高中数学第5章导数和微积分微分课件

合集下载

高等数学课件---导数与微分

高等数学课件---导数与微分

x
2!
(3)取极限:
dy dx
lim
x0
y x
lim
x0
nx
n1
n(n 1) 2!
xn2x
(x)n1
nxn1,

xn nxn1 .(n 为正整数)
一般地,对 y x( 是实数),也有 x x1.这个公式
在后面将给出证明.例如:
x
1
x2
1 2x

1 x
x 1
1 x2
第二节 求导法则
一、函数的和、差、积、商的求导法则
定理 1 设函数 u u(x) 与 v v(x)在点 x处可导, 则函数u(x) v(x), u(x)v(x),uv((xx))(v(x) 0)也 在点 x处可导,且有以下法则:
(1) [u(x) v(x)] u(x) v(x);
(2) [u(x)v(x)] u(x)v(x) u(x)v(x) ,
? 注意: f (x0) [ f (x0) ]
4. 设
存在 , 则
lim
h0
f
( x0
h) h
f
(x0 )
___f_(_x_0_)_ .
小结
1.导数的概念:
导数的定义 左,右导数 导数的几何意义 变化率模型
2.可导与连续: 可导必定连续,连续不一定可导
3.求导举例:
求增量 算比值 取极限
4.已学过的导数公式
x0
x
x0
x
(当x→0 时, exlna 1与 xlna 是等价无穷小)
a x lim x ln a a x ln a x0 x
1,2,3合并

(ax) = ax lna .

《导数与微分》ppt课件

《导数与微分》ppt课件

求 求导方法:
y
(1)求出函数的增量
B
M T
y f (x0 x) f (x0 )
Mo A αφ
x0
△y dy △x X0+△x x
2、作出比值: y
x
y
3、求出 x 0 时 x 的极限。
二、可导与连续的关系
函数在点 x0
连续,指
lim y 0
x0
存在。
,可导是
lim
x0
y x
定理:如果y=f(x) 在点x0处可导,则它在点x0 处一定连续。
9 5
k
1___ k
1 25
切线方程y x ____ y 1 x 25
例:一球在斜面上向上滚动,已知在t(s)时球与 起始位置的距离是s(t) 3t t2, 求初速度、何时 开始下滚? 解:v(t) s' (t) 3 2t ___ t 0 v(0) 3m / s 当v 0时开始下滚, 3 2t 0 t 1.5s

u,对v, 应y 增量 u, v, y
y (u u)(v v) uv uv vu u v
y u v v u u v
x
x x x
y ' (uv)' uv' u 'v
例: 例1、2、3、4 p26
例:求y x sin x cosx 的导数 x cosx sin x
x
2!
y ' lim y nx n1 x0 x
即: (x n )' nxn1
对于n为任意实数时,上式也成立。
例7:正弦函数 y sin x 的导数
y sin(x x) sin x 2cos(x x) sin x
2

导数与微分(经典课件)

导数与微分(经典课件)

导数与微分引 言导数与微分是数学分析的基本概念之一。

导数与微分都是建立在函数极限的基础之上的。

导数的概念在于刻划瞬时变化率。

微分的概念在于刻划瞬时改变量。

求导数的运算被称为微分运算,是微分学的基本运算,也是积分的重要组成部分。

本章主要内容如下: 1. 以速度问题为背景引入导数的概念,介绍导数的几何意义; 2. 给出求导法则、公式,继而引进微分的概念;3. 讨论高阶导数、高阶微分以及参数方程所确定函数的求导法。

4. 可导与连续,可导与微分的关系。

§1 导数的概念教学内容:导数的定义、几何意义,单侧导数,导函数,可导与连续的关系,函数的极值。

教学目的:深刻理解导数的概念,能准确表达其定义;明确其实际背景并给出物理、几何解释;能够从定义出发求某些函数的导数;知道导数与导函数的相互联系和区别;明确导数与单侧导数、可导与连 续的关系;能利用导数概念解决一些涉及函数变化率的实际应用问题;会求曲线上一点处的切线 方程;清楚函数极值的概念,并会判断简单函数的极值。

教学重点:导数的概念,几何意义及可导与连续的关系。

教学难点:导数的概念。

教学方法:讲授与练习。

学习学时:3学时。

一、导数的定义:1.引入〔背景〕:导数的概念和其它的数学概念一样是源于人类的实践。

导数的思想最初是由法国数学家费马〔Fermat 〕为研究极值问题而引入的,后来英国数学家牛顿〔Newton 〕在研究物理问题变速运动物体的瞬时速度,德国数学家莱布尼兹〔Leibuiz 〕在研究几何问题曲线切线的斜率问题中,都采用了相同的研究思想。

这个思想归结到数学上来,就是我们将要学习的导数。

在引入导数的定义前,先看两个与导数概念有关的实际问题。

问题1。

直线运动质点的瞬时速度:设一质点作直线变速运动,其运动规律为)(t s s =,假设0t 为某一确定时刻,求质点在此时刻时的瞬时速度。

取临近于0t 时刻的某一时刻t ,则质点在[]t t ,0或[]0,t t 时间段的平均速度为:00)()(t t t s t s v --=,当t 越接近于0t ,平均速度就越接近于0t 时刻的瞬时速度,于是瞬时速度:00)()(limt t t s t s v t t --=→。

高数导数与微分PPT课件

高数导数与微分PPT课件
例1、设 y 2x5 sin x, 求 y和 y(0).
解: y 10x4 cos x, y 40x3 sin x,
y 120x2 cos x, y(0) 1
第15页/共36页
机动 目录 上页 下页 返回 结束
三、求导法则
(1) 函数的和、差、积、商的求导法则
设u u( x), v v( x)可导,则
100!
练习2、设 f (x) x 1,用导数的定义求f (2).
解: f (2) lim f ( x) f (2) lim
x2 x 2
x2
lim 1 1 x2 x 1 1 2
x 11 x2
第7页/共36页
机动 目录 上页 下页 返回 结束
6、导数的几何意义
f ( x0 )表示曲线 y f ( x)在点 M ( x0 , f ( x0 ))处切线
(1)(u v) u v,
(2)(cu) cu(c是常数),
(3)(uv) uv uv, [u( x) v( x)] u( x) v( x);
(4)
u v
uv v2
uv
(v
0)
.
u( x)
v(
x
)
u( x) v( x)
.
第16页/共36页
机动 目录 上页 下页 返回 结束
dy

dy dx
dt dx
(t) ; (t )
dt
d2y dx2
d( dy ) dx
dx
d ( (t)) dt (t)
dx
dt
第23页/共36页
机动 目录 上页 下页 返回 结束
例4、设
y
f
(
x
)

高等数学(微积分)ppt课件

高等数学(微积分)ppt课件

目录•绪论•函数与极限•导数与微分•微分中值定理与导数的应用•不定积分与定积分•微分方程与级数绪论01020304古代数学算术、几何与代数的起源与发展中世纪数学数学与哲学的交织文艺复兴时期数学解析几何与微积分的萌芽现代数学抽象化、公理化与结构化的趋势数学的发展历程微积分的创立与意义01微积分的创立牛顿与莱布尼兹的贡献02微积分的意义解决现实问题的有力工具,推动科学技术的发展03微积分的应用领域物理学、工程学、经济学等高等数学的研究对象与内容研究对象01函数、极限、连续、微分、积分等基本概念与性质研究内容02一元函数微积分学、多元函数微积分学、常微分方程等高等数学与其他学科的联系03为其他数学分支提供基础,为其他学科提供数学工具函数与极限函数定义设$x$和$y$是两个变量,$D$是一个数集。

如果存在一种对应法则$f$,使得对于$D$中的每一个数$x$,在数集$M$中都有唯一确定的数$y$与之对应,则称$f$为定义在$D$上的函数,记作$y=f(x),x in D$。

函数的性质包括有界性、单调性、奇偶性、周期性等。

常见函数类型一次函数、二次函数、幂函数、指数函数、对数函数、三角函数等。

010203函数的概念与性质设函数$f(x)$在点$x_0$的某个去心邻域内有定义。

如果存在常数$A$,对于任意给定的正数$epsilon$(无论它多么小),总存在正数$delta$,使得当$x$满足不等式$0<|x-x_0|<delta$时,对应的函数值$f(x)$都满足不等式$|f(x)-A|<epsilon$,那么常数$A$就叫做函数$f(x)$当$x to x_0$时的极限,记作$lim_{x tox_0}f(x)=A$或$f(x) to A(x to x_0)$。

极限的性质唯一性、局部有界性、保号性、保不等式性、迫敛性等。

极限定义极限的定义与性质VS极限的运算法则极限的四则运算法则若两个函数的极限存在,则它们的和、差、积、商(分母不为零)的极限也存在,且等于这两个函数极限的和、差、积、商。

高等数学(导数、微分)详细ppt课件

高等数学(导数、微分)详细ppt课件

.
关于导数的说明:
★ 点导数是因变x0处 量的 在变 点化 ,它率 反映因 了变量随自变量 而的 变变 化化 的快 慢程.度 ★ 如果y函 f(x数 )在开I内 区的 间每 处都, 就 可称 导f(函 x)在 数 开I内 区可 间 . 导
.
★ 对于任x 一I,都对应f(着 x)的一个确定的
导数.这 值个函数叫做原 f(x)来 的函 导数 函 . 数
2.右导数:
f ( x 0 ) x lx 0 i 0 f m ( x x ) x f 0 ( x 0 ) l x i 0 f ( m x 0 x x ) f ( x 0 ) ;
★ 函 数 f(x )在 点 x 0处 可 导 左 导 数 f (x 0)和 右 导 数 f (x 0)都 存 在 且 相 等 .
y
y
yf(x)
o
x
yf(x)
o
x0
x
.
例8 讨论函数f (x)xsin1x, x0, 0, x0
在x0处的连续性与可. 导性

sin1 x
是有界函, 数lxim 0xsin1x0
f(0 )lif m (x )0f(x)在 x0处连 . 续
但x在 0处 x 0有 y(0x)sin01x0 sin 1
x23 x2 x5
,

它 们 的 导 数 分 别 为 dy 1 = _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ , dx
dy 2 dx
=_
__
__
______
__
, dy 3 = _ _ _ _ _ _ _ _ _ _ _ _ _ dx
.
.
4、 设 f(x)x2,则 ff(x)________________; ff(x)_________________.

【高中数学课件】导数的概念-课件-导数与微分课件

【高中数学课件】导数的概念-课件-导数与微分课件

5
让更多的孩子得到更好的教育
导数与微分
三、基本求导公式:
1( . c) 0, 3 .( x ) nx
n n 1
2 .( x ) x
x x

1
5. (e ) e
x
6
x
4 .(a ) a ln a 1 x 6. (log a ) x ln a
6
天马行空官方博客:/tmxk_docin ;QQ:1318241189;QQ群:175569632
让更多的孩子得到更好的教育
导: x x x0 , x x0 x 2.函数的增量: y f ( x0 x) f ( x0 ) 3.导数的定义: f ( x0 x) f ( x0 ) y f ( x0 ) lim lim x 0 x x 0 x 一般地: f ( x x) f ( x) f ( x) lim (导函数) x 0 x
让更多的孩子得到更好的教育
导数与微分
8 .(sin x) cos x 10. (tgx) sec 2 x 12 (sec x) sec xtgx 14 .(arcsin x) 1 1 x2
1 7 .(ln x) x 9. (cos x) sin x 11 .(ctgx) cse 2 x 13 .(csex ) csexctgx
7
天马行空官方博客:/tmxk_docin ;QQ:1318241189;QQ群:175569632
7
让更多的孩子得到更好的教育
导数与微分
1 1 x2 .
15 .(arccos x)
1 16 .(arctgx) 1 x2 1 17. (arcctgx) 2 1 x 1 1 18 .( ) 2 x x 1 19. ( x ) 2 x 8

高中数学(人教版)第5章导数和微积分求导法则课件

高中数学(人教版)第5章导数和微积分求导法则课件
cos 2 x sin2 x 1 2 sec x. 2 2 cos x cos x
导数的四则运算
同理可得
1 2 ( cot x ) csc x. 2 sin x
1 cos x sin x (iii) (sec x ) 2 2 cos x cos x cos x
f ( x0 ) 1 . ( y0 ) (6)
证 设 Δx x x0 , Δy y y0 , 则 Δx ( y0+ Δy ) ( y0 ), Δy f ( x0Δx ) f ( x0 ) .
由假设, f 1 在点 x0 的某邻域内连续,
0
(4)
导数的四则运算
1 证 设 g( x ) ,则 f ( x ) u( x )g( x ). 对 g( x ), 有 v( x ) 1 1 v ( x0 Δ x ) v ( x0 ) g ( x0 Δ x ) g ( x 0 ) Δx Δx v ( x0 Δ x ) v ( x 0 ) 1 . Δx v ( x0 Δ x ) v ( x 0 ) 由于 v ( x ) 在点 x0 可导, v( x0 ) 0, 因此
1
反函数 的导数
π2) 上 (ii) y arctan x 是 x tan y 在 ( π 2,
的反函数,故
1 1 1 (arctan x ) 2 2 sec x 1 tan y (tan y )
1 2, 1 x x ( ,).
同理有
1 (arccot x ) , x ( , ). 2 1 x
sec x tan x.
同理可得
(csc x ) csc x cot x .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档