实验三 AD转换实验

合集下载

AD转换器实验分析

AD转换器实验分析
实际应用在工业控制和智能化仪表中常由单片机进行实时控制及实时ad转换器实验1实验目的了解ad转换器adc0809工作原理掌握ad在工业控制和智能化仪表中常由单片机进行实时控制及实时数据处理被控制或测量对象的有关参量往往是连续变化的模拟量如温度速度压力等单片机要处理这些信号先将模拟量转换成数字量这一过程为模数ad转换
MOVX A,@DPTR ;读入状态
JNB ACC.7, TEST ;判断EOC状态,EOC=0继续查询
MOV DPTR,#0CFA0H ;EOC=1,转换完毕
MOVX A,@DPTR ;读入数据
3.转换得到的二进制数字量通过P1口送到发光二极管显示。
A/D转换器实验
2)程序流程如图4所示。
开始 启动A/D转换 读入状态信息
单片机原理与应用课程实验
实验六、A/D转换器实验
实验重点:硬件设计、程序设计、现象分析 实验难点:实际应用
A/D转换器实验
在工业控制和智能化仪表中,常由单片机进行实时控制及实时数 据处理,被控制或测量对象的有关参量往往是连续变化的模拟量, 如温度、速度、压力等,单片机要处理这些信号,先将模拟量转换 成数字量,这一过程为模/数(A/D)转换。
1、实验目的
了解A/D转换器ADC0809工作原理,掌握 A/D转换程序设计方法及与89C51连接的接口 电路设计方法。
A/D转换器实验
2、实验要求(1必做,2为选做)
1)利用实验机上的ADC0809做一个通道A/D转换器,实 验机上的电位器提供模拟量输入,编制程序,将模拟量转 换成二进制数字量,并用发光二极管显示(采用查询、延 时或中断方式转换);若在LED数码管显示ADC0809转换 结果,程序如何编写。 3)内容1)改为8通道轮流采集,在LED数码管显示,程序 如何编写。

AD转换实验报告

AD转换实验报告

8292924809基于单片机的AD转换电路专业:班级:学号:组员:指导老师:年月日目录键入章标题(第 1 级) (1)键入章标题(第2 级) (2)键入章标题(第3 级) (3)键入章标题(第 1 级) (4)键入章标题(第2 级) (5)键入章标题(第3 级) (6)引言A/D转换是指将模拟信号转换为数字信号,这在信号处理、信号传输等领域具有重要的意义。

常用的A/D转换电路有专用A/D集成电路、单片机ADC模块,前者精度高、电路复杂,后者成本低、设计简单。

基于单片机的A/D转换电路在实际电路中获得了广泛的应用。

一般的A/D转换过程是通过采样、保持、量化和编码4个步骤完成的,这些步骤往往是合并进行的.当A/D转换结束时,ADC输出一个转换结束信号数据。

CPU可由多种方法读取转换结果:a查询方式;b中断方式;c DMA方式。

通道8为A/D转换器,ADC0809是带有8为A/D转换器、8路多路开关以及微处理机兼容的控制逻辑的CMOS组件。

它是逐次逼近式A/D转换器,可以和单片机直接接口。

ADC0809由一个8路模拟开关、一个地址锁存与译码器、一个A/D转换器和一个三态输出锁存器组成.多路开关可选通8个模拟通道,允许8路模拟量分时输出,共用A/D转换器进行转换。

三台输出锁存器用于锁存A/D转换完的数字量,当OE端为高电平时,才可以从三态输出锁存器取走转换完的数据.一个实际系统中需用传感器把各种物理参数测量出来,并转换为电信号,在经过A/D转换器,传送给计算机;微型计算机加工后,通过D/A转换器去控制各种参数量。

一、实验方案的选择与分析1.1复位电路方案单片机在开机时都需要复位,以便中央处理器CPU以及其他功能部件都处于一个确定的初始状态,并从这个状态开始工作。

51的RST引脚是复位信号的输入端.复位电平是高电平有效持续时间要有24个时钟周期以上。

本系统中单片机时钟频率为6MHz则复位脉冲至少应为4us.方案一:上电复位电路上电瞬间,RST端的的电位与Vcc相同,随着电容的逐步充电,充电电流减小,RST电位逐渐下降。

单片机AD模数转换实验报告

单片机AD模数转换实验报告

单片机AD模数转换实验报告一、实验目的和要求1、掌握单片机与ADC0809的接口设计方法。

2、掌握Proteus软件与Keil软件的使用方法。

二、设计要求。

1、用Proteus软件画出电路原理图,在单片机的外部扩展片外三总线,并通过片外三总线与0809接口。

2、在0809的某一模拟量输入通道上接外部模拟量。

3、在单片机的外部扩展数码管显示器。

4、分别采用延时和查询的方法编写A/D 转换程序。

5、启动A/D转换,将输入模拟量的转换结果在显示器上显示。

三、电路原理图。

图1、电路仿真图四、实验程序流程框图和程序清单。

1、查询法:ORG 0000HSTART: LJMP MAINORG 0100HMAIN: MOV SP, #2FH NT: MOV DPTR, #0FF78H MOVX @DPTR, A LOOP: JB P3.3, LOOP MOVX A, @DPTR MOV B, #51 DIV AB MOV R0, A MOV A, B MOV B, #5 DIV AB MOV R1, A MOV R2, B LCALL DIR SJMP NT DIR: MOV R7, #0 SJMP LOOP1 BH: MOV A, R1 MOV R2, A LOOP1: MOV DPTR, #WK MOV A, R7 MOVC A, @A+DPTR MOV P2, A MOV DPTR, #DK MOV A, R2 MOVC A, @A+DPTR MOV P1, A LCALL DELAY INC R7 CJNE R7, #2, BH MOV DPTR, #WK MOV A, R7 MOVC A, @A+DPTR MOV P2, A MOV DPTR, #DK MOV A, R0 MOVC A, @A+DPTR ANL A, #7FH MOV P1, A LCALL DELAY RET DELAY: M OV R5, #01H DL1: MOV R4, #8EH DL0: MOV R3, #02H DJNZ R3, $ DJNZ R4, DL0 DJNZ R5, DL1 RET WK: DB 10H DB 20H DB 40H DK: DB 0C0H,0F9H,0A4H,0B0H,99H,92H,82H,0F8H,80H,90H ENDdisplay 送百分位字符代码送位选信号延时1ms 送十分位字符代码送位选信号延时1ms 送个位及小数点字符代码送位选信号延时1ms 熄灭第四位数码管延时1ms 返回display 送百分位字符代码送位选信号延时1ms 送十分位字符代码送位选信号延时1ms 送个位及小数点字符代码送位选信号延时1ms 熄灭第四位数码管延时1ms 返回2、延时法:ORG 0000H START: LJMP MAIN ORG 0100H MAIN: MOV SP, #2FH LOOP: MOV DPTR, #0FF78H MOVX @DPTR, A LCALL DELAY MOVX A, @DPTR MOV B, #51 DIV AB MOV R0, A MOV A, B MOV B, #5 DIV AB MOV R1, A MOV R2, B LCALL DIR SJMP LOOP DIR: MOV R7, #0 SJMP LOOP1 BH: MOV A, R1 MOV R2, A LOOP1: MOV DPTR, #WK MOV A, R7 MOVC A, @A+DPTR MOV P2, A MOV DPTR, #DK MOV A, R2 MOVC A, @A+DPTR MOV P1, A LCALL DELAY INC R7 CJNE R7, #2, BH MOV DPTR, #WK MOV A, R7 MOVC A, @A+DPTR MOV P2, A MOV DPTR, #DK MOV A, R0 MOVC A, @A+DPTR ANL A, #7FH MOV P1, A LCALL DELAY RET DELAY: M OV R5, #01H DL1: MOV R4, #8EH DL0: MOV R3, #02H DJNZ R3, $ DJNZ R4, DL0 DJNZ R5, DL1 RET WK: DB 10H DB 20H DB 40H DK: DB 0C0H,0F9H,0A4H,0B0H,99H,92H,82H,0F8H,80H,90H开始启动AD 延时从AD中取数据数据处理结束调显示子函数END五、实验结果。

单片机实验数据采集_AD转换

单片机实验数据采集_AD转换

单片机实验报告姓名: XX班级: XXXXX学号: XXXXXXX专业:电气工程与自动化实验1 名称:数据采集_A/D转换一、实验目的⑴掌握A/D转换与单片机接口的方法;⑵了解A/D芯片0809 转换性能及编程方法;⑶通过实验了解单片机如何进行数据采集。

二、实验设备装有proteus和keil软件的电脑一台三、实验说明及实验原理:A/D 转换器大致分有三类:一是双积分A/D 转换器,优点是精度高,抗干扰性好,价格便宜,但速度慢;二是逐次逼近式A/D转换器,精度、速度、价格适中;三是并联比较型A/D转换器,速度快,价格也昂贵。

实验用ADC0809属第二类,是8位A/D转换器。

每采集一次一般需100μs。

由于ADC0809A/D 转换器转换结束后会自动产生EOC 信号(高电平有效),取反后将其与8031 的INT0 相连,可以用中断方式读取A/D转换结果。

ADC0809 是带有8 位A/D转换器、8 路多路开关以及微处理机兼容的控制逻辑的CMOS组件。

它是逐次逼近式A/D转换器,可以和单片机直接接口。

(1) ADC0809 的内部逻辑结构由图1.1 可知,ADC0809 由一个8 路模拟开关、一个地址锁存与译码器、一个A/D 转换器和一个三态输出锁存器组成。

多路开关可选通8 个模拟通道,允许8 路模拟量分时输入,共用A/D 转换器进行转换。

三态输出锁器用于锁A/D 转换完的数字量,当OE 端为高电平时,才可以从三态输出锁存器取走转换完的数据。

(2) ADC0809 引脚结构ADC0809各脚功能如下:D7 ~ D0:8 位数字量输出引脚。

IN0 ~ IN7:8位模拟量输入引脚。

VCC:+5V工作电压。

GND:地。

REF(+):参考电压正端。

REF(-):参考电压负端。

START:A/D转换启动信号输入端。

ALE:地址锁存允许信号输入端。

(以上两种信号用于启动A/D转换).EOC:转换结束信号输出引脚,开始转换时为低电平,当转换结束时为高电平。

ad转换实验报告

ad转换实验报告

ad转换实验报告AD转换实验报告概述:AD转换(Analog-to-Digital Conversion)是将模拟信号转换为数字信号的过程。

本实验旨在通过实际操作和数据记录,探究AD转换的原理和应用。

实验目的:1. 了解AD转换的基本原理和分类;2. 掌握AD转换器的使用方法;3. 分析AD转换器的性能指标。

实验器材:1. AD转换器模块;2. 信号发生器;3. 示波器;4. 电脑。

实验步骤:1. 连接实验器材:将信号发生器的输出端与AD转换器的输入端相连,将AD转换器的输出端与示波器的输入端相连,将示波器与电脑连接;2. 设置信号发生器:调整信号发生器的频率、幅度和波形,生成不同的模拟信号;3. 设置AD转换器:根据实验要求,选择合适的AD转换器工作模式,并设置采样率和分辨率;4. 进行AD转换:通过示波器监测AD转换器输出的数字信号,并记录下相应的模拟输入信号值;5. 数据分析:将记录的数据输入电脑,进行进一步的数据分析和处理。

实验结果:在实验过程中,我们通过改变信号发生器的频率、幅度和波形,观察到AD转换器输出的数字信号的变化。

根据示波器的显示和记录的数据,我们得到了一系列的AD转换结果。

通过对这些结果的分析,我们可以得出以下结论:1. AD转换器的分辨率对转换精度有重要影响。

分辨率越高,转换结果的精度越高;2. AD转换器的采样率对转换结果的准确性有影响。

采样率过低可能导致信号失真或丢失;3. 不同的模拟信号在AD转换过程中可能会产生不同的失真现象,如量化误差、采样误差等;4. AD转换器的性能指标包括分辨率、采样率、信噪比等,这些指标对于不同应用场景有不同的要求。

实验总结:通过本次实验,我们深入了解了AD转换的原理和应用。

实验结果表明,AD转换器在现代电子设备中具有重要的作用,广泛应用于音频处理、图像处理、传感器数据采集等领域。

了解和掌握AD转换的基本原理和性能指标,对于我们理解和设计数字系统具有重要意义。

ad转换课程设计

ad转换课程设计

a d转换课程设计一、课程目标知识目标:1. 学生能够理解AD转换的基本概念,掌握其工作原理和转换过程。

2. 学生能够掌握AD转换器的类型、性能指标及其在电子系统中的应用。

3. 学生能够运用AD转换知识解决实际问题,如传感器信号采集等。

技能目标:1. 学生能够运用所学知识,设计简单的AD转换电路,并进行调试。

2. 学生能够运用AD转换软件进行数据采集、处理和分析,提高实践操作能力。

3. 学生能够通过课程学习,培养解决实际电子工程问题的能力。

情感态度价值观目标:1. 学生通过学习AD转换,培养对电子技术的兴趣,提高学习积极性。

2. 学生在学习过程中,培养团队合作意识,学会分享和交流。

3. 学生能够认识到AD转换技术在现实生活中的重要性,增强科技改变生活的意识。

课程性质:本课程为电子技术基础课程,以理论教学与实践操作相结合的方式进行。

学生特点:学生处于高中阶段,具备一定的电子技术基础,对新鲜事物充满好奇,动手实践能力较强。

教学要求:结合学生特点和课程性质,注重理论与实践相结合,提高学生的实际操作能力和解决问题的能力。

通过课程目标分解,确保学生在知识、技能和情感态度价值观方面取得具体的学习成果。

二、教学内容1. AD转换基本概念:包括模拟信号与数字信号的转换关系,AD转换的作用及其在电子系统中的应用。

教材章节:第一章第二节内容:模拟信号、数字信号、AD转换原理。

2. AD转换器类型及性能指标:介绍不同类型的AD转换器,如逐次逼近型、积分型等,以及其主要性能指标,如分辨率、转换精度等。

教材章节:第二章内容:AD转换器类型、工作原理、性能指标。

3. AD转换电路设计及调试:学习AD转换电路的设计方法,进行实际电路搭建和调试。

教材章节:第三章内容:AD转换电路设计原理、电路搭建、调试方法。

4. 数据采集与处理:学习使用AD转换软件进行数据采集、处理和分析,掌握相关技术。

教材章节:第四章内容:数据采集、处理与分析、AD转换软件应用。

AD转换实验

AD转换实验

实验13 AD转换实验一.实验目标1.进一步理解AD转换的工作原理2.学习ADC芯片的使用二.实验器材1.ADC_82.ADC0804三.实验原理AD转换就是模数转换,也可以是整流。

顾名思义,就是把模拟信号转换成数字信号。

1)并行比较型/串并行比较型(如TLC5510)并行比较型AD采用多个比较器,仅作一次比较而实行转换,又称FLash(快速)型。

由于转换速率极高,n位的转换需要2n-1个比较器,因此电路规模也极大,价格也高,只适用于视频AD转换器等速度特别高的领域。

串并行比较型AD结构上介于并行型和逐次比较型之间,最典型的是由2个n/2位的并行型AD转换器配合DA转换器组成,用两次比较实行转换,所以称为Half flash(半快速)型。

还有分成三步或多步实现AD转换的叫做分级(Multistep/Subrangling)型AD,而从转换时序角度又可称为流水线(Pipelined)型AD,现代的分级型AD中还加入了对多次转换结果作数字运算而修正特性等功能。

这类AD速度比逐次比较型高,电路规模比并行型小。

2)逐次逼近型(如TLC0831)逐次比较型AD由一个比较器和DA转换器通过逐次比较逻辑构成,从MSB开始,顺序地对每一位将输入电压与内置DA转换器输出进行比较,经n次比较而输出数字值。

其电路规模属于中等。

其优点是速度较高、功耗低,在低分辩率(<12位)时价格便宜,但高精度(>12位)时价格很高。

3)积分型(如TLC7135)积分型AD工作原理是将输入电压转换成时间(脉冲宽度信号)或频率(脉冲频率),然后由定时器/计数器获得数字值。

其优点是用简单电路就能获得高分辨率,但缺点是由于转换精度依赖于积分时间,因此转换速率极低。

初期的单片AD转换器大多采用积分型,现在逐次比较型已逐步成为主流。

详情看课程PPT四.实验内容与过程1.画出如下图所示的电路,然后填表。

实验数据:2.到网上查找ADC0804数据手册,阅读研究,然后搭建如下电路并实验实验数据:五.数据处理与报告1.将表格数据和实验仿真文件上传到FTP2.查找ADC0809资料并阅读。

微机ad转换实验报告

微机ad转换实验报告

微机ad转换实验报告微机AD转换实验报告一、引言AD转换是现代电子技术中非常重要的一部分,广泛应用于各种领域,如通信、仪器仪表、自动控制等。

本实验旨在通过使用微机进行AD转换实验,探究其原理和应用。

二、实验目的1. 了解AD转换的基本原理;2. 掌握使用微机进行AD转换的方法;3. 分析AD转换的精度和速度。

三、实验原理AD转换是将模拟信号转换为数字信号的过程。

在本实验中,我们将使用微机的AD转换器将模拟信号转换为数字信号。

微机的AD转换器通常是一个多通道的模数转换器,能够将多个模拟信号转换成相应的数字信号。

四、实验步骤1. 连接硬件设备:将待转换的模拟信号通过信号调理电路连接到微机的AD转换器输入端;2. 打开实验软件:启动微机上的AD转换实验软件;3. 设置参数:根据实验要求,设置采样率、分辨率等参数;4. 进行AD转换:点击软件界面上的“开始转换”按钮,开始进行AD转换;5. 数据分析:获取转换后的数字信号,进行数据分析和处理。

五、实验结果与分析通过实验,我们得到了一系列数字信号。

根据这些数字信号,我们可以进行各种数据处理和分析。

例如,我们可以绘制出信号的波形图、频谱图等,进一步分析信号的特性和性能。

六、实验中的问题与解决方法在实验过程中,我们可能会遇到一些问题,如信号失真、噪声干扰等。

针对这些问题,我们可以采取一些解决方法,如增加滤波电路、调整采样率等,以提高AD转换的精度和稳定性。

七、实验总结通过本次实验,我们深入了解了AD转换的原理和应用,掌握了使用微机进行AD转换的方法。

AD转换在现代电子技术中具有广泛的应用前景,掌握AD转换的原理和技术对于我们的学习和工作都具有重要意义。

八、实验心得本次实验让我对AD转换有了更深入的了解。

通过实际操作,我进一步掌握了使用微机进行AD转换的方法,并且了解到了AD转换的精度和速度对于实际应用的重要性。

在今后的学习和工作中,我将更加注重AD转换技术的应用与研究,为现代电子技术的发展做出自己的贡献。

AD转换实验报告

AD转换实验报告

实验报告题目: 班级: 时间: 姓名:实验目的熟悉数模转换的基本原理,掌握D/A 的使用方法。

一、实验设备CPU 挂箱、8086CPU 模块、示波器。

二、实验内容利用D/A 转换器产生锯齿波、三角波和方波。

三、实验原理图本实验用A/D 、D/A 电路四、实验步骤1、实验连线 CS0 CS0832 示波器 DOUT DS 跳线:1 22、用实验箱左上角的“VERF.ADJ ”电位器调节0832的8脚上的参考电压至5V 。

3、调试程序并全速运行,产生不同的波形。

4、用示波器观察波形。

六、实验提示利用电位器“VERF.ADJ ”可以调零,“VERF.ADJ ”电位器调整满偏值。

DAC0832在本实验中,工作在双缓冲接口方式下。

当A1=0时可锁存输入数据;当A1=1时,可启动转换输出。

所以要进行D/A 转换需分二步进行,方法如下:MOV DX,ADDRESS ;ADDRESS 片选信号偶地址MOV AL,DATAOUT DX,AL ;锁存数据ADD DX,2OUT DX,AL ;启动转换七、程序框图程序一 产生锯齿波 程序二 产生方波(实验程序名:dac-1.asm ) (实验程序名:dac-2.asm )N 数据清零 数据=FFH ?数据加一开始 开始 锁存数据 转换输出 数据00送BX 寄存BX 中的数据输出到0832 延时 数据FF 送B X 寄存器 延时程序三产生三角波(实验程序名:dac-3.asm)开始数据清零锁存数据转换输出数据加一数据=FFH?数据=FFH锁存数据转换输出数据减一数据=0?八、程序代码清单:DAC-1,产生锯齿波:assume cs:codecode segment publicorg 100hstart: mov dx,04a0hup1: mov bx,0Up2: mov ax,bxout dx,ax ;锁存数据mov dx,04a2hout dx,ax ;输出使能mov dx,04a0hinc bx ;数据加一jmp up2code endsend startDAC-2,产生方波:assume cs:codecode segment publicorg 100hstart: mov dx,04a0hmov cx,04fhup1: mov bx,0up2: mov ax,bxout dx,axmov dx,04a2hout dx,axmov dx,04a0hloop up1mov cx,04fhup4: mov bx,0ffhup3: mov ax,bxout dx,axmov dx,04a2hout dx,axmov dx,04a0hloop up4jmp startcode endsend startDAC3,产生三角波:assume cs:codecode segment publicorg 100hstart: mov dx,04a0hmov bx,0up: mov ax,bxout dx,ax ;锁存数据mov dx,04a2hout dx,ax ;输出使能inc bxmov dx,04a0hcmp bx,0ffhjne up ;产生三角波上升沿down: mov ax,bxout dx,ax ;锁存数据mov dx,04a2hout dx,ax ;输出使能dec bxmov dx,04a0hcmp bx,0jne down ;产生三角波下降沿jmp upcode endsend start九、实验代码所得波形:图1:实验所得锯齿波图形图2:实验所得方波图形图3:实验所得三角波图形十、实验分析与总结1、实验指导书中已给出一部分内容的完整代码,需要自己思考改动的地方不多,因此实验难度不大。

实验三 A_D转换实验

实验三 A_D转换实验
#include<absacc.h>
//start由P2.3控制,用高位地址作为通道选择和AD片选
#define IN0 XBYTE[0xF0FF]
sbit AD_BUSY=P3^2; //转换结束引脚--EOC
unsigned char LED_seg[10]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90};//段码
D7~D0:数据线,三态输出,由OE(输出允许信号)控制输出与否。
OE:输出允许,该引线上的高电平,打开三态缓冲器,将转换结果放到D0~D7上。
ALE:地址允许锁存,其上升沿将ADDA,ADDB,ADDC三条引线的信号锁存,经译码选择对应的模拟通道。ADDA,ADDB,ADDC可接单片机的地址线,也可接数据线。ADDA接低位线,ADDC接高位线。
本实验用的ADC0809属第二类,是八位A/D转换器。每采集一次一般需100μS,A/D转换结束后会自动产生EOC信号。
1)ADC0809引脚含义
IN0~IN7:8路模拟通道输入,由ADDA,ADDB,ADDC三条线选择。
ADDA、ADDB、ADDC:模拟通道选择线,比如000时选择0通道,111时选择7通道。
P1=LED_bit[i];
delay(100);
}
}
void main(void) //主函数
{
unsigned int a=0; 图8-4 AD变换流程图
convert(a);
display();
n=n/10;i++;
}
}
void display(void) //显示函数

ad转换器实验内容

ad转换器实验内容

ad转换器实验内容背景介绍广告(ad)转换器是一种工具,可以将广告视频、文字或图片转换为适合不同媒体平台上使用的格式。

随着互联网的发展,广告投放已成为市场营销中不可或缺的一部分。

然而,不同的媒体平台对于广告格式的要求各不相同,因此需要将广告进行转换以适应不同平台的规范。

目的本实验旨在研究和开发一种ad转换器,以提供一种自动化的方式来转换广告内容,使之能够适应不同媒体平台的规范要求。

通过使用ad转换器,广告投放者可以节省时间和资源,同时提高广告的覆盖面和效果。

实验步骤1.收集广告样本:首先,需要收集一系列不同形式的广告样本,包括视频、文字和图片。

这些广告样本应该来自于不同的媒体平台,如电视广告、网络广告和印刷品广告。

收集足够多的广告样本可以更好地了解不同平台对广告格式的要求。

2.分析广告格式要求:接下来,需要仔细研究不同媒体平台对广告的格式要求。

这些要求可能涉及广告尺寸、分辨率、文件格式和时长等方面。

通过分析广告格式要求,可以确定设计和开发ad转换器所需考虑的关键因素。

3.设计转换器架构:基于对广告样本和格式要求的分析,需要设计ad转换器的架构。

该架构应该能够根据输入的广告样本和目标平台的要求,自动转换广告内容。

转换器的设计应该包括模块化的思想,方便以后的扩展和改进。

4.开发转换器功能:根据设计的架构,需要开发ad转换器的各个功能模块。

这些功能模块可能包括文件格式转换、尺寸适应、分辨率调整和视频剪辑等。

通过开发这些功能模块,可以实现广告内容的自动转换。

5.测试和优化:在开发完成后,需要对ad转换器进行测试和优化。

测试可以包括输入不同广告样本并将其转换为目标格式,然后验证转换的效果是否符合要求。

根据测试的结果,可以对转换器进行优化和改进,提高其性能和准确性。

6.使用转换器进行广告转换:一旦ad转换器经过了充分的测试和优化,可以开始使用它来转换实际的广告内容。

将广告投放者提供的广告样本输入ad转换器,按照目标平台的要求进行转换,然后将转换后的广告发布到相应的媒体平台上。

ad转换器实验内容

ad转换器实验内容

ad转换器实验内容实验目的:本实验主要是为了让学生了解AD转换器的基本原理和操作方法,通过实验掌握AD转换器的使用技巧和应用范围,提高学生的实际动手能力和实验操作能力。

实验器材:1. AD转换器2. 电源3. 示波器4. 信号发生器5. 多用表实验原理:AD转换器是将模拟信号转换成数字信号的一种设备。

它是将模拟量信号按照一定规律进行采样,经过量化处理后,将其转换成数字信号输出。

在此过程中需要用到电压比较器、采样保持电路、计数器、数字显示等元件。

实验步骤:1. 连接电路:将AD转换器与电源、示波器、信号发生器以及多用表连接好。

2. 调节示波器:将示波器调节至合适的状态,以便观察信号变化。

3. 设置信号发生器:根据需要设置合适的频率和幅度。

4. 测量输出:通过多用表测量输出结果,并记录下来。

实验注意事项:1. 在操作过程中要注意安全问题,尤其是在使用高压电源时更要谨慎。

2. 操作前要检查设备是否正常,以确保实验的准确性和安全性。

3. 在调节示波器时,要注意避免过度调节,以免影响实验结果。

4. 在测量输出时,要注意多次测量并取平均值,以提高测量的准确性。

实验结果分析:通过本次实验可以得到AD转换器的输出结果,并通过多用表进行测量和记录。

在分析结果时需要考虑信号发生器的频率和幅度对输出结果的影响,以及AD转换器的精度和误差等因素。

实验结论:通过本次实验可以得到AD转换器的输出结果,并了解其基本原理和操作方法。

同时还可以掌握一些AD转换器的使用技巧和应用范围。

这对于学生提高实际动手能力和实验操作能力具有重要意义。

AD转换实验预习报告

AD转换实验预习报告

A/D接口模块实验一、实验目的1.熟悉ARM本身自带的八路十位A/D控制器及相应寄存器;2.编程实现ARM系统的A/D功能;3.掌握带有A/D的CPU编程实现A/D功能的主要方法。

二、实验设备A/D转换模块、仿真器、PC 机三、实验内容四、学习A/D 接口原理, 了解实现A/D 系统对于系统的软件和硬件要求。

阅读ARM 芯片文档, 掌握ARM 的A/D 相关寄存器的功能, 熟悉ARM 系统硬件的A/D 相关接口。

利用外部模拟信号编程实现ARM 循环采集全部前3 路通道, 并且在超级终端上显示。

五、实验原理1. A/D 转换器A/D 转换器是模拟信号源和CPU 之间联系的接口, 它的任务是将连续变化的模拟信号转换为数字信号, 以便计算机和数字系统进行处理、存储、控制和显示。

在工业控制和数据采集及许多其他领域中, A/D 转换是不可缺少的。

A/D 转换器有以下类型:逐位比较型、积分型、计数型、并行比较型、电压-频率型, 主要应根据使用场合的具体要求, 按照转换速度、精度、价格、功能以及接口条件等因素来决定选择何种类型。

常用的有以下两种:1)双积分型的A/D 转换器双积分式也称二重积分式, 其实质是测量和比较两个积分的时间, 一个是对模拟输入电压积分的时间T0, 此时间往往是固定的;另一个是以充电后的电压为初值, 对参考电源Vref反向积分, 积分电容被放电至零所需的时间T1。

模拟输入电压Vi 与参考电压VRef 之比, 等于上述两个时间之比。

由于VRef 、T0 固定, 而放电时间T1 可以测出, 因而可计算出模拟输入电压的大小(VRef 与Vi 符号相反)。

2)逐次逼近型的A/D 转换器逐次逼近型(也称逐位比较式)的A/D 转换器, 应用比积分型更为广泛, 其原理框图如图3-10 所示, 主要由逐次逼近寄存器SAR、D/A 转换器、比较器以及时序和控制逻辑等部分组成。

它的实质是逐次把设定的SAR 寄存器中的数字量经D/A转换后得到电压Vc 与待转换模拟电压V。

微机 AD转换 实验报告

微机 AD转换 实验报告

微机 AD转换实验报告微机 AD转换实验报告引言:微机技术的发展,使得我们能够方便地进行各种数字信号的处理和分析。

其中,AD转换技术在数据采集和信号处理中起着至关重要的作用。

本实验旨在通过实际操作,探究AD转换的原理和应用。

一、实验目的本实验的主要目的是:1. 了解AD转换的基本原理;2. 掌握使用微机进行AD转换的方法;3. 学会使用软件进行AD转换结果的分析和处理。

二、实验设备和材料本实验所需的设备和材料如下:1. 微机一台;2. AD转换器模块;3. 信号发生器;4. 示波器;5. 相关连接线。

三、实验步骤1. 将AD转换器模块与微机连接,并确保连接稳定可靠;2. 将信号发生器与AD转换器模块连接,生成待转换的模拟信号;3. 打开微机上的AD转换软件,并进行相应的设置;4. 通过软件控制AD转换器进行信号采样,并将采样结果传输到微机上;5. 使用示波器对AD转换结果进行验证和分析。

四、实验结果和分析在本次实验中,我们采集了不同频率和振幅的模拟信号,并通过AD转换器将其转换为数字信号。

经过分析,我们得到了以下结果:1. 随着信号频率的增加,AD转换的精度逐渐降低。

这是因为在高频率下,AD转换器的采样速度无法跟上信号的变化,导致转换结果的失真;2. 信号振幅的增加会使AD转换结果的噪声水平上升。

这是因为在较大振幅下,信号的采样误差和噪声对转换结果的影响更加显著;3. 通过对AD转换结果的观察和分析,我们可以得到信号的频谱特征和幅度信息,进一步进行信号处理和分析。

五、实验总结通过本次实验,我们深入了解了AD转换的原理和应用,并掌握了使用微机进行AD转换的方法。

同时,我们也学会了使用软件进行AD转换结果的分析和处理。

通过实际操作,我们对AD转换技术有了更加深入的理解,并认识到了在实际应用中需要注意的问题。

六、实验心得本次实验不仅加深了我对AD转换技术的理解,还让我亲身体验了数字信号处理的过程。

通过实际操作,我不仅学到了知识,还培养了动手实践和解决问题的能力。

ad转换电路实验总结 心得

ad转换电路实验总结 心得

AD转换电路实验总结与心得一、实验背景与目的在电子工程领域,模拟数字转换(AD转换)是实现模拟信号与数字信号之间转换的关键技术。

本次实验旨在通过实际操作,深入了解AD转换电路的工作原理、性能指标以及设计方法。

二、实验内容与过程实验准备:在实验开始前,我们首先学习了AD转换的基本原理、电路组成和性能指标。

通过理论学习,我们对AD转换有了初步的认识。

电路搭建:在理解了AD转换原理后,我们开始搭建AD转换电路。

在搭建过程中,我们遵循了电路设计的基本原则,确保了电路的稳定性和可靠性。

调试与测试:完成电路搭建后,我们对AD转换电路进行了调试和测试。

通过调整电路参数,我们观察了输出数字信号的变化,验证了AD转换的正确性。

数据分析:在实验过程中,我们记录了大量的实验数据。

通过对数据的分析,我们了解了AD转换电路的性能指标,如分辨率、线性度、噪声等。

三、实验结果与结论实验结果:通过实际操作和数据分析,我们成功搭建了AD转换电路,并验证了其功能和性能。

实验结果表明,我们所搭建的AD转换电路具有良好的线性度和分辨率,能够准确地将模拟信号转换为数字信号。

结论:通过本次实验,我们深入了解了AD转换电路的工作原理和性能指标。

在实际操作中,我们不仅掌握了AD转换电路的设计方法,还提高了自己的动手能力和解决问题的能力。

此外,我们还认识到了理论与实践相结合的重要性,只有将理论知识与实际操作相结合,才能更好地理解和掌握电子工程领域的知识和技能。

四、心得体会理论与实践相结合:在实验过程中,我们深刻体会到了理论与实践相结合的重要性。

只有将理论知识与实际操作相结合,才能更好地理解和掌握电子工程领域的知识和技能。

动手能力提升:通过实际操作,我们提高了自己的动手能力和解决问题的能力。

在未来的学习和工作中,我们将继续努力提高自己的实践能力和综合素质。

团队协作与沟通:在实验过程中,我们需要与团队成员紧密合作,共同完成实验任务。

这使我们深刻体会到团队协作的重要性。

微机原理与接口技术实验报告

微机原理与接口技术实验报告

微机原理与接口技术实验报告实验目的,通过本次实验,掌握微机原理与接口技术的基本知识,了解并掌握微机接口技术的应用方法。

实验仪器与设备,微机实验箱、接口卡、示波器、电源等。

实验原理,微机接口技术是指微机与外部设备进行数据交换的技术。

它是微机与外部设备之间的桥梁,通过接口技术可以实现微机与外部设备之间的数据传输和通信。

实验内容与步骤:1. 实验一,串行通信接口实验。

a. 将串行通信接口卡插入微机实验箱的接口槽中;b. 连接示波器和外部设备,并进行数据传输测试;c. 观察并记录数据传输的波形和数据传输情况。

2. 实验二,并行通信接口实验。

a. 将并行通信接口卡插入微机实验箱的接口槽中;b. 连接外部设备,并进行数据传输测试;c. 观察并记录数据传输的情况。

3. 实验三,AD转换接口实验。

a. 将AD转换接口卡插入微机实验箱的接口槽中;b. 连接外部模拟信号源,并进行模拟信号转换测试;c. 观察并记录模拟信号转换的波形和数据传输情况。

实验结果与分析:1. 串行通信接口实验结果分析:通过实验发现,在串行通信接口实验中,数据传输的波形稳定,数据传输速度较快,适用于对数据传输速度要求较高的应用场景。

2. 并行通信接口实验结果分析:在并行通信接口实验中,数据传输稳定,但数据传输速度相对较慢,适用于对数据传输速度要求不高的应用场景。

3. AD转换接口实验结果分析:经过实验发现,AD转换接口可以将模拟信号转换为数字信号,并且转换精度较高,适用于对信号转换精度要求较高的应用场景。

实验总结与展望:通过本次实验,我们深入了解了微机原理与接口技术的基本知识,掌握了串行通信接口、并行通信接口和AD转换接口的应用方法。

同时,也发现不同接口技术在数据传输速度、稳定性和精度方面各有优劣,需要根据实际应用场景进行选择。

未来,我们将继续深入学习和探索微机接口技术的应用,为实际工程项目提供更好的技术支持。

结语:通过本次实验,我们对微机原理与接口技术有了更深入的了解,实验结果也验证了接口技术在数据传输和信号转换方面的重要作用。

微型计算机AD转换实验报告

微型计算机AD转换实验报告

实验一 A/D与D/A 转换一.实验目的1.通过实验,熟悉并掌握实验系统原理与使用方法。

2.通过实验掌握模拟量通道中模数转换与数模转换的实现方法。

二.实验内容1.利用实验系统完成测试信号的产生2.测取模数转换的量化特性,并对其量化精度进行分析。

3.设计并完成两通道模数转换与数模转换实验。

三.实验步骤1.了解并熟悉实验设备,掌握以C8051F060为核心的数据处理系统的模拟量通道设计方法,熟悉上位机的用户界面,学习其使用方法;2.利用实验设备产生0~5V的斜坡信号,输入到一路模拟量输入通道,在上位机软件的界面上测取该模拟量输入通道当A/D转换数为4位时的模数转换量化特性;3.利用实验箱设计并连接产生两路互为倒相的周期斜坡信号的电路,分别输入两路模拟量输入通道,在上位机界面的界面上测取它们的模数转换结果,然后将该转换结果的数字量,通过数模转换变为模拟量和输入信号作比较;4.编写程序实现各种典型测试信号的产生,熟悉并掌握程序设计方法;5.对实验结果进行分析,并完成实验报告。

四.附录1.C8051F060概述C8051F060是一个高性能数据采集芯片。

芯片内集成了:(1)与8051兼容的内核:额定工作频率25MHz,流水线指令结构,70%的指令的执行时间为一个或两个系统时钟周期。

5个通用16位定时器∕计数器,59条可编程的I/O线,22个中断源(2个优先级)。

(2)模拟I/O:C8051F060的ADC子系统包括两个1Msps、16 位分辨率的逐次逼近寄存器型ADC,ADC 中集成了跟踪保持电路、可编程窗口检测器和DMA 接口;两个12位电压输出DAC转换器,用于产生无抖动的波形。

内部电压基准,精确的VDD监视器和欠压监测器。

(3)存贮器:64KB片内闪速/电擦除程序存贮器(EEPROM),4KB片内数据存贮器(SRAM)。

(4)片内其它外围:2个UART串行I/O,SPI串行I/O,专用的看门狗定时器,电源监视器,温度传感器,内部可编程振荡器3~24.5MHz或外接震荡器。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档