ARM_Cortex-A9_Detail
ARM Cortex A8、A9以及高通Scorpion处理器详解
Cortex-A8 800MHz, 256K L2 Cache
512M DDR2,32bit
视频子系统:硬解
多格式,H.264,VC-1,MPEG4,RV最高720p(大部分开发商都没做RV的硬解支持),实测可播放部分1080p视频
在Tegra 2的A9平台上表现稍好,仍不能满帧。估计是播放软件无法完全利用2个核心,如果两个核心充分利用,解决480p RMVB应该没有问题。
总体而言,1GHz A8处理器软解RMVB基本是RK27 MP4的水平。如果你的眼睛比较挑剔,就要注意了。一些A8软解720p RMVB流畅的说法,基本都是不实际的。
Scorpion具有部分A9的特性,如乱序执行,管线化的VFP,支持多核。此外,Scorpion的Neon SIMD引擎(高通称之为VeNum)宽度为128bit,是A8和A9的两倍,能提供更强劲的浮点运算支持,并且在不需要的时候可以关闭一半变成64bit以节省能源。总体上,Scorpion是具有部分A9特性的A8,高频率节能浮点加强版。
ቤተ መጻሕፍቲ ባይዱ
× Cortex-A5是Cortex-A家族中的小弟,功耗较低,单位功耗的效能很高,用于代替ARM9和ARM11占据低端市场。
Cortex-A15是最新发布的,作为高端产品出现,目前资料不多。
× Scropion是高通根据Cortex-A8修改的。关键的特点是同频下比A8节能30%,或者同功耗的频率高25%。
Scorpion具有部分A9的特性,如乱序执行,管线化的VFP,支持多核。此外,Scorpion的Neon SIMD引擎(高通称之为VeNum)宽度为128bit,是A8和A9的两倍,能提供更强劲的浮点运算支持,并且在不需要的时候可以关闭一半变成64bit以节省能源。总体上,Scorpion是具有部分A9特性的A8,高频率节能浮点加强版。
嵌入式也多核 浅析ARM-Cortex_TM_A9MPCore_TM_多核处理器
嵌入式也多核祝祺斌(湖北工业大学湖北武汉 430068)摘 要: Cortex-A9 MPCore拥有比普通单核Cortex-A9处理器更为先进的电源管理功能,在提高性能的同时能够进一步降低功耗,达到甚至超过市场和应用对性能和功耗日益增长的要求。
关键词:嵌入式;ARM;Cortex-A9;MPCore;多核中图分类号:TP3 文献标识码:A 文章编号:1671-7597(2010)0920178-01在提倡效率优先的当今社会,人们对各类移动终端的性能的要求在不要的工作。
对此Cortex-A9 MPCore通过加速器一致性端口的设计,可以利断的提高,用以实现更多的媒体服务、更快的数据速率以及更多其他新功用这个端口与其它装置共享高速缓存的内容,并支持所有标准的读/写动能。
然而,消费者的需求是促进此类应用产品开发的最主要动力。
因此如作,无需外加另外的一致性功能电路,因此能够在不增加功耗的情况下,何降低终端产品成本,提高终端产品性能成了制造商面临的最大挑战。
提升其多核效能。
在应用领域,既要求低成本又要求高性能的例子占据了绝大多数,例Cortex-A9 MPCore多核处理器采用了通过硅验证的ARMMPCore技术的如:笔记本电脑、智能手机、PDA、手持GPS、便携式游戏机以及车载信息增强版包括引入了侦测控制单元、通用中断控制器以及加速器链接埠。
通娱乐终端等等,不胜枚举。
人们不但希望便携式产品功能强大,同时也要过这些技术的应用,Cortex-A9 MPCore便可轻松实现可扩展型的多核处求电池使用时间足够长。
因此,能够全天候使用已经成为人们对移动电子理。
举个通用中断控制器的例子:该控制器是采用了最新标准化的中断控设备的最低要求。
为达到这一要求,便携式产品生产厂商们必须着眼于如制器,为处理器之间的通信及系统中断的路由选择及优先级的确定提供了何在降低产品功耗同时提升产品性能以及增加产品的功能。
一种灵活而丰富的解决办法。
精品课件-ARM Cortex-A9多核嵌入式系统开发-第五章
Exynos 4412处理器总览 GPIO接口 GPIO应用实例
第5章 Exynos 4412的GPIO
5.1 Exynos 4412处理器 Exynos 4412是三星公司推出的一款基于CortexA9的RSIC架构的性价比高、功耗低、性能优越的32位处理器。 Exynos 4412的内存系统中有专用DRAM端口和静态存储器端 口。其中的DRAM端口支持DDR2、LPDDR2和DDR3,静态存储器 端口支持FlexOneNAND、NOR Flash和ROM型的外部存储器。
Watchdog Timer Multi Core Timer
Chip ID PPMU
Connectivity 4×SD/SDIO/HS-MMC
USB2.0 OTG USB2.0Host 2×USB2.0HSIC
TSI C2C MIPI-HSI I2C(8ch.) UART(4ch.) 3×SPI MIPI Slimbus 14×8 Key Matrix
第5章 Exynos 4412的GPIO (6) GPJ0(8个),GPJ1(5个):共13个I/O口,用于CAM I/F; (7) GPK0(7个),GPK1(7个),GPK2(7个),GPK3(7个):共28 个I/O口,用于4 × MMC (4-bit MMC)或2 × MMC (8-bit MMC),或GPS debugging I/F; (8) GPL0(7个),GPL1(2个):共9个I/O口,用于GPS I/F; (9) GPL2:共8个I/O口,用于GPS debugging I/F或Key pad I/F; (10) GPM0(8个),GPM1(7个),GPM2(5个),GPM3(8个), GPM4(8个):共36个I/O口,用于CAM I/F或TS I/F、HIS或 Trace I/F; (11) GPX0(8个),GPX1(8个),GPX2(8个),GPX3(8个):共32
arm cortex-a9参数
arm cortex-a9参数ARM Cortex-A9是英国ARM公司设计的一款高性能处理器,属于ARM 的第9代应用处理器。
它在功耗和性能之间取得了良好的平衡,适用于广泛的应用领域。
Cortex-A9采用了一种叫做“超标量乱序执行”的架构,具有双发射乱序执行引擎和两个整数单元,使得它能够同时执行多条指令,提高了处理器的整体性能。
此外,Cortex-A9还具备了高度可配置的内部和外部总线接口,可与其他外设和存储器进行高效的数据交换。
Cortex-A9的主要特点之一是它的多核处理能力。
它支持双核和四核配置,可实现更高的处理性能和更好的多任务处理能力。
多核技术可以将任务分配给不同的核心进行处理,提高系统的响应速度和并行处理能力,适用于高性能计算、嵌入式系统、网络设备等领域。
在性能方面,Cortex-A9具备了高达2GHz的主频,并且支持NEON 技术,可以提供类似于SSE指令集的高级SIMD(Single Instruction Multiple Data)功能。
NEON技术能够在同一时钟周期内执行多个相同类型的数据操作,提高了图像处理、多媒体应用和信号处理等领域的运算效率。
Cortex-A9还支持硬件浮点运算,拥有一个32位浮点单元,可以加速浮点运算的执行。
这对于需要进行大量浮点运算的应用程序来说,如科学计算和图形处理等,具有重要的意义。
在功耗方面,Cortex-A9采用了低功耗设计,可以根据实际需要进行动态电压调整和频率调整,以实现更好的功耗控制。
这使得它在移动设备和嵌入式系统中得到了广泛应用,能够提供高性能的同时,延长设备的电池寿命。
总的来说,ARM Cortex-A9是一款高性能处理器,具有多核处理能力、高频率运算、NEON技术支持和低功耗设计等特点。
它适用于各种应用领域,如智能手机、平板电脑、网络设备和工业控制等。
随着技术的不断发展,Cortex-A9的性能还将进一步提升,为各种应用带来更好的体验和更高的效率。
arm cortex-a9参数
arm cortex-a9参数ARM Cortex-A9是一款强大的处理器,被广泛应用于各类移动设备和嵌入式系统中。
它具有出色的性能和低功耗特性,为用户提供了流畅的使用体验。
本文将从架构、特性、性能和应用等方面对ARM Cortex-A9进行详细介绍。
ARM Cortex-A9采用了先进的乱序执行架构,这意味着它可以同时执行多个指令,并按照最优的顺序进行处理,从而提高了处理器的效率。
与此同时,它还支持Thumb-2指令集,这是一种高效的指令集,可以在不降低性能的情况下减小代码的大小,提高系统的存储效率。
ARM Cortex-A9具有多核处理能力,可以支持双核、四核甚至八核的配置。
多核处理器可以更好地发挥并行计算的优势,提高系统的整体性能。
此外,ARM Cortex-A9还支持硬件虚拟化技术,可以将一个处理器核心划分为多个虚拟的执行环境,从而实现多个操作系统或应用程序的同时运行。
ARM Cortex-A9还具有较高的时钟频率和低的功耗特性。
它采用了先进的制程工艺,可以在较低的工作电压下实现更高的时钟频率,从而提供更快的计算速度。
与此同时,它还采用了智能功耗管理技术,可以根据系统的需求动态地调整处理器的工作频率和电压,从而降低功耗,延长电池续航时间。
在性能方面,ARM Cortex-A9具有出色的浮点运算能力和高效的内存访问机制。
它内置了NEON浮点单元,可以加速图像处理、多媒体编解码等计算密集型任务。
同时,ARM Cortex-A9还支持高带宽的双通道内存控制器,可以提供更快的内存读写速度,加快系统的响应速度。
由于ARM Cortex-A9具备强大的性能和低功耗特性,因此被广泛应用于各类移动设备和嵌入式系统中。
它可以用于智能手机、平板电脑、车载导航系统等移动设备,提供流畅的用户体验。
同时,它还可以用于网络路由器、智能电视、工业控制系统等嵌入式系统,提供可靠的计算和通信能力。
ARM Cortex-A9是一款强大的处理器,具有先进的架构、低功耗特性和出色的性能。
ARM Cortex-A9多核嵌入式系统开发教程(杨福刚)章 (13)
第10章 Nand Flash控制器
10.3 Nand Flash编程实例
10.3.1 电路连接 图10.7是K9GAG08U0E电路连接图。由图可知,电路连
接比较简单,其中Xm0DATA0~Xm0DATA7为命令、地址、 数据复用8位数据传输的引脚,其他控制引脚的连接如图 所示。
2. NAND Flash控制寄存器(NFCONT) 该寄存器用于配置NAND Flash的各种控制参数,如表10.5 所示。
第10章 Nand Flash控制器
表10.5 NAND Flash控制寄存器(NFCONT)
第10章 Nand Flash控制器
3. NAND Flash命令寄存器(NFCMMD) 该寄存器用于存储NAND Flash的命令值,如表10.6所示。
1页 = 8K字节 + 436字节(空闲区域)
1块 = (8K + 436)字节 × 128页 = (1M + 54.5K)字节
总容量 = 2076块 × 128页 × (8K + 436)字节 = (16
608M + 883.9M)比特
265,728 页 (=2.076块)
8 K字节
436 字节
1 块=128页 (1M+54.5K)字节
1 页=(8K+436)字节 1 块=(8K+436)字节×128页
=17 491M比特
8 比特
8 K字节
Байду номын сангаас
I/O0~I/O7 436 字节
图10.2 K9GAG08U0E 结构图
第10章 Nand Flash控制器
晨星半导体获授权ARM Cortex-A9处理器授权
晨星半导体获授权ARM Cortex-A9处理器授权
2012年4月24日,中国上海ARM今日宣布,领先的显示器与数字家庭解决方案半导体供货商晨星半导体(MStar)在一系列ARM系统IP授权的基础上,又取得了ARM Cortex-A9 MPCore处理器和ARM926EJ-S处理器授权,用于开发智能电视、机顶盒与智能手机等相关应用。
在此之前,晨星半导体采用ARM Mali-400MP图形处理器(GPU)所开发的智能电视系统级芯片(SoC)解决方案已经开始量产。
这次扩大采用ARM IP授权后,晨星半导体将可通过ARM各种功能丰富的技术开发各类解决方案。
此次授权协议也包括了ARM CoreSight 设计包(Design Kit)。
通过采用CoreSight系统IP,晨星半导体的SoC设计工程师可在未来设计SoC 时,利用ARM的调试与追踪技术优化高性能SoC的设计,从而缩短开发时间并降低智能系统设计过程中可能产生的相关风险。
晨星半导体研发部门副总经理WK Chia表示:作为应用处理器的领先供货商,晨星半导体深知智能电视、智能手机等关键市场在当前与未来的需求。
新增的Cortex-A9处理器与其他先进IP的授权,令晨星半导体和ARM的合作关系日益紧密,并将帮助我们为客户带来高效节能的解决方案。
晨星半导体基于ARM处理器、图形处理器(GPU)与系统IP的SoC解决方案很快就会上市,可满足消费者对于高级用户体验的需求。
ARM Cortex-A9多核嵌入式系统开发教程(杨福刚)章 (3)
#define ulong unsigned long
void pwm_stop(void);
void timer_request(void);
void irq_handler(void);
void timer_init(ulong utimer,ulong uprescaler,ulong udivider,ulong utcntb,ulong utcmpb);
1/1
1/2
8 位预
1/4
分频器 1
1/8
1/16
TCMPB3 TCNTB3
6:1
MUX
控制逻辑
3
TCMPB4
XpwmTOUT3
6:1
MUX
控制逻辑
4
No pin
图9.1 Exynos 4412 PWM定时器的工作原理
第9章 PWM定时器和WatchDog定时器
PWM定时器工作的具体过程: ● 当时钟被使能后,定时器计数缓冲寄存器(TCNTBn)把计 数初始值下载到递减计数器(TCNTn)中,定时器比较缓冲寄 存器(TCMPBn)把其初始值下载到比较寄存器(TCMPn)中。 ●递减计数器从TCNTBn得到初值以后,按其时钟频率进行 递减计数。当其值达到0时,产生定时器中断请求并通知 CPU该次计时完成。 ● TCMPBn的值用于脉冲宽度调制。当定时器的递减计数 器的值和比较寄存器的值相等时,PWM输出将改变输出电 平的状态。
第9章 PWM定时器和WatchDog定时器
图9.4 Exynos 4412处理器的看门狗模块
第9章 PWM定时器和WatchDog定时器
看门狗定时器计数值的计算公式如下:
(1) 输入到计数器的时钟周期 t_WatchDog = 1/( PCLK / (预分频值 + 1) / 分频值) 其中:预分频器(Prescaler,取值范围为0~254)及分频
SANTARO core Arm Cortex-A9 单板计算机产品手册说明书
SANTARO coreArm® Cortex®-A9 Single Board ComputerThe SECO Northern Europe business class: Flexible, powerful all-rounder forany demanding applications.Product ManualDocument Revision HistoryThe information in this document is subject to change without prior notice in order to improve reliability, design and function and does not represent a commitment on the part of the manufacturer.T able of Contents1. Introduction (4)2. Safety Hints (5)3. Product Introduction (6)3.1 Type Plate and Device Information (6)3.2 Related Documents and Online Support (7)4. Technical Data (9)4.1 Block Diagram SBC (10)4.2 Technical Drawing (11)4.3 Conectors (12)5. Installation and Start Up (14)5.1 Connection Scheme (14)6. Internal and External Interfaces (15)6.1 Ethernet (X24) (15)6.2 Power (X1) (16)6.3 Digital I/O (X14) (17)6.4 CAN/RS-485 Interface (X39) (18)6.5 Speaker (X9) (19)6.6 Keypad/SPI (X21) (20)6.7 RS-232/RS-232 (X13) (22)6.8 USB Host (X34) (23)6.9 USB OTG (X20) (23)6.10 SD Card Reader (X31) (23)6.11 Reset Switch (SW1) (24)6.12 Bootselect Switch (SW2) (24)6.13 Power LED (D30) (24)6.14 HDMI (X111) (25)6.15 USB intern (X11) (26)6.16 Battery-Holder (X2) * (27)6.17 Speaker Internal (X10) (28)6.18 Power over Ethernet (X17 / X18)* (29)6.19 Display LVDS (X105, X109) (30)6.20 Backlight (X108) (31)6.21 I²C (X106) (31)6.22 Resistive 4 - wire Touch (X4 / X7) (32)6.23 Capacitive Touch (X16) (33)6.24 Capacitive Touch (X102) (33)7. Battery (34)7.1 Battery Specifications X1 / X2 (34)7.2 Battery Specifications X4 (34)7.3 Replacement of the Internal Battery (35)Annex A: Hardware Revision Information (36)Annex B: Assembly Options (37)B-1 Wi-Fi / Bluetooth (37)Annex C: Guidelines and Standards (38)C-1 RoHS Declaration (38)C-2 Supplier Declaration – Directive EG 1907/2006 REACH (38)C-3 UL Certification (38)C-4 SECO Northern Europe Conformity Statement (39)Annex D: Common Documentation (40)D-1 Warranty Hints (40)D-2 Field of Application (41)Annex E: Technical Support (42)1. IntroductionThank you very much for purchasing a SECO Northern Europe product. Our products are dedicated to professional use and therefore we suppose extended technical knowledge and practice in working with such products.The information in this manual is subject to technical changes, particularly as a result of continuousproduct upgrades. Thus this manual only reflects the technical status of the products at the timeof printing. Before design-in the device into your or your customer’s product, please verify that thisdocument and the therein described specification is the latest revision and matches to the PCBversion. We highly recommend contacting our technical sales team prior to any activity of that kind.The attached documentation does not entail any guarantee on the part of SECO Northern EuropeGmbH with respect to technical processes described in the manual or any product characteristicsset out in the manual. We do not accept any liability for any printing errors or other inaccuracies inthe manual unless it can be proven that we are aware of such errors or inaccuracies or that we areunaware of these as a result of gross negligence andSECO Northern Europe has failed to eliminate these errors or inaccuracies for this reason.SECO Northern Europe GmbH expressly informs that this manual only contains a generaldescription of technical processes and instructions which may not be applicable in every individualcase. In cases of doubt, please contact our technical sales team.In no event, SECO Northern Europe is liable for any direct, indirect, special, incidental orconsequential damages arising out of use or resulting from non-compliancy of therein conditionsand precautions, even if advised of the possibility of such damages.Before using a device covered by this document, please carefully readAnnex …D-1 Warranty Hints“Annex …D-2 Field of Application“Embedded systems are complex and sensitive electronic products. Please act carefully and ensurethat only qualified personnel will handle and use the device at the stage of development. In theevent of damage to the device caused by failure to observe the hints in this manual and on thedevice (especially the safety instructions), SECO Northern Europe shall not be required to honourthe warranty even during the warranty period and shall be exempted from the statutory accidentliability obligation. Attempting to repair or modify the product also voids all warranty claims.2. Safety HintsPlease read this section carefully and observe the instructions for your own safety and correct use of the device. Observe the warnings and instructions on the device and in the manual. SECO Northern Europe embedded systems have been built and tested by us and left the company in a perfectly safe condition.In order to maintain this condition and ensure safe operation, the user must observe the instructions and warnings contained in this manual.I. General HandlingDon’t drop or strike the unit: The PCB, display and/or other parts might be damaged.Keep away from water and other liquids, the unit is not protected against.O perate the unit under electrical and environmental conditions according to the technical specification.T he electrical installations in the room must correspond to the requirements of the local (country-specific) regulations.T ake care that there are no cables, particularly power cables, in areas where persons can trip over them.Do not place the device in direct sunlight, near heat sources or in a damp place.All plugs on the connection cables must be screwed or locked to the housing.R epairs may only be carried out by qualified specialist personnel authorized bySECO Northern Europe GmbH or their local distributors.M aintenance or repair on the open device may only be carried out by qualified personnel authorized by SECO Northern Europe GmbH which is aware of with the associated dangers.II. ElectricityT he embedded systems may only be opened in accordance with the description in this user’s manual for- replacing of the (rechargeable, where applicable) lithium battery and/or- configuration of interfaces, where applicableThese procedures have to be carried-out only by qualified specialist personnel.W hen accessing internal components the device must be switched off and disconnected from the power source.W hen purchased core or basic versions without protecting back cover, don’t touch the PCB directly with your fingers. Especially these products need to be handled very carefully.Don’t operate or handle the unit without typical ESD protection measures, such as ground earthing.Operate the unit according to the technical specification only.III. Damage or Permanent MalfunctionI t must be assumed that a safe operation is no longer possible, in case-the device has visible damage or-the display is dark or shows strange pattern for longer period-the device doesn’t react after a resetIn these cases the device must be shut down and secured against further use3. Product IntroductionThis document is applicable for hardware revisions 1.0 or later of the SANTARO series.Please find the hardware version grid in …Annex A: Hardware Revision Information“:SANTARO is an Embedded System to be used as human machine interface (HMI) in various applications. Please3.2 Related Documents and Online SupportThis document contains operating system specific information. The following additional documentations are available:OPERATING SYSTEMSUPDATE / BOOT / SYSTEM4. Technical Data4.1 Block Diagram SBC4.2 Technical DrawingMissing dimensions according to 3D CAD files1 For the function of this switch please refer in the future to the Flash N Go User Manual.Exemplary IllustrationEthernet (TCP/IP) via cross over cable or switchRS-232 (Serial)Debug-PC / PeripheryX95.Installation and Start UpThe content of this document is limited to explain the device connectors and how to access SANTARO via FTP over your local area network (LAN) within a few seconds. For advanced hardware specifications and software support, please refer to chapter …3.2 Related Documents and Online Support“5.1 Connection Schemehttps:///projects/Santaro/Header: RJ4516.Internal and External Interfaces6.1Ethernet (X24)Green LED (link) is default off and turns on when link is detected.Yellow LED (act) flashes during sending/receiving packets.1OptionalHeader: Molex 43045-0200 Micro-Fit 2p Plug: Molex 43025-0200 Micro-Fit 2p, crimp contact Molex 43030-0007Shielding with 6,3 mm male spade terminal connector.Power (X1) is not galvanic isolated from System-GND/Housing6.2Power (X1)Caution:Power supplies connected to this device must be compliant to the requirements of “limited power sources” (LPS) to prevent the end-user from danger in case of a fault.X 1M O L E X _43045-0200_M i c r o -F i t _02p6.3 Digital I/O (X14)Directly connected to thesupply (x1) without fusesHeader: Molex 43045-0800 Micro-Fit 8pPlug: Molex 43025-0800 Micro-Fit 8p,crimp contact Molex 43030-0007Shielding with 6,3 mm male spade terminal connectorHeader: Molex 43045-1200 Micro-Fit 12pPlug: Molex 43025-1200 Micro-Fit 12p, crimp contact Molex 43030-0007Shielding with 6,3 mm male spade terminal connector6.4CAN/RS-485 Interface (X39)CAN1 / CAN2 ** alternative assembly upon requestCAN1 TerminationRS485 TerminationRS485 Half-DuplexCAN1 TerminationCAN2 TerminationHeader: JST S2B-PH-SM3-TBPlug: ST PHR-2 with crimp contacts SPH-002GW-P0.5L-ND6.5Speaker (X9)Header: JST SM20B-SRDS-G-TF , side entry, RM = 1.00Plug: JST SHDR-20V-S-B, crimp contact: SSH-003GA-P0.26.6Keypad/SPI (X21)Keypad/SPI/I²C, multiplexed1Note: I²C2 Signals on Pin 11 and 12 are shared with HDMI. When HDMI ist populated, these signals cannot be used as GPIO and there are 4.7kOhm Pull-Up resistors applied.Keypad/SPI/I²C, multiplexed 1** alternative assembly upon requestHeader: Molex 43045-1000 Micro-Fit 10p Plug: Molex 43025-1000 Micro-Fit 10p, crimp contact Molex 43030-0007Shielding with 6,3 mm male spade terminal connectorRS-232/MDB (X13) is not galvanic isolated from System-GND/Housing6.7RS-232/RS-232 (X13)RS-232/MDB ** alternative assembly upon requestHeader: USB Type AHeader: Micro-USB Type AB16.8USB Host (X34)6.9 USB OTG (X20)6.10 SD Card Reader (X31)PRODUCT MANUALSANTARO core 6.11 Reset Switch (SW1)Push for a power on reset.6.12 Bootselect Switch (SW2)Push during a power on sequence to boot into the Flash-N-Go.6.13 Power LED (D30)Should be green when the device is powered up.Header: micro HDMI Type D6.14 HDMI (X111)Plug: Molex 51021-1000Crimp Contact: Molex 43030-00076.15 USB intern (X11)Header: Keystone 1056Battery: CR1220Header: Molex 53398_0271Plug: Molex 51021_02006.16 Battery-Holder (X2) *Battery Connector (X112) ** Default for quadcore* Default for singlecore and dualcoreHeader: JST B2B-ZR-SM4-TFPlug: ZHR-2 with crimp contacts SZH-003T-P0.5Audio (X8) 1Plug: Molex 51021-1000 with crimp contacts: 50058/500791For further information regarding software defined parameters see the datasheet: Freescale SGTL500.6.17 Speaker Internal (X10)6.18 Power over Ethernet (X17 / X18)*Output 12V (+-2.5%)/2ATo work, PoE must be equipped with an add-on boardX17X18* alternative assembly upon requestThe add-on bord must be connected to X17 and X18Header: HIROSE DF19G-20P-1HHeader: HIROSE DF19G-20P-1HHeader: Molex 53398-1271Plug: Molex 51021-1200Header: Header JST SM08B-SURS-TFPlug: JST 08SUR-32S6.20 Backlight (X108)6.21 I²C (X106)Header: Molex 52207-0433 or 52207-0485Cable: FFC/FPCHeader: JST 04FFS-SP-TF Cable: FFC/FPC6.22 Resistive 4 - wire Touch (X4 / X7)Compatible with 4-wire resistive touch screens.For further information see ST Microelectronic's datasheet STMPE610X7Header: Molex 52207_0660_FFC_6x1mm_TOPCable: FFC/FPCHeader: Molex 52746_1071Cable: FFC/FPC6.23 Capacitive Touch (X16)6.24 Capacitive Touch (X102)7.Battery7.1Battery Specifications X1 / X2The internal baseboard is equipped with a Primary Lithium battery (type CR1220), which has a typical lifetime of 8 years.Danger of explosion when replaced with wrong type of battery.Replace the battery only with a Lithium battery that has the same or equivalent type recommended by SECO Northern Europe GmbH.Do not dispose of used CMOS batteries in domestic waste.Dispose of the battery according to the local regulations dealing with the disposal of these special One of these brands must be installed.7.2 Battery Specifications X4The internal baseboard is equipped with a Lithium battery (CMOS battery, type CR2032), which has a typical lifetime longer than 10 years.One of these brands must be installed.7.3Replacement of the Internal BatteryThe internal battery is placed as per figure below.For replacement, the SD-card and the back cover have to be removed.Annex A: Hardware Revision InformationThis document is applicable for all products listed below. Please note that customized variants might possibly not support all features listed herein. Additional features are documented in specific attachments.Hardware changes made from V1.1 to V1.1.1Reverse current protection for internal coin cell battery added. SDIO inrush-current tolerance improved.Connector for external backup battery added in case of absence of internal battery holder.SRAM accessibility while booted from SD-CARD added.Hardware changes made from V1.1.1 to V1.2RTS/CTS of RS232 interfaces corrected.Reset and Watchdog now leads into PMIC power cycle allowing low core voltage in idle mode. PMIC revision changed to F0A version. Eliminating power-up problems.Audio codec power supply workaround added to prevent I²C-Bus from being blocked. Ethernet Link-Led polarity corrected. Lit while link is up. HDMI Filtering added.Micro USB Connector changed to type with enhanced mechanical strengthAnnex B: Assembly OptionsB-1 Wi-Fi / BluetoothSome appliances require a wireless network connection. To be more flexible with regard to future Wi-Fi standards and regulations, we decided not to assemble this functionality directly onto thesingle-board-computer. We recommend an external USB or miniPCIe solution. Drivers for both versions will be included in the related operating systems. Please contact the support for information about supported modules.Annex C: Guidelines and StandardsC-1 RoHS DeclarationDevices comply with the requirements of Directive 2011/65/EU of the European Parliament and of the Council of 8th June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment.C-2 Supplier Declaration – Directive EG 1907/2006 REACHSECO Northern Europe is manufacturer of electronic products, thus - in the sense of REACH - we are so called …downstream users“. The products we supply to you are solely non-chemical products (goods). Moreover and under normal and reasonably foreseeable circumstances of application, the goods supplied to you shall not release any substance. For that, SECO Northern Europe is neither obligatory for registration nor for the creation of material safety data sheet (MSDS).From state of knowledge today our products contain no substances of very high concern from the current SVHC candidate list of the European Chemicals Agency in percentage >0,1.We will immediately inform you in correspondence to REACH-Article 33 if any substance of content >0,1 percentage in our goods will be classified alarming by the ECHA. Based on the current status, however,we do not expect such an incidence.C-3 UL CertificationCustomers of SECO Northern Europe are attending on different markets. These markets are subjected to different UL certifications. Therefore SECO Northern Europe have no UL certification for their products.To obtain UL certifications the product is designed to respect the following constraints:All electronic printed circuit boards are conform to UL standardBattery schematics meets the requirements of UL standard (please refer to chapter…6.16 Battery-Holder (X2) *“)All wirings are designed with UL componentsThe selected components on the markets are UL (List of UL relevant components is available at SECO Northern Europe (on request))SECO Northern Europe do not guarantee to obtain UL certifications.C-4 SECO Northern Europe Conformity StatementSECO Northern Europe GmbH develops and distributes reliable, Arm®-based embedded solutions.We offer various solutions from computer-on-modules (COM) to single-board computers (SBC) and fully-assembled human machine interface (HMI) with pre-installed operating system, display and housing.These solutions are offered exclusively as OEM products. They do not include any application software that is intended for the end user. Therefore, we do not make any EU declarations of conformity in the name of SECO Northern Europe GmbH and do not provide the products with the CE mark.Our customers provide the products with application software and build them into an end-user device as part ofan industrial production process. They identify themselves as a manufacturer by affixing a license plate with their company or brand name.We are happy to assist our customers when they compile the necessary technical documentation for the EU Declaration of Conformity of the complete device. We provide e.g. Supplier declarations or RoHS certifications, issue EMC testing results and carry out safety / radio / SAR tests, etc.****************************************Annex D: Common DocumentationD-1 Warranty HintsSECO Northern Europe embedded systems are subject to manufacturer’s warranty as long as the products are handled with adequate care and caution and in accordance to this manual. The period of guarantee starts from the date of shipmentThe products are warranted against defects in material, quality and functionality within the warranty period.During this period, the repair of the products is free of charge.SECO Northern Europe will decide for repair or replacement at their own discretion.If the product has been returned with or without prior notice and no failure or malfunction can be detected or the failure or malfunction is caused by inappropriate handling or the device has been returned after expiry of warranty period, SECO Northern Europe reserve the right to charge the user for repair or replacement.The warranty does not cover defects caused by improper or inadequate installation, maintenance or handling by the user, unauthorized modification or misuse, operation outside the specification a non-compliance of this manual. In case of doubt, please contact the technical sales team prior to intended activity.The warranty does also not cover any defects or damages of other equipment connected to the SECO Northern Europe product, faulty or not.For warranty or repair service, please contact the technical sales team.D-2 Field of ApplicationThe products covered by this document are designed and manufactured for the following applications (I).If you intend to use these products in applications as quoted in (II) we highly recommend a personal contact with our consultants and/or technical sales team.(I) Recommended application areas for SECO Northern Europe embedded systemsEven for these applications, we recommend to get in contact with our technical sales team. We offera wide range of support, even at an early stage of evaluation and/or design-in phase.Vending machines and gastronomy devicesIndustrial controllers and HMI systemsHome automation and facility managementAudiovisual equipmentInstrumentation and measuring equipment(II) Restricted application areas, prior consultation is mandatory to identify and meet the individual regulatory requirementsGas leak detectorsRescue and security equipmentSafety devicesControl and safety devices for airplanes, trains, automobiles and other transportation equipment Traffic control systemsControl equipment for nuclear power industryMedical equipment related to life support etc.Gasoline stations and oil raffineriesAnnex E: Technical SupportBefore contacting the SECO Northern Europe support team, please try to help yourself by the means of this manual or any other documentation provided by SECO Northern Europe or the related websites.If this does not help at all, please feel free to contact us.Our technicans and engineers will be glad to support you. Please note that beyond the support hours included the Starter Kit, various support packages are available. To keep the pure product cost at a reasonable level, we have to charge support and consulting services per effort.Shipping Address:SECO Northern Europe GmbHSchlachthofstrasse 2021079 HamburgGermanySupport Contact:Phone: +49 (0) 40 / 791 899-200Fax: +49 (0) 40 / 791 899-39E-Mail:**********************URL: Annex F: General InformationTrademarks and service marksNames and logos in this document may be trademarks of their respective companies.In some cases descriptions for copyrighted products are not explicitly indicated as such. The absence of the trademark (™) and copyright (©) symbols does not imply that a product is not protected. Additionally, registered patents and trademarks are similarly not expressly indicated.DrawingsAll drawings, which are shown in this manual are schematic drawings.For exact technical drawings please refer to our sales team or product managerAll other product or service names are the property of their respective owners.All rights reserved. Products subject to technical changes, improvements and misprints.© 2022 SECO Northern Europe GmbH。
ARMCortexA-9Processors官方细节文档
The ARM Cortex-A9ProcessorsThis whitepaper describes the details of the latesthigh performance processor design within the commonARM®Cortex™applications profileARM Cortex-A9MPCore™processor:A multicore processor that delivers the second generation of the ARM MPCore technology for increased performance scalability and increased control over power consumption.Ideal for reducing the power consumption in high-performance networking,auto-infotainment,mobile and enterprise applications.ARM Cortex-A9processor:A traditional single core processor for simplified design migration in high-performance,cost-sensitive markets such as mobile handsets and other embedded devices,reducing time-to-market and fully maintaining existing softwareinvestments.Document Revision2.0Sept2009IntroductionMany mainstream processor applications need everincreasing levels of performance to handle higherdata rates,more media services and new featuressuch as cryptography and security utilizing a richuser interface.Since consumer demand is the maindriver of product development in this applicationspace,a big challenge for manufacturers is toreduce the cost of end products.This isn’t just acompetitive issue:it is also about opening up newmarkets in developing countries where disposableincome is much lower than in the west.There are many examples of applications thatdemand the qualities of low cost and efficientperformance:connected mobile computers andother portable devices,cellular phones,PDAs,set-top box applications,games consoles andautoinfotainment to name just a few.Consumers don’t just expect their products to do more;they also expect longer battery life for portable products.To achieve all-day use,which is now a minimum requirement,phone,smart phone and PDA manufacturers must deliver extra performance and features more efficiently than before.Consider the smart phone,an application whose performance needs range from an ‘inactive’state when waiting for a call to very high activity when playing a game.Its system architecture must accommodate both extremes of performance and do it efficiently.Using a multicore processor architecture is one way to address peak performance demands with a design that is also capable of consuming very low power.Multicore devices deliver highly scalable performance and low power,and so they can offer high levels of design flexibility.The ARM®Cortex ™-A9processors are the latest and highest performance ARM processors implementing the full richness of the widely supported ARMv7architecture.Designed around the most advanced,high-efficiency,dynamic length,multi-issue superscalar,out-of-order,speculating 8-stage pipeline,the Cortex-A9processors deliver unprecedented levels of performance and power efficiency with the functionalityrequired for leading edge products across the broad range of consumer,networking,enterprise and mobile applications.The Cortex-A9microarchitecture is delivered within either a scalable multicore processor,the Cortex-A9MPCore ™multicore processor,or as a more traditional processor,the Cortex-A9single core processor.Supporting the configuration of 16,32or 64KB four way associative L1caches,the scalable multicore processor and the single processor –two distinct,separate products –provide the broadest flexibility and are each suited to specific applications and markets.TheCortex family of processors provides ARM Partners with a range of solutions optimized for specific markets and applications across a spectrum of performance and functionality.This underlines ARM's strategy of aligning technology around specific market applications and performance requirements.The ARM Cortex family comprises three series,which all adhere to the ARMv7architecture and implement the Thumb®-2instruction set to deliver the highest performance in cost sensitive embedded markets:ARM Cortex-A Series,applications processors supporting complex OS and multiple user applications.ARM Cortex-R Series,embedded processors for deeply embedded real-time systems.ARM Cortex-M Series ,deeply embedded processors optimized for very cost sensitive microcontrollers and FPGAThe Cortex-A9MPCore multicore processorThe Cortex-A9MPCore multicoreprocessor integrates the provenand highly successful ARMMPCore technology along withfurther enhancements to simplifyand broaden the adoption ofmulticore solutions.The Cortex-A9MPCore provides the ability toextend peak performance tounprecedented levels while alsosupporting design flexibility andnew features to further reduce andcontrol the power consumption atthe processor and system level.Targeted implementations of theCortex-A9MPCore can also offermobile devices increased peakperformance over today’ssolutions by utilizing the designflexibility and advanced powermanagement techniques offeredby the ARM MPCore technologyto maintain operation within thetight mobile power budgets.Using the scalable peakperformance,this processor isable to exceed the performance oftoday’s comparable high-performance embedded devicesand brings a consistent softwareinvestment over an extended breadth of markets.The Cortex-A9single core processorThe Cortex-A9processor provides unprecedented levels of performance and power efficiency making it an ideal solution for any design requiring high performance in a low-power,cost sensitive,single processor-based ing a convenient synthesizable flow and IP deliverables,the Cortex-A9processor provides an ideal upgrade path for existing ARM11™processor-class designs that require higher performance and increased levels of power efficiency within a similar silicon cost and power budget while maintaining a compatible software environment.The Cortex-A9single core processor provides dual low-latency Harvard64-bit AMBA®3AXI™master interfaces for independent instruction and data transactions and are capable of sustaining four double word writes every five processor cycles when copying data across a cached region of memory.Meeting the Requirements of Multiple MarketsThe Cortex-A9processors provide a scalable solution across a wide range of market applications from mobile handsets through to high-performance consumer and enterprise products by sharing the common requirements of:∙Increased power efficiency with higher performance for lower power consumption;∙Increased peak performance for most demanding applications;∙Ability to share software and tool investments across multiple devices;Both Cortex-A9processors are fully application compatible and can enhance application specific performance by utilizing either the Cortex-A9NEON™Media Processing Engine(MPE)or Floating-Point Unit(FPU),to further extend the range of market applications addressed by these processors.The design configuration of each implementation then provides the flexibility to tailor the implementation to the application and market-specific characteristics.Table1.Cortex-A9processor example application profilesApplication Specific OptimizationBoth the Cortex-A9and the Cortex-A9MPCore application-class processors are supported by a rich set of features and ARMv7architectural functionality so as to deliver a high-performance and low-power solution across both application specific and general purpose designs.Feature BenefitHigh-Efficiency Superscalar Pipeline Industry leading performance2.50DMIPS/MHz for unprecedented peak performance while also maintaining low power for extended battery life and lower cost packaging and operationNEON Media Processing Engine Accelerating media and signal processing functions for increased application specific performance with the convenience of consolidated application software development and supportFloating-Point Unit Provides significant acceleration for both single and doubleprecision scalar Floating-Point operations.Double theperformance of previous ARM FPU,this unit provides industryleading image processing,graphics and scientific computationcapabilitiesOptimized Level1Caches Performance and power optimized L1caches combine minimalaccess latency techniques to maximize performance andminimize power consumption.Also providing the option for cachecoherence for enhanced inter-processor communication orsupport of rich SMP capable OS for simplified multicore softwaredevelopmentThumb-2Technology Delivers the peak performance of traditional ARM code while alsoproviding up to a30%reduction in memory required to storeinstructionsTrustZone®Technology Ensures reliable implementation of security applications rangingfrom digital rights management to electronic payment.Broadsupport from technology and industry PartnersJazelle®RCT and DBX Technology Provides up to3x reduction on code size for Just-in-time(JIT)and ahead-of-time compilation of bytecode languages while also supporting direct byte code execution of Java instructions for acceleration in traditional virtual machinesL2Cache Controller Providing low latency and high bandwidth access to up to2MB ofcached memory in high frequency designs,or design needing toreduce the power consumption associated with off chip memoryaccessProgram Trace Macrocell and CoreSight™Design Kit Together these components provide the software developer with the ability to non-obtrusively trace the execution history of multiple processors and either store this,along with time stamped correlation,into an on-chip buffer,or off chip through a standard trace interface so as to have improved visibility during development and debugTable2.Cortex-A9processor featuresAdvanced MicroarchitectureThe Cortex-A9microarchitecture has been designed to maximize processing efficiency within the price sensitivities of embedded devices on silicon cost while trading against the inefficiencies associated with an excessively high frequency design.The result is a processor design that,through synthesis techniques,can deliver devices capable of over2GHz clock frequency and provide the high levels of power efficiency required for extended battery powered operation or operation within thermally limited environements.Fig.1Cortex-A9microarchitecture structure and the single core interfaces.Pipeline description∙Advanced processing of instruction fetch and branch prediction-unblocks branch resolution from potential memory latency-induced instruction stalls.∙Up to four instruction cache line prefetch-pending-further reduces the impact of memory latency so as to maintain instruction delivery.∙Between two and four instructions per cycle forwarded continuously into instruction decode-ensures efficient superscalar pipeline utilization.∙Fast-loop mode-provides low power operation while executing small loops.∙Superscalar decoder-capable of decoding two full instructions per cycle.∙Speculative execution of instructions-enabled by dynamic renaming of physical registers into an available pool of virtual registers.∙Increased pipeline utilization-removing data dependencies between adjacent instructions and reducing interrupt latency.∙Virtual renaming of registers-accelerating code through an effective hardware based unrolling of loops without the additional costs in code size and power consumption.∙Any of the four subsequent pipelines can select instructions from the issue queue-providing out of order dispatch further increasing pipeline utilization independent of developer or compilerinstruction scheduling.Ensures maximum performance from code optimized for previous generation of processors and maintains existing software investments.∙Concurrent execution across full dual arithmetic pipelines,load-store or compute engine,plus resolution of any branch each cycle.∙Dependent load-store instructions can be forwarded for resolution within the memory system -further reduces pipeline stalls and significantly accelerating the execution of high level code accessing complex data structures or invoking C++functions.∙Support for four data cache line fill requests -further reduces stalls due to memory latency with either automatic or user driven prefetching to ensure the availability of critical data.∙Out of order write back of instructions -enables the pipeline resources to be released independentof the order in which the system provides the required data.The Cortex-A9MPCore TechnologyThe Cortex-A9MPCore multicoreprocessor providesa design-configurableprocessorsupporting between1and 4CPU in anintegrated cachecoherent manner.Each processormay beindependentlyconfigured for theircache sizes andwhether the FPU,MPE or PTMinterface will besupported.Inaddition,the processor in anyconfiguration may expose the Accelerator Coherence Port (ACP)permitting other non-cached system-mastering peripherals and accelerators such as a DMA engine or cryptographic accelerator core to be cache coherent with the L1processor caches.Also integrated is a GIC architecture compliant integrated interrupt and communication system with private peripherals for increased performance and softwareportability and may be configured to support between 0(legacy bypass mode)or 224independent interrupt sources.The processor can support either a single or dual 64-bit AMBA®3AXI ™interconnect interface.The Cortex-A9MPCore multicore processor includes an enhanced version of the silicon-proven ARM MPCore technology for scalable multicoreprocessing:Fig 2.Cortex-A9multicore processorSnoop Control UnitThe SCU is the central intelligence in the ARM’s multicore technology and is responsible for managing the interconnect,arbitration,communication,cache-2-cache and system memory transfers,cache coherence and other multicore capabilities for all MPCore technology enabled processors.The Cortex-A9MPCore processor for the first time also exposes these capabilities to other systemaccelerators and non-cached DMA driven mastering peripherals so as to increase the performance and reduce the system wide power consumption by sharing access to the processor’s cache hierarchy.This system coherence also reduces the software complexity involved in otherwise maintaining software coherence within each OS driver.Accelerator Coherence PortThis AMBA 3AXI compatible slave interface on the SCU provides an interconnect point for a range of system masters that for overall system performance,power consumption or reasons of softwaresimplification are better interfaced directly with the Cortex-A9MPCore processor.This interface acts as a standard AMBA 3AXI slave,and supports all standard read and write transactions without any additional coherence requirements placed on attached components.However,any readtransactions to a coherentregion of memory will interactwith the SCU to test whetherthe required information isalready stored within theprocessor L1caches.If it is,itis returned directly to therequesting component.If itmissed in the L1cache,thenthere is also the opportunity tohit in L2cache before finallybeing forwarded to the mainmemory.Write transactions toany coherent memory region,the SCU will enforce coherence before the write isforwarded to the memorysystem.The transaction may also optionally allocate into the L2cache hence removing the power and performance impact of writing directly through to the off chip memory.Generic Interrupt ControllerImplementing the recently standardized and architected interrupt controller,the GIC provides a rich and flexible approach to inter-processor communication and the routing and prioritization of system interrupts.Supporting up to 224independent interrupts,under software control,each interrupt can be distributed across CPU,hardware prioritized,and routed between the operating system and TrustZone softwaremanagement layer.This routing flexibility and the support for virtualization of interrupts into the operating system,provides one of the key features required to enhance the capabilities of a solution utilizing a paravirtualizationmanager.Fig.3.Accelerator Coherence PortAdvanced Bus Interface UnitEnhancing the interface between the processor and system interconnect,the Cortex-A9MPCore processor provides advanced features to maximize system performance and offers additional flexibility for various System on Chip design philosophies.Supporting the design configuration of either a single or dual64-bit AMBA3AXI master interface,the processor can provide,at CPU speed,full load balancing of transactions capable of exceeding12GB/s into the system interconnect.Alternatively,the second interface may define a transaction filter to a subset of the global address space so presenting the system design with the flexibility to partition the address space immediately within the processor fabric.Each interface may also offer different CPU to bus frequency ratios,including synchronous half clock ratios for increased design flexibility and improved system bandwidth for designs considering DVFS or high speed on chip memories.Advanced power management capabilities are also supported.Application Specific Compute Engine AccelerationIn addition to the optimized standard architectural features,both the Cortex-A9and the Cortex-A9MPCore processor can be augmented with either of the following architected features:Cortex-A9Floating-Point Unit(FPU): When implemented along with either of the Cortex-A9processors,the FPU provides high-performance single,and double precision Floating-Point instructions compatible with the ARM VFPv3 architecture that is software compatible with previous generations of ARM Floating-Point coprocessor.Supporting full IEEE-754compliant Floating-Point,operating for the first time at the same speed as previous “run-fast”modes,also now operating with no trapped exceptions simplifying software and further accelerating the performance of Floating-Point code.Additional instructions for16-bit Floating-Point data type conversions have also been added enhancing the interaction with embedded3D processors such as the ARM Mali™graphics processors.Providing an average of more than double the Floating-Point performance of previous generation ARM Floating-Point coprocessors,a Cortex-A9FPU is capable of significantly enhancing solutions with rich graphics,3D,imaging and scientific computation.Cortex-A9NEON Media Processing Engine (MPE):The Cortex-A9MPE can be used with either of the Cortex-A9processors and provides an engine that offers both the performance and functionality of the Cortex-A9Floating-Point Unit plus an implementation of the ARM NEON Advanced SIMD instruction set that was first introduced with the ARM Cortex-A8processor for further acceleration of media and signal processing functions.The MPE extends the Cortex-A9processor’s floating-point unit(FPU)to provide a quad-MAC and additional64-bit and128-bit register set supporting a rich set of SIMD operations over8, 16and32-bit integer and32bit Floating-Point data quantities every cycle.Further enhancing the SIMD capability,the MPE also support fused data types to remove packing/unpacking overheads and structured load/store capabilities to eliminate shuffling data between algorithm-format to machine-formats. Utilizing the MPE also enlarges the register file available to FPU and increases the design to support32double-precision registers,while retaining the Cortex-A9processor’s32/64-bit scalar floating-point and core integer performance.Advanced L2Cache Controller:The ARM L2cache controller(PrimeCell®PL310)was designed alongside the Cortex-A9processors to provide an optimized L2cache controller that can match the performance and throughput capability of the Cortex-A9processor.The PL310is capable of supporting multiple outstanding AXI transactions on each interface,with per-master per-way lockdown to allow managed-sharing between multiple CPU or components using the Accelerator Coherence Port effectively using the PL310as a buffer between accelerators and the processors therefore increasing system performance and lowering associated power consumption.The PL310also includes capabilities of the Cortex-A9Advanced Bus Interface Unit and therefore also provides support for synchronous½clock ratios to reduce latencies on high speed processor designs,and the ability to address-filter second master AXI interfaces for split-domain,split-frequency designs and fast access to on-chip scratch memories.Supporting up to8MB,with between four and sixteen-way associative L2cache,the PL310supports the optional integration with both parity and ECC supporting RAM and is capable of operating at the same frequency as the processor.Advanced lock-down techniques also provide mechanisms to use the cache memory as a transfer RAM between coherent accelerators and the processors.Cortex-A9Program Trace Macrocell(PTM):The Cortex-A9PTM provides ARM CoreSight technology compatible program-flow trace capabilities for either of the Cortex-A9processors and provides full visibility into the processor’s actual instruction flow.The Cortex-A9PTM includes visibility over all code branches and program flow changes with cycle counting enabling profiling analysis.Also available is the Cortex-A9CoreSight Design Kit which enables correlation of trace streams from multiple processors and includes all of the CoreSight components required to trace and debug a Cortex-A9 MPCore multiprocessor design.Syntheses Flexibility and Reference MethodologiesUtilizing the full flexibility of a syntheses design flow,the Cortex-A9processor deliverables are capable of being targeted to any foundry process and geometry.Through continued collaboration with leading EDA companies there will also be available Implementation Reference Methodologies(iRMs)that enable Cortex-A9processor licensees to customize,implement,verify and characterize the processors across their chosen process technologies.These reference methodologies provide a predictable route to silicon,and a basis for custom methodology development,using both logical and physical synthesis techniques.In additional the iRMs can contain ARM Artisan®front-end library views and pre-compiled RAMs to enhance the ability of the iRMs to deliver processor implementation flows and provides a far more complete reference solution than previously offered.Tools&EcosystemTools SupportAll ARM processors are supported by the ARM RealView®portfolio of development tools,as well as a wide range of third party tools,operating system and EDA vendors.ARM RealView tools are unique in their ability to provide solutions that span the complete development process from concept to final product deployment.Each member of the RealView portfolio has been developed closely alongside the ARM hardware and software IP,ensuring that it maximizes the IP's performance.No other supplier can offer this unique end-to-end toolchain support for ARM IP,from system and processor design through software development.Working with ARM RealView tools provides an extensive and cohesive product range that empowers architects and developers alike to confidently deliver optimal products into the marketplace faster than ever before.Page 11Third party supportThe ARM Connected Community is theindustry’s largest network of leading silicon,systems,design support,software and trainingproviders enabling system designers to accessa huge range of ARM technology andoptimized IP to provide a complete solution,from design to manufacture and end use,forproducts based on the ARM architecture.For more information,please visit/community.Physical IPARM’s Artisan Physical IP products are designed to achieve the best combination of performance,density,power and yield for a given manufacturing process.The products are available for 45-through 250-nanometer processes and delivered with an extensive set of views and models supporting industry leading EDA tools.ARM Artisan IP platforms and product portfolios offer a wide range of choices to meet system-on-chip (SoC)designers’nanometer requirements.AMBAThe AMBA interconnect protocol forms the basis of the de facto industry-standard on-chip interconnect specification that serves as a framework for SoC designs,effectively providing the “digital glue”that binds IP components together.It is also the backbone of the ARM design reuse strategy.Through consultation with the wider SoC community,ARM strives to achieve the most technologically advanced,supportable,royalty-free interconnect specification in the industry.The current PrimeCellportfolio of peripheral IP supports the AMBA 2and 3release of the protocol that defines the AMBA AXI ™,AHB ™,AHB-Lite,APB,and ATB specifications.For further information on the AMBA protocol,please see .SummaryThe Cortex-A9and Cortex-A9MPCore are two new ARM processors designed to address the requirements for both single and multiple processor designs.The common microarchitecture incorporates features that provide enhanced architectural functionality,performance and power efficiency across not only the processor core,but the entire SoC.The single core processor offers higher performance and increased power efficiency for existing ARM11class devices enabling enhanced functionality and lower power consumption for extended battery life in mobile designs.The implementation characteristics also provide full architectural software compatibility to enable cost-reduction at Cortex-A8class performance to extend the market reach of the associated software investments.The MPCore implementation of the processor offers advanced power management features to further lower power consumption and exceed the power requirements across an increasing number of markets and applications.The Cortex-A9MPCore also delivers unprecedented levels of scalable performance opening markets previously unable to enjoy the power efficiency inherent in the design of an ARM processor.The complete range of companion technology was specifically designed to integrate with both the Cortex-A9processors to boost performance further as required in specific applications and markets,especially within wireless,entertainment,imaging and other high-end multimediaapplications.。
晶晨半导体推出集成了ARM CORTEX-A9的芯片
T + HD N低 至 00 %以 及 9 d N .4 5 B S R。G I 16采 用 S8 6 2 LQ N F S P封 装 。可 广 泛应 用 于手 机 , V 0 F fS O D D播 放器 、 笔记 本 、 数码 相框 和音 箱 等领 域 。G I 1 6已 S8 6 正 式量产 , 已接受 订单 及样 片 的获取 。 现
基站 的软 件设计 。
晶 晨 半导 体 推 出集 成 了
爱 特梅 尔公 司宣 布推 出全 新 S M3 A N系 列微 控
A M C R E - 9的芯 片 R O T XA
晶晨 半 导体 ( ml i 和 A M 公 司共 同宣 A o c) g R
制器 , 扩展 其 A M ot — l h系列 。新 推 出 的 R C rx M3Fa e s
上苛 刻 的 目标 。
能够 提供 1 2 . V至 3 V的更 大供 电 电压 范 围 , 现 6 . 6 实 真 正 的 1 V 运 作 ,且 工 作 模 式 下 功 耗 / z 为 . 8 MH 仅
通 芯 微 电子 发 布 D类 音频 放 大 器 芯 片 G 1 6 S I 6 8
倍 的性 能 。 外 ,C6 1 可 大幅提 升业 界首款 能 此 T I66还
够 同时处 理 定 点 和 浮 点 数 学 运算 的 多 内核 D P的 S 性 能 ,这 一极 富创 新性 的强 大功 能可 显着 简化无 线
爱特 梅 尔推 出 S M N系 列微 控 制 器 产 品 阵容 A3
6 m和 4 m 的合 作协 议 中芯 国际 已将 Snpy 5n 0n yoss 列 为首选 供应 商 以提供设 计实 施软 件 和 由数 字控 制 器 、 理层 ( HY) 物 P 和模 拟 I 成 的各 种 I 决方 P组 P解
Cortex a9
Cortex-A9ARM的Cortex-A9构架Cortex-A9处理器能与其他Cortex系列处理器以及广受欢迎的ARM MPCore技术兼容,因此能够很好延用包括操作系统/实时操作系统(OS/RTOS)、中间件及应用在内的丰富生态系统,从而减少采用全新处理器所需的成本。
ARM Cortex-9处理器架构图[1]通过首次利用关键微体系架构方面的改进,Cortex-A9 处理器提供了具有高扩展性和高功耗效率的解决方案。
利用动态长度、八级超标量结构、多事件管道及推断性乱序执行( Speculative out-of-order execution),它能在频率超过1GHz的设备中,在每个循环中执行多达四条指令,同时还能减少目前主流八级处理器的成本并提高效率。
ARM MPCore技术被广泛选用的对ARM MPCore技术提升了性能的可拓展性以及对功耗的控制,从而在性能上突破了目前类似的高性能设备,同时继续满足了苛刻的手机功耗要求。
迄今为止,ARM MPCore技术已被包括日电电子、NVIDIA、瑞萨科技和萨诺夫公司(Sarnoff Corporation)在内的超过十家公司授权使用,并从2005年起实现芯片量产。
通过对MPCore技术作进一步优化和扩展,Cortex-A9 MPCore多核处理器的开发为许多全新应用市场提供了下一代的MPCore技术。
此外,为简化和扩大对多核解决方案的使用,Cortex-A9 MPCore处理器还支持与加速器和DMA的系统级相关性,进一步提高性能,并降低系统级功耗㋛刻的250mW 移动功耗预算条件下为当今的手机提供显著的性能提升的可综合ARM处理器。
在采用TSMC 65纳米普通工艺、性能达到2000 DMIPS时,核逻辑硅芯片将小于1.5平方毫米。
从2000 DMIPS到8000 DMIPS的可扩展性能,比当今高端手机或机顶盒高出4-16倍,将使终端用户能够即时地浏览复杂的、加载多媒体内容的网页,并最大程度地利用Web 2.0应用程序,享受高度真实感的图片和游戏,快速打开复杂的附件或编辑媒体文件。
ARM Cortex A8、A9以及高通Scorpion处理器详解
1.一些背景介绍1.1 ARM核心ARM核心是主控SOC中的重要部分,系统的日常应用都由ARM核心来完成,因此ARM核心的效能很大程度上跟用户体验有关。
ARM公司一般用DMIPS/MHz来标称ARM核心的性能。
DMIPS 是Dhrystone Million Instructions executed Per Second的缩写,反映核心的整数计算能力。
但Dhrystone算法代码本身比较叫,可以完全放到Cache中执行,因此反映的只是核心能力,并不能反映缓存、内存I/O性能。
SoC定义为将微处理器、模拟IP核、数字IP核和存储器(或片外存储控制接口)集成在单一芯片上。
能支持智能系统的ARM核心有以下几类:ARM9:指令集ARMv5,5级流水线,1.1DMIPS/MHzARM10E:指令集ARMv5,intel获得授权后发展的,如PXA270,PXA210系列,6/7级流水线,1.35DMIPS/MHzARM11:指令集ARMv6,8级流水线,1.25DMIPS/MHzCortex-A8:指令集ARMv7-A,13级整数流水线,超标量双发射,2.0DMIPS/MHz,标配Neon,不支持多核Scorpion:指令集ARMv7-A,高通获得指令集授权后在A8的基础上设计的。
13级整数流水线,超标量双发射,部分乱序执行,2.1DMIPS/MHz,标配Neon,支持多核Cortex-A9:指令集ARMv7-A,8级整数流水线,超标量双发射,乱序执行,2.5DMIPS/MHz,可选配Neon/VFPv3,支持多核Cortex-A5:指令集ARMv7-A,8级整数流水线,1.57DMIPS/MHz,可选配Neon/VFPv3,支持多核Cortex-A15:指令集ARMv7-A,超标量,乱序执行,可选配Neon/VFPv4,支持多核×目前只有指令集ARMv7-A的核心才能在Android2.2上支持Adobe Flash。
导航a9芯片
导航a9芯片导航A9芯片是一款用于导航设备的芯片,由ARM公司设计和生产,它的全称是ARM Cortex-A9。
A9芯片是一款强大而高效的处理器,具有出色的运算能力和能耗控制能力。
下面将详细介绍导航A9芯片的特点和应用。
首先,导航A9芯片采用了ARM公司最先进的Cortex-A9架构,该架构是ARM公司推出的一种高性能、低功耗的处理器架构。
A9芯片采用了多核设计,可以同时处理多个任务,提高了处理器的并行处理能力。
同时,A9芯片还采用了7级流水线技术,提高了指令执行效率,加快了处理速度。
其次,导航A9芯片的核心频率可达到1.5GHz,具有强大的计算能力。
无论是导航地图数据的计算还是路线规划的算法,A9芯片都能够快速地完成,并且保持良好的稳定性。
A9芯片采用了超标清图像处理技术,可以实现高清地图显示和平滑的导航界面,提升了用户的使用体验。
另外,导航A9芯片还具有先进的功耗控制技术。
芯片采用了动态电压调节和功率管理技术,可以根据实际工作负载动态调整电压和频率,从而实现功耗的最小化。
这样不仅可以延长导航设备的续航时间,还能保证设备在长时间导航过程中的稳定性和可靠性。
此外,导航A9芯片还支持多种导航方式。
它可以与GPS、北斗、伽利略等卫星导航系统配合使用,实现全球范围内的导航定位。
同时,A9芯片还支持惯性导航和地图匹配等技术,可以提高导航的精度和可靠性。
不仅如此,A9芯片还支持智能语音导航和实时交通信息的获取,为用户提供更加全面和贴心的导航服务。
最后,导航A9芯片的应用十分广泛。
除了汽车导航系统外,它还可以应用于航空导航、船舶导航、户外探险导航等领域。
A9芯片的高性能和低功耗特点,使得导航设备可以在复杂的环境下准确地定位和导航,提升了使用者的安全性和便捷性。
总之,导航A9芯片是一款性能强大、能耗低的导航芯片,具有多核架构、高频率运算和先进的功耗控制技术。
它为导航设备提供了强大的计算能力和稳定性,支持多种导航方式,并且在汽车导航、航空导航等领域有广泛的应用。
cortexa9 a15逻辑规模
cortexa9 a15逻辑规模Cortex A9和Cortex A15是ARM架构中两种不同的处理器核心。
它们在逻辑规模上有着不同的特点和优势。
Cortex A9是ARM公司于2007年推出的一款32位处理器核心,采用了ARMv7体系结构。
它具备较高的性能和低功耗的特点,广泛应用于智能手机、平板电脑和嵌入式系统等领域。
Cortex A9采用了超标量乱序执行架构,具备双发射指令流水线和多发射乱序执行的能力,能够提供出色的浮点运算性能。
此外,Cortex A9还支持ARM Thumb-2指令集,能够提供更高的代码密度和更好的性能。
相比之下,Cortex A15是ARM公司推出的一款更高性能的处理器核心。
它于2010年发布,采用了ARMv7-A体系结构,是ARM Cortex-A系列中的一员。
Cortex A15在逻辑规模上更大,拥有更多的指令和功能单元,能够提供更高的运算性能和更好的多任务处理能力。
Cortex A15支持超标量乱序执行架构,具备更高的浮点运算能力和更大的缓存容量。
此外,Cortex A15还支持虚拟化技术和TrustZone安全技术,为云计算、虚拟化和安全领域提供了更好的支持。
总体来说,Cortex A9和Cortex A15在逻辑规模上存在一定的差异。
Cortex A9逻辑规模较小,适用于对功耗要求较低的场景,如移动设备和嵌入式系统。
而Cortex A15逻辑规模较大,适用于对性能要求较高的场景,如高性能计算、服务器和网络设备。
选择合适的处理器核心取决于具体的应用需求和性能要求。
需要注意的是,逻辑规模并不是唯一衡量处理器性能的指标,还有诸如时钟频率、缓存容量、指令集支持等因素也会影响处理器的性能表现。
因此,在选择处理器时,需要综合考虑多个因素,并根据具体的应用场景进行权衡和选择。
Cortex A9和Cortex A15在逻辑规模上存在差异,分别适用于不同的应用场景。
了解它们的特点和优势,有助于我们选择合适的处理器核心,以满足不同应用领域对性能和功耗的需求。
Cortex-A9处理器
ARM Cortex-A9处理器简介 许多主流处理器应用对性能的要求都日益提高,以实现更快的数据速率、更多的媒体服务和更多新功能(如利用丰富动态用户界面的加密和安全等功能)。
在此类应用中,消费者需求是促进产品开发的主要驱动力,因此降低终端产品成本就成了制造商面临的一大挑战。
这并不仅仅是竞争问题:同时也关乎在发展中国家开辟新市场的工作,这些国家的可支配收入要比西方世界少得多。
在应用领域,既要求低成本又要求高性能的实例不在少数,比如:联网移动电脑及其他便携式设备、手机、PDA、机顶盒应用、游戏机以及车载信息娱乐设备等等,不一而足。
消费者不但希望产品功能更强大,也期望便携式产品的电池使用寿命更长。
如今,全天候使用已经成为最低要求,为了达到这一要求,电话、智能电话和PDA厂商们必须着眼于如何更有效率地提升产品性能、增加产品功能。
拿智能电话来说,其性能要求既包括待机时的非活动状态,也包括游戏时的高度活动状态。
因此,其系统架构必须能够有效支持产品性能的“两极”。
采用多核处理器架构不但能够解决峰值性能的要求,而且其设计也能够大大降低功耗。
多核设备具有性能可扩展性高和功耗低的特点,为设计提供了极大的灵活性。
最新开发的ARM ® Cortex TM -A9处理器是ARM处理器系列中性能最高的一款产品,该款处理器采用了广受支持的ARMv7架构,充分实现了其丰富性。
Cortex-A9处理器的设计是基于最先进的预测型八级流水线,该流水线具有高效、动态长度、多发射超标量及无序完成特征,这款处理器的性能、功效和功能均达到了前所未有的水平,完全能够满足消费、网络、企业和移动应用等领域尖端产品的要求。
C o r t e x-A 9微架构提供两种选项:可扩展的C o r t e x-A 9 MPCore TM 多核处理器或较为传统的Cortex-A9单核处理器。
可扩展的多核处理器和单核处理器(两款不同的独立产品)支持16、32或64KB四路组相联一级缓存的配置,具有无与伦比的灵活性,皆能达到特定应用和市场的要求。
ARM(cortexA9)利用key2、key3验证中断
一.利用key2、key3验证中断:(1)k2按键按下是led2亮,k3按键按下是led3亮(2)查看原理图k2按键UART_RING->连接4412的GPX1_1引脚,k3按键SIM_DET->连接4412的GPX1_2引脚,led2按键CHG_COK>连接4412的GPX2_7引脚,led3按键CHG_FLT->连接4412的GPX1_0引脚,读取GPX1_1状态:高电平时--k2断开(常态)---led2灭读取GPX1_1状态:低电平时--k2闭合(按下)---led2亮(3)设置相应的信号作为按键按下中断事件,触发中断处理二.中断设置:(以key2为例)(1)外设控制器GPIO1.GPX1.PUD = GPX1.PUD & ~(0x3 << 2); // Disables Pull-up/Pull-down禁止上下拉,(可有可无)2.GPX1.CON = (GPX1.CON & ~(0xF << 4)) | (0xF << 4); //GPX1_1:WAKEUP_INT1[1](EXT_INT41[1])GPX1CON(key2)设置GPX1_1引脚功能为外部可唤醒中断WAKEUP_INT1[1]3.EXT_INT41CON 配置中断信号为下降沿EXT_INT41_CON[1] 4.EXT_INT41_FLTCON0 使能和配置滤波消抖(默认打开,可以不设置)5.EXT_INT41_MASK 使能或禁止中断(写0使能)6.EXT_INT41_PEND 中断状态位,当中断发生时自动置1,中断处理完成后要手动清零。
(写1清零)(2)中断控制器GIC1.-通过9.2中断源表找到和外设中断标示对应的中断控制器中断标示(GPIO有32个可被唤醒寄存器)EINT[1]_1-->EINT[9]-->SPI[25]/57,SPI:共享寄存器;ID:中断优先级2.ICDISER.ICDISER1 |= (0x1 << 25); //cpu0 使能spi[25]3.CPU0.ICCICR |= 0x1; //使能cpu0 处理中断4.CPU0.ICCPMR = 0xFF; //设置cpu0 中断屏蔽优先级为255(最低,所有中断都能响应)5.ICDDCR = 1; //GIC使能6.ICDIPTR.ICDIPTR14 = 0x01<<8; //SPI25 中断给cpu0 处理(3)ARM内核三. 中断处理函数输入参数和输出参数都是void(1)读取CPU0.ICCIAR寄存器获得,当前正在处理的中断号(2)根据中断号,分支处理中断(3)清中断源(置1)1.外设一级EXT_INT41_PEND2.GIC 一级ICDICPR.ICDICPR13.cpu 一级CPU0.ICCEOIR附:程序参考05-key_int2。
ARM Cortex-A9
ARM Cortex-A9性能、规格和相应技术指标性能ARM Cortex-A9 性能、功耗和面积Cortex-A9 单核软宏试用实现Cortex-A9 双核硬宏实现工艺TSMC 65G TSMC 40G优化方式性能优化性能优化功率优化标准单元库ARM SC12 ARMSC12+高性能工具包ARMSC12+高性能工具包性能(总DMIPS)2,075 DMIPS 10,000DMIPS 4,000 DMIPS频率830MHZ 2000MHZ(标准)800MHZ (wc/ss)能效(DMIPS/mW) 5.2 5.26 8.0 目标频率下的总功率0.4W 1.9W 0.5W芯片面积1.52mm(不包括高速缓存)6.72mm(包括L1奇偶校验和所有DFT/DFM)4.62mm(包括所有DFT/DFM)Cortex-A9体系结构ARMv7-A CortexDhrystone 性能每个内核2.50 DMIPS/MHz多核1-4 个内核还提供单核版本ISA 支持•ARM•Thumb®-2 / Thumb•Jazelle® DBX 和RCT•DSP 扩展•高级SIMD NEON™ 单元(可选)•浮点单元(可选)内存管理内存管理单元规格Cortex-A9 主要功能TrustZone® 技术确保安全应用的可靠实现,适合从数字版权管理到电子支付等应用。
获得技术和行业合作伙伴的广泛支持Thumb-2技术可为传统ARM 代码提供最高性能,对于存储指令占用的内存,最多可节省30% 的空间。
Jazelle RCT 和DBX 技术最多可使即时生产(JIT) 和提前编译的字节码语言的代码大小缩小3 倍,同时还支持Java 指令的直接字节码执行,以便提高传统虚拟机的速度优化的1级高速缓存性能和功率优化的L1 高速缓存结合了最低访问延迟技术,可以在最大程度上提高性能和降低能耗。
还为实现高速缓存一致性提供了增强处理器间通信的选项或支持富SMP 功能操作系统的选项,以便简化多核软件开发可选的2级高速缓存控制器在高频率设计或需要降低与芯片外内存访问关联的能耗的设计中,最多可对8 MB 高速缓存内存提供低延迟、高带宽访问先进的多核技术侦测控制单元SCU 是ARM 多核技术的中央智能单元,负责管理互连、仲裁、通信、高速缓存之间的传输和系统内存传输、高速缓存一致性以及支持所有多核技术的处理器的其他功能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Technology Leadership Application Processor
July 2009
1Байду номын сангаас
CONFIDENTIAL
Changing Market Dynamics
Platform based design becoming more prevalent
TSMC 40G (trialled)
Dualcore, dualNeon with 32/32K L1, dualAXI, ACP, 128IRQ, PTM, PL310 Advantage-HS (Rvt only) ARM fast-instances 1200 at ss, 0.81V, 125/-40C, W/C 5.2
Java important in MHP/OCAP/Blu-Ray Multiple room TV feeds from multiple HD feeds Multi-format audio and video Advanced security Rich Operating Systems
Configuration
Suitable for high-end
consumer and enterprise through to wireless handsets
Standard Cells Memories Frequency* (MHz)
Delivered 2Q08, now in partner silicon
7
CONFIDENTIAL
Cortex-A9 – Technology Leadership
Breakthrough performance and power
scalability Second generation SMP technology Advanced pipeline with 2.5 DMIPS/MHz Optional floating-point and NEON units
8
4.9 8.0 at tt, 1.1V, 25C at tt, 0.99V, 25C * 50ps clock jitter, +/-3% duty cycle variation, 10% OCV and 100ps hold margin, rcworst parasitics
CONFIDENTIAL
New system-level integration
features for design optimization Accelerator coherency port PPA Generic interrupt control
(GIC) and distribution system
CONFIDENTIAL
Mobile Drivers: PC style applications
High-end phones
are increasing in complexity Web 2.0 invading the handset Operators being driven towards Standard open Oss PC applications are being optimized for ARM platform One architecture to optimise, one set of RealView® tools to create your product portfolio
2
CONFIDENTIAL
Demands from the Digital Home
STB and DTV processing requirements increasingly driven by on-line content
Browsers, Connectivity, Advanced UI Media standards changing after deployment of H/W
ARM9 5 Stage Pipeline
ARM11 8 Stage Pipeline
Cortex-A8 13 Stage Pipeline
6
CONFIDENTIAL
The ARM Cortex-A9 Processors
ARM defines new embedded processor
capability with the release of two new processors within the common ARM® Cortex™ architecture family
ARM Cortex-A9 MPCore™ processor: A multicore processor
delivering the 2nd generation of the ARM MPCore technology for increased performance scalability and increased control over power consumption. Ideal for high-performance mobile handsets, networking and auto-infotainment devices
Source: The Worldwide Market for Semiconductors & Software in Set-top Boxes - 2007 Edition
3
CONFIDENTIAL
Challenges for Next Generation TV
Home solutions are needing many more features
Cortex-A9 Delivering Next Generation
The rapid adoption is leading
to rapid deployment of the next generation of devices Typically two to three times the performance of the Cortex-A8 designs First handsets potentially this year, with mainstream deployment by end of 2010 All key mobile operating system are ready for integration and testing in SMP configurations
TSMC 40LP (estimated)
Dual-core, Dual-NEON 32/32K L1, 128 Interrupts, ACP, dual-AXI, PTM,PL310 Advantage-HS (Rvt only) ARM fast-instances 600-700 at ss, 0.9V, 125C, W/C Macroblock area (mm2) Power efficiency with cache (DMIPS/mW) 5.2
All challenges are addressed by a more open processor
4
ARM has proven low-power by design ARM ecosystem has all networking connectivity options Rich Internet support is only available for ARM and x86 ARM has advanced and scalable solutions for media processing ARM partners are moving to replace “PC” through smartbooks and above ARM is a popular, and growing processor used in games consoles
ARM Cortex-A9 processor: A traditional single core processor for
simplified design migration in high-performance, cost-sensitive markets such as mobile handsets and other embedded devices reducing time-to-market and fully maintaining existing software investments
5
MVM UI & OTA
M3G & OpenGL-ES
H.264/MP4/WMV MP3/AAC/WMA VoIP & UMA
Operator Specs
CONFIDENTIAL
What’s next for mobile?
Handsets have doubled their
computational level about every two years No longer can just MHz solve the challenge
Power Efficiency
Legislation forcing even low power requirements everywhere Eco/Green and cost implication throughout the enterprise Mobile needing more performance in the same low power budgets