案例6_估计水塔水流量
随机数学模型在估计水塔流量中的应用
随机数学模型在估计水塔流量中的应用张先波(三峡大学理学院,湖北宜昌443002)1991年的美国大学生数学建模竞赛A题(A M C M l991A),由于它是水库调度、自来水管理、公共场所的人流量估计等问题的代表,因此有许多文献对其进行了研究,但一般都是采用差分与拟合的方法。
而由于居民何时用水是无法准确的预报的,可能引起的水位的变化是随机事件,因此,可以以水容量作为随机变量,建立一个随机数学模型,不仅可以给出了水塔流量函数,同时还可以讨论水容量函数的数学期望。
1991年的美国大学生数学建模竞赛A题:某州的各用水管理机构要求各社区提供以每小时多少加仑计的用水率以及每天所用的总水量,但许多社区并没有测量流人或流出当地水塔的水量的设备,他们只能代之以每小时测量水塔中的水位,其精度在0.5%以内。
更为重要的是,无论什么时候,只要水塔中的水位下洚至4某一最低水位L时,水泵就启动向水塔重新充水直至某一最高水位,但也无法得到水泵的供水量的测量数据。
因此,在水泵正在工作时,人们不容易建立水塔中的水位与水泵工作时的用水量之间的关系。
水泵每天向水塔充水一次或两次,每次约二小时。
试估计在任何时刻,甚至包括水泵正在工作的时间内,水从水塔流出的流量,并估计一天的总用水量。
表1给出了某个真实小镇某一天的真实数据。
表l某小镇某天的水塔水位时间水位时间水位时问水位时间水位(秒1(001英尺)(杪)(0ol菇哟(秒){。
01蓖尺l f秒)e0ol j踅足)03175252232795466363350718542767 331631102854327524905332607502126976635305432284269753936316779254水泵工作10619299435932水泵工作57254308782619水泵工作13937294739332水泵列#605743012859683475l79212892394353550645542927988533397212402850433183445685352842932703340表中以秒为单位给出开使测量的时间、水位(单位是0.01英尺j。
案例6 估计水塔水流量
f ( t )dt 335329 (加仑) f ( t )dt 336480 (加仑)
25.5 1.5
相差只约1%
[0,24]区间内检验
第一次充水 前总用水量 第一次充水后, 第二次充水前 总用水量 第一次充水 期间用水量 第二次充水 期间用水量
V1= 606125-514872=91253(加仑)
充水时间约为2.1189小时
3. 由Vi—ti关系产生水流量 fi—ti的关系
注:亦可以由Vi—ti关系拟合 V(t),再求微商得到 f(t)
关于水流量 fi
Vi 1 Vi f i f (t i ) t i 1 t i V i V i 1 与 f i f (t i ) t i t i 1
水体积的误差为0.5% 用样条逼近的用水量其误差可用抽样计算得5.1%
一天 总量 误差
2 2 2 2 SV [ SV0 SV8.9678 SV p SV10.9542 SV20.8392
1
2 2 2 2 SV p SV 22.9581 SV23.88 SV[ 23.88 , 24 ] ]1 2
水泵工作的时间为32284秒(8.9678 小时); 水泵结束时间为39435秒(10.9542小时); 充水时间约为1.9864小时
水泵工作的时间为75021秒(20.8392 小时),水 位26.97英尺 第 二 次 充 水 水泵结束时间为82649秒(22.9581小时), 补充水位35.50英尺
水流量值(表3)
时
(小时)
间
水 流 量
(加仑/小时)
时
(小时)
间
水流量
(加仑/小时)
时
历年美国数学建模(AMCM)问题
AMCM85问题-A 动物群体的管理在一个资源有限,即有限的食物、空间、水等等的环境里发现天然存在的动物群体。
试选择一种鱼类或哺乳动物(例如北美矮种马、鹿、免、鲑鱼、带条纹的欧洲鲈鱼)以及一个你能获得适当数据的环境,并形成一个对该动物群体的捕获量的最佳方针。
AMCM85问题-B 战购物资储备的管理钴对许多工业是必不可少的(1979年仅国防需要就占了全世界钴生产量的17%),但是钴不产生在美国。
大部分钴来自政治上不稳定的构F地区。
见图85B-1,85B-2,85B-3。
1946年制订的战略和稀有作战物资存贮法令要求钴的储存量应保证美国能渡过三年战争时期。
50年代政府按要求存贮了,并在70年代卖掉了大部分贮量,而在70年代后期决定重新贮存,贮存的指标是8540万磅,到1982年获得了贮量的一半。
试建立一个战略金属钴的储存管理数学模型。
你需要考虑诸如以下的问题;贮量应多大?应以多大的比率来获得贮量?买这些金属的合理价格应该是多少?还要求你考虑诸如以下的问题,贮量达到多大时应开始减少贮存量?应以多大的比率来减少?卖出这些金属的合理价格应该是多少?应该怎样分配(附页中有关于钴的资源、价格、需求及再循环等方面的信息)关于钴有用信息:1985年政府计划需要2500万磅钴。
进行周而复始的生产经营,从而每年可生产600万磅钴。
1980年占总消耗量70银的120万磅钴再循环了,得到了重新处理。
AMCM86问题-A 水道测量数据表86A-1给出了在以码为单位的直角坐标为X,Y的水面一点处以英尺计的水Z.水深数据是在低潮时测得的。
船的吃水深度为5英尺。
在矩形区域(75,200)×(-50,150)里的哪些地方船要避免进入。
本题是由加州海军研究生院数学系的Richard Franke提供的,可阅他的论文Scattered Data Interpolation,Math,Comput.,38(1982),18l-200。
水塔流量估计的数学建模
水塔流量估计的数学建模1. 引言水塔是现代城市供水系统中至关重要的组成部分,其作用是通过储存水源来保障城市居民日常用水,并且在有紧急情况时提供应急用水。
为了更好地保障全社会的用水需求,并降低供水系统建设和运营成本,对水塔的流量进行准确的估计和预测具有重要意义。
本文将探讨如何利用数学建模的方法对水塔流量进行估计和预测。
2. 水塔流量的影响因素水塔流量的大小受到多种因素的影响,主要包括以下几个方面:2.1 水塔容积水塔的容积越大,其流量也就越大。
因此,在进行水塔流量估计时,首先需要考虑其容积。
2.2 外部水压水塔的流量受到外部水压的影响。
如果外部水压较大,则水塔的流量也将较大。
2.3 水泵功率水泵功率的大小直接影响到水塔的流量大小。
水泵功率越大,水塔的流量也就越大。
2.4 关阀状态水塔流量还受到管道关阀状态的影响。
如果关阀状态较大,则水塔流量也将减小。
3. 水塔流量的数学建模方法水塔流量的数学建模方法主要包括以下几个步骤:3.1 收集数据收集水塔流量的相关数据,并对其进行初步的整理和分析。
3.2 设计建模方程根据已收集到的数据,设计合适的建模方程。
建模方程需要考虑到水塔容积、外部水压、水泵功率、关阀状态等多种因素。
3.3 参数估计利用已有的数据对建模方程中的参数进行估计。
参数估计是非常重要的一步,其准确性直接影响到模型的准确性和可靠性。
3.4 模型检验和优化使用已有的数据来对所建立的模型进行检验和优化。
检验过程中需要对模型的精度、准确性、鲁棒性等进行评估,如果出现问题,需要进行适当的调整。
4. 案例分析为了说明水塔流量估计的数学建模方法,我们以某市几座水塔为例进行分析。
4.1 收集数据在该市的几座水塔中,我们选取了其中一座水塔进行了数据的收集,主要包括该水塔的容积、水泵功率、外部水压等基本信息。
4.2 设计建模方程根据收集到的数据,我们设计了一个基础的建模方程,其中各项参数分别为:Q为流量,V为水塔容积,P为外部水压,H为水泵的扬程,K为关阀系数。
【精选】水塔水流量的估计
水塔水流量的估计一.实验问题某居民区有一供居民用水的圆柱形水塔,一般可以通过测量其水位来估计水的流量。
但面临的困难是,当水塔水位下降到设定的最低水位时,水泵自动启动向水塔供水,到设定的最高水位时停止供水,这段时间无法测量水塔的水位和水泵的供水量。
通常水泵每天供水一次,每次约2h。
水塔是一个高为12.2m,直径为17.4m的正圆柱。
按照设计,水塔水位降至约8.2m时,水泵自动启动,水位升到约10.8m时水泵停止工作。
表1是某一天的水位测量纪录(符号“//”表示水泵启动),试估计任何时刻(包括水泵正供水时)从水塔流出的水流量,及一天的总用水量。
表1 水位测量纪录二.问题分析根据以上数据的形式和以往经验,适合采用线性拟合的方式进行数据处理。
对第1、2、3未供水时段可直接进行用五次多项式进行拟合。
对第1、2供水时段分别在两端各取两个点用前后时刻的流速拟合得到。
结果可以用分段函数表示分为5段,分别是第一未供水时段,第一供水时段,第二未供水时段,第二供水时段,第三未供水时段。
得出流速之后再乘以水塔横截面积即得任何时刻与水塔流出水流量的关系,即流速与时间的关系。
对流速进行分段积分并求和,即得一天的总水流量。
三.程序的设计与求解方法1.数据的单位转换水塔的横截面积为A=(17.4)^2*pi/4=237.0661(平方米)。
2.拟合水位——时间函数(1)对第1未供水时段的数据进行拟合。
t=[0 0.92 1.84 2.90 3.87 4.98 5.90 7.00 7.93 8.97 10.95 12.03 12.95 13.88 14.98 15.90 16.83 17.93 19.04 19.96 20.84 23.88 24.99 25.91]h=[ 9.68 9.48 9.31 9.13 8.98 8.81 8.69 8.52 8.39 8.22 10.82 10.50 10.21 9.94 9.65 9.41 9.18 8.92 8.66 8.43 8.22 10.59 10.35 10.18] f1=polyfit(t(1:10),h(1:10),5); tm1=0:0.1:9.0; y1=polyval(f1,tm1); plot(tm1,y1)01234567898.28.48.68.899.29.49.69.8(2)对第2未供水时段的数据进行拟合。
美赛历年题目_pdf
马剑整理历年美国大学生数学建模赛题目录MCM85问题-A 动物群体的管理 (3)MCM85问题-B 战购物资储备的管理 (3)MCM86问题-A 水道测量数据 (4)MCM86问题-B 应急设施的位置 (4)MCM87问题-A 盐的存贮 (5)MCM87问题-B 停车场 (5)MCM88问题-A 确定毒品走私船的位置 (5)MCM88问题-B 两辆铁路平板车的装货问题 (6)MCM89问题-A 蠓的分类 (6)MCM89问题-B 飞机排队 (6)MCM90-A 药物在脑内的分布 (6)MCM90问题-B 扫雪问题 (7)MCM91问题-B 通讯网络的极小生成树 (7)MCM 91问题-A 估计水塔的水流量 (7)MCM92问题-A 空中交通控制雷达的功率问题 (7)MCM 92问题-B 应急电力修复系统的修复计划 (7)MCM93问题-A 加速餐厅剩菜堆肥的生成 (8)MCM93问题-B 倒煤台的操作方案 (8)MCM94问题-A 住宅的保温 (9)MCM 94问题-B 计算机网络的最短传输时间 (9)MCM-95问题-A 单一螺旋线 (10)MCM95题-B A1uacha Balaclava学院 (10)MCM96问题-A 噪音场中潜艇的探测 (11)MCM96问题-B 竞赛评判问题 (11)MCM97问题-A Velociraptor(疾走龙属)问题 (11)MCM97问题-B为取得富有成果的讨论怎样搭配与会成员 (12)MCM98问题-A 磁共振成像扫描仪 (12)MCM98问题-B 成绩给分的通胀 (13)MCM99问题-A 大碰撞 (13)MCM99问题-B “非法”聚会 (14)MCM2000问题-A空间交通管制 (14)MCM2000问题-B: 无线电信道分配 (14)MCM2001问题- A: 选择自行车车轮 (15)MCM2001问题-B 逃避飓风怒吼(一场恶风...) .. (15)MCM2001问题-C我们的水系-不确定的前景 (16)MCM2002问题-A风和喷水池 (16)MCM2002问题-B航空公司超员订票 (16)MCM2002问题-C (16)MCM2003问题-A: 特技演员 (18)MCM2003问题-B: Gamma刀治疗方案 (18)MCM2003问题-C航空行李的扫描对策 (19)MCM2004问题-A:指纹是独一无二的吗? (19)MCM2004问题-B:更快的快通系统 (19)MCM2004问题-C安全与否? (19)MCM2005问题A.水灾计划 (19)MCM2005B.Tollbooths (19)MCM2005问题C:不可再生的资源 (20)MCM2006问题A: 用于灌溉的自动洒水器的安置和移动调度 (20)MCM2006问题B: 通过机场的轮椅 (20)MCM2006问题C : 抗击艾滋病的协调 (21)MCM2007问题B :飞机就座问题 (24)MCM2007问题C:器官移植:肾交换问题 (24)MCM2008问题A:给大陆洗个澡 (28)MCM2008问题B:建立数独拼图游戏 (28)MCM85问题-A 动物群体的管理在一个资源有限,即有限的食物、空间、水等等的环境里发现天然存在的动物群体。
水塔水流量估计问题
水塔水流量估计问题一.问题描述某居民区有一供居民用水的园柱形水塔,一般可以通过测量其水位来估计水的流量,但面临的困难是,当水塔水位下降到设定的最低水位时,水泵自动启动向水塔供水,到设定的最高水位时停止供水,这段时间无法测量水塔的水位和水泵的供水量.通常水泵每天供水一两次,每次约两小时.水塔是一个高12.2米,直径17.4米的正园柱.按照设计,水塔水位降至约8.2米时,水泵自动启动,水位升到约10.8米时水泵停止工作.表1 是某一天的水位测量记录,试估计任何时刻(包括水泵正供水时)从水塔流出的水流量,及一天的总用水量.表1 水位测量记录(符号//表示水泵启动)二.流量估计的解题思路1.拟合水位~时间函数测量记录看,一天有两个供水时段(以下称第1供水时段和第2供水时段),和3个水泵不工作时段(以下称第1时段t=0到t=8.97,第2次时段t=10.95到t=20.84和第3时段t=23以后)。
对第1、2时段的测量数据直接分别作多项式拟合,得到水位函数.为使拟合曲线比较光滑,多项式次数不要太高,一般在3~6.由于第3时段只有3个测量记录,无法对这一时段的水位作出较好的拟合。
2.确定流量~时间函数对于第1、2时段只需将水位函数求导数即可,对于两个供水时段的流量,则用供水时段前后(水泵不工作时段)的流量拟合得到,并且将拟合得到的第2供水时段流量外推,将第3时段流量包含在第2供水时段内. 3.一天总用水量的估计总用水量等于两个水泵不工作时段和两个供水时段用水量之和,它们都可以由流量对时间的积分得到。
三.算法设计与编程1、拟合第1时段的水位,并导出流量设t ,h 为已输入的时刻和水位测量记录(水泵启动的4个时刻不输入),第1时段各时刻的流量可如下得:1) c1=polyfit (t (1:10),h (1:10),3);%用3次多项式拟合第1时段水位,c1输出3次多项式的系数2)a1=polyder (c1);% a1输出多项式(系数为c1)导数的系数3)tp1=0:0.1:9;x1=-polyval (a1,tp1);% x1输出多项式(系数为a1)在tp1点的函数值(取负后边为正值),即tp1时刻的流量4)流量函数为:1079.227173.22356.0)(2-+-=t t t f2、拟合第2时段的水位,并导出流量设t ,h 为已输入的时刻和水位测量记录(水泵启动的4个 时刻不输入),第2时段各时刻的流量可如下得: 1) c2=polyfit(t(10.9:21),h(10.9:21),3);%用3次多项式拟合第2时段水位,c2输出3次多项式的系数2) a2=polyder(c2);% a2输出多项式(系数为c2)导数的系数3)tp2=10.9:0.1:21;x2=-polyval(a2,tp2); % x2输出多项式(系数为a2)在tp2点的函数值(取负后边为正值),即tp2时刻的流量4)流量函数为:1994.349045.152173.10284.0)(23+-+-=t t t t f3、拟合供水时段的流量在第1供水时段(t=9~11)之前(即第1时段)和之后(即第2时段)各取几点,其流量已经得到,用它们拟合第1供水时段的流量.为使流量函数在t=9和t=11连续,我们简单地只取4个点,拟合3次多项式(即曲线必过这4个点),实现如下:xx1=-polyval(a1,[8 9]);%取第1时段在t=8,9的流量xx2=-polyval(a2,[11 12]);%取第2时段在t=11,12的流量xx12=[xx1 xx2];c12=polyfit([8 9 11 12],xx12,3);%拟合3次多项式tp12=9:0.1:11;x12=polyval(c12,tp12);% x12输出第1供水时段各时刻的流量拟合的流量函数为:在第2供水时段之前取t=20,20.8两点的流水量,在该时刻之后(第3时段)仅有3个水位记录,我们用差分得到流量,然后用这4个数值拟合第2供水时段的流量如下:dt3=diff(t(22:24));%最后3个时刻的两两之差dh3=diff(h(22:24));%最后3个水位的两两之差dht3=-dh3./dt3;%t(22)和t(23)的流量t3=[20 20.8 t(22) t(23)];1.10785049.3368448.341731.1)(23+-+-=ttttfxx3=[-polyval(a2,t3(1:2)),dht3];%取t3各时刻的流量c3=polyfit(t3,xx3,3);%拟合3次多项式tp3=20.8:0.1:24;x3=polyval(c3,tp3);% x3输出第2供水时段(外推至t=24)各时刻的流量拟合的流量函数为:4、一天总用水量的估计第1、2时段和第1、2供水时段流量的积分之和,就是一天总用水量.虽然诸时段的流量已表为多项式函数,积分可以解析地算出,这里仍用数值积分计算如下:y1=0.1*trapz(x1);%第1时段用水量(仍按高度计),0.1为积分步长y2=0.1*trapz(x2);%第2时段用水量y12=0.1*trapz(x12);%第1供水时段用水量y3=0.1*trapz(x3);%第2供水时段用水量8.44966844.6158430.274181.0)(23-+-=ttttfy=(y1+y2+y12+y3)*237.8*0.01; %一天总用水量 (L m 1033)计算结果:y1=146.1815, y2=266.4409, y12=48.5004, y3=74.8064,y=1274.45、流量及总用水量的检验计算出的各时刻的流量可用水位记录的数值微分来检验.用水量y1可用第1时段水位测量记录中下降高度968-822=146来检验,类似地,y2用1082-822=260检验.供水时段流量的一种检验方法如下:供水时段的用水量加上水位上升值260是该时段泵入的水量,除以时段长度得到水泵的功率(单位时间泵入的水量),而两个供水时段水泵的功率应大致相等.第1、2时段水泵的功率可计算如下:p1=(y12+260)/2; %第1供水时段水泵的功率(水量仍以高度计) tp4=20.8:0.1:23;xp2=polyval (c3,tp4); % xp2输出第2供水时段各时刻的流量 p2=(0.1*trapz(xp2)+260)/2.2;%第2供水时段水泵的功率(水量仍以高度计) 计算结果:p1=154.2502 ,p2=142.3670四.计算结果(3,4)流量函数为:(56)流量函数为:画图(n1,n2)y1 y2 y12 y3 y p1 p2 (3,4) 146.1815 266.4409 48.5004 74.8064 1274.4 154.2502 142.3670 (5,6) 146.5150 265.5417 46.1317 72.6057 1262.2 153.0659 141.4479⎪⎪⎩⎪⎪⎨⎧≤≤-+-<≤+-+-<≤+-+-<≤-+-=24218.44966844.6158430.274181.021111.10785049.3368448.341731.11191994.349045.151.21730284.091079.227173.22356.0)(2323232tttttttttttttttt f⎪⎪⎩⎪⎪⎨⎧≤≤-+<≤++-<≤+++-<≤-++-=24214.3551490.560022.3526-3382.021114974.362112.7045-11.80653930.01198447.20.8873-0.10780.0065-0.00020.000098296.235.71081.5878-0.22240120.0)(23232345234tttttttttttttttttttt fn=(3,4)n=(5,6)。
MATLAB数学建模估计水塔的水流量问题Word版
估计水塔的水流量自动化12K2 许杨旸摘要:在估计某地区的用水速度和日总用水量的时候,在已知某时间t下的水位h,以及水塔直径,求出t时刻的水体积,由于没有具体函数,故用差商方法近似求出水体积对时间t的导数即用水速度,再利用三样条插值方法求出不同时刻的用水速度。
最终,通过数值积分方法求出日用水总量I。
符号及含义:t:时刻;h:水位高度;D:水塔直径;V:水体积;dV:水流速度;I:日用水总量。
一、提出问题某地区用水管理机构需要对居民的用水速度(单位时间的用水量)和日总用水量进行估计。
现有一居民区,其自来水是由一个圆柱形水塔提供,水塔高12.2m,塔的直径为17.4m。
水塔是由水泵根据水塔中的水位自动加水,一般水泵每天工作两次,按照设计,当水塔中的水位降至最低水位,约8.2m时,水泵自动启动加水;当水位升高到最高水位,约10.8m时,水泵停止工作。
表2给出的是某一天的测量数据,测量了28个时刻的数据,但由于水泵正向水塔供水,有三个时刻无法测到水位(表中用—表示),试建立数学模型,来估计居民的用水速度和日用水量。
表2 水塔中水位原始数据二、求解问题1、水塔中的水体积计算求解的问题的关键是求解出用水的速度,即单位时间内的用水体积,由于水塔可以近似成圆柱体,所以水塔的体积V可近似成:V=π4D2ℎ式中D为水塔直径D=17.4m,h为水位高度。
其中,在三个无法得到水位的时刻,其水位高度用一个负数表示,即该时刻水位为负值,显然现实当中无法出现这样的情况,现在我们用-1表示其水位。
现在开始计算水塔的体积:输入t=[0 0.921 1.843 2.949 3.871 4.978 5.900 ...7.006 7.928 8.967 9.981 10.925 10.954 12.032 ...12.954 13.875 14.982 15.903 16.826 17.931 19.037 ...19.959 20.839 22.015 22.958 23.880 24.986 25.908];h=[9.677 9.479 9.308 9.125 8.982 8.814 8.686 ...8.525 8.388 8.220 -1 -1 10.820 10.500 ...10.210 9.936 9.653 9.409 9.180 8.921 8.662 ...8.433 8.220 -1 10.820 10.591 10.354 10.180];D=17.4;V=pi/4*D^2*h;最终求得V= [2.3011 2.2540 2.2133 2.16982.1358 2.0959 2.0654 2.0271 1.9946 1.9546-0.2378 -0.2378 2.5729 2.4968 2.42782.3627 2.2954 2.2373 2.1829 2.1213 2.0597 2.0053 1.9546 -0.2378 2.5729 2.5184 2.4620 2.4207]。
第五讲 插值方法
第四讲 插值方法一、导言和引例对实验观测数据(,)i i x y ,曲线曲线拟合 不保证所得到的函数不一定满足()i i y f x =。
插值则要求函数在所有观测点都必须满足 ()i i y f x =引例1()2.3456789Φ=?一般,取2.3456789 2.35≈,查表得 (2.35)0.99061Φ=但此数介于2.34与2.35之间,可用 (2.35)Φ作为近似值吗?改进(2.356789)[(2.34)(2.35)]/2Φ=Φ+Φ 精度如何?若要更精确的结果,并且能利用的信息只有标准正态分布函数值表!问题变为:利用一个表格给出的函数值,计算表格中未给出的函数值。
引例2绘制地图(略)二、插值方法1、分段多项式插值(1) 分段线性插值设函数()f x 在1n +个节点01,,,n x x x 处的函数值为01,,,n y y y ,求一个分段线性函数()q x ,使其满足(),0,1,,i i q x y i n ==由点斜式方程变形得()q x 在第i 段1[,]i i x x -上的表达式 11111(),i i i i i i i i i i x x x x q x y y x x x x x x x -------=+≤≤-- 且有lim ()()n q x f x →∞=上例中(2.35)0.99061Φ=,(2.34)0.99036Φ= 利用分段线性插值求()2.3456789Φ=?取1[,]i i x x -[2.34,2.35]=,被插值函数 ()()f x x =Φ。
则11()(2.34)0.99036i i y x --=Φ=Φ=()(2.35)0.99061i i y x =Φ=Φ=由上述表达式计算得()2.3456789Φ=0.9905(2)分段三次埃尔米特插值在插值问题中,若在节点01,,,n x x x 处的函数值为01,,,n y y y 已给定,还要求给定导数值01,,,n y y y ''' 。
建模论文水塔问题
基于水塔问题的拟合优度分析摘要本文利用与水塔模型相关的四个问题,涉及到多项式拟合曲线、非线性最小二乘拟合参数等知识运用。
同时,借助高等数学中微分法的转换以及物理学中水力学知识解决了问题三四。
首先,利用Matlab优越的计算能力,根据表中水面高度h与水平截面圆的半径的r关系拟合出曲线ABC满足的方程r=r(ℎ)的方程,解决第一问。
其次,根据水塔水流速度v与水面高度ℎ有下面的有关系为:v=a√2g(ℎ+b),结合题目所给表中数据,拟合出a与b的值。
根据微分法,将不规则物体看成圆柱体,借助V=πr2ℎ,转化为dV=πr2dℎ,解决问题。
第四问依据从孔口流出的流量与通过孔口横截面水的体积和时间的关系,借助微分Matlab相关命令解答。
最后,针对r与h的关系,绘制Excel图表,选择不同模型,进行拟合优度比较,看哪一种模型更适合数据的分布,并进行相关分析与讨论。
关键词:多项式拟合曲线;非线性最小二乘拟合参数;微分微元法;线性、二次、指数模型;数学建模一、问题重述有一个几何形状不规则的水塔(如右图所示),它可以看成是曲线ABC绕垂线z旋转而成,水塔高12米,上顶圆的半径为9米,下底圆的半径为3米(1)测得水面高度h与水平截面圆的半径的r关系如下表1所示:拟合出曲线ABC满足的方程r=r(ℎ).(2)由流体力学的知识知道:水塔水流速度v与水面高度ℎ有下面的有关系为:v=a√2g(ℎ+b),其中g=9.8m/s为重力加速度,a为流速的系数,b为参数,利用表2中的数据,拟合a,b的数值。
(3)计算该水塔的容积是多少?(4) 该水塔装满了水,以后不再向水塔中放水。
在底部有一个截面为0.02平方米的小孔,试给出水塔中水全部流完需要多长时间?表1 水面高度h与水平截面圆的半径的r关系单位:米h0123456789101112 r3.00 3.78 4.40 4.91 5.32 5.68 6.00 6.33 6.687.807.608.239表2 水面高度h与水流速度的关系单位:立方米/小时h12111098765432110.6310.279.909.519.108.688.237.767.26 6.72 6.14 5.49二、模型假设1假设表1、表2数据具有随机性,存在一定的关系;2假设重力加速度g=9.8m/s符合当地实际实际重力加速度;3假设该不规则物体形似圆柱,可以运用圆柱公式计算;4假设水塔除底面有孔,其余地方再无漏出;5假设水塔从孔口流出的流量与通过孔口横截面水的体积和时间有一定关系;6假设水塔是光滑的;7假设所有模型求解时不会出现任何失误。
数学建模估计水塔的流量用数学软件求解拟合问题
算法设计与编程
1. 拟合第1、2时段的水位,并导出流量
2. 拟合供水时段的流量
3. 估计一天总用水量
4. 流量及总用水量的检验
1. 拟合第1时段的水位,并导出流量 设t,h为已输入的时刻和水位测量记录(水泵启动的4个时刻不输入),第1时段各 时刻的流量可如下得: 1) c1=polyfit(t(1:10),h(1:10),3); %用3次多项式拟合第1时段水位,c1输出3次多项式的系数 2)a1=polyder(c1); % a1输出多项式(系数为c1)导数的系数
m 3 103 L
MATLAB(llgjz)
4. 流量及总用水量的检验
计算出的各时刻的流量可用水位记录的数值微分来检验.用水量y1可用第1时段水位测 量记录中下降高度968-822=146来检验,类似地,y2用1082-822=260检验. 供水时段流量的一种检验方法如下:供水时段的用水量加上水位上升值 260是该时段泵入 的水量,除以时段长度得到水泵的功率(单位时间泵入的水量),而两个供水时段水泵的 功率应大致相等.第1、2时段水泵的功率可计算如下: p1=(y12+260)/2; %第1供水时段水泵的功率 (水量仍以高度计) tp4=20.8:0.1:23; xp2=polyval(c3,tp4); % xp2输出第2供水时段 各时刻的流量 p2=(0.1*trapz(xp2)+260)/2.2; %第2供水时段水泵的功率 (水量仍以高度计) 计算结果:p1=154.5 ,p2=140.1
用非线性最小二乘拟合c(t)-用lsqcurvefit
1. 用M文件curvefun3.m定义函数
function f=curvefun3(x,tdata) d=300 f=(x(1)\d)*exp(-x(2)*tdata) % x(1)=v; x(2)=k
水塔流量估计的数学建模
水塔流量估计的数学建模水塔是城市供水系统中的重要组成部分,它们储存着大量的水资源,为城市居民提供生活用水。
在城市供水系统中,水塔的流量是一个非常重要的参数,它直接影响着供水系统的运行效率和水资源的利用率。
因此,如何准确地估计水塔的流量是一个非常重要的问题。
水塔的流量估计可以通过数学建模来实现。
首先,我们需要了解水塔的基本结构和工作原理。
水塔通常由水箱、进水管、出水管、溢流管等组成。
当水箱内的水位下降时,进水管会自动打开,将外部的水源引入水箱中,同时出水管会自动关闭,防止水箱内的水流失。
当水箱内的水位上升到一定高度时,溢流管会自动打开,将多余的水流出水箱,以保持水箱内的水位稳定。
在水塔的运行过程中,我们可以通过测量进水管和出水管的水流速度来估计水塔的流量。
根据流量的定义,流量等于单位时间内通过某一截面的液体体积。
因此,我们可以通过测量进水管和出水管的截面积和水流速度来计算水塔的流量。
具体地,假设进水管的截面积为A1,出水管的截面积为A2,进水管的水流速度为v1,出水管的水流速度为v2,则水塔的流量Q可以表示为:Q = A1v1 - A2v2其中,A1v1表示进水管的流量,A2v2表示出水管的流量。
由于进水管和出水管的截面积和水流速度可能会随着时间的变化而发生变化,因此我们需要不断地对它们进行测量和调整,以保证水塔的流量估计的准确性。
除了测量进水管和出水管的水流速度外,我们还可以通过其他的方法来估计水塔的流量。
例如,我们可以通过测量水塔内部的水位变化来估计水塔的流量。
具体地,我们可以安装水位传感器在水塔内部,通过测量水位的变化来计算水塔的流量。
这种方法的优点是不需要对进水管和出水管进行测量,但是需要安装水位传感器,成本较高。
水塔流量估计的数学建模是一个非常重要的问题。
通过测量进水管和出水管的水流速度或者测量水塔内部的水位变化,我们可以准确地估计水塔的流量,从而保证城市供水系统的正常运行。
数学建模拟合问题
输入格式为: 1) x=lsqnonlin(‘fun’,x0); 2) x= lsqnonlin (‘fun’,x0,options); 3) x= lsqnonlin (‘fun’,x0,options,‘grad’); 4) [x,options]= lsqnonlin (‘fun’,x0,…); 5) [x,options,funval]= lsqnonlin (‘fun’,
函数插值与曲线拟合都是要根据一组数据构造一个函数作 为近似,由于近似的要求不同,二者的数学方法上是完全不同 的。 实例:下面数据是某次实验所得,希望得到X和 f之间的关系?
x 1 2 4 7 9 1 2 1 3 1 5 1 7 f 1 .5 3 .9 6 .6 1 1 .7 1 5 .61 8 .81 9 .62 0 .62 1 .1
MATLAB(cn)
7
最临近插值、线性插值、样条插值与曲线拟合结果:
0
2
4
6
8
10
12
14
16
18
0
5
已已已已已 10
25
已已已已已 20
15
已已已已已已已
linest
10
5
0
0
2
4
6
8
10
12
14
16
18
15
已已已已已已已
nearest
20
25
25
已已已已已 20
15 spline
10 已已已已已已已
fun是一个事先建立的 定义函数F(x,xdata) 的 M-文件, 自变量为x和 xdata
选项见无 迭代初值 已知数据点 约束优化
19
2. lsqnonlin
估计水塔的水流量
估计水塔的水流量1、问题提出:某地区用水管理机构需要对居民的用水速度(单位时间的用水量)和日总用水量进行估计。
现有一居民区,其自来水是由一个圆柱形水塔提供,水塔高12.2m,塔的直径为17.4m。
水塔是由水泵根据水塔中的水位自动加水,一般水泵每天工作两次,按照设计,当水塔中的水位降至最低水位,约8.2m时,水泵自动启动加水;当水位升高到最高水位,约10.8m时,水泵停止工作。
表1给出的是某一天的测量数据,测量了28个时刻的数据,但由于水泵正向水塔供水,有三个时刻无法测到水位(表中用—表示),试建立数学模型,来估计居民的用水速度和日用水量。
表1 水塔中水位原始数据2、问题分析:日用水量用水速度每个时刻水塔中水的体积3、模型假设:影响水从水塔中流出的流量的唯一因素是公众对水的传统要求;水塔中的水位、气候条件、温度变化等不影响水流量的大小;水泵充水速度水塔的水流量与水泵状态独立;恒定,且远大于水塔的水流速度;水流量曲线是一条连续光滑的曲线;表1数据是准确的;4、模型的建立与求解:(1)、水塔中水的体积其中, ,(r 为底面半径,d 为水面高度)(2)在Matlab 命令窗口直接运行(不包括未知三点)>>t=[0,0.921,1.843,2.949,3.871,4.978,5.900,7.006,7.928,8.967,10.954,12.032,12.954,13.875,14.982,15.903,16.826,17.931,19.037,19.959,20.839,22.958,23.880,24.986,25.908];>>v=[2301.1,2254,2213.3,2169.8,2135.8,2095.9,2065.4,2027.1,1994.6,1954.6,2572.9,2496.8,2427.8,2362.7,2295.4,2237.3,2182.9,2121.3,2059.7,2005.3,1954.6,2572.9,2518.4,2462.0,2420.7]; >> scatter(t,v)得到水塔中水体积的散点图 0510********19002000210022002300240025002600(3)在Matlab 中编写脚本文件(不包括未知三点)采用数值微分的一阶微商的两点公式(末位处近似为sd(n)=sd(n-1))t=[0,0.921,1.843,2.949,3.871,4.978,5.900,7.006,7.928,8.967,10.954,12.032,12.954,13.875,14.982,15.903,16.826,17.931,19.037,19.959,20.839,22.958,23.880,24.986,25.908];v=[2301.1,2254,2213.3,2169.8,2135.8,2095.9,2065.4,2027.1,1994.6,1954.6,2572.9,2496.8,2427.8,2362.7,2295.4,2237.3,2182.9,2121.3,2059.7,2005d r V 2π=.3,1954.6,2572.9,2518.4,2462.0,2420.7];for i=1:9sd(i)=abs((v(i+1)-v(i))/(t(i+1)-t(i)));endsd(10)=sd(9);for i=11:20sd(i)=abs((v(i+1)-v(i))/(t(i+1)-t(i)));endsd(21)=sd(20);for i=22:24sd(i)=abs((v(i+1)-v(i))/(t(i+1)-t(i)));endsd(25)=sd(24);scatter(t,sd)hold onplot(t,sd)得到水塔中水流速度的散点图及光滑图0510********(4)预测水塔中的未知流速[1]在Matlab中运行脚本文件(不包括未知三点):采用数值微分的一阶微商的两点公式(末位处近似为sd(n)=sd(n-1))t=[0,0.921,1.843,2.949,3.871,4.978,5.900,7.006,7.928,8.967,10.954,12. 032,12.954,13.875,14.982,15.903,16.826,17.931,19.037,19.959,20.839,22 .958,23.880,24.986,25.908];v=[2301.1,2254,2213.3,2169.8,2135.8,2095.9,2065.4,2027.1,1994.6,1954. 6,2572.9,2496.8,2427.8,2362.7,2295.4,2237.3,2182.9,2121.3,2059.7,2005 .3,1954.6,2572.9,2518.4,2462.0,2420.7];for i=1:9sd(i)=abs((v(i+1)-v(i))/(t(i+1)-t(i)));endsd(10)=sd(9);for i=11:20sd(i)=abs((v(i+1)-v(i))/(t(i+1)-t(i)));endsd(21)=sd(20);for i=22:24sd(i)=abs((v(i+1)-v(i))/(t(i+1)-t(i)));endsd(25)=sd(24);sd得到速度(不包括未知三点)sd =Columns 1 through 951.1401 44.1432 39.3309 36.8764 36.0434 33.0803 34.6293 35.2495 38.4986Columns 10 through 1838.4986 70.5937 74.8373 70.6840 60.7949 63.0836 58.9382 55.7466 55.6962Columns 19 through 2559.0022 57.6136 57.6136 59.1106 50.9946 44.7939 44.7939 [2]采用拉格朗日插值法估计未知三点的速度:在Matlab命令窗口直接运行>> x0=[7.928,8.967];>> y0=[38.4968,38.4968];>> lglr3(x0,y0,9.981)ans =38.4968>> x0=[8.967,9.981];>> y0=[38.4968,38.4968];>> lglr3(x0,y0,10.925)ans =38.4968>> x0=[19.959,20.839];>> y0=[57.6136,57.6136];>> lglr3(x0,y0,22.015)ans =57.6136[3]在Matalb中运行脚本文件t=[0,0.921,1.843,2.949,3.871,4.978,5.900,7.006,7.928,8.967,9.981,10.9 25,10.954,12.032,12.954,13.875,14.982,15.903,16.826,17.931,19.037,19.959,20.839,22.015,22.958,23.880,24.986,25.908];sd=[51.1401,44.1432,39.3309,36.8764,36.0434,33.0803,34.6293,35.2495,3 8.4986,38.4968,38.4968,38.4986,70.5937,74.8373,70.6840,60.7949,63.083 6,58.9382,55.7466,55.6962,59.0022,57.6136,57.6136,57.6136,59.1106,50. 9946,44.7939,44.7939];scatter(t,sd)hold onplot(t,sd)得到水塔中水流速度的散点图及光滑图(new)757065605550454035300510********(4)a、通过曲线拟合,拟合出上述函数(f1)b、通过数值积分(梯形,辛普森)求出用水量(f2)5、模型检验:应该另外测试一批数据检验模型(f1,f2)6、模型分析:(1) 4.(3)中末位处近似为sd(n)=sd(n-1)可以改进,比如先采用数值微分求1----(n-1)的速度,再采用拉格朗日插值法求末位n的速度;(2)拉格朗日插值可以改用其他更为精确的插值法(3)数值微分法可以采用其他的更为精确的方法(而不是一阶微商的两点公式)(4) 4.(4)中的两部暂时不会(5)模型假设处可能有一些瑕疵7、附录:。
估计水塔水流量的求解模型要点
估计水塔水流量的求解模型摘要由所给的题目可知,本问题是一个关于如何计算居民用水的问题,由题目给出的表格,可知不同时刻的水位,根据所要求的不同时刻水位的不同入手,此计算问题就可以转化为插值或拟合问题。
这里主要考虑采用插值的方法,可以利用MATLAB软件进行插值和曲线拟合计算并解决一些具体的实际问题。
根据题目建立模型并采用插值的方法进行求解,推算出任何时刻(包括水泵正供水时)从水塔流出的水流量,及一天的总用水量。
关键词:用水规律与水泵的工作功率原始数据用水规律与水泵的工作功率一、问题重述1.1基本情况某居民区有一供居民用水的圆柱形水塔,一般可以通过测量其水位来估计水的流量。
面临的困难是,当水塔水位下降到设定的最低水位时,水泵自动启动向水塔供水,到设定的最高水位的时候停止供水,这段时间无法测量水塔的水位和水泵的供水量。
通常水泵每天供水一两次,每次约3h. 已知水塔是一个高为12.2m,直径为17.4m的正圆柱。
1.2 所要解决的问题现在需要了解该居民区用水规律与水泵的工作功率。
按照设计,当水塔的水位降至最低水位,约8.2米时,水泵自动启动加水;当水位升高到一个最高水位,约10.8米时,水泵停止工作。
可以考虑采用用水率(单位时间的用水量)来反映用水规律,并通过间隔一段时间测量水塔里的水位来估算用水率。
表1是某一天的测量记录数据,测量了28个时刻,但是由于其中有4个时刻遇到水泵正在向水塔供水,而无水位记录(表中用符号//表示)。
所要解决的问题就是,要估计任何时刻(包括水泵正供水时)从水塔流出的水流量,及一天的总用水量。
表1水位测量记录(符号//表示水泵启动)二、问题背景1991年的美国大学生数学建模竞赛A题(AMCM1991A),由于它是水库调度、自来水管理、公共场所的人流量估计等问题的代表,因此有许多文献对其进行了研究,但一般都是采用差分与拟合的方法。
而由于居民何时用水是无法准确的预报的,可能引起的水位的变化是随机事件,因此,可以以水容量作为随机变量,建立一个随机数学模型,不仅可以给出了水塔流量函数,同时还可以讨论水容量函数的数学期望。
水塔水流量问题的广义线性回归解法
[ 摘
要] 对 估 计 水 塔 的 水 流 量 问 题 , 出一 种 直 接 对 水 位 进 行估 计 的 广义 线 性 回归 解 法 , 服 了 由于 加 给 克
水 过 程 带 来 的水 位 数 据 跳 跃 式 变 化 的 困难 , 时 又 避 免 了 由水 位 数 据 估 计 水 流 量 产 生 的 误 差. 同
知的跳跃 式 的变化 , 要想用 常规 的 回归分析 方法或插 值方 法对 水位进 行估计 , 似乎 是不 可能 的. 因此 , 在 这一年 竞 赛 中 获 得 特 等 奖 的 3个 美 国 参 赛 队 ( rm C l g Hi ol e队 , io olg a e R p n C l e队 , iest f e Unvri o y Als aF i a k 队 )无 一例 外地采 用 了这样 的做法 : ak — ar n s , b 先设 法用水 位数据 估 计 出水流 量 的数 据 ( 从水 塔
流 出的水 流量是 连续 变化 的 , 没有 跳跃 ) 再从 水流量 数据 出发 , 回归分析 方法 或插值 方法估 计水 流量 , 用
[ 稿 日期 ] 2 0—81 收 0 60—6
第 6期
陆元鸿 : 水塔 水 流量 问题 的广义 线性 回归解 法
15 2
- 的变 化. 们 的做法 , 厂 ) ( 他 虽然 也能 得 到问题 的解 , 是 , 于他 们 的水 流 量数 据 是估 计 出 来 的 , 但 由 比起 原 始数 据来 , 显然 多 了一重误 差 , 在此基 础 上再进 行 回归或 插值 , 结果 必然误 差很 大 , 以 , 样做 , 所 这 显然 不
为了简化 问题 , 我们 先不 考虑 加水 过程 , 假定 自始 至终 水塔 中只有 水流 出 , 没有 水加 入.
水塔水流量估计模型与数据插值总结
一
数据插值
给定n个数据点 ( x1 , y1 ), ( x2 , y2 ),, ( xn , yn ),
试求一个较为简单的函 数P ( x ),使得P ( x )满足 yi P ( xi ), i 1,2,, n
称P(x)为插值函数。也即求解一条严格通过各数 据点的曲线,用它来进行分析研究和预测,这种 方法常称为数据插值法。
称为牛顿插值公式,最后一项称为牛顿插值余项, 记为Rn(x),余项前的多式称为插值多项式,记 为Pn(x)。
牛顿插值多项式具有以下特点:
(1)在插值结点处与拉格朗日插值一样,误差 为零; (2)多项式k次项的系数是f(x)的k阶差商; (3)增加插值节点时,只增加最后一项,不必 像拉格朗日插值公式那样需要重新计算系数。 在做牛顿插值时,一般先做出差商表,然后套 用公式。
n 1 1
解为X A1Y .
可以证明,对于n+1个不同结点,必存在唯一的次 数不超过n的满足条件的多项式,这个多项式称为 插值多项式,这种方法称为n次多项式插值(或代 数插值。
为了以后使用方便,先编制一个Lagrange插值函数程序: function p=lagrange(x,y) L=length(x); A=ones(L); for j=2:L A(:,j)=A(:,j-1).*x'; end X=inv(A)*y'; for i=1:L p(i)=X(L-i+1); end
5
4
3
2
1
0
-1
1
1.5
2
2.5
3
3.5
4
4.5
5
从结果可以看到,所插值的4次多项式曲线较好地连接了5个 数据点,从而可以用此多项式曲线作为这5个数据的一个近 似变化。
(完整word版)计算水塔水流量(word文档良心出品)
一、课程设计目的:1.训练学生灵活应用所学数值分析知识,独立完成问题分析,结合数值分析理论知识,编写程序求解指定问题。
2.初步掌握解决实际问题过程中的对问题的分析、系统设计、程序编码、测试等基本方法和技能;3.提高综合运用所学的理论知识和方法独立分析和解决问题的能力;4.训练用数值分析的思想方法和编程应用技能模拟解决实际问题,巩固、深化学生的理论知识,提高学生对数值分析的认知水平和编程水平,并在此过程中培养他们严谨的科学态度和良好的工作作风二、课程设计任务与要求:课程设计题目:计算水塔的水流量【问题描述】某居民区的民用自来水是由一个圆柱形的水塔提供,水塔高12.2米,直径17.4米。
水塔是由水泵根据水塔内水位高低自动加水,一般每天水泵工作两次,现在需要了解该居民区用水规律与水泵的工作功率。
按照设计,当水塔的水位降至最低水位,约8.2米时,水泵自动启动加水;当水位升高到一个最高水位,约10.8米时,水泵停止工作。
可以考虑采用用水率(单位时间的用水量)来反映用水规律,并通过间隔一段时间测量水塔里的水位来估算用水率,原始数据表是某一天的测量记录数据,测量了28个时刻,但是由于其中有3个时刻遇到水泵正在向水塔供水,而无水位记录。
试建立合适的数学模型,推算任意时刻的用水率、一天的总用水量。
进一步:可自己增加一些新的计算功能。
【问题假设】1.水塔中水流量是时间的连续光滑函数,与水泵工作与否无关,并忽略水位高度对水流速度的影响。
2.水泵工作与否完全取决于水塔内水位的高度。
3.水塔为标准的圆柱体。
体积V=PI*D*D*h/4 其中D为底面直径,h为水位高。
4.水泵第一次供水时间段为[8.967,10.954],第二次供水时间段为[20.839,22.958]。
【实验数据】原始数据(单位:时刻(小时),水塔中水位(米))【实现提示】由问题的要求,关键在于确定用水率函数,即单位时间内用水体积,记为f(t),又称水流速度。
第八章 基于数据分析的建模方法
时间(秒 水位(英尺 英尺) 时间 秒) 水位 英尺 46636 3350 49953 3260 53936 3167 57254 3087 60574 3012 64554 2927 68535 2842 71854 2767 75021 2697 79254 水泵开动 82649 水泵开动 85968 3475 89953 3397 92370 3340
4
插值法的基本思想 寻找 f(x)的近似替代函数 的近似替代函数 φ(x), 在插值节点 i 上满足 在插值节点x φ( xi )=yi, (i=1,2,…,n), , , 其余点用φ(x)近似替代 (x ), 称φ(x)为f (x)的 近似替代f 其余点用 近似替代 为 的 插值函数. 插值函数
20
参见电子科技大学《概率统计》 参见电子科技大学《概率统计》p228 “非线性交调的频率设计”问题. 非线性交调的频率设计”问题 非线性交调的频率设计
21
1
* 借助于由实验或测量得到的一批离散数据 借助于由实验或测量得到的一批离散数据. *通过对数据充分观察和分析 获得数据所含 通过对数据充分观察和分析, 通过对数据充分观察和分析 信息; 信息 *揭示变量间的内在联系 揭示变量间的内在联系; 揭示变量间的内在联系 *选择适当的数学式对变量间的关系进行拟合 选择适当的数学式对变量间的关系进行拟合. 选择适当的数学式对变量间的关系进行拟合 y
18
某小镇某天水塔水位散布图
19
水位高度(或水塔的水容量) 假设 水位高度(或水塔的水容量)是连续 变化的. 变化的 可以选择n 次多项式P 可以选择 次多项式 n(x)
Pn( x) = a0 + a1x + a2 x2 +L+ an xn
水塔水流量估计
答卷编号(参赛学校填写):答卷编号(竞赛组委会填写):论文题目: 98年A组别:本科参赛队员信息(必填):参赛学校:承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):估计水塔的流量一、问题重述某居民区有一供居民用水的圆柱形水塔,一般可以通过测量其水位来估计水的流量,但面临的困难是,当水塔水位下降到设定的最低水位时,水泵自动启动向水塔供水,到设定的最高水位时停止供水,这段时间无法测量水塔的水位和水泵的供水量.通常水泵每天供水一两次,每次约两小时.水塔是一个高12.2米,直径17.4米的正圆柱.按照设计,水塔水位降至约8.2米时,水泵自动启动,水位升到约10.8米时水泵停止工作.表1 是某一天的水位测量记录,试估计任何时刻(包括水泵正供水时)从水塔流出的水流量,及一天的总用水量.二、模型假设1、假设该水塔为标准的圆柱形。
2、水塔的流量只取决水塔内水位的差值,与其水位的高低无关且该流量应看做连续光滑的变量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f (t ) dt ≈ 89242 (加仑) 与V1相差只有 2.3%
∫
20 .8392 10 .9542
f (t ) dt ≈ 165143 (加仑) 与V2相差只有 1.4%
说明拟合曲线是相当精确的
六、误差分析
一天 总用 水量
V = V 0 − V 8 . 9678 + V p1 + V 10 . 9542 − V 20 .8392 + V p 2 + V 22 . 9581 − V 23 . 8800 + V [ 23 .8800 , 24 ]
水体积的误差为0.5% 用样条逼近的用水量其误差可用抽样计算得5.1%
一天 总量 误差
S V = [ S V20 + S V28 .9678 + S V2p1 + S V210 .9542 + S V 20 .8392 + S V2p + S V2 22 .9581 + S V223 .88 + S V2[ 23 .88 , 24 ] ]1 2
= 91910(加仑/小时)
两次充水水泵 平均水流量
p=
1 ( p1 + p 2 ) 2
= 94743(加仑/小时)
五、一天总用水量
一天总 用水量 检验
∫ ∫ ∫ ∫ ∫
24 0
f ( t ) dt
=333189 (加仑)
24 . 9211 0 . 9211 25 . 8431 1 . 8431 25 1
⇒
拟合水流量曲线
五、对水泵 充水的两段时间水流量处理
第一次充水,水 塔的水体积之差
∆ V 1 = 67715 − 514872 = 162843 加仑
充水时间约为∆t1= 1.9864小时 第一次 充水水 泵平均 水流量
p1 ∆V = + ∆ t1
∫
10 . 9542 8 . 9678
f ( t ) dt
案例6 案例6 估计水塔的水流量
问题 一、问题分析
建模目的:给出水从水塔流出的流量,并估计一天的总用水量 由数值决定在所给数据点处的水流量
思 路
找出一个水从水塔流出水流量光滑拟合逼近 处理水泵工作时的充水量及一天该镇总用水量 ,同 时亦重建了水泵工作时所缺的数据
二、假设与记号
1.影响水从水塔流出的流率的唯一因素是公众对传统的 要求。因为附表只给出了某一天(实际是近26小时)水 塔的水位数据,并没有对这些数据的产生有影响的因素 作出具体说明,我们只能假定所给数据反映了有代表性 的一天,而不包括任何特殊情况,如自然灾害、水灾、 水塔溢水、水塔漏水等对水的特殊要求 2.水塔中水的水位不影响水流量的大小。据物理学的 定律,水塔最大水流量是与水位的高度的平方根成正 比的。针对表所给的数据,最大高度是35.50英尺,最 小高度是27.00英尺,所以两个高度的最大水流量之比 是,接近于1,所以我们假定水位不影响水流量,类似 的,我们假定气候条件,温度变化大也不直接影响水 流量
1 9633
四、用三次样条拟合 fi ( f(t)拟合曲线 S(t)) ) S(t)为通过表3数据点的三次样条函数,具有端点
t0 =0 和t24 =25.9083
Si (t ) = a0i + a1i (t − t i ) + a2i (t − t i )2 + a3i (t − t i )3
9.981 10.9256 10.9542 12.0328 12.9544 13.8758 14.9822 15.9039 16.8261 17.9317
水泵工作 水泵工作 677715 657670 639534 622352 604598 589325 575008 558781
19.0375 19.9594 20.8392 22.0150 22.9581 23.8800 24.9869 25.9083
V1= 606125-514872=91253(加仑)
V2= 677715-514872=162843(加仑)
∫
10 .9542 8 .9678
f ( t )dt ≈ 30981 加仑) (加仑)
∫
22 .9581 20 .8392
f ( t )dt ≈ 31905 加仑) (加仑)
[22.9581,23.88] 期间用水量 [23.88,24]期间 用水量 一天总 用水量
i− 2
与 f i = f (t i ) = 与
− 3Vi + 4V i +1 − V i + 2 2( t i + 1 − t i )
3V i − 4V i − 1 − V i − 2 2( t i − t i −1 )
f i = f (t i ) =
水流量值(表3)
时
(小时)
间
水 流 量
(加仑/小时)
t: 时间,单位小时
记 号
h:水塔中水流高度,是时间的函数,单位为英尺 V:水塔中水的体积,单位加仑 f: 估计的水塔 水流量,单位加仑/小时 p: 水泵工作时充水的水流量 ,单位加仑/小时
三、水流量与时间的关系
1. 把附表数据化为时间与水体积关系
时 间 (小时)
水 体 积 (加仑)
时 间 (小时)
关于水流量 fi
fi
V i+1 − V i = f (ti ) = t i+1 − t i
V i − V i−1 与 f i = f (ti ) = t i − t i−1
或为了减少误差采用数值差分公式
= f (ti ) = − V
i+ 2
f
i
+ 8V i + 1 − 8V i − 1 + V 12 ( t i + 1 − t i )
V3= 677715-663397=14318(加仑)
∫
24 23 .88
f (t ) dt ≈ 1829 (加仑)
V1 + V2 + V3+30981+31905+1829=333129 (加仑) 与
∫
24 0
f ( t ) dt 相差只有 0.02%
f (t ) 计算充水期间以外的用水量检验
∫
8.9678 0
9.981 10.9256 10.9542 12.0328 12.9544 13.8758 14.9822 15.9039 16.8261 17.9317
水泵工作 水泵工作 19469 20196 18941 15903 18055 15646 13741 14962
19.0375 19.9594 20.8392 22.0150 22.9581 23.8800 24.9869 25.9083
水泵工作的时间为75021秒(20.8392 小时),水 位26.97英尺 第 二 次 充 水 水泵结束时间为82649秒(22.9581小时), 补充水位35.50英尺
充水时间约为2.1189小时 3. 由Vi—ti关系产生水流量 fi—ti的关系 注:亦可以由Vi—ti关系拟合 V(t),再求微商得到 f(t)
f ( t ) dt ≈ 335116 (加仑) 加仑) f ( t ) dt ≈ 336782 (加仑) 加仑)
f ( t ) dt ≈ 335329 (加仑) 加仑) f ( t ) dt ≈ 336480 (加仑) 加仑)
25 . 5 1 .5
相差只约1%
[0,24]区间内检验 , 区间内检验 第一次充水 前总用水量 第一次充水后, 第二次充水前 总用水量 第一次充水 期间用水量 第二次充水 期间用水量
542554 528236 514872 水泵工作 水泵工作 663397 648506 637625
2. 水泵工作的起止时间 第一次充水前的最后一个测量数据是32284秒(8.9678 小时)时水位26.97英尺,可见水泵在此不久开始充水。 第 一 次 充 水 39332秒(10.9256小时)水泵工作仍在工作。 39435秒 (10.9542 小时)时水位35.50英尺。从而水泵在这两时 刻之间停止工作。 水泵工作的时间为32284秒(8.9678 小时); 水泵结束时间为39435秒(10.9542小时); 充水时间约为1.9864小时
时
(小时)
间
水流量
(加仑/小时)
时
(小时)
间
水流量
(加仑/小时)
0 0.9211 1.8431 2.9497 3.8714 4.9781 5.9000 7.0064 7.9286 8.9678
14405 11180 10063 11012 8797 9992 8124 10160 8488 11018
水体积 (加仑)
时 间 (小时)
水体积 (加仑)
0 0.9211 1.8431 2.9497 3.8714 4.9781 5.9000 7.0064 7.9286 8.9678
606125 593716 583026 571571 562599 552099 544081 533963 525372 514872
2
S V = 7846(加仑)
约为一天总用水量的2 约为一天总用水量的 .4%
t ∈[t i , t i +1 ]
具有:在每一个节点ti 处,Si-1(t) 与Si (t) 的函数值、一阶 导数和二阶导数相等
a0i = f i f − f i (t i +1 − t i )(2 M i + M i +1 ) a1i = i +1 − t i +1 − t i 6 1 a = Mi 2i 2 M − Mi a 3 i = i + 1 6(t i +1 − t i )