高中数学新人教A版必修5习题3.3二元一次不等式(组)与简单的线性规划问题

合集下载

高中数学人教A版必修5学案3.3二元一次不等式(组)与简单的线性规划问题 Word版含答案

高中数学人教A版必修5学案3.3二元一次不等式(组)与简单的线性规划问题 Word版含答案
营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐?
【答案】
【解析】解:设为该儿童分别预订,个单位的午餐和晚餐,共花费元,则=+,且满足以下条件

作出可行域如下图:
作直线:+=,平移直线至,当经过点时,可使达到最小值.
由⇒即(),
此时=.×+×=,
答:午餐和晚餐分别预定个单位和个单位,花费最少为元.
第三章不等式(人教版新课标)
第节二元一次不等式(组)与简单的线性规划问题
【思维导图】
【微试题】
.已知点()、(,-)在直线-+=的两侧,则的取值范围是()
.(-).().(-).(-,-)
【答案】
.设变量 满足约束条件 则目标函数 的最小值为()
. . . .
【答案】
.(·山东理)已知满足 约束条件 ,若 的最大值为,则()
. . . .
【答案】
.某营养师要为某个儿童预定午餐和晚餐.已知一个单位的午餐含个单位的碳水化合物,个单位的蛋白质和个单位的维生素;
一个单位的晚餐含个单位的碳水化合物,个单位的蛋白质和个个单位的蛋白质和个单位的维生素.如果一个单位的午餐、晚餐的费用分别是元和元,那么要满足上述的

高中数学 第三章 不等式 3.3 二元一次不等式(组)与简单的线性规划问题练习 新人教A版必修5

高中数学 第三章 不等式 3.3 二元一次不等式(组)与简单的线性规划问题练习 新人教A版必修5

二元一次不等式组与简单的线性规划问题【知识网络】1、二元一次不等式组以及可化成二元一次不等式组的不等式的解法;2、作二元一次不等式组表示的平面区域,会求最值;3、线性规划的实际问题和其中的整点问题。

【典型例题】例1:(1)已知点P (x 0,y 0)和点A (1,2)在直线0823:=-+y x l 的异侧,则( ) A .02300>+y x B .<+0023y x 0C .82300<+y xD .82300>+y x答案: D 。

解析:将(1,2)代入l 得小于0,则003280x y +->。

(2)满足2≤+y x 的整点的点(x ,y )的个数是( )A .5B .8C .12D .13答案:D 。

解析:作出图形找整点即可。

(3)不等式(x -2y +1)(x +y -3)≤0表示的平面区域是 ( )答案:C 。

解析:原不等式等价于⎩⎨⎧≤-+≥+-⎩⎨⎧≥-+≤+-0301203012y x y x y x y x 或 两不等式表示的平面区域合并起来即是原不等式表示的平面区域.(4)设实数x , y 满足20240230x y x y y --≤⎧⎪+-≥⎨⎪-≤⎩,则y x 的最大值为 .答案:32。

解析:过点3(1,)2时,yx 有最大值32。

(5)已知1224a b a b ≤-≤⎧⎨≤+≤⎩,求42t a b =-的取值范围 .答案: ]10,5[。

解析:过点31(,)22时有最小值5,过点(3,1)时有最大值10。

例2:试求由不等式y ≤2及|x |≤y ≤|x |+1所表示的平面区域的面积大小. 答案: 解:原不等式组可化为如下两个不等式组:①⎪⎪⎩⎪⎪⎨⎧≤+≤≥≥210y x y x y x 或 ②⎪⎪⎩⎪⎪⎨⎧≤+-≤-≥≤210y x y x y x上述两个不等式组所表示的平面区域为如图所示的阴影部分.它所围成的面积S =21×4×2-21×2×1=3.例3:已知函数f (x )和g (x )的图象关于原点对称,且f (x )=x 2+2x .(Ⅰ)求函数g (x )的解析式;(Ⅱ)若h (x )=g (x )-λf (x )+1在[-1,1]上是增函数,求实数λ的取值范围。

2017年春季学期新人教A版高中数学必修5习题3.3 二元一次不等式(组)与简单的线性规划问题

2017年春季学期新人教A版高中数学必修5习题3.3 二元一次不等式(组)与简单的线性规划问题
平移直线过点A后,继续向上平移,原不等式组表示的平面区域是一个三角形.
由求得点A的坐标为.
解:设x,y分别表示甲、乙两个工厂分配到的贷款金额(单位:万元),
根据题意,可得
不等式组表示的平面区域如图中的阴影部分.
10.若不等式组表示的平面区域是一个三角形,求a的取值范围.
解:画出不等式组表示的平面区域如图中阴影部分.
作直线l:x+y=0,把直线l向上平移至过点B(1,0)的过程中,
原不等式组表示的平面区域是一个三角形,此时有0<a≤1,
答案:D
5.满足|x|+|y|≤4的整点(横、纵坐标均为整数)的点(x,y)的个数为()
A.16 B.17
C.40 D.41
解析:第一象限内点(1,1),(1,2),(1,3),(2,1),(2,2),(3,1)满足要求;同理其他象限也各有6个,x,y轴上各有9个,但原点重复,所以共41个.
答案:D
A BΒιβλιοθήκη C D解析:∵m,n的夹角为钝角,
∴m·n<0⇒(a-2b,a)·(a+2b,3b)=a2-4b2+3ab=(a+4b)·(a-b)<0⇒
或故选A.
答案:A
8.若点P(m,3)到直线4x-3y+1=0的距离为4,且点P在不等式2x+y<3表示的平面区域内,则m=________.
解析:由题意,得d===4,
二元一次不等式(组)
与平面区域
A组 基础巩固
1.若不等式组表示的平面区域是一个三角形,则a的取值范围是()
A.a<5 B.a≥7
C.5≤a<7 D.a<5或a≥7
解析:先画出x-y+5≥0和0≤x≤2表示的区域,再确定y≥a表示的区域.由图知:5≤a<7.

高中数学 3.3 二元一次不等式(组)与简单的线性规划问题素材1 新人教A版必修5

高中数学 3.3 二元一次不等式(组)与简单的线性规划问题素材1 新人教A版必修5

3.3 二元一次不等式(组)与简单的线性规划问题一、备用例题【例1】 设实数x 、y 满足不等式组⎩⎨⎧-≥+≤+≤,322,41x y y x 求点(x,y)所在的平面区域分析:必须使学生明确,求点(x,y)所在的平面区域,关键是确定区域的边界线.可以从去掉绝对值符号入手解:已知的不等式组等价于⎪⎩⎪⎨⎧--≥+≤+≤032,232,41<x x y y x 或⎪⎩⎪⎨⎧≥--≥+≤+≤.032,322,41x x y yx解得点(x,y)所在平面区域为下图所示的阴影部分(含边界).其中AB :y=2x-5;BC :x+y=4;C D:y=-2x+1;D A【例2】 某工厂要安排一种产品生产,该产品有Ⅰ、Ⅱ、Ⅲ三种型号,生产这种产品需要每天可利用的原材料为120千克,劳动力为100小时,假定该产品只要生产出来即可销售出去,试确定三种型号产品的日产量,使总产值最大 分析:建立数学模型:(1)用x 1、x 、x 3分别表示Ⅰ、Ⅱ、Ⅲ三种型号的日产量(2)明确约束条件:⎪⎩⎪⎨⎧≥≥≥≤++≤++.0,0,0,100542,120634321321321x x x x x x x x x这样,这个资源利用问题的数学模型为满足约束条件⎪⎩⎪⎨⎧≥≥≥≤++≤++0,0,0,100542,120634321321321x x x x x x x x x 的可行域.【例3】 某机械厂的车工分Ⅰ、Ⅱ两个等级,各级车工每人每天加工能力,成品合格率如下表所示:工厂要求每天至少加工配件2 400个,车工每出一个废品,工厂要损失2元,现有Ⅰ级车工8人,Ⅱ级车工12人,且工厂要求至少安排6名Ⅱ级车工,问如何安排工作? 解:首先据题意列出线性约束条件和目标函数.设需Ⅰ、Ⅱ级车工分别为x,y人 线性约束条件:⎪⎩⎪⎨⎧≤≤≤≤≥∙+∙.126,80,2400160%5.9524097%y x y x画出线性约束条件的平面区域如图中阴影部分所示据图知点A (6,6.3)应为既满足题意,又使目标函数最小.然而A 点非整数点.故在点A 上侧作平行直线经过可行域内的整点,且与原点最近距离,可知(6,7)为满足题意的整数解 二、阅读材料二元一次方程组的图象解法(1)由表中给出的有序实数对…,(-3,-3),(-2,-1),(-1,1),(0,3),(1,5),…,就可以在坐标平面内描点、画图〔如图(1)〕.这样得出来的图形就是二元一次方程y =2x +3的图象.图象上每一个点的坐标,如(-3,-3),就表示方程y=2x+3的一个解⎩⎨⎧-=-=.3,3y x对比一次函数的图象,不难知道,二元一次方程y =2x +3的图象就是一次函数y =2x +3的图象,它是一条直线.引申:怎样利用图象解二元一次方程组呢?看下面的例子:⎩⎨⎧=-=+②①533y x y x(2)先在同一直角坐标系内分别画出这两个二元一次方程的图象〔如图(2)〕由方程①,有过点(0,3)与(3,0)画出直线x +y =由方程②,有过点(0,-5)与(35,0)画出直线3x -y =两条直线有一个交点,交点的坐标就表示两个方程的公共解,交点坐标是(2,1),所以原方程组的解是⎩⎨⎧==.1,2y x 这与用代入法或加减法解得的结果相同.提问在解二元一次方程组时,会遇到其中一个方程是x =3或y =2这种形式x =3或y =2的图象是怎样的呢?方程x =3可以看成x +0·y=3,这条直线过点(3,0),且平行于y 轴.这条直线就是方程x =3的图象,我们把它叫做直线x =3〔如图(3)〕 同样,方程y =2的图象是过点(0,2),且平行于x 轴的一条直线,叫做直线y =2〔如图(3)〕(3)。

高中数学人教A版必修5教案-3.3_二元一次不等式(组)与简单的线性规划问题_教学设计_教案

高中数学人教A版必修5教案-3.3_二元一次不等式(组)与简单的线性规划问题_教学设计_教案

教学准备1. 教学目标1.知识与技能目标:了解二元一次不等式(组)、二元一次不等式的解和解集的概念。

了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组。

2.过程与方法目标:经历把实际问题抽象为数学问题以及类比一元一次不等式得出二元一次不等式的过程,体会类比的思想、数学建模的思想。

3.情感态度与价值观目标:通过探索二元一次不等式解集的过程,培养学生的探索方法与精神。

2. 教学重点/难点重点:求二元一次不等式表示的平面区域。

难点:理解二元一次不等式解集的几何表示。

3. 教学用具4. 标签教学过程一.复习导入:(设计意图:为下面学习作铺垫)2.今天学习3.3.1二元一次不等式(组)与平面区域(写出课题)二.新课讲授:1.放映多媒体,出示实例问题:一家银行的信贷部计划年初投入25 000 000用于企业和个人贷款,希望这笔资金至少可带来30 000元的收益,其中从企业贷款中获益12﹪,从个人贷款中获益10﹪,那么,信贷部应该如何分配资金呢?分析:放映多媒体,出示下表学生填表(设计意图:帮助学生理清已知条件,为列不等式组做准备)(设计意图:消除学生错误认识)老师:引导学生回忆一元一次不等式的解法(放映多媒体)⑤老师用多媒体演示正确步骤(设计意图:通过学生探索,总结出画二元一次不等表示的平面区域的方法和步骤以及注意事项,有利于培养学生独立分析解决问题的能力)6.学生总结画二元一次不等表示的平面区域步骤:学生口答,老师板书1.画边界2.判断不等式表示的区域3.用阴影线表示所要区域三、课堂练习:教师利用多媒体出示题目:(设计意图:通过练习巩固所学内容)四.小结:①这节课学习了哪些知识和技能?②这节课学到了哪些研究问题的方法?学生思考,发表自己的意见,老师指导。

(设计意图:培养学生反思归纳能力)五.作业:①193页习题3.3第1题板书。

人教a版必修5学案:3.3二元一次不等式(组)与简单的线性规划问题(含答案)

人教a版必修5学案:3.3二元一次不等式(组)与简单的线性规划问题(含答案)

3.3 二元一次不等式(组)与简单的线性规划问题材拓展1.二元一次不等式(组)表示平面区域(1)直角坐标平面内的一条直线Ax +By +C =0把整个坐标平面分成三部分,即直线两侧的点集和直线上的点集.(2)若点P 1(x 1,y 1)与P 2(x 2,y 2)在直线l :Ax +By +C =0的同侧(或异侧),则Ax 1+By 1+C 与Ax 2+By 2+C 同号(或异号).(3)二元一次不等式组表示的平面区域是各个不等式所表示的平面点集的交集,因而是各个不等式所表示的平面区域的公共部分.2.画二元一次不等式表示的平面区域常 采用“直线定界,特殊点定域”的方法(1)直线定界,即若不等式不含等号,应把直线画成虚线;含有等号,把直线画成实线. (2)特殊点定域,即在直线Ax +By +C =0的某一侧取一个特殊点(x 0,y 0)作为测试点代入不等式检验,若满足不等式,则表示的区域就是包括这个点的这一侧,否则就表示直线的另一侧.特别地,当C ≠0时,常把原点作为测试点.当C =0时,常把点(1,0)或点(0,1)作为测试点.3.补充判定二元一次不等式表示的区域 的一种方法先证一个结论已知点P (x 1,y 1)不在直线l :Ax +By +C =0 (B ≠0)上,证明: (1)P 在l 上方的充要条件是B (Ax 1+By 1+C )>0; (2)P 在l 下方的充要条件是B (Ax 1+By 1+C )<0. 证明 (1)∵B ≠0,∴直线方程化为y =-A B x -CB,∵P (x 1,y 1)在直线上方,∴对同一个横坐标x 1,直线上点的纵坐标小于y 1,即y 1>-A B x 1-CB.(*)∵B 2>0,∴两端乘以B 2,(*)等价于B 2y 1>(-Ax 1-C )B , 即B (Ax 1+By 1+C )>0.(2)同理,由点P 在l 下方,可得y 1<-A B x 1-CB,从而得B 2y 1<(-Ax 1-C )B ,移项整理为B (Ax 1+By 1+C )<0. ∵上述解答过程可逆,∴P 在l 上方⇔B (Ax 1+By 1+C )>0, P 在l 下方⇔B (Ax 1+By 1+C )<0. 从而得出下列结论:(1)B >0时,二元一次不等式Ax +By +C >0表示直线Ax +By +C =0上方的平面区域(不包括直线),而Ax +By +C <0表示直线Ax +By +C =0下方的平面区域(不包括直线).(2)B <0时,二元一次不等式Ax +By +C >0表示直线Ax +By +C =0下方的区域(不包括直线),而二元一次不等式Ax +By +C <0表示直线Ax +By +C =0上方的平面区域(不包括直线).(3)B =0且A >0时,Ax +C >0表示直线Ax +C =0右方的平面区域(不包括直线),Ax +C <0表示直线Ax +C =0左方的平面区域(不包括直线).(4)B =0且A <0时,Ax +C >0表示直线Ax +C =0左方的平面区域(不包括直线),Ax +C <0表示直线Ax +C =0右方的平面区域(不包括直线).法突破一、二元一次不等式组表示的平面区域方法链接:只要准确找出每个不等式所表示的平面区域,然后取出它们的重叠部分,就可以得到二元一次不等式组所表示的平面区域.例1 在平面直角坐标系xOy 中,已知平面区域A ={(x ,y )|x +y ≤1,且x ≥0,y ≥0},则平面区域B ={(x +y ,x -y )|(x ,y )∈A }的面积为( )A .2B .1 C.12 D.14 解析答案 B二、平面区域所表示的二元一次不等式(组)方法链接:由平面区域确定不等式时,我们可以选用特殊点进行判断,把特殊点代入直线方程Ax +By +C =0,根据代数式Ax +By +C 的符号写出对应的不等式,根据是否包含边界来调整符号.例2 如图所示,四条直线x +y -2=0,x -y -1=0,x +2y +2=0,3x -y +3=0围成一个四边形,则这个四边形的内部区域(不包括边界)可用不等式组____________表示.解析 (0,0)点在平面区域内,(0,0)点和平面区域在直线x +y -2=0的同侧,把(0,0)代入到x +y -2,得0+0-2<0,所以直线x +y -2=0对应的不等式为x +y -2<0,同理可得到其他三个相应的不等式为x +2y +2>0,3x -y +3>0,x -y -1<0, 则可得所求不等式组为三、和平面区域有关的非线性问题方法链接:若目标函数为线性时,目标函数的几何意义与直线的截距有关.若目标函数为形如z =y -bx -a,可考虑(a ,b )与(x ,y )两点连线的斜率.若目标函数为形如z =(x -a )2+(y -b )2,可考虑(x ,y )与(a ,b )两点距离的平方. 例3 (2009·山东济宁模拟)已知点P (x ,y )满足点Q (x ,y )在圆(x +2)2+(y +2)2=1上,则|PQ |的最大值与最小值为( )A .6,3B .6,2C .5,3D .5,2解析可行域如图阴影部分,设|PQ |=d ,则由图中圆心C (-2,-2)到直线4x +3y -1=0的距离最小,则到点A 距离最大.由得(-2,3). ∴d max =|CA |+1=5+1=6,d min =|-8-6-1|5-1=2.答案 B四、简单的线性规划问题方法链接:线性规划问题最后都能转化为求二元一次函数z =ax +by (ab ≠0)的最值,将函数z =ax +by 转化为直线的斜截式:y =-a b x +z b ,通过求直线的截距zb的最值间接求出z的最值.例4 某家具公司制作木质的书桌和椅子两种家具,需要木工和漆工两道工序,已知木工平均四个小时做一把椅子,八个小时做一张书桌,该公司每星期木工最多有8 000个工作时;漆工平均两小时漆一把椅子,一个小时漆一张书桌,该公司每星期漆工最多有1 300个工作时,又已知制作一把椅子和一张书桌的利润分别是15元和20元,根据以上条件,怎样安排生产能获得最大利润?解 依题意设每星期生产x 把椅子,y 张书桌, 那么利润p =15x +20y .其中x ,y 满足限制条件{ 4x +8y ≤x +y ≤x ≥0,x ∈N *y ≥0,y ∈N *. 即点(x ,y )的允许区域为图中阴影部分,它们的边界分别为4x +8y =8 000(即AB ),2x +y =1 300(即BC ),x =0(即OA )和y =0(即OC ).对于某一个确定的p =p 0满足p 0=15x +20y ,且点(x ,y )属于阴影部分的解x ,y 就是一个能获得p 0元利润的生产方案.对于不同的p ,p =15x +20y 表示一组斜率为-34的平行线,且p 越大,相应的直线位置越高;p 越小,相应的直线位置越低.按题意,要求p 的最大值,需把直线p =15x +20y 尽量地往上平移,又考虑到x ,y 的允许范围,当直线通过B 点时,处在这组平行线的最高位置,此时p 取最大值.由{ 4x +8y =8 00x +y =1 300,得B (200,900), 当x =200,y =900时,p 取最大值, 即p max =15×200+20×900=21 000,即生产200把椅子、900张书桌可获得最大利润21 000元.区突破1.忽略截距与目标函数值的关系而致错 例1 设E 为平面上以A (4,1),B (-1,-6),C (-3,2)为顶点的三角形区域(包括边界),求z =4x -3y 的最大值与最小值.[错解]把目标函数z =4x -3y 化为y =43x -13z .根据条件画出图形如图所示,当动直线y =43x -13z 通过点C 时,z 取最大值;当动直线y =43x -13z 通过点B 时,z 取最小值.∴z min =4×(-1)-3×(-6)=14; z max =4×(-3)-3×2=-18.[点拨] 直线y =43x -13z 的截距是-13z ,当截距-13z 最大即过点C 时,目标函数值z 最小;而当截距-13z 最小即过点B 时,目标函数值z 最大.此处容易出错.[正解] 把目标函数z =4x -3y 化为y =43x -13z .当动直线y =43x -13z 通过点B 时,z 取最大值;当动直线y =43x -13z 通过点C 时,z 取最小值.∴z max =4×(-1)-3×(-6)=14; z min =4×(-3)-3×2=-18.2.最优整数解判断不准而致错 例2 设变量x ,y 满足条件求S =5x +4y 的最大值.[错解] 依约束条件画出可行域如图所示,如先不考虑x 、y 为整数的条件,则当直线5x +4y =S 过点A ⎝⎛⎭⎫95,2310时,S =5x +4y 取最大值,S max =18 15.因为x 、y 为整数,所以当直线5x +4y =t 平行移动时,从点A 起通过的可行域中的整点是C (1,2),此时S max =13.[点拨] 上述错误是把C (1,2)作为可行域内唯一整点,其实还有一个整点B (2,1),此时S =14才是最大值.[正解] 依据已知条件作出图形如图所示,因为B (2,1)也是可行域内的整点,由此得S B =2×5+1×4=14,由于14>13,故S max =14.温馨点评 求最优整数解时,要结合可行域,对所有可能的整数解逐一检验,不要漏掉解.题多解例 某电脑用户计划使用不超过500元的资金购买单价分别为60元、70元的单片软件和盒装磁盘.根据需要,软件至少买3片,磁盘至少买2盒,则不同的选购方式共有() A.5种B.6种C.7种D.8种解析方法一由题意知,按买磁盘盒数多少可分三类:买4盒磁盘时,只有1种选购方式;买3盒磁盘时,有买3片或4片软件两种选购方式;买2盒磁盘时,可买3片、4片、5片或6片软件,有4种选购方式,故共有1+2+4=7(种)不同的选购方式.方法二先买软件3片,磁盘2盒,共需320元,还有180元可用,按不再买磁盘,再买1盒磁盘、再买两盒磁盘三类,仿方法一可知选C.方法三设购买软件x片,磁盘y盒.则,画出线性约束条件表示的平面区域,如图所示.落在阴影部分(含边界)区域的整点有(3,2),(3,3),(3,4),(4,2),(4,3),(5,2),(6,2)共7个整点.答案 C题赏析1.(2011·浙江)设实数x,y满足不等式组{x+2y-5>0,x+y-7>0,x≥0,y≥0,且x,y为整数,则3x+4y的最小值是()A.14 B.16C.17 D.19解析作出可行域,如图中阴影部分所示,点(3,1)不在可行域内,利用网格易得点(4,1)符合条件,故3x+4y的最小值是3×4+4×1=16.答案 B2.(2009·烟台调研)若x,y满足约束条件{x+y≥x-y≥-x-y≤2,目标函数z =ax+2y仅在点(1,0)处取得最小值,则a的取值范围是()A.(-1,2) B.(-4,2) C.(-4,0] D.(-2,4)解析作出可行域如图所示,直线ax +2y =z 仅在点(1,0)处取得最小值,由图象可知-1<-a2<2,即-4<a <2. 答案 B赏析 本题考查线性规划的基本知识,要利用好数形结合.。

人教A版高中数学必修五:3.3《二元一次不等式(组)与简单的线性规划问题》(11)(35)

人教A版高中数学必修五:3.3《二元一次不等式(组)与简单的线性规划问题》(11)(35)

由于 解.
都不是整数,而此问题中的最优解 ( x, y )
18 39
中, x , y 必须都是整数,所以点 ( 5 , 5 ) 不是最优
使截距z最小的直线为

x y =12
经过的整点是B(3,9)和C(4,8),
它们是最优解.
z min =12.
答:要截得所需三种规格的钢板,且使所截两 种钢板张数最小的方法有两种,第一种截法是 第一种钢板3张,第二种钢板9张;第二种截法 是截第一种钢板4张,第二种钢板8张;两种截 法都最少要两种钢板12张.
二、效益最佳问题 例3 一个化肥厂生产甲、乙两种混合肥料,生产1车皮 甲种肥料的主要原料是磷酸盐4 t、硝酸盐18 t;生产1 车皮乙种肥料需要的主要原料是磷酸盐1 t、硝酸盐15 t.现在库存磷酸盐10 t、硝酸盐66 t,在此基础上生产 这两种混合肥料.列出满足生产条件的数学关系式,并 画出相应的平面区域.若生产1车皮甲种肥料,产生的 利润为10 000元;生产1车皮乙种肥料,产生的利润为 5 000元.那么分别生产甲、乙两种肥料各多少车皮,能 够产生最大的利润?
线性目标函数 z x y .
y
作出可行域如;y=15
x+2y=18
x+3y=27
作出一组平行直线 z=x+y,当直线经过可行域上的 点M时,z最小.
x 3 y 27, 解方程组 2 x y 15,
18 39 , 5 5

M(
18 39 , ). 5 5
分析:列表
磷酸盐(t) 甲种肥料 乙种肥料 总吨数 4 1 硝酸盐(t) 车皮数 18 15 利润(元) 10 000 5 000
x
y

高中数学人教A版必修5练习第三章 3.3 二元一次不等式(组)与简单的线性规划问题 3.3.1 二元一次不等式(组

高中数学人教A版必修5练习第三章 3.3 二元一次不等式(组)与简单的线性规划问题 3.3.1 二元一次不等式(组

.以下不等式所表示的平面区域中包含原点的是( )
.-+< .+->
.+-≥.-≤
解析:把()代入逐个验证.
答案:
.不等式+-≤表示的平面区域是( )
解析:把原点()代入不等式得-≤成立,所以区域包含().
答案:
.原点和点()在直线+=两侧,则的取值范围是( )
.<或> .<<
.=或=.≤≤解析:要使()与()在直线+=的两侧,则有(-)(+-)<即可,由此解得<<.
答案:.如图,能表示平面中阴影区域的不等式组是.
解析:设直线方程为+=,①
将(-),() 代入①得-+=.
将()代入上式是>,
将()()代入①得+-=,将()代入上式得-<,
∴阴影区域所对应的不等式组为
(\\(-+≥,+-≤,≥.))
答案:(\\(-+≥+-≤≥)).点()到直线-+=的距离等于,且在不等式+>表示的平面区域内,则点坐标为.
解析:由题意知=,得=或=-,
又点()在不等式+>表示的平面区域内,∴=.∴().
答案:()
.在平面直角坐标系中,求不等式组
(\\(+-≥,-+≥,≤))表示的平面区域的面积.
解:在平面直角坐标系中,作出+-=,-+=,和=三条直线,利
用特殊点()可知可行域如图阴影部分所示,其面积=××=.。

高中数学人教A版必修5练习第三章 3.3 二元一次不等式(组)与简单的线性规划问题 3.3.1 二元一次不等式(组

高中数学人教A版必修5练习第三章 3.3 二元一次不等式(组)与简单的线性规划问题 3.3.1 二元一次不等式(组

一、选择题.不在+<表示的平面区域内的点是( ).() .().() .()解析:可将每一个点代入+<检验,满足不等式的就在+<表示的平面区域内,不满足的,则不在它表示的平面区域内.点()不满足+<.答案:.已知点(-),既在直线=-的上方,又在轴的右侧,则的取值范围是( ) .(,+∞) .(,+∞).() .()解析:∵(-)在直线=-的上方,∴--(-)<.即<.又(-)在轴右侧,∴>.∴<<.答案:.完成一项装修工程,木工和瓦工的比例为∶,请木工需付工资每人元,请瓦工需付工资每人元,现有工资预算元,设木工人,瓦工人,,满足的条件是( ) (\\(+≤、∈*))(\\(+≤ ,()=()))(\\(+≤,()=()、∈*))(\\(+<,()=()))解析:∵木工和瓦工各请、人,∴有∶=∶,+≤,且、∈*.答案:.若不等式组(\\(≥,+≥,+≤))所表示的平面区域被直线=+分为面积相等的两部分,则的值是( )解析:不等式组表示的平面区域如下图所示的阴影部分△由(\\(+=,+=,))得(),又(),(,)∴△=(-)×=,设=+与+=的交点为.则由△=△=,知=,∴=.∴=×+,=.答案:二、填空题.由直线++=,++=和++=围成的三角形区域(包括边界)用不等式(组)可表示为.答案:(\\(++≥++≤++≤)).已知,为非负整数,则满足+≤的点(,)共有个.解析:由题意点(,)的坐标应满足(\\(∈∈+≤)),由图可知,整数点有(),(),()()()()个.答案:.不等式+≤所表示的平面区域的面积为.解析:原不等式等价于(\\(+≤,≥,≥-≤,≥,≤-≥-,≤,≥+≥-,≤,≤))其表示的平面区域如图中阴影部分.∴=()=.答案:.已知是由不等式组(\\(-≥+≥))所确定的平面区域,则圆+=在区域内的弧长为.解析:作出区域及圆+=如图所示,图中阴影部分所在圆心角θ=α+β所对弧长即为所求,易知图中两直线的斜率分别为,-⇒α=,β=,θ=(α+β)==⇒θ=⇒弧长=θ·=×=.答案:三、解答题.一名刚参加工作的大学生为自己制定的每月用餐费的最低标准是元,又知其他费用最少需支出元,而每月可用来支配的资金为元,这名新员工可以如何使用这些钱?请用不等式(组)表示出来,并画出对应的平面区域.解:不妨设用餐费为元,其他费用为元,由题意知不小于,不小于,。

高中数学人教A版必修5讲义:第三章 3.3 二元一次不等式(组)与简单的线性规划问题 含答案

高中数学人教A版必修5讲义:第三章 3.3 二元一次不等式(组)与简单的线性规划问题 含答案

二元一次不等式(组)与简单的线性规划问题3.3.1二元一次不等式(组)与平面区域(1)二元一次不等式是如何定义的?(2)应按照怎样的步骤画二元一次不等式表示的平面区域?(3)应按照怎样的步骤画二元一次不等式组表示的平面区域?[新知初探]1.二元一次不等式含有两个未知数,并且未知数的次数是1的不等式称为二元一次不等式.2.二元一次不等式组由几个二元一次不等式组成的不等式组称为二元一次不等式组.3.二元一次不等式(组)的解集满足二元一次不等式(组)的x和y的取值构成的有序数对(x,y),叫做二元一次不等式(组)的解,所有这样的有序数对(x,y)构成的集合称为二元一次不等式(组)的解集.4.二元一次不等式表示平面区域在平面直角坐标系中,二元一次不等式Ax+By+C>0表示直线Ax+By+C=0某一侧所有点组成的平面区域,把直线画成虚线以表示区域不包括边界.不等式Ax+By+C≥0表示的平面区域包括边界,把边界画成实线.5.二元一次不等式表示的平面区域的确定(1)直线Ax+By+C=0同一侧的所有点的坐标(x,y)代入Ax+By+C,所得的符号都相同.(2)在直线Ax+By+C=0的一侧取某个特殊点(x0,y0)作为测试点,由Ax0+By0+C的符号可以断定Ax+By+C>0表示的是直线Ax+By+C=0哪一侧的平面区域.预习课本P82~86,思考并完成以下问题[点睛] 确定二元一次不等式表示平面区域的方法是“线定界,点定域”,定边界时需分清虚实,定区域时常选原点(C ≠0).[小试身手](1)由于不等式2x -1>0不是二元一次不等式,故不能表示平面的某一区域( ) (2)点(1,2)不在不等式2x +y -1>0表示的平面区域内( )(3)不等式Ax +By +C >0与Ax +By +C ≥0表示的平面区域是相同的( ) (4)二元一次不等式组中每个不等式都是二元一次不等式( ) (5)二元一次不等式组所表示的平面区域都是封闭区域( )解析:(1)错误.不等式2x -1>0不是二元一次不等式,但表示的区域是直线x =12的右侧(不包括边界).(2)错误.把点(1,2)代入2x +y -1,得2x +y -1=3>0,所以点(1,2)在不等式2x +y -1>0表示的平面区域内.(3)错误.不等式Ax +By +C >0表示的平面区域不包括边界,而不等式Ax +By +C ≥0表示的平面区域包括边界,所以两个不等式表示的平面区域是不相同的.(4)错误.在二元一次不等式组中可以含有一元一次不等式,如⎩⎪⎨⎪⎧2x +y -1≥0,3x +2<0也称为二元一次不等式组.(5)错误.二元一次不等式组表示的平面区域是每个不等式所表示的平面区域的公共部分,但不一定是封闭区域.答案:(1)× (2)× (3)× (4)× (5)×2.在直角坐标系中,不等式y 2-x 2≤0表示的平面区域是( )解析:选C 原不等式等价于(x +y )(x -y )≥0,因此表示的平面区域为左右对顶的区域(包括边界),故选C.3.在不等式2x +y -6<0表示的平面区域内的点是( ) A .(0,7) B .(5,0) C .(0,1)D .(2,3)解析:选C 对于点(0,1),代入上述不等式2×0+0×1-6<0成立,故此点在不等式2x +y -6<0表示的平面区域内,故选C.4.已知点A (1,0),B (-2,m ),若A ,B 两点在直线x +2y +3=0的同侧,则m 的取值集合是________.解析:因为A ,B 两点在直线x +2y +3=0的同侧,所以把点A (1,0),B (-2,m )代入可得x +2y +3的符号相同,即(1+2×0+3)(-2+2m +3)>0,解得m >-12.答案:⎩⎨⎧⎭⎬⎫m ⎪⎪m >-12二元一次不等式(组)表示的平面区域[典例(1)2x -y -6≥0; (2)⎩⎪⎨⎪⎧x -y +5≥0,x +y ≥0,x ≤3.[解] (1)如图,先画出直线2x -y -6=0, 取原点O (0,0)代入2x -y -6中, ∵2×0-1×0-6=-6<0,∴与点O 在直线2x -y -6=0同一侧的所有点(x ,y )都满足2x -y -6<0,因此2x -y -6≥0表示直线下方的区域(包含边界)(如图中阴影部分所示).(2)先画出直线x -y +5=0(画成实线),如图,取原点O (0,0)代入x -y +5,∵0-0+5=5>0,∴原点在x -y +5>0表示的平面区域内,即x -y +5≥0表示直线x -y +5=0上及其右下方的点的集合.同理可得,x +y ≥0表示直线x +y =0上及其右上方的点的集合,x ≤3表示直线x =3上及其左方的点的集合.如图所示的阴影部分就表示原不等式组的平面区域.(1)在画二元一次不等式组表示的平面区域时,应先画出每个不等式表示的区域,再取它们的公共部分即可.其步骤为:①画线;②定侧;③求“交”;④表示.(2)要判断一个二元一次不等式所表示的平面区域,只需在它所对应的直线的某一侧取一个特殊点(x 0,y 0),从Ax 0+By 0+C 的正负判定.[活学活用]若关于x ,y 的不等式组⎩⎪⎨⎪⎧x ≤0,x +2y ≥0,kx -y +1≥0表示的平面区域是直角三角形区域,则正数k的值为( )A .1B .2C .3D .4解析:选B 如图,易知直线kx -y +1=0经过定点A (0,1),又知道关于x ,y 的不等式组⎩⎪⎨⎪⎧x ≤0,x +2y ≥0,kx -y +1≥0表示的平面区域是直角三角形区域,且k >0,所以k ·⎝⎛⎭⎫-12=-1,解得k =2,故选B. 二元一次不等式(组)表示平面区域的面积[典例] 不等式组⎩⎪⎨⎪⎧y ≤x ,x +2y ≤4,y ≥-2表示的平面区域的面积为( )A.503 B.253 C.1003D.103[解析] 作出不等式组⎩⎪⎨⎪⎧y ≤x ,x +2y ≤4,y ≥-2表示的平面区域,如图阴影部分所示.可以求得点A 的坐标为⎝⎛⎭⎫43,43,点B 的坐标为(-2,-2),点C 的坐标为(8,-2),所以△ABC 的面积是12×[8-(-2)]×⎣⎡⎦⎤43-(-2)=503.[答案] A求平面区域的面积的方法求平面区域的面积,先画出不等式组表示的平面区域,然后根据区域的形状求面积.若图形为规则的,则直接利用面积公式求解;若图形为不规则图形,可采取分割的方法,将平面区域分为几个规则图形求解.[活学活用]不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域的面积等于( )A.32 B.23 C.43D.34解析:选C 作出平面区域如图所示为△ABC ,由⎩⎪⎨⎪⎧x +3y -4=0,3x +y -4=0,可得A (1,1), 又B (0,4),C ⎝⎛⎭⎫0,43,∴S △ABC =12·|BC |·|x A |=12×⎝⎛⎭⎫4-43×1=43,故选C. 用二元一次不等式组表示实际问题[典例] 某厂使用两种零件A ,B 装配两种产品P ,Q ,该厂的生产能力是月产P 产品最多有2 500件,月产Q 产品最多有1 200件;而且组装一件P 产品要4个零件A,2个零件B ,组装一件Q 产品要6个零件A,8个零件B ,该厂在某个月能用的A 零件最多14 000个,B 零件最多12 000个.用数学关系式和图形表示上述要求.[解] 设分别生产P ,Q 产品x 件,y 件,依题意则有⎩⎪⎨⎪⎧4x +6y ≤14 000,2x +8y ≤12 000,0≤x ≤2 500,x ∈N ,0≤y ≤1 200,y ∈N.用图形表示上述限制条件,得其表示的平面区域如图(阴影部分整点)所示.用二元一次不等式组表示实际问题的方法(1)先根据问题的需要选取起关键作用的关联较多的两个量用字母表示. (2)将问题中所有的量都用这两个字母表示出来.(3)由实际问题中有关的限制条件或由问题中所有量均有实际意义写出所有的不等式. (4)把这些不等式所组成的不等式组用平面区域表示出来.[活学活用]某家具厂制造甲、乙两种型号的桌子,每张桌子需木工和漆工两道工序完成.已知木工做一张甲、乙型号的桌子分别需要1 h 和2 h ,漆工油漆一张甲、乙型号的桌子分别需要3 h 和1 h .又木工、漆工每天工作分别不得超过8 h 和9 h .请列出满足生产条件的数学关系式,并画出相应的平面区域.解:设家具厂每天生产甲,乙型号的桌子的张数分别为x 和y ,它们满足的数学关系式为:⎩⎪⎨⎪⎧x +2y ≤8,3x +y ≤9,x ≥0,x ∈N ,y ≥0,y ∈N.分别画出不等式组中各不等式表示的平面区域,然后取交集,如图中的阴影部分所示,生产条件是图中阴影部分的整数点所表示的条件.层级一 学业水平达标1.设点P (x ,y ),其中x ,y ∈N ,满足x +y ≤3的点P 的个数为( ) A .10 B .9 C .3D .无数个解析:选A 作⎩⎪⎨⎪⎧x +y ≤3,x ,y ∈N 的平面区域,如图所示,符合要求的点P 的个数为10.2.不在3x +2y >3表示的平面区域内的点是( ) A .(0,0) B .(1,1) C .(0,2)D .(2,0)解析:选A 将(0,0)代入,此时不等式3x +2y >3不成立,故(0,0)不在3x +2y >3表示的平面区域内,将(1,1)代入,此时不等式3x +2y >3成立,故(1,1)在3x +2y >3表示的平面区域内,将(0,2)代入,此时不等式3x +2y >3成立,故(0,2)在3x +2y >3表示的平面区域内,将(2,0)代入,此时不等式3x +2y >3成立,故(2,0)在3x +2y >3表示的平面区域内,故选A.3.不等式组⎩⎪⎨⎪⎧2x +y -2≥0,x +3y -3≤0表示的平面区域为( )解析:选C 取满足不等式组的一个点(2,0),由图易知此点在选项C 表示的阴影中,故选C.4.已知点M (2,-1),直线l :x -2y -3=0,则( ) A .点M 与原点在直线l 的同侧 B .点M 与原点在直线l 的异侧 C .点M 与原点在直线l 上D .无法判断点M 及原点与直线l 的位置关系解析:选B 因为2-2×(-1)-3=1>0,0-2×0-3=-3<0,所以点M 与原点在直线l 的异侧,故选B.5.若不等式组⎩⎪⎨⎪⎧x ≤0,y ≥0,y -x ≤2表示的平面区域为Ⅰ,则当a 从-2连续变化到1时,动直线x +y -a =0扫过Ⅰ中的那部分区域的面积为( )A.72B.73C.74D.12解析:选C 如图所示,Ⅰ为△BOE 所表示的区域,而动直线x +y =a 扫过Ⅰ中的那部分区域为四边形BOCD ,而B (-2,0),O (0,0),C (0,1),D ⎝⎛⎭⎫-12,32,E (0,2),△CDE 为直角三角形. ∴S 四边形BOCD =12×2×2-12×1×12=74.6.直线2x +y -10=0与不等式组⎩⎪⎨⎪⎧x -y ≥-2,4x +3y ≤20,x ≥0,y ≥0表示的平面区域的公共点有________个.解析:画出不等式组⎩⎪⎨⎪⎧x -y ≥-2,4x +3y ≤20,x ≥0,y ≥0表示的平面区域,如图中阴影部分所示.因为直线2x +y -10=0过点A (5,0),且其斜率为-2,小于直线4x +3y =20的斜率-43,故只有一个公共点(5,0).答案:17.平面直角坐标系中,不等式组⎩⎪⎨⎪⎧2x +2y -1≥0,3x -3y +4≥0,x ≤2表示的平面区域的形状是________.解析:画出不等式组表示的平面区域,如图中阴影部分所示,由图易知平面区域为等腰直角三角形.答案:等腰直角三角形8.若不等式组⎩⎪⎨⎪⎧x -y +5≥0,y ≥a ,0≤x ≤2表示的平面区域是一个三角形,则a 的取值范围是________.解析:不等式组表示的平面区域如图所示,当y =a 过A (0,5)时表示的平面区域为三角形,即△ABC ,当5<a <7时,表示的平面区域为三角形,综上,当5≤a <7时,表示的平面区域为三角形.答案:[5,7)9.已知点P (1,-2)及其关于原点的对称点均不在不等式kx -2y +1<0表示的平面区域内,求k 的取值范围.解:点P (1,-2)关于原点的对称点为P ′(-1,2),由题意,得⎩⎪⎨⎪⎧k -2×(-2)+1≥0,-k -2×2+1≥0,即⎩⎪⎨⎪⎧k ≥-5,k ≤-3, 解得-5≤k ≤-3.故k 的取值范围是[-5,-3].10.已知实数x ,y 满足不等式组Ω:⎩⎪⎨⎪⎧2x +3y -6≤0,x -y -1≤0,x -2y +2>0,x +y -1>0.(1)画出满足不等式组Ω的平面区域; (2)求满足不等式组Ω的平面区域的面积.解:(1)满足不等式组Ω的平面区域如图中阴影部分所示.(2)解方程组⎩⎪⎨⎪⎧2x +3y -6=0,x -2y +2=0,得A ⎝⎛⎭⎫67,107,解方程组⎩⎪⎨⎪⎧2x +3y -6=0,x -y -1=0,得D ⎝⎛⎭⎫95,45,所以满足不等式组Ω的平面区域的面积为S 四边形ABCD =S △AEF -S △BCF -S △DCE =12×(2+3)×107-12×(1+2)×1-12×(3-1)×45=8970.层级二 应试能力达标1.如图阴影部分用二元一次不等式组表示为( )A.⎩⎪⎨⎪⎧ 2x -y ≥0x +y ≥3y ≥1B.⎩⎪⎨⎪⎧ 2x -y ≥0x +y ≤3y ≥1C.⎩⎪⎨⎪⎧2x -y ≤0x +y ≤3y ≥1D.⎩⎪⎨⎪⎧2x -y ≤0x +y ≥3y ≥1解析:选B 由图易知平面区域在直线2x -y =0的右下方,在直线x +y =3的左下方,在直线y =1的上方,故选B.2.原点和点(1,1)在直线x +y -a =0的两侧,则a 的取值范围是( ) A .(-∞,0)∪(2,+∞) B .{0,2} C .(0,2)D .[0,2]解析:选C 因为原点和点(1,1)在直线x +y -a =0的两侧,所以-a (2-a )<0,即a (a -2)<0,解得0<a <2.3.由直线x -y +1=0,x +y -5=0和x -1=0所围成的三角形区域(包括边界)用不等式组可表示为( )A.⎩⎪⎨⎪⎧ x -y +1≤0x +y -5≤0x ≥1B.⎩⎪⎨⎪⎧ x -y +1≥0x +y -5≤0x ≥1C.⎩⎪⎨⎪⎧x -y +1≥0x +y -5≥0x ≤1D.⎩⎪⎨⎪⎧x -y +1≤0x +y -5≤0x ≤1解析:选A 由题意,得所围成的三角形区域在直线x -y +1=0的左上方,直线x +y-5=0的左下方,及直线x -1=0的右侧,所以所求不等式组为⎩⎪⎨⎪⎧x -y +1≤0,x +y -5≤0,x -1≥0.4.完成一项装修工程,木工和瓦工的比例为2∶3,请木工需付工资每人50元,请瓦工需付工资每人40元,现有工资预算2 000元,设木工x 人,瓦工y 人,请工人数的限制条件是( )A.⎩⎪⎨⎪⎧2x +3y ≤5x ,y ∈N * B.⎩⎪⎨⎪⎧50x +40y ≤ 2 000x y =23C.⎩⎪⎨⎪⎧5x +4y ≤200x y =23x ,y ∈N*D.⎩⎪⎨⎪⎧5x +6y <100x y =23解析:选C 由题意50x +40y ≤2 000,即5x +4y ≤200,y x =23,x ,y ∈N *,故选C.5.不等式组⎩⎪⎨⎪⎧x +2y ≤8,0≤x ≤4,0≤y ≤3表示的平面区域的面积为________.解析:作出不等式组表示的平面区域,如图中阴影部分所示,易求得C (4,0),B (4,2),D (0,3),A (2,3),所以平面区域的面积为3×4-12×2×1=11. 答案:116.设关于x ,y 的不等式组⎩⎪⎨⎪⎧2x -y +1>0,x -m <0,y +m >0表示的平面区域内存在点P (x 0,y 0)满足x 0-2y 0=2,则实数m 的取值范围是________.解析:不等式组表示的平面区域如图中阴影部分所示,由图得点C 的坐标为(m ,-m ),把直线x -2y =2转化为斜截式y =12x -1,要使平面区域内存在点P (x 0,y 0)满足x 0-2y 0=2,则点C 在直线x -2y =2的右下方,因此-m <m 2-1,解得m >23,故m 的取值范围是⎝⎛⎭⎫23,+∞. 答案:⎝⎛⎭⎫23,+∞7.已知点M (a ,b )在由不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤2表示的平面区域内,求N (a -b ,a +b )所在的平面区域的面积.解:由题意,得a ,b 满足不等式组⎩⎪⎨⎪⎧a ≥0,b ≥0,a +b ≤2,设n =a -b ,m =a +b ,则a=n +m 2,b =m -n2,于是有⎩⎨⎧n +m2≥0,m -n2≥0,m ≤2,即⎩⎪⎨⎪⎧n +m ≥0,m -n ≥0,m ≤2,这个不等式组表示的平面区域为如图所示的△OAB 内部(含边界),其面积为12×(2+2)×2=4,即点N (a -b ,a +b )所在的平面区域的面积为4.8.已知点P 在|x |+|y |≤1表示的平面区域内,点Q 在⎩⎪⎨⎪⎧|x -2|≤1,|y -2|≤1表示的平面区域内.(1)画出点P 和点Q 所在的平面区域; (2)求P 与Q 之间的最大距离和最小距离.解:(1)不等式|x |+|y |≤1等价于⎩⎪⎨⎪⎧x +y ≤1,x ≥0,y ≥0,x -y ≤1,x ≥0,y ≤0,x -y ≥-1,x ≤0,y ≥0,x +y ≥-1,x ≤0,y ≤0,不等式组⎩⎪⎨⎪⎧ |x -2|≤1,|y -2|≤1等价于⎩⎪⎨⎪⎧1≤x ≤3,1≤y ≤3,由此可作出点P 和点Q 所在的平面区域,分别为如图所示的四边形ABCD 内部(含边界),四边形EFGH 内部(含边界).(2)由图易知|AG |(或|BG |)为所求的最大值,|ER |为所求的最小值,易求得|AG |=(-1-3)2+(0-3)2=42+32=5,|ER |=12|OE |=22.3.3.2简单的线性规划问题预习课本P87~91,思考并完成以下问题(1)约束条件,目标函数,可行解,线性规划问题是如何定义的?(2)如何求解线性目标函数的最值问题?[新知初探]线性规划的有关概念名称意义约束条件变量x,y满足的一组条件线性约束条件由x,y的二元一次不等式(或方程)组成的不等式组目标函数欲求最大值或最小值所涉及的变量x,y的解析式线性目标函数关于x,y的二元一次解析式可行解满足线性约束条件的解(x,y)可行域所有可行解组成的集合最优解使目标函数取得最大值或最小值的可行解线性规划问题在线性约束条件下,求线性目标函数的最大值或最小值问题(2)目标函数与线性目标函数的概念不同,线性目标函数在变量x,y的次数上作了严格的限定:一次解析式,即目标函数包括线性目标函数和非线性目标函数.(3)可行解必须使约束条件成立,而可行域是所有的可行解组成的一个集合.[小试身手](1)可行域是一个封闭的区域()(2)在线性约束条件下,最优解是唯一的()(3)最优解一定是可行解,但可行解不一定是最优解()(4)线性规划问题一定存在最优解()解析:(1)错误.可行域是约束条件表示的平面区域,不一定是封闭的.(2)错误.在线性约束条件下,最优解可能有一个或多个,也可能有无数个,也可能无最优解,故该说法错误.(3)正确.满足线性约束条件的解称为可行解,但不一定是最优解,只有使目标函数取得最大值或最小值的可行解,才是最优解,所以最优解一定是可行解.(4)错误.线性规划问题不一定存在可行解,存在可行解也不一定存在最优解,故该说法是错误的.答案:(1)× (2)× (3)√ (4)×2.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤1,x -y ≤1,x +1≥0,则z =x +2y 的最小值为( )A .3B .1C .-5D .-6解析:选C 由约束条件作出可行域如图:由z =x +2y 得y =-12x +z 2,z 2的几何意义为直线在y 轴上的截距,当直线y =-12x +z 2过直线x =-1和x -y =1的交点A (-1,-2)时,z最小,最小值为-5,故选C.3.已知实数x ,y 满足⎩⎪⎨⎪⎧y ≤2,y ≥|x +1|,若可行域内存在点使得x +2y -a =0成立,则a 的最大值为( )A .-1B .1C .4D .5解析:选D 作出不等式对应的可行域如图所示,由x +2y -a =0可得y =-12x +a 2,平移直线y =-12x +a2,当直线y =-12x +a 2经过点A 时,直线y =-12x +a 2的截距最大,此时a 最大,由⎩⎪⎨⎪⎧ y =2,y =x +1,解得⎩⎪⎨⎪⎧x =1,y =2,故A (1,2),此时a 的最大值是a =x +2y =1+2×2=5.4.已知实数x ,y 满足条件⎩⎪⎨⎪⎧x +y -3≥0,x -y -3≤0,y ≤2,则xx +y的取值范围是________.解析:由约束条件⎩⎪⎨⎪⎧x +y -3≥0,x -y -3≤0,y ≤2,作出可行域如图所示 ,所以yx 即是可行域内的点与原点连线的斜率,故可得y x ∈[0,2],所以x x +y=11+y x∈⎣⎡⎦⎤13,1. 答案:⎣⎡⎦⎤13,1求线性目标函数的最大(小)值[典例] 设z =2x +y ,变量x ,y 满足条件⎩⎪⎨⎪⎧x -4y ≤-3,3x +5y ≤25,x ≥1,求z 的最大值和最小值.[解] 作出不等式组表示的平面区域,即可行域,如图所示.把z =2x +y 变形为y =-2x +z ,则得到斜率为-2,在y 轴上的截距为z ,且随z 变化的一组平行直线.由图可以看出,当直线z =2x +y 经过可行域上的点A 时,截距z 最大,经过点B 时,截距z 最小.解方程组⎩⎪⎨⎪⎧x -4y +3=0,3x +5y -25=0,得A 点坐标为(5,2),解方程组⎩⎪⎨⎪⎧x =1,x -4y +3=0,得B 点坐标为(1,1),∴z 最大值=2×5+2=12,z 最小值=2×1+1=3.解线性规划问题的基本步骤(1)画:画出线性约束条件所表示的可行域.(2)移:在线性目标函数所表示的一组平行线中,用平移的方法找出与可行域有公共点且纵截距最大或最小的直线.(3)求:通过解方程组求出最优解.(4)答:根据所求得的最优解得出答案.[活学活用]1.若实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -2≤0,y -1≤0,x +2y -a ≥0,目标函数t =x -2y 的最大值为2,则实数a 的值是( )A .0B .1C .2D .3解析:选C 作出满足条件的可行域(如图),由目标函数t =x -2y ,得直线y =12x -12t 在点⎝⎛⎭⎫2,a -22处取得最大值,即t max =2-2×a -22=4-a =2,得a =2,故选C.2.已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧2x -y ≤2,x -y ≥-1,x +y ≥1,若目标函数z =2x +ay 仅在点(3,4)取得最小值,则a 的取值范围是________.解析:作出不等式对应的平面区域如图所示,若a =0,则目标函数为z =2x ,即此时函数在A (3,4)时取得最大值,不满足条件. 当a ≠0,由z =2x +ay 得y =-2a x +z a ,若a >0,目标函数斜率-2a<0,此时平移y =-2a x +z a ,得y =-2a x +z a 在点A (3,4)处的截距最大,此时z 取得最大值,不满足条件.若a <0,目标函数斜率-2a >0,要使目标函数y =-2a x +z a 仅在点A (3,4)处取得最小值,则-2a <k AB =1 ,∴a <-2.答案:(-∞,-2)求非线性目标函数的最值1.设x ,y 满足条件⎩⎪⎨⎪⎧x -y +5≥0,x +y ≥0,x ≤3.求u =x 2+y 2的最大值与最小值.解:画出满足条件的可行域如图所示,x 2+y 2=u (除原点)表示一组同心圆(圆心为原点O ),且对同一圆上的点x 2+y 2的值都相等,由图可知:当(x ,y )在可行域内取值时,当且仅当圆O 过C 点时,u 最大.取(0,0)时,u 最小.又C (3,8),所以u max =73,u min =0.题点二:斜率型最值2.在题点一的条件下,求v =yx -5的最大值与最小值. 解:v =yx -5表示可行域内的点P (x ,y )与定点D (5,0)连线的斜率,由图可知,k BD 最大,k CD 最小,又C (3,8),B (3,-3),所以v max =-33-5=32,v min =83-5=-4.非线性目标函数最值问题的求解方法(1)非线性目标函数最值问题,要充分理解非线性目标函数的几何意义,诸如两点间的距离(或平方),点到直线的距离,过已知两点的直线斜率等,充分利用数形结合知识解题,能起到事半功倍的效果.(2)常见代数式的几何意义主要有: ①x 2+y 2表示点(x ,y )与原点(0,0)的距离;(x -a )2+(y -b )2表示点(x ,y )与点(a ,b )的距离.②yx 表示点(x ,y )与原点(0,0)连线的斜率;y -b x -a 表示点(x ,y )与点(a ,b )连线的斜率.这些代数式的几何意义能使所求问题得以转化,往往是解决问题的关键.[典例] 某研究所计划利用“神十一”宇宙飞船进行新产品搭载实验,计划搭载新产品A ,B ,要根据该产品的研制成本、产品质量、搭载实验费用和预计产生收益来决定具体安排,通过调查,搭载每件产品有关数据如表:产品A (件)产品B (件)研制成本、 搭载费用之2030计划最大投资金额300万元线性规划的实际应用和(万元) 产品质量(千克) 105最大搭载质量110千克预计收益 (万元)80 60试问:如何安排这两种产品的件数进行搭载,才能使总预计收益达到最大,最大收益是多少?[解] 设“神十一”宇宙飞船搭载产品A ,B 的件数分别为x ,y ,最大收益为z ,则目标函数为z =80x +60y ,根据题意可知,约束条件为⎩⎪⎨⎪⎧20x +30y ≤300,10x +5y ≤110,x ≥0,y ≥0,x ∈N ,y ∈N ,即⎩⎪⎨⎪⎧2x +3y ≤30,2x +y ≤22,x ≥0,y ≥0,x ∈N ,y ∈N ,作出可行域如图阴影部分所示,作出直线l :80x +60y =0,并平移直线l ,由图可知,当直线过点M 时,z 取得最大值,解⎩⎪⎨⎪⎧2x +3y =30,2x +y =22,得M (9,4),所以z max =80×9+60×4=960,即搭载A 产品9件,B 产品4件,可使得总预计收益最大,为960万元.(1)解答此类问题,在按解决线性规划实际问题的步骤进行解题时,应注意以下几点: ②线性约束条件中有无等号要依据条件加以判断.③结合实际问题,判断未知数x ,y 等是否有限制,如x ,y 为正整数、非负数等. (2)寻找整点最优解的两个方法①平移找解法:先打网格,描整点,平移直线l ,最先经过或最后经过整点便是最优整点解,这种方法应充分利用非整点最优解的信息,结合精确的作图才行,当可行域是有限区域且整点个数又较少时,可逐个将整点坐标代入目标函数求值,经比较求最优解.②调整优值法:先求出整点最优解及最优值,再借助不定方程的知识调整最优值,最后筛选出整点最优解.[活学活用]一小商贩准备用50元钱在一批发市场购买甲、乙两种小商品,甲每件4元,乙每件7元,甲商品每件卖出去后可赚1元,乙每件卖出去后可赚1.8元.若要使赚的钱最多,那么该商贩购买甲、乙两种商品的件数应分别为( )A .甲7件,乙3件B .甲9件,乙2件C .甲4件,乙5件D .甲2件,乙6件解析:选D 设甲商品x 件,乙商品y 件,所赚钱数为z ,则目标函数为z =x +1.8y ,约束条件为⎩⎪⎨⎪⎧4x +7y ≤50,x ≥0,y ≥0,x ∈N ,y ∈N ,作出可行域如图所示,由z =x +1.8y ,得y =-59x +5z 9,斜率为-59>-47,所以,由图可知直线过点A ⎝⎛⎭⎫0,507时,z 取得最大值.又x ,y ∈N ,所以点A 不是最优解.点(0,7),(2,6),(9,2)都在可行域内,逐一验证可得,当x =2,y =6时,z 取得最大值,故选D.层级一 学业水平达标1.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2≥0,x -y +3≥0,2x +y -3≤0,则目标函数z =x +6y 的最大值为( )A .3B .4C .18D .40解析:选C 由题意作出不等式组表示的平面区域如图阴影部分所示.作直线x +6y =0并向右上平移,由图可知,过点A (0,3)时z =x +6y 取得最大值,最大值为18.2.某服装制造商有10 m 2的棉布料,10 m 2的羊毛料和6 m 2的丝绸料,做一条裤子需要1 m 2的棉布料,2 m 2的羊毛料和1 m 2的丝绸料,做一条裙子需要1 m 2的棉布料,1 m 2的羊毛料和1 m 2的丝绸料,做一条裤子的纯收益是20元,一条裙子的纯收益是40元,为了使收益达到最大,若生产裤子x 条,裙子y 条,利润为z ,则生产这两种服装所满足的数学关系式与目标函数分别为( )A.⎩⎪⎨⎪⎧ x +y ≤10,2x +y ≤10,x +y ≤6,x ,y ∈N z =20x +40yB.⎩⎪⎨⎪⎧ x +y ≥10,2x +y ≥10,x +y ≤6,x ,y ∈N z =20x +40yC.⎩⎪⎨⎪⎧x +y ≤10,2x +y ≤10,x +y ≤6z =20x +40yD.⎩⎪⎨⎪⎧x +y ≤10,2x +y ≤10,x +y ≤6,x ,y ∈Nz =40x +20y解析:选A 由题意知A 正确.3.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≤0,x ≥1,x +y -7≤0,则yx 的取值范围是( )A.⎣⎡⎦⎤95,6B.⎝⎛⎦⎤-∞,95∪[6,+∞)C .(-∞,3]∪[6,+∞)D .(3,6]解析:选A 作出可行域,如图中阴影部分所示,yx 可理解为可行域中一点与原点的连线的斜率,又B ⎝⎛⎭⎫52,92,A (1,6),故yx 的取值范围是⎣⎡⎦⎤95,6.4.某学校用800元购买A ,B 两种教学用品,A 种用品每件100元,B 种用品每件160元,两种用品至少各买一件,要使剩下的钱最少,A ,B 两种用品应各买的件数为( )A .2,4B .3,3C .4,2D .不确定解析:选B 设买A 种用品x 件,B 种用品y 件,剩下的钱为z 元,则⎩⎪⎨⎪⎧100x +160y ≤800,x ≥1,y ≥1,x ,y ∈N *.求z =800-100x -160y 取得最小值时的整数解(x ,y ),用图解法求得整数解为(3,3). 5.已知⎩⎪⎨⎪⎧x ≥1,x -y +1≥0,2x -y -2≤0,若z =ax +y 的最小值是2,则a 的值为( )A .1B .2C .3D .4解析:选B 作出可行域,如图中阴影部分所示,又z =ax +y 的最小值为2,若a >-2,则(1,0)为最优解,所以a =2;若a ≤-2,则(3,4)为最优解,解得a =-23,舍去,故a =2.6.若点P (m ,n )在由不等式组⎩⎪⎨⎪⎧x +y -7≤0,x -2y +5≤0,2x -y +1≥0,所确定的区域内,则n -m 的最大值为________.解析:作出可行域,如图中的阴影部分所示,可行域的顶点坐标分别为A (1,3),B (2,5),C (3,4),设目标函数为z =y -x ,则y =x +z ,其纵截距为z ,由图易知点P 的坐标为(2,5)时,n -m 的最大值为3.答案:37.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x -y +1≤0,2x -y -2≤0,则x 2+y 2的最小值是________.解析:画出满足条件的可行域(如图),根据x 2+y 2表示可行域内一点到原点的距离,可知x 2+y 2的最小值是|AO |2.由⎩⎪⎨⎪⎧x =1,x -y +1=0, 得A (1,2),所以|AO |2=5. 答案:58.铁矿石A 和B 的含铁率a ,冶炼每万吨铁矿石的CO 2的排放量b 及每万吨铁矿石的价格c 如下表:a b (万吨) c (百万元)A 50% 1 3 B70%0.562万吨),则购买铁矿石的最少费用为________(百万元).解析:设购买铁矿石A ,B 分别为x ,y 万吨,购买铁矿石的费用为z (百万元),则⎩⎪⎨⎪⎧0.5x +0.7y ≥1.9,x +0.5y ≤2,x ≥0,y ≥0.目标函数z =3x +6y .由⎩⎪⎨⎪⎧ 0.5x +0.7y =1.9,x +0.5y =2,得⎩⎪⎨⎪⎧x =1,y =2.记P (1,2), 画出可行域,如图所示.当目标函数z =3x +6y 过点P (1,2)时,z 取到最小值,且最小值为z min =3×1+6×2=15.答案:159.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥1,x -y ≥-1,2x -y ≤2.(1)求目标函数z =12x -y +12的最值;(2)若目标函数z =ax +2y 仅在点(1,0)处取得最小值,求a 的取值范围. 解:(1)作出可行域如图,可求得A (3,4),B (0,1),C (1,0). 平移初始直线12x -y +12=0,过A (3,4)取最小值-2,过C (1,0)取最大值1.∴z 的最大值为1,最小值为-2.(2)直线ax +2y =z 仅在点(1,0)处取得最小值,由图象可知-1<-a2<2,解得-4<a <2.故所求a 的取值范围为(-4,2).10.某人承担一项业务,需做文字标牌4个,绘画标牌5个.现有两种规格的原料,甲种规格每张3 m 2,可做文字标牌1个,绘画标牌2个;乙种规格每张2 m 2,可做文字标牌2个,绘画标牌1个,求两种规格的原料各用多少张,才能使得总用料面积最小.解:设需要甲种原料x 张,乙种原料y 张,则可做文字标牌(x +2y )个,绘画标牌(2x +y )个,由题意可得⎩⎪⎨⎪⎧2x +y ≥5,x +2y ≥4,x ≥0,y ≥0,x ,y ∈N ,所用原料的总面积为z =3x +2y , 作出可行域如图.在一组平行直线3x +2y =z 中,经过可行域内的点且到原点距离最近的直线. 过直线2x +y =5和直线x +2y =4的交点(2,1), ∴最优解为x =2,y =1,∴使用甲种规格原料2张,乙种规格原料1张,可使总的用料面积最小.层级二 应试能力达标1.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≥2,2x +y ≤4,4x -y ≥-1,则目标函数z =3x -y 的取值范围是( )A.⎣⎡⎦⎤-32,6 B.⎣⎡⎦⎤-32,-1 C .[-1,6]D.⎣⎡⎦⎤-6,32 解析:选A 作出可行域如图所示.目标函数z =3x -y 可转化为y =3x -z ,作l 0:3x -y =0,在可行域内平移l 0,可知在A 点处z 取最小值为-32,在B 点处z 取最大值为6.2.已知实数x ,y 满足条件⎩⎪⎨⎪⎧x ≥0,y ≤1,2x -2y +1≤0,若目标函数z =mx -y (m ≠0)取得最大值时的最优解有无穷多个,则实数m 的值为( )A .1 B.12C .-12D .-1解析:选A 作出不等式组表示的平面区域如图阴影部分(包含边界)所示,由图可知当直线y =mx -z (m ≠0)与直线2x -2y +1=0重合,即m =1时,目标函数z =mx -y 取最大值的最优解有无穷多个,故选A.3.已知实数x ,y 满足:⎩⎪⎨⎪⎧x -2y +1≥0,x <2,x +y -1≥0,z =|2x -2y -1|,则z 的取值范围是( )A.⎣⎡⎦⎤53,5 B .[0,5] C .[0,5)D.⎣⎡⎭⎫53,5解析:选C 作出满足约束条件的可行域,如图中阴影部分所示.令u =2x -2y -1,当直线2x -2y -1-u =0经过点A (2,-1)时,u =5,经过点B ⎝⎛⎭⎫13,23时,u =-53, 则-53≤u <5,所以z =|u |∈[0,5),故选C.4.x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,2y -x +2≥0,2x -y +2≥0,若z =y -2ax 取得最大值的最优解不唯一,则实数a 的值为( )A.12或-1 B .1或-12C .2或1D .2或-1解析:选B 作出可行域,如图中阴影部分所示.由z =y -2ax ,得y =2ax +z .当2a =2或2a =-1,即a =1或a =-12时,z =y -2ax取得最大值的最优解不唯一,故选B.5.在平面上,过点P 作直线l 的垂线所得的垂足称为点P 在直线l 上的投影.由区域⎩⎪⎨⎪⎧x -2≤0,x +y ≥0,x -3y +4≥0中的点在直线x +y -2=0上的投影构成的线段记为AB ,则|AB |=________.解析:作出不等式组所表示的平面区域如图中阴影部分所示,过点C ,D 分别作直线x +y -2=0的垂线,垂足分别为A ,B ,则四边形ABDC 为矩形,又C (2,-2),D (-1,1),所以|AB |=|CD |=(2+1)2+(-2-1)2=3 2.答案:326.某公司计划用不超过50万元的资金投资A ,B 两个项目,根据市场调查与项目论证,A ,B 项目的最大利润分别为投资的80%和40%,而最大的亏损额为投资的40%和10%,若要求资金的亏损额不超过8万元,且使利润最大,投资者应投资A 项目________万元,投资B 项目________万元.解析:设投资者对A ,B 两个项目的投资分别为x ,y 万元,则由题意得约束条件为⎩⎪⎨⎪⎧x +y ≤50,0.4x +0.1y ≤8,x ≥0,y ≥0,即⎩⎪⎨⎪⎧x +y ≤50,4x +y ≤80,x ≥0,y ≥0.投资者获得的利润设为z ,则有z =0.8x +0.4y .作出可行域如图所示,由图可知,当直线经过点B 时,z 取得最大值.解⎩⎪⎨⎪⎧x +y =50,4x +y =80,得B (10,40). 所以,当x =10,y =40时,获得最大利润,最大利润为24万元. 答案:10 407.某运输公司每天至少要运送180 t 货物,公司有8辆载重为6 t 的A 型卡车和4辆载重为10 t 的B 型卡车,且有10名驾驶员.A 型卡车每天可往返4次,B 型卡车每天可往返3次,每辆A 型卡车每天花费320元,每辆B 型卡车每天花费504元,如何合理调用车辆,才能使公司每天花费最少?。

人教A版高中数学必修5《三章 不等式 3.3 二元一次不等式(组)与简单的线性规划问题 错在哪儿》示范课件_18

人教A版高中数学必修5《三章 不等式 3.3 二元一次不等式(组)与简单的线性规划问题 错在哪儿》示范课件_18
人教A版2003课标版必修5
阅读与思考:错在哪儿
问题1:已知 1 x 8,2 y 3.求2x y, x y, x 的范围。 y
解:1 x 8,2 y 3
2 2x 16,则4 2x y 19
又 3 y 2
2 x y 6
又 1 1 1
3
y
2
1 x 4
1 x y 3, ①
问题2:已知 1 x y 1, ② 求 4x 2 y 的取值范围。
第一种解法:①+②得0 2x 4,即0 4x 8 ③
②×(-1),得 1 y x 1 ④
①+④,得 0 2 y 4 ⑤
• 实际上,不等式①②确定了一个平面 区域,如图: y
4
3
x-y= -1
2
x-y=1
1
O 1 234
x
x bx,且1 f (1) 2,2 f (1) 4
求f (2)的取值范围。
知识点:
(1)二元一次不等式组表示的是一个平面区 域。 (2)二元一次不等式组中的x,y是相互制约的关 系,并不是相互独立的。
代入 4x 2y ,得
0 4x 2y 12
第二种解法:
4x 2 y 3(x y) (x y), 且由已知条件有 3 (3 x y) 9,
1 x y 1, 以上两式相加得,
2 4x 2y 10
为什么两种解法的结果不一样呢?
• 谁能解释出现这种情况的原因?
(3) 利用二元一次不等式组求范围时,应整
体考虑,保持x和y的相互制约关系。
不等式的性质:
性质1:如果a>b,那么b<a;如果b<a,那么a>b. 性质2:如果a>b,b>c,那么a>c.

人教A版高中数学必修5《3.3 二元一次不等式(组)与简单的线性规划问题 阅读与思考 错在哪儿》_26

人教A版高中数学必修5《3.3 二元一次不等式(组)与简单的线性规划问题 阅读与思考 错在哪儿》_26

一、教学分析(一)教学内容分析本节课是《普通高中课程标准实验教科书数学》人教A版必修5第三章《不等式》中的阅读与思考。

主要内容是利用数形结合思想线性规划的方法解释在一道利用不等式组求代数式取值范围中的错误。

本节课通过学生对利用不等式组求解代数式取值范围的一题多解发现错误,认识错误,改正错误的过程。

在解不等式组问题的探究过程中,使学生经历观察、分析、操作、归纳、概括的认知过程,培养解决运用已有知识解决新问题的能力。

(二)教学对象分析对高一学生来说,前面已经学习过二元一次不等式(组)与简单线性规划问题,能解决简单的二元一次不等式组以及理解简单线性规划问题。

通过本节教学还能使学生学会运用已有的认知结构探求新知的方法.这将使学生在以后的学习数学的过程中遇到困难想办法进行转化,培养学生的数学应用能力。

(三)教学环境分析根据本节课教材内容的特点,为了更直观、形象地突出重点,突破难点,调动学生的学习兴趣,借助信息技术工具,通过学生小组合作探究,让学生学会用“数形结合”思想方法建立起代数问题和几何问题间的密切联系。

二、教学目标(一)知识与技能1. 理解由于x,y受到不等式组的影响,x,y之间存在制约关系,当x取最大时,y不能取到最大。

2. 会用代数法和几何方法根据已知的不等式组求代数式的范围(二)过程与方法培养学生学会在错误中发现问题,在探究过程中,使学生经历观察、分析、操作、归纳、概括的认知过程,经历知识的形成过程。

培养学生观察、联想、作图和理解实际问题的能力,渗透化归、数形结合的数学思想.新课程倡导学生积极主动、勇于探索的学习方式,课堂中应注重创设师生互动、生生互动的和谐氛围,通过学生动手实践、动脑思考等方法探究数学知识获取直接经验,进而培养学生的思维能力和应用意识等.(三)情感态度与价值观教学中不断渗透数形结合、化归的数学思想,培养学生“数形结合”的应用数学的意识,激发学生的学习兴趣。

结合教学内容,让学生参与课堂活动,感受探索、合作学习的乐趣,并从中获得成功的体验.三、教学重难点教学重点:用数形结合的方法解释方法一的错误原因。

人教A版高中数学必修5第三章 不等式3.3 二元一次不等式(组)与简单的线性规划问题习题(2)

人教A版高中数学必修5第三章 不等式3.3 二元一次不等式(组)与简单的线性规划问题习题(2)

课时规范练 A 组 基础对点练1.设x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x +y -1≥0,x ≤3,则z =2x -3y 的最小值是( )A .-7B .-6C .-5D .-3解析:由约束条件作出可行域如图中阴影区域.将z =2x -3y 化为y =23x -z 3,作出直线y =23x 并平移使之经过可行域,易知直线经过点C (3,4)时,z 取得最小值,故z min =2×3-3×4=-6. 答案:B2.设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -7≤0,x -3y +1≤0,3x -y -5≥0,则z =2x -y 的最大值为( )A .10B .8C .3D .2解析:作出可行域如图中阴影部分所示,由z =2x -y 得y =2x -z ,作出直线y =2x ,平移使之经过可行域,观察可知,当直线经过点B (5,2)时,对应的z 值最大.故z max =2×5-2=8.答案:B3.(2018·日照模拟)已知变量x ,y 满足:⎩⎪⎨⎪⎧2x -y ≤0,x -2y +3≥0,x ≥0,则z =(2)2x +y 的最大值为( )A. 2 B .2 2 C .2D .4解析:作出满足不等式组的平面区域,如图所示,令m =2x +y ,则当m 取得最大值时,z =(2)2x +y 取得最大值.由图知直线m=2x +y 经过点A (1,2)时,m 取得最大值,所以z max =(2)2×1+2=4,故选D.答案:D4.(2018·郑州模拟)已知实数x ,y 满足⎩⎪⎨⎪⎧y ≥x +2,x +y ≤6,x ≥1,则z =2|x -2|+|y |的最小值是( )A .6B .5C .4D .3解析:画出不等式组⎩⎨⎧y ≥x +2,x +y ≤6,x ≥1表示的可行域,如图阴影部分,其中A (2,4),B (1,5),C (1,3),∴x ∈[1,2],y ∈[3,5].∴z =2|x -2|+|y |=-2x +y +4,当直线y =2x -4+z 过点A (2,4)时,直线在y 轴上的截距最小,此时z 有最小值,∴z min =-2×2+4+4=4,故选C. 答案:C5.设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -1≥0,x -y -1≤0,x -3y +3≥0,则z =x +2y 的最大值为( )A .8B .7C .2D .1解析:作出约束条件表示的可行域如图中阴影部分所示,作直线y =-12x ,平移直线y =-12x ,当直线y =-12x +z2经过点C 时在y轴上的截距z2取得最大值,即z 取得最大值,由⎩⎪⎨⎪⎧x -y -1=0x -3y +3=0得⎩⎪⎨⎪⎧x =3y =2,即C (3,2),代入z =x +2y 得z max =3+2×2=7,故选B. 答案:B6.不等式组⎩⎪⎨⎪⎧x +y ≥1,x -2y ≤4的解集记为D ,有下面四个命题:p 1:∀(x ,y )∈D ,x +2y ≥-2;p 2:∃(x ,y )∈D ,x +2y ≥2; p 3:∀(x ,y )∈D ,x +2y ≤3; p 4:∃(x ,y )∈D ,x +2y ≤-1. 其中的真命题是( ) A .p 2,p 3 B .p 1,p 4 C .p1,p 2D .p 1,p 3解析:画出可行域如图中阴影部分所示,由图可知,当目标函数z =x +2y 经过可行域内的点A (2,-1)时,取得最小值0,故x +2y ≥0,因此p 1,p 2是真命题,选C. 答案:C7.已知x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x ,x +y ≤1,y ≥-1,则z =2x +y 的最大值为( )A .3B .-3C .1D.32解析:作出可行域,如图所示的阴影部分,当直线z =2x +y 过点A (2,-1)时,z 最大是3,故选A.答案:A8.若实数x ,y 满足:|x |≤y ≤1,则x 2+y 2+2x 的最小值为( ) A.12 B .-12C.22D.22-1 解析:作出不等式|x |≤y ≤1表示的可行域,如图.x 2+y 2+2x =(x +1)2+y 2-1,(x +1)2+y 2表示可行域内的点(x ,y )到点(-1,0)距离的平方,由图可知,(x +1)2+y 2的最小值为⎝⎛⎭⎫222=12,所以x 2+y 2+2x 的最小值为12-1=-12.选B.答案:B9.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -3≤0,x +3y -3≥0,y -1≤0,若目标函数z =ax +y (其中a >0)仅在点(1,1)处取得最大值,则a 的取值范围为( ) A.⎝⎛⎭⎫12,1 B.⎝⎛⎭⎫0,12 C .(0,1)D.⎝⎛⎭⎫12,2解析:约束条件表示的可行域如图中阴影部分所示,作直线l :ax+y =0,过点(1,1)作l 的平行线l ′,要满足题意,则直线l ′的斜率介于直线x +2y -3=0与直线y =1的斜率之间,因此,-12<-a <0,即0<a <12.故选B.答案:B10.(2018·沈阳质量监测)实数x ,y 满足⎩⎪⎨⎪⎧y ≤2x +2x +y -2≥0,x ≤2则z =|x -y |的最大值是( )A .2B .4C .6D .8解析:依题意画出可行域如图中阴影部分所示,令m =y -x ,则m 为直线l :y =x +m 在y 轴上的截距,由图知在点A (2,6)处m 取最大值4,在C (2,0)处取最小值-2,所以m ∈[-2,4],所以z 的最大值是4,故选B. 答案:B11.若x ,y 满足⎩⎪⎨⎪⎧2x -y ≤0,x +y ≤3,x ≥0,则2x +y 的最大值为( )A .0B .3C .4D .5解析:不等式组⎩⎨⎧2x -y ≤0,x +y ≤3,x ≥0表示的可行域如图中阴影部分所示(含边界),由⎩⎪⎨⎪⎧ 2x -y =0,x +y =3,解得⎩⎪⎨⎪⎧x =1,y =2,故当目标函数z =2x +y 经过点A (1,2)时,z 取得最大值,z max =2×1+2=4.故选C. 答案:C12.若变量x 、y 满足约束条件⎩⎪⎨⎪⎧x -y +1≤0,y ≤1,x >-1,则(x -2)2+y 2的最小值为( )A.322B. 5C.92D .5解析:作出不等式组对应的平面区域如图,设z =(x -2)2+y 2,则z 的几何意义为区域内的点到定点D (2,0)的距离的平方, 由图知C 、D 间的距离最小,此时z 最小.由⎩⎪⎨⎪⎧ y =1,x -y +1=0,得⎩⎪⎨⎪⎧x =0,y =1,即C (0,1), 此时z min =(x -2)2+y 2=4+1=5,故选D. 答案:D13.若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x -2y ≤0,x +2y -2≤0,则z =x +y 的最大值为________.解析:约束条件对应的平面区域是以点(1,12)、(0,1)和(-2,-1)为顶点的三角形,当目标函数y =-x +z 经过点(1,12)时,z 取得最大值32.答案:3214.若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x +y -3≥0,x -3≤0,则z =x -2y 的最小值为________.解析:作出可行域,如图中阴影部分所示,由z =x -2y 得y =12x-12z ,作直线y =12x 并平移,观察可知,当直线经过点A (3,4)时,z min =3-2×4=-5. 答案:-515.已知x ,y 满足⎩⎪⎨⎪⎧x -y +5≥0,x +y ≥0,x ≤3,若使得z =ax +y 取最大值的点(x ,y )有无数个,则a 的值等于__________.解析:先根据约束条件画出可行域,如图中阴影部分所示,当直线z =ax +y 能和直线AB 重合时,z 取得最大值的点(x ,y )有无数个,∴-a =k AB =1,∴a =-1.答案:-116.设x ,y 满足约束条件⎩⎪⎨⎪⎧2x -y +1≥0x -2y -1≤0,x ≤1则z =2x +3y -5的最小值为________.解析:作出不等式组表示的平面区域,如图中阴影部分所示,由图可知z =2x +3y -5经过点A (-1,-1)时,z 取得最小值,z min =2×(-1)+3×(-1)-5=-10.答案:-10B 组 能力提升练1.在平面直角坐标系中,不等式组⎩⎪⎨⎪⎧x +y ≤0,x -y ≤0,x 2+y 2≤r 2(r 为常数)表示的平面区域的面积为π,若x 、y 满足上述约束条件,则z =x +y +1x +3的最小值为( )A .-1B .-52+17C.13D .-75解析:作出不等式组表示的平面区域,如图所示,由题意,知14πr 2=π,解得r =2,z =x +y +1x +3=1+y -2x +3,易知y -2x +3表示可行域内的点(x ,y )与点P (-3,2)的连线的斜率,由图可知当点(x ,y )与点P 的连线与圆x 2+y 2=r 2相切时斜率最小.设切线方程为y -2=k (x +3),即kx -y +3k +2=0,则有|3k +2|k 2+1=2,解得k =-125或k =0(舍),所以z min =1-125=-75,故选D.答案:D2.已知区域D :⎩⎪⎨⎪⎧x -y +1≥0,x +y -1≥0,3x -y -3≤0的面积为S ,点集T ={(x ,y )∈D |y ≥kx +1}在坐标系中对应区域的面积为12S ,则k 的值为( )A.13B.12 C .2D .3解析:作出不等式组对应的区域,如图中阴影部分所示. 直线y =kx +1过定点A (0,1),点集T ={(x ,y )∈D |y ≥kx +1}在坐标系中对应区域的面积为12S ,则直线y =kx +1过BC 中点E .由⎩⎪⎨⎪⎧ x -y +1=0,3x -y -3=0,解得⎩⎪⎨⎪⎧x =2,y =3,即B (2,3). 又C (1,0),∴BC 的中点为E ⎝⎛⎭⎫32,32,则32=32k +1,解得k =13,故选A. 答案:A3.设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥a ,x -y ≤-1,且z =x +ay 的最小值为7,则a =( )A .-5B .3C .-5或3D .5或-3解析:联立方程⎩⎪⎨⎪⎧x +y =ax -y =-1,解得⎩⎪⎨⎪⎧x =a -12y =a +12,代入x +ay =7中,解得a =3或-5,当a =-5时,z =x +ay 的最大值是7;当a =3时,z =x +ay 的最小值是7,故选B. 答案:B4.x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0,若z =y -ax 取得最大值的最优解不唯一,则实数a的值为( ) A.12或-1 B .2或12C .2或1D .2或-1解析:如图,由y =ax +z 知z 的几何意义是直线在y 轴上的截距,故当a >0时,要使z =y -ax 取得最大值的最优解不唯一,则a =2;当a <0时,要使z =y -ax 取得最大值的最优解不唯一,则a =-1. 答案:D5.已知圆C :(x -a )2+(y -b )2=1,平面区域Ω:⎩⎪⎨⎪⎧x +y -7≤0,x -y +3≥0,y ≥0.若圆心C ∈Ω,且圆C与x 轴相切,则 a 2+b 2的最大值为 ( ) A .5 B .29 C .37D .49解析:平面区域Ω为如图所示的阴影部分,因为圆心C (a ,b )∈Ω,且圆C 与x 轴相切,所以点C 在如图所示的线段MN 上,线段MN 的方程为y =1(-2≤x ≤6),由图形得,当点C 在点N (6,1)处时,a 2+b 2取得最大值62+12=37,故选C. 答案:C6.(2018·河南八市高三质检)已知x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥2,x +y ≤4,-2x +y +c ≥0,目标函数z =6x +2y 的最小值是10,则z 的最大值是( ) A .20 B .22 C .24D .26解析:由z =6x +2y ,得y =-3x +z2,作出不等式组所表示可行域的大致图形如图中阴影部分所示,由图可知当直线y =-3x +z2经过点C时,直线的纵截距最小,即z =6x +2y 取得最小值10,由⎩⎪⎨⎪⎧ 6x +2y =10,x =2,解得⎩⎪⎨⎪⎧x =2,y =-1,即C (2,-1),将其代入直线方程-2x +y +c =0,得c =5,即直线方程为-2x +y +5=0,平移直线3x +y =0,当直线经过点D 时,直线的纵截距最大,此时z 取最大值,由⎩⎪⎨⎪⎧ -2x +y +5=0,x +y =4,得⎩⎪⎨⎪⎧x =3,y =1,即D (3,1),将点D 的坐标代入目标函数z =6x +2y ,得z max =6×3+2=20,故选A. 答案:A7.若x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y ≥0,且z =y -x 的最小值为-4,则k 的值为( )A .2B .-2 C.12D .-12解析:作出线性约束条件⎩⎨⎧x +y -2≥0,kx -y +2≥0,y ≥0的可行域.当k ≥0时,如图(1)所示,显然此时z =y -x 无最小值.当k <-1时,z =y -x 取得最小值2;当k =-1时,z =y -x 取得最小值-2,均不符合题意.当-1<k <0时,如图(2)所示,此时可行域为点A (2,0),B ⎝⎛⎭⎫-2k ,0,C (0,2)所围成的三角形区域,当直线z =y -x 经过点B ⎝⎛⎭⎫-2k ,0时,有最小值,即-⎝⎛⎭⎫-2k =-4,即k =-12.故选D.答案:D8.已知P (x ,y )为区域⎩⎪⎨⎪⎧y 2-x 2≤0,0≤x ≤a 内的任意一点,当该区域的面积为4时,z =2x -y 的最大值是( ) A .6 B .0 C .2D .2 2解析:由⎩⎨⎧y 2-x 2≤0,0≤x ≤a作出可行域如图,易求得A (a ,-a ),B (a ,a ), 由题意知S △OAB =12·2a ·a =4,得a =2.∴A (2,-2),当y =2x -z 过A 点时,z 最大,z max =2×2-(-2)=6.故选A. 答案:A9.若x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤0,x -2y -1≥0,x -4y -3≤0,则z =3x +5y 的取值范围是( )A .[3,+∞)B .[-8,3]C .(-∞,9]D .[-8,9]解析:作出可行域,如图所示的阴影部分,由z =3x +5y ,得y =-35x +15z ,15z 表示直线y=-35x +15z 在y 轴上的截距,截距越大,z 越大.由图可知,当z =3x +5y 经过点A 时z 最小;当z =3x +5y 经过点B 时z 最大,由⎩⎪⎨⎪⎧x -4y =3,y =0可得B (3,0),此时z max =9,由⎩⎪⎨⎪⎧x -4y =3,x -2y =1可得A (-1,-1),此时z min =-8,所以z =3x+5y 的取值范围是[-8,9]. 答案:D10.(2018·贵阳监测)已知O 是坐标原点,点A (-1,2),若点M (x ,y )为平面区域⎩⎪⎨⎪⎧x +y ≥2x ≤1y ≤2上的一个动点,则OA →·OM →的取值范围是( ) A .[-1,0] B .[0,1] C .[1,3]D .[1,4]解析:作出点M (x ,y )满足的平面区域,如图中阴影部分所示,易知当点M 为点C (0,2)时,OA →·OM →取得最大值,即为(-1)×0+2×2=4,当点M 为点B (1,1)时,OA →·OM →取得最小值,即为(-1)×1+2×1=1,所以OA →·OM →的取值范围为[1,4],故选D. 答案:D11.(2018·石家庄质检)已知x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,y ≥-1,4x +y ≤9,x +y ≤3,若目标函数z =y -mx (m >0)的最大值为1,则m 的值是( ) A .-209B .1C .2D .5解析:作出可行域,如图所示的阴影部分.∵m >0,∴当z =y -mx 经过点A 时, z 取最大值,由⎩⎪⎨⎪⎧ x =1,x +y =3,解得⎩⎪⎨⎪⎧x =1,y =2,即A (1,2),∴2-m =1,解得m =1.故选B. 答案:B12.已知a >0,实数x ,y 满足⎩⎪⎨⎪⎧x ≥1x +y ≤3y ≥a (x -3),若z =2x +y 的最小值为1,则a =________.解析:根据题意,如图,在坐标系中画出相应的区域的边界线x =1,x +y =3,再画出目标函数取得最小值时对应的直线2x +y =1,从图中可以发现,直线2x +y =1与直线x =1的交点为(1,-1),从而有点(1,-1)在直线y =a (x -3)上,代入可得a =12.答案:1213.(2018·石家庄模拟)动点P (a ,b )在区域⎩⎪⎨⎪⎧x +y -2≤0,x -y ≥0,y ≥0内运动,则ω=a +b -3a -1的取值范围是________.解析:画出可行域如图,ω=a +b -3a -1=1+b -2a -1,设k =b -2a -1,则k ∈(-∞,-2]∪[2,+∞),所以ω=a +b -3a -1的取值范围是(-∞,-1]∪[3,+∞). 答案:(-∞,-1]∪[3,+∞)14.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -5≤0,2x -y -1≥0,x -2y +1≤0,则z =2x +y 的最大值为________.解析:画出可行域(如图所示),∵z =2x +y ,∴y =-2x +z ,将直线y =-2x 向上平移,经过点B 时z 取得最大值.由⎩⎪⎨⎪⎧x +y -5=0,x -2y +1=0, 解得⎩⎪⎨⎪⎧x =3,y =2,当动直线2x +y -z =0过点B (3,2)时,z max =2×3+2=8. 答案:815.(2018·郑州质量预测)若不等式x 2+y 2≤2所表示的平面区域为M ,不等式组⎩⎪⎨⎪⎧x -y ≥0,x +y ≥0,y ≥2x -6,表示的平面区域为N ,现随机向区域N 内抛一粒豆子,则豆子落在区域M 内的概率为________.解析:作出不等式组与不等式表示的可行域如图所示,平面区域N 的面积为12×3×(6+2)=12,区域M 在区域N 内的面积为14π(2)2=π2,故所求概率P =π212=π24. 答案:π24课时规范练 A 组 基础对点练1.(2018·江西赣中南五校联考)函数f (x )=3x -x 2的零点所在区间是( ) A .(0,1) B .(1,2) C .(-2,-1)D .(-1,0)解析:∵f (-2)=-359,f (-1)=-23,f (0)=1,f (1)=2,f (2)=5, ∴f (0)f (1)>0,f (1)f (2)>0,f (-2)f (-1)>0,f (-1)f (0)<0,故选D. 答案:D2.(2018·贵阳模拟)函数f (x )=lg x -sin x 在(0,+∞)上的零点个数是( ) A .1 B .2 C .3D .4 解析:函数f (x )=lg x -sin x 的零点个数,即函数y =lg x 的图象和函数y =sin x 的图象的交点个数,如图所示.显然,函数y =lg x 的图象和函数y =sin x 的图象的交点个数为3,故选C.答案:C3.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x .则函数g (x )=f (x )-x +3的零点的集合为( ) A .{1,3}B .{-3,-1,1,3}C.{2-7,1,3} D.{-2-7,1,3}解析:当x≥0时,f(x)=x2-3x,令g(x)=x2-3x-x+3=0,得x1=3,x2=1.当x<0时,-x>0,∴f(-x)=(-x)2-3(-x),∴-f(x)=x2+3x,∴f(x)=-x2-3x.令g(x)=-x2-3x-x+3=0,得x3=-2-7,x4=-2+7>0(舍),∴函数g(x)=f(x)-x+3的零点的集合是{-2-7,1,3},故选D.答案:D4.若a<b<c,则函数f(x)=(x-a)·(x-b)+(x-b)(x-c)+(x-c)·(x-a)的两个零点分别位于区间()A.(a,b)和(b,c)内B.(-∞,a)和(a,b)内C.(b,c)和(c,+∞)内D.(-∞,a)和(c,+∞)内解析:令y1=(x-a)(x-b)+(x-b)(x-c)=(x-b)[2x-(a+c)],y2=-(x-c)(x-a),由a<b<c 作出函数y1,y2的图象(图略),由图可知两函数图象的两个交点分别位于区间(a,b)和(b,c)内,即函数f(x)的两个零点分别位于区间(a,b)和(b,c)内.答案:A5.(2018·德州模拟)已知函数y=f(x)是周期为2的周期函数,且当x∈[-1,1]时,f(x)=2|x|-1,则函数F(x)=f(x)-|lg x|的零点个数是()A.9 B.10C.11 D.18解析:由F(x)=0得f(x)=|lg x|分别作f(x)与y=|lg x|的图象,如图,所以有10个零点,故选B. 答案:B6.(2018·宁夏育才中学第四次月考)已知函数f (x )=⎩⎪⎨⎪⎧e x +a ,x ≤0,3x -1,x >0(a ∈R),若函数f (x )在R上有两个零点,则a 的取值范围是( ) A .(-∞,-1) B .(-∞,0) C .(-1,0)D .[-1,0)解析:当x >0时,f (x )=3x -1有一个零点x =13,所以只需要当x ≤0时,e x +a =0有一个根即可,即e x =-a .当x ≤0时,e x ∈(0,1],所以-a ∈(0,1],即a ∈[-1,0),故选D. 答案:D7.已知函数f (x )=2ax -a +3,若∃x 0∈(-1,1),使得f (x 0)=0,则实数a 的取值范围是( ) A .(-∞,-3)∪(1,+∞) B .(-∞,-3) C .(-3,1)D .(1,+∞)解析:依题意可得f (-1)·f (1)<0,即(-2a -a +3)(2a -a +3)<0,解得a <-3或a >1,故选A. 答案:A8.已知函数f (x )=2mx 2-x -1在区间(-2,2)内恰有一个零点,则m 的取值范围是( ) A.⎣⎡⎦⎤-38,18 B.⎝⎛⎭⎫-38,18 C.⎣⎡⎭⎫-38,18 D.⎝⎛⎦⎤-18,38 解析:当m =0时,函数f (x )=-x -1有一个零点x =-1,满足条件.当m ≠0时,函数f (x )=2mx 2-x -1在区间(-2,2)内恰有一个零点,需满足①f (-2)·f (2)<0或②⎩⎪⎨⎪⎧f (-2)=0,-2<14m <0或③⎩⎪⎨⎪⎧f (2)=0,0<14m <2.解①得-18<m <0或0<m <38;解②得m ∈∅,解③得m =38. 综上可知-18<m ≤38,故选D.答案:D9.已知函数f (x )=⎩⎪⎨⎪⎧|2x-1|,x <2,3x -1,x ≥2,若方程f (x )-a =0有三个不同的实数根,则实数a 的取值范围为( ) A .(1,3) B . (0,3) C .(0,2)D .(0,1)解析:画出函数f (x )的图象如图所示,观察图象可知,若方程f (x )-a =0有三个不同的实数根,则函数y =f (x )的图象与直线y =a 有3个不同的交点,此时需满足0<a <1,故选D. 答案:D10.(2018·汕头模拟)设函数f (x )是定义在R 上的周期为2的函数,且对任意的实数x ,恒有f (x )-f (-x )=0,当x ∈[-1,0]时,f (x )=x 2,若g (x )=f (x )-log a x 在x ∈(0,+∞)上有三个零点,则a 的取值范围为( ) A .[3,5] B .[4,6] C .(3,5)D .(4,6)解析:∵f (x )-f (-x )=0,∴f (x )=f (-x ),∴f (x )是偶函数,根据函数的周期性和奇偶性作出函数f (x )的图象如图所示:∵g (x )=f (x )-log a x 在(0,+∞)上有三个零点, ∴y =f (x )和y =log a x 的图象在(0,+∞)上有三个交点, 作出函数y =log a x 的图象,如图, ∴⎩⎪⎨⎪⎧log a 3<1log a5>1a >1,解得3<a <5.故选C.答案:C11.(2018·湖北七校联考)已知f (x )是奇函数且是R 上的单调函数,若函数y =f (2x 2+1)+f (λ-x )只有一个零点,则实数λ的值是( ) A.14 B.18 C .-78D .-38解析:令y =f (2x 2+1)+f (λ-x )=0,则f (2x 2+1)=-f (λ-x )=f (x -λ),因为f (x )是R 上的单调函数,所以2x 2+1=x -λ只有一个根,即2x 2-x +1+λ=0只有一个根,则Δ=1-8(1+λ)=0,解得λ=-78.故选C.答案:C12.(2018·郑州质量预测)已知定义在R 上的奇函数y =f (x )的图象关于直线x =1对称,当-1≤x <0时,f (x )=-log 12(-x ),则方程f (x )-12=0在(0,6)内的所有根之和为( )A .8B .10C .12D .16解析:∵奇函数f (x )的图象关于直线x =1对称,∴f (x )=f (2-x )=-f (-x ),即f (x )=-f (x +2)=f (x +4),∴f (x )是周期函数,其周期T =4.又当x ∈[-1,0)时,f (x )=-log 12(-x ),故f (x )在(0,6)上的函数图象如图所示.由图可知方程f (x )-12=0在(0,6)内的根共有4个,其和为x 1+x 2+x 3+x 4=2+10=12,故选C.答案:C13.(2018·聊城模拟)若方程|3x -1|=k 有两个解,则实数k 的取值范围是________. 解析:曲线y =|3x -1|与直线y =k 的图象如图所示,由图象可知,如果y =|3x -1|与直线y =k 有两个公共点,则实数k 应满足0<k <1.答案:(0,1)14.已知函数f (x )=⎩⎪⎨⎪⎧log 12x ,x >0,2x ,x ≤0,若关于x 的方程f (x )=k 有两个不等的实数根,则实数k 的取值范围是________.解析:作出函数y =f (x )与y =k 的图象,如图所示:由图可知k ∈(0,1]. 答案:(0,1]15.函数f (x )=⎩⎪⎨⎪⎧ln x -x 2+2x ,x >0,4x +1,x ≤0的零点个数是________.解析:当x >0时,令ln x -x 2+2x =0, 得ln x =x 2-2x ,作y =ln x 和y =x 2-2x 图象,显然有两个交点. 当x ≤0时,令4x +1=0, ∴x =-14.综上共有3个零点. 答案:316.已知函数f (x )=⎩⎪⎨⎪⎧2x -a ,x ≥0,x 2+ax +a ,x <0有三个不同的零点,则实数a 的取值范围是________.解析:由题意知,当x ≥0时,函数f (x )有一个零点,从而a =2x ≥1,当x <0时,函数f (x )有两个零点,则有⎩⎪⎨⎪⎧Δ=a 2-4a >0-a <0a >0即a >4.综上知a >4. 答案:(4,+∞)B 组 能力提升练1.函数f (x )=⎩⎨⎧1-x 2,-1≤x <1,lg x ,x ≥1的零点个数是( )A .0B .1C .2D .3解析:作出函数f (x )=⎩⎪⎨⎪⎧1-x 2,-1≤x <1,lg x ,x ≥1的图象,如图所示.由图象可知,所求函数的零点个数是2. 答案:C2.已知函数f (x )=⎩⎪⎨⎪⎧2-|x |,x ≤2,(x -2)2,x >2,函数g (x )=3-f (2-x ),则函数y =f (x )-g (x )的零点个数为( ) A .2 B .3 C .4D .5解析:分别画出函数f (x ),g (x )的草图,可知有2个交点.故选A.答案:A3.已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x ,x ≤0,|lg x |,x >0,则函数g (x )=f (1-x )-1的零点个数为( )A .1B .2C .3D .4解析:g (x )=f (1-x )-1=⎩⎪⎨⎪⎧(1-x )2+2(1-x )-1,1-x ≤0,|lg (1-x )|-1, 1-x >0 ⇒⎩⎪⎨⎪⎧x 2-4x +2, x ≥1,|lg (1-x )|-1, x <1,当x ≥1时,函数g (x )有1个零点;当x <1时,函数有2个零点,所以函数的零点个数为3,故选C. 答案:C4.(2018·洛阳统考)已知x 1,x 2是函数f (x )=e -x -|ln x |的两个零点,则( )A.1e<x 1x 2<1 B .1<x 1x 2<e C .1<x 1x 2<10D .e <x 1x 2<10解析:在同一直角坐标系中画出函数y =e -x 与y =|ln x |的图象(图略),结合图象不难看出,在x 1,x 2中,其中一个属于区间(0,1),另一个属于区间(1,+∞).不妨设x 1∈(0,1),x 2∈(1,+∞),则有e -x 1=|ln x 1|=-ln x 1∈(e -1,1),e -x 2=|ln x 2|=ln x 2∈(0,e -1),e -x 2-e -x 1=ln x 2+ln x 1=ln(x 1x 2)∈(-1,0),于是有e -1<x 1x 2<e 0,即1e <x 1x 2<1,故选A.答案:A5.设函数f (x )=e x +x -2,g (x )=ln x +x 2-3.若实数a ,b 满足f (a )=0,g (b )=0,则( ) A .g (a )<0<f (b ) B .f (b )<0<g (a ) C .0<g (a )<f (b ) D .f (b )<g (a )<0解析:∵f (x )=e x +x -2, ∴f ′(x )=e x +1>0, 则f (x )在R 上为增函数,且f (0)=e 0-2<0,f (1)=e -1>0, 又f (a )=0,∴0<a <1. ∵g (x )=ln x +x 2-3,∴g ′(x )=1x+2x .当x ∈(0,+∞)时,g ′(x )>0, 得g (x )在(0,+∞)上为增函数, 又g (1)=ln 1-2=-2<0, g (2)=ln 2+1>0,且g (b )=0, ∴1<b <2,即a <b ,∴⎩⎪⎨⎪⎧f (b )>f (a )=0,g (a )<g (b )=0.故选A. 答案:A6.(2018·郑州质量预测)对于函数f (x )和g (x ),设α∈{x |f (x )=0},β∈{x |g (x )=0},若存在α,β,使得|α-β|≤1,则称f (x )与g (x )互为“零点相邻函数”.若函数f (x )=e x -1+x -2与g (x )=x 2-ax -a +3互为“零点相邻函数”,则实数a 的取值范围是( ) A .[2,4] B.⎣⎡⎦⎤2,73 C.⎣⎡⎦⎤73,3D .[2,3]解析:函数f (x )=e x -1+x -2的零点为x =1,设g (x )=x 2-ax -a +3的零点为b ,若函数f (x )=e x -1+x -2与g (x )=x 2-ax -a +3互为“零点相邻函数”,则|1-b |≤1,∴0≤b ≤2.由于g (x )=x 2-ax -a +3的图象过点(-1,4),∴要使其零点在区间[0,2]上,则g ⎝⎛⎭⎫a 2≤0,即⎝⎛⎭⎫a 22-a ·a 2-a +3≤0,解得a ≥2或a ≤-6(舍去),易知g (0)≥0,即a ≤3,此时2≤a ≤3,满足题意. 答案:D7.设x 0为函数f (x )=sin πx 的零点,且满足|x 0|+f ⎝⎛⎭⎫x 0+12<33,则这样的零点有( ) A .61个 B .63个 C .65个D .67个解析:依题意,由f (x 0)=sin πx 0=0得,πx 0=k π,k ∈Z ,即x 0=k ,k ∈Z.当k 是奇数时,f ⎝⎛⎭⎫x 0+12=sin π⎝⎛⎭⎫k +12=sin ⎝⎛⎭⎫k π+π2=-1,|x 0|+f ⎝⎛⎭⎫x 0+12=|k |-1<33,|k |<34,满足这样条件的奇数k 共有34个;当k 是偶数时,f ⎝⎛⎭⎫x 0+12=sin π⎝⎛⎭⎫k +12=sin ⎝⎛⎭⎫k π+π2=1,|x 0|+f ⎝⎛⎭⎫x 0+12=|k |+1<33,|k |<32,满足这样条件的偶数k 共有31个.综上所述,满足题意的零点共有34+31=65(个),选C. 答案:C8.设函数f (x )=⎩⎪⎨⎪⎧x ,0≤x <11x +1-1,-1<x <0,设函数g (x )=f (x )-4mx -m ,其中m ≠0.若函数g (x )在区间(-1,1)上有且仅有一个零点,则实数m 的取值范围是( ) A .m ≥14或m =-1B .m ≥14C .m ≥15或m =-1D .m ≥15解析:f (x )=⎩⎨⎧x , 0≤x <1,1x +1-1, -1<x <0.作函数y =f (x )的图象,如图所示.函数g (x )零点的个数⇔函数y =f (x )的图象与直线y =4mx +m 交点的个数. 当直线y =4mx +m 过点(1,1)时,m =15;当直线y =4mx +m 与曲线y =1x +1-1(-1<x <0)相切时,可求得m =-1.根据图象可知,当m ≥15或m =-1时,函数g (x )在区间(-1,1)上有且仅有一个零点.答案:C9.已知f (x )是定义在R 上的奇函数,且x >0时,f (x )=ln x -x +1,则函数g (x )=f (x )-e x (e 为自然对数的底数)的零点个数是( ) A .0 B .1 C .2D .3解析:当x >0时,f (x )=ln x -x +1,f ′(x )=1x -1=1-x x ,所以x ∈(0,1)时,f ′(x )>0,此时f (x )单调递增;x ∈(1,+∞)时,f ′(x )<0,此时f (x )单调递减.因此,当x >0时,f (x )max =f (1)=ln 1-1+1=0.根据函数f (x )是定义在R 上的奇函数作出函数y =f (x )与y =e x 的大致图象,如图,观察到函数y =f (x )与y =e x 的图象有两个交点,所以函数g (x )=f (x )-e x (e 为自然对数的底数)有2个零点.故选C.答案:C10.已知函数f (x )=ln x -ax 2+x 有两个零点,则实数a 的取值范围是( ) A .(-∞,1) B .(0,1) C.⎝⎛⎭⎫-∞,1+ee 2D.⎝⎛⎭⎫0,1+ee 2解析:依题意,关于x 的方程ax -1=ln x x 有两个不等的正根.记g (x )=ln xx ,则g ′(x )=1-ln x x 2,当0<x <e 时,g ′(x )>0,g (x )在区间(0,e)上单调递增;当x >e 时,g ′(x )<0,g (x )在区间(e ,+∞)上单调递减,且g (e)=1e ,当0<x <1时,g (x )<0.设直线y =a 1x -1与函数g (x )的图象相切于点(x 0,y 0),则有⎩⎪⎨⎪⎧a 1=1-ln x 0x2a 1x 0-1=ln xx,由此解得x 0=1,a 1=1.在坐标平面内画出直线y=ax -1(该直线过点(0,-1)、斜率为a )与函数g (x )的大致图象,结合图象可知,要使直线y =ax -1与函数g (x )的图象有两个不同的交点,则a 的取值范围是(0,1),选B. 答案:B11.已知f ′(x )为函数f (x )的导函数,且f (x )=12x 2-f (0)x +f ′(1)e x -1,g (x )=f (x )-12x 2+x ,若方程g ⎝⎛⎭⎫x 2a -x -x =0在(0,+∞)上有且仅有一个根,则实数a 的取值范围是( ) A .(-∞,0)∪{1} B .(-∞,-1] C .(0,1]D .[1,+∞)解析:∵f (x )=12x 2-f (0)x +f ′(1)e x -1,∴f (0)=f ′(1)e -1,f ′(x )=x -f(0)+f ′(1)e x -1,∴f ′(1)=1-f ′(1)e -1+f ′(1)e 1-1,∴f ′(1)=e ,∴f (0)=f ′(1)e -1=1,∴f (x )=12x 2-x +e x ,∴g (x )=f (x )-12x 2+x =12x 2-x +e x -12x 2+x =e x ,∵g ⎝⎛⎭⎫x 2a -x -x =0,∴g ⎝⎛⎭⎫x 2a -x =x =g (ln x ),∴x 2a -x =ln x ,∴x 2a =x +ln x .当a >0时,只有y =x2a (x >0)和y =x +ln x 的图象相切时,满足题意,作出图象如图所示,由图象可知,a =1,当a <0时,显然满足题意,∴a =1或a <0,故选A. 答案:A12.已知函数y =f (x )是定义域为R 的偶函数.当x ≥0时,f (x )=⎩⎨⎧54sin ⎝⎛⎭⎫π2x (0≤x ≤1)⎝⎛⎭⎫14x+1(x >1),若关于x 的方程5[f (x )]2-(5a +6)f (x )+6a =0(a ∈R)有且仅有6个不同的实数根,则实数a 的取值范围是( )A .(0,1)∪⎩⎨⎧⎭⎬⎫54B .[0,1]∪⎩⎨⎧⎭⎬⎫54C .(0,1]∪⎩⎨⎧⎭⎬⎫54D.⎝⎛⎦⎤1,54∪{0} 解析:作出f (x )=⎩⎨⎧54sin ⎝⎛⎭⎫π2x (0≤x ≤1)⎝⎛⎭⎫14x+1(x >1)的大致图象如图所示,又函数y =f (x )是定义域为R的偶函数,且关于x 的方程5[f (x )]2-(5a +6)f (x )+6a =0(a ∈R)有且仅有6个不同的实数根,等价于f (x )=65和f (x )=a (a ∈R)有且仅有6个不同的实数根.由图可知方程f (x )=65有4个不同的实数根,所以必须且只需方程f (x )=a (a ∈R)有且仅有2个不同的实数根,由图可知0<a ≤1或a =54.故选C.答案:C13.在平面直角坐标系xOy 中,若直线y =2a 与函数y =|x -a |-1的图象只有一个交点,则a 的值为________.解析:若直线y =2a 与函数y =|x -a |-1的图象只有一个交点,则方程2a =|x -a |-1只有一解,即方程|x -a |=2a +1只有一解,故2a +1=0,所以a =-12.答案:-1214.函数f (x )=⎝⎛⎭⎫12|x -1|+2cos πx (-4≤x ≤6)的所有零点之和为________.解析:问题可转化为y =⎝⎛⎭⎫12|x -1|与y =-2cos πx 在-4≤x ≤6的交点的横坐标的和,因为两个函数图象均关于x =1对称,所以x =1两侧的交点对称,那么两对应交点的横坐标的和为2,分别画出两个函数的图象(图略),易知x =1两侧分别有5个交点,所以所求和为5×2=10. 答案:1015.(2018·广州综合测试)已知函数f (x )=⎩⎪⎨⎪⎧1-|x +1|,x <1x 2-4x +2,x ≥1,则函数g (x )=2|x |f (x )-2的零点个数为________.解析:由g (x )=2|x |f (x )-2=0得,f (x )=⎝⎛⎭⎫12|x |-1,作出y =f (x ),y =⎝⎛⎭⎫12|x |-1的图象,由图象可知共有2个交点,故函数的零点个数为2.答案:216.(2018·沈阳教学质量监测)已知函数f (x )=⎩⎨⎧2x -1(x ≥2)2(1≤x <2),若方程f (x )=ax +1恰有一个解,则实数a 的取值范围是________.解析:如图,当直线y =ax +1过点B (2,2)时,a =12,满足方程有两个解;当直线y =ax +1与f (x )=2x -1(x ≥2)的图象相切时,a =-1+52,满足方程有两个解;当直线y =ax +1过点A (1,2)时,a =1,满足方程恰有一个解.故实数a 的取值范围为⎝⎛⎭⎫0,12∪⎝ ⎛⎦⎥⎤-1+52,1.答案:⎝⎛⎭⎫0,12∪⎝ ⎛⎦⎥⎤-1+52,1。

人教A版高中数学必修五二元一次不等式(组)与简单的线性规划问题试题(新人教)..docx

人教A版高中数学必修五二元一次不等式(组)与简单的线性规划问题试题(新人教)..docx

高中数学学习材料马鸣风萧萧*整理制作3.3 二元一次不等式(组)与简单的线性规划问题第1题. 已知x y ,满足约束条件5003x y x y x -+⎧⎪+⎨⎪⎩≥,≥,≤.则24z x y =+的最大值为( )A.5 B.38- C.10 D.38答案:D第2题. 下列二元一次不等式组可用来表示图中阴影部分表示的平面区域的是( )A.10220x y x y +-⎧⎨-+⎩≥≥B.10220x y x y +-⎧⎨-+⎩≤≤C.10220x y x y +-⎧⎨-+⎩≥≤D.1022x y x y +-⎧⎨-+⎩≤≥0答案:Axy1 1- 2-O第3题. 已知点1(00)P ,,231(11)03P P ⎛⎫ ⎪⎝⎭,,,,则在3210x y +-≥表示的平面区域内的点是( ) A.1P ,2P B.1P ,3PC.2P ,3PD.2P答案:C第4题. 若222x y x y ⎧⎪⎨⎪+⎩≤,≤,≥,则目标函数2z x y =+的取值范围是( )A.[26],B.[25],C.[36],D.[35],答案:A第5题. 设a 是正数,则同时满足下列条件:22ax a ≤≤;22a y a ≤≤;x y a +≥;x a y +≥;y a x +≥的不等式组表示的平面区域是一个凸 边形.答案:六第6题. 原点(00)O ,与点集{()|2102250}A x y x y y x x y =+-++-,≥,≤,≤所表示的平面区域的位置关系是 ,点(11)M ,与集合A 的位置关系是 .答案:O 在区域外,M 在区域内第7题. 点(3)P a ,到直线4310x y -+=的距离等于4,且在不等式23x y +<表示的平面区域内,则P 点坐标是 .答案:(33)-,第8题. 给出下面的线性规划问题:求35z x y =+的最大值和最小值,使x ,y 满足约束条件5315153x y y x x y +⎧⎪+⎨⎪-⎩≤,≤,≤.要使题目中目标函数只有最小值而无最大值,请你改造约束条件中一个不等式,那么新的约束条件是 .答案:30153x y y x x y --⎧⎪+⎨⎪-⎩≤,≤,≤.第9题. 某运输公司接受了向抗洪救灾地区每天送至少180t 支援物资的任务.该公司有8辆载重6t 的A 型卡车与4辆载重为10t 的B 型卡车,有10名驾驶员,每辆卡车每天往返的次数为A 型卡车4次,B 型卡车3次;每辆卡车每天往返的成本费A 型为320元,B 型为504元.请为公司安排一下,应如何调配车辆,才能使公司所花的成本费最低?若只安排A 型或B 型卡车,所花的成本费分别是多少?答案:解:设需A 型、B 型卡车分别为x 辆和y 辆.列表分析数据.A 型车B 型车 限量车辆数 x y10 运物吨数 24x 30y 180费用320x504yz由表可知x ,y 满足的线性条件:1024301800804x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤≥≤≤≤≤,且320504z x y =+. 作出线性区域,如图所示,可知当直线320504z x y =+过(7.50)A ,时,z 最小,但(7.50)A ,不是整点,继续向上yCDB4平移直线320504z x y =+可知,(52),是最优解.这时min 320550422608z =⨯+⨯= (元),即用5辆A 型车,2辆B 型车,成本费最低.若只用A 型车,成本费为83202560⨯=(元),只用B 型车,成本费为180504302430⨯=(元).第10题. 有粮食和石油两种物资,可用轮船与飞机两种方式运输,每天每艘轮船和每架飞机的运输效果见表.轮船运输量/t飞机运输量/t粮食 300 150 石油250 100现在要在一天内运输至少2000t 粮食和1500t 石油,需至少安排多少艘轮船和多少架飞机?答案:解:设需安排x 艘轮船和y 架飞机,则3001502000250100150000x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≥ ,≥ ,≥,≥.即6340523000x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≥,≥,≥,≥. 目标函数为z x y =+.作出可行域,如图所示.作出在一组平行直线x y t +=(t 为参数)中经过可行域内某点且和原点距离最小的直线,此直线经过直线63400x y +-=和0y =的交点2003A ⎛⎫⎪⎝⎭,,直线方程为:203x y +=. 由于203不是整数,而最优解()x y ,中x y ,必须都是整数,所以,可行域内点2003⎛⎫⎪⎝⎭,不是最优解.经过可行域内的整点(横、纵坐标都是整数的点)且与原点距离最近的直线经过的整点是(70),,即为最优解.则至少要安排7艘轮船和0架飞机.方式效果 种类yx52300x y +-=第11题. 用图表示不等式(3)(21)0x y x y +--+<表示的平面区域. 答案:解:第12题. 求22z x y =+的最大值和最小值,使式中的x ,y 满足约束条件27043120230x y x y x y -+⎧⎪--⎨⎪+-⎩≥≤≥.答案:解:已知不等式组为27043120230x y x y x y -+⎧⎪--⎨⎪+-⎩≥≤≥. 在同一直角坐标系中,作直线270x y -+=,43120x y --=和230x y +-=,再根据不等式组确定可行域△ABC (如图).由27043120x y x y -+=⎧⎨--=⎩解得点(56)A ,. 所以22222max ()||5661x y OA +==+=;30x y +-=yx O 1-123321210x y -+=AyxB327243120x y --=270x y -+=O 3C 230x y +-=4-7-因为原点O 到直线BC 的距离为|003|355+-=, 所以22min 9()5x y +=.第13题. 预算用2000元购买单价为50元的桌子和20元的椅子,并希望桌椅的总数尽可能多,但椅子数不能少于桌子数,且不多于桌子数的1.5倍.问:桌、椅各买多少才合适? 答案:解:设桌椅分别买x ,y 张,由题意得502020001.500x y y x x y x y +⎧⎪⎪⎪⎨⎪⎪⎪⎩≤,≤,≤,≥,≥.由50202000x y x y =⎧⎨+=⎩,,解得20072007x y ⎧=⎪⎪⎨⎪=⎪⎩,.∴点A 的坐标为20020077⎛⎫⎪⎝⎭,. 由 1.550202000y x x y =⎧⎨+=⎩,,解得25752x y =⎧⎪⎨=⎪⎩,.∴点B 的坐标为75252⎛⎫ ⎪⎝⎭,以上不等式所表示的区域如图所示, 即以20020077A ⎛⎫⎪⎝⎭,,75252B ⎛⎫ ⎪⎝⎭,,(00)O ,为顶点的△AOB 及其内部.对△AOB 内的点()P x y ,,设x y a +=,即y x a =-+为斜率为1-,y 轴上截距为a 的平行直线系. 只有点P 与B 重合,即取25x =,752y =时,a 取最大值. y ∈Z ∵,37y =∴.∴买桌子25张,椅子37张时,是最优选择.xy1.50x y -=0x y -=0x y +=Ox y a +=50202000x y +=AB第14题. 画出不等式组200112x x y y x ⎧⎪-⎪-⎨⎪⎪-⎩≤≥≥表示的平面区域,并求出此不等式组的整数解.答案:解:不等式组表示的区域如图所示,其整数解为22x y =-⎧⎨=-⎩,;0001x x y y ==⎧⎧⎨⎨==-⎩⎩,,;;1122210210x x x x x y y y y y =====⎧⎧⎧⎧⎧⎨⎨⎨⎨⎨=====⎩⎩⎩⎩⎩,,,,,;;;;.第15题. 如图所示,(21)(3)0x y x y -++-<表示的平面区域是( )yO2-2y x =2x =1-x112y x =-答案:C第16题. 已知点(31),和(46)-,在直线320x y a -+=的两侧,则a 的取值范围是( ) A.7a <-或24a > B.7a =或24a =C.724a -<< D.247a -<<答案:C第17题. 给出平面区域如图所示,若使目标函数z ax y =+(0)a >取得最大值的最优解有无穷多个,则a 的值为( ) A.14B.35C.4 D.53Oy 1- O2 3x33y 1- 23xy xO1- 2 3 31- O23 xy 3ABCD2215C ⎛⎫ ⎪⎝⎭, (52)A ,(11)B ,Oyx答案:B第18题. 能表示图中阴影部分的二元一次不等式组是( )A.01220y x y ⎧⎨-+⎩≤≤≤B.1220y x y ⎧⎨-+⎩≤≥C.012200y x y x ⎧⎪-+⎨⎪⎩≤≤≤≤D.10220y x x y ⎧⎪⎨⎪-+⎩≤≤≤答案:C第19题. 已知目标函数2z x y =+中变量x y ,满足条件4335251x y x y x --⎧⎪+<⎨⎪⎩≤,,≥.则( )A.max min 123z z ==, B.max 12z =,无最小值 C.min 3z =,无最大值D.z 无最大值,也无最小值答案:C第20题. 下列二元一次不等式组可用来表示图中阴影部分表示的平面区域的是( )A.10236010220x y x y x y x y +->⎧⎪+-<⎪⎨--⎪⎪-+⎩≥≤B.10236010220x y x y x y x y +-<⎧⎪+-⎪⎨--⎪⎪-+<⎩≥≥yx1y =O1-1-112220x y +-=y21C.10236010220x y x y x y x y +->⎧⎪+-⎪⎨--⎪⎪-+>⎩≤≤D.10236010220x y x y x y x y +-⎧⎪+-<⎪⎨--<⎪⎪-+⎩≥≥答案:C第21题. 已知x ,y 满足约束条件5003x y x y x -+⎧⎪+⎨⎪⎩≥,≥,≤.则24z x y =+的最小值为( )A.5 B.6-C.10D.10-答案:B第22题. 满足||||2x y +≤的整点(横、纵坐标为整数)的个数是( ) A.11 B.12C.13D.14答案:C第23题. 不等式260x y -+>表示的平面区域在直线260x y -+=的( ) A.右上方 B.右下方C.左上方D.左下方答案:B第24题. 在ABC △中,三顶点(24)A ,,(12)B -,,(10)C ,,点()P x y ,在△ABC 内部及边界运动,则z x y =-最大值为( ) A.1B.3-C.1-D.3答案:A马鸣风萧萧第25题. 不等式组(5)()003x y x y x -++⎧⎨⎩≥≤≤表示的平面区域是一个( ) A.三角形B.直角梯形C.梯形 D.矩形答案:C第26题. 不在326x y +<表示的平面区域内的点是( )A.(00),B.(11), C.(02), D.(20),答案:D第27题. ABC △中,三个顶点的坐标分别为(24)A ,,(12)B -,,(10)C ,,点()P x y ,在ABC △内部及边界运动,则z x y =-的最大值及最小值分别是 和 .答案:1,3-第28题. 已知集合{()|||||1}A x y x y =+,≤,{()|()()0}B x y y x y x =-+,≤,M A B =,则M 的面积是 .答案:1。

高中数学 第三章 不等式 3.3 二元一次不等式(组)与简单的线性规划问题素材 新人教A版必修5

高中数学 第三章 不等式 3.3 二元一次不等式(组)与简单的线性规划问题素材 新人教A版必修5

3.3二元一次不等式(组)与简单的线性规划问题一、知识梳理1. 目标函数: P=2x+y是一个含有两个变量x和y的函数,称为目标函数.2.可行域:约束条件所表示的平面区域称为可行域.3. 整点:坐标为整数的点叫做整点.4.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值的问题,通常称为线性规划问题.只含有两个变量的简单线性规划问题可用图解法来解决.5. 整数线性规划:要求量取整数的线性规划称为整数线性规划.二、疑难知识导析线性规划是一门研究如何使用最少的人力、物力和财力去最优地完成科学研究、工业设计、经济管理中实际问题的专门学科.主要在以下两类问题中得到应用:一是在人力、物力、财务等资源一定的条件下,如何使用它们来完成最多的任务;二是给一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务.1.对于不含边界的区域,要将边界画成虚线.2.确定二元一次不等式所表示的平面区域有多种方法,常用的一种方法是“选点法”:任选一个不在直线上的点,检验它的坐标是否满足所给的不等式,若适合,则该点所在的一侧即为不等式所表示的平面区域;否则,直线的另一侧为所求的平面区域.若直线不过原点,通常选择原点代入检验.3. 平移直线y=-kx+P时,直线必须经过可行域.4.对于有实际背景的线性规划问题,可行域通常是位于第一象限内的一个凸多边形区域,此时变动直线的最佳位置一般通过这个凸多边形的顶点.5.简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解.积储知识:一.1.点P(x0,y0)在直线Ax+By+C=0上,则点P坐标适合方程,即Ax0+By0+C=02. 点P(x0,y0)在直线Ax+By+C=0上方(左上或右上),则当B>0时,Ax0+By0+C>0;当B<0时,Ax0+By0+C<03. 点P(x0,y0)在直线Ax+By+C=0下方(左下或右下),当B>0时,Ax0+By0+C<0;当B<0时,Ax0+By0+C>0注意:(1)在直线Ax+By+C=0同一侧的所有点,把它的坐标(x,y)代入Ax+By+C,所得实数的符号都相同,(2)在直线Ax+By+C=0的两侧的两点,把它的坐标代入Ax+By+C,所得到实数的符号相反, 即:1.点P(x1,y1)和点Q(x2,y2)在直线Ax+By+C=0的同侧,则有(Ax1+By1+C)( Ax2+By2+C)>0 2.点P(x1,y1)和点Q(x2,y2)在直线 Ax+By+C=0的两侧,则有(Ax1+By1+C)( Ax2+By2+C)<0二.二元一次不等式表示平面区域:①二元一次不等式Ax+By+C>0(或<0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域. 不包括边界; ②二元一次不等式Ax+By+C≥0(或≤0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域且包括边界; 注意:作图时,不包括边界画成虚线;包括边界画成实线.三、判断二元一次不等式表示哪一侧平面区域的方法:方法一:取特殊点检验; “直线定界、特殊点定域原因:由于对在直线Ax+By+C=0的同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得到的实数的符号都相同,所以只需在此直线的某一侧取一个特殊点(x0,y0),从Ax0+By0+C的正负即可判断 Ax+By+C>0表示直线哪一侧的平面区域.特殊地, 当C≠0时,常把原点作为特殊点,当C=0时,可用(0,1)或(1,0)当特殊点,若点坐标代入适合不等式则此点所在的区域为需画的区域,否则是另一侧区域为需画区域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.在坐标平面上,不等式组所表示的平面区域的面积为()
A.2B.
C.D.2
解析:画出不等式组表示的平面区域如下图阴影部分所示.
联立求出A.
联立求出B(2,3).
故所求区域面积S=×2×2+×2×=.故选B.
答案:B
7.已知向量m=(a-2b,a),n=(a+2b,3b),且m,n的夹角为钝角,则在aOb平面上,点(a,b)所在的区域是()
∴|m-2|=5,∴m=7或m=-3.又2m+3<3,
∴m<0,∴m=-3.
答案:-3
9.某公司从银行贷款不足250万元,分配给下属甲、乙两个工厂用以进行技术改造.已知甲厂可以从投入的金额中获取20%的利润;乙厂可以从投入的金额中获取25%的利润.如果该公司计划从这笔贷款中至少获利60万元,请列出甲、乙两个工厂分配到的贷款金额所满足的数学关系式,并画出相应的平面区域.
平移直线过点A后,继续向上平移,原不等式组表示的平面区域是一个三角形.
由求得点A的坐标为.
答案:D
5.满足|x|+|y|≤4的整点(横、纵坐标均为整数)的点(x,y)的个数为()
A.16 B.17
C.40 D.41
解析:第一象限内点(1,1),(1,2),(1,3),(2,1),各有6个,x,y轴上各有9个,但原点重复,所以共41个.
答案:D
解:设x,y分别表示甲、乙两个工厂分配到的贷款金额(单位:万元),
根据题意,可得
不等式组表示的平面区域如图中的阴影部分.
10.若不等式组表示的平面区域是一个三角形,求a的取值范围.
解:画出不等式组表示的平面区域如图中阴影部分.
作直线l:x+y=0,把直线l向上平移至过点B(1,0)的过程中,
原不等式组表示的平面区域是一个三角形,此时有0<a≤1,
答案:B
4.在平面直角坐标系中,若不等式组(a为常数)所表示的平面区域的面积等于2,则a的值为()
A.-5 B.1
C.2 D.3
解析:由题意知不等式组所表示的平面区域为一个三角形,设为△ABC,
则A(1,0),B(0,1),C(1,1+a),且a>-1.
∵S△ABC=2,∴(1+a)×1=2,∴a=3.
二元一次不等式(组)
与平面区域
A组 基础巩固
1.若不等式组表示的平面区域是一个三角形,则a的取值范围是()
A.a<5 B.a≥7
C.5≤a<7 D.a<5或a≥7
解析:先画出x-y+5≥0和0≤x≤2表示的区域,再确定y≥a表示的区域.由图知:5≤a<7.
答案:C
2.若点P在所确定的平面区域内,则点P的纵坐标的取值范围为()
A B
C D
解析:∵m,n的夹角为钝角,
∴m·n<0⇒(a-2b,a)·(a+2b,3b)=a2-4b2+3ab=(a+4b)·(a-b)<0⇒
或故选A.
答案:A
8.若点P(m,3)到直线4x-3y+1=0的距离为4,且点P在不等式2x+y<3表示的平面区域内,则m=________.
解析:由题意,得d===4,
A.≤a≤B.≤a≤
C.≤a≤D.≤a≤
解析:根据已知条件,由于点P的横坐标为,代入其中的两条限制直线方程中,则可以求出此时纵坐标的取值范围:≤a≤,从而答案为A.
答案:A
3.直线2x+y-10=0与不等式组表示的平面区域的公共点有()
A.0个B.1个
C.2个D.无数个
解析:首先作出不等式组表示的平面区域,然后作直线2x+y-10=0,如图,发现直线与平面区域只有一个公共点(5,0),故选B.
相关文档
最新文档