第十六届“华罗庚金杯”少年数学邀请赛决赛试卷a(小学组)

合集下载

历届“华杯赛”初赛决赛试题汇编【小中组(附答案)】

历届“华杯赛”初赛决赛试题汇编【小中组(附答案)】
9. 已知被除数比除数大 78, 并且商是 6, 余数是 3, 求被除数与除数之积. 10. 今年甲、乙俩人年龄的和是 70 岁. 若干年前, 当甲的年龄只有乙现在这么大 时, 乙的年龄恰好是甲年龄的一半. 问: 甲今年多少岁? 11. 有三个连续偶数, 它们的乘积是一个五位数, 该五位数个位是 0, 万位是 2, 十位、百位和千位是三个不同的数字, 那么这三个连续偶数的和是多少? 12. 在等式
二、简答题(每小题 15 分, 共 60 分, 要求写出简要过程)
9. 用 4 个数码 4 和一些加、减、乘、除号和小括号, 写出值分别等于 2、3、4、 5、6 的五个算式. 10. 右图是 U, V, W, X 四辆不同类型的汽车每百千米的耗油 量. 如果每辆车都有 50 升油, 那么这四辆车最多可行驶 的路程总计是多少千米? 11. 某商店卖出一支钢笔的利润是 9 元, 一个小熊玩具的进 价为 2 元. 一次, 商家采取 “买 4 支钢笔赠送一个小熊玩具”的打包促销, 共 获利润 1922 元. 问这次促销最多卖出了多少支钢笔? 12. 编号从 1 到 10 的 10 个白球排成一行, 现按照如下方法涂红色: 1)涂 2 个球; 2)被涂色的 2 个球的编号之差大于 2. 那么不同的涂色方法有多少种?
四百米比赛进入冲刺阶段,甲在乙前面 30 米,丙在丁后面 60 米,乙在丙前面 20 米. 这时,跑在最前面的两位同学相差( (A)10 (B)20 )米. (D)60
(C)50
5.
在右图所示的两位数的加法算式中, 已知 A B C D 22 , ). (B)4 (C)7 (D)13
一、选择题 (每小题 10 分, 满分 60 分. 以下每题的四个选项中, 仅 有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号 内.)

“华罗庚金杯”少年数学邀请赛1-9届试题及详解

“华罗庚金杯”少年数学邀请赛1-9届试题及详解
因此,七根竹竿的总长度是 2 米减去剩下一段的长,也就是 2-
1 63 =1 64 64 63 米。 64
答:七根竹竿的总长是1
【分析与讨论】 中国古代就有 “一尺之棰, 日取其半, 万世不竭” 这样一个算术问题。就是说,有一根一尺长的短棍,每天截去它的一 半,永远也截不完。那么,每天剩下多少呢?第七天剩下多少呢? 用上面的解法计算七根竹竿的总长,时间是绰绰有余的。但如果 先把每根竹竿都算出来再相加,需要通分,时间恐怕就来不及了。同 学们不妨试一试。 有三条线段 A、B、C,A 长 2.12 米,B 长 2.71 米,C 长 3.53 米, 以它们作为上底、下底和高,可以作出三个不同的梯形。问:第几个 梯形的面积最大? 【解法】首先注意,梯形的面积=(上底+下底)×高÷2。但 我们现在是比较三个梯形面积的大小, 所以不妨把它们的面积都乘以 2,这样只须比较(上底+下底)×高的大小就行了。我们用乘法分配 律: 第一个梯形的面积的 2 倍是: (2.12+3.53)×2.71=2.12×2.17+3.53×2.71
而王师傅从甲地到乙地的实际行驶速度只有55公里小时这样一来实际行驶1公里所花费的时间是55小时为了能按时返回甲地王师傅从乙地返回甲地时行驶1公里所花的时间必须比原计划时间少55小时
历年华罗庚金杯试题 第一届“华罗庚金杯”少年数学邀请赛
初赛试题
1.1966、1976、1986、1996、2006 这 5 个数的总和是多少? 2.每边长是 10 厘米的正方形纸片,正中间挖一个正方形的洞, 成为一个宽度是 1 厘米的方框。把 5 个这样的ቤተ መጻሕፍቲ ባይዱ框放在桌面上,成为 这样的图案。 问桌面上被这些方框盖住的部分面积是多少平方厘米?
的时间。这样一来,问题就化为求 9 和 33 的最小公倍数的问题了。 不难算出 9 和 33 的最小公倍数是 99,所以答案为 99÷9=11。 答:小圆上的蚂蚁爬了 11 圈后,再次碰到大圆上的蚂蚁。 【分析与讨论】这个题目的关键是要看出问题实质是求最小公倍 数的问题。注意观察,看到生活中的数学,这 是华罗庚教授经常启发青少年们去做的。 图 33 是一个跳棋棋盘, 请你算算棋盘上共 有多少个棋孔? 【解法】这个题目的做法很多。由于时间 所限,直接数是来不及的,而且容易出错。下 图(图 34)给出一个较好的算法。把棋盘分 割成一个平行四边形和四个小三角形,如图 34。平行四边形中的棋孔数为 9×9=91,每个 小三角形中有 10 个棋孔。所以棋孔的总数是 81+10×4=121 个 答:共有 121 个棋孔。 【分析与讨论】 玩过跳棋的同学们, 你们以前数过棋孔的数目吗? 有兴趣的同学在课余时都可以数一数,看谁的方法最巧? 有一个四位整数。在它的某位数字前面加上一个小数点,再和这 个四位数相加,得数是 2000.81。求这个四位数。 【解法 1】由于得数有两位小数,小数点不可能加在个位数之前。 如果小数点加在十位数之前,所得的数是原米四位数的百分之一,再 加上原来的四位数,得数 2000.81 应该是原来四位数的 1.01 倍,原来 的四位数是 2000.81÷1.01=1981。 类似地,如果小数点加在百位数之前,得数 2000.81 应是原来四

(完整版)第十六届华杯赛总决赛试题

(完整版)第十六届华杯赛总决赛试题

第十六届华罗庚金杯少年数学邀请赛 总决赛 小学组一试2011年7月23日中国·惠州一. 填空题:(共3题,每题10分)1. 计算 313615176413900114009144736543++++++=_________.2. 如右图所示,正方形ABCD 的面积为12,AE =ED ,且EF =2FC ,则三角形ABF 的面积等于_________.3. 某地区的气象记录表明,在一段时间内,全天下雨共1天;白天雨夜间晴或白天晴夜间雨共9天;6个夜间和7个白天晴朗。

则这段时间有_______天,其中全天天晴有_______天。

二. 解答题:(共3题,每题10分,写出解答过程)4. 已知a 是各位数字相同的两位数,b 是各位数字相同的两位数,c 是各位数字相同的四位数,且c b a =+2。

求所有满足条件的(a ,b ,c )。

5. 纸板上写着100、200、400三个自然数,再写上两个自然数,然后从这五个数中选出若干个数(至少两个)做只有加、减法的四则运算,在一个四则运算式子中,选出的数只能出现一次,经过所有这样的运算,可以得到k 个不同的非零自然数。

那么k 最大是多少?6. 将1,2,3,4,5,6,7,8,9填入右图的圆圈中,每个圆圈恰填一个数,满足下列条件:1) 正三角形各边上的数之和相等;2) 正三角形各边上的数之平方和除以3的余数相等。

问:有多少种不同的填入方法?( 注意,经过旋转和轴对称反射,排列一致的,视为同一种填法 )总决赛 小学组二试2011年7月23日中国·惠州一. 填空题:(共3题,每题10分)1. 某班共36人都买了铅笔,共买了50支,有人买了1支,有人买了2支,有人买了3支。

如果买1支的人数是其余人数的2倍,则买2支的人数是_________.2. 右图中,四边形ABCD 的对角线AC 与BD 相交于O ,E 为BC 的中点,三角形ABO 的面积为45,三角形ADO 的面积为18,三角形CDO 的面积为69。

最新第10~16届全国华罗庚金杯少年数学邀请赛决赛试题详细解释答案

最新第10~16届全国华罗庚金杯少年数学邀请赛决赛试题详细解释答案

第十届全国"华罗庚金杯"少年数学邀请赛决赛试题一、填空(每题10分,共80分)1.下表中每一列为同一年在不同历法中的年号,请完成下表:第1小题:2.计算:① 18.3×0.25+5.3÷0.4-7.13 = ( ); ②= ( )。

答案:10.695;13.计算机中最小的存储单位称为“位”,每个“位”有两种状态:0和1。

一个字节由8个“位”组成,记为B。

常用KB,MB等记存储空间的大小,其中1KB=1024B, 1MB=1024KB。

现将240MB的教育软件从网上下载,已经下载了70%。

如果当前的下载速度为每秒72KB,则下载完毕还需要()分钟。

(精确到分钟)答案:174.a,b和c都是二位的自然数,a,b的个位分别是7与5,c的十位是1。

如果它们满足等式ab+c=2005,则a+b+c=( )。

答案:1025.一个正方体的每个顶点都有三条棱以其为端点,沿这三条棱的三个中点,从这个正方体切下一个角,这样一共切下八个角,则余下部分的体积(图1中的阴影部分)和正方体体积的比是()。

答案:6.某种长方体形的集装箱,它的长宽高的比是4∶3∶2,如果用甲等油漆喷涂它的表面,每平方米的费用是0.9元,如果改用乙等油漆,每平方米的费用降低为0.4元,一个集装箱可以节省6.5元,则集装箱总的表面积是()平方米,体积是()立方米。

答案:13:37.一列自然数0,1,2,3,…,2005,…,2004,第一个数是0,从第二个数开始,每一个都比它前一个大1,最后一个是2024。

现在将这列自然数排成以下数表:规定横排为行,竖排为列,则2005在数表中位于第()行和第()列。

答案:20;458.图2中,ABCD是长方形,E,F分别是AB,DA的中点,G是BF和DE的交点,四边形BCDG 的面积是40平方厘米,那么ABCD的面积是()平方厘米。

图2答案:60二、解答下列各题,要求写出简要过程(每题10分,共40分)9.图3是由风筝形和镖形两种不同的砖铺设而成。

第十六届“华罗庚金杯”少年数学邀请赛总决赛试卷(小学组第2试)

第十六届“华罗庚金杯”少年数学邀请赛总决赛试卷(小学组第2试)

2011年第十六届“华罗庚金杯”少年数学邀请赛总决赛试卷(小学组第2试)一、填空题(共3题,每题10分)1.(10分)某班共36人都买了铅笔,共买了50支,有人买了1支,有人买了2支,有人买了3支.如果买1支的人数是其余人数的2倍,则买2支铅笔的人数是.2.(10分)如图中,四边形ABCD的对角线AC与BD相交于O,E为BC的中点,三角形ABO的面积为45,三角形ADO的面积为18,三角形CDO的面积为69.则三角形AED的面积等于.3.(10分)一列数的前三个依次是1,7,8,以后每个都是它前面相邻三个数之和除以4所得的余数,则这列数中的前2011个数的和是.二、解答题(共3题,每题10分,写出解答过程)4.有57个边长等于1的小等边三角形拼成一个内角都不大于180的六边形,小等边三角形之间既无缝隙,也没有重叠部分.则这个六边形的周长至少是多少?5.(10分)黑板上写有1,2,3,…,2011一串数.如果每次都擦去最前面的16个数,并在这串数的最后再写上擦去的16个数的和,直至只剩下1个数,则:(1)最后剩下的这个数是多少?(2)所有在黑板上出现过的数的总和是多少?6.(10分)试确定积(21+1)(22+1)(23+1)…(22011+1)的末两位的数字.2011年第十六届“华罗庚金杯”少年数学邀请赛总决赛试卷(小学组第2试)参考答案与试题解析一、填空题(共3题,每题10分)1.(10分)某班共36人都买了铅笔,共买了50支,有人买了1支,有人买了2支,有人买了3支.如果买1支的人数是其余人数的2倍,则买2支铅笔的人数是10 .【分析】买1支的人数是其余人数的2倍,也就是说全班人数相当于其余人数的1+2=3倍,先根据除法意义,求出买2支和3支铅笔的人数,再设买2支铅笔的有x人,进而用x表示出买3支铅笔的人数,最后依据买笔总数=人数×买笔支数,用x表示出买笔总人数,根据铅笔总数是50支列方程,依据等式的性质即可求解.【解答】解:36÷(1+2)=36÷3=12(人);设买2支铅笔的人数是x人12×2×1+2x+(12﹣x)×3=5024+2x+36﹣3x=5060﹣x+x=50+x60﹣50=50+x﹣50x=10;答:买2支铅笔的人数是10.故答案为:10.2.(10分)如图中,四边形ABCD的对角线AC与BD相交于O,E为BC的中点,三角形ABO的面积为45,三角形ADO的面积为18,三角形CDO的面积为69.则三角形AED的面积等于75 .【分析】若将AD作为底边,因为点E为BC的中点,那么△ADB,△ADE,△ADC的高为等差数列(可以认为中间三角形的高是两边三角形的高的平均数),所以面积也呈等差数列(可以认为中间三角形的面积是两边三角形的面积的平均数).据此可解.【解答】解:若将AD作为底边,因为点E为BC的中点,所以△ADE的高为△ADB和△ADC的高的平均数,因此△ADE的面积就等于△ADB和△ADC的面积的平均数.所以,S△ADE=(S△ADB+S△ADC)÷2=(45+18+18+69)÷2=75;答:三角形AED的面积等于75.3.(10分)一列数的前三个依次是1,7,8,以后每个都是它前面相邻三个数之和除以4所得的余数,则这列数中的前2011个数的和是3028 .【分析】根据题意,列出这个数列是:1、7、8、0、3、3、2、0、1、3、0、0、3、3、2、0、1、3、0、0…易见,从第4个数开始每8个数一个循环.由于前面还有3个数,所以需用2011减去3的得数除以8,求出有多少组,再相加即可解答.【解答】解:这个数列:1、7、8、0、3、3、2、0、1、3、0、0、3、3、2、0、1、3、0、0…(2011﹣3)÷8=251(0+3+3+2+0+1+3+0)×251+1+7+8=12×251+16=3028故答案为:3028.二、解答题(共3题,每题10分,写出解答过程)4.有57个边长等于1的小等边三角形拼成一个内角都不大于180的六边形,小等边三角形之间既无缝隙,也没有重叠部分.则这个六边形的周长至少是多少?【分析】在面积不变的情况下,要使得这些等边三角形堆成的边长最短,则使它们堆城一个六边形,且六边形的每个内角都是120度.然后构建一个大三角形:把大三角形每条边n等分,连结各边n等分点一共构成n×n个小等边三角形解答即可.【解答】解:我们把一个等边三角形每条边2等分,可以连结各边中点一共构成2×2=4个小等边三角形;如果把每条边3等分,连结各边三等分点一共构成3×3=9个小等边三角形;以此类推,把每条边n等分,连结各边n等分点一共构成n×n个小等边三角形.7×7<57<8×8<9×9,8×8=64,64﹣57=7,7不能分解成为3个完全平方数之和的形式,9×9=81,81=4+4+16,所以我们就可以把这57个小三角形放在如图所示的等边三角形中,每条边被9等分,△ABC的边长为9,三个角各被切除一部分,此时DE=5,EF=2,FG=3,GH=4,HI=3,DI=2,则DE+EF+FG+GH+HI+DI=19,即这个六边形的周长至少是19.答:这个六边形的周长至少是19.故答案为:19.5.(10分)黑板上写有1,2,3,…,2011一串数.如果每次都擦去最前面的16个数,并在这串数的最后再写上擦去的16个数的和,直至只剩下1个数,则:(1)最后剩下的这个数是多少?(2)所有在黑板上出现过的数的总和是多少?【分析】(1)每操作一次,不影响黑板上所有数的总和,因此最后剩下的和=1+2+3+…+2011,根据高斯求和公式完成即可.(2)由于倒数第2次操作,黑板上就16个数,总和是2023066,这16个数来源于16×16=256个数,这256个数的和也同上.2011﹣(16﹣1)x=256,x=117次显然,从开始,只要117次操作,黑板上就剩256个数.据此依据规则分析即可.①原有2011个数,和2023066②操作117次,黑板剩余256个数:1873到2011,新出现117个和.这117个和=2023066﹣(1873+2011)*139/2=1753128③操作16次,黑板剩余16个数都是新出现,和=2023066④操作1次,黑板剩余1个数=2023066;综上,所有出现过的数=2023066+1753128+2023066+2023066=7822326 【解答】解:(1)1+2+3+…+2011=(1+2011)×2011÷2=2012×2011÷2=2023066答:最后剩下的这个数是2023066.(2)由于倒数第2次操作,黑板上就16个数,总和是2023066,这16个数来源于16×16=256个数,这256个数的和也同上.2011﹣(16﹣1)x=256,x=117次,显然,从开始,只要117次操作,黑板上就剩256个数.①原有2011个数,和2023066②操作117次,黑板剩余256个数:1873到2011,新出现117个和.这117个和=2023066﹣(1873+2011)×139÷2=1753128③操作16次,黑板剩余16个数都是新出现,和=2023066④操作1次,黑板剩余1个数=2023066综上,所有出现过的数=2023066+1753128+2023066+2023066=7822326.6.(10分)试确定积(21+1)(22+1)(23+1)…(22011+1)的末两位的数字.【分析】首先判断出积能被25整除,由于各因数均为奇数,则判断积的末两位数字为25或75,结合各因数被4整除的余数特点判断积的余数,进而判断出末两位数字为75.【解答】解:设n=(21+1)×(22+1)×(23+1)×…×(22011+1),由于各因数2k+1均为奇数,其中22+1=5,26+1=65=5×13,所以n≡0(mod25),此时知n的末两位数字要么为25,要么为75.又21+1≡3(mod4),对k≥2,都有2k+1≡1(mod4),所以n≡3(mod4),即n的末两位数字被4除余3,而25≡1(mod4),75≡3(mod4),所以n 的末两位数字为75.答:(21+1)(22+1)(23+1)…(22011+1)的末两位的数字75.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/5/7 10:51:42;用户:小学奥数;邮箱:pfpxxx02@;学号:20913800。

“华罗庚金杯”少年数学邀请赛(口试)试题1-10届

“华罗庚金杯”少年数学邀请赛(口试)试题1-10届

华罗庚金杯少年数学邀请赛口试试题第01届华罗庚金杯少年数学邀请赛口试试题1. 这是七巧板拼成的正方形,正方形边长20厘米,问七巧板中平行四边形的一块(如右图中阴影部分)的面积是多少?2.从所有分母小于10的真分数中,找出一个最接近0.618的分数。

3.有49个小孩子,每人胸前有一个号码,号码从1到49各不相同,请你挑选出若干个小孩,排成一个圆圈,使任何相邻两个小孩的号码数的乘积小于100,你最多能挑选出多少个小孩子?4.有一路公共汽车,包括起点和终点站共有15个车站,如果有一辆车,除终点到站外,每一站上车的乘客中,恰好各有一位乘客从这一站到以后的每一站,为了使每位乘客都有座位,问这辆公共汽车最少要有多少个座位?5.正方形的树林每边长1000米,里面有白杨树和榆树,小明从树林的西南角走入树林,碰见一株白杨树就往正北走,碰见一株榆树就往正东走,最后他走了东北角上,问:小明一共走了多少米的距离?6.自然数按从小到大的顺序排成螺旋形,在2处拐第一个弯,在3处拐第二个弯,在5处拐第三个弯……问拐第二十个弯的地方是哪一个数?第02届华罗庚金杯少年数学邀请赛口试试题1、如下图是一个对称的图形,黑色部分面积大还是阴影部分面积大?2、你能不能将自然数1到9分别填入右面的方格中,使得每个横格中的三个数之和都是偶数?3、司机开车按顺序到五个车站接学生到学校(如下图),每个站都有学生上车,第一站上了一批学生,以后每站上车的人数都是前一站上车人数的一半,车到学校时,车上最少有多少学生?4、如图中五个正方形的边长分别是1米、2米、3米、4米、5米。

问:白色部分面积与阴影部分面积之比是多少?5、用1、2、3、4、5这五个数两两相乘,可以得到10个不同的乘积,问乘积中是偶数多还是奇数多?6、7、将右边的硬纸片沿虚线折起来,便可作成一个正方体,问:这个正方体的2号面对面是几号面?(如下图)8、下面是一个11位数,它的每三个相邻数之和都是20,你知道打“?”的数字是几?9、有八张卡片,右图分别写着自然数1到8,从中取出三张,要使这三张卡片上的数字之和为9,问有多少种不同的取法?第03届华罗庚金杯少年数学邀请赛团体决赛口试1.一条白色的正方形手帕,它的边长是18厘米,手帕上横竖各有二道红条,如右图阴影所示部分,红条宽都是2厘米.问:这条手帕白色部分的面积是多少?2.伸出你的左手,从大拇指开始如图所示的那样数数字,1,2,3,……,问:数到1991时,你数在那个手指上?3.有3个工厂共订300份吉林日报,每个工厂订了至少99份,至多101份.问:一共有多少种不同的订法?4.图上有两条垂直相交的直线段AB、CD,交点为E(如下图).已知:DE=2CE,BE=3AE.在AB和CD上取3个点画一个三角形.问:怎样取这3个点,画出的三角形面积最大?5.如下图中有两个红色的圆,两个蓝色的圆,红色圆的直径分别是1992厘米和1949厘米,蓝色圆的直径分别是1990厘米和1951厘米.问:红色二圆面积大还是蓝色二圆面积大?6.在一张9行9列的方格纸上,把每个方格所在的行数和列数加起来(如下图),填在这个方格中,例如a=5+3=8.问:填入的81个数字中,奇数多还是偶数多?7.能不能在下式:1□2□3□4□5□6□7□8□9=10的每个方框中,分别填入加号或减号,使等式成立?8.把一个时钟改装成一个玩具钟(如右图),使得时针每转一圈,分针转16圈,秒针转36圈.开始时3针重合.问:在时针旋转一周的过程中,3针重合了几次?(不计起始和终止的位置).9.将1,2,3,4,5,6,7,8这8个数分成3组,分别计算各组数的和.已知这3个和互不相等,且最大的和是最小的和的2倍.问:最小的和是多少?10.这是一个棋盘,将一个白子和一个黑子放在棋盘线交叉点上,但不能在同一条棋盘线上.问:共有多少种不同的放法(如下图)?11.这是两个圆,它们的面积之和为1991平方厘米,小圆的周长是大圆周长的90%(如右图).问:大圆的面积是多少?12.有一根1米长的木条,第一次去掉它的,第二次去掉余下木条的;第三次又去掉第二次余下木条的,等等;这样一直下去,最后一次去掉上次余下木条的.问:这根木条最后还剩下多长?13.这是一个楼梯的截面图(如下图),高2.8米,每级台阶的宽和高都是20厘米.问:此楼梯截面的面积是多少?14.请找出6个不同的自然数,分别填入6个括号中,使这个等式成立.第04届华罗庚金杯少年数学邀请赛团体决赛口试1.2×3×5×7×11×13×17这个算式中有七个数连乘,请回答:最后得到的乘积中,所有数位上的数字和是多少?请讲一讲你是怎样算的?2.这是一个中国象棋盘(图中小方格都是相等的正方形,“界河”的宽等于小正方形边长),黑方有一个“象”,它只能在1,2,3,4,5,6,7位置中的一个,红方有两个“相”,它们只能在8,9,10,11,12, 13,14中的两个位置.问:这三个棋子(一个“象”和两个“相”)各在什么位置时,以这三个棋子为顶点构成的三角形的面积最大?3.将一根长为374厘米的合金铝管截成若干根36厘米和24厘米两种形状的短管(加工损耗忽略不计)问:剩余部分的管子最少是多少厘米?4.乙两人同时从A出发向B行进,甲速度始终不变,乙在走前面路程时,速度为甲的2倍,而走后面路程时,速度是甲的,问甲、乙二人谁选到B?请你说明理由。

第十六届华赛杯小学组决赛试题及答案

第十六届华赛杯小学组决赛试题及答案

第十六届华罗庚金杯少年数学邀请赛决赛试题(深圳赛区小学组)(时间: 2011年4月16日)一、填空(每题 10 分, 共80分)1.11122181819 .2320320192020⎛⎫⎛⎫⎛⎫++++++++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2.甲车从A 出发驶向B,往返来回;乙车从B 同时出发驶向A,往返来回.两车第一次相遇后,甲车继续行驶4小时到达B ,乙车继续行驶1小时到达A. 若A,B 两地相距100千米,那么当甲车第一次到达B 时,乙车的位置距离A 千米。

3.每个铅字上刻有一个数码.如果印刷十二页书,所用的页码铅字要以下15个:1,2,3,4,5,6,7,8,9,1,0,1,1,1,2。

现要印刷一本新书,从库房领出页码铅字共2011个,排版完成后有剩余.那么,这本书最多有页.最少剩余 个铅字.4. 一列数:8,3,1,4,.….., 从第三个开始,每个数都是最靠近它前两个数的和的个位数.那么第2011个数是 .5.编号从1到50的50个球排成一行,现在按照如下方法涂色:1)涂2个球;2)被涂色的2个球的编号之差大于2.如果一种涂法被涂色的两个球与另一种涂法被涂色的两个球至少有一个是不同号的,这两种涂法就称为”不同的”.那么不同的涂色方法有种.6. A,B两地相距100千米。

甲车从A到B要走m个小时,乙车从A 到B要走n个小时,m ,n是整数.现在甲车从A,乙车从B同时出发,相向而行,经过5小时在途中C点相遇。

若甲车已经走过路程的一半,那么C到A路程是千米。

7. 自然数b与175的最大公约数记为d. 如果176(111)51⨯-⨯+=⨯+,b d d则b = .8. 如右图. ABCD为平行四边形.AE=2EB.若三角形CEF的面积=1.那么,平行四边形ABCD的面积= .二、解答下列各题(每题10 分, 共40分, 要求写出简要过程)9.三位数的十位数字与个位数字的和等于百位数字的数,称为”好数”.共有多少个好数?10.在下列2n 个数中,最多能选出多少个数,使得被选出的数中任意两个数的比都不是2或12?2345213, 32, 32, 32, 32, 32,, 32.n -⨯⨯⨯⨯⨯⨯11 .一个四位数abcd 和它的反序数dcba 都是65 的倍数.求这个数.12. 用写有+1和-1的长方块放在10n方格中,使得每一列和每一行的数的乘积都是正的,n的最小值是多少?三、解答下列各题(每题15 分, 共30分, 要求写出详细过程)13. 十五个盒子,每个盒子装一个白球或一个黑球.,且白球不多于 12个.你可以任选三个盒子来提问:“这三个盒子中的球是否有白球?”并得到真实的回答. 那么你最少要问多少次,就能找出一个或更多的白球?14. 求与2001互质,且小于2001的所有自然数的和。

第十六届“华杯赛”小学组决赛试题A答案

第十六届“华杯赛”小学组决赛试题A答案

第十六届华罗庚金杯少年数学邀请赛决赛试题A 参考答案(小学组)一、 填空题 (每小题 10分,共80分)二、解答下列各题 (每题10分,共40分, 要求写出简要过程)9. 答案: 2011平方厘米.解答. 连接FD 的直线与AE 的延长线相交于H . 则△DFG 绕点D 逆时针旋转180o 与△DHE 重合,DF=DH , ADH AFD S S ∆∆=.梯形AEGF 的面积=△AFH 的面积=2×△AFD 的面积=长方形ABCD 的面积 =2011(平方厘米).10. 答案:13种可能.解答. 分几种情形考虑.第一种情形: 线路号的数字中没有荧光管坏了. 只有351一个可能线路号. 第二种情形: 线路号的数字中有1支荧光管坏了.坏在第一位数字上, 可能的数字为9, 线路号可能是951;坏在第二位数字上, 可能的数字为6,9, 线路号可能是361, 391;坏在第三位数字上, 可能的数字为7, 线路号可能是357.第三种情形: 线路号的数字中有2支荧光管坏了.都坏在第一位数字上, 可能的数字为8, 线路号可能是851;都坏在第二位数字上, 可能的数字为8, 线路号可能是381;都坏在第三位数字上, 可能的数字为4, 线路号可能是354;坏在第一、二位数字上, 第一位数字可能的数字为9,第二位数字可能的数字为6,9, 线路号可能是961, 991;坏在第一、三位数字上, 第一位数字可能的数字为9,第三位数字可能的数字为7, 线路号可能是957;坏在第二、三位数字上,第二位数字可能的数字为6,9, 第三位数字可能的数字为7,线路号可能是367, 397.所以可能的线路号有13个:351,354,357,361,367,381,391,397,851,951,957,961,991.11. 答案: 3, 5.解答. 设这个月的第一个星期日是a 日(71≤≤a ), 则这个月内星期日的日期是a k +7, k 是自然数, 317≤+a k . 要求有三个奇数.当a =1时, 要使7k +1是奇数, k 为偶数, 即k 可取0, 2, 4三个值, 此时,177+=+k a k 分别为1, 15, 29, 这时20号是星期五.当a =2时, 要使7k +2是奇数, k 为奇数, 即k 可取1, 3两个值, 7k +2不可能有三个奇数.当a =3时, 要使7k +3是奇数, k 为偶数, 即k 可取0, 2, 4三个值, 此时377+=+k a k 分别为3, 17, 31, 这时20号是星期三.当74≤≤a 时, a k +7不可能有三个奇数.12. 答案: 253.解:令k m 15=, k 是自然数, 首先考虑满足下式的最大的m ,.201115151153152151≤⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡-++⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡m m 于是.2011213152)1(1515)1(152151150151511531521512≤-=+-=+⨯-++⨯+⨯+⨯=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡-++⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡k k k k k kk m m 因此.402213152≤-k k 又40224114171317152>=⨯-⨯, 40223632161316152<=⨯-⨯,得知k 最大可以取16. 当16=k 时, m =240. 注意到这时312161952363220112131520112+⨯==-=--k k . 注意到20112024131618161513151615121516152151615115161515161511516152151>=⨯+=⎥⎦⎤⎢⎣⎡+⨯+⎥⎦⎤⎢⎣⎡+⨯++⎥⎦⎤⎢⎣⎡+⨯+⎥⎦⎤⎢⎣⎡+⨯+⎥⎦⎤⎢⎣⎡⨯+⎥⎦⎤⎢⎣⎡-⨯++⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡ 而201120081216181615121516153152151<=⨯+=⎥⎦⎤⎢⎣⎡+⨯++⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡ .所以253 是满足题目要求的n的最小值.三、解答下列各题(每小题15分,共30分,要求写出详细过程)13.答案: 312解答. 由于2+0+1+1=4 且0+1+2+3+4+6+7+8+9=40, 4≡40(mod 9), 所以, 九个不同的汉字代表的数字:0, 1, 2, 3, 4, 6, 7, 8, 9.易知:40-4=36, 36÷9=4(次), 说明此算式共发生四次进位.“4=2+2=1+1+2=1+2+1”显然:①华=1, “4=2+2”无解②华=1, “4=1+1+2”有解A:28+937+1046=2011, 可组成算式36种(6×6×1=36)B:69+738+1204=2011, 可组成算式48种(6×4×2=48)C:79+628+1304=2011, 可组成算式48种(6×4×2=48)③华=1, “4=1+2+1”有解A:46+872+1093=2011, 可组成算式36种(6×6×1=36)B:98+673+1240=2011, 可组成算式72种(6×6×2=72)C:97+684+1230=2011, 可组成算式72种(6×6×2=72)总计:72×3+96=216+96=312(种).14.解答. 如左下图, 设M, N, P分别为棱GC, GF, GH的中点, 'M, 'N, 'P 分别为棱AE, AD, AB的中点, O为正方体的中心(长方形BDHF的中心).(1)第一只蜘蛛甲可以把爬虫控制在右上图所示的范围内.首先蜘蛛甲做与爬虫关于点O的对称方向的移动, 不妨设爬虫由G沿棱GC 向点M移动, 蜘蛛甲由A沿棱AE向点'M移动, 爬虫被限制在GM上. 当爬虫到达点M时, 蜘蛛甲也同时到达点'M. 然后蜘蛛甲改变策略, 做与爬虫关于平面BDHF对称的方向移动.a) 当爬虫到达点B, D, F, H时, 蜘蛛甲捉住爬虫.b) 当爬虫未到达点B, D, F, H时, 爬虫被控制在左上图所示的范围内.(2) 蜘蛛乙先移动到点G, 由于右上图无环路, 蜘蛛乙可以跟在爬虫后面, 总可以捉住爬虫.。

第十六届华罗庚金杯少年数学邀请赛决赛试卷(七年级组A卷)含答案

第十六届华罗庚金杯少年数学邀请赛决赛试卷(七年级组A卷)含答案

二、解答下列各题 (每题 10 分, 共 40 分, 要求写出解题过程)
9、一本书标有 2011 页, 从第一页开始每 11 页就在最后一页的页面加注一个红 圈, 直到末页. 然后从末页开始向前, 每 21 页也在最前一页加注一个红圈, 直到 第一页. 问一共有多少页加注了两个红圈, 并写出它们的页面号码. 10、 如图, M , N 分别为四边形 ABCD对角线 AC、BD 的中点 , 过 M、N 的直线分别交 CD、AB 于 E、F . 如果三角形 ABE 的面积为 45, 求三角形 CDF 的面积. 11、设 S1 | x1 |, S 2 | S1 x2 |, , S n | S n 1 xn | , 将1, 2, 3, , 2011这些数适当地分 配给 x1 , x2 , x3 , , x2011 , 使得 S 2011 尽量大, 那么 S 2011 最大是多少? 12、求所有正整数 x, y, 使得 x2+3y 与 y2+3x 都是完全平方数.
m 1 0 0 2k 3, 1

100 2k 3 1 2 0 11 k 0 。 8
所以,两圈重合的页面有 9 页。 10. 答案:45 解: 因为 M 是 AC 的中点, 所以 A与C到EF 的距离相等, 因此 S AEF S CEF 。 同理: S BEF S DEF 。 两式相加可得 S ABE S CDF 。
选手诚信协议:
在参加本次“华杯赛”活动期间,我确定没有就所涉及的问题或结论,与任何人、用 任何方式进行交流或讨论. 我确定本试卷的答案均为我个人独立完成的成果, 否则愿接受本 次成绩无效的处罚. 我同意遵守以上协议. 选手签名: .
一、填空题(每小题 10 分, 共 80 分)
1、公交车的线路号是由数字显示器显示的三位数, 其中每个数字是由横竖放置 的七支荧光管显示, 如下图所示.

第十六届“华杯赛”深圳小学组决赛试题答案

第十六届“华杯赛”深圳小学组决赛试题答案

第十六届华罗庚金杯少年数学邀请赛决赛试题与解答(小学组)一、填空(每题 10 分, 共 80 分)1. ⎛ 11 1 ⎫ ⎛2 2 ⎫ ⎛ 18 18 ⎫19++ +⎪ ++ +⎪ + ++⎪ +=.2 3 20 20 20 ⎝ 20 ⎭ ⎝ 3 ⎭⎝ 19 ⎭解。

⎛ 1 11 ⎫ ⎛2 2 ⎫ ⎛ 18 18 ⎫ 19++ +⎪ + + +⎪ + + +⎪+2 3 3 20 20 ⎝ 20 ⎭ ⎝ 20 ⎭ ⎝ 19 ⎭1 ⎛ 12 ⎫ ⎛ 1 23 ⎫ ⎛ 1 2 18 ⎫ ⎛ 1 219 ⎫=++⎪ +++⎪ + + ++ +⎪ + ++ +⎪2 ⎝3 3 ⎭ ⎝4 4 4 ⎭ ⎝ 19 19 19 ⎭ ⎝ 20 20 20 ⎭=12 + 1 + 1 12 + + 9 + 9 12 = 12 ⨯ (1 + 2 +3 + + 19)= 952.甲车从 A 出发驶向 B,往返来回;乙车从 B 同时出发驶向 A,往返来回.两车第一次相遇后,甲车继续行驶 4 小时到达 B ,乙车继续行驶 1 小时到达 A.若 A,B 两地相距 100 千米,那么 当甲车第一次到达 B 时,乙车的位置距离 A 千米。

解.设甲车车速为 v 1 ,乙车车速为 v 2 . 如图,第一次相遇在 C 点,则AC = v 1 , 而AC = v , BC = 4 v , v 2 = v 1 , BC 4vv 2 2 1 v 21v 2 = 2v 1.所以, 当甲车第一次到达 B 时,乙车的位置 在 B 处.距离 A100 千米。

3.每个铅字上刻有一个数码.如果印刷十二页书,所用的页码铅字要以下 15 个:1,2,3,4,5,6,7,8,9,1,0,1,1,1,2。

现要印刷一本新书,从库房领出页码铅字共 2011 个,排版完成后有剩余.那么,这本书最多有 页.最少剩余 个铅字. 解.前9 页用9个铅字;从第10页到99 页, 每页用2 个铅字, 前99 页共用189 个铅字.从第100页到999 页, 每页用3 个铅字, 前k 页,100 ≤ k ≤ 999, 共用189+3( k - 99) 个铅字. 189 + 3(k - 99) < 2011, 3k < 2011 + 297 - 189 = 2119 = 3⨯ 706 +1. 答。

华罗庚金杯”数学邀请赛决赛模拟试卷(四年级组)附答案

华罗庚金杯”数学邀请赛决赛模拟试卷(四年级组)附答案

华罗庚金杯”数学邀请赛决赛模拟试卷(四年级组)附答案1.7×9×11×13×…×2009×2011的个位数是多少?2.哈利波特的魔法书有120页,但被撕掉一页后,剩下的页码之和为7197.被撕掉的那一页的页码是多少?3.如图,不含▲的正方形有几个?4.有三个盒子,标有一号、二号、三号。

一开始,一号盒子里有x个小球,二号盒子里有y个小球,三号盒子里有z个小球。

第一次从一号盒子中拿出20个小球放到二号盒子中,第二次又从二号盒子中拿出15个小球放到三号盒子中,最后再从三号盒子中拿出20个小球放到一号盒子中。

这时三个盒子里面的小球都是60个。

求一号、二号、三号盒子里面原来各有多少个小球。

5.有大杯和小杯两个,两个都未装满水。

如果将小杯中的部分水倒入大杯中,使得大杯恰好装满水,那么此时小杯中还剩下30克水。

如果将大杯中的部分水倒入小杯中,使得小杯恰好装满水,那么此时大杯中还剩下90克水。

已知大杯的容积是小杯的2倍,原来两个中共装了多少克水?6.A、B两地之间共有70千米的路程,分为上坡和下坡两种路段。

兰兰上坡的速度是5千米/小时,下坡的速度是7千米/小时。

如果去程用了10.5小时,则返回时需要多少小时?7.三年级一班共有42名学生,其中39人参加了美术班,34人参加了体操班,30人参加了游泳班,37人参加了奥数班。

那么,至少有一个学生参加了这四个班级。

8.求一个各位数字之和为400的自然数n,使得n最小。

n 应该是几位数?它的首位数字应该是几?9.清明节,三年一班和三年二班的同学们一起去扫墓。

如果两个班级同时向同一方向前进,6分钟后,一班的队伍超过了二班的队伍。

一班每分钟行60米,二班每分钟行50米。

如果两个班级的队尾同时向同一方向前进,5分钟后,一班的队伍再次超过了二班的队伍。

如果假设每个学生的长度是1米,那么一班和二班分别有多少人。

10.一个宽度为18厘米,长度未知的长方形小纸片,被折叠成三层后,其宽度变为6厘米。

2011、2012年华罗庚金杯少年数学邀请赛决赛真题及详解

2011、2012年华罗庚金杯少年数学邀请赛决赛真题及详解

2011、2012年华罗庚金杯少年数学邀请赛决赛真题及详解第十六届华罗庚金杯少年数学邀请赛 决赛试题A (小学组) (时间: 2011年4月16日10:00~11:30) 一、填空题(每小题 10分, 共80分) 1. 135713572468+++= . 2. 工程队的8个人用30天完成了某项工程的31, 接着增加了4个人完成其余的工程, 那么完成这项工程共用了 天. 3. 甲乙两人骑自行车同时从A 地出发去B 地, 甲的车速是乙的车速的1.2倍. 乙骑了5千米后, 自行车出现故障, 耽误的时间可以骑全程的61. 排除故障后, 乙的速度提高了60%, 结果甲乙同时到达B 地. 那么A, B 两地之间的距离为 千米. 4. 在火车站的钟楼上装有一个电子报时钟, 在圆形钟面的边界, 每分钟的刻度处都有一个小彩灯. 晚上9时35分20秒时, 在分针与时针所夹的锐角内有 个小彩灯. 5. 在边长为1厘米的正方形ABCD 中, 分别以A , B , C , D 为圆心, 1厘米为半径画四分之一圆, 交点E , F , G , H , 如图所示. 则中间阴影部分的周长为 厘米.(取圆周率 3.141π=) 6. 用40元钱购买单价分别为2元、5元和11元的三种练习本, 每种至少买一本, 而且钱恰好花完. 则不同的购买方法有 种.7. 已知某个几何体的三视图如右图,根据图中标示的尺寸(单位: 厘米),这个几何体的体积是 (立方厘米).学校____________姓名_________参赛证号密封线内请勿答题8. 将自然数1~22分别填在下面的“□”内(每个“□”只能填一个数), 在形成的11个分数中, 分数值为整数的最多能有 个.二、解答下列各题(每题10分, 共40分, 要求写出简要过程)9. 长方形ABCD 的面积是2011平方厘米. 梯形AFGE的顶点F 在BC 上, D 是腰EG 的中点. 试求梯形AFGE 的面积.10. 公交车的线路号是由数字显示器显示的三位数,其中每个数字是由横竖放置的七支荧光管显示,如右图所示. 某公交车的数字显示器有两支坏了的荧光管不亮, 显示的线路号为“351”, 则该公交车的线路号有哪些可能?11. 设某年中有一个月里有三个星期日的日期为奇数, 则这个月的20日可能是星期几?12. 以[]x 表示不超过x 的最大整数, 设自然数n 满足201115151153152151>⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡-++⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡n n , 则n 的最小值是多少?三、解答下列各题(每小题 15分,共30分,要求写出详细过程)13. 在右面的加法竖式中, 不同的汉字代表不同的数字. 问: 满足要求的不同算式共有多少种?14. 如图, 两只蜘蛛同处在一个正方体的顶点A , 而一只爬虫处在A 的体对顶点G . 假设蜘蛛和爬虫均以同样的速度沿正方体的棱移动, 任何时候它们都知道彼此的位置, 蜘蛛能预判爬虫的爬行方向. 试给出一个两只蜘蛛必定捉住爬虫的方案.2011年“华杯赛”复赛小学组试题及详解第16届华杯赛复赛小学组试题及详解1. 原式=(2+4+6+8)-(1/2+1/4+1/6+1/8)=20-(1+1/24)=18+23/24。

第十六届“华杯赛”小学组决赛试题D答案

第十六届“华杯赛”小学组决赛试题D答案

第十六届华罗庚金杯少年数学邀请赛决赛试题D 参考答案(小学组)一、 填空题 (每小题 10分,共80分)二、解答下列各题 (每题10分,共40分, 要求写出简要过程)9. 答案: 1901解答. 因为华杯决赛是四位数, 十六届是三位数, 兔年是两位数, 所以等式成立时有华杯决赛=19011010020112011=--≤--兔年十六届.当华杯决赛=1901, 十六届=100, 兔年=10时题目要求的等式成立. 10. 答案: 52.5.解答:因为DE AC //,所以COD AOE S S ∆∆=.又CDE COD S S CE OC ∆∆=,EACCODEAC AOE S S S S CE OE ∆∆∆∆==, 所以=OE OC CDEEACS S ∆∆. 因为三角形EAC 在边AC 上的高和三角形CDE 在边DE 上的高相等,所以21===∆∆DE AC S S OE OC CDE EAC . 因为21==∆∆OE OC S S DOE COD , 所以202==∆∆COD DOE S S . 因为21==∆∆OE OC S S AOE AOC , 所以52121===∆∆∆COD AOE AOC S S S . 所以15=+=∆∆∆AOE AOC ACE S S S .因为CE AB //,所以21==∆∆CE AB S S ACE ABC , 即5.721==∆∆ACE ABC S S . 所以5.52=+++=∆∆∆∆DOE COD ACE ABC ABCDE S S S S S .11. 答案: 7.解答. 每张卡片, 所写数字有几个约数就被翻过几次. 被翻了奇数次的卡片红色面朝上, 而只有完全平方数才能有奇数个约数, 所以本题也就是求写有完全平方数的卡片有几张, 而50765432112222222<<<<<<<≤,所以红色朝上的卡片共有7张. 12. 答案: 11厘米. 解答. 如图,球的内接正方体ABCD -A 1B 1C 1D 1的顶点在球面上, 它的(体)对角线AC 1就是球的直径, 即201021=⨯=AC (厘米).由图形的对称性, 可知 1111190,90AA C A B C ∠=︒∠=︒. 设正方体的棱长为a 即11111AA A B B C a ===, 连续用勾股定理两次, 得到2222221111112,3AC a AC AA AC a ==+=,则2224001320400,13333a a ====. 显然, 只要一个正方体的棱长a 为整数, 满足2133a ≤, 那么这个正方体一定可以放入球中, 因为 221112113314412=<<=. 故所求的棱长为整数的正方体的最大棱长等于11厘米.三、解答下列各题 (每小题 15分,共30分,要求写出详细过程)13. 答案: 2004, 2032, 2060, 2088.解答. 根据题意, 符合题意的年份必定是闰年(二月有29天), 并且二月一日恰好是星期日, 所以得先找到二十一世纪第一个二月一日是星期日的年份.根据题意, 2011年4月16日是星期六, 可倒推得2004年2月1日是星期日.这样可按每隔4⨯7(28)年为一个周期推算, 二十一世纪符合题意的年份有2004, 2032, 2060和2088年, 共有4个. 14. 答案:51703475,解答. 设这两个最简分数为am bk 和cm dk, 其中:()1b,d =; (1) ()1a,c =; (2) ()1am,bk =;()1cm,dk =. (3)既然cm am m -=, 所以有1a c -=. (4)又因为[]1050123557am,cm ==⨯⨯⨯⨯⨯,并结合(4),可得到: ① 14c =, 15a =,5m =,此时,757056bk dk -=,或 151416bk dk -=; (5) ② 6c =, 7a =,55m =⨯,此时,756516bk dk ⨯⨯-=; (6) ③ 5c =, 6a =,57m =⨯,此时,675716bk dk ⨯⨯-=; (7) ④ 2c =, 3a =,557m =⨯⨯,此时,35725716bk dk ⨯⨯⨯⨯-=; (8) ⑤ 1c =, 2a =,3557m =⨯⨯⨯,此时,235735716bk dk ⨯⨯⨯⨯⨯-=. (9) 上面第(6)式中,756576156bk dk bk dk ⨯⨯⎛⎫-=⨯-= ⎪⎝⎭,结合条件(1),必有5k ,即k 有约数5,和(3)矛盾. 即151416b k d k -=无解. 同样,(7) ,(8) 和 (9) 中,必有7k , 均和(3)矛盾,即都无解. 仅考虑(5),151416bk dk -=,151415141161514d bkbd bk dkkbd d b--===-, (10)根据(1),(2)和(3),应当有()()15141 15141b,d b ,d ,d b -=-=,此即意味着:n b d k ⨯-=)1415(, (11)并且(10)变形为11123nbd =⨯⨯,即n,b,d 只能取1,2,3,6. 由(3)和(11),可知:()()151141n,,n,==,因此得1n =. 同样,()151b,=,()141d ,=,因此可得:23b ,d ==. 所以()2151434bk d b =⨯-=,()3151451dk d b =⨯-=. 这两个分数是7534和7051.。

第十六届华罗庚金杯少年数学邀请赛总决赛

第十六届华罗庚金杯少年数学邀请赛总决赛

第十六届“华罗庚金杯”少年数学邀请赛总决赛华罗庚中学工作方案为确保第十六届“华罗庚金杯”少年数学邀请赛总决赛圆满成功,提高我校的办学知名度和办学成果,树立华罗庚中学良好的形象,展现华中人风采。

明确职责,各归其位,确保总决赛顺利开展,特制订本方案。

一、活动名称第十六届“华罗庚金杯”少年数学邀请赛总决赛二、活动宗旨弘扬华罗庚教授的爱国主义精神,学习华罗庚教授勤奋学习,献身科学的优秀品质三、参加单位及人数全国100个城市组队参赛,约1000余人四、时间与地点2011年7月22日至25日在我校举行五、主要工作(一)负责国内代表队接待工作(二)负责笔试考务工作(三)数学文化节活动六、工作领导小组组长:戴立波副组长:吴永丹、宋词、黄进添(协调)、姜前勇、涂光峰、张开河成员:戴辉、杨永强、范恩辉、蓝世剑、陈翰生、章智良、李京华、李茂恒、谢林海、石丽萍、侯粤春、杨元高、唐福东、韩建军、刘刚利、解凤英、张毅、刘卫忠、周淼淼、丁志勇、甄红、周铭耿、范碧珊、王文广、黄伟周、韩荣兰、闵庆田、张启龙、万金花、邓勇威、陈倬飞、邓亚军、张晓红、陈冠宁、邓勇威、黎润秋七、具体相关工作组(一)会务组组长:宋词组员:杨永强、李小艳、黄碧婷、莫永壮、范文静、罗丹、张涛、汤美娴、张秋君、董学凌主要职责:1、负责贵宾接待工作2、负责活动期间校内相关会议安排3、负责国内代表队派发相关资料(“华杯赛”活动指南、考务手册、文化节活动资料、学校宣传资料等)4、负责组织、安排国内参赛代表每天参加比赛及有关活动5、负责与市会务组联系、沟通协调6、负责车辆安排工作(二)考务组组长:黄进添组员:戴辉、杨永强、范恩辉、谢林海、陈翰生、李京华、丁志勇、甄红、张启龙、韩荣兰、熊伟、林惠琦、曾雨挺、戴慧婷主要职责:1、安排考务办公室、考场、报告厅、休息室、医疗室;2、培训、安排70名监考教师、考务工作人员;3、组织考试等工作。

(三)接待组1.惠州宾馆接待组:邓振武、刘素芬、熊晏樱、周玲、赵娟、2.金华悦酒店接待组:操瑞英、方惠灵、罗春霞、黄云霞、洪文洁3.学校接待组:北京、天津、石家庄、邯郸、郑州、洛阳、太原、呼和浩特、葫芦岛、营口、枣庄、青岛总负责人:吴永丹长春、吉林、辽源、哈尔滨、桂林、玉林、南宁、柳州、来宾、温州、慈溪、嘉兴、金华、上海、南京、徐州、金坛、盐城、合肥、蚌埠、马鞍山、福州、长沙、株洲、武汉、吉安、重庆、成都、邛崃、彭州、都江堰、贵阳、遵义、西宁、金昌、银川、乌鲁木齐、广州、江门、佛山、深圳、湛江、梅州、汕头、惠州总负责人:姜前勇(1)北京、天津负责人:章智良、谢凤英、北京接待员:陈婕、龙静瑶、李惠珠、刘鎏、邹银芬、天津接待员:向峰2)石家庄、邯郸、郑州、洛阳、太原、呼和浩特、葫芦岛、营口、枣庄、青岛负责人:张毅、张晓虹石家庄、邯郸接待员:温智勇郑州、洛阳接待员:邱惠茜太原、呼和浩特接待员:刘智皓葫芦岛、营口接待员:万金花枣庄、青岛接待员:宁婧(3)长春、吉林、辽源、哈尔滨、桂林、玉林、南宁、柳州、来宾、温州、慈溪、嘉兴、金华、上海、南京负责人:范碧珊、邓勇威长春接待员:朱春悠吉林、辽源、哈尔滨接待员:林夏桂林、玉林、南宁接待员:李淑媛柳州、来宾、温州接待员:张嘉玲慈溪、嘉兴、金华、上海接待员:张莹蓥南京接待员:陈颖颖(4)徐州、金坛、盐城、合肥、蚌埠、马鞍山、福州、长沙、株洲、武汉、吉安、重庆、成都、邛崃、彭州、都江堰负责人:刘刚利、邓亚军徐州、金坛、盐城接待员:刘蓓蓓合肥、蚌埠、马鞍山接待员:钟妙银福州、长沙、株洲、武汉接待员:杨谷吉安、重庆、成都接待员:何贝雅邛崃、彭州、都江堰接待员:周锦梅(5)贵阳、遵义、西宁、金昌、银川、乌鲁木齐、广州、江门、佛山、深圳、湛江、梅州、汕头、惠州负责人:杨元高、王文广贵阳、遵义、西宁接待员:林丽金昌、银川、乌鲁木齐接待员:白晶晶广州接待员:黄颖媛江门、佛山接待员:杨君深圳接待员:王慧斌湛江、梅州、汕头接待员:林丽红惠州接待员:吴珊珊主要职责:1、负责国内代表队参赛选手的接待工作(包括吃、住、行等活动)。

2011-2016年第16-22届华罗庚杯少年数学邀请赛几何试题(小学高年级组)全解析

2011-2016年第16-22届华罗庚杯少年数学邀请赛几何试题(小学高年级组)全解析

B
2011年第16届华罗庚杯少年数学邀请赛决赛C几何试题 长方形ABCD的面积为70,梯形AFGE的顶点F在BC上,D是EG的中点,则梯形AFGE的 的面积是()。
E A D
G
B
F
C
长方形ABCD的面积为70,梯形AFGE的顶点F在BC上,D是EG的中点,则梯形AFGE的 的面积是()。 解1:连接DF, E A D S△ADF= G
������ ������
利用蝴蝶模型,在梯形AFGE中, S□ AFGE
利用蝴蝶模型,在长方形ABCD中, S△ADF=
������ ������
S□ ABCD
B
F
C
故: S□ AFGE= S□ ABCD=70
长方形ABCD的面积为70,梯形AFGE的顶点F在BC上,D是EG的中点,则梯形AFGE的 的面积是()。
一个长40、宽25、高60的无盖长方体容器(厚度忽略不计)盛有水,深度为a,其中0 ˂a ≤60,现将棱长尾10的长方体铁块放在容器底面,问放入铁块后水深是()。
1
2
3
分析:无盖长方体容器盛有水情况有三种: 1、水很满;放入铁块后,水溢出; 2、水深很浅,放入铁块后,铁块一部分在水中,另一部分露出水面,水面也有升高。
A
由三角形AFC的面积和四边形DBEF的面积相等,得: S△AEC=S△BCD,则:������������ × ������������ = ������������ × ������������ 由于BD:AB=DM:AN=1:3,则:EC:BC=1:3
E
A
O C D
B
如图所示,AB∥CE,AC ∥ DE,且AB=AC=5,CE=DE=10。若

2022年第十六届华罗庚金杯赛少年数学邀请赛初赛试卷(小学组)及

2022年第十六届华罗庚金杯赛少年数学邀请赛初赛试卷(小学组)及

2022年第十六届华罗庚金杯赛少年数学邀请赛初赛试卷(小学组)及(时间2022年3月19日10:00-11:00)这次华杯赛,除上述十道题目外,南京有的考点还有2道附加题第11题:有6个时刻,6:30,6:31,6:32,6:33,6:34,6:35这几个时刻里,时刻时针和分针靠得最近,时刻时针和分针靠得最远。

第12题:一个纸片倒过来,0,1,8三个数字转180°后不变,6变成9,9变成6,其他数字转180°后没意义。

问,7位数转180°后不变的有个,其中能被4整除的数有个,这些转180°后不变的7位数的总和是.【参考答案及详解】1.任何四个连续自然数之和一定被4除余2,所以只有102满足条件。

“都为合数”这个条件可以被无视了。

询2.容易发现,如果原数字有n根火柴,则对应数字7-n。

原数字的火柴数目依次是2,5,5,4,5,6,3,7,6,6,包含了2,3,4,5,6,7,共6个不同数字,所以对应的也有6个不同的。

C3.这属于和倍问题,大数是小数的6倍,所以它们的和等于小数的7倍,即小数为6/7,大数为36/7,两数之积为216/49,两数之差为30/7=210/49,所以差为6/49。

D口4.任何两人说的话都不能同时为真,所以最多有一个人说的是真话,如果有一个人复习了,那么李说的是真话,符合题意;如果没有人复习了,那么张说的是真话,矛盾。

B口5.看蚂蚁所在的列,可知应该在中间一列,这列上有N和Q;看蚂蚁所在的行,可知应该在中间一行,所以是N。

B口6.增加3台计算机,时间变成75%也就是3/4,说明计算机增加到4/3,增加了1/3,原来有9台;如果减少3台计算机,减少到2/3,时间变为3/2,增加了1/2,所以原定时间是5/6某2=5/3(小时)。

A7.如图所示,有8个。

画出其中的两个,其余的完全对称。

88.相遇后,甲还需要3小时返回甲地。

第二次相遇时,甲距离相遇点的距离等于甲2.5小时的路程,乙用了3.5小时走这些路程,所以甲乙速度比为7:5。

16届华杯赛小学组获奖名单

16届华杯赛小学组获奖名单

通知第十六届全国“华罗庚金杯”少年数学邀请赛(广州赛区)决赛已于2011年4月16日举行,经市竞赛工作领导小组审定,现将广州市小学组获奖同学名单公布如后(排名不分先后)。

“华杯赛”(广州赛区)竞赛工作领导小组广州市教育局教学研究室二○一一年四月二十二日广州市参加第十六届全国“华罗庚金杯”少年数学邀请赛(广州赛区小学组)决赛获奖名单一等奖:(21人)凌晨越秀区中星小学余智仁越秀区农林下路小学方正韬越秀区育才学校朱炜铧越秀区东山培正小学梁天诺越秀区五羊小学何广森越秀区东山培正小学黄文韬越秀区沙涌南小学戴思婷越秀区东风东路小学吴宇昊越秀区东川路小学曾正韬天河区华阳小学郭子铭天河区先烈东小学黄芷霖天河区华师附小王迩东天河区体育东路小学唐山茖天河区华农附小吴涵泓天河区体育东路小学沈炜朋天河区华康小学张鹏海珠区中山大学附属小学梁逸爽海珠区昌岗中路小学徐子昱番禺区市桥德兴小学吴官泽番禺区华师附中番禺小学潘子非荔湾区协和小学二等奖:(84人)黄怡诗越秀区东风西路小学许博维越秀区东风东路小学曾比扬越秀区东风西路小学胡宇征越秀区东风东路小学陈羲越秀区东风西路小学马泽生越秀区东风东路小学李世中越秀区东风西路小学梁瑞江越秀区育才学校朱亦可越秀区东风西路小学李志衡越秀区育才学校马默凡越秀区文德路小学胡亦凡越秀区华侨外国语学校朱茜君越秀区文德路小学林立聪越秀区华侨外国语学校罗昊珲越秀区五羊小学陈睿祺越秀区铁一小学黄文皓越秀区沙涌南小学朱师健越秀区梅花村小学吕子原越秀区旧部前小学刘佳梁越秀区建设六马路小学周延泽越秀区中山二路小学周前越秀区东山实验小学林恺舜越秀区东川路小学罗静莹越秀区大沙头小学施扬越秀区朝天小学薛又天天河区暨大附小李昶晟天河区龙口西小学曾天宇天河区暨大附小丘恒越天河区龙口西小学朱江源天河区华师附小刘瀚泽天河区龙口西小学吴婧琳天河区华师附小胡东伟天河区华阳小学邵诗婷天河区华师附小邓俊华天河区华阳小学李康乾天河区华师附小施羊梦燊天河区中海康城小学梁正臣天河区华师附小陈泽颖天河区体育西路小学谢漪天河区华师附小钟鸣扬天河区龙岗路小学周文星天河区华师附小廖宁祎天河区华康小学李雅蕙天河区华师附小唐柟天河区华景小学冯迪维天河区华师附小黄莫尧天河区华工附小张亦弛天河区华师附小钟子健天河区员村小学刘烨天河区珠委小学潘子锐荔湾区康有为纪念小学鞠思亮荔湾区协和小学曾颢荔湾区康有为纪念小学李述霖荔湾区协和小学罗方志荔湾区康有为纪念小学黄舒婷荔湾区芳村小学程靖怡荔湾区康有为纪念小学龙子恒荔湾区芳村小学刘穗锦荔湾区康有为纪念小学张伊扬荔湾区西华路小学刘付蔚元荔湾区康有为纪念小学谢绍逸荔湾区西关外国语学校陈飞宇荔湾区沙面小学张天舜荔湾区乐贤坊小学郭肇伦荔湾区华侨小学沈文怀白云区三元里小学刘派白云区景泰小学黄天帜白云区景泰小学陈天睿白云区民航子弟学校苏泽盛白云区京溪小学陈卓欣海珠区晓港东马路小学罗国瑞海珠区万松园小学杨一凡海珠区同福中路第一小学肖亚语海珠区绿翠小学卫广溢海珠区金碧第一小学梁镇峰海珠区海珠区实验小学刘思齐海珠区珠区第二实验小学刘卓承海珠区海联路小学李灏斌海珠区昌岗中路小学董君行海珠区滨江中路小学马炜俊黄埔区石化小学邹健伟黄埔区横沙小学叶正夫番禺区祈福英语学校付婉莹番禺区番禺祈福新村学校三等奖:(202人)肖景芊越秀区铁一小学陈俊玮越秀区东山培正小学陈力扬越秀区铁一小学王昕之越秀区东山培正小学梁睿泽越秀区铁一小学刘涛语越秀区东山培正小学雍梦尘越秀区铁一小学周子越越秀区东山培正小学郭智伦越秀区铁一小学王渟茵越秀区东山培正小学陶凯雯越秀区农林下路小学肖然越秀区东山培正小学陈蕙章越秀区农林下路小学包晗越秀区东山培正小学徐盈紫越秀区农林下路小学朱学彬越秀区东山培正小学郑燊越秀区朝天小学郭嘉越秀区黄花小学张阅帆越秀区朝天小学李宇同越秀区黄花小学刘超宇越秀区朝天小学邹可翰越秀区黄花小学林郁东越秀区小北路小学刘悦嵩越秀区旧部前小学欧隽铨越秀区小北路小学叶畅越秀区旧部前小学高琪婷越秀区东风西路小学王昌承越秀区环市路小学黄晓飞越秀区东风西路小学吴溥樾越秀区环市路小学翟玮思越秀区东风西路小学樊骅越秀区豪贤路小学杨伯烨越秀区东风西路小学罗明浩越秀区豪贤路小学陈隽越秀区东风西路小学袁孟宣越秀区大沙头小学高亦飞越秀区东风西路小学叶子瑞越秀区大沙头小学谢晋轶越秀区东风西路小学陈俊延越秀区东川路小学谢方婷越秀区东风西路小学林逸晴越秀区八一实验小学黄杨峻越秀区东风西路小学陈予耿越秀区八一实验小学周俊丞越秀区东川路小学陶钰越秀区执信南路小学胡光雄越秀区东川路小学许灵筠越秀区永曜北小学陈卓琛越秀区东川路小学翟宏钊越秀区雄鹰学校何为越秀区东川路小学谢婧瑶越秀区水荫路小学张嘉鸿越秀区中山二路小学李炜越秀区建设六马路小学郑子纯越秀区中山二路小学傅明隽越秀区回民小学刘智豪越秀区中山三路小学张宇轩越秀区华侨外国语学校钟嘉迅越秀区中山三路小学黎迪文越秀区红火炬小学张睿达越秀区雅荷塘小学陈嘉岳越秀区广铁一小柯乃昌越秀区雅荷塘小学詹耀钊越秀区广铁四小李可非越秀区署前路小学王梓铭越秀区东山实验小学张怀瑾越秀区署前路小学鞠文桦越秀区登峰小学肖奕恒越秀区中星小学林元芃越秀区文德路小学陈景辉越秀区育才学校曾令韬越秀区文德路小学邵小珊越秀区育才学校伍思衡越秀区文德路小学凌晓风越秀区育才学校黄承国越秀区文德路小学黄嘉瑜越秀区育才学校刘佳明越秀区文德路小学曹于勤越秀区育才学校林汉钊越秀区文德路小学仇闻川越秀区育才学校颜雨扬越秀区文德路小学曾雨阳天河区华师附小陈韬宇天河区华师附小潘文歆天河区华师附小周金程天河区华师附小邢逸凡天河区华师附小卢嘉骏天河区华师附小杜彩卉天河区华师附小唐大元天河区华师附小黄永祯天河区华师附小廖如祺天河区华师附小靖诗慧天河区华师附小钱友坤天河区华师附小郭家星天河区华师附小林佳音天河区华师附小曹孛嫣天河区华师附小黄柏杰天河区华师附小肖玉麟天河区华师附小徐厚扬天河区华师附小霍俊铭天河区华师附小欧阳乾弘天河区华师附小胡遥天河区华师附小张文乐天河区华师附小黄逸彤天河区华师附小郑博扬天河区华师附小何云帆天河区华师附小任柏睿天河区华师附小周东霖天河区华师附小钟宇昊天河区龙口西小学郑晟天河区先烈东路小学林金煌天河区龙口西小学张海洋天河区先烈东路小学严笑天河区龙口西小学方睿敏天河区先烈东路小学孟子轩天河区龙口西小学刘崇旻天河区先烈东路小学李世昉天河区龙口西小学毛子涵天河区南国小学刘奕旻天河区华工附小黄晔鹏天河区第四十七中学汇景实验学校李泓毅天河区华工附小戴宇昕天河区第四十七中学汇景实验学校方子鸣天河区科技园中英文学校米剑骐天河区五一小学杨智航天河区骏景小学蒋泽林天河区五山小学徐俊豪天河区骏景小学林烜扬天河区体育西路小学李卫雨天河区天府路小学刘高志天河区体育东路小学王智炜天河区天府路小学唐宇轩天河区陶育路小学龙辰纲天河区华颖小学何禧贤天河区员村小学任海翔天河区华阳小学邓昉源天河区华景小学朱皓青天河区华成小学林泓旭天河区华景小学梁超宇天河区华美英语实验学校陈翼天河区华景小学宋荣天河区暨大附小翁溥鸿天河区华农附小齐思广荔湾区西关培正小学张臻煜荔湾区康有为纪念小学姚瞻楠荔湾区西关培正小学谭继宇荔湾区康有为纪念小学李欢荔湾区培真小学陈栢骥荔湾区康有为纪念小学黄洋逸荔湾区培真小学吴希荔湾区康有为纪念小学黄钰淇荔湾区培真小学万宗希荔湾区康有为纪念小学刘承昭荔湾区宝源小学朱俊熹荔湾区康有为纪念小学林罗萱荔湾区宝源小学杨钊承荔湾区康有为纪念小学佘怡谩荔湾区协和小学吴德桐荔湾区林凤娥小学黄家和荔湾区詹天佑小学梁嘉文荔湾区华侨小学杜浩民荔湾区芳村小学黄以昊海珠区同福中路第一小学叶晨滔海珠区绿翠小学余燊懿海珠区同福中路第一小学邝泊庭海珠区红棉小学杨沂霖海珠区同福中路第一小学黄嘉麟海珠区海珠区实验小学梁昶烨海珠区宝玉直小学黄炜枫海珠区赤岗小学杨一帆海珠区宝玉直小学苏一洋海珠区赤岗东小学陆慧莹海珠区新民六街小学阮泳瀚海珠区昌岗东路小学江梓漫白云区民航子弟学校时伟嘉白云区云景培英小学骆子豪白云区民航子弟学校马晓霞白云区积德小学朱煜章白云区广外附小郑言白云区竹料一小侯钊轶白云区广外附小黄艺峻桂园小学戴子轩黄埔区怡园小学薛靖云黄埔区荔园小学谢睿熙黄埔区怡园小学林嘉睿黄埔区荔园小学劳栋靖黄埔区石化小学周穗齐黄埔区文船小学刘越番禺区石碁东怡小学林泽锋番禺区市桥桥东小学张纪宁番禺区石碁东怡小学黄雨航番禺区市桥德兴小学邹韬萝岗区广州开发区第二小学何天成番禺区广州祈福新邨学校何昊智萝岗区广州开发区第二小学陈曦萝岗区广州开发区第二小学黄嘉杰花都区新华第四小学袁子昂从化市太平镇太平中心小学刘智辉花都区新华第四小学陈扬花都区新华圆玄小学申深潜南沙区金隆小学张俊哲增城市荔江小学。

2020年第十六届“无悔金杯”少年数学邀请赛决赛试卷c(小学组)

2020年第十六届“无悔金杯”少年数学邀请赛决赛试卷c(小学组)

2011年第十六届“华罗庚金杯”少年数学邀请赛决赛试卷C(小学组)一、填空题(每小题10分,共80分)1.(10分)3+5+7=.2.(10分)工程队的8个人用30天完成了某项工程的,接着增加了4个人完成其余的工程,那么完成这项工程共用了天.3.(10分)甲乙两人骑自行车同时从A地出发去B地,甲的车速是乙的车速的1.2倍.乙骑了4千米后,自行车出现故障,耽误的时间可以骑全程的.排除故障后,乙的速度提高了60%,结果甲乙同时到达B地.那么A,B两地之间的距离为千米.4.(10分)在火车站的钟楼上装有一个电子报时钟,在圆形钟面的边界,每分钟的刻度处都有一个小彩灯.晚上9时37分20秒时,在分针与时针所夹的锐角内有个小彩灯.5.(10分)在边长为2厘米的正方形ABCD中,分别以A,B,C,D为圆心,2厘米为半径画四分之一圆,交点E,F,G,H,如图所示.则中间阴影部分的周长为厘米.(取圆周率π=3.141)6.(10分)用同一种颜色对4×4方格的7个格子进行涂色,如果某列有涂色的方格则必须从最底下的格子逐格往上涂色,相邻两列中左侧的涂色的方格数大于或等于右侧涂色的方格数(如图).那么共有种涂色的图案.7.已知某个几何体的三视图如右图,根据图中标示的尺寸(单位:厘米),这个几何体的体积是(立方厘米)8.(10分)公交车的线路号是由数字显示器显示的三位数,其中每个数字是由横竖放置的七支荧光管显示,如图所示.某公交车的数字显示器有一支坏了的荧光管不亮,显示的线路号为“351”,则可能的线路号有个.二、解答下列各题(每题10分,共40分,要求写出简要过程)9.(10分)在如图的加法竖式中,不同的汉字可以代表相同的数字,使得算式成立.在所有满足要求的算式中,四位数的最大值是多少?10.(10分)长方形ABCD的面积是70平方厘米.梯形AFGE的顶点F在BC上,D是腰EG的中点.试求梯形AFGE的面积.11.(10分)不能写成3个不相等的合数之和的最大奇数是.12.(10分)设某年中有一个月里有三个星期日的日期为奇数,则这个月的21日可能是星期几?三、解答下列各题(每小题15分,共30分,要求写出详细过程)13.(15分)以[x]表示不超过x的最大整数,设自然数n满足,则n的最小值是多少?14.(15分)一个长40、宽25、高60的无盖长方体容器(厚度忽略不计)盛有水,深度为a,其中0<a≤60.现将棱长为10的立方体铁块放在容器的底面,问放入铁块后水深是多少?2011年第十六届“华罗庚金杯”少年数学邀请赛决赛试卷C(小学组)参考答案与试题解析一、填空题(每小题10分,共80分)1.(10分)3+5+7=17.【分析】直接通分,化为同分母分数相加计算即可.【解答】解:3+5+7=3+5+7=17.故答案为:17.2.(10分)工程队的8个人用30天完成了某项工程的,接着增加了4个人完成其余的工程,那么完成这项工程共用了40天.【分析】把这项工程看作单位“1”,用“÷30÷8=”求出1人1天的工作效率,则8+4=12个人工作效率和为×12=,剩下的工作总量是1﹣=,然后根据:工作总量÷工作效率=工作时间“求出后来用的时间,进而求出完成这项工程共用的时间.【解答】解:一个人的工作效率是:÷30÷8=,8+4=12(人)12个人的工作效率和为:×12=,共需:(1﹣)÷+30=10+30=40(天)答:那么完成这项工程共用了40天.故答案为:40.3.(10分)甲乙两人骑自行车同时从A地出发去B地,甲的车速是乙的车速的1.2倍.乙骑了4千米后,自行车出现故障,耽误的时间可以骑全程的.排除故障后,乙的速度提高了60%,结果甲乙同时到达B地.那么A,B两地之间的距离为36千米.【分析】设A、B相距为X;乙的速度是V,则甲的速度为1.2V;当乙走了4000的时候,甲肯定走了4800;假设乙排除故障的时间为t,那这段时间甲走的距离为1.2V×(×)=0.2X;我们假设从乙排除故障以后的时间为T,可列出:4800+0.2X+1.2VT=4000+1.6VT;我们得出800+0.2X=0.4VT;因为X=4000+1.6VT,代入得出:VT=20000,则进而算出X=36000米=36千米.【解答】解:设A、B相距为X;乙的速度是V,则甲的速度为1.2V:当乙走了4000的时候,甲走了:4000×1.2=4800(米);设乙排除故障的时间为t,那这段时间甲走的距离为:1.2V×(×)=0.2X;设从乙排除故障以后的时间为T,可列出:4800+0.2X+1.2VT=4000+1.6VT;得出800+0.2X=0.4VT;因为X=4000+1.6VT,代入得出:VT=20000,把VT=20000代入4800+0.2X+1.2VT=4000+1.6VT,得出:X=36000米=36千米.答:A,B两地之间的:距离为36千米.故答案为:36.4.(10分)在火车站的钟楼上装有一个电子报时钟,在圆形钟面的边界,每分钟的刻度处都有一个小彩灯.晚上9时37分20秒时,在分针与时针所夹的锐角内有11个小彩灯.【分析】首先分析以整点钟面为例,当9点时再走37分20秒,计算出时针的路程和分针的路程找到中间的格数差即可.【解答】解:依题意可知:从晚上9点开始,分针走了37格20秒时,时针走(37+)×=3;时针走了3格多.分针果了37,那么就是38到48之间的共有11个.故答案为:11.5.(10分)在边长为2厘米的正方形ABCD中,分别以A,B,C,D为圆心,2厘米为半径画四分之一圆,交点E,F,G,H,如图所示.则中间阴影部分的周长为 4.188厘米.(取圆周率π=3.141)【分析】如图所示:由题意很容易就可以得出△ABF为等边三角形,则弧为圆的周长,同理弧也为圆的周长,所以弧=+﹣=圆的周长,同理其余三段也为圆的周长,故阴影部分图形的周长=圆的周长,再据圆的周长公式即可得解.【解答】解:依题易知△ABF为等边三角形,故弧为圆的周长,同理弧也为圆的周长,所以弧=+﹣=圆的周长,同理其余三段也为圆的周长,故阴影部分的周长=圆的周长==4.188(厘米);答:中间阴影部分的周长为4.188厘米.故答案为:4.188.6.(10分)用同一种颜色对4×4方格的7个格子进行涂色,如果某列有涂色的方格则必须从最底下的格子逐格往上涂色,相邻两列中左侧的涂色的方格数大于或等于右侧涂色的方格数(如图).那么共有9种涂色的图案.【分析】按照要求把4x4方格的7个格子进行涂色,左侧的涂色的方格数大于或等于右侧涂色的方格数,把7分成几个数的和,左边的数最大是4,例如4+3=7,涂在第一列开始到第三列开始有3种图案;3+2+2=7,分别从1、2列开始涂色,有2种图案;3+2+1+1,只有从第1列开始涂色,有1种图案;4+1+1+1,只有从第1列开始涂色1种图案;4+2+1=7,分别从1、2列开始涂色,有2种图案;把它们加起来,即可得解.【解答】解:如图,3+2+1+1+2=9(种),答:那么共有9种涂色的图案.故答案为:9.7.已知某个几何体的三视图如右图,根据图中标示的尺寸(单位:厘米),这个几何体的体积是9000(立方厘米)【分析】观察三视图可知,原来的几何体是四棱锥,底面积为30×30,高为30,根据锥体的体积公式=sh计算即可.【解答】解:观察三视图可知,原来的几何体是四棱锥,底面积为30×30,高为30,所以×30×30×30=9000立方厘米,故答案为9000.8.(10分)公交车的线路号是由数字黑豆网https://黑豆网涵盖电影,电视剧,综艺,动漫等在线观看资源!金马医药招商网:金马医药招商网是专业提供医药代理招商的资讯信息发布平台,科技新闻网:科技新闻网每天更新最新科技新闻,这里有最权威的科技新闻资料。

第10~16届全国华罗庚金杯少年数学邀请赛决赛试题详细解释答案

第10~16届全国华罗庚金杯少年数学邀请赛决赛试题详细解释答案

第十届全国"华罗庚金杯"少年数学邀请赛决赛试题一、填空(每题10分,共80分)1.下表中每一列为同一年在不同历法中的年号,请完成下表:第1小题:2.计算:① 18.3×0.25+5.3÷0.4-7.13 = ( ); ②= ( )。

答案:10.695;13.计算机中最小的存储单位称为“位”,每个“位”有两种状态:0和1。

一个字节由8个“位”组成,记为B。

常用KB,MB等记存储空间的大小,其中1KB=1024B, 1MB=1024KB。

现将240MB的教育软件从网上下载,已经下载了70%。

如果当前的下载速度为每秒72KB,则下载完毕还需要()分钟。

(精确到分钟)答案:174.a,b和c都是二位的自然数,a,b的个位分别是7与5,c的十位是1。

如果它们满足等式ab+c=2005,则a+b+c=( )。

答案:1025.一个正方体的每个顶点都有三条棱以其为端点,沿这三条棱的三个中点,从这个正方体切下一个角,这样一共切下八个角,则余下部分的体积(图1中的阴影部分)和正方体体积的比是()。

答案:6.某种长方体形的集装箱,它的长宽高的比是4∶3∶2,如果用甲等油漆喷涂它的表面,每平方米的费用是0.9元,如果改用乙等油漆,每平方米的费用降低为0.4元,一个集装箱可以节省6.5元,则集装箱总的表面积是()平方米,体积是()立方米。

答案:13:37.一列自然数0,1,2,3,…,2005,…,2004,第一个数是0,从第二个数开始,每一个都比它前一个大1,最后一个是2024。

现在将这列自然数排成以下数表:规定横排为行,竖排为列,则2005在数表中位于第()行和第()列。

答案:20;458.图2中,ABCD是长方形,E,F分别是AB,DA的中点,G是BF和DE的交点,四边形BCDG 的面积是40平方厘米,那么ABCD的面积是()平方厘米。

图2答案:60二、解答下列各题,要求写出简要过程(每题10分,共40分)9.图3是由风筝形和镖形两种不同的砖铺设而成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011年第十六届“华罗庚金杯”少年数学邀请赛决赛试卷A(小学组)一、填空题(每小题3分,共80分)1.(3分)1+3+5+7=.2.(3分)工程队的8个人用30天完成了某项工程的,接着增加了4个人完成了其余的工程,那么完成这项工程共用了天.3.(3分)甲乙两人骑自行车同时从A地出发去B地,甲的车速是乙的车速的1.2倍.乙骑了5 千米后,自行车出现故障,耽误的时间可以骑全程的.排除故障后,乙的速度提高了60%,结果甲乙同时到达B地.那么A,B两地之间的距离为千米.4.(3分)在火车站的钟楼上装有一个电子报时钟,在圆形钟面的边界,每分钟的刻度处都有一个小彩灯,晚上9时35分20秒时,在分针与时针所夹的锐角内有个小彩灯.5.(3分)在边长为1厘米的正方形ABCD中,分别以A、B、C、D为圆心,1厘米为半径画四分之一圆,交点E、F、G、H,如图,则中间阴影部分的周长为厘米.(取圆周率π=3.141)6.(3分)用40元钱购买单价分别为2元、5元和11元的三种练习本,每种至少买一本,而且钱恰好花完.则不同的购买方法有种.7.(3分)已知某个几何体的三视图如右图,根据图中标示的尺寸(单位:厘米),这个几何体的体积是(立方厘米)8.(3分)将自然数1~22分别填在下面的“□”内(每个“□”只能填一个数),在形成的11个分数中,分数值为整数的最多能有个二、解答下列各题(每题10分,共40分,要求写出简要过程)9.长方形ABCD的面积是2011平方厘米.梯形AFGE的顶点F在BC上,D 是腰EG的中点.试求梯形AFGE的面积.10.公交车的线路号是由数字显示器显示的三位数,其中每个数字是由横竖放置的七支荧光管显示,如图所示.某公交车的数字显示器有两支坏了的荧光管不亮,显示的线路号为“351”,则该公交车的线路号有哪些可能?11.设某年中有一个月里有三个星期日的日期为奇数,则这个月的20日可能是星期几?12.以[x]表示不超过x的最大整数,设自然数n满足[]+[]+[]+…+[]+[]>2011,则n的最小值是多少?三、解答下列各题(每小题0分,共30分,要求写出详细过程)13.在如图的加法竖式中,不同的汉字代表不同的数字.问:满足要求的不同算式共有多少种?14.如图,两只蜘蛛同处在一个正方体的顶点A,而一只爬虫处在A的体对顶点G,假设蜘蛛和爬虫均以同样的速度沿正方体的棱移动,任何时候它们都知道彼此的位置,蜘蛛能预判爬虫的爬行方向,试给出一个两只蜘蛛必定捉住爬虫的方案.2011年第十六届“华罗庚金杯”少年数学邀请赛决赛试卷A(小学组)参考答案与试题解析一、填空题(每小题3分,共80分)1.(3分)1+3+5+7=18.【分析】根据加法结合律和加法交换律进行计算.【解答】解:1+3+5+7=1++3++5++7+=(1+3+5+7)+(+++)=16+2=18故答案为:18.2.(3分)工程队的8个人用30天完成了某项工程的,接着增加了4个人完成了其余的工程,那么完成这项工程共用了70 天.【分析】把这项工程看作单位“1”,用“÷30÷8=”求出1人1天的工作效率,则12个人工作效率和为×12=,求出剩下的工作总量,然后根据:工作总量÷工作效率=工作时间“求出后来用的时间,进而求出完成这项工程共用的时间.【解答】解:一个人的工作效率是÷30÷8=,12个人的工作效率和为×12=,共需:(1﹣)÷+30=40+30=70(天)答:一共用了70天.故答案为:70.3.(3分)甲乙两人骑自行车同时从A地出发去B地,甲的车速是乙的车速的1.2倍.乙骑了5 千米后,自行车出现故障,耽误的时间可以骑全程的.排除故障后,乙的速度提高了60%,结果甲乙同时到达B地.那么A,B两地之间的距离为45 千米.【分析】根据题意可知,甲乙的车速比是1.2:1=6:5,所以所用时间比为5:6,不妨设甲用时5t,则乙原定时间为6t,乙因故障耽误的时间为×6t=t,而最后全程用时5t,所以故障排除后,乙的提速使它节省了2t 的时间.提速后的速度与原来速度比为1.6:1=8:5,所以时间比为5:8,节省了三份的时间,所以每份为t,所以这段路原计划用时t×8=t,所以一开始的5千米原计划用时是6t﹣t=t,所以A、B之间的距离为5×(6t÷t),然后计算即可.【解答】解:甲乙的车速比是1.2:1=6:5,所以所用时间比为5:6;设甲用时5t,则乙原定时间为6t;乙因故障耽误的时间为×6t=t,而最后全程用时5t,所以故障排除后,乙的提速使它节省了2t的时间.提速后的速度与原来速度比为1.6:1=8:5,所以时间比为5:8,节省了三份的时间,所以每份为t,所以这段路原计划用时t×8=t,所以一开始的5千米原计划用时是6t﹣t=t,所以A、B之间的距离为:5×(6t÷t),=5×9,=45(千米);故答案为:45.4.(3分)在火车站的钟楼上装有一个电子报时钟,在圆形钟面的边界,每分钟的刻度处都有一个小彩灯,晚上9时35分20秒时,在分针与时针所夹的锐角内有12 个小彩灯.【分析】先求出晚上9时35分20秒时针与分针所夹的角;再根据表盘共被分成60小格,每一大格所对角的度数为30°,每一小格所对角的度数为6°,即可求出晚上9时35分20秒时针与分针间隔的分钟的刻度,从而求出晚上9时35分20秒时,时针与分针所夹的角内装有的小彩灯个数.【解答】解:晚上9时35分20秒时,时针与分针所夹的角为:9×30°+35×0.5°+20×0.5°÷60﹣(7×30°+20×6°÷60)=270°+17.5°+10°÷60﹣210°﹣2°=(75)°(75)°÷6≈12(个).故在分针与时针所夹的锐角内有12个小彩灯.故答案为:12.5.(3分)在边长为1厘米的正方形ABCD中,分别以A、B、C、D为圆心,1厘米为半径画四分之一圆,交点E、F、G、H,如图,则中间阴影部分的周长为 2.094 厘米.(取圆周率π=3.141)【分析】如图所示:由题意很容易就可以得出△ABF为等边三角形,则弧为圆,同理弧也为圆,所以弧=+﹣=圆,同理其余三段也为圆,故周长=圆,再据圆的周长公式即可得解.【解答】解:依题易知△ABF为等边三角形,故弧为圆,同理弧也为圆,所以弧=+﹣=圆,同理其余三段也为圆,故阴影部分的周长=圆×4=圆==2.094(厘米);答:中间阴影部分的周长为 2.094厘米.6.(3分)用40元钱购买单价分别为2元、5元和11元的三种练习本,每种至少买一本,而且钱恰好花完.则不同的购买方法有 5 种.【分析】每种先都减去1本,剩余40﹣2﹣5﹣11=22元.然后根据剩余的钱数,分类解答,解决问题.【解答】解:每种先都减去1本,剩余40﹣2﹣5﹣11=22元.如果再买2本11元的,恰好用完,计1种方法;如果再买1本11元的,剩余11元,可以买1本5元和3本2元,计1种方法;如果不再买11元的,22元最多买4本5元的,5元的本数可以是4,2,0,计3种方法.共有1+1+3=5种方法.答:不同的购买方法有5种.7.(3分)已知某个几何体的三视图如右图,根据图中标示的尺寸(单位:厘米),这个几何体的体积是2666(立方厘米)【分析】由三视图可知,该几何体为四棱锥,分别确定底面积和高,利用锥体的体积公式求解即可.【解答】解:由三视图可知,该几何体为四棱锥,底面ABCD为边长为20cm 的正方体,OE⊥CD且E是CD的中点,所以棱锥的高OE=20cm.所以四棱锥的体积为×202×20=×400×20=2666(cm3).答:这个几何体的体积是2666cm3.故答案为:2666.8.(3分)将自然数1~22分别填在下面的“□”内(每个“□”只能填一个数),在形成的11个分数中,分数值为整数的最多能有10 个【分析】分值为整数,说明分母是分子的约数.大于11的质数13、17、19要想构成分值为整数的分数,只能做1的分子.然后写出这几个数即可.【解答】解:根据分析可知,22个数最多能构成的整数为:,,,,,,,,,.所以分数值为整数的最多能有10个.故答案为:10.二、解答下列各题(每题10分,共40分,要求写出简要过程)9.长方形ABCD的面积是2011平方厘米.梯形AFGE的顶点F在BC上,D 是腰EG的中点.试求梯形AFGE的面积.【分析】根据题意可连接DF,三角形ADF和长方形ABCD是同底等高的,因此可知三角形ADF的面积是长方形ABCD面积的一半,因为点D是EG的中点,AE平行与FG,所以三角形ADF也是梯形AFGE面积的一半,因为点D是线段EG的中点,所以三角形ADE和三角形DGF的面积就为梯形AFGE 面积的一半,即梯形的面积等于长方形的面积,据此解答即可.【解答】解:如图,连接DF.三角形ADF=2011÷2=1005.5(平方厘米),因为点D为EG的中点,所以三角形AED+三角形DFG=1005.5(平方厘米),梯形AFGE的面积:1005.5+1005.5=2011(平方厘米),答:梯形AFGE的面积是2011平方厘米.10.公交车的线路号是由数字显示器显示的三位数,其中每个数字是由横竖放置的七支荧光管显示,如图所示.某公交车的数字显示器有两支坏了的荧光管不亮,显示的线路号为“351”,则该公交车的线路号有哪些可能?【分析】显示的百位数字3有一处坏,可能是9,有两处坏可能是8;十位数字5,有一处坏,可能是6和9,有两处坏,可能是8;个位数字1,有一处坏可能是7,有两处坏可能是4;在不亮的灯管中可能应该都不亮,可能有一处该亮却没亮,可能有2处该亮却没亮,分三种可能情况,细致分析,即可得解.【解答】解:分三种情形考虑.第一种情形:线路号的数字中没有荧光管坏了.只有351 一个可能线路号.第二种情形:线路号的数字中有1 支荧光管坏了.坏在第一位数字上,可能的数字为9,线路号可能是951;坏在第二位数字上,可能的数字为6,9,线路号可能是361,391;坏在第三位数字上,可能的数字为7,线路号可能是357.第三种情形:线路号的数字中有2 支荧光管坏了.都坏在第一位数字上,可能的数字为8,线路号可能是851;都坏在第二位数字上,可能的数字为8,线路号可能是381;都坏在第三位数字上,可能的数字为4,线路号可能是354;坏在第一、二位数字上,第一位数字可能的数字为9,第二位数字可能的数字为6,9,线路号可能是961,991;坏在第一、三位数字上,第一位数字可能的数字为9,第三位数字可能的数字为7,线路号可能是957;坏在第二、三位数字上,第二位数字可能的数字为6,9,第三位数字可能的数字为7,线路号可能是367,397.所以可能的线路号有13 个:351,354,357,361,367,381,391,397,851,951,957,961,991.答:则该公交车的线路号有13种可能.11.设某年中有一个月里有三个星期日的日期为奇数,则这个月的20日可能是星期几?【分析】有三个星期日的日期为奇数,这三个星期日应是不相邻的.并且两个奇数周日之间应相隔14天.故可设第一个周日为x,那么第二个周日为x+14,则第三个周日为x+28,第三个周日的日期应不大于31.【解答】解:因为每个周日的间隔是7日,所以若一个月中有三个星期日为奇数,则这三个星期日必定不会是连续的,而是两个奇数周日间间隔14日,一个月最多31日,设第一个周日为x,那么第二个周日为x+14,则第三个周日为x+28,所以x+28≤31,解得x≤3;这样第一个星期日可以是1号或3号.如果第一个星期日是1号,那么该月的20号是星期五;如果第一个星期日是3号(此时本月有31天),那么该月的20号是星期三.故这个月的20日可能是星期五或星期三(此时本月有31天).12.以[x]表示不超过x的最大整数,设自然数n满足[]+[]+[]+…+[]+[]>2011,则n的最小值是多少?【分析】观察:[]=0,[]=0,…,[]=0,前14个数的和为0 []=1,[]=[1]=1,…,[]=[1]=1,这15个数都是1,之和为1×15=15,[]=2,[]=[2]=2,…,[]=[2]=2,这15个数都是2,之和为2×15=30,…观察可以得到,规律是间隔15个增加1,(1+2+3+…+15)×15=1800,(1+2+3+…+15+16)×15=2040,2040>2011,因此整数部分加到15,只是达到1800,继续往下到达整数部分是16,2011﹣1800=211,211÷16=13.1875,那么要取14个,即最少取到16,才能保证大于2011,则n最下值是:16×15+13=253.【解答】解:(1+2+3+…+15)×15=1800,(1+2+3+…+15+16)×15=2040,2040>2011,那么整数部分到16,2011﹣1800=211,211÷16=13.1875,即最少取到16,才能保证大于2011,则n最下值是:16×15+13=253.答:自然数n的最小值是253.三、解答下列各题(每小题0分,共30分,要求写出详细过程)13.在如图的加法竖式中,不同的汉字代表不同的数字.问:满足要求的不同算式共有多少种?【分析】由于2+0+1+1=4 且 0+1+2+3+4+6+7+8+9=40,4≡40(mod 9),所以,九个不同的汉字代表的数字:0,1,2,3,4,6,7,8,9.易知:40﹣4=36,36÷9=4(次),说明此算式共发生四次进位.“4=2+2=1+1+2=1+2+1”显然:①华=1,“4=2+2”无解②华=1,“4=1+1+2”有解,据此分析讨论即可解答问题.【解答】解:由于2+0+1+1=4 且 0+1+2+3+4+6+7+8+9=40,4≡40(mod 9),所以,九个不同的汉字代表的数字:0,1,2,3,4,6,7,8,9.易知:40﹣4=36,36÷9=4(次),说明此算式共发生四次进位.“4=2+2=1+1+2=1+2+1”显然:①华=1,“4=2+2”无解②华=1,“4=1+1+2”有解A:28+937+1046=2011,可组成算式36 种(6×6×1=36)B:69+738+1204=2011,可组成算式48 种(6×4×2=48)C:79+628+1304=2011,可组成算式48 种(6×4×2=48)③华=1,“4=1+2+1”有解A:46+872+1093=2011,可组成算式36 种(6×6×1=36)B:98+673+1240=2011,可组成算式72 种(6×6×2=72)C:97+684+1230=2011,可组成算式72 种(6×6×2=72)总计:72×3+96=216+96=312(种).答:一共有312种.14.如图,两只蜘蛛同处在一个正方体的顶点A,而一只爬虫处在A的体对顶点G,假设蜘蛛和爬虫均以同样的速度沿正方体的棱移动,任何时候它们都知道彼此的位置,蜘蛛能预判爬虫的爬行方向,试给出一个两只蜘蛛必定捉住爬虫的方案.【分析】根据题意,可假设一只蜘蛛先不动另一只蜘蛛去追击沿着棱去追击虫子,不论虫子如何逃跑,虫子和追击的蜘蛛始终能保持的最大距离为2个棱的长度,随着爬虫的移动,爬虫必然和等待的蜘蛛会出现最小距离为1个棱的长度,此时即可抓到虫子.【解答】解:其中一只蜘蛛先不动,控制正方体的其中一个面,我们定义这个面为A1面,另一只蜘蛛开始向A1面的相对的面爬行,我们定义这个相对的面为A2面;这时2只蜘蛛,每个蜘蛛控制一个面,不论虫子如何移动,必然会移动到A1面或者A2面;于是必然有一个蜘蛛和虫子处于一个面,这时处于一个面的蜘蛛(设追击的蜘蛛为B1)开始追击虫子,另一个面的蜘蛛则不动,不论虫子如何逃跑,虫子和追击的蜘蛛始终能保持的最大距离为2个棱的长度,随着爬虫的移动,爬虫必然和等待的蜘蛛会出现最小距离为1个棱的长度,这时等待的蜘蛛出击,必然能抓到虫子.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/5/7 10:54:16;用户:小学奥数;邮箱:pfpxxx02@;学号:20913800。

相关文档
最新文档