2019年六年级数学下册 6.7 完全平方公式复习教学设计 鲁教版五四制
2019年六年级数学下册 6.7 完全平方公式教学设计2 鲁教版五四制
2019年六年级数学下册 6.7 完全平方公式教学设计2 鲁教版五四制
教学目标知识目标:1.完全平方公式的推导及其应用.2.完全平方公式的几何解释.1.添括号法则.
2.利用添括号法则灵活应用完全平方公式.
情感态度价值观:在发展推理能力和有条理的语言、符号表达能力的同时,进一步体会学习数学的兴趣,提高学习数学的信心,感受数学的简洁美.
教学
重点
重点:理解添括号法则,进一步熟悉乘法公式的合理利用.
教学
难点
难点:在多项式与多项式的乘法中适当添括号达到应用公式的目的.
学情分析学生在学习了正式的加减的基础上再来学习整式的乘除,让学生有了一个梯度和螺旋上升的空间
教学
准备
多媒体,投影
教学过程:
结合学科特点,体现单元组教学环节,学习内容,时间预测,教师活动,学生活动,自主学习设计,问题探究,单元组合作,同层竞争,人人参与,精讲足练,联系实际,点拨升华,
集体备课二次备课
(2)添括号法则:添括号时,如果括号前面是正号,括到括号里的各项
都;如果括号前面是负号,括到括号里的各项都 .
二、同层展示(5分钟)
同层比较个性学习内容的质量和数量
三、小组合作(15分钟)
1、同质交流:
2、异质帮扶:
3、提出疑难问题:
四、师生探究(10分钟)
1、若(x+a)(x+2)=x2-5x+b,则求a和b的值.
2、若a2+a+1=2,则求(5-a)(6+a)的值.
注:资料可能无法思考和涵盖全面,最好仔细浏览后下载使用,感谢您的关注!。
(小学教育)2019年六年级数学下册《完全平方公式》教案 鲁教版
2019年六年级数学下册《完全平方公式》教案鲁教版教学目标在具体情景中进一步理解完全平方公式,能正确运用完全平方公式和平方差公式进行计算. 重点、难点根据公式的特征及问题的特征选择适当的公式计算.教学过程一、议一议1.边长为(a+b)的正方形面积是多少?2.边长分别为a、b拍的两个正方形面积和是多少?3.你能比较(1)(2)的结果吗?说明你的理由.师生共同讨论:学生回答(1)(a+b) (2)a +b (3)因为(a+b) =a +2ab+b ,所以 (a+b) -(a +b )=a +2ab+b -a -b =2ab,即(1)中的正方形面积比(2)中的正方形面积大.二、做一做例1. 利用完全平方式计算1. 102 ,2. 197师:要利用完全平方公式计算,则要创设符合公式特征的两数和或两数差的平方,且计算尽可能简便.学生活动:在练习本上演示此题.让学生叙述,教师板书.解:1.102 =(100+2) 2.197 =(200-3)=100 +2 lOO 2+2, =200 -2 2O0 3十3 ,=10000+400+4 =40000-1200+9=10404 =38809例2.计算:1.(x-3) -x2.(2a+b- )(2a-b+师生共同分析:1中(x-3) 可利用完全平方公式.学生动笔解答第1题.教师根据学生解答情况,板书如下:解:1. (x-3) -x=x +6x+9-x=6x+9师问:此题还有其他方法解吗?引导学生逆用平方差公式,从而培养学生创新精神.学生活动:分小组讨论第(2)题的解法.此题学生解答,难度较大.教师要引导学生使用加法结合律,为使用公式创造条件.学生小组交流派代表进行全班交流.最后教师板书解题过程. 解:2. (2a+b- )(2a-b+ )=[2a+(b- )][2a-(b- )]=(2a) -(b- )=4a -(b-3b+ )=4a -b +3b-三、试一试计算:1. (a+b+c)2. (a+b)师生共同分析:对于1要把多项式完全平方转化为二项式的完全平方,要使用加法结合律,为使用完全平方公式创造条件.如(a+b+c) =[a+(b+c)] 对于(2)可化为(a+b) =(a+b)(a+b) .学生动笔:在练习本上解答,并与同伴交流你的做法.学生叙述,教师板书.解:1. (a+b+c) =[a+(b+c)]=(a+b) +2(a+b)c+ c=a +2ab+b +2ac+2bc+c=a +b +c +2ab+2ac+2bc四、随堂练习 P38 1五、小结本节课进一步学习了完全平方公式,在应用此公式运算时注意以下几点.1.使用完全平方公式首先要熟记公式和公式的特征,不能出现(a±b) =a ±b 的错误,或(a±b) =a ±ab+b (漏掉2倍)等错误.2.要能根据公式的特征及题目的特征灵活选择适当的公式计算.3.用加法结合律,可为使用公式创造了条件.利用了这种方法,可以把多项式的完全平方转化为二项式的完全平方.六、作业课本习题1.14 P38 1、2、3.七、教后反思§1.9 整式的除法第一课时单项式除以单项式教学目标1.经历探索单项式除法的法则过程,了解单项式除法的意义.2.理解单项式除法法则,会进行单项式除以单项式运算.重点、难点重点:单项式除以单项式的运算.难点:单项式除以单项式法则的理解.教学过程一、议一议,探索单项式除以单项式法则(出示投影1)计算下列各题,并说说你的理由1. x y÷x ,(8m n )÷(2m n) ,(a b c)÷(3a b).师生共同分析:此题是做除法运算,可以从两方面思考:根据除法是乘法的逆运算,将除法问题转化为乘法问题去解决,即( )·x =x y,由单项式乘以单项式法则可得(x y)·x =x y,因此,x y÷x =x y . 另外,根据同底数幂的除法法则,由约分也可得 =x y.学生动笔:写出(2)(3)题的结果.教师板书: x y÷x =x y, (8m n )÷(2m n)=4n ,(a b c)÷(3a b)=a bc师:以上运算是单项式除以单项式的运算,你能说说如何进行单项式除以单项式的运算?学生活动:小组讨论,教师引导学生从系数、同底数幂、只在被除式含有的字母三方面思考,讨论充分后,由一名同学叙述,其余同学补充纠正.出示单项式除法法则(投影显示)单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.二、做一做,巩固新知例1计算1.(- x y )÷(3 x y) 2.(10a b c )÷(5a bc)3.(2x y) (-7xy )÷(14 x y )4.(2a+b) ÷(2a+b)学生活动:在练习本上计算.教师引导学生按法则进行运算,首先确定它们的系数,把系数的商作为商的系数,其次确定相同的字母,在被除式中出现的字母作为商中可能含有的字母,相同字母的指数之差作为商式中对应字母的指数,只在被除式中含有的字母指数不变,最后化简.第(1)(2)题对照法则进行,第(3)题要按运算顺序进行.第(4)题先把(2a+b)看作一个整体 (一个字母)相除,后用完全平方公式计算.教师板书如下:解: 1.(- x y )÷(3 x y) 2.(10a b c )÷(5a bc)=(- ÷3)x y =(10÷5)a b c=- y =2ab c3.(2x y) (-7xy )÷(14 x y )4.(2a+b) ÷(2a+b)=8x y (-7xy )÷(14 x y ) =(2a+b)=-56x y ÷(14 x y ) =(2a+b)=-4x y =4a +4ab+b三、随堂练习 P40 1学生活动:让四名同学到黑板板演,其余同学在练习本上计算,同伴可交流,互相订正.教师巡回检查,对存在问题及时更正.待四名板演同学完成后,师生共同订正.四、小结本节课主要学习了单项式除以单项式的运算.在运用法则计算时应注意以下几点:1.系数相除与同底数幂相除的区别;2.符号问题;3.指数相同的同底数幂相除商为1而不是0;4.在混合运算中,要注意运算的顺序.小学教育资料好好学习,天天向上!第4 页共4 页。
(小学教育)2019年(春季版)六年级数学下册 6.7《完全平方公式》学案鲁教版
2019年(春季版)六年级数学下册 6.7《完全平方公式》学案鲁教版【学习目标】1.通过对完全平方公式的探索和推导,进一步发展符号感和推理能力.2.会推导完全平方公式,并能运用公式进行简单的计算.3.了解的几何背景.【温故互查】(小组完成)1. 直接写出结果:(l) =_________________;(2)=______________ .2.叙述平方差公式推导过程..【问题导学】阅读教材P47—49,完成下列问题:1.(1) (2)=____________; = ________________.2. (1) 类比平方差公式的推导得出:和的完全平方公式.用语言叙述和的完全平方公式:__________________________.你能用如下几何图形来解释这一公式吗?(2) 差的完全平方公式.你能说明理由吗?.(两种方法)方法1:(类比平方差公式的推导即用多项式乘多项式法则来推导)方法2:(转化成两数和的平方来推导)3.你能总结一下完全平方公式的结构特征吗?(1)和为______次______项式;(2)和中首尾两项为两数的_______;(3)中间项为两数积的______倍,且与乘式中间的符号________.【自学检测】1.判断下列计算是否正确,并说明理由.(1)(2)(3)(4)用完全平方公式进行计算应注意哪些问题?_______________________________________________________________________________ __________________________.【典例解析】例1.用完全平方公式计算:(1) (2)(3)归纳:完全平方公式口诀:首平方,尾平方,积的2倍放中央.例2.利用完全平方公式计算:(1) ; (2);变式:(1);(2) .【巩固训练】计算(1)(2)(3)(4);【达标检测】1.计算的结果是().(A)(B)(C)(D)2.填空.3.填上适当的数,使等式成立:= .4.请你观察下图,依据图形面积间的关系,便可得到一个你非常熟悉的乘法公式,这个公式是_________________________________.【课堂小结】1、完全平方公式:______________________2、完全平方公式的结构特征是什么?3、你还有那些收获?作业布置:习题6.14第1题;选做第2题.小学教育资料好好学习,天天向上!第4 页共4 页。
鲁教版(五四制)六年级下册 6.7《完全平方公式》复习课件(共30张PPT)
C. a2 +2ab b2
D. a2 2ab b2
1.运用乘法公式计算 -a b2 的结果是(C )
A. a2 +b2
B. a2 b2
C. a2 +2ab b2
D. a2 2ab b2
考点一 运用乘法公式计算
2.下列各式中,不是完全平方式的是( )
本题答案为:ab .
关键突破口 : 解决本题的
关键突破口是求出大小正
方形的边长.
2.把下图左框里的整式分别乘 ( a + b ), 所得
的积写在右框相应的位置上 .
2.把下图左框里的整式分别乘 ( a + b ), 所得
的积写在右框相应的位置上 .
a2 2ab b2
a2 -b2 b2 -a2
A.7 B.5 C.3 D.1
2.若a b2 9,a b2 5 则ab的值为( )
A.4 B.-4 C.1 D.-1
2.若a b2 9,a b2 5 则ab的值为(C)
A.4 B.-4 C.1 D.-1
3.简便计算:
(1). 用简便方法计算: 9992
中,可以组成不同完全平方式的个数是(D )
A.4 B.5 C.6 D.7
1.已知,m n2 11, mn 2 则 m n2 的值为( )
A.7 B.5 C.3 D.1
1.已知,m n2 11, mn 2
则 m n2 的值为(C )
4
D. x4 -10x3 25
3.下.在单项式 x2, 4xy, y2, 2xy, 4x2, 4 y2, 4xy, 2xy 中,可以组成不同完全平方式的个数是( ) A.4 B.5 C.6 D.7
鲁教版数学六年级下册6.7《完全平方公式》教学设计
鲁教版数学六年级下册6.7《完全平方公式》教学设计一. 教材分析《完全平方公式》是鲁教版数学六年级下册第6.7节的内容。
本节课主要让学生掌握完全平方公式的推导过程和应用。
完全平方公式是小学数学中较为重要的公式之一,对于学生来说,理解和掌握完全平方公式对于后续学习代数和几何知识有着重要的基础作用。
二. 学情分析六年级的学生已经具备了一定的代数基础,对于简单的公式和定理能够理解和记忆。
但是,由于完全平方公式的推导过程较为复杂,需要学生具有较强的逻辑思维能力和空间想象能力。
因此,在教学过程中,需要关注学生的学习情况,针对不同学生的特点进行有针对性的教学。
三. 教学目标1.让学生理解完全平方公式的推导过程。
2.让学生能够运用完全平方公式进行计算和解决问题。
3.培养学生的逻辑思维能力和空间想象能力。
四. 教学重难点1.完全平方公式的推导过程。
2.完全平方公式的应用。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过思考和探索来理解和掌握完全平方公式。
2.使用多媒体教学手段,通过动画和图形来展示完全平方公式的推导过程,增强学生的空间想象能力。
3.学生进行小组讨论和合作,培养学生的团队协作能力。
六. 教学准备1.多媒体教学设备。
2.教学课件和教案。
3.练习题和测试题。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何解决这个问题,从而引出完全平方公式的概念。
2.呈现(15分钟)使用多媒体教学手段,呈现完全平方公式的推导过程。
通过动画和图形,让学生直观地理解完全平方公式的来源和应用。
3.操练(15分钟)让学生进行一些简单的练习题,巩固对完全平方公式的理解和记忆。
可以学生进行小组讨论和合作,共同解决问题。
4.巩固(10分钟)让学生进行一些有一定难度的练习题,巩固对完全平方公式的理解和应用。
教师可以给予一定的指导和建议,帮助学生解决问题。
5.拓展(10分钟)引导学生思考如何将完全平方公式应用到解决更复杂的问题中。
2019年六年级数学下册 6.7 完全平方公式教案1 鲁教版五四制
2019年六年级数学下册 6.7 完全平方公式教案1 鲁教版五四制【使用说明以及学法指导】1.精读一遍教材P47-50,用红色笔勾画重点,再针对导学案二次阅读教材,并回答问题。
2.找出自己的疑惑和需要讨论的问题,写在我的质疑处,在课堂上进行讨论和质疑。
3.预习目标:会推导完全平方公式,并运用完全平方公式来解决简单的计算问题。
4.限时完成导学案的基础案和拓展案,书写要规范。
【学习目标】知识与能力:会推导完全平方公式,掌握完全平方公式并能灵活运用公式进行简单的运算.过程与方法:会用几何拼图方式验证完全平方公式,培养数学语言表达能力和运算能力.情感态度价值观:激情投入,阳光展示,培养数学学习的兴趣和热情。
教学重点:完全平方公式的推导过程。
教学难点:运用完全平方公式进行简单计算。
【基础案】(要求:全体学生都要做)一、【复习巩固】1.填空:两个数的和与这两个数的差的积,等于这两个数的,即(a+b)(a-b)= ,这个公式叫做公式.2.用平方差公式计算(1) (-m+5n)(-m-5n) (2) (3x-1)(3x+1)(3) (y+3x)(3x-y) (4) (-2+ab)(2+ab)【基础知识】:完全平方公式的推导利用多项式乘多项式法则,计算下列各式,你又能发现什么规律?(1)__________________________.(2)=_______________________.(3) _____ _______________.(4) =____________________.(5) =_________________________ .(6) =________________________.【小结】: 两数和的平方,等于它们的平方和_____它们的积的2倍,两数差的平方,等于它们的平方和_____它们的积的2倍。
这两个公式叫做(乘法的)完全平方公式.口诀:首平方,尾平方,两倍乘积放中央。
六年级数学下册 6.7.2 完全平方公式导学案2 鲁教版五四制
六年级数学下册 6.7.2 完全平方公式导学案2鲁教版五四制【学习目标】熟练地运用完全平方公式进行计算【学习过程】一、复习回顾、引入新课。
回忆完全平方公式,认真填写在右面的空白处。
(1)法则:(2)公式:(3)特点:二、自主学习、合作交流。
认真阅读课本51页内容,解答下列问题:1、仿照例2计算:① ②2、仿照例3计算:① ② 如有问题,完成后可以小组交流,并将组内解决不了的问题记录在下面的空白处。
三、学生展示、教师点拨。
1、学生展示自主学习成果。
2、教师点拨,知识点总结。
特别强调应该注意的地方3、学生展示随练,学生订正,教师点评。
4、巩固练习:写课本习题的习题。
(写在练习本上)并有学生板书过程,并点评。
四、分层训练、人人达标。
A组:1、填空题1、(a+2b)2=a2+_______+4b2、2、(3a-5)2=9a2+25-_______、3、(2x-______)2=____-4xy+y2、二、选择题1、代数式xy-x2-y2等于……………………()(A)(x-y)2 (B)(-x-y)2 (C)(y-x)2 (D)-(x-y)22、已知x2(x2-16)+a=(x2-8)2,则a的值是…………………………()(A)8 (B)16 (C)32 (D)643、如果4a2-Nab+81b2是一个完全平方式,则N等于……………………… ()(A)18 (B)18 (C)36 (D)644计算、(1)(-2a+5b)2;(2)(-ab2-c)2;(3)(x-3y-2)(x+3y-2);(4)(x-2y)(x2-4y2)(x+2y);B组:1、计算(1)(2a+3)2+(3a-2)2;(2)(a-2b+3c-1)(a+2b-3c-1);(3)(s-2t)(-s-2t)-(s-2t)2;2、用简便方法计算:(1)972;(2)20022;5、拓展提高,知识延伸1、若,则=( )A、-2B、-1C、1D、22、已知x-y=4,xy=12,则x2+y2的值是( )A、28B、40C、26D、253、用简便方法计算:992-98100;4、已知2a-b=5,ab=,求4a2+b2-1的值、5、已知(a +b)2=9,(a-b)2=5,求a2+b2,ab的值、六、课堂小结:本节课你学到了什么?七、作业布置:1、完成基训,必做题:基础园、缤纷园。
2019年六年级数学下册 6.7 完全平方公式教案2 鲁教版五四制
2019年六年级数学下册 6.7 完全平方公式教案2 鲁教版五四制【使用说明以及学法指导】1.精读一遍教材P51-51,用红色笔勾画重点,再针对导学案二次阅读教材,并回答问题。
2.找出自己的疑惑和需要讨论的问题,写在我的质疑处,在课堂上进行讨论和质疑。
3.预习目标:进一步熟悉乘法公式,能根据题目适当添括号变形,选择适当的公式进行计算,从而达到熟悉应用乘法公式.4.限时完成导学案的基础案和拓展案,书写要规范。
【学习目标】知识与能力:由去括号法则逆向运用发现添括号法则。
过程与方法:进一步熟悉乘法公式,能根据题目适当添括号变形,选择适当的公式进行计算,从而达到熟悉应用乘法公式. 情感态度价值观:激情投入,阳光展示,培养数学学习的兴趣和热情。
教学重点:由去括号法则逆向运用发现添括号法则。
教学难点:熟悉乘法公式,能根据题目适当添括号变形,选择适当的公式进行计算。
【基础案】(要求:全体学生都要做)一、【复习巩固】 (1) 2)2332(y x - (2) 2)2(n m +-(3) 22)2()2(a b b a -++ (4))1)(1)(1(2--+m m m(5)22)()(y x y x +- (6)22)213()213(-+a a【基础知识】:回忆去括号法则(1)4+(5+2) (2)4-(5+2) (3)a +(b +c ) (4)a -(b -c )规律:去括号时,如果括号前是 ,去掉括号后,括号里的每一项都 ;如果括号前是 ,去掉括号后,括号里的各项都 . 反过来,你能尝试得到了添括号法则吗?()a b c a ++=+ ()a b c a --=-规律:添括号时,如果括号前面是 ,括到括号里的各项都 ;如果括号前面是 ,括到括号里的各项都 .【巩固应用】判断下列运算是否正确.(不正确的改正过来)(1)2a -b -2c =2a -(b -2c ) (2)m-3n+2a -b =m+(3n+2a -b ) (3)2y -3y+2=-(2y +3y-2) (4)a -2b -4c+5=(a -2b )-(4c+5)【我的质疑】【拓展案】:(分层预习内容之一:要求A 完成全部;B 课前完成探究点一、二和跟踪练习1、2、;C 完成探究点一、二)【合作探究】:探究点一:运用乘法公式计算:(1)(y +2y-3)(y -2y+3)分析:这个例题是平方差公式的推广,关键是把其中的两项看作是一个整体,再进一步利用平方差公式.【跟踪练习】1: (1))1)(1(-+++y x y x (2) )2)(2(z y x z y x --++探究点二:运用乘法公式计算:()2c b a ++分析:这个例题是完全平方公式的推广, 关键是把其中的两项看作是一个整体,再进一步利用平方差公式,即把(a +b )或(b +c )看作是一个数【跟踪练习】2:(1) 2)12(-+b a (2) 2)32(--y x探究点三:运用乘法公式进行实际计算如图,一块直径为a+b 的圆形钢板,从中挖去直径为a 与b 的两个圆,求剩下的钢板的面积.【跟踪练习】3:一个底面是正方形的长方体,高为6CM ,底面正方形边长为5CM 。
六年级数学下册6.7完全平方公式 优秀课件鲁教版五四制
在解题过程中要准确确定a和b、对照公式原形的两边, 做到不丢项、不弄错符号、2ab时不少乘2;乘积被平方 时要注意添括号, 是运用完全平方公式进行多项式乘法 的关键。
达标检测 计算: (1)(x-5)2 (3)(-2t-1)2 (2)(7ab+2)2
2 3 2 (4) ( x y) 3 4
小结: 1.完全平方公式是多项式乘法的特殊 情况,要熟记公式的左边和右边的 特点; 2.有时式子需要先进行变形,使变形 后的式子符合应用完全平方公式的 条件,即为“两数和(或差)”的平方, 然后应用公式计算.
辨一辨
下列计算是否正确?如何改正?
( 1 )( a b ) a b
2 2
2
( 2 )( a b ) a b
2 2
2 2
2
2
( 3 )( a 2 b ) a 2 ab 2 b
例题解析 例1 利用完全平方公式计算:
2 (x+2y) ,
注意
学一学
2 (x-2y)
一块边长为a米的正方形实验田,因需要将
b
a
a b ⑵ 两种形式表示实验田的总面积: ① 整体看:边长为 a+b 的大正方形,S= (a+b)2 ; ② 部分看:四块面积的和,S= a2+2ab+b2 。
探索: 你发现了什么? 公式:(a+b)2=a2+2ab+b2
动脑筋
想一想
完全平方公式 (a+b)2=a2+2ab+b2 ; 2 −2ab+b2. 2 a (a−b) =
10 1 2 (2) (cd ) 2
5
3 2 2 (3) ( x y) 4 3
初中数学_6.7 完全平方公式(2)教学设计学情分析教材分析课后反思
鲁教版五四制六年级数学下册6.7完全平方公式第二课时教学设计【教学目标】1.进一步巩固(a±b)2=a2±2ab+b2,能运用完全平方公式进行一些有关数的简便运算,能综合运用完全平方式与平方差公式进行有关的计算.2。
进一步熟练乘法公式,提高最基本的运算技能,并且明白每一步的算理3 。
提高合作交流意识和创新精神,提高学习数学的兴趣教学重点:巩固完全平方公式,能综合运用完全平方式与平方差公式进行有关的计算。
教学难点:熟练乘法公式的运用,体会公式中字母a、b的广泛含义。
【教学方法】“探究式学习”。
在教学中,突出学生的主动性、参与性,让学生通过观察特点——分析——归纳总结——得出结论,初步掌握探究的学习方法。
【学法指导】极参与交流探讨,从学习中感受乐趣,及时地归纳总结、发现问题、解决问题。
【课前预习】:1.写出平方差公式和完全平方公式,并说出其特征。
2.填空:a+b-c=a+( ) a-b+c=a-( )【教学过程】:一、温故知新,引入新课:(学生默写)平方差公式:(a+b)(a-b)=a2-b2完全平方公式:(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b2设计意图:通过对比回顾,加深对两个乘法公式的理解记忆。
二、出示目标、明确任务(学生识读):1.进一步巩固(a±b)2=a2±2ab+b2,能运用完全平方公式进行一些有关数的简便运算,能综合运用完全平方式与平方差公式进行有关的计算.2。
进一步熟练乘法公式,提高最基本的运算技能,并且明白每一步的算理。
设计意图:明确目标、有的放矢。
三、比一比(快速计算):计算1.(2m+3)(2m-3)2.(x+1)(x-1)4.(-2a-b)2设计意图:通过四个小题的计算,进一步理解和运用平方差公式和完全平方公式。
通过比赛的方式提高学习兴趣,使学生尽快投入本节课的学习。
四、学习新知:例1.利用完全平方公式计算:(教师讲解1,学生独立完成2、3)(1) 102 2(2) 1972(3) 632设计意图:利用完全平方公式进行有关数的简便运算。
鲁教版(五四制)六年级下册 6.7 完全平方公式 教案
基本信息课题鲁教版六年级(下)第六章第七节完全平方公式作者及工作单位教材分析本节内容主要研究的是完全平方公式的推导和公式在整式乘法中的应用.它是在学生学习了代数式的概念、整式的加减法、幂的运算和整式的乘法后进行学习的,其地位和作用主要体现在以下几方面:(1)整式是初中代数研究范围内的一块重要内容,整式的运算又是整式中一大主干,乘法公式则是在学习了单项式乘法、多项式乘法之后来进行学习的;一方面是对多项式乘法中出现的较为特殊的算式的一种归纳、总结;另一方面,乘法公式的推导是初中代数中运用推理方法进行代数式恒等变形的开端,通过乘法公式的学习对简化某些整式的运算、培养学生的求简意识有较大好处.(2)乘法公式是后续学习的必备基础,不仅对学生提高运算速度、准确率有较大作用,更是以后学习因式分解、分式运算的重要基础,同时也具有培养学生逐渐养成严密的逻辑推理能力的功能.(3)公式的发现与验证给学生体验规律发现的基本方法和基本过程提供了很好模式.教学目标知识与技能1.理解公式的推导过程,了解公式的几何背景;2.会应用公式进行简单的计算.过程与方法1.经历探索完全平方公式的过程,进一步发展符号感和推理能力;2.重视学生对算理的理解,有意识地培养他们有条理的思考和表达能力;3.培养学生敢于挑战,勇于探索的精神和善于观察,大胆创新的思维品质.情感态度与价值观1.渗透建模、化归、换元、数形结合等思想方法,培养学生的发现能力、求简意识、应用意识、解决问题的能力和创新能力;2.了解数学的历史,激发学习数学兴趣;3.鼓励学生自己探索算法的多样化,有意识地培养学生的创新能力.教学重难点重点1.体会公式的发现和推导过程,理解公式的本质;2.会运用公式进行简单的计算.难点1.完全平方公式的推导及其几何解释;2.完全平方公式结构特点及其应用;3.从广泛意义上理解公式中的字母含义,判明要计算的代数式是哪两数的和(差)的平方.复习导入师:上节课我们认识了“平方差公式”,大家能展示一下自己的学习成果吗?生:(愿意)师:我们用平方差公式来做几道练习.(1))32)(32(-+xx;对于上一节课学习过的知识可以让学生“温故”中“知新”,对于新出现的问题,学生完全可以利用旧知识来解决这个(2))4)(4(---m m ; (3)))((c b a c b a -+++.(学生练习后板演过程)可能出现的答案:解:(1)原式943)2(222-=-=x x (正解);或 原式9232222-=-=x x (错解). (2)原式22216)4(])4][()4[(m m m m -=--=--+-=(正解); 或 原式16)4()4)(4(222+-=--=+--=m m m m (正解);或 原式16)4(222-=--=m m (错解). (3)])][()[(c b a c b a -+++=原式22)(c b a -+=222c b a -+=(错解);或 原式222c bc ac bc b ab ac ab a -++-++-+=2222c b ab a -++=(未用平方差公式解题)问题.而关键是应引导学生多角度去考虑,培养他们的思维灵活性,而又通过对比、观察、发现其中的规律,并又得出了新的公式,这便大大地满足了他们的成就感,并激发了他们去继续探索的兴趣提出问题师:利用多项式乘以多项式能得出2)(b a +的结果吗?生:2)(b a +=))((b a b a ++=22b ab ab a +++=222b ab a ++即2222)(b ab a b a ++=+师:那么2)(n m +等于什么呢?生:2222)(n mn m n m ++=+师:那么2)32(y x +呢?生:2)32(y x +=22)3(322)2(y y x x +∙∙+=229124y xy x ++学生活动:发现规律.(1)原式的特点:两数和的平方.(2)结果的项数特点:等于它们平方的和,加上它们乘积的两倍.(3)三项系数的特点(特别是符号的特点). (4)三项与原多项式中两个单项式的关系. 总结完全平方公式的语言描述:引出课题:完全平方公式师:2)(b a -又等于什么呢?学生可能会有不同的想法如:利用多项式乘以多项式的运算法则2)(b a -=))((b a b a --=22b ab ab a +--=222b ab a +-对于完全平方公式来说,它的重要意义就在于运用.而它应用的灵活性就体现在它的公式结构,也就是公式特征上,所以认识公式便是这节课的重点,所以这个活动,让学生自己通过观察——交流——发现它的特征.这样不仅记忆深刻,而且学生更能灵活地运用它,并培养了他们的合作精神,而自己得出的结论被肯定,也增强了他们的成就感,提高了学习数学的兴趣2) (ba-=2)]([ba-+=22)()(2bbaa-+-∙∙+=2 22baba+-观察归纳师:你能归纳及语言叙述两数和(或差)的完全平方公式的特征吗?学生活动:观察这个完全平方公式,分析:(1)公式的左边有什么特点?公式的右边有什么特点?(2)你能用自己的语言叙述这个公式吗?教师活动:通过学生的发现,简化归纳特征,按学生发现的特征顺序安排板书完全平方公式的记忆口诀.学生可能的回答(1)结果的三项式中,包括它们的平方及它们乘积的两倍——首平方,尾平方首尾二倍放中央(2)乘积项二倍的符号与两数和或差有关——符号看前方自主探索的方法能充分培养学生对问题的独立思考能力,也能激发起他们的创新意识和数学思维的灵活性,而对比总结更能加深他们对两个公式的认识探究新知师:你能用不同的方法表示出图形的面积吗?生:若把图形看成一个边长为ba+的正方形,那么它的面积可以表示为2)(ba+若把它看成四个长方形的面积和,那么它的面积可以表示为22bababa+++.即222baba++.所以可以发现(a+b)2=a2+2ab+b2(1)教师提供多种模式,由学生选择一种去解决.培养学生学习的主动性,开阔学生的思路.(2)同时对渗透数形结合思想、换元思想,也是分散、分步突破本节的难点的第一个层次;(3)体会辩证统一的唯物主义观点;(4)正确引导学生学习时知识的正迁移.巩固练习1用完全平方公式计算:=+-2)(nm____________;=--2)(nm____________;=+2)23(a____________;=-2)54(yx___________.抢答形式,活跃课堂气氛,激发学生的学习积极性巩固练习2判断:下列计算是否正确① (a-2b)2= a2-2ab+b2 ( )学生对公式既然已经掌握,他们aa+bbba+ba② (2m+n)2= 2m2+4mn+n2 ( )③ (-n-3m)2= n2-6mn+9m2 ( )④ (5a+0.2b)2= 25a2+5ab+0.4b2 ( )⑤ (5a-0.2b)2= 5a2-5ab+0.04b2 ( )⑥ (-a-2b)2=(a+2b)2( )⑦ (2a-4b)2=(4a-2b)2( )⑧ (-5m+n)2=(-n+5m)2( )便想知道这些知识点应该如何运用和体现,这时引入例题,并在教师指导下解决问题,鼓励他们自己寻找病因,的灵活性和具体操作能力,而及时对解题方法和规律进行概括.呼应导入计算:))((cbacba-+++解:])][()[(cbacba-+++=原式22)(cba-+=222)2(cbaba-++=2222cbaba-++=回应导入时遇到的问题,即可让学生体会解决问题的成就感,还可为下面的拔高拓展作出引导.拓展练习计算:(1)) (cba++2(2))2)(2(+--+yxyx提升学生的公式的认识,也可作为课后思考的选做作业工学由于离得同学选作,体现分层教学的思想.课堂小结叙述完全平方公式;说出它的结构特征;如何将变式转化成标准形式的完全平方;3、通过本节课的学习,你有什么收获和感悟?板书设计6.7完全平方公式公式:(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b2文字叙述:两数和(或差)的平方等于它们平方的和,加上(或减去)它们乘积的两倍.记忆口诀:首平方,尾平方首尾二倍放中央符号看前方(a+b)2=a2+2ab+b2练习1练习2课后反思1、在得到两数和的完全平方公式后,我让学生尝试说出公式的的特征,再用面积的方法说明完全平方公式.然后,让学生自己猜测2)(ba-的结论,并模仿第一环节,分别用多项式乘以多项式以及面积的方法说明结论的正确性,再归纳公式的结构特征,然后,利用两数和的完全平方公式说明两数差的完全平方公式,揭示出两个公式间的关系.这一环节都是按照预想的进行,效果不错,只是未能点一下为何要学公式.(方便计算)2、公式引出后,就进入了这节课的另一个重要环节,即运用公式进行计算.运用公式进行计算的一个难点就是如何确定首项、末项以及中间项的符号,其中最重要的就是中间项的符号问题.在这个环节中,书本上采取的方法是:(1)将2)(ba+-,2)(ba--分别转化为2)(ab-以及[]2)(ba+-,(2)将2)(ba+-、2)(ba--分别看成[]2)(ba+-以及[]2)(ba--.教参的建议是采用方法(1).对这两种方法我在处理教材时个人的看法是,方法(2)学生容易将首项和末项以及两条公式混淆,方法(1)对2)(ba+-的处理学生是容易掌握的,而对2)(ba--的处理对学生来说又是一个难点.处理的过于仓促,学生并不能真正理解。
六年级数学下册 6.7.1 完全平方公式导学案1 鲁教版五四制
六年级数学下册 6.7.1 完全平方公式导学案1鲁教版五四制【学习目标】2、能熟练地运用完全平方公式进行简便运算。
【学习重点】完全平方公式的推导及应用【学习过程】一、复习回顾、引入新课。
回忆平方差公式的内容:法则:公式表示特点:【问题思考】在多项式的乘法中,如果两个多项式相同,相乘的结果会是什么二、自主学习、合作交流。
认真阅读课本47—48页内容,解答下列问题:1、利用多项式乘法法则计算:① ②若表示两个数,观察上述的式子,你能发现怎样的结论?2、完全平方公式:两数和(或差)的平方,等于它们的________加上(或_______)它们的积的_______。
3、如果把看作是,请用第1题中①的结论做下去:如有问题,完成后可以小组交流,并将组内解决不了的问题记录在下面的空白处。
三、学生展示、教师点拨。
1、学生展示自主学习成果。
你能根据图(1)和图(2)中的面积说明完全平方公式吗?2、教师点拨,知识点总结。
公式内容;公式特点3、学生展示随练,学生订正,教师点评。
4、巩固练习:写课本习题的习题。
(写在练习本上)并有学生板书过程,并点评。
四、分层训练、人人达标。
A组:1、填空题1、2、3、4、二、选择题1、下列各式中,能够成立的等式是()、A、B、C、D、2、()A、B、C、D、计算; B组:运用完全平方公式计算:(1);(2);(3);(4)、5、拓展提高,知识延伸1、若,则M=2、一个正方形的边长为,若边长增加,则新正方形的面积人增加了多少3、如果是一个完全平方公式,那么a的值是4、若一个多项式的平方的结果为,则六、课堂小结:本节课你学到了什么?七、作业布置:1、完成基训,必做题:基础园、缤纷园。
选做题:智慧园2、预习提示,按下一节要求完成导学案自学部分。
山东省龙口市诸由观镇诸由中学六年级数学下册 6.7 完
完全平方公式 【使用说明以及学法指导】 1.精读一遍教材P51-51,用红色笔勾画重点,再针对导学案二次阅读教材,并回答问题。
2.找出自己的疑惑和需要讨论的问题,写在我的质疑处,在课堂上进行讨论和质疑。
3.预习目标:进一步熟悉乘法公式,能根据题目适当添括号变形,选择适当的公式进行计算,从而达到熟悉应用乘法公式.4.限时完成导学案的基础案和拓展案,书写要规范。
【学习目标】知识与能力:由去括号法则逆向运用发现添括号法则。
过程与方法:进一步熟悉乘法公式,能根据题目适当添括号变形,选择适当的公式进行计算,从而达到熟悉应用乘法公式.情感态度价值观:激情投入,阳光展示,培养数学学习的兴趣和热情。
教学重点:由去括号法则逆向运用发现添括号法则。
教学难点:熟悉乘法公式,能根据题目适当添括号变形,选择适当的公式进行计算。
【基础案】(要求:全体学生都要做)一、【复习巩固】(1) 2)2332(y x -(2) 2)2(n m +-(3) 22)2()2(a b b a -++ (4))1)(1)(1(2--+m m m(5)22)()(y x y x +- (6)22)213()213(-+a a【基础知识】:回忆去括号法则(1)4+(5+2) (2)4-(5+2) (3)a +(b +c ) (4)a -(b -c )规律:去括号时,如果括号前是 ,去掉括号后,括号里的每一项都 ;如果括号前是 ,去掉括号后,括号里的各项都 .反过来,你能尝试得到了添括号法则吗?()a b c a ++=+ ()a b c a --=-规律:添括号时,如果括号前面是 ,括到括号里的各项都 ;如果括号前面是 ,括到括号里的各项都 .【巩固应用】判断下列运算是否正确.(不正确的改正过来)(1)2a -b -2c =2a -(b -2c ) (2)m-3n+2a -b =m+(3n+2a -b ) (3)2y -3y+2=-(2y +3y-2) (4)a -2b -4c+5=(a -2b )-(4c+5)【我的质疑】【拓展案】:(分层预习内容之一:要求A 完成全部;B 课前完成探究点一、二和跟踪练习1、2、;C 完成探究点一、二)【合作探究】:探究点一:运用乘法公式计算:(1)(y +2y-3)(y -2y+3)分析:这个例题是平方差公式的推广,关键是把其中的两项看作是一个整体,再进一步利用平方差公式.【跟踪练习】1: (1))1)(1(-+++y x y x (2) )2)(2(z y x z y x --++探究点二:运用乘法公式计算:()2c b a ++分析:这个例题是完全平方公式的推广, 关键是把其中的两项看作是一个整体,再进一步利用平方差公式,即把(a +b )或(b +c )看作是一个数【跟踪练习】2:(1) 2)12(-+b a (2) 2)32(--y x探究点三:运用乘法公式进行实际计算如图,一块直径为a+b 的圆形钢板,从中挖去直径为a 与b 的两个圆,求剩下的钢板的面积.【跟踪练习】3:一个底面是正方形的长方体,高为6CM ,底面正方形边长为5CM 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年六年级数学下册 6.7 完全平方公式复习教
学设计鲁教版五四制
.添括号法则.
步熟悉乘法公式的合理利用.
度和螺旋
结合学科特点,体现单元组教学环节,学习内容,时间预测,教师活动,学生活动,自主学习设计,问题探究,单
次备课
-3
运用乘法公式计算
添括号法则,去括号法则
注意:添括号法则是去括号法则反过来得到的,无论是添括号,
所以我们可以用去括号法则验证所添括小组讨论公式的用法及注意问题。
附送:
2019年六年级数学下册 6.7 完全平方公式复习教
学设计鲁教版五四制
.添括号法则.
步熟悉乘法公式的合理利用.
度和螺旋
结合学科特点,体现单元组教学环节,学习内容,时间预测,教师活动,学生活动,自主学习设计,问题探究,单
次备课
-3
运用乘法公式计算
添括号法则,去括号法则
注意:添括号法则是去括号法则反过来得到的,无论是添括号,
所以我们可以用去括号法则验证所添括小组讨论公式的用法及注意问题。