第二章 初等模型
姜启源数学模型第五版第二章
分析与建模
甲的无差别曲线
如果甲占有(x1,y1)与占有
y
(x2,y2)具有同样的满意程度, y0
即p1, p2对甲是无差别的.
y1
将所有与p1, p2无差别的点 连接起来, 得到一条无差别 y2
曲线MN.
O
.M
M1
p1
p3(x3,y3)
. .p2
N1
N
x1
x2
x0 x
线上各点的满意度相同, 线的形状反映对X,Y的偏爱程度.
参数估计 • 根据测试数据对模型作拟合.
• 调查交通工程学的相关资料:
司机反应时间c1约为0.7~1s, 系数c2约为0.01( mh2/km2)
城市通行能力模型
道路通行能力~单位时间内通过某断面的最大车辆数. 通行能力表示道路的容量,交通流量表示道路的负荷. 饱和度~流量与通行能力的比值, 表示道路的负荷程度.
3个参数之间的基本关系 q vk
交通流的主要参数及基本规律 q vk
速度v 与密度k 的关系 车流密度加大 司机被迫减速
数据分析、机理分析 线性模型 v v f (1 k / k j )
vf ~畅行车速(k=0时) kj~阻塞密度(v=0时)
流量q与密度k 的关系 q v f k(1 k / k j )
Ta~内层玻璃的外侧温度
内
Ta Tb
室 外
Tb~外层玻璃的内侧温度
T1 d l d T2
k1~玻璃的热传导系数
Q1
k2~空气的热传导系数
墙
Q1
k1
T1
Ta d
k2
Ta
Tb l
k1
第2章初等模型精品PPT课件
Qk1T 1(12 k1 ldk k1 2 ldk )T 2d 1T2k1d2T 1k 1lT2k2d
室
f(h)
1
内
室
外
0.9
T1
T2
0.8
0.7
0.6
0.5
d
d 0.4
0.3 记h=l/d并令f(h)=
0.2
类似有
Q
k1
T1 T2 2d
Q
2
Q 2(k1l)/(k2d)
一般 k1 16 ~ 32 故 k2
O B(0,-b)
令:
θ2 护卫舰
可化为:
X
x2ya a2 2 1 1b2
4a2b2 (a21)2
ha21b,r 2ab a21 a21
则上式可简记成 :
x2(y-h)2r2
汇合点由p此必关位系于式此即圆可上求。出P点的坐标和
θ2 的值。
y(ta)nxb(航母的路线方程) 本模型虽简单,但分析极清晰且易
再一步深入考虑
还应考虑回声传回来所需要的时间。为此,令石块下落 的真正时间 为t1,声音传回 来的时间记 为t2,还得解一个方程组:
h
g k
( t1
1 k
e kt 1
)
g k2
h 340 t2
这一方程组是非线性 的,求解不太容易, 为了估算崖高竟要去 解一个非线性主程组 似乎不合情理
t1
最小二乘法 插值方法
最小二乘法
设经实际测量已得 到n组数据(xi , yi),i=1,…, n。将数据画在平面直角坐标系中,见 图。 如果建模者判断 这n个点很象是分布在某条直线附近,令 该直线方程 为y=ax+b,进而利 用数据来求参 数a和b。由于该直线只是数据近似满足的关系式,故 yi-(axi+b)=0一般不成 立,但我们希望
第二章:初等模型习题解答
1 题目:生物学家认为,对于休息状态的热血动物消耗的能量主要用于维持体温,能量与从心脏到全身的血流量成正比,而体温主要通过身体表面散失,建立一个动物体重与心率之间关系的模型,并用下面的数据加以检验。
解:动物消耗的能量P 主要用于维持体温,而体内热量通过表面积S 散失,记动物体重为ω,则3/2-∝∝ωS P 。
P α正比于血流量Q ,而qr Q =,其中q 是动物每次心跳泵出的血流量,r 为心率。
合理地假设q 与ω成正比,于是r P ω∝。
综上可得3/1-∝ωr ,或3/1-=ωk r 。
由所给数据估计得310897.20⨯=k ,将实际数据与模型结果比较如下表:2 题目:一垂钓俱乐部鼓励垂钓者将钓上来的鱼放生,打算按照放生的鱼的重量给予奖励,俱乐部只准备了一把软尺用于测量,请你设计按照测量的长度估计鱼的重量的方法。
假定鱼池中只有一种鲈鱼,并且得到8条鱼的如下数据(胸围指鱼身的最大周长):先用机理分析,再用数据确定参数。
问题分析本题为了知道鱼的重量,用估计法来通过估计鱼的长度而确定鱼的重量,这种方法只能针对同一种体形相似鱼,但是一般而言世界上没有两种完全相同的东西,所以对于同一种类的鱼也有可能肥瘦不一。
所以在此,我们应该先不妨假设同一种鱼它的整体形状是相似的,密度也大体上是相同的。
模型假设⑴设鱼的重量为;⑵语的身长记为;模型的构成与求解因为我们前面假设了鱼的整体形状是相似的,密度也相同,所以鱼的重量w 与身长l 的立方成正比,即,为这两者之间的比例系数。
即31v k w =,1k 为比例系数。
不过常钓得较肥的鱼的垂钓者不一定认可上面的模型,因为它对肥鱼和瘦鱼同等看待,如果只假定鱼的截面是相似的,则横截面积与鱼身最大周长的平方成正比,于是l d k w 22=,2k 为比例系数。
利用题中给的数据,估计模型中的系数可得:1k =0.0146,2k =0.0322,将实际数据与模型结果比较如下表:结果分析及评注通过上面的一系列分析,可见估计的两个模型基本上都能让垂钓者满意, 上表中我们可以看到,两个模型算得的结果与鱼的实际结果相差不大,所以,在同一种鱼整体形状相似的,密度也相同的情况下,用身体长度去估计它的体重和考虑鱼身的情况下估计鱼的体重都是可行的。
第二章初等模型
⑺
Q2 8h 1 d
比值 Q1 / Q2 反映了双层玻璃窗在减少热量流失上的功 效。它只与 h l / d 有关。下图给出了Q1 / Q2 h曲线, 当 h上升时,Q1 / Q2 迅速下降;而当 h 到达一定值后, Q1 / Q2 下降趣缓。由此可见,h不必过大。
Q1 / Q2
0.06 0.03 0.02
厚度为d 的均匀介质,两侧温度差为T ,则单位时间
由温度高的一侧流过单位面积的热量 Q与T 成正比,与
d 成反比,即
Q k T .
⑴
d
其中k 为热传导系数。
记双层窗内层玻璃的外侧温度是 Ta,外层玻璃的内侧
温度是Tb,玻璃的热传导系数为 k1,空气的热传导系数 为k2,则由⑴式,单位时间单位面积的热量传导(热
l
l3 d2.
⑶
在该假定之下,有
l3 d2,
所以:
f m S l d2 l l4,
即:体重与躯干长度的4次方成正比。
四、汽车的刹车距离
问题的提出
美国的某些司机培训课程中有这样的规则: 正常驾驶条 件下, 车速每增加10英里/小时, 后面与前面一辆车的距 离应增加一个车身的距离. 又云: 实现这个规则的一种简 便方法是所谓“两秒准则”: 即后车司机从前车经过某 一 标志开始默数2秒后到达同一标志,而不管车速如何.
pi2 ni
1
,
i 1, 2, , m
⑼
再根据Qi 值最大的一方进行分配。
再回到本节一开始的问题,此时m 3.
首先先给各系一个席位,因而n1 n2 n3 1.
p1 103, p2 63, p3 34,n 21. 再计算
1032
632
Q1 2 5304.5,Q2 2 1984.5,
第二章初等模型.ppt
1032
632
Q1
2
5304.5,Q2
1984.5, 2
Q3
342 2
578,
由此,第4个席位应该给甲系,此时n1 2, 再计算Q1
值:
2019-10-10
感谢你的欣赏
21
1032 Q1 2 3 1768.17,
而Q2 , Q3 值没有变化,因此得到第5个席位给乙系. 由
3.玻璃材料均匀,热传导系数是常数。
2019-10-10
感谢你的欣赏
28
建模
由假设,热传导过程遵从下面的物理定律:
厚度为d的均匀介质,两侧温度差为T ,则单位时间
由温度高的一侧流过单位面积的热量 Q与T 成正比,与
d 成反比,即
Q k T .
⑴
d
其中k 为热传导系数。
2019-10-10
都达到最小.
2019-10-10
感谢你的欣赏
14
解模
设 A单位已有席位nA ,B单位有席位 nB,并假定 A吃
亏,即kA kB,因而rA nA, nB 有意义.
现考虑下一个席位的分配:
⑴席位分配给 A仍然是 A 吃亏,即 pA pB , nA 1 nB
毫无疑问,该席位应该分配给 A.
感谢你的欣赏
29
记双层窗内层玻璃的外侧温度是 Ta,外层玻璃的内侧
温度是Tb,玻璃的热传导系数为 k1,空气的热传导系数
为
k
,则由⑴式,单位时间单位面积的热量传导(热
2
量流失)为
Q1
k1
T1
d
Ta
k2 Ta
Tb l
k1 Tb
M02初等模型量纲分析和无量纲化
4
第二章
初等模型
5
第二章
初等模型
6
应用: 1:减少物理量; 2:舍弃次要因素,减少独立参数的个数; 3:物理模拟中的比例模型
例,用实验方法研究飞机的外部流动时,很难设想 为此而建立能容纳全尺寸飞机的大风洞,因为仅驱动风洞 气流所需的能量就大的惊人。所以合理的解决办法就是缩 小试件尺寸,做模型实验。因此引起的问题是应怎样设计 和安排实验才能保证模型实验能真实地反映全尺寸飞机的 飞行情况呢?
m=6, n=3
第二章 初等模型
f (q1 , q2 , L, qm ) = 0
rank A = r Ay=0 有m-r个基本解
ys = (ys1, ys2, …,ysm s = 1,2,…, m-r )T
ϕ ( g , l , ρ , v, s, f ) = 0
rank A = 3 Ay=0 有m-r=3个基本解
第二章 初等模型
7
2.5
量纲分析与无量纲化
量纲分析是20世纪初提出的在物理领域中建立数 学模型的一种方法,它在经验和实验的基础上利用物 理定律的量纲齐次原则,确定各物理量之间的关系。
量纲齐次原则
等式两端的量纲一致
例,用实验方法研究飞机的外部流动时,很难设想为此而建立 能容纳全尺寸飞机的大风洞,因为仅驱动风洞气流所需的能量就大的惊 人。所以合理的解决办法就是缩小试件尺寸,做模型实验。因此引起的 问题是应怎样设计和安排实验才能保证模型实验能真实地反映全尺寸飞 机的飞行情况呢?
动力学中 基本量纲 L, M, T 导出量纲
对无量纲量α,[α]=1(=L0M0T0)
第二章 初等模型
m1m2 f =k 2 r
9
量纲齐次原则
第二章 初等数学建模
如状态(2,3)是不可取的,
而状态(3,1)是可取的。
1)可取状态: 总共有10种可取状态具体如下: (3,3) (3,2) (3,1) (3,0) (0,3) (0,2) (0,1) (0,0) (1,1) (2,2) 其中(i,i)表示i对夫妻。 用S表示可取状态的集合,称为允许状态集合。 2)可取运载: (0,1) (0,2) (1,0) (2,0) (1,1) , 35 其中(1,1)表示1对夫妻,
(3)有12个外表相同的硬币,已知其中一个 是假的(可能轻也可能重些).现要用无砝码的 天平以最少的次数找出假币,问应怎样称法.
22
§2 几何模拟问题
把一个复杂的问题,抽象成各种意义下的几何 问题加以解决,这种方法叫做几何模拟法。几何模 拟法常常在发现问题解答的同时,也就论证了解答 的正确性,这种方法当然是数学中的一种重要思维 方法。
(3,3) 去两女 (3,1) 回一女 (3,2)
第二章 初等数学方法建模
§1 几 种 简 单 的 数 学 方 法
一、观测实验和抽象分析法 欧拉多面体问题 问题:一般凸的多面体其面数F、顶 点数V和边数E之间有何关系? 对此欧拉具体地观察了四面体、五 面体… 结果如下:
1
多面体 四面体
F 4
V 4
E 6
五面体
六面体 七面体 ……
5 (5 6 (6 7 (7 …
此问题可抽象成什么样的数学问题?
30
问题转化为:是否存在一个 0使得f 0 g ( 0 ) 0.
数学问题如下:
已知:f(θ)、g(θ)连续, g(0)=0,f(0)>0, 且对任意的θ,有g(θ)·f(θ)=0。
求证:存在0,使得g (0 ) f (0 ) 0.
第二章初等数学方法建模
第一节
1.1 鸽笼原理
有关自然数的几个模型
鸽笼原理又称为抽屉原理,把 N 个苹果放入 n(n < N ) 个抽屉里,则必有一个抽屉中至少有 2 个苹果。 问题 1:如果有 N 个人,其中每个人至多认识这群人中的 n( n < N ) 个人(不包括自己),则至少有两 个人所认识的人数相等。 分析:我们按认识人的个数,将 N 个人分为 0,1,2 , n 类,其中 k (0 ≤ k ≤ n) 类,表示认识 k 个人, 这样形成 n + 1 个“鸽笼”。 若 n < N − 1 ,则 N 个人分成不超过 N − 1 类,必有两人属于一类,也即 有两个人所认识的人数相等;若 n = N − 1 ,此时注意到 0 类和 N 类必有一个为空集,所以不空的“鸽笼 ”至多为 N − 1 个,也有结论成立 问题 2:在一个边长为 1 的正三角形内最多能找到几个点,而使这些点彼此间的距离大于 0.5 . 分析:边长为 1 的正三角形 ∆ABC ,分别以 A, B, C 为中心, 0.5 为半径圆弧,将三角形分为四个部 分(如图 1-1 ),则四部分中任一部分内两点距离都小于 0.5 四个点,使彼此间距离大于 0.5 ,由鸽笼原理知道,在三角形内最多能找
, 因为 A ⋅ A = A
l
l +1
, 所以 (2.2) 走 一步 到 v j ;由归
而从 vi 到 v j 长 k + 1 的道路无非 是从 vi 经 k 步 到某顶 vl 1 ≤ l ≤ n , 再 从 vl
图 2-2 由图 2—2,有两个解都是经过 7 次运算完成,均为最优解 2.2 商人过河问题 三名商人各带一个随从乘船渡河,现有一只小船只能容纳两个人,由他们自己划行,若在河的任一岸 的随从人数多于商人,他们就可能抢劫财物。但如何乘船渡河由商人决定,试给出一个商人安全渡河的方 案。 首先介绍图论中的一个定理 G 是一个图,V(G)为 G 的顶点集,E(G)为 G 的边集。 设 G 中有 n 个顶点 v1 , v2 ,, vn ;
数学建模第二章初等模型
市场稳定问题
在市场经济下,当商品“供不应求”时,价格逐渐长升高,经营者会 觉得有利可图而加大生产量。然而,一旦生产量达到使市场“供过于求”, 价格立即会下跌,生产者会立即减产以避免损失,这样又极有可能造成又 一轮新的供不应求。我们关心的问题是:如此循环,市场上的商品的数量 与价格是否会趋于稳定? 所谓“需求”,指在一定条件下,消费者愿意购买并且有支付能力购 买的商品量。设p表示商品价格,q表示商品量,假设商品量q主要取决于 商品价格p,则称函数 q=f(p) 为需求函数。 需求函数q=f(p)一般是单调减少函数。因q=f(p)为单调减少函数,所 以存在反函数p=f-1(q),我们也称它为需求函数,见下图。
a, b 模型求解:我们来求步长
(1) 由图
为何值,使式 (4) 最小。
所表示,重心离开 B 点上升到最高点所需时间为
t
b 2v
(5)
1 2 gb2 h gt 2 2 8v
由
(1),(2),(3)
及
(5)
式,
(4)
式化成
2 (a b)bmg 1 W m, v2 2 2 8v
又完成一个大步所需时间为
跑步时如何节省能量
• 问题的提出:我们每个人都有跑步的经历, 有人会因此而疲惫不堪,但是有谁会想:怎 样跑步能使我们消耗的能量最少? • 模型假设:为解决上述问题,我们做下述假 设:
(1 )跑步所花费的时间分成两部分:第一部分为两 条腿同时离地的时间;在第二部分时间内一条腿 或两条腿同时落地。这样,人体重心的运动轨迹 如图(1)。
a b v
,因此单位时间内消耗的能量为
2 W bmg m, v3 P a b 8v 2(a b) v
(6)
2(初等模型)
~状态转移律
dk D, S k S 按照以上规 使状态 问题: 求决策 ,0 ) 律由初始状态 S1 ( 3,3)经过有限步到达状态 S n 1 ( 0 .
当然n 越小越好.
(3,2) (0,1) (3,1) (0,2) • 穷举法 S1 (3,3) d1 (1,0) S 2 ( 2,3) ( 2,2) (1,1) (1,3) ( 2,0) (3,3)循环 (0,1) (0,2) (3,4) S2 (3,2) d 2 (1,0) S 3 ( 4,2) ( 4,3) (1,1) ( 2,0) (5,2)
室 内 T1
Ta T b d l d
室 外 T2
Q1
墙
k2~空气的热传导系数
T1 Ta Ta Tb Tb T2 Q1 k1 k2 k1 d l d
T1 T2 k1 l Q1 k1 , sh , h d ( s 2) k2 d
建模 记单层玻璃窗传导的热量Q2
T1 T2 T1 T2 Q1 k1 Q2 k1 d ( s 2) 2d
2 2 3
4
结论 动物的体重与躯干长度的4次方成正 比.当然,比例系数与动物的种类有关.
评注 (1)类比法是建模中常用的一种方法.在 这个模型中将动物躯干类比作弹性梁实属一个大 胆的假设,其可信程度自然应该用实际数据仔细 检验. 但是这种充分发挥想象力,把动物躯干长度 与体重的关系这样一个看来无从下手的问题,转 化为已经有确切研究成果的弹性梁在自重下挠曲 问题的作法,是值得借鉴的. (2)使用该模型时,要注意其条件.在建立此 模型时,我们是把四足动物的躯干视为圆柱体 的,也就是说,对于躯干太不近似圆柱体的四 足动物,该模型就不适用了,比如乌龟.
数学建模-初等模型讲义
123
2083.3
1341.8
3425.2 256250.0 250365.4
237
2083.3
45.5
2128.8 493750.0 328794.3
238
2083.3
34.1
2117.4 495833.3 328828.5
239
2083.3
240
2083.3
22.7
2106.1 497916.7 328851.2
9
7
9
11.3
4
8.5
21
21 21
ai比惯例 分配的要小
第21席应该分配乙系, 标准1的分配方案:10, 7, 4.
可用列表方法解决标准1(类似可解决标准2与3) 计算 ni 成表, k 1,2, k
1 2 3 4 5 6 7 8 9 10 11 甲 103 51.5 34.3 25.8 20.6 17.2 14.7 12.9 11.4 10.3 9.4 乙 63 31.5 21.0 15.8 12.6 10.5 9.0 7.9 7.0 6.3 5.7 丙 34 17.0 11.3 8.5 6.8 5.7 4.9 4.3 3.8 3.4 3.1
2. 按揭还款
用房产在银行办理的贷款, 该贷款要按照银行规
定的利率支付利息。 贷款形式
商业贷款和公积金贷款. 还款形式
等额本息和等额本金.
如贷款50万, 分20年还清, 年利率r , 问月供是多少?
调整日期
2015.08.26 2015.06.28 2015.05.11 2015.03.01 2014.11.22 2012.07.07 2012.06.09 2011.07.07 2011.04.06 2011.02.09 2010.12.26 2010.10.20 2008.12.23
第二章初等模型(精)
Ta
Tb l
k1 Tb
T2 d
解得:
Ta
1 k1l k2d T1 T2
2 (k1l) /(k2d )
Q
k1
T1(1来自k1l k2d )T1 2 k1l k2d
d
T2
k1
d
T1 2
T2 k1l k2d
f(h)
1室
室 外
0.9 0.8
内 T1
类似有
Q
2、室内温 度T1与户外温 度T2均 为常数。 3、玻璃是均匀的,热传导系数 为常数。
室 设玻璃的热传导系数 为k1,空气的
室
内 热传导系数 为k2,单位时间通过单
外
Ta
位面积由温度高的一侧流向温度低 T1 的一侧的热量为Q
T2
Tb
由热传导公式 Q =kΔT/d
dl d
Q
k1
T1
d
Ta
k2
Q'
k1
T1 T2 2d
2
T2 0.7 0.6
Q' 2 (k1l) /(k2d )
0.5 d 0.4d
一般 k1 16 ~ 32 k2
故
Q Q'
1 1 8l / d
0.3
1
记h0=.2l/d并令f(h)= 8h 1 此函数的图形为
0.1
考虑到美00观和1 使2用上3的方4 便,5 h不6必取7 得过8 大9,例1如0h,可
取h=3,即l=3d,此时房屋热量的损失不超过单层玻璃窗
时的 3% 。
§2.3 崖高的估算
假如你站在崖顶且身上带着一只具有跑表功 能的计算器,你也许会出于好奇心想用扔下 一块石头听回声的方法来估计山崖的高度, 假定你能准确地测定时间,你又怎样来推算 山崖的高度呢,请你分析一下这一问题。
第2章 初等模型(数学建模)
40
50 60 70 80
58.7
73.3 88.0 102.7 117.3
116(124)
173(186) 248(268) 343(372) 464(506)
126.2
187.8 261.4 347.1 444.8
2.1
2.5 3.0 3.6 4.3
最小二乘法 k=0.06
计算刹车距离、刹车时间
“公平”分配方 法 人数 席位
A方 B方 p1 p2 n1 n2
衡量公平分配的数量指标
当p1/n1= p2/n2 时,分配公平
若 p1/n1> p2/n2 ,对 A 不公平
p1/n1– p2/n2 ~ 对A的绝对不公平度
p1=150, n1=10, p1/n1=15 p2=100, n2=10, p2/n2=10
系别 学生 比例
20席的分配 结果 10 6 4 10.3 6.3 3.4
21席的分配
比 例 加 惯 例
人数 (%) 比例 甲 乙 丙 103 51.5 63 34 31.5 17.0
总和 200
100.0
20.0
20
对 比例 结果 丙 10.815 11 系 6.615 7 公 3.570 3 平 吗 21.000 21
应讨论以下几种情况
初始 p1/n1> p2/n2
1)若 p1/(n1+1)> p2/n2 , 则这席应给 A
2)若 p1/(n1+1)< p2/n2 , 应计算rB(n1+1, n2) 3)若 p1/n1> p2/(n2+1), 应计算rA(n1, n2+1) 问: p1/n1<p2/(n2+1) 是否会出现? 否!
第02章初等模型
用Q值方法分配 第20席和第21席
第20席
Q1
1032 1011
96.4,
Q2
632 67
94.5,
Q3
342 3 4
96.3
第21席
Q1最大,第20席给甲系
Q1
1032 1112
80.4,
Q2 ,
Q3 同上
Q3最大,第 21席给丙系
Q值方法 分配结果
甲系11席,乙系6席,丙系4
席
Machine Learning Center
p1/n1– p2/n2 ~ 对A的绝对不公平度
p1=150, n1=10, p1/n1=15 p1=1050, n1=10, p1/n1=105 p2=100, n2=10, p2/n2=10 p2=1000, n2=10, p2/n2=100
p1/n1– p2/n2=5
p1/n1– p2/n2=5
记qi=Npi /P, i=1,2, … , m, 若qi 均为整数,显然应 ni=qi
Machine Learning Center
进一步的讨论
qi=Npi /P不全为整数时,ni 应满足的准则: 记 [qi]– =floor(qi) ~ 向 qi方向取整;
[qi]+ =ceil(qi) ~ 向 qi方向取整. 1) [qi]– ni [qi]+ (i=1,2, … , m), 即ni 必取[qi]– , [qi]+ 之一
Machine Learning Center
问题分析
录像机计数器的工作原理
左轮盘
右轮盘 主动轮
0000 计数器
录像带 磁头
压轮
录像带运动
录像带运动方向 右轮盘半径增大 计数器读数增长变慢
第二章初等模型共17页文档
席位数
11 7 3
现象2 总席位增加一席,丙系反而减少一席。(不公平!) 惯例分配方法:按比例分配完取整数的名额后,剩下的名额 按惯例分给小数部分较大者。
存在不公平现象,能否给出更公平的分配席位的方案?
1.2 建模分析 目标:建立公平的分配方案。
反映公平分配的数量指标可用每席位代表的人数来衡量。
系别 甲 乙 丙
1) p1 p2 称为“绝对不公平准”。标 n1 n2
此值越小分配越趋于公平,但这并不是一个好的衡量标准。
单位 A
人数p 席位数n 每席位代 绝对不公 表的人数 平标准
120 10
12
12-10=2
B
100 10
10
C
1020 10
D
1000 10
102 102-100 100 =2
C,D的不公平程度大为改善!
rB(n11,n2)p2(pn11n 21)1 rA(n1,n21)p1(pn22n 11)1
p2(n11)p1(n21)
p1n2
p2n1
p2
p2
2
1Biblioteka n2(n21) n1(n11)
(*)
结论:当(*)成立时,增加的一个席位应分配给A 单位, 反之,应分配给 B 单位。
为了在表决提案时可能出现10:10的平局,再设一个席位。
21个席位的分配结果
系别 人数 所占比例
分配方案
甲 103 103/200=51.5% 51.5 %•21 =10.815
乙 63 63/200=31.5% 31.5%•21=6.615
丙 34 34/200=17.0% 17.0%•21=3.570
Qi ni(npii21) i1,2,,m
数学模型-第02章(第五版)
对Q1比Q2的减少量 作最保守的估计,
取k1/k2 =16
Q1 1 , h l
Q2 8h 1
d
模型应用
Q
1
l
1
, h
Q 8h 1
d
2
取 h=l/d=4, 则 Q1/Q2=0.03
Q1/Q2
即双层玻璃窗与同样多材
料的单层玻璃窗相比,可
0.06
减少97%的热量损失.
结果分析
0.03 0.02
八人 5.87 5.92 5.82 5.73 5.84 18.28 0.610 30.0
空艇重w0(kg) 桨手数n 16.3 13.6 18.1 .7
准 调查赛艇的尺寸和质量 备
l /b, w0/n 基本不变
问题分析 分析赛艇速度与桨手数量之间的关系
赛艇速度由前进动力和前进阻力决定: • 前进动力 ~ 桨手的划桨功率 • 前进阻力 ~ 浸没部分与水的摩擦力
O 2 4 6h
Q1/Q2所以如此小,是由于层间空气的热传导系 数k2极低, 而这要求空气非常干燥、不流通.
房间通过天花板、墙壁、…损失的热量更多.
实际上双层窗的功效不会如此之大!
2.2 划艇比赛的成绩
对四种赛艇 (单人、双人、四人、八人) 4次国际
问 大赛冠军的成绩进行比较,发现与桨手数有某 题 种关系. 试建立数学模型揭示这种关系.
比MN各点满意度更高的点如p3,在另一条无差别曲 线M1N1上, 于是形成一族无差别曲线(无数条).
甲的无差别曲线 甲的无差别曲线族记作 f(x,y)=c1 c1~满意度
y
f(x,y)=c1
.y
p1
c1
(f ~等满意度曲线)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
T1 T2 k1 l Q1 k1 , sh , h d ( s 2) k2 d
建模 记单层玻璃窗传导的热量Q2 T1 T2 T1 T2 Q1 k1 Q2 k1 d ( s 2) 2d
双层与单层窗传导的热量之比
室 内 T1
2d
室 外 T2
Q2
墙
Q1 2 k1 l , sh , h Q2 s 2 k2 d
观察
计数器读数增长越来越慢!
问题分析 录像机计数器的工作原理
左轮盘 右轮盘 主动轮 录像带 磁头 压轮 0000 计数器
录像带运动方向
录像带运动 右轮盘半径增大 计数器读数增长变慢
录像带运动速度是常数
右轮转速不是常数
模型假设
• 录像带的运动速度是常数 • 计数器读数
v;
n与右轮转数 m成正比,记 m=kn; w;
pi2 , i 1,2, 该席给Q值较大的一方 定义 Qi ni (ni 1)
推广到m方 分配席位
pi2 , i 1,2, , m 计算 Qi ni (ni 1)
该席给Q值最大的一方
Q 值方法
三系用Q值方法重新分配 21个席位
按人数比例的整数部分已将19席分配完毕
甲系:p1=103, n1=10 乙系:p2= 63, n2= 6 丙系:p3= 34, n3= 3
2 (r wi) vt
i 1
m
m kn
2rk n n v
2
t
wk
v
2
模型建立 2. 考察右轮盘面积的 变化,等于录像带厚度 乘以转过的长度,即
2 2
3. 考察t到t+dt录像带在 右轮盘缠绕的长度,有
[( r wkn) r ] wvt (r wkn)2kdn vdt
p1/n1– p2/n2=5 虽二者的绝对 不公平度相同
p1=1050, n1=10, p1/n1=105 p2=1000, n2=10, p2/n2=100
p1/n1– p2/n2=5 但后者对A的不公平 程度已大大降低!
―公平”分配方 法
将绝对度量改为相对度量
若 p1/n1> p2/n2 ,定义
qi=Npi /P不全为整数时,ni 应满足的准则: 记 [qi]– =floor(qi) ~ 向 qi方向取整; [qi]+ =ceil(qi) ~ 向 qi方向取整. 1) [qi]– ni [qi]+ (i=1,2, … , m), 即ni 必取[qi]– , [qi]+ 之一 2) ni (N, p1, … , pm ) ni (N+1, p1, … , pm) (i=1,2, … , m) 即当总席位增加时, ni不应减少 ―比例加惯例”方法满足 1),但不满足 2) Q值方法满足 2), 但不满足 1)。令人遗憾!
甲系11席,乙系6席,丙系4席
公平吗?
进一步的讨论
Q值方法比“比例加惯例”方法更公平吗?
席位分配的理想化准则
已知: m方人数分别为 p1, p2,… , pm, 记总人数为 P= p1+p2+…+pm, 待分配的总席位为N。 设理想情况下m方分配的席位分别为n1,n2,… , nm (自然应有n1+n2+…+nm=N), ni 应是 N和 p1, … , pm 的函数,即ni = ni (N, p1, … , pm ) 记qi=Npi /P, i=1,2, … , m, 若qi 均为整数,显然应 ni=qi
系别 学生 比例
20席的分配 结果 10 6 4 10.3 6.3 3.4
21席的分配
比 例 加 惯 例
人数 (%) 比例 甲 乙 丙 103 51.5 63 34 31.5 17.0
总和 200
100.0
20.0
20
对 比例 结果 丙 10.815 11 系 6.615 7 公 3.570 3 平 吗 21.000 21
用Q值方法分配 第20席和第21席
1032 632 342 96.4, Q2 94.5, Q3 96.3 第20席 Q1 1011 6 7 3 4
Q1最大,第20席给甲系
2 103 80.4, Q2 , Q3 同上 第21席 Q1 1112
Q值方法 分配结果
Q3最大,第 21席给丙系
t
wk
v
2
2rk n n v
2
思 考
m i 1
3种建模方法得到同一结果
2 (r wi) vt
[( r wkn) r ] wvt
2 2
t
wk
v
2
(r wkn)2kdn vdt
2rk n n v
2
但仔细推算会发现稍有差别,请解释。
思 考
凯 里 学 院 理 学 院 数 学与应用数学专业数学建模课件
Mathematical Modelling
第二章 初等模型
主讲:潘东云
邮箱:pdykl@ Q Q: 513551582
凯里学院理学院
凯 里 学 院 理 学 院 数 学与应用数学专业数学建模课件
第二章
教学目的:
初等模型
使学生通过学习,掌握一般初等模型的 建立方法 教学重点: 几个初等模型的建立和求解 教学难点: 让学生掌握建立初等模型的方法 教学内容: 2.1 公平的席位分配 2.2 录像机计数器的用途 2.3 双层玻璃窗的功效 2.5 划艇比赛的成绩 2. 7 实物交换 2. 8 核军备竞赛 2. 9 启帆远航 2. 10量纲分析与无量纲化
现有一批测试数据: 用最小二乘法可得
t 0 20 40 n 0000 1141 2019 t 100 120 140 n 4004 4545 5051
60 2760 160 5525
80 3413 184 6061
a 2.61 10 6 , b 1.45 10 2.
模 型 检 验
• 录像带厚度(加两圈间空隙)为常数 • 空右轮盘半径记作 • 时间
r;
t=0 时读数 n=0 .
建立时间t与读数n之间的关系 (设v,k,w ,r为已知参数)
建模目的
模型建立
建立t与n的函数关系有多种方法 1. 右轮盘转第 i 圈的半径为r+wi, m圈的总长度 等于录像带在时间t内移动的长度vt, 所以
p1 / n1 p2 / n2 rA (n1 , n2 ) ~ 对A的相对不公平度 p2 / n2
类似地定义 rB(n1,n2)
公平分配方案应 使 rA , rB 尽量小
将一次性的席位分配转化为动态的席位分配, 即 设A, B已分别有n1, n2 席,若增加1席,问应分给A, 还是B 不妨设分配开始时 p1/n1> p2/n2 ,即对A不公平
l/b 27.0 27.4 21.0 30.0
空艇重w0(kg) 浆手数n 16.3 13.6 18.1 14.7
准 调查赛艇的尺寸和重量 备
l /b, w0/n 基本不变
问题分析
分析赛艇速度与浆手数量之间的关系 赛艇速度由前进动力和前进阻力决定
• 前进动力 ~ 浆手的划浆功率
• 前进阻力 ~ 浸没部分与水的摩擦力 前进 划浆 动力 浆手 功率 数量 艇 浸没 前进 重 面积 阻力 赛艇 速度 赛艇 速度
―公平”分配方 法 人数 席位
A方 B方 p1 p2 n1 n2
衡量公平分配的数量指标
当p1/n1= p2/n2 时,分配公平
若 p1/n1> p2/n2 ,对 A 不公平
p1/n1– p2/n2 ~ 对A的绝对不公平度
p1=150, n1=10, p1/n1=15 p2=100, n2=10, p2/n2=10
• 对浆手体重、功率、阻力与艇速的关系等作出假定
• 运用合适的物理定律建立模型
模型假设
符号:艇速 v, 浸没面积 s, 浸没体积 A, 空艇重 w0, 阻力 f, 浆手数 n, 浆手功率 p, 浆手体重 w, 艇重 W 1)艇形状相同(l/b为常数), w0与n成正比 2)v是常数,阻力 f与 sv2成正比 3)w相同,p不变,p与w成正比 艇的静态特性 艇的动态特性 浆手的特征
应讨论以下几种情况
初始 p1/n1> p2/n2
1)若 p1/(n1+1)> p2/n2 , 则这席应给 A
2)若 p1/(n1+1)< p2/n2 , 应计算rB(n1+1, n2) 3)若 p1/n1> p2/(n2+1), 应计算rA(n1, n2+1) 问: p1/n1<p2/(n2+1) 是否会出现? 否!
模型中有待定参数
r , w, v, k ,
一种确定参数的办法是测量或调查,请设计测量方法。
参数估计 另一种确定参数的方法——测试分析
t an2 bn , 只需估计 a,b 将模型改记作
理论上,已知t=184, n=6061, 再有一组(t, n)数据即可
实际上,由于测试有误差,最好用足够多的数据作拟合Q1源自墙 室 内 T1 室 外 T2
2d
热传导定律
T Q k d
Q2
墙
建模 记双层玻璃窗传导的热量Q1
Ta~内层玻璃的外侧温度
Tb~外层玻璃的内侧温度
k1~玻璃的热传导系数
室 内 T1
Ta T b d l d
室 外 T2
Q1
墙
k2~空气的热传导系数
T1 Ta Ta Tb Tb T2 Q1 k1 k2 k1 d l d
应该另外测试一批数据检验模型:
t an bn (a 2.61 10 , b 1.45 10 )