【US20200014362A1】ANALOGBANDPASSFILTERS【专利】
Analog_Lowpass_Filter_Specifications
Elliptic Approximation
• Typical magnitude response plots with are shown below
Elliptic Filter 1 Magn nitude 0.8 06 0.6 0.4 02 0.2 0 0 1 2 3 N=3 N=4
H a ( j )
2
1 / p ) 1 T ( / ) N s
2 TN ( s 2
where TN() is the Chebyshev polynomial of order N
Chebyshev Approximation
• Typical magnitude response plots of the analog lowpass Type 2 Chebyshev filter are shown below
Type 2 Chebyshev Filter 1 M Magnitude e 08 0.8 0.6 04 0.4 0.2 0 0 1 2 3 N=3 N=5 N=7
Chebyshev Approximation
《2024年耦合带通滤波器的仿真与设计》范文
《耦合带通滤波器的仿真与设计》篇一一、引言随着通信技术的不断发展,信号处理技术也日益成为研究的热点。
在信号处理中,滤波器是一种重要的器件,用于从混合信号中提取所需信号。
其中,带通滤波器是一种能够通过特定频率范围内的信号并抑制其他频率信号的滤波器。
耦合带通滤波器则是带通滤波器中的一种,其通过电感或电容等元件将不同频率的信号进行耦合和滤波。
本文旨在探讨耦合带通滤波器的仿真与设计,以期为相关领域的研究提供一定的参考。
二、耦合带通滤波器的基本原理耦合带通滤波器主要由电感、电容等元件组成,通过这些元件的耦合作用,实现对特定频率范围内信号的滤波。
其基本原理是利用电感、电容等元件的频率特性,使不同频率的信号在传输过程中产生不同的相移和衰减,从而实现滤波。
三、耦合带通滤波器的设计1. 设计目标与参数设定在耦合带通滤波器的设计中,首先需要明确设计目标,如所需通过的频率范围、滤波器的插损、回波损耗等指标。
然后根据这些指标进行参数设定,如电感、电容的值等。
2. 元件选择与电路拓扑在选择元件时,需要考虑元件的频率特性、精度、稳定性等因素。
常用的电感元件有空气电感、磁芯电感等;常用的电容元件有陶瓷电容、电解电容等。
根据设计需求和元件特性,选择合适的电路拓扑,如T型、π型等。
3. 仿真与分析利用仿真软件对电路进行仿真,观察电路的频率响应、插损、回波损耗等指标是否满足设计要求。
通过对仿真结果的分析,不断调整电路参数,以达到最佳性能。
四、耦合带通滤波器的仿真仿真是一种重要的手段,可以帮助我们更好地理解电路的性能和优化电路设计。
在仿真过程中,我们可以观察电路的频率响应、插损、回波损耗等指标的变化,从而了解电路的性能特点。
对于耦合带通滤波器,我们可以通过改变电感、电容等元件的参数来调整其性能。
在仿真过程中,我们可以使用各种工具来帮助我们更好地分析和优化电路设计。
五、实验与结果分析在完成电路设计后,我们需要进行实验验证。
通过实验测试电路的频率响应、插损、回波损耗等指标,将实验结果与仿真结果进行对比,以验证设计的正确性和可行性。
INA105KP,INA105BM,INA105KU2K5,INA105KU2K5E4,INA105KPG4,INA105KUE4,INA105AM, 规格书,Datasheet 资料
©1985 Burr-Brown Corporation PDS-617G Printed in U.S.A. August, 1993Precision Unity Gain DIFFERENTIAL AMPLIFIERCMR 86dB min OVER TEMPERATURE APPLICATIONSq DIFFERENTIAL AMPLIFIER q INSTRUMENTATION AMPLIFIER BUILDING BLOCK SBOS145芯天下--/SPECIFICATIONSELECTRICALAt +25°C, V CC = ±15V, unless otherwise noted.T Specification same as for INA105AM.NOTES: (1) Connected as difference amplifier (see Figure 4). (2) Nonlinearity is the maximum peak deviation from the best-fit straight line as a percent of full-scale peak-to-peak output. (3) 25kΩ resistors are ratio matched but have ±20% absolute value. (4) Maximum input voltage without protection is 10V more than either ±15V supply (±25V). Limit I IN to 1mA. (5) With zero source impedance (see “Maintaining CMR” section). (6) Referred to output in unity-gain difference configuration. Note that this circuit has a gain of 2 for the operational amplifier’s offset voltage and noise voltage. (7) Includes effects of amplifier’s input bias and offset currents. (8) Includes effects of amplifier’s input current noise and thermal noise contribution of resistor network.The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user’s own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.®INA1052芯天下--/®INA1053PIN CONFIGURATIONSThis integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.ABSOLUTE MAXIMUM RATINGSSupply ................................................................................................±18V Input Voltage Range ............................................................................±V S Operating Temperature Range: M ..................................–55°C to +125°CP, U................................–40°C to +85°CStorage Temperature Range: M .....................................–65°C to +150°C P, U .................................–40°C to +125°C Lead Temperature (soldering, 10s) M, P .......................................+300°C Wave Soldering (3s, max) U ..........................................................+260°C Output Short Circuit to Common..............................................ContinuousPACKAGE DRAWING TEMPERATUREPRODUCT PACKAGE NUMBER (1)RANGE INA105AM TO-99 Metal 001–40°C to +85°C INA105BM TO-99 Metal 001–40°C to +85°C INA105KP 8-Pin Plastic DIP 006–40°C to +85°C INA105KU8-Pin SOIC182–40°C to +85°CNOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.PACKAGE/ORDERING INFORMATION芯天下--/®INA1054SMALL SIGNAL RESPONSE(No Load)Time (µs)Ou t p u t V o l t a g e (m V )0510+50–50STEP RESPONSETime (µs)O u t p u t V o l t a g e (V )–10 t o +100481216SMALL SIGNAL RESPONSE (R LOAD = , C LOAD = 1000pF)Time (µs)O u t p u t V o lt a g e (m V )510+50–50Ω∞MAXIMUM V OUT vs I OUT(Negative Swing)–I OUT (mA)V O U T (V )–17.5–15–12.5–10–7.5–5–2.50–2–4–6–8–10–12CMR vs FREQUENCYFrequency (Hz)10C M R (d B )110100908070601001k10k 100kAM, KP, UBMMAXIMUM V OUT vs I OUT(Positive Swing)I OUT (mA)V O U T (V )17.51512.5107.552.5061218243036TYPICAL PERFORMANCE CURVESAt T A = 25°C, V S = ±15V, unless otherwise noted.芯天下--/®INA1055COMMON-MODE INPUT RANGE vs SUPPLY (Difference Amplifier Connected, V OUT = 0)Supply Voltage (V)±3I n p u t R a n g e (V )363024181260±6±9±12±15±18±21POWER SUPPLY REJECTIONvs FREQUENCYFrequency (Hz)1P S R R (d B )140120100806040101001k 10k 100kV–V+TYPICAL PERFORMANCE CURVES (CONT)At T A = 25°C, V S = ±15V, unless otherwise noted.APPLICATION INFORMATIONFigure 1 shows the basic connections required for operation of the INA105. Power supply bypass capacitors should be connected close to the device pins.The differential input signal is connected to pins 2 and 3 as shown. The source impedances connected to the inputs must be nearly equal to assure good common-mode rejection. A 5Ω mismatch in source impedance will degrade the com-mon-mode rejection of a typical device to approximately 80dB. If the source has a known mismatch in source imped-ance, an additional resistor in series with one input can be used to preserve good common-mode rejection.The output is referred to the output reference terminal (pin 1) which is normally grounded. A voltage applied to the Ref terminal will be summed with the output signal. This can be used to null offset voltage as shown in Figure 2. The source impedance of a signal applied to the Ref terminal should be less than 10Ω to maintain good common-mode rejection.Do not interchange pins 1 and 3 or pins 2 and 5, even though nominal resistor values are equal. These resistors are laser trimmed for precise resistor ratios to achieve accurate gain and highest CMR. Interchanging these pins would not pro-vide specified performance.FIGURE 1. Basic Power Supply and Signal Connections.芯天下--/®INA1056FIGURE 2. Offset Adjustment.FIGURE 3. Precision Difference Amplifier.FIGURE 4. Precision Instrumentation Amplifier.FIGURE 5. Current Receiver with Compliance to Rails.芯天下--/®INA1057FIGURE 6. Precision Unity-Gain Inverting Amplifier.FIGURE 7. ±10V Precision Voltage Reference.FIGURE 8. ±5V Precision Voltage Reference.FIGURE 10. Pseudoground Generator.FIGURE 11. Precision Average Value Amplifier.芯天下--/®INA1058FIGURE 15. Precision Bipolar Offsetting.FIGURE 12. Precision (G = 2) Amplifier.FIGURE 16. Precision Summing Amplifier with Gain.FIGURE 13. Precision Summing Amplifier.FIGURE 14. Precision Gain = 1/2 Amplifier.芯天下--/®INA1059FIGURE 17. Instrumentation Amplifier Guard Drive Generator.FIGURE 18. Precision Summing Instrumentation Amplifier.芯天下--/FIGURE 21. Isolating Current Source.®INA10510芯天下--/FIGURE 25. Precision Voltage-Controlled Current Source with Buffered Differential Inputs and Gain.FIGURE 27. Boosting Instrumentation Amplifier Common-Mode Range From ±5 to ±7.5V with 10V Full-Scale Output.FIGURE 28. Precision Absolute Value Buffer.FIGURE 29. Precision 4-20mA Current Transmitter.Addendum-Page 1PACKAGING INFORMATIONOrderable DeviceStatus(1)Package Type PackageDrawingPins Package QtyEco Plan(2)Lead/Ball FinishMSL Peak Temp (3)Samples (Requires Login)INA105AM NRND TO-99LMC 820Green (RoHS & no Sb/Br)AU N / A for Pkg Type Samples Not Available INA105BM NRND TO-99LMC 81Green (RoHS & no Sb/Br)AUN / A for Pkg TypeSamples Not Available INA105KP ACTIVE PDIP P 850Green (RoHS & no Sb/Br)CU NIPDAU N / A for Pkg Type Contact TI Distributor or Sales Office INA105KPG4ACTIVE PDIP P 850Green (RoHS & no Sb/Br)CU NIPDAU N / A for Pkg Type Contact TI Distributor or Sales Office INA105KU ACTIVE SOIC D 875Green (RoHS & no Sb/Br)CU NIPDAU Level-3-260C-168 HR Contact TI Distributor or Sales Office INA105KU/2K5ACTIVE SOIC D 82500Green (RoHS & no Sb/Br)CU NIPDAU Level-3-260C-168 HR Purchase Samples INA105KU/2K5E4ACTIVE SOIC D 82500Green (RoHS & no Sb/Br)CU NIPDAU Level-3-260C-168 HR Purchase Samples INA105KUE4ACTIVESOICD875Green (RoHS & no Sb/Br)CU NIPDAU Level-3-260C-168 HRContact TI Distributor or Sales Office(1)The marketing status values are defined as follows:ACTIVE: Product device recommended for new designs.LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.PREVIEW: Device has been announced but is not in production. Samples may or may not be available.OBSOLETE: TI has discontinued the production of the device.(2)Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check /productcontent for the latest availability information and additional product content details.TBD: The Pb-Free/Green conversion plan has not been defined.Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)(3)MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.芯天下--/Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.Addendum-Page 2芯天下--/TAPE AND REEL INFORMATION*All dimensions are nominalDevicePackage Type Package Drawing Pins SPQReel Diameter (mm)Reel Width W1(mm)A0(mm)B0(mm)K0(mm)P1(mm)W (mm)Pin1Quadrant INA105KU/2K5SOICD82500330.012.46.45.22.18.012.0Q1*All dimensions are nominalDevice Package Type Package Drawing Pins SPQ Length(mm)Width(mm)Height(mm)INA105KU/2K5SOIC D8*******.0367.035.0IMPORTANT NOTICETexas Instruments Incorporated and its subsidiaries(TI)reserve the right to make corrections,enhancements,improvements and other changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B.Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.All semiconductor products(also referred to herein as“components”)are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.TI warrants performance of its components to the specifications applicable at the time of sale,in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products.Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty.Except where mandated by applicable law,testing of all parameters of each component is not necessarily performed.TI assumes no liability for applications assistance or the design of Buyers’products.Buyers are responsible for their products and applications using TI components.To minimize the risks associated with Buyers’products and applications,Buyers should provide adequate design and operating safeguards.TI does not warrant or represent that any license,either express or implied,is granted under any patent right,copyright,mask work right,or other intellectual property right relating to any combination,machine,or process in which TI components or services are rmation published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement e of such information may require a license from a third party under the patents or other intellectual property of the third party,or a license from TI under the patents or other intellectual property of TI.Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties,conditions,limitations,and notices.TI is not responsible or liable for such altered rmation of third parties may be subject to additional restrictions.Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.Buyer acknowledges and agrees that it is solely responsible for compliance with all legal,regulatory and safety-related requirements concerning its products,and any use of TI components in its applications,notwithstanding any applications-related information or support that may be provided by TI.Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures,monitor failures and their consequences,lessen the likelihood of failures that might cause harm and take appropriate remedial actions.Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.In some cases,TI components may be promoted specifically to facilitate safety-related applications.With such components,TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements.Nonetheless,such components are subject to these terms.No TI components are authorized for use in FDA Class III(or similar life-critical medical equipment)unless authorized officers of the parties have executed a special agreement specifically governing such use.Only those TI components which TI has specifically designated as military grade or“enhanced plastic”are designed and intended for use in military/aerospace applications or environments.Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk,and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.TI has specifically designated certain components which meet ISO/TS16949requirements,mainly for automotive ponents which have not been so designated are neither designed nor intended for automotive use;and TI will not be responsible for any failure of such components to meet such requirements.Products ApplicationsAudio /audio Automotive and Transportation /automotiveAmplifiers Communications and Telecom /communicationsData Converters Computers and Peripherals /computersDLP®Products Consumer Electronics /consumer-appsDSP Energy and Lighting /energyClocks and Timers /clocks Industrial /industrialInterface Medical /medicalLogic Security /securityPower Mgmt Space,Avionics and Defense /space-avionics-defense Microcontrollers Video and Imaging /videoRFID OMAP Mobile Processors /omap TI E2E Community Wireless Connectivity /wirelessconnectivityMailing Address:Texas Instruments,Post Office Box655303,Dallas,Texas75265Copyright©2012,Texas Instruments Incorporated。
关于滤波器专业英语作文
关于滤波器专业英语作文Introduction。
Filters are electronic circuits that selectively allow certain frequencies to pass through while attenuating others. They are used in a wide range of applications, from audio and video processing to power supplies and communication systems. In this essay, we will explore the different types of filters, their characteristics, andtheir applications.Types of Filters。
Filters can be classified into two main categories: passive filters and active filters. Passive filters use only passive components such as resistors, capacitors, and inductors to filter out unwanted frequencies. Active filters, on the other hand, use active components such as transistors, operational amplifiers, and digital signal processors to amplify, attenuate, or shift frequencies.Passive Filters。
Passive filters are the simplest type of filters and are widely used in audio and video processing. They can be further classified into three types: low-pass filters, high-pass filters, and band-pass filters.Low-pass filters allow low frequencies to pass through while attenuating high frequencies. They are commonly used in audio systems to filter out noise and unwanted signals. High-pass filters, on the other hand, allow high frequencies to pass through while attenuating low frequencies. They are used in applications such as radio communication and audio equalization.Band-pass filters allow a range of frequencies to pass through while attenuating frequencies outside the range. They are used in applications such as radio frequency (RF) communication and audio processing.Active Filters。
滤波器英语作文
滤波器英语作文Title: Understanding Filters: A Comprehensive Overview。
Filters are indispensable components in various fields, ranging from signal processing to image enhancement, and even in everyday appliances like air purifiers. These devices play a crucial role in isolating specific frequencies or elements from a broader spectrum, thereby refining or modifying the input in accordance with desired outcomes. In this essay, we delve into the fundamental principles, types, applications, and advancements in filter technology.Fundamental Principles:Filters operate based on fundamental principles ofsignal processing, manipulating input signals to achieve desired output characteristics. The core principle involves selectively allowing certain frequencies to pass through while attenuating others. This process is often describedin terms of frequency response, where filters exhibit varying degrees of attenuation or amplification across different frequency bands.Types of Filters:Filters can be broadly classified into analog and digital categories, each further divided into subtypes based on design and functionality.Analog Filters:1. Low-pass Filters: Permit frequencies below a certain cutoff while attenuating higher frequencies.2. High-pass Filters: Allow frequencies above a cutoff and attenuate lower frequencies.3. Band-pass Filters: Pass a specific range of frequencies while suppressing others.4. Band-stop Filters (Notch Filters): Suppress aspecific range of frequencies while passing others.5. All-pass Filters: Maintain the amplitude of all frequencies but introduce phase shifts.Digital Filters:1. Finite Impulse Response (FIR) Filters: Characterized by finite duration responses to impulse inputs.2. Infinite Impulse Response (IIR) Filters: Feature feedback, resulting in potentially infinite duration responses to impulse inputs.Applications of Filters:Filters find extensive applications across various domains, including:1. Signal Processing: Filtering noise from signals, separating desired signals from interference, and equalization.2. Image Processing: Enhancing image quality by removing noise, sharpening edges, or smoothing textures.3. Communication Systems: Filtering signals in modulation and demodulation processes, improving channel capacity and signal quality.4. Biomedical Engineering: Filtering biological signals for diagnostic purposes, such as electrocardiography (ECG) or electroencephalography (EEG).5. Audio Engineering: Equalization, noise reduction, and effects processing in audio production and playback systems.6. Control Systems: Filtering feedback signals to stabilize control loops and suppress oscillations.Advancements in Filter Technology:Recent advancements in filter technology have led toseveral innovations:1. Adaptive Filters: Capable of automatically adjusting filter parameters based on input characteristics, offering improved performance in dynamic environments.2. Multirate Filters: Exploit differences in sampling rates to achieve efficient signal processing, particularly in digital communications and multimedia applications.3. Sparse Filters: Utilize sparse signal representations to reduce computational complexity while maintaining filtering accuracy.4. Machine Learning-based Filters: Leveraging machine learning algorithms to adaptively learn filter characteristics from data, offering enhanced flexibility and performance.Conclusion:Filters serve as indispensable tools across a myriad ofapplications, enabling precise control over signal characteristics and facilitating numerous technological advancements. Understanding the principles, types, applications, and recent developments in filter technology is essential for engineers, researchers, and practitioners seeking to harness the full potential of these versatile devices. As technology continues to evolve, filters will undoubtedly remain integral components in shaping the future of various industries and disciplines.。
ANALOG DEVICES ADM483 数据手册
现货库存、技术资料、百科信息、热点资讯,精彩尽在鼎好!5 V Low Power, Slew-Rate LimitedRS-485/RS-422 TransceiverADM483 Rev.0Information furnished by Analog Devices is believed to be accurate and reliable.However, no responsibility is assumed by Analog Devices for its use, nor for anyinfringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: Fax: 781.326.8703© 2004 Analog Devices, Inc. All rights reserved.FEATURESEIA RS-485/RS-422-compliantData rates up to 250 kbpsSlew-rate limited for low EMI100 nA supply current in shutdown modeLow power consumption (120 µA)Up to 32 transceivers on one busOutputs high-z when disabled or powered off–7 V to +12 V bus common-mode range Thermal shutdown and short-circuit protection Pin-compatible with MAX483Specified over –40°C to +85°C temperature range Available in 8-lead SOIC packageAPPLICATIONSLow power RS-485 applicationsEMI sensitive systemsDTE-DCE interfacesIndustrial controlPacket switchingLocal area networksLevel translators FUNCTIONAL BLOCK DIAGRAM579-1ABVFigure 1.GENERAL DESCRIPTIONThe ADM483 is a low power differential line transceiver suitable for half-duplex data communication on multipoint bus trans-mission lines. It is designed for balanced data transmission, and complies with EIA Standards RS-485 and RS-422.The part contains a differential line driver and a differential line receiver. Both share the same differential pins, with either the driver or the receiver being enabled at any given time.The device has an input impedance of 12 kΩ, allowing up to 32 transceivers on one bus. Since only one driver should be enabled at any time, the output of a disabled or powered-down driver is three-stated to avoid overloading the bus. This high impedance driver output is maintained over the entire common-mode voltage range from –7 V to +12 V. The receiver contains a fail-safe feature that results in a logic high output state if the inputs are unconnected (floating).The driver outputs are slew-rate limited to reduce EMI and data errors caused by reflections from improperly terminated buses. Excessive power dissipation caused by bus contention or by output shorting is prevented by a thermal shutdown circuit. The part is fully specified over the industrial temperature range, and is available in an 8-lead SOIC package.ADM483Rev. 0 | Page 2 of 16TABLE OF CONTENTSSpecifications.....................................................................................3 Timing Specifications.......................................................................4 Absolute Maximum Ratings............................................................5 ESD Caution..................................................................................5 Pin Configuration and Function Descriptions.............................6 Test Circuits.......................................................................................7 Switching Characteristics................................................................8 Typical Performance Characteristics (9)Applications.....................................................................................11 Differential Data Transmission................................................11 Cable and Data Rate...................................................................11 Thermal Shutdown....................................................................12 Receiver Open-Circuit Fail-Safe...............................................12 Outline Dimensions.......................................................................13 Ordering Guide.. (13)REVISION HISTORY10/04—Revision 0: Initial VersionADM483SPECIFICATIONSV CC = 5 V ± 5%, T A = T MIN to T MAX, unless otherwise noted.Rev. 0 | Page 3 of 16ADM483Rev. 0 | Page 4 of 16TIMING SPECIFICATIONSV CC = 5 V ± 5%, T A = T MIN to T MAX , unless otherwise noted. Table 2.Parameter Min Typ Max Unit Test Conditions/Comments DRIVER Maximum Data Rate 250 kbps Propagation Delay t PLH , t PHL 250 800 2000 ns R LDIFF = 54 Ω, C L1 = C L2 = 100 pF, Figure 5 Skew t SKEW 100 800 ns R LDIFF = 54 Ω, C L1 = C L2 = 100 pF, Figure 5 Rise/Fall Time t R , t F 200 2000 ns R LDIFF = 54 Ω, C L1 = C L2 = 100 pF, Figure 5 Enable Time 125 2000 ns R L = 500 Ω, C L = 100 pF, Figure 6 Disable Time 125 3000 ns R L = 500 Ω, C L = 15 pF, Figure 6 Enable Time from Shutdown 5000 ns R L = 500 Ω, C L = 100 pF, Figure 6 RECEIVER Propagation Delay t PLH , t PHL 250 2000 ns C L = 15 pF, Figure 7 Differential Skew t SKEW 100 ns C L = 15 pF, Figure 7 Enable Time 20 50 ns R L = 1 kΩ, C L = 15 pF, Figure 8 Disable Time 20 50 ns R L = 1 kΩ, C L = 15 pF, Figure 8 Enable Time from Shutdown 5000 ns R L = 1 kΩ, C L = 15 pF, Figure 8Time to Shutdown 150 330 3000 ns1The device is put into shutdown mode by driving RE high and DE low. If these inputs are in this state for less than 50 ns, the device is guaranteed not to enter shutdown mode. If the enable inputs are in this state for at least 3000 ns, the device is guaranteed to have entered shutdown mode.ADM483Rev. 0 | Page 5 of 16ABSOLUTE MAXIMUM RATINGST A = 25°C, unless otherwise noted.Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.ESD CAUTIONESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.ADM483Rev. 0 | Page 6 of 16PIN CONFIGURATION AND FUNCTION DESCRIPTIONSRORE DE DI V CC BA GND 05079-002Figure 2. Pin ConfigurationADM483Rev. 0 | Page 7 of 16TEST CIRCUITS05079-003Figure 3. Driver Voltage Measurement05079-004375ΩFigure 4. Driver Voltage Measurement over Common-Mode Voltage Range05079-005Figure 5. Driver Propagation Delay05079-006DE IN0V OR 3VFigure 6. Driver Enable/Disable05079-007OUTFigure 7. Receiver Propagation Delay05079-008+1.5V–1.5VRE INFigure 8. Receiver Enable/DisableADM483Rev. 0 | Page 8 of 16SWITCHING CHARACTERISTICS05079-009Figure 9. Driver Propagation Delay, Rise/Fall Timing05079-010V OHV OLFigure 10. Receiver Propagation Delay05079-011A, BA, BDEFigure 11. Driver Enable/Disable Timing05079-012RRRE0VFigure 12. Receiver Enable/Disable TimingADM483Rev. 0 | Page 9 of 16TYPICAL PERFORMANCE CHARACTERISTICS400050100150200250300350–50–25025507510012505079-013TEMPERATURE (°C)U N L O A D E D S U P P L Y C U R R E N T(µA )Figure 13. Supply Current vs. Temperature05079-014500510152025303540450.20.40.60.8 1.0 1.2 1.4 1.6 1.82.0RECEIVER OUTPUT LOW VOLTAGE (V)R E C E I V E R O U T P U T C U R R E N T (m A )Figure 14. Output Current vs. Receiver Output Low Voltage05079-0155–5–10–15–203.54.0 4.55.0 5.5RECEIVER OUTPUT HIGH VOLTAGE (V)R E C E I V E R O U T P U T C U R R E N T (m A )Figure 15. Output Current vs. Receiver Output High Voltage05079-0160.400.150.200.250.300.35–50–250255075100125TEMPERATURE (°C)O U T P U T L O W V O L T A G E (V )Figure 16. Receiver Output Low Voltage vs. Temperature05079-0174.64.04.14.24.34.44.5–50–250255075100125TEMPERATURE (°C)O U T P U T H I G H V O L T A G E (V )Figure 17. Receiver Output High Voltage vs. Temperature05079-018900102030405060708000.51.0 1.52.0 2.53.0 3.54.0 4.55.0DIFFERENTIAL OUTPUT VOLTAGE (V)D R I VE R O U T P U T C U R R E N T (m A )Figure 18. Driver Output Current vs. Differential Output VoltageADM483Rev. 0 | Page 10 of 1605079-0191201008060402000.5 1.01.52.0 2.53.0 3.54.0 4.55.0OUTPUT VOLTAGE (V)O U T P U T C U R R E N T (m A )Figure 19. Output Current vs. Driver Output Low Voltage05079-020–10–30–50–70–90–11000.5 1.01.52.0 2.53.0 3.54.0 4.55.0OUTPUT VOLTAGE (V)O U T P U T C U R R E N T (m A )Figure 20. Output Current vs. Driver Output High Voltage05079-021450050100150200250300350400–50–250255075100125TEMPERATURE (°C)P R O P A G A T I O N D E L A Y (n s )Figure 21. Driver Propagation Delay vs. Temperature05079-0228007006005004003002001000–50–250255075100125TEMPERATURE (°C)P R O P A G A T I O N D E L A Y (n s )Figure 22. Receiver Propagation Delay vs. Temperature05079-023CH11.00V ΩCH2 1.00V ΩM 400ns CH3 2.00VCH32.00V ΩCH4 5.00V ΩFigure 23. Driver/Receiver Propagation DelayAPPLICATIONSDIFFERENTIAL DATA TRANSMISSIONDifferential data transmission is used to reliably transmit data at high rates over long distances and through noisy environments. Differential transmission nullifies the effects of ground shifts and noise signals that appear as common-mode voltages on the line. There are two main standards approved by the Electronics Industries Association (EIA), which specify the electrical characteristics of transceivers used in differential data transmission.The RS-422 standard specifies data rates up to 10 Mbaud and line lengths up to 4000 ft. A single driver can drive a transmission line with up to 10 receivers.To achieve true multipoint communications, the RS-485 standard was defined. This standard meets or exceeds all the requirements of RS-422, but also allows up to 32 drivers and 32 receivers to be connected to a single bus. An extended common-mode range of –7 V to +12 V is defined. The most significant difference between RS-422 and RS-485 is that the drivers may be disabled, allowing up to 32 to be connected to a single line. Only one driver should be enabled at a time, but the RS-485 standard contains additional specifications to guarantee device safety in the event of line contention.Table 5. Comparison of RS-422 and RS-485 Interface StandardsSpecification RS-422 RS-485 Transmission Type Differential Differential Maximum Cable Length 4000 ft. 4000 ft. Minimum Driver Output Voltage ±2 V ±1.5 V Driver Load Impedance 100 Ω 54 Ω Receiver Input Resistance 4 kΩ min 12 kΩ min Receiver Input Sensitivity ±200 mV ±200 mV Receiver Input Voltage Range –7 V to +7 V –7 V to +12 V Drivers/Receivers per Line 1/10 32/32CABLE AND DATA RATEThe preferred transmission line for RS-485 communications is a twisted pair. Twisted pair cable tends to cancel common-mode noise and the magnetic fields generated by the current flowing through each wire, thereby reducing the effective inductance of the pair.The ADM483 is designed for bidirectional data communica-tions on multipoint transmission lines. A typical application showing a multipoint transmission network is shown in Figure 24. An RS-485 transmission line can have as many as 32 transceivers on the bus. Only one driver can transmit at a particular time, but multiple receivers can be enabled simul-taneously. As with any transmission line, it is important to minimize reflections. This can be done by terminating the extreme ends of the line by using resistors equal to the char-acteristic impedance of the line. Stub lengths of the main line should also be kept as short as possible. A properly terminated transmission line appears purely resistive to the driver.05079-0MAXIMUM NUMBER OF TRANSCEIVERS ON BUS: 32RO RE DE DIFigure 24. Typical Half-Duplex RS-485 Network TopologyTHERMAL SHUTDOWNThe ADM483 contains thermal shutdown circuitry that protects the part from excessive power dissipation during fault conditions. Shorting the driver outputs to a low impedance source can result in high driver currents. The thermal sensing circuitry detects the increase in die temp-erature and disables the driver outputs. The thermal sensing circuitry is designed to disable the driver outputs when a die temperature of 150°C is reached. As the device cools, the drivers are re-enabled at 140°C. RECEIVER OPEN-CIRCUIT FAIL-SAFEThe receiver input includes a fail-safe feature that guarantees a logic high on the receiver when the inputs are open circuit or floating.OUTLINE DIMENSIONSCOMPLIANT TO JEDEC STANDARDS MS-012AACONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FORREFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGNFigure 25. 8-Lead Standard Small Outline Package [SOIC](R-8)Dimensions shown in millimeters and (inches)ORDERING GUIDEModel Temperature Range Package Description Package Option ADM483AR –40°C to +85°C 8-Lead Standard Small Outline Package R-8ADM483AR-REEL –40°C to +85°C 8-Lead Standard Small Outline Package R-8ADM483AR-REEL7 –40°C to +85°C 8-Lead Standard Small Outline Package R-8ADM483JR 0°C to 70°C 8-Lead Standard Small Outline Package R-8ADM483JR-REEL 0°C to 70°C 8-Lead Standard Small Outline Package R-8ADM483JR-REEL7 0°C to 70°C 8-Lead Standard Small Outline Package R-8NOTESNOTESNOTES© 2004 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners.D05079-0-10/04(0)。
adi锁相环配置参数
adi锁相环配置参数
ADI锁相环(PLL)是一种控制系统,用于将输入信号的相位和
频率与参考信号同步。
ADI公司提供了多种不同型号的锁相环芯片,每个型号都有不同的配置参数。
一般来说,ADI锁相环的配置参数
包括但不限于以下几个方面:
1. 输入信号频率和幅度,这些参数确定了锁相环需要跟踪的输
入信号的频率范围和幅度范围。
对于ADI锁相环芯片,通常会有特
定的输入频率范围和输入幅度范围的要求。
2. 参考信号频率和幅度,参考信号是锁相环的参考基准,其频
率和幅度对锁相环的性能和稳定性有重要影响。
配置参数中需要指
定参考信号的频率范围和幅度范围。
3. 锁相环环路滤波器参数,环路滤波器是锁相环中的重要组成
部分,其参数包括带宽、阶数、衰减等,这些参数会影响锁相环的
响应速度、抑制噪声等性能。
4. 输出参数,ADI锁相环芯片通常会有多种输出模式和输出接
口可选,配置参数需要包括输出信号的频率范围、幅度范围、输出
电平等。
5. 控制参数,锁相环的控制参数包括锁定时间、抖动性能、温度稳定性等,这些参数会影响锁相环的性能指标和稳定性。
在实际应用中,根据具体的系统需求和性能指标,需要根据数据手册和应用指南来配置ADI锁相环芯片的参数,以实现最佳的性能和稳定性。
同时,还需要考虑到电路设计、布局和调试等方面的因素,以确保锁相环能够正常工作并满足系统要求。
CS5460A中文数据手册
Cirrus Lohai benhong Electronics Technologies Co.,Ltd Contactee: Zhoubenhong Addr: Rm1101,No 47,Lane 1111,Lianhua South Rd,Shanghai China, P.R.China. 201100
2.综述 ..................................................................................................................................................... 12 2.1 操作原理 ..................................................................................................................................... 12 2.1.1 ÄÓ 调制器 .......................................................................................................................... 12 2.1.2 高速数字低通滤波器......................................................................................................... 12 2.1.3 数字补偿滤波器 ................................................................................................................ 12 2.1.4 数字高通滤波器 ................................................................................................................ 12 2.1.5 总的滤波器响应 ................................................................................................................ 12 2.1.6 增益及 DC 偏移量调整 ..................................................................................................... 12 2.1.7 有功能量及有效值计算 ..................................................................................................... 13 2.2 执行测量 ..................................................................................................................................... 13 2.2.1 CS5460A 线性性能 ........................................................................................................... 14 2.2.2 单计算周期(C=0 ) ....................................................................................................... 14 2.2.3 连续计算周期(C=1 ).................................................................................................... 15 2.3 基本应用电路结构....................................................................................................................... 15
一种带有插值滤波器的8位650MHz采样速率数字模拟转换器
一种带有插值滤波器的8位650MHz采样速率数字模拟转换
器
哈钱钱;叶凡;陈迟晓;朱晓石;李宁;任俊彦
【期刊名称】《固体电子学研究与进展》
【年(卷),期】2011(31)6
【摘要】针对OFDM-UWB标准超宽带收发系统中数模转换器(DAC)的要求,设计了一款8位650MHz采样速率电流驱动型数模转换器(Current-steering DAC)。
为了提高静态性能,本设计通过蒙特卡洛分析确定电流源最佳尺寸并采用双中心版图技术;为了提高动态性能,文中采用共源共栅电流源结构,对开关电压降摆幅处理并在数字输入端前加入插值滤波器。
测试结果表明,DAC的积分非线性(INL)和差分非线性(DNL)分别为0.3LSB和0.41LSB,650MHz转换速率下带内奈奎斯特无杂散动态范围(SFDR)为41dB。
整体面积为1.8cm×1.3cm,其中DAC面积为
0.8cm×0.8cm。
【总页数】7页(P606-612)
【关键词】超宽带技术;电流驱动型;高速数模转换器;插值滤波器
【作者】哈钱钱;叶凡;陈迟晓;朱晓石;李宁;任俊彦
【作者单位】复旦大学专用集成电路与系统国家重点实验室
【正文语种】中文
【中图分类】TN713;TN431
【相关文献】
1.一种实现任意采样速率抽取的滤波器 [J], 王超;宋育枫;;
2.一种新的带有优化参数的曲线插值算法 [J], 屈名;王德麾
3.∑-△数模转换器中插值滤波器的研究与设计 [J], 戴杰
4.一种用于信号采样速率转换的滤波器 [J], 张红
5.欧胜带有D类扬声器放大器的音频数字模拟转换器 [J], 无
因版权原因,仅展示原文概要,查看原文内容请购买。
ANALOG BANDPASS FILTER
专利名称:ANALOG BANDPASS FILTER发明人:GONZALEZ MORENO, José Luis,POVEDALERMA, Antonio,VIDAL ROS, José Maria申请号:EP02785442.1申请日:20021112公开号:EP1453196A1公开日:20040901专利内容由知识产权出版社提供专利附图:摘要:The invention relates to an analog bandpass filter comprising a plurality of LC ladder circuits (1), the response from which is determined by a passband (fpi, fps) and a rejection band (with limits fri and frs). The inventive filter is characterised in that a seriesof tank circuits (5) is disposed in parallel to the filter charge, the resonance frequencies of said tank circuits coinciding with the lower (fpi) and upper (fps) cut-off frequency of the pass-band of the filter. Furthermore, the filter comprises a control resistor (Rc) which regulates the effect of the tank circuits on the filter. Said structure can be used to compensate the effect of the real limitations of the LC components (1) in order to adjust the response from the analog bandpass filter created with said components to the response from the ideal bandpass filter.申请人:Diseno de Sistemas en Silicio S.A.地址:Charles Robert Darwin, 2, Parque Tecnologico 46980 Paterna (Valencia) ES国籍:ES代理机构:Ungria Lopez, Javier更多信息请下载全文后查看。
Principles of Classic Analog Active Filter and Design Reference
经典模拟有源滤波器原理与设计参考Principles of Classic Analog Active Filter and Design Reference William Fan, Biomedical Engineering 10th, Guangdong Pharmaceutical University, 我在前段时间找了几本教材和书籍,也在网络上找了很多资料,花了一番功夫最终将它们归纳、整理、编写成一篇文章。
目的在于让电路设计者更好地回顾经典模拟有源滤波器的基本知识点,并给他们提供实在的设计参考材料,包括基本电路结构、公式、参数和基本分析方法及其推导方程,希望本文能展现给电路设计者(尤其是初学者、同学)一些最基本也是最需要的理论知识指导和电路设计参考,从而更有效地减少实际电路设计的工作量。
此文非本人所作,仅仅引用并整理得出而已,加之本人亦属初学者之列,学识匮乏,功力浅薄,若有误人之处,诚望高手大侠不吝给予指导和点评,此乃同行者之福分!有源滤波器实际上是一种具有特定频率响应的放大器。
它是在运算放大器的基础上增加一些R、C等无源元件而构成的。
通常有源滤波器分为:Low Pass Filter 低通滤波器(LPF)High Pass Filter 高通滤波器(HPF)Band Pass Filter 带通滤波器(BPF)Band Reject Filter 带阻滤波器(BEF)它们的幅度频率特性曲线如图所示。
图13.01 有源滤波器的频响滤波器的用途滤波器主要用来滤除信号中无用的频率成分,例如,有一个较低频率的信号,其中包含一些较高频率成分的干扰。
滤波过程如图13.02所示。
滤波过程有源二阶滤波器电路的形式与特点常用的有源二阶滤波器电路有压控电压源二阶滤波器电路和无限增益多路负反馈二阶滤波器电路。
压控电压源二阶滤波电路的特点:运算放大器为同相接法,滤波器的输入阻抗很高,输出阻抗很低,滤波器相当于一个电压源。
鼎阳科技 SSA3000X Plus 频谱分析仪数据手册说明书
产品综述鼎阳科技SSA3000X Plus系列频谱分析仪,是具有多种功能的射频测量仪器,频谱分析测量范围从9 kHz 到最高7.5 GHz,同时包括跟踪发生器,模拟与矢量数字调制分析,无线功率分析,VSWR反射测量,EMI 滤波和准峰值检波等模式和功能。
在无线连接和移动通信测量,通信和微波实验课程,电磁兼容测试,天线和电缆测量等各方面具有广泛的应用价值,适用于企业研发、工厂生产、教育教学等诸多领域。
特性与优点频谱分析频率范围从9 kHz 到最高7.5 GHz显示平均噪声电平DANL低于-165 dBm/Hz相位噪声低于-98 dBc/Hz频率分辨率0.01 Hz最小分辨率带宽(RBW)1 Hz全幅度精度优于0.7 dB标配前置放大器选配跟踪信号源(Tracking Generator)选配模拟和矢量数字信号调制分析模式(Analog / Digital Modulation Analysis)选配高级测量套件(Advanced Measurement Kit)选配EMI滤波器和准峰值检波器套件(EMI filter and QPD detector Kit)选配VSWR反射测量套件(Reflection Measurement Kit)10.1 英寸多点触摸屏,支持鼠标和键盘控制基于电脑或手持终端网络浏览器的远程监控和文件操作型号和主要参数型号SSA3021X Plus SSA3032X Plus SSA3075X Plus 频谱分析范围9 kHz~2.1 GHz 9 kHz~3.2 GHz 9 kHz~7.5 GHz分辨率带宽 1 Hz~1 MHz 1 Hz~1 MHz 1 Hz~3 MHz显示平均噪声电平-161 dBm/Hz -161 dBm/Hz -165 dBm/Hz单边带相位噪声<-98 dBc/Hz <-98 dBc/Hz <-98 dBc/Hz幅度准确度< 0.7 dB < 0.7 dB < 0.7 dB跟踪源100 kHz~2.1 GHz 100 kHz~3.2 GHz 100 kHz~7.5 GHz 触摸控制Multi Touch,Mouse and Keyboard supported高级测量功能CHP,ACPR,OBW,CNR,Harmonic,TOI,Monitor矢量信号调制分析AM,FM;ASK,FSK,MSK,PSK,QAM电磁兼容测试EMI Filter and Quasi-Peak Detector,Log Scale and Limit Line通信接口LAN,USB Device,USB Host(USB-GPIB)远程控制能力SCPI/Labview/IVI based on USB-TMC/VXI-11/Socket/Telnet远程控制器NI-MAX,Web Browser,Easy Spectrum software,File Explorer设计特色频谱分析模式10.1寸多点触摸屏,支持鼠标和键盘控制相位噪声-98 dBc/Hz@1 GHz,偏移10 kHz 最小分辨率带宽1 Hz高级测量套件中的邻道功率抑制比ACPR低至-165 dBm/Hz的显示平均噪声电平高级测量套件中的频谱监控瀑布图调制分析模式支持AM/FM,ASK/FSK/PSK/MSK/QAM测量分析反射驻波测量使用外置电桥实现S11电压驻波比测量,调试天线端口匹配EMI测量模式具备EMI滤波器和准峰值检波器的EMI测量模式,预存标准限制线集合。
一、带通滤波器(BandpassFilter)
Basic Filter Circuits1. High-Pass Filter (高通濾波電路)inin C outv C j R R v X R R v ⎪⎪⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+=ω1Voltage Gain(outinv v ⇒==電壓放大倍數)(1) 3dB Frequencyinoutv v dB log20= 21log203=⇒=-⇒in out inoutv v v v RC dB 13=⇒ω 或 RCf dB π213=6dB/-0ω31dB RC=C.0v outv in(2) Roll-off Attenuation (衰減斜率) At low frequencies, dB RC31ωω=<<,dBin out RC v v 3ωωω=≈ ⎪⎪⎭⎫ ⎝⎛=⇒dB in outdB v v 3log 20)(log20ωω or ()dB 3log log 20ωω-At dB 321ωω=(called “Octave ” (八度音)), )(621log 20log 20log203dB -===dB in out v v ωω ⇒Roll-off Attenuation (衰減斜率) 6dB/octave =0.1 110)/log(3dB ωωdB /6+or dB /20+At dB 3101ωω=(called “decade ” ), )(20101log 20log20dB -==in out v v ⇒Roll-off Attenuation (衰減斜率) 20dB/decade =(3) Phase Shift (相移)22111⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=+=C R C j R R C j R R v v inout ωωωThe output voltage, v out , leads ahead of the input voltage, v in , by the angle θ, where 31/tan dBC R ωωθω==. At 3110dB ωω=, 8410tan ≈⇒=θθAt 310dB ωω=, 61.0tan ≈⇒=θθdB 3θ90045002. Low-Pass Filter (低通濾波電路)in in C C outv C j R C j v X R X v ⎪⎪⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+=ωω11Voltage Gain out in v v ⇒==(1) 3dB Frequencyinoutv v dB log20= 21log203=⇒=-⇒in out inoutv v v v RC dB 13=⇒ω or RCf dB π213=ω3dB RC=v in v out 0.01μF(2) Roll-off Attenuation (衰減斜率) At high frequencies, dB RC31ωω=>>,ωωωdB in out RC v v 31=≈ ⎪⎭⎫⎝⎛=⇒ωωdB in out dB v v 3log 20)(log20 or ()ωωlog log 203-dBAt dB 32ωω=(Octave(八度音),)(621log 20log 20log203dB -===ωωdB in out v v ⇒Roll-off Attenuation(衰減斜率)6dB/octave =-At dB 310ωω=,)(20101log 20log20dB -==in out v v ⇒Roll-off Attenuation (衰減斜率) 20dB/decade =-20log outin v v 0-10 -20 -300.1 110102 )/log(3dB ωω(3) Phase Shift (相移)2211111⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛-=+=C R jR C C C j R C j v v inout ωωωωωThe output voltage, v out , lags behind the input voltage, v in , by the angle θ,where 3tan 1/dBR C ωθωω=-=-.dB 3101ωω=當, 61.0tan -≈⇒-=θθdB 310ωω=當, 8410tan -≈⇒-=θθθ-90-45000dB 3ω3. Band-Pass Filter (帶通濾波器)CL LC Z Z Z 111+= Cj Lj ωω111+=⎪⎭⎫ ⎝⎛-=L C j ωω1111111)(+⎪⎭⎫ ⎝⎛-=+⎪⎪⎭⎫ ⎝⎛=+==L C jR R Z Z R Z v v T LC LC LC in out ωωω 111)(22+⎪⎭⎫ ⎝⎛-=⇒L C R T ωωωResonant Frequency (共振頻率): LCf π210=,or LC 001ωω=∞=⇒LC Z ,1=inoutv vQuality factor (品質因數)dBf f 30∆≡(sharpness of the bell-shape curve) v outv inR(ωT 1ω12ωo =LC1At 3dB point ,21)(=ωT1122=⎪⎭⎫ ⎝⎛-⇒L C R ωωRL C 11±=-⇒ωωRC120±=-⇒ωωωThere are two 3dB points: ω1 and ω2⇒ RC 11201-=-ωωω )(10ωω> RC12202=-ωωω )(20ωω<⇒ RC112=-ωω 2021ωωω=⇒ LCRRC f f Q dB ==-=∆=012030ωωωω4. Band-Reject Filter (or called Notch Filter) (帶拒濾波器)inout v v T =)(ω⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=C L j R C L j ωωωω112211)(⎪⎭⎫ ⎝⎛-+-=⇒C L R CL T ωωωωω2021ωωω=LR =-12ωω CLR R L f f Q dB 1012030==-=∆=⇒ωωωω)(ωT0.70ω1 2v outv in。
外文翻译-----数据采集同步滤波器在锁定放大器中的应用
180 ,360 ) 移相电路是参考通道的中心部件, 它可以实现按级跳变的相移 ( 90 ,
和连续可调的相移 ( 0~ 360 ) 。 移相电路可以是模拟门积分比较器, 也可以用锁相环 ( PLL ) 实现,或用集成化的数字式鉴相器、环路滤波和压控振荡器( VCO )组成。
Lock-in amplifier using a sampled-data synchronous filter Yushi Komachi and Sueo Tanaka School of Science and Engineering, Waseda University,Shinjuku-ku, Tokyo Received 13 December 1974, infinalform 9 June 1975 Abstract : A lock-in amplifier is constructed using a synchronous filter instead of a phase
2.锁定放大器概述
它的结构分为两个部分;信号通道,用来处理被测信号。参考通道,提供同步 滤波器的驱动信号来调谐参考频率。参考通道能够同时工作在内部模式和外部模式, 这和传统锁定放大器一样。下面就详细介绍它的工作性能。
( 1 )信号通道 信号通道主要由前置放大器,预滤波,同步滤波器升压放大器, RMS 检测器及指示器。 前置放大器把输入信号增益达到 100 分贝。通过两个通道所形成的接地环路中差分输入, 减少了噪声的生成。预滤波消除了信号的残留边带,有害通频带;它们是 5fc,7fc, 等等。 这些对频率的要求和传统锁定放大器的预滤波的衰减斜率对频率的要求是完全不同的, 很容易解决预滤波的相位特性问题。当锁定放大器与外部参考信号一起工作时,预滤波 必须被省却或者通频带必须被展宽以免限制扫描范围。在这种情况下比起一般的锁定放 大器,运用同步滤波来测量受噪声影响的微弱信号减少误差。 ( 2 )参考通道
美国模拟器件公司数字音频处理器
美国模拟器件公司数字音频处理器
佚名
【期刊名称】《电子产品世界》
【年(卷),期】2005(000)04B
【摘要】美国模拟器件公司(Analog Devices)发布最新SigmaDSP数字音频处理器,针对大批量、低价格、快速面世的应用,如汽车音频、数字电视、多媒体计算机和家庭影院系统。
新的AD1940和AD1941 SigmaDSP处理器和SigmaStudio设计工具一起提供一套全自动的硬件和软件系统设计工具,
【总页数】1页(P29)
【正文语种】中文
【中图分类】TN492
【相关文献】
1.TI推出集成48位数字音频处理器的高性能PWM处理器 [J],
2.美国模拟器件公司推出BLACKFIN处理器系列产品 [J],
3.美国模拟器件公司的TigerSHARC处理器被爱立信选中用于3G基站的开发——软件可编程的TigerSHARC ADSP-TS201处理器为3G WCDMA基带通信平台的可扩缩能力和灵活的功能升级准备了条件 [J],
4.美国模拟器件公司推出最新Blackfin处理器系列产品 [J],
5.TI推出48位数字音频处理器的高性能PWM处理器 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。
数字信号处理Chapter_4(第三版教材)
Digital Processing of ContinuousTime Signals
Complete block-diagram
Antialiasing filter
S/H
A/D
DSP
D/A
Reconstruction filter
• Since both the anti-aliasing filter and the reconstruction filter are analog lowpass filters, we review first the theory behind the design of such filters • Also, the most widely used IIR digitae conversion of an analog lowpass prototype
-<n<
with T being the sampling period • The reciprocal of T is called the sampling frequency FT, i.e., FT =1/T
Sampling of Continuous-time Signals
• Now, the frequency-domain representation of ga(t) is given by its continuos-time Fourier transform (CTFT):
• gp(t) is a continuous-time signal consisting of a train of uniformly spaced impulses with the impulse at t = nT weighted by the sampled value ga(nT) of ga(t) at that instant t=nT
滤波器术语英汉翻译
滤波器软件英汉翻译Lowpass notch filters :低通陷波滤波器Order: 阶filter circuits:滤波电路frequency response:幅频响应Passband :通频带、传输带宽repeatedly cycle:重复周期maximum signal to noise ratio:最大信噪比gain constants:增益系数,放大常数circuit topologies:电路拓扑结构gain shortfall:增益不足maximum output:最大输出功率last stage:末级preceding stage:前级stage filter:分级过滤器Gain Stage:增益级voltage amplitude:电压振幅Component values: 元件值maximum valued: 最大值minimum valued: 最小值standard value:标准值resistors: 电阻器capacitors:电容器operational amplifiers:运算放大器(OA) circuit board:(实验用)电路板active filters:有源滤波器supply currents:源电流power supplies:电源bypassing capacitors:旁路电容optimal:最佳的;最理想的Gain Bandwidth:带宽增益passive component:无源元件active component: 有源元件overall spread:全局;总范围Component characteristics:组件特性Modification:修改;更改data book:数据手册typical values:标准值;典型值default values:省略补充program execution:程序执行Reset button:复原按钮positive temperature coefficient:正温度系数variable resistors:可变电阻器cermet resistor:金属陶瓷电阻器output resistance:输出电阻distortion:失真single amplifier:单级放大器voltage follower:电压输出跟随器troubleshooting:发现并修理故障control panel,:控制面板。
电磁干扰滤波器组件页面 - CORCOM, DIV OF TYCO ELECTRONICS CORP
FOKY2.E48570Electromagnetic Interference Filters - Component Page BottomElectromagnetic Interference Filters - ComponentSee General Information for Electromagnetic Interference Filters - ComponentCORCOM, DIV OF TYCO ELECTRONICS CORP E48570620 S BUTTERFIELD RDMUNDELEIN, IL 60060-9457 USAAppliance filters, Model(s) 100BCF6, 130BCF6, 15ED1, 15ED8, 16BCF6, 180BCF6, 30BCF6, 42BCF6, 55BCF6, 75BCF6, 7BCF6Electromagnetic interference appliance filters, Model(s) 100BCF10, 10CUFE1, 10CUFF1, 10CUFS1, 10EHZ1, 10EMC1, 10EMC3, 10EMC6,10ERK1, 10ESB1, 10ESB3, 10ESB6, 10VRK1, 10VSB1, 10VSB3, 10VSB6, 130BCF10, 15CUFE1, 15CUFF1, 15CUFS1, 15EHZ1, 15EMC1, 15EMC3, 15EMC6, 15ERK1, 15VRK1, 16BCF10, 16EHQ1, 16EQ1, 180BCF10, 1CUFE1, 1CUFF1, 1CUFS1, 20EHQ1, 20EHQ6, 20EHQ7, 20EHZ1, 20EHZ6,20EHZ7, 20EMC1, 20EMC3, 20EMC6, 20EQ1, 20ERK1, 20ESB1, 20ESB6, 20VQ1, 20VRK1, 20VSB1, 20VSB6, 2FB3, 30BCF10, 30EHZ6, 30EMC1, 30EMC3, 30EMC6, 30VSB1, 30VSB6, 3CUFE1, 3CUFF1, 3CUFS1, 3EHQ1, 3EHQ3, 3EHQ7M, 3EHQ8, 3EHQ8M, 3EMC1, 3EMC3, 3EMC6, 3EQ1,3EQ3, 3EQ7M, 3EQ8, 3EQ8M, 3ERK1, 3ERK3, 3FB3, 3FB3-MS, 3VQ1, 3VQ3, 3VQ8, 3VQ8M, 3VRK1, 3VRK3, 42BCF10, 4EHZ1, 55BCF10, 5FB3,60DB8, 60DBF8, 60DBJ8, 60DBX8, 6CUES1, 6CUFE1, 6CUFF1, 6EHQ1, 6EHQ3, 6EHQ8, 6EHQ8M, 6EHZ1, 6EMC1, 6EMC3, 6EMC6, 6EQ1, 6EQ3,6EQ8, 6EQ8M, 6ERK1, 6ERK3, 6ESB1, 6ESB3, 6VRK1, 6VRK3, 6VSB1, 6VSB3, 75BCF10, 7BCF10, A3B00-30, A3C00-30, F3071C, F3071E, F3186, F3265, F3978C, F4077, F4325, F4325A, F4340, F4341, F4342, F4382, F4499, F4507, F4525, F4607, F4612, F4654, F4655, F4659, F4663, F4666, F7247B, F7247X, F7247Y, F7262A, F7268A, F7328C, F7776A, HFB3Electromagnetic interference facility filters, Model(s) F6478C, F6478D, F6497A, TECUL225A6, TECUL225B6, TECUL300A6, TECUL300B6, TECUL400A6, TECUL400B6Electromagnetic Interference Filter, Model(s) 1, 3, 6, 10 or 15 followed by EJT followed by 1F or 8F.1, 3, 6, 10, 15 or 20 followed by EJT followed by 1 or 8.12FCD10, 16FCD10, 25FCD10, 36FCD10, 3VAQ3, 3VAQ8F, 3VAQ8FS, 50FCD10, 6EUP and 6EU1, 6FCD10, 6VAQ3, 6VAQ8F, 6VAQ8FS, CDEUA (a), CDEUL (a), CDEUW (a), CDEUX (a), CDEUX060A4-1, F3804A, F3804D, F7751A, F7753AElectromagnetic interference filters, Model(s) 1, 2, 3, 6 or 10, followed by EDK or VDK, followed by 1 or 31, 3, 6 or 10, followed by EAH or EBH, followed by 1, 2 or P.1, 3, 6 or 10, followed by EEA or EEB, followed by 1, 2 or P.1, 3, 6, 10 or 15, followed by EAS or EBS, followed by 1 or 8.1, 3, 6, 10 or 15, followed by EBF, followed by 1 or 4.100 or 125, followed by DC, followed by F or B, followed by 6 or 10, may be followed by B and/or F.10CFE1, 10CFS1, 10CHE1, 10CHS1, 10CKFE1, 10CKFS1, 10CKHE1, 10CKHS1, 10EDP, 10EEJ1, 10EEJ2, 10EEJ8, 10EEJP, 10EG1, 10EGG1-1,10EGG1-2, 10EGG8-1, 10EGG8-2, 10EGS1-1, 10EGS1-2, 10EGS8-1, 10EGS8-2, 10EHG1-2, 10EHG8-2, 10EHGS1-1, 10EHGS1-2, 10EJH1,10EJH2, 10EJH8, 10EJHP, 10EJHS1, 10EJHS8, 10EJM1, 10EJM2, 10EJM8, 10EJMP, 10EJMS1, 10EJMS8, 10EJS1, 10EJS8, 10EJT1, 10EJT8, 10EOP, 10VG1, 10VN1, 110AYC10B, 12EJMS1, 150AYC10B, 150AYC10B-95, 15EEJ1, 15EEJ2, 15EEJ8, 15EEJP, 15EJH1, 15EJH2, 15EJH8, 15EJHP,15EJHS1, 15EJHS8, 15EJM1, 15EJM2, 15EJM8, 15EJMP, 15EJMS8, 15EJS1, 15EJS8, 15EJT1, 15EJT815SRB, followed by 1, 2, 8, P, S1 or S8, may or may not be followed by Q, R, S, T, W, X, Y or Z.16AYA6, 16AYA6A, 16AYC10BElectromagnetic Interference Filters, Model(s) 16WGA1, 16WGB1, 16WGC1, 16WGD1, 16WGE1, 16WGF1, 16WGA3, 16WGB3, 16WGC3,16WGD3, 16WGE3, 16WGF3, 16WGA7, 16WGB7, 16WGC7, 16WGD7, 16WGE7, 16WGF7, 16WGA8, 16WGB8, 16WGC8, 16WGD8, 16WGE8 and16WGF8Electromagnetic interference filters, Model(s) 180AYC10B, 1CFE1, 1CFS1, 1CHE1, 1CHS1, 1CKFE1, 1CKFS1, 1CKHE1, 1CKHS1, 1EDK1,1EDK3, 1EDP, 1EEJ1, 1EEJ2, 1EEJ8, 1EEJP, 1EGG1-1, 1EGG1-2, 1EGG1C-1, 1EGG1C-2, 1EGG8-1, 1EGG8-2, 1EGG8C-1, 1EGG8C-2, 1EGS1-1,1EGS1-2, 1EGS8-1, 1EGS8-2, 1EHG1-2, 1EHG8-2, 1EHGS1-2, 1EJH1, 1EJH2, 1EJH8, 1EJHP, 1EJHS1, 1EJHS8, 1EJM1, 1EJM2, 1EJM8, 1EJMP,1EJMS1, 1EJMS8, 1EJS1, 1EJS8, 1EJT1, 1EJT8, 1EOP, 1VDK1, 1VDK3, 20AYP6C, 20AYT6C, 20EDK1, 20EEJ1, 20EEJ8, 20EJH1, 20EJH8, 20EJHS1, 20EJHS8, 20EJM1, 20EJMS1, 20EJMS8, 20EJS1, 20EJS8, 20EJT820SRB, followed by 1, 8, S1 or S8, followed by W, X or Y.20VDK1, 20VDK6, 25AYA6, 25AYA6A, 25AYC10B, 2VK1L3, 6, 10 or 15, followed by DAF or DAS, followed by 1, 8 or P.30AYP6C, 30AYT6C, 36AYA6, 36AYA6A, 36AYC10B, 3CFE1, 3CFS1, 3CHE1, 3CHS1, 3CKFE1, 3CKFS1, 3CKHE1, 3CKHS1, 3EDP, 3EEJ1, 3EEJ2,3EEJ8, 3EEJP, 3EGG1-1, 3EGG1-2, 3EGG1C-1, 3EGG1C-2, 3EGG8-1, 3EGG8-2, 3EGG8C-1, 3EGG8C-2, 3EGS1-1, 3EGS1-2, 3EGS8-1, 3EGS8-2,3EHG1-2, 3EHG8-2, 3EHGS1-2, 3EHZ1, 3EJH1, 3EJH2, 3EJH8, 3EJHP, 3EJHS1, 3EJHS8, 3EJM1, 3EJM2, 3EJM8, 3EJMP, 3EJMS1, 3EJMS8, 3EJS1, 3EJS8, 3EJT1, 3EJT8, 3EOP, 3EX1, 3EZ1, 3VK1L, 45AYP6C, 45AYT6C, 50AYA6, 50AYA6A, 5EFL2S, 5VK1L, 60AYP6C, 60AYT6CElectromagnetic Interference Filters, Model(s) 63ADT6, 63ADT6S, 100ADT6, 100ADT6S, 160ADT6, 200ADT6 and F6229C.Electromagnetic interference filters, Model(s) 63AYC10B, 6CFE1, 6CFS1, 6CHE1, 6CHS1, 6CKFE1, 6CKFS1, 6CKHE1, 6CKHS1, 6EDP, 6EEJ1, 6EEJ2, 6EEJ8, 6EEJP, 6EG1, 6EGG1-1, 6EGG1-2, 6EGG1C-1, 6EGG1C-2, 6EGG8-1, 6EGG8-2, 6EGG8C-1, 6EGG8C-2, 6EGS1-1, 6EGS1-2,6EGS8-1, 6EGS8-2, 6EHG1-2, 6EHG8-2, 6EHGS1-2, 6EJH1, 6EJH2, 6EJH8, 6EJHP, 6EJHS1, 6EJHS8, 6EJM1, 6EJM2, 6EJM8, 6EJMP, 6EJMS1,6EJMS8, 6EJS1, 6EJS8, 6EJT1, 6EJT8, 6EOP6FC10, 12FC10, 16FC10, 25FC10, 36FC10, 50FC106VG1, 6VN1, 80AYC10B, C1066A, C1069, C1195, C1195A, C1201A, C5691, C5691A, C7019A, C7049, F3433, F3613, F3613A, F3779, F3786,F4092, F4093, F4093A, F4136B, F4169B, F4217A, F4217B, F4259, F4290, F4298, F4402, F4481, F4564, F4649, F5396B, F7328A, F7381C,F7382M, F7382P, F7386C, F7387C, F7387D, F7388C, F7405B, F7531M, F7532A, F7655A, F7702D, F7892F, F7897A, F8017E, F8026A, F8030A,F8032A, F8137A, F8138A, F8143A, F8225AP, followed by five characters, followed by D, followed by 3, 6 or X, followed by D.P, followed by five characters, followed by H or S, followed by 3, followed by A, B, 0 or S.P, followed by five characters, followed by H, L, S or Z, followed by 6 or X, followed by A, B, C, 0 or S, may be followed by W.P, followed by five characters, followed by M3E, M6E or MXE.Facility filters, Model(s) CDSUA1030-C, CDSUA1060-C, CDSUA1100 C, CDSUA2030 CRadio frequency interference filters, Model(s) 10AY01, 10EB1, 10EB3, 10EBFX, 10EC1, 10EC8, 10ED1, 10ED1C, 10ED4, 10ED4C, 10ED8,10ED8C, 10EF1F, 10EF1FC, 10EF4, 10EF4C, 10EF8, 10EF8C, 10EH1, 10EH3, 10EH4, 10EH4C, 10EHT1, 10EHT3, 10EK1, 10EK3, 10EK7, 10EK7M, 10EP1, 10EP3, 10ER1, 10ER3, 10ER7, 10ER7M, 10ESK1, 10ESK3, 10ESK7, 10ESK7M, 10ET1, 10ET3, 10MV1, 10R1, 10R6, 10VB1, 10VB3,10VB6, 10VK1, 10VK3, 10VK6, 10VK7, 10VK7M, 10VR1, 10VR3, 10VR6, 10VR7, 10VR7M, 10VS1, 10VSK1, 10VSK3, 10VSK7, 10VSK7M, 10VT1, 10VT3, 10VV1, 10VW1, 12EP1, 12EP3, 15EASZ, 15EBFX, 15EBSZ, 15EEAY, 15EEBY, 15EFIF, 15EH4, 15EHT1, 15EHT6, 15ET1, 15ET6, 15VT1,15VT6, 1EB1, 1EB3, 1EC1, 1EC2, 1EC4, 1EC8, 1ED1, 1ED2, 1ED4, 1ED8, 1EF1F, 1EF2F, 1EF4, 1EF8, 1EK1, 1EK3, 1ER1, 1ER3, 1EZP, 1VB1,1VB3, 1VK1, 1VK3, 1VR1, 1VR3, 20AY01, 20B1, 20B6, 20EB1, 20EH1, 20EH6, 20EHT1, 20EHT6, 20EHT7, 20EK1, 20EK6, 20EP1, 20EP6, 20ER1, 20ESK1, 20ESK6, 20ET1, 20ET6, 20MV1, 20VB1, 20VB6, 20VK1, 20VK6, 20VK7, 20VP1, 20VP6, 20VR1, 20VR6, 20VS1, 20VS6, 20VSK1,20VSK6, 20VT1, 20VT6, 20VV1, 20VV6, 20VW1, 20VW6, 20VW7, 2EB1, 2EB3, 2EDL1S*, 2EDL4*, 2EK1, 2EK3, 2ER1, 2ER3, 2EXP, 2EYP, 2EZP,2VB1, 2VB3, 2VK1, 2VK3, 2VR1, 2VR3, 30ESK6, 30ESK6C, 30VB6, 30VK6, 30VK6C, 30VSK6, 30VSK6C, 3AY01, 3B1, 3EB1, 3EB3, 3EC1, 3EC2,3EC4, 3EC8, 3ED1, 3ED2, 3ED4, 3ED8, 3EF1F, 3EF2F, 3EF4, 3EF8, 3EH1, 3EH3, 3EHT1, 3EHT3, 3EHT7, 3EHT7M, 3EK1, 3EK3, 3EK7, 3EK7M,3EP1, 3EP3, 3EP7, 3EP7M, 3ER1, 3ER3, 3ER7, 3ER7M, 3ESK1, 3ESK3, 3ESK7, 3ESK7M, 3ET1, 3ET3, 3ET7, 3EXL2S, 3EXP, 3EYP, 3EZL2S, 3EZP, 3MV1, 3R1, 3VB1, 3VB3, 3VK1, 3VK3, 3VK7, 3VK7M, 3VR1, 3VR3, 3VR7, 3VR7M, 3VS1, 3VSK1, 3VSK3, 3VSK7, 3VSK7M, 3VV1, 3VW1, 40VK6, 40VK6C, 40VSK6, 4EDL1S*, 4EDL4*, 4EXP, 4EYP, 5EB1, 5EB3, 5EFM1, 5EFM1C, 5EFM1S, 5EFM1SC, 5EFM4, 5EFM4C, 5EFM4S, 5EFM4SC,5EHM1, 5EHM1C, 5EHM1S, 5EHM1SC, 5EHM4, 5EHM4C, 5EHM4S, 5EHM4SC, 5EK1, 5EK3, 5EK7, 5EK7M, 5ER1, 5ER3, 5ER7, 5ER7M, 5R1, 5VB1, 5VB3, 5VK1, 5VK3, 5VK7, 5VK7M, 5VR1, 5VR3, 5VR7, 5VR7M, 60VS6, 6AY01, 6EC1, 6EC2, 6EC4, 6EC8, 6ED1, 6ED1C, 6ED2, 6ED4, 6ED4C,6ED8, 6ED8C, 6EDL1S*, 6EDL4*, 6EF1F, 6EF2F, 6EF4, 6EF8, 6EH1, 6EH3, 6EH4, 6EH5, 6EH8, 6EH9, 6EHL1S*, 6EHL4*, 6EHT1, 6EHT3, 6EHT7, 6EHT7M, 6EP1, 6EP3, 6ESK1, 6ESK3, 6ESK7, 6ESK7M, 6ET1, 6ET3, 6ET7, 6EXP, 6MV1, 6VS1, 6VSK1, 6VSK3, 6VSK7, 6VSK7M, 6VV1, 6VW1,7EP1, 7EP3, 8ED8C, F1709C, F2470, F2537, F2577, F2577Z, F2801, F2801Z, F2807, F2821, F2870, F2914A, F2954, F3016, F3017, F3101,F3101A, F3101B, F3107, F3130, F3259, F3259A, F3295A, F3392, F3404, F3407, F3409, F3410, F3421, F3457, F3467, F3558, F3582, F3643,F3658, F3713, F3721A, F3742, F3787, F3949, F3986, F3997A, F3997B, F4006, F4008, F4025, F4041, F4041A, F4041Z, F4055, F4140, F4141,F4230A, F4230D, F7002B, F7003A, F7025A, F7070A, F7071A, F7120A, F7130D, F7147A, F7202A, F7210A, F7235A, F7311F, F7323A, F7329A,F7335A, F7346B, F7350C, F7352C, F7356A, F7358E, F7358F, F7376A, F7376B, F7393C, F7424B, F7431A, F7518D, F7526A, F7585A, F7585B,F7585D, F7585E(a) - followed by 010, 030, 060, 100, 150, 225, 300 or 400, followed by suffix A or B, followed by suffix 4 or 6* - May be followed by C and/or M. Where C indicates receptacle with integral spring tabs for mounting; and M indicates filter is normally provided with dual (European) fusing.Marking: Company name or trademark , , , , , ,and model designation.Last Updated on 2015-05-07Questions?Print this page Terms of Use Page Top© 2015 UL LLC When the UL Leaf Mark is on the product, or when the word "Environment" is included in the UL Mark, please search the UL Environment database for additional information regarding this product's certification.The appearance of a company's name or product in this database does not in itself assure that products so identified have been manufactured under UL's Follow-Up Service. Only those products bearing the UL Mark should be considered to be Certified and covered under UL's Follow-Up Service. Always look for the Mark on the product.UL permits the reproduction of the material contained in the Online Certification Directory subject to the following conditions: 1. The Guide Information, Assemblies, Constructions, Designs, Systems, and/or Certifications (files) must be presented in their entirety and in a non-misleading manner, without any manipulation of the data (or drawings). 2. The statement "Reprinted from the Online Certifications Directory with permission from UL" must appear adjacent to the extracted material. In addition, the reprinted material must include a copyright notice in the following format: "© 2015 UL LLC".。