关系式为y=kx+b,根据题意得440b k b =⎧⎨+=⎩(2分)得k=-1,所以1l :4y x =-+(3分)F周长为22(备用图)(2)4112y x y x =-+⎧⎪⎨=+⎪⎩解之得22x y =⎧⎨=⎩(4分)所以B (2,2)(5分) (3)求出C (-2,0)(6分)S △ABC 的面积=S △ABD 的面积-S △BCD 的面积=116462622⨯⨯-⨯⨯=(8分)30.解:(1)15,154(2分) (2)由图像可知,y 是x 的正比例函数设所求函数的解析式为y kx =(0≠k )代入(45,4)得:k 454= 解得:454=k (3分) ∴y 与x 的函数关系式445y x =(045x ≤≤)(4分,不写取值范围不扣分)(3)由图像可知,小聪在3045x ≤≤的时段内,y 是x 的一次函数,设函数解析式为y m x n =+(0≠m ) 代入(30,4),(45,0)得:⎩⎨⎧=+=+045430n m n m (5分,列对一个给1分)解得:⎪⎩⎪⎨⎧=-=12154n m (6分) ∴41215y x =-+(3045x ≤≤) (3)令44121545x x -+=,解得1354x =(7分)当1354x =时,41353454y =⨯=(8分)答:当小聪与小明迎面相遇时,他们离学校的路程是3千米.。

2022-2023学年人教版八年级数学上册期末模拟试卷(含答案)

2022-2023学年人教版八年级数学上册期末模拟试卷(含答案)

2022-2023学年八年级(上)期末数学模拟试卷一、选择题(本大题共12小题,每小题3分,共36分。

在每小题所给的四个选项中,有且只有一项是符合题目要求的)1.(3分)下列体育运动图标中,是轴对称图形的是()A.B.C.D.2.(3分)如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这种做法的根据是()A.三角形的稳定性B.长方形的对称性C.长方形的四个角都是直角D.两点之间线段最短3.(3分)光刻机采用类似照片冲印的技术,把掩膜版上的精细图形通过光线的曝光印制到硅片上,是制造芯片的核心装备.ArF准分子激光是光刻机常用光源之一,其波长为0.000000193米,该光源波长用科学记数法表示为()A.193×106米B.193×10﹣9米C.1.93×10﹣7米D.1.93×10﹣9米4.(3分)如图,用直尺和圆规作一个三角形O1A1B1,使得△O1A1B1≌△OAB的示意图,依据()定理可以判定两个三角形全等.A.SSS B.SAS C.ASA D.AAS5.(3分)下列由左边到右边的变形中,是因式分解的为()A.10x2y3=5xy2•2xy B.m2﹣n2=(m+n)(m﹣n)C.3m(R+r)=3mR+3mr D.x2﹣x﹣5=(x+2)(x﹣3)+16.(3分)已知一个正多边形的每个外角的度数都是60°,则该多边形的对角线条数为()A.6B.9C.12D.187.(3分)如图,AE,BE,CE分别平分∠BAC,∠ABC,∠ACB,ED⊥BC于点D,ED=3,△ABC的周长为24,则△ABC的面积为()A.18B.24C.36D.728.(3分)随着快递业务的增加,某快递公司为快递员更换了快捷的交通工具,公司投递快件的能力由每周3000件提高到4200件,平均每人每周比原来多投递80件,若快递公司的快递员人数不变,求原来平均每人每周投递快件多少件?设原来平均每人每周投递快件x件,根据题意可列方程为()A.=B.+80=C.=﹣80D.=9.(3分)如图,点D为△ABC的边BC上一点,且满足AD=DC,作BE⊥AD于点E,若∠BAC=70°,∠C=40°,AB=6,则BE的长为()A.2B.3C.4D.510.(3分)下列说法:①三角形中至少有一个内角不小于60°;②三角形的重心是三角形三条中线的交点;③周长相等的两个圆是全等图形;④到三角形的三条边距离相等的点是三角形三条高的交点.其中正确说法的个数是()A.1B.2C.3D.411.(3分)如图,由4个全等的小长方形与1个小正方形密铺成正方形图案,该图案的面积为49,小正方形的面积为4,若分别用x ,y (x >y )表示小长方形的长和宽,则下列关系式中不正确的是( )A .x 2+2xy +y 2=49B .x 2﹣2xy +y 2=4C .x 2+y 2=25D .x 2﹣y 2=1412.(3分)如图,已知∠ABC =120°,BD 平分∠ABC ,∠DAC =60°,若AB =2,BC =3,则BD 的长是( )A .5B .7C .8D .9二、填空题(本大题共4小题,每小题4分,共16分) 13.(4分)当x=时,分式的值为0.14.(4分)已知点P (4,2a ﹣3)关于x 轴对称的点在第一象限,则a 的取值范围是 . 15.(4分)已知a =+2021,b =+2022,c =+2023,则代数式2(a 2+b 2+c 2﹣ab ﹣bc ﹣ac )的值为 .16.(4分)如图,△ABC 中,BF 是高,延长CB 至点D ,使BD =BA ,连接AD ,过点D 作DE ⊥AB 交AB 的延长线于点E ,当AF =BE ,∠CAD =96°时,∠C = .三、解答题(本大题共9小题,共98分。

浙教版2022-2023学年八年级上学期期末数学模拟测试卷(五)(解析版)

浙教版2022-2023学年八年级上学期期末数学模拟测试卷(五)(解析版)

浙教版2022-2023学年八年级上学期期末数学模拟测试卷(五)(解析版)一、选择题(本大题有10小题,每小题3分,共30分) 下面每小题给出的四个选项中,只有一个是正确的.1.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )A .B .C .D .【答案】A【解析】由轴对称图形的性质可知:A 选项符合题意,B 、C 、D 都不是轴对称图形; 故答案为:A .2.下列结论中,正确的是( ) A .若a >b ,则1a <1bB .若a >b ,则a 2>b 2C .若a >b ,则1﹣a <1﹣bD .若a >b ,ac 2>bc 2 【答案】C【解析】A 、当a >0>b 时,1a <1b,故本选项错误;B 、当a >0,b <0,a <|b|时,a 2<b 2,故本选项错误;C 、∵a >b ,∴﹣a <﹣b ,∴1﹣a <1﹣b ,故本选项正确;D 、当c=0时,虽然a >b ,但是ac 2=bc 2,故本选项错误. 故选C .3.下列命题中,逆命题错误的是( ) A .两直线平行,同旁内角互补 B .对顶角相等C .直角三角形的两个锐角互余D .直角三角形两条直角边的平方和等于斜边的平方 【答案】B【解析】A 、逆命题是:同旁内角互补,两直线平行,符合题意,故本选项不符合题意; B 、逆命题是相等的角是对顶角,为假命题,故本选项符合题意;C 、逆命题是:若一个三角形两锐角互余,则为直角三角形,符合题意,故本选项不符合题意;D 、逆命题是:若一个三角形两条直角边的平方和等于斜边的平方则为直角三角形,符合题意,故本选项不符合题意. 故答案为:B .4.若点A(2,m)在一次函数y =2x −7的图象上,则点A 到x 轴的距离是( ) A .2 B .−2 C .3 D .−3 【答案】C【解析】∵点A(2,m)在一次函数y =2x −7的图象上,∴A(2,m)满足一次函数的解析式y =2x −7, ∴m =2×2−7=−3,∴点A 到x 轴的距离是|−3|=3. 故答案为:C.5.如图,∠AOB =40°,OC 平分∠AOB ,直尺与OC 垂直,则∠1等于( )A .60°B .70°C .50°D .40°【答案】B 【解析】∵OC 平分∠AOB ,∠AOB=40°,OC ⊥DE , ∴∠AOC=20°,∠ODE=90°, ∴∠3=70°,∵直尺的对边是相互平行, ∴∠2=∠3=70°,∴∠1=∠2=70°. 故答案为:B.6.如图,在Rt △ABC 中,∠C =90°,D 为AC 上一点.若DA =DB =15,△ABD 的面积为90,则AC 的长是( )A .9B .12C .3√14D .24【答案】D【解析】∵△ABD 的面积为90,∠C =90° ∴12AD ·BC =90 ∴BC =90×2AD=12在Rt △ABC 中,CD =√BD 2−BC 2=√152−122=9 ∴AC =AD +CD =24 故答案为:D .7.如图,△ABC 中,AB =AC ,△DEF 为等边三角形,则α、β、γ之间的关系为()A .β=α+γ2B .α=β+γ2C .β=α−γ2D .α=β−γ2【答案】B【解析】∵AB =AC∴∠B =∠C∵△DEF 为等边三角形∴∠DEF =∠EFD =∠EDF =60°∵∠B =∠DEC −∠BDE =∠DEF +∠CEF −∠BDE ,∠C =∠BEF −∠γ=∠α+∠DEF −∠γ∴∠CEF −∠BDE =∠α−∠γ∵∠β+∠EDF +∠BDE =180°,∠α+∠DEF +∠FEC =180°∴∠CEF −∠BDE =∠β−∠α ∴∠α−∠γ=∠β−∠α ∴2∠α=∠β+∠γ∴α=β+γ2故答案为:B8.一次函数 y 1=ax +b 与 y 2=bx +a ,它们在同一坐标系中的大致图象是( )A .B .C .D .【答案】D【解析】A 、由y 1的图象可知,a <0,b >0;由y 2的图象可知,a >0,b >0,两结论相矛盾,故错误; B 、由y 1的图象可知,a <0,b >0;由y 2的图象可知,a =0,b <0,两结论相矛盾,故错误; C 、由y 1的图象可知,a >0,b >0;由y 2的图象可知,a <0,b <0,两结论相矛盾,故错误; D 、由y 1的图象可知,a >0,b <0;由y 2的图象可知,a >0,b <0,正确. 故答案为:D.9.如图,边长为5的大正方形ABCD 是由四个全等的直角三角形和一个小正方形EFGH 组成,连结AF 并延长交CD 于点M.若AH =GH ,则CM 的长为( )A .12B .34C .1D .54【答案】D【解析】过点M 作MN ⊥FC 于点N ,设FA 与GH 交与点K ,如图,∵四边形EFGH 是正方形,∴HE =HG =GF =EF ,AH ∥GF , ∵AH =GH ,∴AH =HE =GF =EF.由题意得:Rt △ABE ≌Rt △BCF ≌Rt △ADH ≌Rt △CDG , ∴BE =CF =AH =DG ,∠BAE =∠DCG. ∴BE =EF =GF =FC. ∵AE ⊥BF , ∴AB =AF ,∴∠BAE =∠FAE , ∴∠DCG =∠FAE , ∵AH ∥GF ,∴∠FAE =∠GFK. ∵∠GFK =∠CFM , ∴∠CFM =∠DCG , ∴MF =MC ,设MF =MC=x ,AD=AF=5,AM=5+x ,DM=5-x 在Rt △ADM 中,AD 2+DM 2=AM 2 52+(5-x )2=(5+x )2 解得x=54∴CM = 54.故答案为:D.10.在Rt △ABC 中,AC=BC ,点D 为AB 中点.∠GDH=90°,∠GDH 绕点D 旋转,DG 、DH 分别与边AC 、BC 交于E ,F 两点.下列结论:①AE+BF=√22AB ;②△DEF 始终为等腰直角三角形;③S 四边形CEDF =18AB 2;④AE 2+CE 2=2DF 2.其中正确的是( )A .①②③④B .①②③C .①④D .②③【答案】A【解析】如图所示,连接CD ,∵AC =BC ,点D 为AB 中点,∠ACB =90°,∴AD =CD =BD =12AB ,∠A =∠B =∠ACD =∠BCD =45°,∠ADC =∠BDC =90°,∴∠ADE +∠EDC =90°,∵∠EDC +∠FDC =∠GDH =90°, ∴∠ADE =CDF .在△ADE 和△CDF 中,∠A =∠DCF ,AD =CD ,∠ADE =∠CDF , ∴△ADE ≌△CDF (ASA ),∴AE =CF ,DE =DF ,S △ADE =S △CDF . ∵AC =BC ,∴AC−AE =BC−CF , ∴CE =BF .∵AC =AE +CE , ∴AC =AE +BF .∵AC 2+BC 2=AB 2,AC =BC ,∴AC = √22AB∴ AE+BF=√22AB ,故①正确;∵DE=DF ,∠GDH=90°,∴△DEF 始终为等腰直角三角形,故②正确; ∵S 四边形CEDF =S △EDC +S △CDF ,∴S 四边形CEDF =S △EDC +S △ADE =12S △ABC ,又∵S △ABC =12AC 2=12(√22AB )2=14AB 2∴S 四边形CEDF =12S △ABC =12×14AB 2=18AB 2,故③正确;∵CE 2+CF 2=EF 2,DE 2+DF 2=EF 2, ∴CE 2+AE 2=EF 2=DE 2+DF 2, 又∵DE =DF ,∴AE 2+CE 2=2DF 2,故④正确;∴正确的有①②③④. 故答案为:A.二、填空题(本大题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.若点P (m+3,m+1)在x 轴上,则点P 的坐标为 . 【答案】(2,0)【解析】∵点P (m+3,m+1)在x 轴上, ∴m+1=0, 解得m=﹣1,∴m+3=﹣1+3=2,∴点P 的坐标为(2,0). 故答案为:(2,0).12.一次函数y=(m+4)x+m+2的图象不经过第二象限,则整数m = 【答案】-3或-2.【解析】因为一次函数图象不经过第二象限,所以 k >0,b ≤0 ,即 m +4>0,m +2≤0 , 解得: −4<m ≤−2 ,因为m 是整数,所以 m =−3或−2 ,故答案为: −3或−2 .13.如图,AB =AC ,点D 是△ABC 内一点,∠D =110°,∠1=∠2,则∠A = °.【答案】40【解析】∵∠D =110°,∠1=∠2, ∴∠D =180°−∠1−∠DCB =110°, ∴∠1+∠DCB =70°, ∵AB =AC ,∴∠ABC =∠ACB , ∴∠ABD =∠BCD , ∵∠1+∠DCB =70°, ∵∠1=∠2,∴∠ACB =∠2+∠DCB =70°, ∴∠ABC +∠ACB =140°, ∴∠A =180°−140°=40°, 故答案为:40.14.如图,在长方形ABCD 中,AB =3,BC =5,在CD 上取一点E ,连结BE.将△BCE 沿BE 折叠, 使点C 恰好落在AD 边上的点F 处,则CE 的长为 .【答案】53【解析】设CE=x, 则DE=3-x, ∵EF=EC=x, ∵BF=BC=5, 在Rt △BAF 中, AF=√BF 2−AB 2=4, ∴FD=AD-AF=5-4=1, 在Rt △FDE 中,∵EF 2=DE 2+DF 2, ∴x 2=(3-x)2+1, 解得x=53.故答案为:53.15.如图,已知∠A =∠B =90°,AB =6,E ,F 分别是线段AB 和射线BD 上的动点,且BF =2BE ,点G 在射线AC 上,连接EG ,若△AEG 与△BEF 全等,则线段AG 的长为 .【答案】2或6 【解析】①如图:当△GAE ≌△EBF 时:AG=BE ,AE=BF ∵BF =2BE , ∴AE =2BE ,∵AB =AE +BE =3BE =6, ∴BE =2,∴AG =BE =2;②当△GAE ≌△FBE 时,AE=BE ,AG=BF∵AB =AE +BE =2BE =6, ∴BE =3, ∵BF =2BE , ∴AG =2BE =6; 故答案为:2或6.16.如图,△ABC 为等边三角形,点E 在BA 的延长线上,点D 在BC 边上,且ED=EC .若△ABC 的边长为4,AE=2,则BD 的长为 .【答案】2【解析】延长BC 至F 点,使得CF=AE , 由题意可得:△BEF 为正三角形 ∴∠B=∠EFC ,BE=EF ∵ED=EC ,∴∠EDC=∠ECD , ∴∠EDB=∠ECF ,∴△EBD ≌△EFC (AAS ), ∴BD=CF=2, 故答案为:2.三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)解答应写出文字说明,证明过程或推演步骤.17.在平面直角坐标系中,点 A 、 B 的坐标是 (2a −5, a +1) , B(b −1, 3−b) . (1)若点 A 与点 B 关于 x 轴对称,求点 A 的坐标; (2)若 A , B 关于 y 轴对称,求 (4a +b)2 的值. 【答案】(1)解:由题意得, {2a −5=b −1,a +1+3−b =0,解得 {a =8,b =12,∴2a −5=11 , a +1=9 . ∴点 A 的坐标为 (11, 9) .(2)解:由题意得, {2a −5+b −1=0,a +1=3−b ,解得 {a =4,b =−2,∴4a +b =14 , (4a +b)2=196 18.如图,在Rt △ABC 中,∠C=90°.(1)作∠BAC 的平分线AD 交边BC 于点D.(尺规作图,保留作图痕迹,不写作法). (2)在(1)的条件下,若∠BAC=28°,求∠ADB 的度数. 【答案】(1)解:以A 为圆心,以任意长为半径画弧,分别交AC ,AB 于M 、N ,再分别以M 、N 为圆心,以大于MN 长的一半为半径画弧,两者交于点P ,连接AP 并延长与BC 交于D ,即为所求;(2)∵∠C=90°,∠BAC=28°,∴∠B=180°-∠C-∠BAC=62°,∵AD 平分∠BAC ,∴∠BAD =12∠BAC =14∘ ,∴∠ADB=180°-∠BAD-∠B=104°. 19.如图,AB =DC ,AC =DB ,AC 和BD 相交于点O.(1)求证:△ABC ≌△DCB ; (2)求证:∠ABD =∠DCA. 【答案】(1)证明:在△ABC 和△DCB 中, {AB =DC AC =BD BC =CB, ∴△ABC ≌△DCB (SSS )(2)证明:∵△ABC ≌△DCB ,∴∠ABC =∠DCB ,∠ACB =∠DBC , ∴∠ABD =∠DCA20.某水产品市场管理部门规划建造面积为2400m 2的集贸大棚,大棚内设A 种类型和B 种类型的店面共80间,每间A 种类型的店面的平均面积为28m 2,月租费为400元,每间B 种类型的店面的平均面积为20m 2,月租费为360元,全部店面的建造面积不低于大棚总面积的80%,又不能超过大棚总面积的85%.(1)试确定A 种类型店面的数量范围;(2)该大棚管理部门通过了解业主的租赁意向得知,A 种类型店面的出租率为75%,B 种类型店面的出租率为90%.为使店面的月租费最高,应建造A 种类型的店面多少间? 【答案】(1)解:设A 种类型店面的数量为x 间,则:B 种类型店面的数量为 (80−x) 间, 由题意得:2400×80%≤28x +20(80−x)≤2400×85% , 解得: 40≤x ≤55 ;∴A 种类型店面的数量范围为: 40≤ A 种类型店面的数量 ≤55 ; (2)解:设月租费为w ,由题意得: w =400×75%x +360(80−x)×90% , =−24x +25920 ; ∵k =−24<0 ,∴w 随着x 的增大而减小, ∵40≤x ≤55 ,∴当 x =40 时w 最大;∴应建造A 种类型的店面40间.21.如图,一次函数 y =2x +b 的图像经过点 M(1,3) ,且与 x 轴, y 轴分别交于 A,B 两点.(1)填空: b = ;(2)将该直线绕点 A 顺时针旋转 45∘ 至直线 l ,过点 B 作 BC ⊥AB 交直线 l 于点 C ,求点 C 的坐标及直线 l 的函数表达式. 【答案】(1)1(2)由(1)可知,直线AB的解析式为:y=2x+1,令x=0,则y=1,令y=0,则x=−1 2,∴点A为(−12,0),点B为(0,1),∴OA= 12,OB=1;由旋转的性质,得AB=BC,∵BC⊥AB∴∠ABC=90°,过点C作CD⊥y轴,垂足为D,如图:∵∠BDC=90°,∴∠CBD+∠BCD=∠CBD+∠ABD=90°,∴∠BCD=∠ABD,同理,∠CBD=∠BAO,∵AB=BC,∴△ABO≌△BCD,∴BD=AO= 12,CD=BO=1,∴OD= OB−BD=1−12=12,∴点C的坐标为(1,1 2);设直线l的表达式为y=mx+n,∵直线经过点A、C,则{m+n=12−12m+n=0,解得:{m=13n=16,∴直线l的表达式为y=13x+16.【解析】(1)根据题意,∵一次函数y=2x+b的图像经过点M(1,3),∴3=2×1+b,∴b=1,故答案为:1;22.如图,在△ABC中,BD、CE分别是边AC、AB上的高线.(1)如果BD=CE,那么△ABC是等腰三角形,请说明理由;(2)取F为BC中点,连接点D,E,F得到△DEF,G是ED中点,求证:FG⊥DE;(3)在(2)的条件下,如果∠A=60°,BC=16,求FG的长度.【答案】(1)证明:在△ABC中,BD、CE分别是边AC、AB上的高线,∴∠BDC=∠CEB=90°,在△BCD和△CBE中,{BD=CEBC=CB,∴Rt△BCD≌Rt△CBE(HL),∴∠BCD=∠CBE,∴AB=AC;∴△ABC是等腰三角形.(2)证明:在△ABC中,BD、CE分别是边AC、AB上的高线,∴∠BDC=∠CEB=90°,∵F是BC的中点,∴EF=DF=BF=CF=12BC,∴△DEF为等腰三角形,∵G是ED中点,∴FG⊥DE;(3)解:∵EF=DF=BF=CF=12BC∴∠BEF=∠ABC,∠CDF=∠ACB,∵∠A=60°,∴∠ABC+∠ACB=120°,∴∠BFE+∠CFD=180°−2∠ABC+180°−2∠ACB=360°−2(∠ABC+∠ACB) =120°’∴∠EFD=60°,∴△DEF是等边三角形;∴∠GFD=30°,∵DF=12BC=8,∴DG=12DF=4,∴FG=√DF2−DG2=√82−42=4√3.23.如图1,△ABC和△DEC均为等腰直角三角形,∠ACB=∠DCE=90°,点B,D在同一直线上,连接AD,BD.(1)求证:△ACD≌△BCE;(2)探求AD与BE的数量和位置关系(3)若AC=√10,EC=√2求线段AD的长.【答案】(1)证明:∵△ABC和△DEC均为等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,CE=CD,∴∠ACD=∠BCE,∴△ACD ≌△BCE (SAS ),(2)解:AD=BE ,AD ⊥BE ,理由如下:∵△ABC 和△DEC 均为等腰直角三角形,∠DEC =45°=∠CDE ,∵△ACD ≌△BCE (SAS ),∴∠ADC =∠BEC =45°,AD=BE ,∴∠ADE =∠ADC +∠CDE =90°,∴AD ⊥BD .(3)解:如图:过C 作CF ⊥DE 于F ,在等腰直角△CDE 中, EC=√2,∴DE=√CD 2+CE 2=√(√2)2+(√2)2=2又∵CF ⊥DE ,∴CF= EF=12DE=1, ∴BF= √BC 2−CF 2 =3,∴AD=BE=BF+EF=3+1=424.在平面直角坐标系中,直线l 分别于x 轴,y 轴的正半轴交于A ,B 两点,OC 平分∠AOB ,交AB 于点D ,点M 是直线l 上一动点,过M 作OC 的垂线,交x 轴于E ,交y 轴于F ,垂足为H ,设∠OAB =α°,∠OBA =β°,且α2−4αβ+4β2=0.(1)直接写出α,β的值,α= ,β=(2)若M 与A 重合(如图2),求证AD =BF ;(3)①若M 是线段AB 上任意一点(如图3),则AE ,BF ,AD 之间有怎样的数量关系,说明理由. ②若M 不在线段AB 上时,求出AE ,BF ,AD 之间的数量关系。

上学期期末模拟考试八年级数学试卷

上学期期末模拟考试八年级数学试卷

上学期期末模拟考试八年级数学试卷本试卷满分:120分 考试用时:120分钟 编辑人:袁几昌11.10祝考试顺利!一、选一选, 比比谁细心(本大题共12小题, 每小题3分, 共36分, 在每小题给出的四个选项中, 只有一项是符合题目要求的) 1、 计算9的结果是( )A.3B.±3C.-3D.92、函数 y =21-x 的自变量x 的取值范围是( )A.x >-2 B.x <2 C.x ≠2 D.x ≠-23、下列不是一次函数的是( ) (A)y=x1+x (B)y=21(x -1) (C)y=πx-1 (D)y=x +π24、 下面哪个点不在函数y=-2x+3的图象上( ) A .(-5,13) B .(0.5,2) C .(3,0) D .(1,1)5、点(4,5)关于x=1的对称点的坐标是( ) A .(-4,5) B .(4,-5) C .(-2,5) D .(5,5)6、如图,六边形ABCDEF 是轴对称图形,CF 所在的直线是它的对称轴,若∠AFC+∠BCF=150°,则∠AFE+∠BCD 的大小是( ). A.150° B.300° C.210° D.330°.7、在△ABC 和△A'B'C'中,已知∠A=∠A',AB=A'B',在下面判断中错误的是( ) A.若添加条件AC=A'C',则△ABC ≌△A'B'C' B.若添加条件BC=B'C',则△ABC ≌△A'B'C' C.若添加条件∠B=∠B',则△ABC ≌△A'B'C' D.若添加条件∠C=∠C',则△ABC ≌△A'B'C'8、下列各式由左边到右边的变形中,是因式分解的为( )A .a (x +y )=ax +ayB .x 2-4x +4=x (x -4)+4 C .10x 2-5x =5x (2x -1) D .x 2-16+3x =(x +4)(x -4)+3x9、无论m 为何实数,直线m x y 2+=与4+-=x y 的交点不可能在( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

AB CFE2011年八年级(上)期末数学模拟试卷(五)一、选择题(共10小题,每小题3分,共30分)温馨提示:每题的四个选项中只有一个是正确的,请将正确的选项选出来。

1、关于正比例函数xy2-=,下列结论正确的是()A、图像必经过点(1-,2-) B、图像经过第一、三象限C、y随着x的增大而减小D、不论x取何值,总有0>y2.如图1,AB∥CD,AD和BC相交于点O,∠A=25°,∠COD=100°,则∠C=()A、55°B、65°C、75°D、80°图1 图2 图33. 三个连续正整数的和小于18,这样的数组是()A、6组B、5组C、4组D、3组4. 已知△ABC,AB=5,BC=AC=5,则这个三角形是()A、等腰三角形B、直角三角形C、等腰直角三角形D、等边三角形5、在x轴上的点P到y轴的距离为3,则点P的坐标为().A、(3,0)B、(0,3)或(0,-3)C、(0,3)D、(3,0)或(-3,0)6.如图2,已知△ABC中,AB=AC,AD=AE,∠BAE=30°,则∠DEC等于()A、7.5°B、10°C、15°D、18°7.如图3,AD是△ABC中∠BAC的平分线,DE⊥AB交AB于点E,DF⊥AC交AC于点F.若S△ABC=7,DE=2,AB=4,则AC=()A、4B、3C、6D、58.如图4,△ABC内有一点D,且DA=DB=DC,若∠DAB=20︒,∠DAC=30︒,则∠BDC的大小是()A、100︒B、80︒C、70︒D、50︒9. 已知点E,F,A,B在直线l上,正方形EFGH从如图所AB CD图4x第14题示的位置出发,沿直线l 向右匀速运动,直到EH 与BC 重合.运动过程中正方形EFGH 与正方形ABCD 重合部分的面积S 随时间t 变化的图像大致是( )ABC D10.如图,图①是一块边长为1,周长记为P 1的正三角形纸板,沿图①的底边剪去一块边长为21的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉正三角形纸板边长的21)后,得图③、④,……,记第n (n ≥3) 块纸板的周长为P n ,则P n -P n -1 等于( ) A .121-n B .n213-C .1231--n D .212123--+n n二、填空题(共6小题,每小题4分,共24分)温馨提示:填空题的答案要求是最简洁,最正确的答案。

11.若y 关于x 的函数是y=(1-2m)x +1, 且y 随着x 的增大而减小,则m 的取值范围是 12.一个两位数,它的个位数比十位数大5,且这个两位数小于28,则这个两位数是13.如图,在△ABC 中,∠C=90°,AD 平分∠BAC ,BC=10㎝,BD=6㎝,则D 点到AB 的距离DE =_______cm . 14.如图所示的是函数y kx b =+与y mx n =+的图象,则方程组y kx by mx n=+⎧⎨=+⎩的解是 .15.如图,有一种动画程序,屏幕上正方形ABCD 是黑色区域(含正方形边界),其中(11)(21)(22)(12)A B C D ,,,,,,,,用信号枪沿直线b x y +-=3发射信号,当信号遇到黑色区域时,区域便由黑变白,则能SO够使黑色区域变白的b 的取值范围为 . 16.右图是由数字组成的三角形,除最顶端的1以外,以下出现的数字都按一定的规律排列.根据它的规律,则最下排数字中x 的值是______;y 的值是三、解答题(共8题,共66分)温馨提示:解答题在解答过程中必须要将必要的解答过程正确的表述出来。

17.(本题6分)解不等式(或组).(1) ()()132410-≤--x x (2) ⎪⎩⎪⎨⎧<---≥-213225223x x x x18. (6分)小明、王二两位同学对八年级10次数学单元自我检测的成绩(成绩均为整数,且个位数为0)统计分别如下图所示:(1)根据上图中提供的数据填写下表:(2______.测序号19、(本题6分)、做服装生意的王老板经营甲、乙两个店铺,每个店铺在同一段时间内都能售出A,B两种款式的服装合计30件,并且每售出一件A款式和B款式服装,甲店铺获毛利润分别为30元和40元,乙店铺获毛利润分别为27元和36元。

某日王老板进货A款式服装35件,B款式服装25件。

怎样分配给每个店铺各30件服装,使得在保证乙店铺获毛利润不小于950元的前提下,王老板获取的总毛利润最大?最大的总毛利润是多少?20、(本题8分)某市的A县和B县春季育苗,急需化肥分别为90吨和60吨,该市的C县和D县分别储存化肥100吨和50吨,全部调配给A县和B县,已知从C,D两县运化肥到A,B两县的运费(元/吨)如下表所示三、设C 县运到A 县的化肥为x 吨,求总运费W (元)与x (吨)的函数解析式,并写出自变量x 的取值范围四、求最低总运费,并说明总运费最低时的运送方案21、(本题8分)如图,在平面直角坐标系中,正方形OABC 的顶点为O (0,0),A (1,0),B (1,1),C (0,1).(1)判断直线123y x =-+与正方形OABC 是否 有交点,并说明理由.(2)现将直线123y x=-+进行平移后恰好能把正方形OABC分为面积相等的两部分,请求出平移后的直线解析式.22.(10分)如图,直线OC、BC的函数关系式分别是y1=x和y2=-2x+6,动点P(x,0)在OB上运动(0<x<3),过点P作直线m与x轴垂直.(1)求点C的坐标,并回答当x取何值时y1>y2?(2)设△COB中位于直线m左侧部分的面积为s,求出s与x之间函数关系式.(3)当x为何值时,直线m平分△COB的面积?23、(本题10分)已知:如图,D,E,F分别是△ABC各边上的点,且D E∥AC,DF∥AB。

延长FD至点G,使DG=FD,连结AG。

求证:ED和AG互相平分。

24. (本题12分)问题背景:在△ABC中,AB、BC、AC三边的长分别为5、10、13,求此三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图①所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.(1)请你将△ABC的面积直接填写在横线上:______________.思维拓展:(2)我们把上述求△ABC 面积的方法叫做构图法....如果△ABC 三边的长分别为5a 、22a 、17a (a >0),请利用图②的正方形网格(每个小正方形的边长为a )画出相应的△ABC ,并求出它的面积. 探索创新:(3)若△ABC 三边的长分别为m 2+16n 2、9m 2+4n 2、2m 2+n 2(m >0,n >0,且m ≠n ),试运用构图法...求出这三角形的面积.参考答案一、选择题二、填空题11.21m 12. 16或27 13. 4 14. x=3,y=4 15. 4≤x ≤8 16. 61, 256三、解答题图①图②第24题图ACB3:)1.(17≥x 不等式的解为原不等式组无解得解得解不等式∴-≥,1:)2(,3:)1()2( x x18. (6分)小明、王二两位同学对八年级10次数学单元自我检测的成绩(成绩均为整数,且个位数为0)统计分别如下图所示:(1)根据上图中提供的数据填写下表:(2______ .。

,,,B A ,A 。

W x ,x x x x x W x x x x ,B x A ,x B x A 元为获毛利润最大件款件款给乙店件款答王老板给甲店元时当结合上面的解可得总毛利润解得件款件款给乙店件款则件款式解设王老板给甲店最大1935255301935,301965)5(36)35(27)30(4030,9185,950)5(36)35(27)5()35()30(,19==+-=-+-+-+=≥≥-+----解用图示表示)1.(20测序号王二)9040(480010),40(45)90(40)100(3035≤≤+=∴-+-+-+=x x W x x x x W 。

A ,DB ,AC 。

W ,,A C 县吨全运到县的县吨运到县吨运到县方案为元最少费用吨时即为县最少时县运到当最少506040:520040)2(=)0,61(,31,10,1610,312)1(.21交点为边上相交直线与正方形在不相交边直线与时当边相交直线与时当直线解,OA ,CB x y ,A ,x y x y ∴-==∴==+-=232:41,21)212(21).0,212(122,12,21)1,(,2)2(+-=∴=∴=++∴+∴++-=∴+=∴+-=∴+-=x y m m m m F m x y m b b m m E b x ,y 的解析式为满足条件平移后的直线示设平移后的直线如图所21212),2,2(62,)1(22y y x C x y x y 时当所组成的方程组得解解+-==.3,2123,3)3(2时满足要求当=∴=∴=∆x S OCB{(2)解:S=)32(66)20(2122≤-+-≤x x x x x。

GOD AOE DF ,AE CDQAEP DQ ,EP ACAC ,C,EP D ,,:即可再证明获得即可证明可得作分别过证明∆≅∆=∆≅∆=⊥⊥.2324. (本题12分)问题背景:在△ABC 中,AB 、BC 、AC 三边的长分别为5、10、13,求此三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC (即△ABC 三个顶点都在小正方形的顶点处),如图①所示.这样不需求△ABC 的高,而借用网格就能计算出它的面积.(1)请你将△ABC 的面积直接填写在横线上:______________. 思维拓展:(2)我们把上述求△ABC 面积的方法叫做构图..22a 、17法..如果△ABC 三边的长分别为5a 、图① 图② 第24题图A CBP Q O 5.5a(a>0),请利用图②的正方形网格(每个小正方形的边长为a)画出相应的△ABC,并求出它的面积.探索创新:(3)若△ABC三边的长分别为m2+16n2、9m2+4n2、2m2+n2(m>0,n>0,且m≠n),试运用构图法...求出这三角形的面积.2322S=-=a5a8)2(a,)3(构建边长为,nm的网格12=2--=-2S5mnmnmnmnmn3。

相关文档
最新文档