PhysRevB[1].81.115304
HP HP-UX 说明书
LTE_3GPP_36.213-860(中文版)
3GPP
Release 8
3
3GPP TS 36.213 V8.6.0 (2009-03)
Contents
Foreword ...................................................................................................................................................... 5 1 2 3
Internet
Copyright Notification No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media.
© 2009, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TTA, TTC). All rights reserved. UMTS™ is a Trade Mark of ETSI registered for the benefit of its members 3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners LTE™ is a Trade Mark of ETSI currently being registered for the benefit of i ts Members and of the 3GPP Organizational Partners GSM® and the GSM logo are registered and owned by the GSM Association
低抖动锁相环对微加速度计时钟性能的改善
低抖动锁相环对微加速度计时钟性能的改善
谭晓昀;刘晓为;纪勇
【期刊名称】《哈尔滨工业大学学报》
【年(卷),期】2007(39)5
【摘要】通过对微加速度计时钟电路的研究,并和传统RC振荡器进行比较,提出了一种用于微加速度计的低频率抖动(Low-Jitter)的电荷泵锁相环电路.该电路包括无死区的鉴频鉴相器(PFD)、低通滤波器(LPF)、电荷泵(CP)、压控振荡器(VCO)及分频器组成.仿真验证,电荷泵锁相环电路使微加速度计系统时钟的频率抖动从0.5 kHz改善为0.1 kHz以下,从而提高了微加速度计的噪声性能和灵敏度.
【总页数】3页(P835-837)
【作者】谭晓昀;刘晓为;纪勇
【作者单位】哈尔滨工业大学MEMS中心,哈尔滨,150001;哈尔滨工业大学MEMS中心,哈尔滨,150001;哈尔滨工业大学MEMS中心,哈尔滨,150001
【正文语种】中文
【中图分类】TN431.1
【相关文献】
1.基于改进延迟锁相环的高速低抖动时钟电路的开发与设计 [J], 沈学锋
2.基于FPGA的低抖动时钟锁相环设计方法 [J], 安书董;李明;王宛人;吴波;索晓杰
3.低抖动时钟锁相环的一种优化设计方法 [J], 尹海丰;毛志刚
4.低抖动时钟锁相环设计 [J], 尹海丰;毛志刚
5.用90nm CMOS数字工艺实现的低抖动时钟锁相环设计(英文) [J], 尹海丰;王峰;刘军;毛志刚
因版权原因,仅展示原文概要,查看原文内容请购买。
cuobjdump参数
cuobjdump参数cuobjdump是NVIDIA CUDA工具包中的一个命令行工具,用于分析和反汇编CUDA程序中的设备代码。
cuobjdump命令的参数有很多,下面我将从不同的角度介绍一些常用的参数。
1. 反汇编参数:cuobjdump可以用来反汇编CUDA程序生成的设备代码。
常用的反汇编参数包括:`-sass`,这个参数用来显示GPU的汇编代码。
`-cubin`,用来显示CUDA二进制代码。
`-elf`,用来显示可执行和可链接格式的文件。
`-ptx`,显示PTX(Parallel Thread Execution)代码。
2. 符号参数:cuobjdump还可以用来显示CUDA程序中的符号信息。
常用的符号参数包括:`-symbols`,显示CUDA程序中的符号信息,包括函数名、变量名等。
`-global`,显示全局变量的信息。
`-local`,显示局部变量的信息。
3. 优化参数:cuobjdump还可以用来显示CUDA程序中的优化信息。
常用的优化参数包括:`-res-usage`,显示资源使用情况,包括寄存器、共享内存等。
`-maxrregcount`,显示每个内核函数中使用的最大寄存器数量。
4. 链接参数:cuobjdump还可以用来显示CUDA程序中的链接信息。
常用的链接参数包括:`-link-info`,显示CUDA程序的链接信息,包括模块依赖关系等。
总之,cuobjdump是一个非常强大的工具,通过不同的参数组合,可以帮助开发人员深入分析CUDA程序生成的设备代码,从而优化程序性能和调试错误。
希望以上信息能够帮助你更好地理解cuobjdump的参数用法。
PhysRevB.81.153104
Optical evidence of strong coupling between valence-band holes and d-localized spinsin Zn1−x Mn x OV.I.Sokolov,1A.V.Druzhinin,1N.B.Gruzdev,1A.Dejneka,2O.Churpita,2Z.Hubicka,2L.Jastrabik,2and V.Trepakov2,3 1Institute of Metal Physics,UD RAS,S.Kovalevskaya Str.18,620041Yekaterinburg,Russia2Institute of Physics,AS CR,v.v.i.,Na Slovance2,18221Praha8,Czech Republic3Ioffe Institute,RAS,194021St-Petersburg,Russia͑Received3December2009;revised manuscript received2March2010;published30April2010͒We report on optical-absorption study of Zn1−x Mn x O͑x=0–0.06͒films on fused silica substrates takingspecial attention to the spectral range of the fundamental absorption edge͑3.1–4eV͒.Well-pronounced exci-tonic lines observed in the region3.40–3.45eV were found to shift to higher energies with increasing Mnconcentration.The optical band-gap energy increases with x too,reliably evidencing strong coupling betweenoxygen holes and localized spins of manganese ions.In the3.1–3.3eV region the optical-absorption curve inthe manganese-containedfilms was found to shift to lower energies with respect to that for undoped ZnO.Theadditional absorption observed in this range is interpreted as a result of splitting of a localized Zhang-Rice-typestate into the band gap.DOI:10.1103/PhysRevB.81.153104PACS number͑s͒:78.20.ϪeI.INTRODUCTIONDilute magnetic semiconductor Zn1−x Mn x O is one of themost promising materials for the development of optoelec-tronic and spin electronic devices with ferromagnetism re-tained at practical temperatures͑i.e.,Ͼ300K͒.However,researchers are confronted with many complex problems.Ferromagnetic ordering does not always appear and the na-ture of its instability is a subject of controversy.In addition,optical properties of Zn1−x Mn x O appreciably differ fromthose in Zn1−x Mn x Se and Zn1−x Mn x S related compounds,where the intracenter optical transitions of Mn2+ions areconventionally observed in the optical-absorption and photo-luminescence spectra.1,2In contrast,a very intense absorp-tion in the2.2–3.0eV region was reported in Zn1−x Mn x Owithout any manifestations of intracenter transitions,3–5and photoluminescence due to4T1→6A1optical transition of Mn2+is absent as well.Interpretation of this absorption bandas a charge transfer3,5is complicated by the fact that Mn2+forms neither d5/d4donor nor d5/d6acceptor levels in the forbidden gap of ZnO.6,7To resolve this contradiction,Dietl8put forward the con-cept that the oxides and nitrides belong to the little studiedfamily of dilute magnetic semiconductors with strong corre-lations.Characteristic features of such compounds are an in-crease in the band gap with the concentration of magneticions and emergence of a Zhang-Rice͑Z-R͒-type state in theforbidden gap9arising as a result of strong exchange cou-pling of3d-localized spin of the impurity centers andvalence-band holes.According to Ref.8,fulfillment ofstrong hybridization condition depends on the ratio of theimpurity-center potential U to a critical value U c;a coupledhybrid state can be formed when U/U cϾ1.Existence of such electronic state has been verified by ab initio theoretical treatment of electron correlations using the local spin-density approximation͑LSDA+U model͒and calculation of the ex-change coupling values.10In Zn1−x Mn x O the hole can origi-nate by electron transfer from the Mn2+adjacent oxygen to the conduction band.The resulting hole localizes as the Z-R state leading to appearance of additional broad,intense ab-sorption band.In this way the study of optical-absorptionspectra can be used as a probe to identify the Z-R states.It is known that the optical band-edge absorption spec-trum of Mn-doped ZnO is characterized by the onset of astrong rise of the absorption coefficient in theϳ3.1eV spec-tral region.11In Refs.11and12,this absorption inZn1−x Mn x Ofilms was treated as a product of direct interbandoptical transitions using conventional formula␣2ϳ͑ប−E g͒.The resulting magnitudes of band gap for composition with x=0.05have been estimated as E g=3.10eV͑Ref.11͒and3.25eV,12which is appreciably less than E g=3.37eV inZnO.13Such“redshift”of the band gap was considered inRef.12as a result of p-d exchange interaction,in analogy tothe shift of the excitonic lines in reflectivity and lumines-cence spectra observed in Ref.14for Zn1−x Mn x Se.At thesame time theory predicts an increase in E g͑x͒with x for Zn1−x Mn x O.8Also excitonic absorption spectrum in Zn1−x Mn x O nanopowders,15appeared to be located at ener-gies higher than that in ZnO nanopowders,that does not confirm the shift of E g to lower energies for Zn1−x Mn x O films.In this work we report on the optical-absorption spectrastudies in thin Zn1−x Mn x Ofilms deposited on fused silicaing suchfilms we succeed to detect the absorp-tion spectra of excitons and to determine reliably the widthof the optical gap E g.This allowed us to elucidate the natureof the additional absorption band appearing atបϽE g near the fundamental absorption edge as a result of splitting of one more Z-R-type state due to strong hybridization and ex-change coupling of3d-localized spin of the manganese and valence-band oxygen hole.II.EXPERIMENTALThin Zn1−x Mn x Ofilms with x=0–0.06,120–130,and 200–250nm of thicknesses were deposited on fused silica substrates by the atmospheric barrier-torch discharge tech-nique,as it was described in Refs.16and17.The substratePHYSICAL REVIEW B81,153104͑2010͒temperature during deposition was kept at ϳ200°C.Mn content was controlled by measurements of Mn and Zn emis-sion ͑em =4031Åand 4810Å,respectively ͒of plasma during deposition and crosschecked by the postgown EPMA ͑JEOL JXA-733device with Kevex Delta Class V mi-croanalyser ͒analysis with accuracy Ϯ0.3%.X-ray diffrac-tion ͑XRD ͒studies were performed with a Panalytical X’PertMRD Pro diffractometer with Eulerian cradle using Cu K ␣radiation ͑em =1.5405Å͒in the parallel beam ge-ometry.XRD profiles were fitted with the Pearson VII func-tion by the DIFPATAN code.18Correction for instrumental broadening was performed using NIST LaB6standard and V oigt function method.19Optical absorption within the 1.2–6.5eV spectral region was measured in unpolarized light at room temperature using a Shimadzu UV-2401PC spectrophotometer.The bare silica substrate and Zn 1−x Mn x O film on silica substrate were mounted into the reference and test channel,respectively.The optical density ␣d ͑product of optical-absorption coeffi-cient and film thickness ͒was calculated without taking into account multiple reflections as ␣d =ln ͑I 0/I ͒,where I 0and I are intensities of light passed through bare substrate and film/substrate structure.III.RESULTS AND DISCUSSIONFigure 1presents XRD pattern for ZnO and Zn 0.95Mn 0.05O films,as an example.All obtained films re-vealed crystalline block structure with dominant ͑002͒orien-tation of blocks’optical C -axes aligned normal to substrate.Observed reflexes correspond to wurtzite structure evi-dencing absence of extraneous phases.Both pure and Mn-doped ZnO films appeared to be compressively strained with 0.2%of strain,s =͑a 0−a S ͒/a 0,where a 0and a S are the lattice parameters of nonstrained and strained films.The analysis reveals that the value of compressive strain is controlled pre-dominantly by stresses,but not by presence of Mn ͑at least for Mn concentrations used ͒.Figure 2presents the optical-absorption spectra for Zn 1−x Mn x O films.A wide absorption line is seen in the re-gion of the band edge ͑Fig.2͒,whose energy appears to be shifted by about 100meV to higher energies in comparison with the excitonic line in ZnO ͓ϳ3.31eV at T =300K ͑Ref.13͔͒.The line shift is very likely connected with the com-pressive strain of Zn 1−x Mn x O films mentioned above.The wide and shifted line has been observed earlier in ZnO film on sapphire substrate 20,21and was identified as a shift of the excitonic line due to compressive strain of Zn 1−x Mn x O films.21The inset represents spectra of this line obtained in ZnO at T =300K and 77.3K.It is seen that the excitonic line is narrowed,split into two components and shifted to higher energies on lowering the temperature,clearly evidenc-ing its excitonic nature.The first line is a sum of A and B excitons,the second one is the C exciton appearing due to disorientation of blocks forming the film.16Analogous tem-perature evolutions have been reported for a wide excitonic line in ZnO nanocrystals.15As the concentration of Mn impurity increases,the exci-tonic line additionally broadens and shifts to higher energies.Figure 3shows the actual Mn concentration shift of the ex-citonic line energy បexc .It is seen that the increase in Mn concentration leads to not only changes in the excitonic spec-trum but also exhibits enhancement of the band-gap energy in Zn 1−x Mn x O films ͑band-gap magnitude can be estimated as E g =បexc +E exc ,where E exc =60meV is the excitonic binding energy 13͒.It is known that the band-gap magnitude in ZnO-MnO system varies from 3.37eV in ZnO up to 3.8eV in MnO.22According to the theoretical analysis 8per-formed taking into account inversion of ⌫7and ⌫9valence subbands in ZnO,23,24strong coupling of manganese spin and p states of valence band leads to appearance of a positiveI n t e n s i t y (c o u n t )2θ(degree)FIG.1.XRD pattern of ZnO ͑left scale ͒and Zn 0.95Mn 0.05O ͑right scale ͒films.E n e r g y (eV)αdFIG.2.Exciton absorption spectra of compressed Zn 1−x Mn x O films:1—x =0%,2—x =1.8%,and 3—x =5%;film thickness:d =͑120–130͒nm;and T =300K.Inset shows excitonic absorption lines for compressed ZnO:1—T =300K and 4—T =77.3K.01234563.403.413.423.433.44E n e r g y (e V )X (%)FIG.3.Mn-concentration dependence of the excitonic line en-ergies for Zn 1−x Mn x O films.additive in optical absorption of Zn 1−x Mn x O at small x val-ues.The sum of two contributions at sufficiently small x results in an increase in E g magnitude.The rise of the band-gap magnitude with the admixture of the second component E g ͑x ͒has been observed in Zn 1−x Co x O ͑Ref.25͒for exci-tonic lines registered in the reflection spectra at 1.6K.The shift of the excitonic line to higher energies was observed in Zn 0.99Fe 0.01O,too.20In the case of weak d -p coupling the additive into the band gap change appeared to be negative.8In this case the band-gap value E g decreases with x for x Յ0.1,as it was found for Zn 1−x Mn x Se ͑Fig.6in Ref.14͒and for Cd 1−x Mn x S.26Therefore,the observed rise of the E g ͑x ͒value with Mn addition provides the reliable experimental proof that the strong hybridization condition U /U c Ͼ1in Zn 1−x Mn x O is fulfilled.Figure 4presents optical absorption in Zn 1−x Mn x O films recorded in the spectral region 3.1–3.3eV .It is seen that the onset of optical absorption in Zn 1−x Mn x O films emerges at lower energies than that for ZnO ones.Analogous shift had been observed earlier in the spectrum of the photoluminescence excitation over deep im-purity centers in Zn 1−x Mn x O for Ref.15.Unlike authors of Refs.11and 12,we assume that addi-tional absorption of Zn 1−x Mn x O ͑in comparison with ZnO ͒in the 3.1–3.3eV range is a result of pushing the Z-R-type states out of valence band to the forbidden gap.9The essence of this state consists of localization of the valence-band hole within the first coordination sphere on the oxygen ions as a result of strong exchange interaction of manganese and hole spins.Such electronic state is similar to the Z-R-type state originally considered for La 2CuO 4oxidesuperconductor.9This state is a singlet one,because in La 2CuO 4the spins of d 9configuration of Cu 2+ion and oxy-gen holes are equal but of opposite direction.The situation is more complex in the case of Zn 1−x Mn x O since the top of valence band is formed by three close subbands:⌫7,⌫9,and ⌫7.23,24In such case we have serious reasons to assume that not only the presence of one deep Z-R-type state is respon-sible for optical absorption in the 2.2–3.0eV spectral region.We assume the presence of another,relatively shallow Z-R-type state too,which has been split off into the gap providing additional absorption in the 3.1–3.3eV region of Zn 1−x Mn x O.Tentatively,using results 11,12,15we estimate the splitting of the second Z-R level from the valence band as 0.12–0.27eV .More reliable determination of the split energy can be performed using more sensitive methods of absorp-tion spectra, e.g.,modulation methods,which are in progress.IV .CONCLUSIONThin Zn 1−x Mn x O films ͑x =0–0.06͒have been sintered and their optical-absorption spectra were investigated.The well-pronounced excitonic absorption lines in the fundamen-tal absorption spectral regions were observed.Position of excitonic absorption lines in Zn 1−x Mn x O films shifts to higher energies with increasing Mn content.This evidences an increase in the E g magnitude with x for small values x and reliably corroborates fulfillment of the strong coupling crite-rion ͑U /U c Ͼ1͒in Zn 1−x Mn x O.The last effect leads to emer-gence of an intense optical-absorption band in the 2.2–3.0eV region due to the presence of the band-gap Z-R-type state.The additional absorption observed in the range of 3.1–3.3eV is interpreted as a result of splitting of one more Z-R-type states into the band gap.ACKNOWLEDGMENTSAuthors thank T.Dietl,V .I.Anisimov,and A.V .Lukoy-anov for useful discussions and V .Valvoda for kind assis-tance in XRD experiments.This work was supported by Czech Grants No.A V0Z10100522of A V CR,No.KJB100100703of GA A V ,No.202/09/J017of GA CR,No.KAN301370701of A V CR,and No.1M06002of MSMT CR and Russian Grants No.08-02-99080r-ofiof RFBR,PP RAS “Quantum Physics of Condensed Matter”,and State Contract No.5162.nger and H.J.Richter,Phys.Rev.146,554͑1966͒.2T.Hoshina and H.Kawai,Jpn.J.Appl.Phys.19,267͑1980͒.3F.W.Kleinlein and R.Helbig,Z.Phys.266,201͑1974͒.4R.Beaulac,P.I.Archer,and D.R.Gamelin,J.Solid State Chem.181,1582͑2008͒.5T.Fukumura,Z.Jin,A.Ohtomo,H.Koinuma,and M.Kawasaki,Appl.Phys.Lett.75,3366͑1999͒.6K.A.Kikoin and V .N.Fleurov,Transition Metal Impurities in Semiconductors:Electronic Structure and Physical Properties ͑World Scientific,Singapore,1994͒,p.349.7T.Dietl,J.Magn.Magn.Mater.272-276,1969͑2004͒.8T.Dietl,Phys.Rev.B 77,085208͑2008͒.9F.C.Zhang and T.M.Rice,Phys.Rev.B 37,3759͑1988͒.10T.Chanier,F.Virot,and R.Hayn,Phys.Rev.B 79,205204͑2009͒.11V .Shinde,T.Gujar,C.Lokhande,R.Mane,and S.-H.Han,3.1253.2500.00.40.8αdEnergy (eV)12FIG.4.Spectral dependence of the optical density ␣d in the 3.1–3.3eV spectral region for Zn 1−x Mn x O,1—ZnO;2—x =0.3–0.5%;film thickness 200–250nm;and T =300K.Mater.Chem.Phys.96,326͑2006͒.12Y.Guo,X.Cao,n,C.Zhao,X.Hue,and Y.Song,J.Phys. Chem.C112,8832͑2008͒.13Zh.L.Wang,J.Phys.:Condens.Matter16,R829͑2004͒.14R.B.Bylsma,W.M.Becker,J.Kossut,U.Debska,and D. Yoder-Short,Phys.Rev.B33,8207͑1986͒.15V.I.Sokolov,A.Ye.Yermakov,M.A.Uimin,A.A.Mysik,V.A.Pustovarov,M.V.Chukichev,and N.B.Gruzdev,J.Lumin.129,1771͑2009͒.16M.Chichina,Z.Hubichka,O.Churpita,and M.Tichy,Plasma Processes Polym.2,501͑2005͒.17Z.Hubicka,M.Cada,M.Sicha,A.Churpita,P.Pokorny,L. Soukup,and L.Jastrabík,Plasma Sources Sci.Technol.11,195͑2002͒.18http://www.xray.cz/priv/kuzel/dofplatan/19R.Kuzel,Jr.,R.Cerny,V.Valvoda,and M.Blomberg,ThinSolid Films247,64͑1994͒.20Z.Jin,T.Fukumura,M.Kaasaki,K.Ando,H.Saito,T.Skiguchi, Y.Z.Yoo,M.Murakami,Y.Matsumoto,T.Hasegawa,and H. Koinuma,Appl.Phys.Lett.78,3824͑2001͒.21J.-M.Chauveau,J.Vives,J.Zuniga-Perez,ügt,M.Teis-seire,C.Deparis,C.Morhain,and B.Vinter,Appl.Phys.Lett.93,231911͑2008͒.d and V.E.Henrich,Phys.Rev.B38,10860͑1988͒. 23K.Shindo,A.Morita,and H.Kamimura,J.Phys.Soc.Jpn.20, 2054͑1965͒.24W.Y.Liang and A.D.Yoffe,Phys.Rev.Lett.20,59͑1968͒. 25W.Pacuski,D.Ferrand,J.Gibert,C.Deparis,J.A.Gaj,P.Ko-ssacki,and C.Morhain,Phys.Rev.B73,035214͑2006͒.26M.Ikeda,K.Itoh,and H.Sato,J.Phys.Soc.Jpn.25,455͑1968͒.。
IEC-61854架空线.隔离层的要求和检验
NORMEINTERNATIONALECEI IEC INTERNATIONALSTANDARD 61854Première éditionFirst edition1998-09Lignes aériennes –Exigences et essais applicables aux entretoisesOverhead lines –Requirements and tests for spacersCommission Electrotechnique InternationaleInternational Electrotechnical Commission Pour prix, voir catalogue en vigueurFor price, see current catalogue© IEC 1998 Droits de reproduction réservés Copyright - all rights reservedAucune partie de cette publication ne peut être reproduite niutilisée sous quelque forme que ce soit et par aucunprocédé, électronique ou mécanique, y compris la photo-copie et les microfilms, sans l'accord écrit de l'éditeur.No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical,including photocopying and microfilm, without permission in writing from the publisher.International Electrotechnical Commission 3, rue de Varembé Geneva, SwitzerlandTelefax: +41 22 919 0300e-mail: inmail@iec.ch IEC web site http: //www.iec.chCODE PRIX PRICE CODE X– 2 –61854 © CEI:1998SOMMAIREPages AVANT-PROPOS (6)Articles1Domaine d'application (8)2Références normatives (8)3Définitions (12)4Exigences générales (12)4.1Conception (12)4.2Matériaux (14)4.2.1Généralités (14)4.2.2Matériaux non métalliques (14)4.3Masse, dimensions et tolérances (14)4.4Protection contre la corrosion (14)4.5Aspect et finition de fabrication (14)4.6Marquage (14)4.7Consignes d'installation (14)5Assurance de la qualité (16)6Classification des essais (16)6.1Essais de type (16)6.1.1Généralités (16)6.1.2Application (16)6.2Essais sur échantillon (16)6.2.1Généralités (16)6.2.2Application (16)6.2.3Echantillonnage et critères de réception (18)6.3Essais individuels de série (18)6.3.1Généralités (18)6.3.2Application et critères de réception (18)6.4Tableau des essais à effectuer (18)7Méthodes d'essai (22)7.1Contrôle visuel (22)7.2Vérification des dimensions, des matériaux et de la masse (22)7.3Essai de protection contre la corrosion (22)7.3.1Composants revêtus par galvanisation à chaud (autres queles fils d'acier galvanisés toronnés) (22)7.3.2Produits en fer protégés contre la corrosion par des méthodes autresque la galvanisation à chaud (24)7.3.3Fils d'acier galvanisé toronnés (24)7.3.4Corrosion causée par des composants non métalliques (24)7.4Essais non destructifs (24)61854 © IEC:1998– 3 –CONTENTSPage FOREWORD (7)Clause1Scope (9)2Normative references (9)3Definitions (13)4General requirements (13)4.1Design (13)4.2Materials (15)4.2.1General (15)4.2.2Non-metallic materials (15)4.3Mass, dimensions and tolerances (15)4.4Protection against corrosion (15)4.5Manufacturing appearance and finish (15)4.6Marking (15)4.7Installation instructions (15)5Quality assurance (17)6Classification of tests (17)6.1Type tests (17)6.1.1General (17)6.1.2Application (17)6.2Sample tests (17)6.2.1General (17)6.2.2Application (17)6.2.3Sampling and acceptance criteria (19)6.3Routine tests (19)6.3.1General (19)6.3.2Application and acceptance criteria (19)6.4Table of tests to be applied (19)7Test methods (23)7.1Visual examination (23)7.2Verification of dimensions, materials and mass (23)7.3Corrosion protection test (23)7.3.1Hot dip galvanized components (other than stranded galvanizedsteel wires) (23)7.3.2Ferrous components protected from corrosion by methods other thanhot dip galvanizing (25)7.3.3Stranded galvanized steel wires (25)7.3.4Corrosion caused by non-metallic components (25)7.4Non-destructive tests (25)– 4 –61854 © CEI:1998 Articles Pages7.5Essais mécaniques (26)7.5.1Essais de glissement des pinces (26)7.5.1.1Essai de glissement longitudinal (26)7.5.1.2Essai de glissement en torsion (28)7.5.2Essai de boulon fusible (28)7.5.3Essai de serrage des boulons de pince (30)7.5.4Essais de courant de court-circuit simulé et essais de compressionet de traction (30)7.5.4.1Essai de courant de court-circuit simulé (30)7.5.4.2Essai de compression et de traction (32)7.5.5Caractérisation des propriétés élastiques et d'amortissement (32)7.5.6Essais de flexibilité (38)7.5.7Essais de fatigue (38)7.5.7.1Généralités (38)7.5.7.2Oscillation de sous-portée (40)7.5.7.3Vibrations éoliennes (40)7.6Essais de caractérisation des élastomères (42)7.6.1Généralités (42)7.6.2Essais (42)7.6.3Essai de résistance à l'ozone (46)7.7Essais électriques (46)7.7.1Essais d'effet couronne et de tension de perturbations radioélectriques..467.7.2Essai de résistance électrique (46)7.8Vérification du comportement vibratoire du système faisceau/entretoise (48)Annexe A (normative) Informations techniques minimales à convenirentre acheteur et fournisseur (64)Annexe B (informative) Forces de compression dans l'essai de courantde court-circuit simulé (66)Annexe C (informative) Caractérisation des propriétés élastiques et d'amortissementMéthode de détermination de la rigidité et de l'amortissement (70)Annexe D (informative) Contrôle du comportement vibratoire du systèmefaisceau/entretoise (74)Bibliographie (80)Figures (50)Tableau 1 – Essais sur les entretoises (20)Tableau 2 – Essais sur les élastomères (44)61854 © IEC:1998– 5 –Clause Page7.5Mechanical tests (27)7.5.1Clamp slip tests (27)7.5.1.1Longitudinal slip test (27)7.5.1.2Torsional slip test (29)7.5.2Breakaway bolt test (29)7.5.3Clamp bolt tightening test (31)7.5.4Simulated short-circuit current test and compression and tension tests (31)7.5.4.1Simulated short-circuit current test (31)7.5.4.2Compression and tension test (33)7.5.5Characterisation of the elastic and damping properties (33)7.5.6Flexibility tests (39)7.5.7Fatigue tests (39)7.5.7.1General (39)7.5.7.2Subspan oscillation (41)7.5.7.3Aeolian vibration (41)7.6Tests to characterise elastomers (43)7.6.1General (43)7.6.2Tests (43)7.6.3Ozone resistance test (47)7.7Electrical tests (47)7.7.1Corona and radio interference voltage (RIV) tests (47)7.7.2Electrical resistance test (47)7.8Verification of vibration behaviour of the bundle-spacer system (49)Annex A (normative) Minimum technical details to be agreed betweenpurchaser and supplier (65)Annex B (informative) Compressive forces in the simulated short-circuit current test (67)Annex C (informative) Characterisation of the elastic and damping propertiesStiffness-Damping Method (71)Annex D (informative) Verification of vibration behaviour of the bundle/spacer system (75)Bibliography (81)Figures (51)Table 1 – Tests on spacers (21)Table 2 – Tests on elastomers (45)– 6 –61854 © CEI:1998 COMMISSION ÉLECTROTECHNIQUE INTERNATIONALE––––––––––LIGNES AÉRIENNES –EXIGENCES ET ESSAIS APPLICABLES AUX ENTRETOISESAVANT-PROPOS1)La CEI (Commission Electrotechnique Internationale) est une organisation mondiale de normalisation composéede l'ensemble des comités électrotechniques nationaux (Comités nationaux de la CEI). La CEI a pour objet de favoriser la coopération internationale pour toutes les questions de normalisation dans les domaines de l'électricité et de l'électronique. A cet effet, la CEI, entre autres activités, publie des Normes internationales.Leur élaboration est confiée à des comités d'études, aux travaux desquels tout Comité national intéressé par le sujet traité peut participer. Les organisations internationales, gouvernementales et non gouvernementales, en liaison avec la CEI, participent également aux travaux. La CEI collabore étroitement avec l'Organisation Internationale de Normalisation (ISO), selon des conditions fixées par accord entre les deux organisations.2)Les décisions ou accords officiels de la CEI concernant les questions techniques représentent, dans la mesuredu possible un accord international sur les sujets étudiés, étant donné que les Comités nationaux intéressés sont représentés dans chaque comité d’études.3)Les documents produits se présentent sous la forme de recommandations internationales. Ils sont publiéscomme normes, rapports techniques ou guides et agréés comme tels par les Comités nationaux.4)Dans le but d'encourager l'unification internationale, les Comités nationaux de la CEI s'engagent à appliquer defaçon transparente, dans toute la mesure possible, les Normes internationales de la CEI dans leurs normes nationales et régionales. Toute divergence entre la norme de la CEI et la norme nationale ou régionale correspondante doit être indiquée en termes clairs dans cette dernière.5)La CEI n’a fixé aucune procédure concernant le marquage comme indication d’approbation et sa responsabilitén’est pas engagée quand un matériel est déclaré conforme à l’une de ses normes.6) L’attention est attirée sur le fait que certains des éléments de la présente Norme internationale peuvent fairel’objet de droits de propriété intellectuelle ou de droits analogues. La CEI ne saurait être tenue pour responsable de ne pas avoir identifié de tels droits de propriété et de ne pas avoir signalé leur existence.La Norme internationale CEI 61854 a été établie par le comité d'études 11 de la CEI: Lignes aériennes.Le texte de cette norme est issu des documents suivants:FDIS Rapport de vote11/141/FDIS11/143/RVDLe rapport de vote indiqué dans le tableau ci-dessus donne toute information sur le vote ayant abouti à l'approbation de cette norme.L’annexe A fait partie intégrante de cette norme.Les annexes B, C et D sont données uniquement à titre d’information.61854 © IEC:1998– 7 –INTERNATIONAL ELECTROTECHNICAL COMMISSION––––––––––OVERHEAD LINES –REQUIREMENTS AND TESTS FOR SPACERSFOREWORD1)The IEC (International Electrotechnical Commission) is a worldwide organization for standardization comprisingall national electrotechnical committees (IEC National Committees). The object of the IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, the IEC publishes International Standards. Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. The IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.2)The formal decisions or agreements of the IEC on technical matters express, as nearly as possible, aninternational consensus of opinion on the relevant subjects since each technical committee has representation from all interested National Committees.3)The documents produced have the form of recommendations for international use and are published in the formof standards, technical reports or guides and they are accepted by the National Committees in that sense.4)In order to promote international unification, IEC National Committees undertake to apply IEC InternationalStandards transparently to the maximum extent possible in their national and regional standards. Any divergence between the IEC Standard and the corresponding national or regional standard shall be clearly indicated in the latter.5)The IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for anyequipment declared to be in conformity with one of its standards.6) Attention is drawn to the possibility that some of the elements of this International Standard may be the subjectof patent rights. The IEC shall not be held responsible for identifying any or all such patent rights. International Standard IEC 61854 has been prepared by IEC technical committee 11: Overhead lines.The text of this standard is based on the following documents:FDIS Report on voting11/141/FDIS11/143/RVDFull information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.Annex A forms an integral part of this standard.Annexes B, C and D are for information only.– 8 –61854 © CEI:1998LIGNES AÉRIENNES –EXIGENCES ET ESSAIS APPLICABLES AUX ENTRETOISES1 Domaine d'applicationLa présente Norme internationale s'applique aux entretoises destinées aux faisceaux de conducteurs de lignes aériennes. Elle recouvre les entretoises rigides, les entretoises flexibles et les entretoises amortissantes.Elle ne s'applique pas aux espaceurs, aux écarteurs à anneaux et aux entretoises de mise à la terre.NOTE – La présente norme est applicable aux pratiques de conception de lignes et aux entretoises les plus couramment utilisées au moment de sa rédaction. Il peut exister d'autres entretoises auxquelles les essais spécifiques décrits dans la présente norme ne s'appliquent pas.Dans de nombreux cas, les procédures d'essai et les valeurs d'essai sont convenues entre l'acheteur et le fournisseur et sont énoncées dans le contrat d'approvisionnement. L'acheteur est le mieux à même d'évaluer les conditions de service prévues, qu'il convient d'utiliser comme base à la définition de la sévérité des essais.La liste des informations techniques minimales à convenir entre acheteur et fournisseur est fournie en annexe A.2 Références normativesLes documents normatifs suivants contiennent des dispositions qui, par suite de la référence qui y est faite, constituent des dispositions valables pour la présente Norme internationale. Au moment de la publication, les éditions indiquées étaient en vigueur. Tout document normatif est sujet à révision et les parties prenantes aux accords fondés sur la présente Norme internationale sont invitées à rechercher la possibilité d'appliquer les éditions les plus récentes des documents normatifs indiqués ci-après. Les membres de la CEI et de l'ISO possèdent le registre des Normes internationales en vigueur.CEI 60050(466):1990, Vocabulaire Electrotechnique International (VEI) – Chapitre 466: Lignes aériennesCEI 61284:1997, Lignes aériennes – Exigences et essais pour le matériel d'équipementCEI 60888:1987, Fils en acier zingué pour conducteurs câblésISO 34-1:1994, Caoutchouc vulcanisé ou thermoplastique – Détermination de la résistance au déchirement – Partie 1: Eprouvettes pantalon, angulaire et croissantISO 34-2:1996, Caoutchouc vulcanisé ou thermoplastique – Détermination de la résistance au déchirement – Partie 2: Petites éprouvettes (éprouvettes de Delft)ISO 37:1994, Caoutchouc vulcanisé ou thermoplastique – Détermination des caractéristiques de contrainte-déformation en traction61854 © IEC:1998– 9 –OVERHEAD LINES –REQUIREMENTS AND TESTS FOR SPACERS1 ScopeThis International Standard applies to spacers for conductor bundles of overhead lines. It covers rigid spacers, flexible spacers and spacer dampers.It does not apply to interphase spacers, hoop spacers and bonding spacers.NOTE – This standard is written to cover the line design practices and spacers most commonly used at the time of writing. There may be other spacers available for which the specific tests reported in this standard may not be applicable.In many cases, test procedures and test values are left to agreement between purchaser and supplier and are stated in the procurement contract. The purchaser is best able to evaluate the intended service conditions, which should be the basis for establishing the test severity.In annex A, the minimum technical details to be agreed between purchaser and supplier are listed.2 Normative referencesThe following normative documents contain provisions which, through reference in this text, constitute provisions of this International Standard. At the time of publication of this standard, the editions indicated were valid. All normative documents are subject to revision, and parties to agreements based on this International Standard are encouraged to investigate the possibility of applying the most recent editions of the normative documents indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.IEC 60050(466):1990, International Electrotechnical vocabulary (IEV) – Chapter 466: Overhead linesIEC 61284:1997, Overhead lines – Requirements and tests for fittingsIEC 60888:1987, Zinc-coated steel wires for stranded conductorsISO 34-1:1994, Rubber, vulcanized or thermoplastic – Determination of tear strength – Part 1: Trouser, angle and crescent test piecesISO 34-2:1996, Rubber, vulcanized or thermoplastic – Determination of tear strength – Part 2: Small (Delft) test piecesISO 37:1994, Rubber, vulcanized or thermoplastic – Determination of tensile stress-strain properties– 10 –61854 © CEI:1998 ISO 188:1982, Caoutchouc vulcanisé – Essais de résistance au vieillissement accéléré ou à la chaleurISO 812:1991, Caoutchouc vulcanisé – Détermination de la fragilité à basse températureISO 815:1991, Caoutchouc vulcanisé ou thermoplastique – Détermination de la déformation rémanente après compression aux températures ambiantes, élevées ou bassesISO 868:1985, Plastiques et ébonite – Détermination de la dureté par pénétration au moyen d'un duromètre (dureté Shore)ISO 1183:1987, Plastiques – Méthodes pour déterminer la masse volumique et la densitérelative des plastiques non alvéolairesISO 1431-1:1989, Caoutchouc vulcanisé ou thermoplastique – Résistance au craquelage par l'ozone – Partie 1: Essai sous allongement statiqueISO 1461,— Revêtements de galvanisation à chaud sur produits finis ferreux – Spécifications1) ISO 1817:1985, Caoutchouc vulcanisé – Détermination de l'action des liquidesISO 2781:1988, Caoutchouc vulcanisé – Détermination de la masse volumiqueISO 2859-1:1989, Règles d'échantillonnage pour les contrôles par attributs – Partie 1: Plans d'échantillonnage pour les contrôles lot par lot, indexés d'après le niveau de qualité acceptable (NQA)ISO 2859-2:1985, Règles d'échantillonnage pour les contrôles par attributs – Partie 2: Plans d'échantillonnage pour les contrôles de lots isolés, indexés d'après la qualité limite (QL)ISO 2921:1982, Caoutchouc vulcanisé – Détermination des caractéristiques à basse température – Méthode température-retrait (essai TR)ISO 3417:1991, Caoutchouc – Détermination des caractéristiques de vulcanisation à l'aide du rhéomètre à disque oscillantISO 3951:1989, Règles et tables d'échantillonnage pour les contrôles par mesures des pourcentages de non conformesISO 4649:1985, Caoutchouc – Détermination de la résistance à l'abrasion à l'aide d'un dispositif à tambour tournantISO 4662:1986, Caoutchouc – Détermination de la résilience de rebondissement des vulcanisats––––––––––1) A publierThis is a preview - click here to buy the full publication61854 © IEC:1998– 11 –ISO 188:1982, Rubber, vulcanized – Accelerated ageing or heat-resistance testsISO 812:1991, Rubber, vulcanized – Determination of low temperature brittlenessISO 815:1991, Rubber, vulcanized or thermoplastic – Determination of compression set at ambient, elevated or low temperaturesISO 868:1985, Plastics and ebonite – Determination of indentation hardness by means of a durometer (Shore hardness)ISO 1183:1987, Plastics – Methods for determining the density and relative density of non-cellular plasticsISO 1431-1:1989, Rubber, vulcanized or thermoplastic – Resistance to ozone cracking –Part 1: static strain testISO 1461, — Hot dip galvanized coatings on fabricated ferrous products – Specifications1)ISO 1817:1985, Rubber, vulcanized – Determination of the effect of liquidsISO 2781:1988, Rubber, vulcanized – Determination of densityISO 2859-1:1989, Sampling procedures for inspection by attributes – Part 1: Sampling plans indexed by acceptable quality level (AQL) for lot-by-lot inspectionISO 2859-2:1985, Sampling procedures for inspection by attributes – Part 2: Sampling plans indexed by limiting quality level (LQ) for isolated lot inspectionISO 2921:1982, Rubber, vulcanized – Determination of low temperature characteristics –Temperature-retraction procedure (TR test)ISO 3417:1991, Rubber – Measurement of vulcanization characteristics with the oscillating disc curemeterISO 3951:1989, Sampling procedures and charts for inspection by variables for percent nonconformingISO 4649:1985, Rubber – Determination of abrasion resistance using a rotating cylindrical drum deviceISO 4662:1986, Rubber – Determination of rebound resilience of vulcanizates–––––––––1) To be published.。
FTBS格式的数值耗散和频散附python代码
FTBS格式的数值耗散和频散附python代码FTBS格式(Forward-Time Backward-Space格式)是一种迎风格式,用于求解一维线性对流方程,其数值耗散和频散可以通过下列Python代码进行计算。
首先,我们需要定义一个函数来实现FTBS格式的离散化方程:``` pythondef ftbs(nx, nt, c):# 离散化网格和时间步长dx = 1.0 / (nx - 1)dt = c * dx# 初始化网格和初始条件x = np.linspace(0, 1, nx)u0 = np.sin(2 * np.pi * x)u = u0.copy()# 初始化耗散和频散误差dissip = 0.0disperr = 0.0# 循环求解for n in range(nt):un = u.copy()for i in range(1, nx):u[i] = un[i] - c * (un[i] - un[i - 1])# 计算误差dissip += np.sum((u0 - u) ** 2) * dxdisperr += np.abs(np.sum(np.exp(-2 * np.pi * 1j * n * dt) * (u - u0))) * dx# 返回耗散和频散误差return dissip, disperr```其中,nx和nt分别指定空间和时间步长的网格数目,c是Courant数。
这个函数返回耗散和频散误差。
以下是一些用例:``` pythonimport numpy as npimport matplotlib.pyplot as plt# 计算FTBS格式的数值耗散和频散dissip, disperr = ftbs(nx=100, nt=1000, c=0.2)print("数值耗散误差:", dissip)print("数值频散误差:", disperr)# 绘制初始条件和最终解x = np.linspace(0, 1, 100)u0 = np.sin(2 * np.pi * x)u_final = ftbs(nx=100, nt=1000, c=0.2)[0]plt.plot(x, u0, label="Initial")plt.plot(x, u_final, label="Final")plt.legend()plt.show()```在这个例子中,我们将空间和时间步长都设置为100,Courant 数设置为0.2。
STM32固件库使用手册【中文】
所有的驱动源代码都符合“Strict ANSI-C”标准(项目于范例文件符合扩充 ANSI-C 标准)。我们已经把驱动 源代码文档化,他们同时兼容 MISRA-C 2004 标准(根据需要,我们可以提供兼容矩阵)。由于整个固态 函数库按照“Strict ANSI-C”标准编写,它不受不同开发环境的影响。仅对话启动文件取决于开发环境。
1.3.1 变量 ................................................................................................................................................ 28 1.3.2 布尔型 ............................................................................................................................................ 28 1.3.3 标志位状态类型 ........................................................................................................................... 29 1.3.4 功能状态类型 ...............................................
基于分形小波变换的MEMS动态模糊图像亚像素检测技术
基于分形小波变换的MEMS动态模糊图像亚像素检测技术陈治;胡晓东;傅星;胡小唐【期刊名称】《纳米技术与精密工程》【年(卷),期】2009(007)003【摘要】基于机器微视觉的微机电系统(MEMS)动态测试系统,提出了一种分形小波变换亚像素检测技术提取MEMs运动轨迹算.法_该算法结合电耦合器件(CCD)成像机理,利用图像的分形参数进行随机分形插值对图像边缘进行重建,通过小波变换实现重建后图像亚像素精度的边缘检测.在连续光照明条件下,时MEMS平面微运动模糊图像进行检测处理,提取和分析了MEMS运动轨迹.将该方法和在频闪条件下测得的MEMS器件的平面微运动幅值的结果进行了比对分析和讨论.由实验结果可以看出,本方法有较高的测量精度,其测量绝对误差小于0.02像素.【总页数】5页(P211-215)【作者】陈治;胡晓东;傅星;胡小唐【作者单位】天津大学精密测试技术及仪器陶家重点实验室,天津300072;天津大学精密测试技术及仪器陶家重点实验室,天津300072;天津大学精密测试技术及仪器陶家重点实验室,天津300072;天津大学精密测试技术及仪器陶家重点实验室,天津300072【正文语种】中文【中图分类】TH133.21【相关文献】1.基于改进小波变换和Zernike矩的亚像素边缘检测算法 [J], 文涛;左东广;李站良;卫宾华2.基于亚像素综合定位匹配算法的MEMS平面运动测量 [J], 谢勇君;史铁林;白金鹏;来五星3.基于亚像素模糊检测的Wiener对运动模糊图像复原方法 [J], 顾国华;田宗浩;吴海兵;田欣4.基于小波变换的亚像素计算机视觉检测算法 [J], 申宗林;李智成;李彩红;梁皓嶙;李锋5.混合分形和小波变换亚像素图像边缘检测算法 [J], 罗元;计超;胡章芳因版权原因,仅展示原文概要,查看原文内容请购买。
基于Curvelet变换的自适应阈值图像去噪方法
基于Curvelet变换的自适应阈值图像去噪方法
王海珍;吴爱弟
【期刊名称】《天津理工大学学报》
【年(卷),期】2010(026)001
【摘要】与小波变换相比,Curvelet变换能更好地表达图像的边缘和细节,因此更适合做图像处理.提出了一种基于第二代Curvelet变换的自适应阈值图像去噪方法,采用不同的阈值自适应地对不同尺度和方向的Curvelet系数进行阈值处理.实验结果表明,提出的方法在去除噪声的同时,能更好地保留图像的细节.去噪后的图像有更高的峰值信噪比和更好的视觉效果.
【总页数】3页(P38-40)
【作者】王海珍;吴爱弟
【作者单位】天津工程师范学院,理学院,天津,300222;天津工程师范学院,理学院,天津,300222
【正文语种】中文
【中图分类】TP391
【相关文献】
1.基于改进阈值函数的自适应图像去噪方法 [J], 纪峰;李翠;常霞;吴仰玉
2.基于NSCT的超声图像自适应阈值去噪方法 [J], 李磊;曹旭辉;白培瑞;何寒芳
3.基于Contourlet变换的图像自适应阈值去噪方法 [J], 李辉;姜超
4.基于Curvelet变换的阈值补偿图像去噪方法研究 [J], 张繁;张发存
5.基于形态成分分析和 Contourlet 变换的自适应阈值图像去噪方法 [J], 纪建;许双星;李晓
因版权原因,仅展示原文概要,查看原文内容请购买。
基于Matlab软件GUI功能对气体分子麦克斯韦速率分布的比较分析
基于Matlab软件GUI功能对气体分子麦克斯韦速率分布的
比较分析
徐斌;陈浩
【期刊名称】《物理与工程》
【年(卷),期】2015(0)3
【摘要】本文介绍一种气体分子麦克斯韦速率分布教学的新方法,该方法可以使分布规律得以直观形象地展示,且能从多个角度动态地分析气体分子运动速率分布的特点.该方法主要利用Matlab软件中的图形用户界面(GUI),根据不同的问题研究角度自主设定参数,编辑相关的程序,描绘出速率分布曲线,并计算相关的特征速率,从图像和数值上进行比较分析.不同于用一般的作图软件所绘出的静态图像,借助GUI的模拟与交互,能够在课堂上基于不同的条件及研究角度动态地作出图像,实现课堂教学的高度交互性,有助于学生深刻理解麦克斯韦速率分布,提高课堂教学的效果.此外,该方法在其他分布函数的教学中也有广泛的意义.
【总页数】5页(P84-88)
【作者】徐斌;陈浩
【作者单位】华南师范大学物理与电信工程学院,广东广州 510006;华南师范大学物理与电信工程学院,广东广州 510006
【正文语种】中文
【相关文献】
1.基于Matlab软件GUI的数字水印方案 [J], 张甲;何冰
2.基于Matlab GUI的麦克斯韦速率分布律的数字化教学研究 [J], 汤剑锋;欧阳锡城
3.基于Matlab软件GUI的机械波模拟 [J], 王浩然;徐春芳;杨玲;胡琦珩;叶子;丁益民
4.基于MATLAB软件GUI技术的双曲肘合模机构优化程序设计 [J], 申军伟
5.基于Matlab GUI的麦克斯韦速率分布可视化研究 [J], 郝振莉; 吕良军
因版权原因,仅展示原文概要,查看原文内容请购买。
IBMPC/XT外逸电子计数接口电路的设计与实现
IBMPC/XT外逸电子计数接口电路的设计与实现
史仪凯;祁战理
【期刊名称】《微电子学与计算机》
【年(卷),期】1996(13)2
【摘要】外逸电子数目准确检测是智能型外逸电子传感器的关键所在。
本文介绍
一种IBMPC/XT外逸电子计数接口电路的原理和设计方法,并给出了在中断方式下进行数据处理的硬件和软件框图。
实验结果表明,电路设计合理、结构简单,不仅可用于外逸电子数的快速准确计数,而且可用于多路A/D转换、温度检测和实时控制等。
【总页数】4页(P35-38)
【关键词】外逸电子;接口电路;电子计数;微机
【作者】史仪凯;祁战理
【作者单位】西安西北工业大学
【正文语种】中文
【中图分类】TP334.7
【相关文献】
1.外加计数器接口电路的设计与实现 [J], 徐奇文;刘乐善
2.用IBMPC/XT和8098单片机实现多点温度遥测 [J], 刘莉明
3.IBMPC/XT键盘接口电路简易维修 [J], 周常庆
4.用于弧焊跟踪的IBMPC/XT接口及控制线路设计 [J], 李亮玉;殷树言
5.相片传真机IBMPC/XT的接口设计 [J], 宋振杰;张子范
因版权原因,仅展示原文概要,查看原文内容请购买。
2013PhysRevLett.107.137401Optically Controllable Photonic Structures with Zero Absorption
Optically Controllable Photonic Structures with Zero AbsorptionChris O’Brien*and Olga KocharovskayaDepartment of Physics and Astronomy and Institute for Quantum Studies,Texas A&M University,College Station,Texas77843-4242,USA(Received27May2011;revised manuscript received11August2011;published21September2011) We show the possibility to periodically modulate the refractive index in a homogeneous resonant atomic medium in space or/and time while simultaneously keeping vanishing absorption or gain.Such modulation is based on periodic resonant enhancement of the refractive index,controlled by an external opticalfield,and opens the way to produce coherently controllable photonic structures.We suggest the possible implementation of the proposed scheme in rare-earth doped crystals with excited state absorption.DOI:10.1103/PhysRevLett.107.137401PACS numbers:78.20.Ci,42.50.Gy,42.65.AnOne,two,or three-dimensional periodic heterostructures made of two dielectric materials with different refractive indices,such as distributed Bragg reflectors(DBRs),holey fibers,or photonic crystalsfind many applications,includ-ing reflective coatings,distributed feedback lasers,and optical cavities.Different technologies such as photoli-thography,etching,drilling,and self-assembling are used for construction of such structures.We suggest a method to produce transparent photonic structures in a homogeneous resonant atomic media,such as dielectrics with homogeneously distributed impurities, atomic,or molecular gases,simply by illuminating these materials with standing waves of a laserfield.Such opti-cally produced photonic structures could easily be con-trolled(including switching on or off,changing amplitude and period of modulation)and would be highly selective in frequency,naturally limited by the width of the optical resonance.Refractive index(RI)is strongly enhanced near atomic resonances.However,that enhancement is accompanied by enhancement of ly,when the maximal contribution from the atomic resonance to the RI is reached,the contribution to the absorption is on the same order which prevents the usage of obtained RI.There have been several proposals on how to resonantly enhance the refractive index while at the same time eliminating reso-nant absorption.One approach is based on interference effects in multilevel atomic systems driven by coherent resonantfields[1–5].Another suggestion is to compensate absorption with resonant gain from an inverted transition [6].Such a situation could be realized either in a mixture of two two-level atomic species,or in a single atomic species possessing simultaneously both noninverted and inverted transitions with slightly shifted frequencies[7].Proof of principle experiments were done in hot Rb vapors in which enhancement of the refractive indexÁn$10À4was achieved under negligible absorption[8,9].An enhance-ment up to the valueÁn$10À2is expected with an increase of density to N¼6Â1016cmÀ3.The further increase of the refractive index in room-temperature gases is not feasible due collisional broadening becoming the dominant contribution to the linewidth.Much higher reso-nant additions to the background index are anticipated in transition element doped crystals due to the essentially higher density of the ions which does not in general result in proportional line broadening[7,10,11].In all of these proposals the RI was uniform in space. Moreover,an enhancement of the RI with vanishing reso-nant absorption was achieved only at a particular detuning of the probefield from atomic resonance and was accom-panied by either absorption or gain at the neighboring detunings.Thus,none of those proposals were suitable for achieving spatial modulation of the refractive index with zero absorption.Our proposal is based on spatial modulation of the energy of a populated intermediate state in a nearly degenerate ladder configuration via the ac-Stark effect in a standing wavefield which results in a spatially dependent detuning leading to a periodic resonant increase and decrease of the refractive index in space while simul-taneously keeping transparency of the medium. Consider the interaction of a probefield with a medium of three level atoms in a ladder configuration such that the probefield interacts with both transitions as illustrated in the inset of Fig.1.The transition frequencies!21and!32 are close to each other so that the probefield with fre-quency!p interacts simultaneously with both transitions and for a weak probe Rabi frequency p( 21, 32the susceptibility is defined as the sum of the susceptibilities of two two-level transitions:¼3N38rad21ð 1À 2Þ21Ài 21þrad32ð 2À 3Þ32Ài 32:(1)Here N is the atomic density,the detunings are defined as 21¼!21À!p and 32¼!32À!p, is the probefield wavelength in the medium, rad ij is the radiative decay rate for the i to j transition, ij is the total decoherence rate,and i is the population in the i th energy level.We assume thatthe amplitudes of both transitions are matched but of opposite sign:rad 21ð 1À 2Þ¼À rad32ð 2À 3Þ;(2)which means that one of the two transitions is inverted.Letit be transition 2-1,i.e. 2À 1>0.We also assume the widths of the transitions are equal 21¼ 32and the probe field is tuned to two-photon resonance,i.e.!p ¼!31=2.Thus for arbitrary position of level 2the blue detuning of the probe field from one of two two-level transitions is equal to the red detuning from the other,i.e., 32¼À 21¼ ,leading to the remarkable property that gain at one transition and absorption at another one cancel each other while the real part of susceptibility is doubled.So,the susceptibility is purely real:¼3N 3 rad 21ð 1À 2Þ8 22 2þ 221:(3)It means that the probe field neither experiences absorptionnor gain independently of level 2’s energy,i.e.,for arbitrary values of .At the same time the resonant susceptibility varies from the minimum to the maximum value as is shifted from À to as shown in Fig.1.If the energy of the intermediate level is modulated in space along the direction of propagation of the probe field,the refractive index is also modulated.Such spatial modulation can be produced along the optical axis via the ac-Stark shift.A control laser field E s cos ð!s t Þapplied at the 0-2transition adjacent to the 1-2transition and far detuned from this transition Ás ¼!s À!20) 20would result in a split-ting of the intermediate state 2into two ac-Stark sublevels shifted in frequency by Àj s j 2=Ás and Ás þj s j 2=Ás ,respectively,where s is the associated Rabi frequency.The probe field is far out of resonance with the transitions from the second Stark sublevel from both level 1and level 3and,therefore its interaction with these transitions is neg-ligible while the first Stark sublevel is slightly shifted fromthe original level 2and strongly interacts with the probefield.In other words,the susceptibility at each transition (2-1or 2-3),which in general consists of two terms asso-ciated with the one-photon and two-photon resonances is reduced to the one-photon contribution and has the same form as given by Eq.(3),just with shifted transition frequencies.If the control field represents itself as a standing wave such that the Rabi frequency is a function of position inside the medium, s ðz Þ¼ s cos ðk s z Þ,then the ac-Stark shift of level 2is given by:ÁE ¼À@j s j 2s À@j s j 2scos ð2k s z Þ:(4)Thus it consists of a constant shift,j s j 2=2Ás ,and a sinu-soidal modulation,ðj s j 2=2Ás Þcos ð2k s z Þ.If the difference between the atomic transition frequencies !32À!21is chosen to be equal to Àj s j 2=Ás then the susceptibility is described by Eq.(3)with ¼ðj s j 2=2Ás Þcos ð4 z= s Þ(where s is the wavelength of the control field in the medium).Hence the refractive index will be modulated symmetrically with respect to its background value as shown in Fig.2.The spacial period s =2is defined by the wavelength,while the modulation depth Àj s j 2=Ás is defined by the Rabi frequency of the modulating field s .To provide the maximum amplitude of refractive index modulation the Rabi frequency of the control field should meet the condition 2s ¼2 Ás .With a strong enough index variation a transparent for a particular frequency 1-D photonic crystal can be created with properties that are optically controlled.Similarly a 2D or 3D photonic structure can be produced by application of 2or 3orthogonal modulating control fields.Even for index variations much smaller than the background RI the me-dium will behave as a distributed Bragg reflector if s ’ p specifically,when the wavelength mismatch is within the width of the Bragg band gap, s À p < s Án=ð n bg Þ.Since the medium remains transparent,many periods of spatial RI structures can be used as needed to achieve the required reflection coefficient.When the probe field is detuned from two-photon reso-nance with 1-3transition it will experience either gain or0.51.01.52.0zs1.00.50.51.0ReMaxFIG.2(color online).Real part of the susceptibility plotted as a function of position along the opticalaxis.21Re MaxFIG.1(color online).Real part of the susceptibility as a function of the level shift .Note that the imaginary part is identically zero.Inset:the energy level diagram for the corre-sponding three-level scheme.absorption.The question arises if such gain may result in the building up of a spontaneously amplified field empty-ing the inverted transition and limiting the propagation length of the probe field in the medium with periodic refractive index.Fortunately,this is not the case.Indeed,since the position of the intermediate level is periodically modulated in space,then a detuned probe field experiences periodically interchanging regions of gain and absorption suppressing the development of such an instability as can be seen in Fig.3.In fact averaging the absorption over a wavelength s shows that the medium is effectively trans-parent even when the probe field is detuned from resonance.The simple model of a ladder system previously dis-cussed assumed the existence of two transitions possessing equal linewidths,equal products of transition strength and population difference,and nearly degenerate (on the scale of the linewidth)frequencies.It is difficult if not impos-sible to meet these conditions in a real atomic system.However,it is possible to construct an effective ladder system whose upper transition has controllable parameters which could be optically tuned to satisfy these conditions.It can be accomplished by adding to the original simple ladder system along with the modulating control field E s coupled to an adjacent transition 0-2(as discussed above)a second control field E c coupling the excited state 3to an additional unpopulated level 4as shown in Fig.4.This second far-detuned control field (Ác ) rad 32, c where Ác ¼!43À!c and c is the control field Rabi fre-quency)is chosen to satisfy approximately the two-photon resonance condition:!c À!p ¼!42,forming together with the probe field a far-detuned lambda scheme.A strong far-detuned field results in an ac-Stark splitting of level 3and the response to the probe field consists of two terms representing one-photon (upper Stark sublevel)and two-photon (lower Stark sublevel)contributions in the same way as previously discussed.But now it is the two-photon contribution which plays a dominant role due to the two-photon resonance condition [7,12].As a result,the total five level system under the formu-lated above conditions is reduced to an effective three-level ladder system with the lower transition 1-2’’and the upper transition 2’’-3’.Its susceptibility takes the form:res¼3N 38 2rad 21p=ð2Àp Þ p þ 2s 2Ás þ Ài 21þ rad32=½ð2Àp Þð1þ2 Þ p À!32þ!21À 2s 2ÁsÀ þÁc ð1þ À 2ÞÀi ½ 42ð1À Þþ 32:(5)Where we assume incoherent pumping (not shown in Fig.4)which provides the necessary population inversion,represented by the pumping factor p ¼ð 2À 1Þ= 2.We also assume level 3is empty and introduce a control field parameter ¼j c j 2=Á2c ,as well as the one-photon detun-ing p ¼!21À!p .Now the parameters of the effective upper 2’’-3’and lower 1-2’’transitions defined by the control fields can easily be matched.We choose s ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi2 21Ás p to provide the maximum range of refractive index modulation.Matching the line-width of 3’-2’’transition to that of 2’’-1defines the control field parameter :¼21À 4232À 42:(6)It implies a larger linewidth of the upper 2’’-3’transition as compared to the lower transition 1-2’’, 32> 21,and relatively slow decay of the coherence at the 4-2’’0.51.01.52.0zs0.50.5ImMaxFIG.3(color online).Imaginary part of the susceptibility for a probe field detuned from resonance by 21=20(solid line)and 21(dashed line)plotted as a function of position along the optical axis.FIG.4(color online).Energy level diagram for the 5-level system coupled with two control fields s and c leading in ac-Stark splitting of levels 2and 3and resulting in an effective ladder system 1-2’’-3’in the dressed state basis.transition: 42< 32, 21.Matching the amplitudes de-fines the pump parameter as:p ¼ rad 32rad 211þ2 :(7)We take the probe field to be resonant with the dressedtransition 2’’-1such that p ¼À 2s =2Ás .Then matching the frequencies of the transitions defines the required de-tuning of the control field Ác :Ác ¼!32À!21þ2 211þ À :(8)This implies that Ác will be on the same order as !32À!21.Since j c j ¼ffiffiffi p Ác and Ác %!32À!21,it is important to have 1-2and 2-3transitions with close frequencies in order to reduce the required control field intensity.Under the above conditions the susceptibility given by Eq.(5)takes the same form as in Eq.(3).Thus,it becomes possible to realize resonant modulation of the refractive index with zero absorption or gain in the realistic system.As an example we consider Er 3þ:YAG (n bg ¼1:82)where the 4I 9=2to 4I 15=2( rad 21¼45Hz )transition at 813.2nm (transition 2-1in Fig.4)has a closely matched excited state absorption transition (transition 2-3in Fig.4)from 4I 9=2to 4G 9=2( rad 32¼15Hz )with !32À!21¼20GH z [13,14].Coherent driving of the transition be-tween the next Stark level of the ground state and 4I 9=2level (transition 2-0in Fig.4)can be used for modulation of level 2position,while coherent driving of 4I 15=2and 4G 9=2can be used for matching of the parameters of the upper and lower transitions in the effective ladder system.Taking N ¼1:4Â1021cm À3and low enough temperature to limit phonon broadening we assume 32¼0:8GHz , 21¼0:3GHz ,and 42¼0:2GHz .Choosing pump pa-rameter p ¼0:035and the following parameters of the driving fields: s ¼2:45GHz ,Ás ¼10GHz , c ¼7:449GHz ,and Ác ¼17:893GHz ,we obtain 3.3%re-fractive index modulation with respect to background value (Á 0¼0:22)with a periodically modulated practi-cally vanishing absorption (max j 00j <0:0033)as shown in Fig.5.This result follows from the numerical analysis of the 5level system driven with two coherent fields,and is well approximated by the analytical formula in Eq.(5).We note that the chosen wavelength mismatch, s À p ¼1:45nm ,is much smaller than the width of the Bragg band gap, Án=ð n bg Þ,which in our case is equal to 8nm.Already a relatively thin medium with L ¼100 m (which corresponds to 245periods of modulation)provides a quite high reflection coefficient,R ¼0:99998.As the probe field is detuned from atomic resonance there will be absorption or gain which alternates on the scale of thewavelength as shown in Fig.3,resulting in zero net ab-sorption or gain.The produced DBR has a very narrow bandwidth of 0.6GHz (defined by the linewidth of atomic resonance)and may be used as a frequency selective reflector.In conclusion,we proposed a method to produce peri-odic modulation of the refractive index while keeping zero net absorption or gain.The method is based on spatial modulation of the energy of the populated intermediate state in an effective three-level system with matched tran-sition properties by an external strong control field via the ac-Stark effect.Possible implementation of this technique in Er 3þ:YAG is suggested,where a 3%modulation of the refractive index with vanishing absorption is possible.The proposed method may find useful applications for the creation of optically controllable photonic structures such as distributed Bragg reflectors,holey fibers,photonic crystals,etc.A major advantage of these structures as compared to traditional photonic structures is that they can be easily manipulated (including switching on or off,changing the amplitude and period of modulation)by varying the parameters of the optical control fields.This research was supported by NSF Grant No.0855688.*cobrien.physics@[1]M.O.Scully,Phys.Rev.Lett.67,1855(1991).[2]U.Rathe,M.Fleischhauer,S.Y .Zhu,T.W.Hansch,andM.O.Scully,Phys.Rev.A 47,4994(1993).[3]M.D.Lukin,S.F.Yelin,A.S.Zibrov,and M.O.Scully,Laser Phys.9,759(1999).[4]J.P.Dowling and C.M.Bowden,Phys.Rev.Lett.70,1421(1993).[5]M.Fleischhauer,C.H.Keitel,M.O.Scully,C.Su,B.T.Ulrich,and S.Y .Zhu,Phys.Rev.A 46,1468(1992).[6] D.D.Yavuz,Phys.Rev.Lett.95,223601(2005).z nm0.100.050.050.102004006008001000FIG.5(color online).Real (dashed line)and imaginary (solid line)part of the susceptibility as a function of distance along the optical axis for implementation of a optically controlled distrib-uted Bragg grating in Er 3þ:YAG with the parameters listed in the Letter.[7] C.O’Brien and O.Kocharovskaya,J.Mod.Opt.56,1933(2009).[8] A.S.Zibrov,M.D.Lukin,L.Hollberg,D.E.Nikonov,M.O.Scully,H.G.Robinson,and V.L.Velichansky,Phys.Rev.Lett.76,3935(1996).[9]N.A.Proite,B.E.Unks,J.T.Green,and D.D.Yavuz,Phys.Rev.Lett.101,147401(2008).[10]M.E.Crenshaw,C.M.Bowden,and M.O.Scully,J.Mod.Opt.50,2551(2003).[11] A.K.Rebane,C.W.Thiel,R.K.Mohan,and R.L.Cone,Bull.Russ.Acad.Sci.Phys.74,891(2010).[12]P.Anisimov and O.Kocharovskaya,J.Mod.Opt.55,3159(2008).[13] D.K.Sardar,C.C.Russell,J.B.Gruber,and T.H.Allik,J.Appl.Phys.97,123501(2005).[14]J.B.Gruber,J.R.Quagliano,M.F.Reid,F.S.Richardson,M.E.Hills,M.D.Seltzer,S.B.Stevens,C.A.Morrison, and T.H.Allik,Phys.Rev.B48,15561(1993).。
1PPC控制器故障代码查询重要
Rexroth IndraControl VCP 20Industrial Hydraulics Electric Drivesand ControlsLinear Motion andAssembly Technologies PneumaticsServiceAutomationMobileHydraulicsRexroth VisualMotion 10 Multi-Axis Machine Control R911306327 Edition 01Troubleshooting GuideAbout this Documentation Rexroth VisualMotion 10 Troubleshooting Guide DOK-VISMOT-VM*-10VRS**-WA01-EN-PRexroth VisualMotion 10Multi-Axis Machine ControlTroubleshooting Guide DOK-VISMOT-VM*-10VRS**-WA01-EN-P Document Number, 120-2300-B323-01/ENPart of Box Set, 20-10V-EN (MN R911306370)This documentation describes …•the use of VisualMotion Toolkit for assitance in diagnostics •the proper steps for indentifing diagnostic faults • and the suggested remedies for clearing faults Description ReleaseDateNotes DOK-VISMOT-VM*-10VRS**-WA01-EN-P 08/2004Initial release© 2004 Bosch Rexroth AGCopying this document, giving it to others and the use or communicationof the contents thereof without express authority, are forbidden. Offendersare liable for the payment of damages. All rights are reserved in the eventof the grant of a patent or the registration of a utility model or design(DIN 34-1).The specified data is for product description purposes only and may notbe deemed to be guaranteed unless expressly confirmed in the contract.All rights are reserved with respect to the content of this documentationand the availability of the product.Bosch Rexroth AGBgm.-Dr.-Nebel-Str. 2 • D-97816 Lohr a. MainTel.: +49 (0)93 52/40-0 • Fax: +49 (0)93 52/40-48 85 • Telex: 68 94 21Bosch Rexroth Corporation • Electric Drives and Controls5150 Prairie Stone Parkway • Hoffman Estates, IL 60192 • USATel.: 847-645-3600 • Fax: 847-645-6201/Dept. ESG4 (DPJ)This document has been printed on chlorine-free bleached paper.Title Type of DocumentationDocument TypecodeInternal File Reference Purpose of Documentation Record of Revisions Copyright Validity Published byNoteRexroth VisualMotion 10 Troubleshooting Guide Table of Contents I Table of Contents1VisualMotion Tools for Diagnosing1-1 The Diagnostics Menu.............................................................................................................1-1System Diagnostics.................................................................................................................1-1Tasks Diagnostics...................................................................................................................1-3Drive Overview….....................................................................................................................1-42Monitoring and Diagnostics2-12.1System Diagnostics - Codes and Message...................................................................................2-1Parameters..............................................................................................................................2-2DriveTop..................................................................................................................................2-32.2Control Startup Messages.............................................................................................................2-4PPC Boot-Up Sequence..........................................................................................................2-4Control Firmware Sequence....................................................................................................2-42.3Status Messages (001-199)...........................................................................................................2-5001 Initializing System.............................................................................................................2-5002 Parameter Mode...............................................................................................................2-5003 Initializing Drives...............................................................................................................2-5004 System is Ready...............................................................................................................2-5005 Manual Mode....................................................................................................................2-5006 Automatic Mode: ABCD....................................................................................................2-5007 Program Running: ABCD.................................................................................................2-6008 Single-Stepping: ABCD....................................................................................................2-6009 Select Parameter Mode to Continue................................................................................2-6010 Breakpoint Reached: ABCD.............................................................................................2-6018 Please cycle power to continue........................................................................................2-6019 Executing User Initialization Task....................................................................................2-62.4Warning Messages (201-399).......................................................................................................2-7201 Invalid jog type or axis selected........................................................................................2-7202 Drive %d is not ready.......................................................................................................2-7203 Power Fail detected..........................................................................................................2-7204 Sercos ring was disconnected..........................................................................................2-8205 Parameter transfer warning in Task %c...........................................................................2-8207 Axis %d position limit reached..........................................................................................2-8208 Lost Fieldbus Connection.................................................................................................2-9209 Fieldbus Mapping Timeout...............................................................................................2-9210 File System Defrag: %d completed................................................................................2-10211 Program- & Data memory cleared..................................................................................2-10212 Option Card PLS Warning, see ext. diag.......................................................................2-10213 Sercos cycle time changed.............................................................................................2-11214 PCI Bus Cyclic Mapping Timeout...................................................................................2-11 DOK-VISMOT-VM*-10VRS**-WA01-EN-PII Table of Contents Rexroth VisualMotion 10 Troubleshooting Guide215 RECO I/O Failure, see ext. diag.....................................................................................2-11216 Control PLS %d warning, see ext. diag..........................................................................2-12217 PCI Bus Communication, see ext. diag..........................................................................2-12218 PCI Bus Register Mapping Timeout...............................................................................2-13219 PCI Bus Lifecounter Timeout.........................................................................................2-13220 Excessive deviation in PMG%d, see ext. diag...............................................................2-13221 Excessive Master Position Slip Deviation......................................................................2-13222 ELS Config. Warning, see ext. diag...............................................................................2-14223 PCI Bus reset occurred, cyclic data are invalid..............................................................2-14225 System booted................................................................................................................2-14226 RS485 Serial Communication Error (port X1%d)...........................................................2-15227 Control Over-temperature Warning................................................................................2-15228 Control - SYSTEM WARNING.......................................................................................2-152.5Shutdown Messages (400 - 599).................................................................................................2-16400 EMERGENCY STOP......................................................................................................2-16401 Sercos Controller Error: %02d........................................................................................2-16402 Sercos Config. Error: see ext. diag................................................................................2-16403 System Error see ext. diag.............................................................................................2-17405 Phase %d: Drive did not respond...................................................................................2-17407 Drive %d Phase 3 Switch Error......................................................................................2-17409 Sercos Disconnect Error.................................................................................................2-18411 Drive %d Phase 4 Switch Error......................................................................................2-18412 No drives were found on ring..........................................................................................2-18414 Parameters were lost......................................................................................................2-19415 Drive %d was not found..................................................................................................2-19416 Invalid Instruction at %04x..............................................................................................2-19417 SYSTEM ERROR: pSOS #%04x...................................................................................2-19418 No program is active.......................................................................................................2-20419 Invalid Program File: code = %d....................................................................................2-20420 Drive %d Shutdown Error...............................................................................................2-20421 User Program Stack Overflow........................................................................................2-20422 Parameter transfer error in Task %c..............................................................................2-21423 Unimplemented Instruction.............................................................................................2-21425 Instruction error: see Task %c diag................................................................................2-21426 Drive %d is not ready.....................................................................................................2-22427 Calc: invalid table index %d............................................................................................2-22428 Calc: division by zero......................................................................................................2-22429 Calc: too many operands................................................................................................2-22430 Calc: invalid operator......................................................................................................2-23431 Calc error: see Task %c diag.........................................................................................2-23432 Calc: too many nested expressions...............................................................................2-23433 Setup instruction outside of a task.................................................................................2-23434 Axis %d configured more than once...............................................................................2-23435 Axis %d is not assigned to a task...................................................................................2-24436 General Compiler Error: %04x.......................................................................................2-24438 Invalid Axis Selected: %d...............................................................................................2-24DOK-VISMOT-VM*-10VRS**-WA01-EN-PRexroth VisualMotion 10 Troubleshooting Guide Table of Contents III439 Axis %d: Invalid Motion Type.........................................................................................2-24440 I/O Transfer Error: see task diag....................................................................................2-25450 Event %d: invalid event type..........................................................................................2-25451 Invalid event number ‘%d’..............................................................................................2-25452 More than %d event timers armed.................................................................................2-25453 Homing param. transfer error: %d..................................................................................2-25454 Axis %d homing not complete........................................................................................2-26459 Axis %d target position out of bounds............................................................................2-26460 Invalid program %d from binary inputs...........................................................................2-26463 Ratio command: invalid ratio..........................................................................................2-26464 Can't activate while program running.............................................................................2-27465 Drive %d config. error, see ext. diag..............................................................................2-27467 Invalid ELS Master Option..............................................................................................2-27468 ELS adjustment out of bounds.......................................................................................2-27470 Axis %d velocity > maximum..........................................................................................2-28474 Drive %d cyclic data size too large.................................................................................2-28477 Axis D: probe edge not configured.................................................................................2-28478 Calc: operand out of range.............................................................................................2-28483 Parameter Init. Error: see Task %c diag........................................................................2-29484 Control SYSTEM ERROR..............................................................................................2-29486 Sercos Device %d is not a drive.....................................................................................2-29487 CAM %d is invalid or not stored.....................................................................................2-29488 CAM Error: See Task %c diag........................................................................................2-30489 More than %d CAM axes selected.................................................................................2-30490 System Memory Allocation Error....................................................................................2-30492 Programs were lost, see ext. diag..................................................................................2-30496 Can't execute this instruction from an event..................................................................2-31497 Limit switch config. error, see ext. diag.........................................................................2-31498 Drive %d Shutdown Warning..........................................................................................2-32499 Axis number %d not supported in this version...............................................................2-32500 Axis %d is not referenced...............................................................................................2-32501 Drive %d comm. error, see ext. diag..............................................................................2-33502 ELS and cams not supported in this version..................................................................2-33504 Communication Timeout.................................................................................................2-33505 Axis %d is not configured...............................................................................................2-33508 User Watchdog Timeout.................................................................................................2-33509 Control System Timing Error (%d).................................................................................2-34515 PLC Communications Error............................................................................................2-34516 More than %d registration functions enabled.................................................................2-34519 Lost Fieldbus/PLC Connection.......................................................................................2-35520 Fieldbus Mapping Timeout.............................................................................................2-35521 Invalid Virtual Master ID: %d..........................................................................................2-36522 Invalid ELS Master ID: %d..............................................................................................2-36523 IFS status, facility = 0x%x..............................................................................................2-36524 Hardware Watchdog timeout..........................................................................................2-36525 I/O Configuration error, see ext. diag.............................................................................2-36 DOK-VISMOT-VM*-10VRS**-WA01-EN-PIV Table of Contents Rexroth VisualMotion 10 Troubleshooting Guide526 Sercos Multiplex Channel Config, see ext. diag.............................................................2-37527 Control Initialization Error, see ext. diag.........................................................................2-38528 System Event %d Occurred...........................................................................................2-38529 Invalid ELS Group ID: %d...............................................................................................2-38530 CAM %d is active, can't overwrite..................................................................................2-39531 Invalid variable for Fieldbus/PCI Bus Mapping...............................................................2-39532 Power fail brown out condition detected.........................................................................2-39533 Multiple instances of index CAM: %d found...................................................................2-39534 Hardware Version Not Supported..................................................................................2-40539 Invalid Parameter Number..............................................................................................2-40540 Option Card PLS error....................................................................................................2-40541 Link Ring Error, see ext. diag.........................................................................................2-41542 PLC Cyclic Mapping Timeout.........................................................................................2-42543 PCI Bus Runtime Error...................................................................................................2-42544 RECO I/O Failure, see ext. diag.....................................................................................2-42545 Invalid Coordinated Articulation Function ID: %d...........................................................2-43546 Multiple Instance of Coordinated Articulation Function with ID: %d...............................2-43547 Task %c Coordinated Articulation Error, see ext. diag...................................................2-43548 Invalid Kinematic Number: %d.......................................................................................2-43549 Fieldbus Initialization Error.............................................................................................2-43550 User Initialization Task Timeout.....................................................................................2-44551 Master Slip Config. Error, see ext. diag..........................................................................2-44552 Excessive Master Position Slip Deviation......................................................................2-44553 Invalid Parameter Detected, see C-0-2002....................................................................2-44554 Excessive Deviation in PMG%d, see ext. diag...............................................................2-45555 PCI Bus Register Mapping Timeout...............................................................................2-45556 PCI Bus Lifecounter Timeout.........................................................................................2-45557 PMG%d Maximum allowed deviation window is Zero....................................................2-45558 PMG%d Only 1 axis parameterized...............................................................................2-46559 PMG%d Number of offsets does not match number of Axis..........................................2-46560 PMG%d Max. allowed dev. window is larger than 25% of Modulo................................2-46561 PMG%d Offset is larger than Modulo.............................................................................2-46562 PMG%d Parameterized Axis is not in system................................................................2-46563 Invalid Task Specified, Must be A-D..............................................................................2-46564 PMG%d Invalid configuration, see ext. diag...................................................................2-46565 Axis %d: Configuration error, see ext. diag....................................................................2-47566 Filter sample rate and cutoff frequency mismatch.........................................................2-47567 ELS Config. Error, see ext. diag.....................................................................................2-47568 Axis %d: Assigned Task is Not Defined.........................................................................2-48570 ELS Max. Vel. Exceeded, see ext. diag.........................................................................2-48571 No Program Found.........................................................................................................2-49572 PCI Bus reset occurred, cyclic data is invalid.................................................................2-49573 CAM %d is being built....................................................................................................2-49575 ELS Master for ELS Group %d is invalid........................................................................2-49576 Event for input I%d is already armed, cannot arm again...............................................2-50577 Restored non volatile memory from compact flash........................................................2-50DOK-VISMOT-VM*-10VRS**-WA01-EN-PRexroth VisualMotion 10 Troubleshooting Guide Table of Contents V578 Virtual Master %d Exceeded Its Max. Vel., see ext. diag...............................................2-50579 Group %d Exceeded Its Jog Velocity, see ext. diag......................................................2-51580 pROBE Error Occurred in Task:0x%04X.......................................................................2-51581 Probe Function for Axis # is locked by the PLC.............................................................2-51582 Integrated PLC: PLC Stopped in Operation Mode.........................................................2-51583 Integrated PLC: Internal System Error...........................................................................2-51584 ELS System Master %d is invalid, see ext. diag............................................................2-51585 Drive %d separate deceleration not supported..............................................................2-52586 Master Encoder Card Error, see ext diag.......................................................................2-522.6Integrated PLC Status Messages................................................................................................2-536001 Integrated PLC: Running..............................................................................................2-536002 Integrated PLC: Stopped..............................................................................................2-536002 Integrated PLC: Stopped at Breakpoint........................................................................2-532.7Integrated PLC Error Codes........................................................................................................2-530016 Integrated PLC: Software Watchdog Error...................................................................2-530019 Integrated PLC: Program Checksum Error..................................................................2-530020 Integrated PLC: Fieldbus Master Error.........................................................................2-540021 Integrated PLC: I/O Update Error.................................................................................2-542000 Integrated PLC: Internal SIS System Error..................................................................2-542001 Integrated PLC: Internal Acyclic Access Error.............................................................2-542002 Integrated PLC: Internal Acyclic Memory Error............................................................2-542003 Integrated PLC: PLC Configuration Error.....................................................................2-552004 Integrated PLC: File Access Error................................................................................2-552005 Integrated PLC: Internal Fatal Task Error....................................................................2-556011 Integrated PLC: PLC Program Stopped in Operation Mode........................................2-556012 Integrated PLC: General Error.....................................................................................2-552.8Communication Error Codes and Messages...............................................................................2-56!01 Sercos Error Code # xxxx...............................................................................................2-56!02 Invalid Parameter Number..............................................................................................2-57!03 Data is Read Only...........................................................................................................2-57!04 Write Protected in this mode/phase...............................................................................2-57!05 Greater than maximum value.........................................................................................2-57!06 Less than minimum value...............................................................................................2-57!07 Data is Invalid.................................................................................................................2-57!08 Drive was not found........................................................................................................2-57!09 Drive not ready for communication.................................................................................2-57!10 Drive is not responding...................................................................................................2-57!11 Service channel is not open...........................................................................................2-57!12 Invalid Command Class..................................................................................................2-57!13 Checksum Error: xx (xx= checksum that control calculated).........................................2-58!14 Invalid Command Subclass............................................................................................2-58!15 Invalid Parameter Set.....................................................................................................2-58!16 List already in progress..................................................................................................2-58!17 Invalid Sequence Number..............................................................................................2-58!18 List has not started.........................................................................................................2-58!19 List is finished.................................................................................................................2-58 DOK-VISMOT-VM*-10VRS**-WA01-EN-P。
PhysRevB.87195201
PHYSICAL REVIEW B87,195201(2013)Mn-doped monolayer MoS2:An atomically thin dilute magnetic semiconductorAshwin Ramasubramaniam*Department of Mechanical and Industrial Engineering,University of Massachusetts Amherst,Amherst,Massachusetts01003,USADoron Naveh†Faculty of Engineering,Bar-Ilan University,Ramat-Gan52900,Israel(Received21March2013;revised manuscript received30April2013;published13May2013) We investigate the electronic and magnetic properties of Mn-doped monolayer MoS2using a combinationoffirst-principles density functional theory(DFT)calculations and Monte Carlo simulations.Mn dopantsthat are substitutionally inserted at Mo sites are shown to couple ferromagnetically via a double-exchangemechanism.This interaction is relatively short ranged,making percolation a key factor in controlling long-rangemagnetic order.The DFT results are parameterized using an empirical model to facilitate Monte Carlo studies ofconcentration-and temperature-dependent ordering in these systems,through which we obtain Curie temperaturesin excess of room temperature for Mn doping in the range of10–15%.Our studies demonstrate the potential forengineering a new class of atomically thin dilute magnetic semiconductors based on Mn-doped MoS2monolayers.DOI:10.1103/PhysRevB.87.195201PACS number(s):73.22.−f,75.50.PpI.INTRODUCTIONDilute magnetic semiconductors(DMSs)have been the focus of extensive research over the last decade,driven by the prospect of realizing a new generation of electronic devices—so-called spintronic devices—that can exploit both the charge and spin of carriers.1–4To this end,a significant amount of theoretical and experimental effort has been devoted to understanding the role of magnetic impurities such as Mn and Co in technologically important III-V and II-VI semiconductors,as discussed in several reviews.1–5Among several challenges that persist in the development of spintronic devices,perhaps the most significant hurdle remains the control of the ordering temperature,which should ideally be well above room temperature to enable practical applications. The search for such room-temperature DMSs remains an active quest spanning a wide class of materials(e.g.,III-Vs,II-VIs, oxides,half-Heusler alloys).4The purpose of this paper is to extend the search for room-temperature DMSs to a relatively unexplored class of materials,the layered transition-metal dichalcogenides (TMDs).These materials have been the focus of much recent attention as they can be readily exfoliated to yield atomically thin layers for nanoelectronics,much like graphene. Notably,unlike graphene,several of these layered TMDs are semiconducting,6–8which makes them serious candidates for digital electronics.Recent demonstrations of MoS2de-vices such asfield-effect transistors,9,10logic circuits,11and phototransistors12are already promising.With respect to mag-netic properties,there have been recent experimental reports of magnetism in MoS2nanosheets,attributed to the presence of magnetic edge states;13irradiated MoS2,attributed to a combination of point defects and edge states;14and in MoS2 single crystals,attributed to zigzag edges at grain boundaries.15 Theoretical calculations also provide evidence for magnetic ordering at edges of nanoribbons16,17and nanoflakes,18as well as defect and dopant-induced magnetism.19We are unaware of any systematic studies of magnetism in layered TMDs via substitutional doping of magnetic transition-metal atoms, which is the focus of this work.In the following,we explore the effect of substitutional Mn doping in MoS2monolayers—in analogy with the commonly-used strategy in III-V and II-VI DMSs—and examine the potential for development of MoS2-based DMSs.To this end,we employfirst-principles density functional theory (DFT)calculations tofirst understand the electronic origins of ferromagnetic interactions between substitutional Mn dopant atoms and,thereafter,to parametrize a Monte Carlo(MC) model,which we employ for temperature-dependent studies of magnetic ordering in Mn-doped MoS2monolayers.We demonstrate that exchange interactions in Mn/MoS2DMSs are primarily governed by the double-exchange mechanism and are relatively short ranged,making percolation a key factor in magnetic ordering.Based on our DFT-parameterized MC simulations,we suggest that dopant concentrations in the range of10–15%might be sufficient to provide room-temperature ferromagnetism in Mn/MoS2DMSs,paving the way for experimental verification and application in spintronic devices.II.RESULTS AND DISCUSSIONA.Electronic structure calculationsFirst-principles calculations were performed using the Vienna ab initio package(V ASP)20at two different levels of theory:standard Kohn-Sham DFT with the Perdew-Burke-Ernzerhof(PBE)exchange-correlation(XC)functional21and hybrid DFT using the Heyd-Scuseria-Ernzerhof(HSE)ex-change correlation functional.22A detailed description of the DFT calculations is provided in the Appendix.Semilocal XC functionals,such as PBE,are known to suffer from self-interaction errors,which lead to excessive delocalization of the electronic wave functions.Such artifacts become particularly apparent when treating the d electrons of Mn and Mo as the occupied d states appear at excessively high energies, altering both the precise mechanism as well as the range of exchange interactions.Various strategies have been adopted in the literature to mitigate these self-interaction errors in DMSs; we refer the reader to the review in Ref.4and the referencesASHWIN RAMASUBRAMANIAM AND DORON NA VEH PHYSICAL REVIEW B87,195201(2013)therein.Here,we have chosen to employ the HSE functional,which reduces the self-interaction error by incorporating afraction of exact exchange,leading to a better descriptionof the electronic wave functions.23For monolayer MoS2,in particular,the fundamental gap from HSE calculationsappears to approximate the optical gap of the material.7,24In the following,we will compare and contrast the electronicstructure of Mn dopants in monolayer MoS2using both thePBE and HSE functionals,and,furthermore,examine theinfluence of the electronic structure on the exchange couplingand Curie temperature of the resulting DMSs.Before examining interactions between multiple Mn dopantatoms,we considerfirst the electronic structure of a singlesubstitutional Mn atom in monolayer MoS2.Figures1(a)and1(b)display the spin density(ρ↑−ρ↓)for a single substitutional Mn atom in a4×4supercell of monolayerMoS2.The overall magnetic moment of the supercell is1μBcorresponding to the single excess d electron provided by theMn atom.From the bond lengths listed in Fig.1(b),it is clearthat there is a loss of D3h(trigonal prism)symmetry at theMn dopant site.25A significant portion of the spin density islocalized on the Mn atom.The neighboring S atoms(labeledS1and S2)are antiferromagnetically coupled to the Mn dopant;the p character of the spin-polarized orbitals of the S atoms isclearly visible.Out of the six Mo atoms that were originally thenearest neighbors of the dopant site,only the four closest Moatoms(labeled Mo2and Mo3)couple antiferromagneticallyto the Mn atom while the two most distant ones(labeled Mo1)couple ferromagnetically to the Mn atom.We attribute this difference in magnetic coupling to the loss of trigonal symmetry at the Mn dopant site upon atomic relaxation.While the general features noted thus far are similar in both the PBE and HSE cases,there are distinct differences,the most obvious being the extent of spin polarization in the vicinity of the Mn dopant.Specifically,by projecting the spin density onto atomic orbitals and integrating over the PAW sphere,we obtain a local magnetic moment of1.04μB and2.77μB on the Mn atom at the PBE and HSE levels,respectively.This suggests that the Mn(IV)atom adopts a low-spin d3configuration at the PBE level,while the HSE functional prefers a high-spin d3configuration,which explains the greater extent of spin polarization in the immediate vicinity of the Mn atom in the latter case.Additional insight into the electronic structure of the Mn-doped MoS2monolayer can be obtained from the electronic density of states(DOS)displayed in Figs.2(a)and2(b). Within ligand-field theory,the trigonal prismatic coordination of the Mo atom lifts the degeneracy of the Mo4d levels. The lowest-energy band is of Mo4d z2character and is fully occupied;next in energy are degenerate,unoccupied Mo4d xy and Mo4d x2−y2bands,followed by the degenerate Mo4d zx and Mo4d yz bands of highest energy.6,26Experiments and first-principles calculations,suggest a more nuanced picture wherein hybridization occurs between the Mo4d z2,d xy, d x2−y2,and S3p orbitals;these hybridized states dominate the conduction and valence band edges of MoS2.6,27–32TheFIG.1.(Color online)(a),(b)Spin density(ρ↑−ρ↓)for a single Mn dopant atom in a4×4monolayer MoS2supercell(6.25%Mn doping)and(c),(d)for twofirst-nearest-neighbor Mn dopants in the same supercell(12.5%Mn doping;ferromagnetic ground state).Yellow and cyan isosurfaces represent positive and negative spin densities(±0.054e/˚A3),respectively.At6.25%doping,the dopant Mn atom has a local magnetic moment of1.04μB and2.77μB at the PBE and HSE levels,respectively.At12.5%doping,the average local moments of the Mn atoms are1.32μB and2.86μB at the PBE and HSE levels,respectively.The S atoms that are bonded to the Mn atom,as well as several of the Mo atoms in the immediate vicinity of the Mn atom,display antiferromagnetic coupling to the dopant.Mn-DOPED MONOLAYER MoS2:AN ATOMICALLY...PHYSICAL REVIEW B87,195201(2013)FIG.2.(Color online)Density of states(DOS)for(a),(b)6.25%Mn-doped and(c),(d)12.5%Mn-doped monolayer MoS2calculated using PBE and HSE functionals.The Fermi level of the doped monolayer is set as the zero of the energy scale.The semicore4p states of the undoped and doped monolayers(∼35eV below the Fermi level)are aligned to clearly show the emergence of gap states in the doped monolayer.At the HSE level the monolayer remains semiconducting in both spin channels for both dopant concentrations.At the PBE level, the monolayer becomes half-metallic at12.5%Mn doping.fundamental band gap of the monolayer is 1.6eV with the PBE and 2.05eV with the HSE functional.7Upon substituting an Mo(IV)d2atom by an Mn(IV)d3atom,the degeneracy of the spin channels is broken and defect levels are formed within the MoS2band gap(Fig.2).An analysis of the atom-projected DOS,displayed in the Supplementary Material,33reveals that the primary contributions to these gap states arise from the4d z2,4d xy,and4d x2−y2states of the Mn atom and its neighboring spin-polarized Mo atoms, as well as the3p states of the spin-polarized S atoms. The PBE DOS shows a negligible gap in the majority spin channel while the minority spin channel continues to display an appreciable gap,indicating that the doped monolayer is essentially half-metallic,while the DOS obtained by HSE features a clear gap in both spin channels—the majority-spin gap being smaller—suggesting that the doped monolayer is a magnetic semiconductor.We consider next the interaction of two Mn dopant atoms in monolayer MoS2(4×4supercell;12.5%doping).For brevity,we only discuss the case of Mn dopants infirst-nearest-neighbor substitutional sites;the picture is qualita-tively the same for second-and third-nearest-neighbor cases. Figures1(c)and1(d)display the spin densities at the PBE and HSE levels.By projecting the spin density onto PAW spheres,we obtain average local moments of1.32μB and 2.86μB on the Mn atoms at the PBE and HSE levels, respectively,indicating that the Mn dopants once again adopt low-spin d3and high-spin d3configurations depending upon the level of theory employed.The corresponding density of states are displayed in Figs.2(c)and2(d);atom-projected DOS are displayed in the Supplementary Material.33Upon comparing the PBE results for6.25%and12.5%Mn doping, we observe that the doped monolayer is unambiguously half-metallic in the latter case.The three peaks straddlingASHWIN RAMASUBRAMANIAM AND DORON NA VEH PHYSICAL REVIEW B87,195201(2013) the Fermi level in the6.25%Mn case merge into a singlebroad peak in the12.5%Mn case.This places the Fermilevel within the partially occupied majority band of theimpurities occupying only the bonding states while leaving theantibonding minority states unoccupied,which is suggestiveof an operative double-exchange mechanism.4In the HSEcalculations,both spin channels remain semiconducting andthe Fermi level remains within the band gap.The impurity dstates are still contained within the gap of the host material,which would again suggest that double exchange ought todominate the exchange coupling.However,the inclusion of afraction of exact exchange in the HSE functional lowers theenergy of the occupied d levels,analogous to previous reports4on Mn-doped III-Vs that employ some form of self-interactioncorrection(e.g.,the DFT+U approach,34–36SIC-LSD,37,38etc.).This would imply a decrease in the strength of thecomputed exchange coupling constants at the HSE levelrelative to the PBE situation.As we will show later,thisis also manifested in lower Curie temperatures when usingHSE-parameterized exchange coupling coefficients relative tothe PBE ones.To estimate the strength of exchange coupling,we reportin Table I the energy differences between the ferromag-netic ground state and the metastable antiferromagnetic state( AF M−F M)for two Mn atoms placed atfirst,second,andthird nearest-neighbor Mo sites.These are the only uniqueneighbor arrangements in a4×4supercell.At the PBE level,we also report energy differences forfirst-nearest-neighborMn dopants in larger supercells;HSE calculations were notperformed for these additional cases due to the enormouscomputational cost.From the presented data,it is clear thatthe Mn dopant atoms preferentially display ferromagneticcoupling at both the PBE and HSE level.It is also clearthat the HSE functional predicts stronger but shorter-rangedexchange interactions relative to PBE,which is to be expectedbased on the electronic DOS presented previously.For thevarious nearest-neighbor configurations studied here,we alsoreport in Table I the relative energy differences between theferromagnetic ground states( E F M).From these data,we seethat thefirst-nearest-neighbor configuration of Mn dopantsis energetically lower by0.3–0.7eV(depending upon thelevel of theory)than the second-or third-nearest-neighborTABLE I.Energy differences( AF M−F M)between the ferromag-netic ground state and the antiferromagnetic high-energy metastablestate for two Mn dopants placed at identical substitutional sites in theMoS2monolayer.Also displayed are energies of the ferromagneticground state for different spatial arrangements of Mn atoms(m th-nearest-neighbor)relative to thefirst-nearest-neighbor configuration( E F M=E m th−nnF M −E1st−nnF M).AF M−F M(eV) E F M(eV)Supercell Configuration PBE HSE PBE HSE 4×41st n.n.0.180.220.00.02nd n.n.0.060.070.370.663rd n.n0.03−0.000.430.65 6×61st n.n.0.178×81st n.n.0.17cases,which suggests a strong thermodynamic driving force for clustering of dopant atoms.While this result would suggest the need for kinetically trapping Mn dopant atoms to produce a uniform,dilute distribution of magnetic impurities,the ability to produce ferromagnetic Mn clusters in the host MoS2lattice might also be technologically useful.B.Monte Carlo simulationsIt is well known that ordering in DMSs is strongly influ-enced by percolation;the mean-field approximation cannot capture this behavior and tends to systematically overestimate the Curie temperature in these systems.4,36,39–41Therefore,to allow for a proper description of spatial disorder and magnetic percolation in the Mn/MoS2DMS,we parameterized the first-principles exchange interactions between Mn atoms and incorporated these within a Monte Carlo model.The exchange coupling coefficient J(r)is parameterized using the functional formJ(r)=cr3exp[−r/r0],if r r c0,otherwise,(1)where r is the distance between two impurities,r0is the screening length,r c is the cutoff in the interaction range,and c is a constant of proportionality.42The cutoff length was set to the radius of the tenth nearest-neighbor shell(14.48˚A). The remaining parameters were obtained byfitting the energy differences AF M−F M to the model in Eq.(1).The parameters obtained from thefits to the PBE data are c=5.965eV/˚A3 and r0=25.957˚A.The HSE data,while more limited than the PBE set,yield bestfit parameters of c=12.971eV/˚A3and r0=4.944˚A.The exchange coupling energies that result from these parametrizations are displayed in Fig.3(a),the discrete points representing each neighbor shell up through the cutoff distance.As expected from the data in Table I,the HSE cou-pling is stronger atfirst-nearest-neighbor separation but drops off more rapidly than its PBE counterpart.It is worth noting that there are certainly more sophisticated techniques to extract exchange coupling coefficients based on linear response,43 frozen magnons,44etc.Such approaches are beyond the scope of the present work and will be considered elsewhere.For now, the total-energy approach adopted here is sufficient to bring out the principal features of magnetic interactions in DMSs and has adequate precedent in the literature.35,41With the exchange coupling coefficients in hand,it is straightforward to set up a Metropolis Monte Carlo(MC) calculation45to simulate the role of disorder and percolation in Mn/MoS2DMSs.Briefly,the entire problem was mapped to a Heisenberg model on a triangular lattice,i.e.,the underlying lattice formed by the Mo sites.46We examined system sizes ranging from20×20to100×100containing dopant concen-trations ranging from5%to15%.Configurational disorder was simulated using40different random initial conditions,and all thermodynamic properties were calculated by averaging over these distinct runs.Two procedures were used to estimate the Curie temperature(T C).In the absence of an external magnetic field,the magnetic susceptibility(χ=[ M2 − |M| 2]/k B T) diverges at the critical temperature in the thermodynamic limit. On afinite lattice the susceptibility displays a broadened peak; we use the position of this peak from the largest simulatedMn-DOPED MONOLAYER MoS2:AN ATOMICALLY...PHYSICAL REVIEW B87,195201(2013)FIG.3.(Color online)(a)Exchange coupling coefficient obtained from the model in Eq.(1).Symbols correspond to each neighbor shell up to the tenth-nearest neighbor.The HSE exchange coupling is stronger atfirst-nearest-neighbor separation but drops off more rapidly than its PBE counterpart with increasing distance,which leads to lower Curie temperatures(T C)in the range of5–12.5%doping as seen in(b).At sufficiently high concentrations,the stronger nearest-neighbor interaction at the HSE level begins to dominate and leads to higher values of T C than the PBE-based estimates.lattice as one estimate of the Curie temperature.The secondestimate is obtained from the Binder cumulant method.47Binder’s cumulant,defined asU4=1−m43 m2 2,(2)is only weakly dependent on system size and the common point of intersection of the U4versus temperature curves for various system sizes furnishes an estimate of T C.For our DMSs,we find that the two estimates for T C are in poor agreement at low dopant concentration,most likely due to lack of percolation in the lattice.At higher concentrations( 10%for PBE; 13% for HSE),the two estimates come into better agreement. Here,we choose to consistently use the susceptibility data for estimating T C.In Fig.3(b),we display estimates for T C as a function of dopant concentration using both the PBE and HSE parameterized exchange coupling.As seen from Fig.3(b),the HSE predictions of T C are consistently—and often significantly—lower than their PBE counterparts.This is essentially a manifestation of the shorter range of HSE exchange interactions as alluded to before.At a fundamental level,these significant differences underscore the need for functionals that can describe exchange and correlation effects more accurately.We see a sharp increase in T C beyond10% and13%Mn doping at the PBE and HSE levels,respectively, which is most likely indicative of the onset of percolation.The eventual increase in the HSE estimate for T C as compared to the PBE estimate at15%doping is due to the stronger nearest-neighbor exchange coupling at the HSE level.Collectively, these results point towards the distinct possibility of achieving room-temperature ferromagnetism in MoS2monolayers for Mn doping in the range of10–15%.III.CONCLUSIONSIn summary,we conducted a combined DFT and Monte Carlo study of ferromagnetic ordering in Mn-doped monolayer MoS2.Our DFT studies show that the electronic structure of the resulting DMSs,as well as the strength and range of exchange interactions,are quite sensitive to the level of theory employed.This is most clearly manifested in the lower Curie temperatures obtained with the hybrid HSE XC functional,which corrects for some of the self-interaction error in semilocal functionals through the mixing of a fraction of exact exchange.Wefind that exchange interactions in Mn/MoS2DMSs are primarily governed by the double-exchange mechanism and are relatively short-ranged,making percolation a key factor for magnetic ordering.Based on our DFT-parameterized MC simulations,we predict that dopant concentrations in the range of10–15%ought to lead to room-temperature ferromagnetism in Mn/MoS2DMSs.It remains to be seen whether these predictions can be realized experimentally.At the very least,previous experiments have demonstrated the ability to dope MoS2films,nanoparticles, and nanotubes with transition metals such as Re,48Ti,49Cr,50 and Mn.51Our theoretical predictions will hopefully motivate additional investigations along similar lines with the aim of tailoring the magnetic properties of doped few-layer MoS2for novel electronic applications.APPENDIX:COMPUTATIONAL METHODS Allfirst-principles calculations were performed using the Vienna ab initio simulation package(V ASP).20The projector-augmented wave(PAW)method52,53was used to represent the nuclei plus core electrons.Electron exchange and correlation was treated using both the Perdew-Burke-Ernzerhof(PBE)21 parametrization of the generalized-gradient approximation as well as the Heyd-Scuseria-Ernzerhof(HSE)22hybrid func-tional.From convergence tests,the kinetic energy cutoff was set at400eV;the Brillouin zones for4×4supercells were sampled with a2×2×1 -centered k-point mesh,whereas a single point was used for larger supercells.A Gaussian smearing of0.05eV was employed in conjunction with an energy tolerance of10−4eV for electronic relaxation.The cell vectors werefixed at the equilibrium value for the MoS2ASHWIN RAMASUBRAMANIAM AND DORON NA VEH PHYSICAL REVIEW B87,195201(2013)monolayer and atomic positions relaxed with a tolerance of 0.01eV/˚A.Periodic images were separated by at least10˚A of vacuum normal to the monolayer to eliminate spurious interlayer coupling.*ashwin@†doron.naveh@biu.ac.il1S.A.Wolf,D.D.Awschalom,R.A.Buhrman,J.M.Daughton, S.von Mol´n ar,M.L.Roukes,A.Y.Chtchelkanova,and D.M. Treger,Science294,1488(2001).2S.J.Pearton,C.R.Abernathy,M.E.Overberg,G.T.Thaler,D.P. Norton,N.Theodoropoulou,A.F.Hebard,Y.D.Park,F.Ren,and J.Kim,J.Appl.Phys.93,1(2003).3A.H.MacDonald,P.Schiffer,and N.Samarth,Nat.Mater.4,195 (2005).4K.Sato,L.Bergqvist,J.Kudrnovsk´y,P.H.Dederichs,O.Eriksson, I.Turek,B.Sanyal,G.Bouzerar,H.Katayama-Yoshida,and V.A. Dinh,Rev.Mod.Phys.82,1633(2010).5T.Dietl,Nat.Mater.9,965(2010).6J.A.Wilson and A.D.Yoffe,Adv.Phys.18,193(1969).7A.Ramasubramaniam,Phys.Rev.B86,115409(2012).8Q.H.Wang,K.Kalantar-Zadeh,A.Kis,J.N.Coleman,and M.S. Strano,Nat.Nanotech.7,699(2012).9A.Ayari,E.Cobas,O.Ogundadegbe,and M.S.Fuhrer,J.Appl. Phys.101,014507(2007).10B.Radisavljevic,A.Radenovic,J.Brivio,V.Giacometti,and A.Kis,Nat.Nanotech.6,147(2011).11B.Radisavljevic,M.B.Whitwick,and A.Kis,ACS Nano5,9934 (2011).12Z.Yin,H.Li,H.Li,L.Jiang,Y.Shi,Y.Sun,G.Lu,Q.Zhang, X.Chen,and H.Zhang,ACS Nano6,74(2012).13J.Zhang,J.M.Soon,K.P.Loh,J.Yin,M.B.Sullivian,and P.Wu, Nano Lett.7,2370(2007).14S.Mathew,K.Gopinadhan,T.K.Chan,X.J.Yu,D.Zhan,L.Cao, A.Rusydi,M.B.H.Breese,S.Dhar,and Z.X.Shen,Appl.Phys. Lett.101,102103(2012).15S.Tongay,S.S.Varnoosfaderani,B.R.Appleton,J.Wu,and A.F. Hebard,Appl.Phys.Lett.101,123105(2012).16Y.Li,Z.Zhou,S.Zhang,and Z.Chen,J.Am.Chem.Soc.130, 16739(2008).17A.R.Botello-Mend´e z, F.L´o pez-Ur´ıas,M.Terrones,and H. Terrones,Nanotechnology20,325703(2009).18A.V ojvodic,B.Hinnemann,and J.K.Nørskov,Phys.Rev.B80, 125416(2009).19C.Ataca and S.Ciraci,J.Phys.Chem.C115,13303(2011).20G.Kresse and J.Furthm¨u ller,Comput.Mater.Sci.6,15(1996); Phys.Rev.B54,11169(1996).21J.P.Perdew,K.Burke,and M.Ernzerhof,Phys.Rev.Lett.77,3865 (1996).22J.Heyd,G.E.Scuseria,and M.Ernzerhof,J.Chem.Phys.118, 8207(2003);124,219906(2006).23B.G.Janesko,T.M.Henderson,and G.E.Scuseria,Phys.Chem. Chem.Phys.11,443(2009).24J.K.Ellis,M.J.Lucero,and G.E.Scuseria,Appl.Phys.Lett.99, 261908(2011).25A closer analysis shows that the Mn dopant has local C s symmetry, the mirror plane being the plane of the metal atoms.26A.Enyashin,S.Gemming,and G.Seifert,Eur.Phys.J.Spec.Top. 149,103(2007).27T.Boker,R.Severin,A.Muller,C.Janowitz,R.Manzke,D.V oss, P.Kruger,A.Mazur,and J.Pollmann,Phys.Rev.B64,235305 (2001).28T.Li and G.Galli,J.Phys.Chem.C111,16192(2007).29L.F.Mattheiss,Phys.Rev.B8,3719(1973).30R.Coehoorn,C.Haas,J.Dijkstra,C.J.F.Flipse,R.A.de Groot, and A.Wold,Phys.Rev.B35,6195(1987).31P.D.Fleischauer,J.R.Lince,P.Bertrand,and R.Bauer,Langmuir 5,1009(1989).32A.Ramasubramaniam,D.Naveh,and E.Towe,Phys.Rev.B84, 205325(2011).33See Supplemental Material at /supplemental/ 10.1103/PhysRevB.87.195201for the bandwise,atom-projected decomposition of the total density of states.34S.L.Dudarev,G.A.Botton,S.Y.Savrasov,C.J.Humphreys,and A.P.Sutton,Phys.Rev.B57,1505(1998).35P.Mahadevan,A.Zunger,and D.D.Sarma,Phys.Rev.Lett.93, 177201(2004).36L.Bergqvist,O.Eriksson,J.Kudrnovsk´y,V.Drchal,A.Bergman, L.Nordstr¨o m,and I.Turek,Phys.Rev.B72,195210(2005).37J.P.Perdew and A.Zunger,Phys.Rev.B23,5048(1981).38T.C.Schulthess,W.M.Temmerman,Z.Szotek,W.H.Butler,and G.M.Stocks,Nat.Mater.4,838(2005).39L.Bergqvist,O.Eriksson,J.Kudrnovsky,V.Drchal,P.Korzhavyi, and I.Turek,Phys.Rev.Lett.93,137202(2004).40J.L.Xu,M.van Schilfgaarde,and G.D.Samolyuk,Phys.Rev.Lett. 94,097201(2005).41Y.D.Park,A.T.Hanbicki,S.C.Erwin,C.S.Hellberg,J.M. Sullivan,J.E.Mattson,T.F.Ambrose,A.Wilson,G.Spanos,and B.T.Jonker,Science295,651(2002).42This model is a modified version of the double-exchange model used in Ref.4from which we have dropped the concentration dependence(∼1/√c)of the prefactor as this requires definitive knowledge of the exchange mechanism.While our results point to a double-exchange mechanism,we do not have sufficient ab initio data tofirmly establish the concentration dependence of the prefactor.If we were to assume a1/√c dependence whenfitting our existing data,this would only serve to increase the exchange coupling at lower concentrations from the present value and raise the Curie temperatures for those low-doping cases.Our overall conclusions,especially in the range of10%and higher doping, which are of interest for room-temperature ferromagnetism,would essentially remain unaltered.43A.I.Liechtenstein,M.I.Katsnelson,V.P.Antropov,and V.A. Gubanov,J.Magn.Magn.Mater.67,65(1987).44L.M.Sandratskii and P.Bruno,Phys.Rev.B66,134435(2002). 45N.Metropolis,A.W.Rosenbluth,M.N.Rosenbluth,A.H.Teller, and E.Teller,J.Chem.Phys21,1087(1953).46More specifically,since any site is either empty(σ=0)or accom-modates only two distinct spin orientations(σ=±1)(noncollinear spins are not examined in this study),the Heisenberg model reduces to a three-state Potts model.47K.Binder and D.W.Heermann,Monte Carlo Simulation in Statistical Physics,5th ed.(Springer-Verlag,Heidelberg,2010).。
复数小波matlab
复数小波matlab
在MATLAB中,复数小波通常是指在复平面上进行小波变换的过程。
小波变换是一种信号处理技术,它可以将信号分解成不同尺度和频率的成分,从而能够更好地分析信号的局部特征。
复数小波变换是小波变换的一种扩展形式,它可以处理包括实部和虚部在内的复数信号。
在MATLAB中,可以使用Wavelet Toolbox来进行复数小波变换的计算和分析。
可以使用cwt函数来进行连续小波变换,该函数可以处理复数输入信号,并返回复数小波系数。
另外,可以使用icwt 函数来进行逆变换,将复数小波系数重构成原始信号。
除了基本的复数小波变换之外,MATLAB还提供了丰富的小波分析工具,包括不同的小波基函数、尺度选择方法、小波包分析等,这些工具可以帮助用户更好地理解和分析复数信号的特性。
总之,在MATLAB中进行复数小波分析,可以通过Wavelet Toolbox提供的丰富函数和工具来实现,从而能够更好地理解和处理复数信号的特征。
Windows98下硬件中断虚拟设备驱动程序的开发
Windows98下硬件中断虚拟设备驱动程序的开发
刘永山;汤毅
【期刊名称】《重庆科技学院学报(社会科学版)》
【年(卷),期】2003(018)004
【摘要】介绍了 Windows 98的内核结构和应用程序的权限级别,简述了Windows 98下虚拟设备驱动程序的开发工具,并给出了 Windows 98下一个中断程序实例.
【总页数】3页(P28-30)
【作者】刘永山;汤毅
【作者单位】燕山大学信息工程学院,秦皇岛,006004;燕山大学信息工程学院,秦皇岛,006004
【正文语种】中文
【中图分类】TP311
【相关文献】
1.Windows98下硬件中断驱动程序的开发 [J], 李博;鲍超
2.Windows98下基于VxD技术的A/D转换中断程序开发 [J], 罗日成;李卫国;刘义磊
3.Windows98环境下数据采集的硬件中断实现 [J], 吴继伟;萧蕴诗
4.Windows98下硬件虚拟设备驱动程序的开发及实例 [J], 温世让;李博
5.Windows98环境下的虚拟设备驱动程序(VxD)的开发 [J], 王兵;陈华龙
因版权原因,仅展示原文概要,查看原文内容请购买。
bluescreen
BluescreenA bluescreen, also known as a Blue Screen of Death (BSOD), is an error screen displayed by the Microsoft Windows operating system when it encounters a critical system error that it cannot recover from, forcing the computer to restart. This phenomenon has become synonymous with system crashes and is often a cause for frustration among users. In this document, we will explore the causes of bluescreens, methods of troubleshooting, and potential solutions for resolving them.Causes of BluescreensBluescreens can be caused by a variety of factors, including:1. Hardware IssuesFaulty hardware components such as RAM, hard drives, or graphics cards can cause bluescreens. Inconsistent power supply or overheating can also lead to system instability and crashes.2. Outdated DriversOutdated or incompatible device drivers can cause conflicts within the operating system, leading to bluescreens. It is important to regularly update drivers to ensure compatibility and stability.3. Software ConflictsConflicts between software applications, such as incompatible antivirus programs or faulty drivers, can result in bluescreens. Additionally, software bugs or corruption in the operating system itself can trigger system crashes.4. OverclockingOverclocking, which involves increasing the operating frequency of hardware components beyond their intended limits, can lead to system instability and bluescreens. This is especially true if the hardware is not properly cooled or if adequate power supply is not provided.Troubleshooting BluescreensWhen faced with a bluescreen error, there are several steps you can take to diagnose and troubleshoot the issue:1. Restart the SystemIn many cases, a simple reboot can resolve temporary system errors that triggered the bluescreen. If the issue persists, additional troubleshooting steps are necessary.2. Check for Recent Hardware or Software ChangesIf you recently installed new hardware or software, remove them temporarily to see if the bluescreen error disappears. If it does, there may be compatibility issues with the hardware or software you installed. Consider updating drivers or seeking support from the manufacturer.3. Scan for MalwareMalware infections can cause system instability and bluescreens. Use an antivirus program to scan and remove any malware that may be causing the issue.4. Update Drivers and SoftwareEnsure that all drivers and software are up to date. Visit the manufacturer’s website or use automatic update tools to check for the latest versions. Updating drivers and software can often resolve compatibility issues that lead to bluescreens.5. Check Hardware ComponentsIf the issue persists, it’s advisable to test the hardware components. This can involve running diagnostic tools to check the health of the RAM, hard drives, and graphics card. Any faulty components should be replaced.Resolving BluescreensIf none of the troubleshooting steps mentioned above resolve the bluescreen issue, consider the following options:1. Clean Install of the Operating SystemPerforming a clean install of the operating system can help resolve any software corruption or conflicts that might be causing the bluescreens. Backup your data before proceeding, as this process will erase everything on the system drive.2. Consult Professional HelpIf you are unable to identify the cause of the bluescreen or resolve the issue on your own, it is advisable to seek professional help. Certified technicians can provide in-depth diagnostics and solutions for the problem.ConclusionBluescreens can be a frustrating experience for Windows users. Understanding the potential causes and troubleshooting methods can help users resolve these issues efficiently. By taking the appropriate steps, such as updating drivers, scanning for malware, and performing necessary hardware tests, users can tackle bluescreens effectively and maintain a stable operating environment. In cases where self-help is not possible, seeking professional assistance can ensure a swift resolution.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Competition between exciton-phonon interaction and defects states in the3.31eV band in ZnOD.Tainoff,1,2,3B.Masenelli,1,2,3,*P.Mélinon,1,2,3A.Belsky,1,2,4G.Ledoux,1,2,4D.Amans,1,2,4C.Dujardin,1,2,4N.Fedorov,5,†and P.Martin51Universitéde Lyon,Lyon F-69003,France2UniversitéLyon1,Villeurbanne F-69622,France3LPMCN,CNRS,UMR5586,Villeurbanne F-69622,France4LPCML,CNRS,UMR5620,Villeurbanne F-69622,France5CELIA,UniversitéBordeaux1–CNRS–CEA,351cours de la Libération,F-33405Talence Cedex,France͑Received23November2009;revised manuscript received22January2010;published4March2010͒We investigate the origin of the band at3.31eV͑A band͒commonly observed in the emission spectra ofvarious ZnO samples.This band is of prime importance for the confirmation of p doping in ZnO nanostruc-tures.We check the validity of the three main hypotheses generally evoked to explain it in undoped ZnO,namely,surface states,the1LO phonon replica of the free exciton and a defect-related ing ZnOsamples structured at different scales,from macro to nano through meso͑i.e.,a single crystal,a nanoparticlesassembly,and a microcrystalline pellet͒,we demonstrate that a huge surface/volume ratio does not necessarilyimply a strong emission at3.31eV,especially for model nanoparticles which are uncapped and synthesized inultrahigh vacuum.Furthermore,we show that the two other hypotheses are valid and can be at stake concomi-tantly,according to the quality of the samples.Regarding the1LO phonon replica of the free exciton,itspresence is unambiguously established using a complete model based on an exciton population at thermody-namic equilibrium,including the treatment of the interaction of the excitons with the acoustic phonon bath.Weobserve that the1LO phonon replica becomes significant at temperatures higher than80K typically.Below thistemperature,the3.31eV emission is only present in the microcrystalline sample and results from a defect-related transition.Since it is not observed in the nanoparticles that are made from the microcrystals,thepossibility of an impurity to be the origin of the invoked defect is unlikely in our experiments.Instead,ourstudy suggests that the defect at stake is of crystalline origin,with an activation energy of122Ϯ5meV.Therelated emission is shown to follow a free-to-bound transition mechanism.DOI:10.1103/PhysRevB.81.115304PACS number͑s͒:78.67.Bf,78.55.Et,71.55.GsI.INTRODUCTIONIn the present decade ZnO has been widely studied in sight of optoelectronic applications.Indeed the high stability of its room-temperature UV excitonic emission,its nontox-icity and its low cost of production make ZnO a good can-didate for the realization of UV optoelectronic compounds. However the main barrier to overcome in order to industri-alize ZnO optoelectronic compounds is to engineer the dop-ing properties and especially the p-doping one.In this con-text,the possibility for some features of the low-temperature excitonic luminescence to be the optical signature of the p doping is a major issue.This is particularly true regarding the controversial assignment to p doping of the3.31eV band ͑often called A band͒present in the excitonic spectra of vari-ous ZnO samples.Since the energy of the3.31eV band is close to the one expected for the optical phonon replica of the free exciton ͑FX͒,this band has beenfirst interpreted in this way.On the other hand,the appearance of this band in various kinds of nanostructured samples as dots,1,2nanorods,3or nanowires4 has conducted some authors to interpret this feature as a surface contribution.Finally,theoretical studies of some ac-ceptors energies in ZnO have shown that the3.31eV band might be related to the presence of acceptor impurities ͑hence the name“A band”for acceptor band͒through differ-ent radiative mechanisms like a donor acceptor pair,a free to bound transition or an exciton bound to a defect.Subse-quently this band has been seen in a lot of intentionally p-doped ZnO samples and it has been tempting to attribute it to the optical signature of p doping.5–8However the possi-bility for the acceptor level emission to be due to uninten-tional impurities or local crystalline symmetry modifications complicates the rigorous assignment of this band to p dop-ing.Since the control and the optical signature of the p dop-ing is of prime importance,the nature of the3.31eV band is of prime importance too.In order to study the origin of the3.31eV band we have made a systematic study of the temperature dependence of the excitonic luminescence of three kinds of ZnO samples which are structured at different scales:from macro to nano through meso scale.The three samples used are a single crystal͑macroscale͒,a microcrystalline powder͑mesoscale͒, and an assembly of ZnO nanoparticles͑nanoscale͒which are uncapped,controlled in stoichiometry,and crystallinity and deposited in ultrahigh vacuum͑UHV͒.The nanoparticles be-ing made from the microcrystalline powder by a hyper-quenching process,we expect tofind embedded in them the same impurities as in the microcrystalline powder if they are present in the latter.This enables us to discriminate the in-fluence of impurities from pure size effects,and among the latter the role of the surface states.The emission of these samples is compared to the one of a ZnO single crystal, which is characterized by its long-range crystalline order. Our results show that a huge surface/volume ratio does not necessarily lead to an important emission at3.31eV since no such emission is visible in the nanoparticle spectra at10K.PHYSICAL REVIEW B81,115304͑2010͒Second,the accordance of the temperature dependence of the 3.31eV band in the single crystal and in the nanoparticle assembly and itsfit by a model describing the exciton popu-lation at thermodynamic equilibrium,including the influence of the acoustic phonons show that the1LO phonon replica of the free exciton͑1LO-FX͒is distinguishable in the3.31eV band of ZnO.Eventually,the comparison of the lumines-cence of the microcrystalline powder at10K with the spectra of the two other types of samples,for which the band is absent at the same temperature,reveals that,on top of the 1LO phonon replica,the3.31eV band also originates form a defect state͑real A band͒.This feature is ascribed to a free-to-bound͑FB͒transition.II.EXPERIMENTSThe three kind of samples studied are a single crystal͑SC͒from SurfaceNet Gmbh,a microcrystalline͑Cs͒pellet which has been obtained by sintering͑pressing at15ton and subsequent annealing at1000°C in O2atmosphere for10h͒the99.999%pure ZnO powder from Cerac and a nanopar-ticles assembled thinfilm synthesized by low-energy clusters beam deposition͑LECBD͒.9The nanoparticles͑NPs͒are synthesized by the supersonic quenching of a plasma ob-tained from the laser ablation of the microcrystal pellet.The nanoparticles are synthesized in the gas phase,with the ad-dition of O2in the carrier gas,and then deposited in UHV conditions.The nanoparticles study by transmission electron microscopy͑TEM͒and x-ray diffraction͑XRD͒shows that the NPs are crystallized in the wurtzite ing Scherrer’s formula,a mean size of18nm is deduced from the full width at half maximum of the XRD peaks corre-sponding to the͑100͒,͑002͒,and͑101͒plane families.Fig-ure1presents the XRD pattern of thefilm.Two TEM images are also given as an illustration of the individual particles and their assembly that occurs within thefilm formation, leading to diffracting domains about18nm wide as mea-sured with XRD.The stoichiometry of the NPs,controlled in situ using x-ray photoelectron and Auger electron spec-troscopies,is identical to theCs one.In both cases no im-purity is identified in an amount of1%or more͑the precision of our XPS setup͒.In addition of the good crystallinity re-vealed by TEM and XRD,no green luminescence is ob-served in the NPs cathodoluminescence spectra.This green luminescence is assigned to surface contamination,10oxygen vacancies,11,12or Cu impurities.13More details on the NPs synthesis process,stoichiometry and crystallinity are pub-lished elsewhere.14The excitonic emission of the samples has been recorded with the experimental setup described in Ref.15.However,in the present case,we have used the300 nm͑4.13eV͒radiation of a Xe lamp as the excitation source, a1200groves/mm grating blazed at300nm and a CCD camera of TRIAX320spectrometer͑Jobin Yvon͒.The setup resolution we have used was1meV.Unless specified,all the spectra shown in this study are normalized to the emission maximum.III.RESULTSIn the following,we address successively the three main hypotheses evoked to explain the origin of the3.31eV band,which are,as mentioned in the introduction,the role of sur-face states,the1LO-FX replica and the role of bulk defects, either linked to impurities or to structural faults.A.Role of the surfaceThe enhancement of the3.31eV emission in various ZnO nanostructures,which are characterized by a large surface/ volume ratio,has lead to assign its origin to surface states.1,16 In this sense,this emission would result from a geometrical-size effect.In order to probe this hypothesis,we compare the excitonic luminescence of a ZnO single crystal and twofilms of ZnO nanoparticules,one protected by a200-nm-thick MgO layer͑deposited in UHV͒and one unprotected.Figure 2presents the spectra corresponding to two representative temperatures,namely,10and80K.At10K,in all spectra, the excitonic emission is strongly dominated by the donor-bound emission bands called DXs.17–19In the3.33eV range, the emission exhibits a weak two electron satellite,which involves a DX exciton leaving the donor in an excited state, and some contribution of defects,17especially in the case of the MgO-protected nanoparticlefilm.However,the investi-gation of this emission is beyond the scope of the present paper.All these peaks have been successfully assigned with respect to the literature.11,12In the3.31eV region,no emis-sion is detected for any sample.At80K,the FX contribution increases to the detriment of the DXs one,corresponding to the thermally activated detrapping of the donor-bound exci-ton.Concomitantly,the3.31eV band appears for the two kinds of samples.The absence of the band in the NPs spec-trum at10K and its moderate intensity at80K seems in contrast with other studies.11,18Actually,only a few studies are rigorously concerned with the increase in the3.31eV emission yield as the surface/volume ratio increases.1,2In most of them,the size of the nanostructures is typically a few tens or hundreds of nanometers,which leads in the best es-timate to ratios of about0.1%.In the case of our nanopar-ticles,this ratio is more than ten times larger.Therefore,we would expect them to exhibit a significant band at3.31eV, which is not the case.Two hypotheses can be evoked to explain this fact:either our peculiar synthesis method͑adia-batic supersonic expansion͒prevents the formation of the surface defects that may be responsible for the3.31eV band or it induces the formations of a majority of nonradiative surface defects with a decay time shorter than the one of the 3.31eV emission which results in the quenching of this emission.Indeed,it is well known that the outermost layer of a nanostructure͑for instance,a shell whose thickness is about the exciton diameter͒can be the place of many defects that can have opposite influences.In the present study,it is difficult to tell which hypothesis can prevail.In order to characterize the nanoparticle surface at best,we remind that, whereas the samples of Fallert et al.are made by“compress-ing industrial powders intoflat pellets”1and those of Fonoberov et al.2result from wet-chemistry routes,the present NPs are uncapped͑no ligand͒and their surface has been formed during a drastic cooling process͑ϳ1010K/s͒and possibly reconstructed in UHV.Their subsequent analy-sis at air is bound to have induced an adsorption of OHTAINOFF et al.PHYSICAL REVIEW B81,115304͑2010͒groups on their surface as is often the case with polar oxide nanoparticles.20–22We have checked that the OH contamina-tion does not change the excitonic emission.23Besides,as can be seen on Fig.2,protecting the clusters by an MgO layer does not modify the spectra in the 3.31eV range.As already mentioned,the only change concerns the defects states responsible for the emission at 3.33eV .To sum it up,our investigations go to show that increasing the surface/volume ratio does not imply a monotonic increase in the 3.31eV emission.The discrepancy with other studies seems to be only apparent since the presence,nature and role of surface defects depend on the synthesis method.That is the reason why we only claim that a naked ZnO surface,possibly re-constructed in UHV ,does not induce an emission at 3.31eV .B.1LO phonon replicaHighly polar semiconductors,such as ZnO,are known for their significant exciton-phonon coupling.24The coupling is strong enough to allow the observation of polaritons even at moderate temperature.25,26It is thus sound to contemplate the 1LO phonon replica of the free exciton as the potential origin5nm5nmFIG.1.Upper panel:XRD pattern of the nanoparticle film ͑ex-cited by the Cu K ␣radiation ͒.The wurtzite structure is identified by the ͑100͒,͑002͒,and ͑101͒peaks.The size of the diffracting do-mains is deduced from the full width at half maximum of the three peaks using Scherrer’s equation.Middle panel:TEM image of an individual particle,the unit building block of the nanostructured sample.Lower panel:example of the assembly of several nanopar-ticles.Coherent crystalline domains,over 15nm wide,are clearly distinguished.The scale bar represents 5nm in the two TEM images.Energy (eV)Energy (eV)FIG.2.͑Color online ͒Upper panel:emission spectra at 10K of ͑from bottom to top ͒a ZnO single crystal,an assembly of unpro-tected nanoparticles,an assembly of nanoparticles protected by a thin MgO film.The excitation wavelength is 300nm.The absence of the band at 3.31eV in the nanoparticle sample indicates that its origin is not intrinsically linked to the ZnO surface.Lower panel:emission spectra of the same samples at 80K.The 3.31eV band becomes observable.COMPETITION BETWEEN EXCITON-PHONON …PHYSICAL REVIEW B 81,115304͑2010͒of the 3.31eV band.The values of the 1LO phonon energy and of the FX energy,being,respectively,72meV and 3.37eV around 80K,give credit to this hypothesis.One last observation that supports the assignment of the 3.31eV band to the 1LO-FX replica is the evolution of the band shape with temperature.As shown on Fig.3for the single crystal,the 3.31eV band tends to be more asymmetric on its high-energy side as the temperature increases,which is commonly observed for phonon replicas.4,27,28For the particular mea-surement of the 3.31eV band evolution with temperature,in order to increase our resolution,we have used a continuous HeCd laser ͑325nm ͒of 0.1mW for excitation and the spec-tra have been recorded with an intensified CCD camera coupled to a 3600groves/mm grating ͑ARAMIS confocal setup from Jobin Yvon ͒.The resolution of this setup is 0.15meV and permits us to interpret our line shapes unambigu-ously.The results obtained from the SC sample are shown in Fig.3for three different temperatures.Beside the main DX and FX contributions merged at 3.36eV ,we observe the band around 3.31eV and another one around 3.23eV .These two bands can be assigned to the 1LO and 2LO phonon replicas of the free exciton as described hereafter.The most complete model accounting for the exciton-phonon interac-tion has been given by Segall and Mahan 28in the formalisms of the Green’s functions and even takes into account the polariton bottleneck.However,for an exciton gas in thermo-dynamic equilibrium,the approach due to Permogorov,29which considers a Maxwellian distribution for the kinetic energy of excitons leads to identical results in most of the cases.30According to this simplified model,the shapes of the 1LO-FX and 2LO-FX are given,respectively,by the follow-ing formulas,31where E 1LO is the energy of the 1LO phonon and E 2LO =2E 1LOE ͑ប͒ϰ͓ប−͑E FX −E 1LO ͔͒3/2exp ͕−͓ប−͑E FX−E 1LO ͔͒/kT ͖,͑1͒E ͑ប͒ϰ͓ប−͑E FX −E 2LO ͔͒1/2exp ͕−͓ប−͑E FX−E 2LO ͔͒/kT ͖.͑2͒The only free parameters are the intensities of the two peaks and the value of E 1LO .Figure 3shows the result of this modeling applied to the SC spectra for different tempera-tures.The shape of the peak obtained is in qualitative agree-ment for both the 3.31eV band and its 1LO replica for temperatures over 80K.However there is a cutoff in the shape which prevents the modeling of the low-energy part of the peaks.This limitation has been pointed out as soon as the introduction of the exhaustive model by Segall and Mahan.28Moreover the result from this modeling is not asymmetric enough to well fit the high-energy tail of both bands.As the discrepancy of asymmetry becomes more pronounced when the temperature increases,we have taken into account the contribution of acoustic phonons,which are a well-known source of broadening.The resolution of our setup being finer than the FX-band full width at half maximum,we can deter-mine the temperature dependence of the acoustic phonons contribution through the homogeneous broadening of the FX transition.In our case FX is fitted with a Lorentzian curve ͑cf.Fig.2͒and its energy distribution is convolved with the two previous equations in order to obtain a modified Per-mogorov law taking into account the homogeneous broaden-ing due to acoustic phonons.This procedure has been pro-posed several times 28,32but applied only recently.33The result of this procedure is presented in Fig.3.The modified Permogorov model is indisputably better.34It is also clear that this approach is quite general and can be used for other semiconductors.This modeling gives us the temperature de-pendence of the 1LO and 2LO phonon replica energies,which follows the FX temperature dependence.The E 1LO energy obtained at different temperatures for the optical phonons is within the 71–73meV range ͑cf.Fig.4͒which is in good accordance with both the literature values of 1LO energy determined by Raman spectroscopy 35,36and our Ra-man measurements ͑not presented ͒.This result proves that,if no band is detected at temperatures lower than 80K,the 3.31eV band and its 1LO replica that appear at temperatures higher than 80K are,respectively,the 1LO and 2LO phonon replica of the free exciton.Let us emphasize that all the previous analysis holds also for the NPs sample.C.Defect-state contributionFigure 5presents the emission of the microcrystalline sample at 10and 80K ͑before its use for ablation ͒.ContraryEnergy (eV)I n t e n s i t y (a .u .)FIG.3.͑Color online ͒Emission spectra of a ZnO single crystal ͑solid line ͒showing the 3.31eV band and its 1LO replica.The excitation is the 325nm radiation from a HeCd laser.The two features are modeled as the 1LO and 2LO phonon replicas of the FX contribution by a Permogorov law ͑cross curve ͒and a modified Permogorov law taking into account the broadening due to acoustic phonons ͑circles ͒.The modeling is presented for 80,100and 140K.The cutoff inherent to the Permogorov law is highlighted by a doted circle on the simulation curve for 140K.Note the improved accu-racy in the 3.30eV region when the Permogorov law is modified by taking into account the interaction of the free exciton with the acoustic phonon bath.PHYSICAL REVIEW B 81,115304͑2010͒to what is observed for the single crystal and the nanopar-ticles at 10K,the peak is observed around 3.31eV for the microcrystalline sample which cannot be accounted for by the phonon replica of the free exciton.In particular,it does not exhibit the characteristic asymmetric shape.We thus have to consider an electronic defect or an impurity as the possible origin of this band ͑real A band ͒.This is all the morelikely as the band shape can be accurately fit by a Gaussian curve,typical of defect or impurity contributions ͑see Fig.5͒.However,the NPs are made from the ablation of the mi-crocrystals of this sample.The ablation results from the in-teraction of the target with an intense pulsed laser ͑2ϫ106J per pulse of 10ns duration,focused on a 1mm 2spot,with a 10Hz repetition rate ͒.The instant energy deliv-ered to the target is so important that the ablation process produces a plasma whose composition is identical to the tar-get one ͑no selective ablation ͒.37Furthermore,the LECBD is a kinetically ruled process,far from the thermodynamic equi-librium.The nucleation of the clusters proceeds via an accre-tion process with an estimated cooling rate of 1010K /s.38At such a drastic cooling rate,the sticking coefficient of the species present in the plasma is close to one,39meaning that the clusters assembly has the same stoichiometry as the plasma.Only species that have extremely stable dimers ͑H 2,O 2,or N 2͒are likely to escape from the nucleation process.Even this last statement must be limited when considering weak impurity amounts.Since the accretion is a Poissonnian statistical process,the occurrence of an impurity dimer is very unlikely.Consequently,if an impurity were present in the initial ZnO powder,its luminescent signature would most probably be visible for both the Cs and NPs samples.This is not the case.Therefore,a more likely hypothesis that can be invoked to explain the difference in the spectra of NPs and Cs is a crystalline defect.In order to get more insight into the type of defect,we study the temperature dependence of the 3.31eV band ͑A band ͒in the Cs spectra.The tem-perature dependence of the position of the defect induced band is generally the method used to differentiate the elec-tronic nature of the defect.The results are exposed in Fig.6.The three main mechanisms invoked as possible origins of the defect related band are an exciton bound to an accep-tor defect ͑AX ͒,a donor-acceptor pair recombination ͑DAP ͒and a FB transition.For the first two hypotheses the tempera-ture dependence of the transition follows the band-gap-energy variation according,respectively,to 6,31E n e r g y (e V )Temperature(K)FIG.4.͑Color online ͒Energies of the longitudinal phonon de-duced from the modified Permogorov law applied to emission spec-tra of the single crystal at different temperatures.The dashed area reproduces the range of suitable phonon energy according to the literature.I n t e n s i t y (a .u .)Energy (eV)3.27 3.30 3.33 3.36 3.39 3.42FXDXI n t e n s i t y (a .u .)Energy (eV)A bandT=80KFIG.5.͑Color online ͒Temperature dependence of the microc-rystals excitonic emission.The two dashed lines show examples of fit accuracy for the A band by a Gaussian distribution at 10and 80K.E n e r g y (e V )Temperature (K)FIG.6.͑Color online ͒Temperature dependence of the FX en-ergy ͑triangles ͒and the corresponding fit using the Manoogian law ͑solid line ͒.Temperature dependence of the difference in energy between the FX and the A band energies ͑circles ͒.The variation can be fitted by a linear law,indicative of a free-to-bound transition.COMPETITION BETWEEN EXCITON-PHONON …PHYSICAL REVIEW B 81,115304͑2010͒E AX͑T͒=E g͑T͒−E b−E loc a,͑3͒E DAP͑T͒=E g͑T͒+E c−E a−E d,͑4͒where E AX is the energy of the acceptor-bound exciton emis-sion,E DAP the energy of the donor-acceptor pair recombina-tion,E g the band-gap energy,E b the binding energy of the exciton,E a͑resp.E d͒the energy of the acceptor͑resp.donor͒level,E c the energy of the Coulomb interaction between thedonor and the acceptor,and E loc a the localization energy of the exciton on the acceptor center.Among all these param-eters,only E g depends significantly on the temperature,31 which implies that the energy dependence of these two tran-sitions follows the FX one.For the temperature dependence of the free-to-bound transition,we have to add a term which models the temperature dependence of the free-electron den-sity of state.Surprisingly,different temperature dependencies have been evoked in the literature for the same mechanism.4,40,41The stone mark work of Colbow40is well suited for wurtzite-type polar semiconductors and is thus the most justified model in our case.Assuming a parabolic con-duction band and a Boltzmann distribution for the free elec-trons,Colbow writes the temperature dependence of the tran-sition as follows:E FB͑T͒=E g͑T͒−E a+␣kT͑5͒with␣=1.In our case we have determined the temperature dependence of the band-gap energy byfitting the FX tem-perature dependence with a Manoogian law42as can be seen in Fig.6.This law is more adapted to the present study than the well-known Varshni law,43which is originally demonstrated for cubic materials and is not adapted forfit-ting the band-gap temperature dependence on a small tem-perature range.The parameters found here are close to the ones determined by Hamby et al.44on a ZnO single crystal and their discussion is out of scope of the present study. We then have plotted the temperature dependence of the dif-ference E FX−E A band in Fig.6.The result,over a130K temperature range,clearly shows a linear dependence with ␣=0.97Ϯ0.04.Since the free-exciton energy follows the gap variation,this confirms the assignment of the band to a free-to-bound transition.Schirra et al.45have shown that this tran-sition occurs near extended stacking faults in the basal plane. The absence of the3.31eV band in the nanoparticles and in the single-crystal spectra at low temperature is in accordance with this hypothesis.Indeed,these stacking faults consist in a change in the crystal symmetry between the wurtzite phase and the zinc blende one,a phenomenon common to hexago-nal semiconductors from SiC͑Ref.46͒to CdS.47They are thus well-defined and extended defects͑several nanometers wide͒.Their presence is unlikely both in an individual cluster of a few nanometers in diameter and in the assembly of such clusters.If not so,it would require some matching of the basal planes between clusters,inducing stacking faults, which we have not observed on a large scale by TEM.Even-tually,regarding the single crystal,no large amount of stak-ing faults of the basal plane is to be expected in such a highly crystallized sample.Furthermore,knowing the binding en-ergy of the free exciton͑ϳ60meV͒,it is possible to deduce from the temperature dependence of the quantity E FX −E A band the value of the activation energy of the related defect.We obtain the value of122Ϯ5meV,which is in good accordance with the value of130meV reported by Schirra et al.45D.Implication for the optical signature of p dopingThe possibility to use the3.31eV emission as an univocal signature of the p doping in ZnO structures,and particularly, in nanostructures,is a long-standing issue.As a result of the present study,on top of recent results from the literature,45,48,49it appears that this concept is to be used with great caution.Since the3.31eV band is partly related to the phonon replica of the FX,the characterization of p doping should befirst carried out at temperatures below80K or so. Second,the absence of any A band͑at low temperature͒in undoped material should be demonstrated prior to the dop-ing.This would ensure that no defect contributes to the band. Studies from the literature illustrate the fact that the3.31eV emission magnitude highly depends on the quality of the sample synthesis.For instance,ZnO nanopillars,with no im-purity intentionally incorporated,either grown on sapphire or silicon substrates exhibit an emission at3.31eV in the latter case48while they do not in the former case.49This observa-tion is to be related to the crystalline quality of the samples, which is better in the case of nanopillars grown on sapphire. To further support this,we can mention the absence of the 3.31eV emission in highly faceted ZnO rods,well crystal-lized in the wurtzite structure.50It may be argued that,even if the3.31eV emission is related to crystalline defects,since these may be of acceptor nature,they naturally contribute to the compensation of the n-doping background.Hence,the3.31eV band would still be a sound signature of p doping.Unfortunately,it seems that the issue is not that simple since scanning capacitance measurements on ZnO layers grown by pulsed laser deposi-tion have shown that regions of p-type conductivity coexist with regions of n-type conductivity among the same sample.51The former regions contain more defects than the latter.This observation tends to limit the role of defects as compensating centers.That is the reason why the ability to synthesize intrinsic samples is a crucial step before achieving p doping.When intentional p doping is aimed at,the incorporation of dopants as nitrogen,7phosphorus,5,52,53or arsenic54can be accompanied with the presence of the3.31eV emission. Therefore,the link between the incorporation of these ele-ments and the3.31eV emission is established.Schirra et al.,45in their critical review of the literature regarding p doping in ZnO,suggest that the previous dopants may induce the formation of crystalline defects͑stacking fault of the basal plane͒which leads to the appearance of the3.31eV emission but not necessarily to a good p-type conductivity because of a low-carrier mobility and strong spatialfluctua-tions of the doping levels.In this context,our synthesis technique to prepare ZnO nanoparticles is of great interest.They do not exhibit any defect related emission at3.31eV.Since their size and theirTAINOFF et al.PHYSICAL REVIEW B81,115304͑2010͒。