2015年高三数学(文)解析几何一轮复习测试题及详细解答

合集下载

2015高考数学(文)一轮复习题有答案解析阶段示范性金考卷四

2015高考数学(文)一轮复习题有答案解析阶段示范性金考卷四

阶段示范性金考卷四一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设直线m 、n 和平面α、β,下列四个命题中,正确的是( ) A .若m ∥α,n ∥α,则m ∥nB .若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥βC .若α⊥β,m ⊂α,则m ⊥βD .若α⊥β,m ⊥β,m ⊄α,则m ∥α解析:选项A 中,两条直线同时平行于同一个平面,则两直线的位置关系有三种;选项B 中,只有m 、n 相交时成立;选项C 中,只有m 垂直于交线时成立.选D.答案:D2.如图所示,正四棱锥P -ABCD 的底面积为3,体积为22,E 为侧棱PC 的中点,则P A 与BE 所成的角为( )A.π6B.π4C.π3D.π2解析:连接AC 、BD 交于点O ,连接OE ,OP ,易得OE ∥P A ,∴所求角为∠BEO .∵PO ⊥OB ,OB ⊥OA ,∴OB ⊥平面P AC ,OB ⊥OE .由所给条件易得OB =62,OE =12P A =22,在△OBE 中,tan ∠OEB =3,∴∠OEB =π3,选C.答案:C3.如图,三棱锥A -BCD 的底面为正三角形,侧面ABC 与底面垂直且AB =AC ,若该四棱锥的正(主)视图的面积为2,则侧(左)视图的面积为( )A.33B. 3C.23D.13解析:由题意可知,该四棱锥的正(主)视图为△ABC ,设底面边长为2a ,BC 中点为O ,则AO ⊥BC ,则AO ⊥平面BCD ,设AO =h ,则△ABC 的面积为12·2a ·h =ah =2,侧(左)视图为△AOD ,则面积为12OD ·AO =12·3a ·h =32ah = 3.答案:B4.如图,在正三棱锥A-BCD中,E、F分别是AB、BC的中点,EF⊥DE,且BC=1,则正三棱锥A-BCD的体积是()A.212 B.224C.312 D.324解析:∵EF⊥DE,EF∥AC,∴AC⊥DE,易知AC⊥BD,∴AC⊥平面ABD.由AB=AC=AD=22,可得所求体积为13×12×22×22×22=224.答案:B5.如图,半径为R的球O中有一内接圆柱,当圆柱的侧面积最大时,球的体积与该圆柱的体积之比是()A .2π B.423 C. 2D.23解析:设圆柱的底面半径为r ,故其侧面积S 侧=2πr ·2R 2-r 2=4πr 2(R 2-r 2),当S 侧最大时,r 2=R 2-r 2,r 2=R 22,所以r =22R ,此时圆柱的高h =2R ,V 球V 圆柱=43πR 3π×(22R )2×2R=423,选B.答案:B6.[2012·长春一模]设a ,b 是两条不同的直线,α,β是两个不同的平面,有下列四个命题:①若a ⊥b ,a ⊥α,b ⊄α,则b ∥α;②若a ∥α,α⊥β,则a ⊥β; ③若α⊥β,a ⊥β,则a ∥α或a ⊂α;④若a ⊥b ,a⊥α,b ⊥β, 则α⊥β.其中正确命题的个数为( ) A. 1 B. 2 C. 3 D. 4解析:在如图所示的长方体中,A 1A ⊥A 1B 1,A 1A ⊥平面ABCD , A 1B 1⊄平面ABCD ,则A 1B 1∥平面ABCD ,①正确;设A 1B 1为a ,平面AC 为α,平面A 1B 为β,显然有a ∥α,α⊥β,但得不到a ⊥β,②不正确;可设A 1A 为a ,平面AC 为β,平面A 1D 或平面B 1C 为α,满足③的条件且得a ∥α或a ⊂α,③正确;设A 1B 1为a ,平面A 1D 为α,A 1A 为b ,平面AC 为β,满足④的条件且得到α⊥β,④正确.答案:C7.一个空间几何体的三视图如图,则该几何体的体积为( )A .2 3B .2 5 C.433D.533解析:该几何体是三棱柱中截去一个棱锥,三棱柱的底面边长为2,高是2,截去的三棱锥底面边长是2,高是1,所以该几何体的体积是V =12×2×3×2-13×12×2×3×1=533.答案:D8.如图,四棱锥S-ABCD的底面为正方形,SD⊥底面ABCD,则下列结论中不正确的是()A.AC⊥SBB.AB∥平面SCDC.SA与平面SBD所成的角等于SC与平面SBD所成的角D.AB与SC所成的角等于DC与SA所成的角解析:AB与SC所成的角是∠SCD,DC与SA所成的角是∠SAB,而这两个角显然不相等,故D不正确.答案:D9.在矩形ABCD中,若AB=3,BC=4,P A⊥平面AC,且P A =1,则点P到对角线BD的距离为()A. 292 B.135C. 175 D.1195解析:过A作AE⊥BD于E.连接PE.因为P A⊥平面AC,BD⊂平面AC,所以P A⊥BD,所以BD⊥平面P AE,所以BD⊥PE,即PE就是点P到BD的距离,因为AE=AB·ADBD=3×432+42=125,P A=1,所以PE=13 5.答案:D10.设三棱柱的侧棱垂直于底面,所有棱的长都为a ,顶点都在一个球面上,则该球的表面积为( )A .πa 2 B.73πa 2 C.113πa 2D .5πa 2解析:由题意知,该三棱柱为正三棱柱,且侧棱与底面边长相等,均为a .如图,设O 1、O 分别为上、下底面的中心,且球心O 2为O 1O 的中点,则AD =32a ,AO =33a ,OO 2=a2,设球O 2的半径为R ,则R2=AO 22=13a 2+14a 2=712a 2.∴该球的表面积S 球=4πR 2=4π×712a 2=73πa 2.答案:B11.已知正四棱柱ABCD -A 1B 1C 1D 1中,AB =2,CC 1=22,E 为CC 1的中点,则直线AC 1与平面BED 的距离为( )A. 2B. 3C. 2D. 1解析:连接AC ,与BD 交于点O ,连接OE ,因为O ,E 分别是AC ,CC 1的中点,所以OE ∥AC 1,且OE =12AC 1,所以AC 1∥平面BED ,直线AC 1与平面BED 的距离等于点C 到平面BED 的距离.过C 作CF ⊥OE 于F ,则CF 即为所求距离.因为正四棱柱ABCD -A 1B 1C 1D 1的底面边长为2,高为22,所以AC =22,OC =2,CE =2,OE =2,利用等面积法得CF =OC ·CEOE =1,选D.答案:D12.如图,边长为a 的等边△ABC 的中线AF 与中位线DE 交于点G ,已知△A ′DE (A ′∉平面ABC )是△ADE 绕DE 旋转过程中的一个图形,对于下列叙述错误的是( )A .平面A ′FG ⊥平面ABCB .BC ∥平面A ′DEC .三棱锥A ′-DEF 的体积最大值为164a 3D .直线DF 与直线A ′E 可能共面解析:A 项中,由已知可得四边形ADFE 是菱形,则DE ⊥GA ′,DE ⊥GF ,所以DE ⊥平面A ′FG ,所以平面A ′FG ⊥平面ABC ,A 项正确;又BC ∥DE ,∴BC ∥平面A ′DE ,B 项正确;当平面A ′DE ⊥平面ABC 时,三棱锥A ′-DEF 的体积达到最大,最大值为13×14×34a 2×34a =164a 3,C 项正确;在旋转过程中DF 与直线A ′E 始终异面,D 项不正确.答案:D二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.一个几何体的三视图如图所示,则该几何体的体积为________.解析:由三视图知,该几何体是一个圆柱和三棱锥的组合体.圆柱的底面半径为1,高为1,所以圆柱的体积为π×12×1=π;三棱锥的底面是等腰直角三角形,两直角边为2,三棱锥的高为3,所以三棱锥的体积为13×12×2×2×3=33,所以该几何体的体积为π+33.答案:π+3314.在三棱锥P -ABC 中,P A ⊥底面ABC ,P A =2,底面△ABC是边长为2的正三角形,则此三棱锥外接球的半径为________.解析:底面△ABC 是边长为2的正三角形,P A ⊥底面ABC ,可得此三棱锥的外接球即为以△ABC 为底面、以P A 为高的正三棱柱的外接球.∵△ABC 是边长为2的正三角形,∴△ABC 的外接圆半径r =233,球心到△ABC 的外接圆圆心的距离d =1,故球的半径R =r 2+d 2=73=213.答案:21315.如图,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,点E 为AA 1的中点,在对角面BB 1D 1D 上取一点M ,使AM +ME 最小,其最小值为________.解析:取CC 1的中点F ,连接EF ,MF ,EF 交平面BB 1D 1D 于点N ,则EN =FN ,所以F 点是E 点关于平面BB 1D 1D 的对称点,则AM +ME =AM +MF ,所以当A ,M ,F 三点共线时,AM +MF 最小,即AM +ME 最小,此时AM +MF =AF =3a 2.答案:3a 216.正方体ABCD -A 1B 1C 1D 1的棱长为a ,M ,N ,P ,Q 分别在棱A 1D 1,A 1B 1,B 1C 1,BC 上移动,则四面体MNPQ 的最大体积是________.解析:由图可知,四面体MNPQ 的体积就是三棱锥Q -MNP 的体积,而三棱锥的高是a ,当底面△MNP 的面积最大时体积最大,S △MNP 最大=12a 2,所以四面体MNPQ 的最大体积是13×12a 2×a =16a 3.答案:16a 3.三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)如图为一简单组合体,其底面ABCD为正方形,PD⊥平面ABCD,EC∥PD,且PD=AD=2EC.(1)求证:BE∥平面PDA;(2)求证:平面PBD⊥平面PBE.证明:(1)∵EC∥PD,PD⊂平面PDA,EC⊄平面PDA,∴EC∥平面PDA,同理可得BC∥平面PDA,又EC∩BC=C,故平面BEC∥平面PDA.又∵BE⊂平面EBC,因此BE∥平面PDA.(2)连接AC交BD于点O,取PB的中点F,连接OF.由于FO∥PD,又∵EC∥PD,∴FO∥EC,且FO=EC,因此OCEF 为平行四边形,于是OC ∥EF .又∵OC ⊥平面PBD ,∴EF ⊥平面PBD ,又∵EF ⊂平面PBE ,故平面PBD ⊥平面PBE .18.(本小题满分12分)如图(1),在四棱锥P -ABCD 中,P A ⊥底面ABCD ,底面ABCD 为正方形,E 为侧棱PD 上一点,F 为AB 上一点.该四棱锥的正视图和侧视图如图(2)所示.(1)求四面体PBFC 的体积;(2)证明:AE ∥平面PFC ;(3)证明:平面PFC ⊥平面PCD .解:(1)由侧视图可得F 为AB 的中点,BF =1,所以△BFC 的面积S =12 ×1×2=1.因为P A ⊥平面ABCD ,所以四面体PBFC 的体积V P -BFC =13S △BFC ×P A =13×1×2=23.(2)取PC的中点Q,连接EQ,FQ. 由正视图可得E为PD的中点,所以EQ∥CD,EQ=12CD.又因为AF∥CD,AF=12CD,所以AF∥EQ,AF=EQ.所以四边形AFQE为平行四边形,所以AE∥FQ. 因为AE⊄平面PFC,FQ⊂平面PFC,所以AE∥平面PFC.(3)因为P A⊥平面ABCD,所以P A⊥CD.因为底面ABCD为正方形,所以AD⊥CD.所以CD⊥平面P AD.因为AE⊂平面P AD,所以CD⊥AE.因为P A=AD,E为PD的中点,所以AE⊥PD. 所以AE⊥平面PCD.由(2)知AE∥FQ,所以FQ⊥平面PCD.因为FQ⊂平面PFC,所以平面PFC⊥平面PCD.19.(本小题满分12分)如图,在四棱锥P-ABCD中,底面ABCD 是平行四边形,∠BCD=60°,AB=2AD,PD⊥平面ABCD,点M为PC的中点.(1)求证:P A∥平面BMD;(2)求证:AD⊥PB.证明:(1)连接AC,AC与BD相交于点O,连接MO,∵ABCD是平行四边形,∴O是AC的中点.∵M为PC的中点,∴MO∥AP.∵P A⊄平面BMD,MO⊂平面BMD,∴P A∥平面BMD.(2)∵PD⊥平面ABCD,AD⊂平面ABCD,∴PD⊥AD.∵∠BAD=∠BCD=60°,AB=2AD,∴BD2=AB2+AD2-2AB·AD·cos60°=AB2+AD2-2AD2=AB2-AD2.∴AB2=AD2+BD2.∴AD⊥BD.∵PD∩BD=D,PD⊂平面PBD,BD⊂平面PBD,∴AD⊥平面PBD.∵PB⊂平面PBD,∴AD⊥PB.20.(本小题满分12分)如图,已知三棱锥A-BCD中,AB⊥BD,AD⊥CD,E,F分别为AC,BC的中点,且△BEC为正三角形.(1)求证:CD⊥平面ABD;(2)若CD=3,AC=10,求点C到平面DEF的距离.解:(1)∵△BEC为正三角形,F为BC的中点,∴EF⊥BC.∵EF∥AB,∴AB⊥BC.又∵AB⊥BC,∴AB⊥平面BCD,∴AB⊥CD,又∵AD⊥CD,AB∩AD=A,∴CD⊥平面ABD.(2)设点C 到平面DEF 的距离为h ,∵AC =10,∴BE =BC =5,∴AB =2EF =53,在Rt △BDC 中,∵F 为BC 的中点,∴DF =12BC =52,∴S △EFD =12DF ·EF =2538,∴V C -EFD =13S △EFD ·h =25324h .在Rt △BCD 中,∵CD =3,BC =5,∴BD =4,∴S △DFC =12S △DBC=3,∴V E -DFC =13S △DFC ·EF =532,∵V C -EFD =V E -DFC ,∴h =125,∴点C 到平面DEF 的距离为125.21.(本小题满分12分)如图(1),△BCD 是等边三角形,AB =AD ,∠BAD =90°,M ,N ,G 分别是BD ,BC ,AB 的中点,将△BCD 沿BD 折叠到△BC ′D 的位置,使得AD ⊥C ′B ,如图(2).(1)求证:平面GNM∥平面ADC′;(2)求证:C′A⊥平面ABD.解:(1)因为M,N分别是BD,BC′的中点,所以MN∥DC′.因为MN⊄平面ADC′,DC′⊂平面ADC′,所以MN∥平面ADC′.同理,NG∥平面ADC′.又因为MN∩NG=N,所以平面GNM∥平面ADC′.(2)因为∠BAD=90°,所以AD⊥AB.又因为AD⊥C′B,且AB∩C′B=B,所以AD⊥平面C′AB.因为C′A⊂平面C′AB,所以AD⊥C′A.△BC′D是等边三角形,AB=AD,不妨设AB=1,则BC′=C′D=BD=2,可得C′A=1.由勾股定理的逆定理,可得AB⊥C′A.因为AB∩AD=A,所以C′A⊥平面ABD.22.(本小题满分12分)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的正方形,侧面P AD⊥底面ABCD,且P A=PD=22AD,E、F分别为PC、BD的中点.(1)求证:EF∥平面P AD;(2)求证:平面P AB⊥平面PDC;(3)求三棱锥C-PBD的体积.解:(1)连接AC,易知AC交BD于点F,∵四边形ABCD为正方形,F为AC的中点,E为PC的中点,∴EF∥P A.又P A⊂平面P AD,EF⊄平面P AD,∴EF∥平面P AD.(2)∵平面P AD⊥平面ABCD,平面P AD∩平面ABCD=AD,四边形ABCD为正方形,CD⊥AD,CD⊂平面ABCD,∴CD⊥平面P AD.∴CD⊥P A.又P A=PD=22AD,∴P AD是等腰直角三角形,且∠APD=π2,即P A⊥PD.∵CD∩PD=D,且CD、PD⊂平面PDC,∴P A⊥平面PDC.又P A⊂平面P AB,∴平面P AB⊥平面PDC.(3)取AD的中点O,连接OP,OF.∵P A=PD,∴PO⊥AD.∵侧面P AD⊥底面ABCD,平面P AD∩平面ABCD=AD,∴PO⊥平面ABCD,∵O、F分别为AD、BD的中点,∴OF∥AB,又四边形ABCD 是正方形,∴OF⊥AD.∵P A=PD=22AD,∴P A⊥PD,OP=OA=1.故三棱锥C -PBD 的体积V C -PBD =V P -BCD =13×12×2×2×1=23.。

2015高考数学(文)一轮复习题有答案解析阶段示范性金考卷五

2015高考数学(文)一轮复习题有答案解析阶段示范性金考卷五

阶段示范性金考卷五一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.[2014·新昌中学月考]直线l 1:kx +(1-k )y -3=0和l 2:(k -1)x +(2k +3)y -2=0互相垂直,则k =( )A .-3或-1B .3或1C .-3或1D .-1或3解析:由两条直线垂直得k (k -1)+(1-k )(2k +3)=0,解得k =-3或k =1,故选C.答案:C2.下列曲线中,其右焦点与抛物线y 2=4x 的焦点重合的是( ) A.5x 23+5y 22=1 B.x 29+y 25=1 C.x 23-y 22=1D.5x 23-5y 22=1解析:抛物线y 2=4x 的焦点坐标为(1,0).选项A 中椭圆的右焦点坐标为(55,0),选项B 中椭圆的右焦点坐标为(2,0),选项C 中双曲线的右焦点坐标为(5,0),选项D 中双曲线的右焦点坐标为(1,0),故选D.答案:D3.过点M (2,0)作圆x 2+y 2=1的两条切线MA ,MB (A ,B 为切点),则MA →·MB →=( )A.532 B.52 C.332D.32解析:由题意知,∠OMA =∠OMB =30°且|MA |=|MB |=3,所以MA →·MB →=3×3×12=32.答案:D4.[2014·烟台诊断性测试]若点P 是以A (-10,0)、B (10,0)为焦点,实轴长为22的双曲线与圆x 2+y 2=10的一个交点,则|P A |+|PB |的值为( )A .2 2B .4 2C .4 3D .6 2解析:根据对称性,设点P 在第一象限,则|P A |-|PB |=22,点P 在圆x 2+y 2=10上,则P A ⊥PB ,所以|P A |2+|PB |2=40,把|P A |-|PB |=22平方后代入上述结果得|P A |·|PB |=16,所以(|P A |+|PB |)2=40+32=72,所以|P A |+|PB |=6 2.答案:D5.已知圆x 2+y 2-2x -4y +a -5=0上有且仅有两个点到直线3x -4y -15=0的距离为1,则实数a 的取值范围为( )A .(5,7)B .(-15,1)C .(5,10)D .(-∞,1)解析:圆的标准方程为(x -1)2+(y -2)2=10-a ,故10-a >0,即a <10.圆心(1,2)到直线3x -4y -15=0的距离为4.数形结合可得,当圆x 2+y 2-2x -4y +a -5=0上有且仅有两个点到直线3x -4y -15=0的距离为1时,圆的半径r 满足3<r <5,即3<10-a <5,即-15<a <1.答案:B6.若双曲线x 2a 2-y 2b 2=1(a >0,b >0)与直线y =3x 无交点,则离心率e 的取值范围为( )A .(1,2)B .(1,2]C .(1,5)D .(1,5]解析:因为双曲线的渐近线为y =±ba x ,要使直线y =3x 与双曲线无交点,则直线y =3x 应在两渐近线之间,所以有b a ≤3,即b ≤3a ,所以b 2≤3a 2,c 2-a 2≤3a 2,即c 2≤4a 2,e 2≤4,所以1<e ≤2,选B.答案:B7.过抛物线y 2=4x 的焦点作一条直线与抛物线相交于A ,B 两点,它们到直线x =-2的距离之和等于5,则这样的直线( )A .有且仅有一条B .只有两条C .有无穷多条D .不存在解析:设点A (x 1,y 1),B (x 2,y 2).因为A ,B 两点到直线x =-2的距离之和等于5,所以x 1+2+x 2+2=5.所以x 1+x 2=1.由抛物线的定义得|AB |=x 1+1+x 2+1=3.而抛物线的焦点弦的最小值(当弦AB ⊥x 轴时,是最小焦点弦)为4,所以不存在满足条件的直线.答案:D8.[2014·杭州二中质检]已知抛物线y 2=2px (p >0)与直线ax +y -4=0相交于A ,B 两点,其中A 点的坐标是(1,2).如果抛物线的焦点为F ,那么|F A |+|FB |等于( )A .5B .6C .3 5D .7解析:把点A 的坐标(1,2)分别代入抛物线y 2=2px 与直线方程ax+y -4=0得p =2,a =2,由⎩⎪⎨⎪⎧y 2=4x2x +y -4=0消去y 得x 2-5x +4=0,则x A +x B =5.由抛物线定义得|F A |+|FB |=x A +x B +p =7,故选D.答案:D9.与两圆x 2+y 2=1及x 2+y 2-8x +12=0都外切的圆的圆心在( )A .一个椭圆上B .双曲线的一支上C .一条抛物线上D .一个圆上解析:圆x 2+y 2-8x +12=0的圆心为(4,0),半径为2,动圆的圆心到点(4,0)的距离减去到点(0,0)的距离等于1(小于4),由此可知,动圆的圆心在双曲线的一支上.答案:B10.[2014·绵阳诊断]已知椭圆x 2a 2+y 2b 2=1(a >b >0)的半焦距为c (c >0),左焦点为F ,右顶点为A ,抛物线y 2=158(a +c )x 与椭圆交于B ,C 两点,若四边形ABFC 是菱形,则椭圆的离心率是( )A.815B.415C.23D.12解析:依题意,由四边形ABFC 是菱形得知,题中的抛物线与椭圆的交点B ,C 应位于线段AF 的垂直平分线x =a -c2上.由⎩⎪⎨⎪⎧x 2a 2+y 2b 2=1y 2=158(a +c )x得x 2a 2+15(a +c )8b 2x =1,于是有(a -c 2)2a 2+158(a -c )×a -c 2=1,即(a -c )2(2a )2=116,a -c 2a =14,1-e =12,即e =12,该椭圆的离心率是12,选D.答案:D11.已知F 1,F 2分别是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,P 为双曲线上的一点,若∠F 1PF 2=90°,且△F 1PF 2的三边长成等差数列,则双曲线的离心率是( )A .5B .3C .4D.12解析:设|PF 2|=x ,|PF 1|=y (x <y ),则y -x =2a ,又x ,y,2c 为等差数列,所以x +2c =2y ,整理得⎩⎪⎨⎪⎧x =2c -4ay =2c -2a,代入x 2+y 2=4c 2整理得,5a 2-6ac +c 2=0,解得c =5a ,所以双曲线的离心率e =ca =5.答案:A12.已知F 为抛物线y 2=8x 的焦点,过点F 且斜率为1的直线l 交抛物线于A ,B 两点,则||F A |-|FB ||的值为( )A .4 2B .8C .8 2D .16解析:依题意知F (2,0),所以直线l 的方程为y =x -2,联立方程,得⎩⎪⎨⎪⎧y =x -2y 2=8x,消去y 得x 2-12x +4=0.设A (x 1,y 1),B (x 2,y 2),则x 1x 2=4,x 1+x 2=12,则||AF |-|BF ||=|(x 1+2)-(x 2+2)|=|x 1-x 2|=(x 1+x 2)2-4x 1x 2=144-16=8 2. 答案:C二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.[2014·北京四中月考]已知圆C :(x -a )2+(y -2)2=4(a >0)及直线l :x -y +3=0.当直线l 被C 截得的弦长为23时,a =________.解析:依题意,圆心(a,2)到直线l :x -y +3=0的距离d =|a +1|2,于是有4-(|a +1|2)2=(3)2,a =2-1或-2-1(舍去).答案:2-114.[2014·苏锡常镇一调]若双曲线x 2-y2a =1(a >0)的一个焦点到一条渐近线的距离等于3,则此双曲线方程为________.解析:双曲线x 2-y 2a =1(a >0)的一个焦点(1+a ,0)到一条渐近线ax -y =0的距离为a (1+a )a +1=3,解得a =3,故此双曲线方程为x 2-y23=1.答案:x 2-y 23=115.已知a ,b ,c 成等差数列且公差不为零,则直线ax -by +c =0被圆x 2+y 2-2x -2y =0截得的弦长的最小值为________.解析:由题意,圆心到直线的距离d =|a -b +c |a 2+b 2=|b |a 2+b 2,弦长l =22-d 2=22-1(a b )2+1≥22-1=2,当a =0时等号成立.答案:216.已知抛物线x 2=-4y 的准线与双曲线x 2a 2-y2b 2=1(a >0,b >0)的两条渐近线围成一个等腰直角三角形,则该双曲线的离心率是________.解析:抛物线x 2=-4y 的准线为y =1,双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线为y =±b a x ,令y =1,得x =±a b ,因为y =1与y =±ba x 围成一个等腰直角三角形,所以ab =1,所以a =b ,所以双曲线的离心率e =c a =a 2+b 2a =2a 2a = 2.答案: 2三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)[2014·石家庄质检]已知动点P 到定点A (0,1)的距离比它到定直线y =-2的距离小1.(1)求动点P 的轨迹C 的方程;(2)已知点Q 为直线y =-1上的动点,过点Q 作曲线C 的两条切线,切点分别为M ,N ,求证:M ,Q ,N 三点的横坐标成等差数列.解:(1)由动点P 到定点A (0,1)的距离比它到定直线y =-2的距离小1,可知动点P 到定点A (0,1)的距离等于它到定直线y =-1的距离,由抛物线的定义可知动点P 的轨迹C 的方程为x 2=4y .(2)由题意知y ′=x2.设M (x 1,y 1),N (x 2,y 2),Q (x 0,-1),则切线MQ :y -y 1=x 12(x -x 1),切线NQ :y -y 2=x 22(x -x 2).因为MQ ,NQ 交于点Q (x 0,-1),所以-1-y 1=x 12(x 0-x 1),-1-y 2=x 22(x 0-x 2),可得直线MN :-1-y =x2(x 0-x ),又y =x 24,所以x 2-2x 0x -4=0.易知x 1,x 2为方程x 2-2x 0x -4=0的两个解,由根与系数的关系可知x 1+x 2=2x 0, 所以M ,Q ,N 三点的横坐标成等差数列.18.(本小题满分12分)已知△ABC 的三个顶点为A (0,-3),B (-1,0),C (3,0),直线l :(m +2)x +(1-m )y -2m -4=0(m ∈R ).(1)求△ABC 的外接圆M 的方程;(2)证明直线l 与圆M 相交,并求M 被l 截得的弦长最短时m 的值.解:(1)设圆M 的方程为x 2+y 2+Dx +Ey +F =0,将A ,B ,C 三点的坐标代入方程得⎩⎪⎨⎪⎧9-3E +F =01-D +F =09+3D +F =0,解得⎩⎪⎨⎪⎧D =-2E =2F =-3.所以圆M 的方程为x 2+y 2-2x +2y -3=0. (2)由(1)知圆M 的圆心为M (1,-1),半径r = 5.直线l 的方程可化为(x -y -2)m +2x +y -4=0,它必经过直线x-y -2=0与2x +y -4=0的交点.由⎩⎪⎨⎪⎧ x -y -2=02x +y -4=0得⎩⎪⎨⎪⎧x =2y =0,故直线l 恒过点N (2,0).连接NM ,又|NM |=(2-1)2+(0+1)2<5,所以点N (2,0)在圆M 内,故直线l 与圆M 恒相交.结合图形可知:当直线l ⊥MN 时,M 被直线l 所截得的弦长最短. 此时k MN =-1-01-2=1,则k l =-1,即m +2m -1=-1,所以m =-12.19.(本小题满分12分)[2014·福州八中质检]已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点M (0,-1),四个顶点所围成的图形面积为2 2.直线l :y =kx +t 与椭圆C 相交于A ,B 两点,且∠AMB =90°.(1)求椭圆C 的方程;(2)试判断直线l 是否恒过定点?如果是,求出定点坐标;如果不是,请说明理由.解:(1)由题意得⎩⎪⎨⎪⎧ b =12ab =22,解得⎩⎪⎨⎪⎧a =2b =1. ∴椭圆C 的方程为x 22+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2).联立椭圆与直线方程⎩⎨⎧x 22+y 2=1y =kx +t,得(1+2k 2)x 2+4ktx +2t 2-2=0,∴8(2k 2-t 2+1)>0且x 1+x 2=-4kt 1+2k 2,x 1·x 2=2t 2-21+2k 2,∴y 1·y 2=(kx 1+t )(kx 2+t )=k 2x 1x 2+kt (x 1+x 2)+t 2=2k 2t 2-2k 2-4k 2t 2+t 2+2k 2t 21+2k 2=-2k 2+t 21+2k 2,y 1+y 2=k (x 1+x 2)+2t =2t1+2k2. ∵MA →=(x 1,y 1+1),MB →=(x 2,y 2+1),且∠AMB =90°, ∴MA →·MB →=x 1x 2+(y 1+1)(y 2+1) =x 1x 2+y 1y 2+y 1+y 2+1 =2t 2-21+2k 2+-2k 2+t 21+2k 2+2t 1+2k 2+1 =2t 2-2-2k 2+t 2+2t +1+2k 21+2k 2=3t 2+2t -11+2k 2=0,解得t =13或t =-1(舍去).∴直线l 的方程为y =kx +13. ∴直线l 恒过定点(0,13).20.(本小题满分12分)设抛物线C :y 2=2px (p >0)的焦点为F ,直线l 过F 且与抛物线C 交于M ,N 两点,已知当直线l 与x 轴垂直时,△OMN 的面积为2(O 为坐标原点).(1)求抛物线C 的方程;(2)是否存在直线l ,使得以线段MN 为对角线的正方形的第三个顶点恰好在y 轴上?若存在,求出直线l 的方程;若不存在,请说明理由.解:(1)∵当直线l 与x 轴垂直时,|MN |=2p ,∴S △OMN =12×2p ×p 2=p 22=2,∴p =2,∴抛物线C 的方程为y 2=4x .(2)设正方形的第三个顶点为P ,∵直线l 与x 轴垂直或y =0时,不满足条件.故可设直线l :y =k (x -1)(k ≠0),M (x 1,y 1),N (x 2,y 2),P (0,y 0).联立⎩⎪⎨⎪⎧ y =k (x -1)y 2=4x,可得k 2x 2-(2k 2+4)x +k 2=0, 则⎩⎨⎧ x 1+x 2=2k 2+4k 2x 1x 2=1.∴线段MN 的中点为(k 2+2k 2,2k ),⎩⎨⎧ y 1+y 2=4k y 1y 2=-4,则线段MN 的垂直平分线为y -2k =-1k (x -1-2k 2),故P (0,3k +2k 3).又PM →·PN →=0,∴x 1x 2+(y 1-y 0)(y 2-y 0)=0,即x 1x 2+y 1y 2-y 0(y 1+y 2)+y 20=0.1-4-y 0·4k +y 20=0,化简得,ky 20-4y 0-3k =0,由y 0=3k +2k 3代入上式化简得,(3k 4-4)(k 2+1)=0,解得k =±443.∴存在直线l :y =±443(x -1)满足题意.21.(本小题满分12分)已知椭圆与双曲线x 2-y 2=1有相同的焦点,且离心率为22.(1)求椭圆的标准方程;(2)过点P (0,1)的直线与该椭圆交于A ,B 两点,O 为坐标原点,若AP →=2PB →,求△AOB 的面积.解:(1)设椭圆方程为x 2a 2+y 2b 2=1,a >b >0. 由c =2,可得a =2,b 2=a 2-c 2=2, 故所求方程为x 24+y 22=1.(2)设A (x 1,y 1),B (x 2,y 2),由AP →=2PB →得⎩⎪⎨⎪⎧-x 1=2x 21-y 1=2(y 2-1),可得x 1=-2x 2.① 由题意知直线斜率存在,故设直线方程为y =kx +1,代入椭圆方程整理,得(2k 2+1)x 2+4kx -2=0,则x 1+x 2=-4k 2k 2+1,② x 1x 2=-22k 2+1.③ 由①②得,x 2=4k 2k 2+1,将x 1=-2x 2代入③得x 22=12k 2+1, 所以(4k 2k 2+1)2=12k 2+1,解得k 2=114. 又△AOB 的面积S =12|OP |·|x 1-x 2|=12·28k 2+22k 2+1=1268=3148.故△AOB 的面积是3148.22.(本小题满分12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别是F 1、F 2,离心率为32,过右焦点F 2的直线l 与椭圆C 相交于A 、B 两点,△F 1AB 的周长为8.(1)求椭圆C 的方程;(2)求△F 1AB 内切圆半径R 的最大值.解:(1)∵△F 1AB 的周长为8,∴4a =8,∴a =2,又椭圆C 的离心率e =c a =32,∴c =3,∴b 2=a 2-c 2=1. ∴椭圆C 的方程为x 24+y 2=1.(2)由题设知,直线l 不能与x 轴重合,故可设直线l 的方程为x =my +3(m ∈R ).由⎩⎪⎨⎪⎧x 2+4y 2=4x =my +3,得(m 2+4)y 2+23my -1=0. 设A (x 1,y 1)、B (x 2,y 2),则y 1+y 2=-23m m 2+4,y 1y 2=-1m 2+4, ∴|y 1-y 2|=(y 1+y 2)2-4y 1y 2 =(-23m m 2+4)2+4m 2+4=4m 2+1m 2+4. ∴△F 1AB 的面积S =12|F 1F 2|·|y 1-y 2|=43·m 2+1m 2+4. 又△F 1AB 的面积S =12×8×R ,从而有R =3·m 2+1m 2+4(m ∈R ). 令t =m 2+1,则R =3t +3t ≤323=12. 当且仅当t =3t ,t =3,即m =±2时,等号成立.∴当m =±2时,R 取得最大值12.。

2015高考数学(文)一轮复习质量检测 解析几何(北师大版)

2015高考数学(文)一轮复习质量检测 解析几何(北师大版)

2015高考数学(文)一轮复习质量检测解析几何(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2014·东北三校联考)经过两点A(4,2y+1),B(2,-3)的直线的倾斜角为3π4,则y=( )A. -1B. -3C. 0D. 2解析:由2y+1--4-2=2y+42=y+2,得y+2=tan3π4=-1.∴y=-3.答案:B2.(2012年广州调考)一条光线沿直线2x-y+2=0入射到直线x+y-5=0后反射,则反射光线所在的直线方程为() A.2x+y-6=0 B.x+2y-9=0C.x-y+3=0 D.x-2y+7=0解析:因为直线2x-y+2=0关于直线x+y-5=0的对称直线为2(5-y)-(5-x)+2=0,即x-2y+7=0,故反射光线所在的直线方程为选项D的方程.答案:D3.若圆(x-3)2+(y+5)2=r2上有且仅有两个点到直线4x-3y-2=0的距离为1,则半径r的取值范围是() A.(4,6) B.[4,6)C.(4,6] D.[4,6]解析:已知圆的圆心为(3,-5),圆心到直线的距离为5,由数形结合,易得r的取值范围是(4,6).答案:A4.(2012年天津五区县期末)抛物线y2=8x的焦点到双曲线x212-y24=1的渐近线的距离为( )A .1 B. 3 C.33D.36解析:抛物线y 2=8x 的焦点为F (2,0),双曲线的渐近线为y =±33x ,即x ±3y =0,则d =22=1.答案:A5.已知点P (x ,y )在直线x +2y =3上移动,当2x +4y 取最小值时,过点P (x ,y )引圆C :⎝ ⎛⎭⎪⎫x -122+⎝ ⎛⎭⎪⎫y +142=12的切线,则此切线长等于( )A.12B.32C.62D.32解析:∵x +2y =3,∴x =3-2y,2x+4y=23-2y+4y =2322y +22y ≥22322y ×22y =42,当且仅当2322y =22y 时取等号,即y =34时取等号,此时x =3-2y =32,即点P ⎝ ⎛⎭⎪⎫32,34.设切点为A ,圆心为C ⎝ ⎛⎭⎪⎫12,-14则P A ,PC 及半径三者构成直角三角形,由勾股定理得切线长为P A =PC 2-r 2=2-12=62.答案:C6.(2013年西安质量检测)过抛物线y 2=2px (p >0)的焦点F 垂直于对称轴的直线交抛物线于A ,B 两点,若线段AB 的长为8,则p =( )A .1B .2C .4D .8解析:因为点A ,B 的横坐标都为p2,可求得|AB |=2p =8,解得p =4. 答案:C7. (2014·张家口模拟)设F 1,F 2是双曲线x 2-y 224=1的两个焦点,P 是双曲线上的一点,且3|PF 1|=4|PF 2|,则△PF 1F 2的面积等于 ( )A. 4 2B. 8 3C. 24D. 48解析:由P 是双曲线上的一点和3|PF 1|=4|PF 2|可知,|PF 1|-|PF 2|=2,解得|PF 1|=8,|PF 2|=6,又|F 1F 2|=2c =10,所以△PF 1F 2为直角三角形,所以△PF 1F 2的面积S =12×6×8=24.答案:C8.(2012年郑州质量检测)已知点F ,A 分别为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点、右顶点,点B (0,b )满足FB →·AB →=0,则双曲线的离心率为 ( )A. 2B. 3C.1+32D.1+52解析:由FB →·AB →=(c ,b )·(-a ,b )=0,得-ac +b 2=0,所以-ac +c 2-a 2=0,即-e +e 2-1=0,解得e =1+52或e =1-52(舍去).答案:D9.(2012年东北三校联考)已知双曲线x 29-y 216=1,过其右焦点F 的直线交双曲线于P ,Q 两点,PQ 的垂直平分线交x 轴于点M ,则|MF ||PQ |的值为( )A.53B.56C.54D.58解析:据题意联立直线与双曲线方程:⎩⎪⎨⎪⎧y =k (x -5),x 29-y 216=1,消元整理可得(16-9k 2)x 2+90k 2x -225k 2-144=0,设P (x 1,y 1),Q (x 2,y 2),由韦达定理可得x 1+x 2=90k 29k 2-16,x 1x 2=225k 2+1449k 2-16,故|PQ |=1+k 2|x 1-x 2|=96(k 2+1)9k 2-16,PQ 的垂直平分线方程为y -80k 9k 2-16=-1k ⎝ ⎛⎭⎪⎫x -45k 29k 2-16,令y =0,得x =125k 29k 2-16,故|MF |=80(k 2+1)9k 2-16,因此|MF ||PQ |=80(k 2+1)9k 2-1696(k 2+1)9k 2-16=56.答案:B10.(2012年东北四校模拟)过双曲线的右焦点F 作实轴所在直线的垂线,交双曲线于A ,B 两点,设双曲线的左顶点为M ,若△MAB 是直角三角形,则此双曲线的离心率e =( )A.32 B .2 C. 2D.3解析:设双曲线方程为x 2a 2-y 2b 2=1,因为△MAB 为等腰直角三角形,所以AF =MF .又AF =⎝ ⎛⎭⎪⎫c 2a 2-1b 2=b2a ,所以a +c =b 2a ,即a 2+ac =c 2-a 2,e 2-e -2=0,解得e =2或e =-1(舍).答案:B11.已知A ,B 为椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右顶点,上顶点C (0,b ),直线l :x =2a 与x 轴交于点D ,与直线AC 交于点P ,且BP 平分∠DBC ,则此椭圆的离心率为( )A.12B.22C.29D.23解析:直线AC 的方程为x -a+yb =1,即bx -ay +ab =0,联立⎩⎨⎧ bx -ay +ab =0,x =2a ,解得⎩⎨⎧x =2a ,y =3b ,故点P (2a,3b ).同理,直线BC 的方程为x a +y b =1,即bx +ay -ab =0.因为BP 平分∠DBC ,由角平分线定理,得点P 到边BC 的距离等于点P 到边BD 的距离,即|2ab +3ab -ab |a 2+b2=3b ,得4a =3a 2+b 2,则16a 2=9(a 2+b 2),所以7a 2=9b 2.故7a 2=9(a 2-c 2),得9c 2=2a 2,离心率为e =ca =23.答案:D12.设F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若直线x =a 2c (c =a 2-b 2)上存在点P 使线段PF 1的中垂线过点F 2,则椭圆离心率的取值范围是( )A.⎝⎛⎦⎥⎤0,22B.⎣⎢⎡⎭⎪⎫33,1 C.⎣⎢⎡⎭⎪⎫22,1 D.⎝⎛⎦⎥⎤0,33解析:根据题目条件可知:若直线x =a 2c (c =a 2-b 2)上存在点P 使线段PF 1的中垂线过点F 2,则|F 1F 2|=|PF 2|,可转化为点F 2到直线x =a 2c 的距离小于或等于|F 1F 2|,亦即a 2c -c ≤2c ,解得c 2a 2≥13,所以e ∈⎣⎢⎡⎭⎪⎫33,1.答案:B二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上)13.已知圆心在x 轴上,半径为2的圆C 位于y 轴的右侧,且与直线x +y =0相切,则圆C 的标准方程为________.解析:据题意设圆心为(a,0)(a >0),由直线与圆的位置关系可得|a |2=2(a >0)⇒a =2,故圆的标准方程为(x -2)2+y 2=2.答案:(x -2)2+y 2=214.已知点M 与双曲线x 216-y 29=1的左、右焦点的距离之比为2∶3,则点M 的轨迹方程为________.解析:由题意得双曲线的左、右焦点分别为(-5,0),(5,0).则(x +5)2+y 2(x -5)2+y 2=49,即9x 2+90x +225+9y 2=4x 2-40x +100+4y 2,化简得x 2+y 2+26x +25=0.即点M 的轨迹方程为x 2+y 2+26x +25=0.答案:x 2+y 2+26x +25=015.已知过点P (-2,0)的双曲线C 与椭圆x 225+y 29=1有相同的焦点,则双曲线C 的渐近线方程是________.解析:易知椭圆的左右焦点坐标分别为(-4,0),(4,0),设双曲线方程为x 2a 2-y 2b 2=1,(a ,b >0),则渐近线方程为bx ±ay =0,由双曲线过点P (-2,0),注意到P在x 轴上,可见双曲线的实轴长应为4,即a =2,又与椭圆有相同焦点及上面的计算知c =4,因此易得b =23,所以易得双曲线的渐近线方程为3x ±y =0.答案:3x ±y =016.(2012年广州高三调研测试)已知直线y =k (x -2)(k >0)与抛物线y 2=8x 相交于A ,B 两点,F 为抛物线的焦点,若|F A |=2|FB |,则k =________.解析:y 2=8x 的焦点坐标为F (2,0),直线y =k (x -2)过定点(2,0),因此y =k (x -2)是过抛物线焦点的直线.设点A (x 1,y 1),B (x 2,y 2),由⎩⎨⎧y 2=8x ,y =k (x -2)得x 1x 2=4.又因为x 1+2=2(x 2+2),所以x 2=1,x 1=4,从而y 1=32,y 2=-8,k =y 2-y 1x 2-x 1=-8-321-4=2 2.答案:2 2三、解答题(本大题共6小题,共70分,17题10分,18~22题,每题12分.解答应写出文字说明,证明过程或演算步骤.)17.设直线l 的方程为(a +1)x +y -2-a =0(a ∈R ). (1)若直线l 在两坐标轴上的截距相等,求直线l 的方程;(2)若a >-1,直线l 与x 、y 轴分别交于M 、N 两点,O 为坐标原点,求△OMN面积取最小值时,直线l对应的方程.解:(1)令x=0得y=2+a,令y=0得x=2+a a+1.∵2+a=2+a a+1,∴a=-2或a=0.∴直线l的方程为x-y=0或x+y-2=0.(2)由(1)知M(2+aa+1,0),N(0,2+a),∵a>-1,∴△OMN的面积是S=12·2+aa+1·(2+a)=12·a2+4a+4a+1=12·⎣⎢⎡⎦⎥⎤(a+1)+1a+1+2≥2,当且仅当a+1=1a+1,即a=0时S取得最小值.∴直线l的方程为x+y-2=0.18.已知动点C到点A(-1,0)的距离是它到点B(1,0)的距离的2倍.(1)试求点C的轨迹方程;(2)已知直线l经过点P(0,1)且与点C的轨迹相切,试求直线l的方程.解:(1)(x-3)2+y2=8.(2)由(1),得圆心为M(3,0),半径r=2 2.①若直线l的斜率不存在,则方程为x=0,圆心到直线的距离d=3≠22,故该直线与圆不相切;②若直线l的斜率存在,设为k,则直线l的方程为y=kx+1.由直线和圆相切,得d=|3k+1|1+k2=22,整理,得k2+6k-7=0,解得k=1,或k=-7.故所求直线的方程为y=x+1,或y=-7x+1,即x-y+1=0或7x+y-1=0.19.(2012年唐山模拟)在直角坐标系xOy中,长为2+1的线段的两端点C,D 分别在x 轴、y 轴上滑动,CP →= 2 PD →.记点P 的轨迹为曲线E .(1)求曲线E 的方程;(2)经过点(0,1)作直线l 与曲线E 相交于A ,B 两点,OM →=OA →+OB →,当点M 在曲线E 上时,求cos 〈OA →,OB →〉的值.解:(1)设点C (m,0),D (0,n ),P (x ,y ). 由CP →= 2 PD →,得(x -m ,y )=2(-x ,n -y ),所以⎩⎨⎧x -m =-2x ,y =2(n -y ),得⎩⎨⎧m =(2+1)x ,n =2+12y ,由|CD |=2+1,得m 2+n 2=(2+1)2, 所以(2+1)2x 2+(2+1)22y 2=(2+1)2,化简得曲线E 的方程为x 2+y 22=1.(2)设点A (x 1,y 1),B (x 2,y 2),由题意,知点M 坐标为(x 1+x 2,y 1+y 2). 设直线l 的方程为y =kx +1,代入曲线E 方程,得(k 2+2)x 2+2kx -1=0, 则x 1+x 2=-2k k 2+2,x 1x 2=-1k 2+2,y 1+y 2=k (x 1+x 2)+2=4k 2+2.由点M 在曲线E 上,知(x 1+x 2)2+(y 1+y 2)22=1,即4k 2(k 2+2)2+8(k 2+2)2=1,解得k 2=2. x 1x 2+y 1y 2=x 1x 2+(kx 1+1)(kx 2+1)=(1+k 2)x 1x 2+k (x 2+x 2)+1=-34,(x 21+y 21)(x 22+y 22)=(2-x 21)(2-x 22)=4-2(x 21+x 22)+(x 1x 2)2=4-2[(x 1+x 2)2-2x 1x 2]+(x 1x 2)2=3316,cos 〈OA →,OB →〉=x 1x 2+y 1y 2(x 21+y 21)(x 22+y 22)=-3311. 20.已知抛物线y 2=4x 的焦点为F ,直线l 过点M (4,0). (1)若点F 到直线l 的距离为3,求直线l 的斜率;(2)设A,B为抛物线上两点,且AB不与x轴垂直,若线段AB的垂直平分线恰过点M,求证:线段AB中点的横坐标为定值.解:(1)由条件知直线l的斜率存在,设为k0,则直线l的方程为:y=k0(x-4),即k0x-y-4k0=0.从而焦点F(1,0)到直线l的距离为d=|3k0|k20+1=3,平方化简得:k20=12,∴k0=±22.(2)设直线AB的方程为y=kx+b(k≠0),联立抛物线方程y2=4x,消元得:k2x2+(2kb-4)x+b2=0,设A(x1,y1),B(x2,y2),线段AB的中点为P(x0,y0),∴x0=x1+x22=2-kbk2,y0=kx0+b=2k.∵PM⊥AB,∴k PM·k AB=-1,∴2k2-kbk2-4·k=-1,即2-kb=2k2.故x0=2-kbk2=2k2k2=2为定值.21.已知椭圆x2a2+y2b2=1上的点P到左、右两焦点F1,F2的距离之和为22,离心率e=2 2.(1)求椭圆的方程;(2)过右焦点F2且不垂直于坐标轴的直线l交椭圆于A,B两点,试问:线段OF2上是否存在一点M,使得|MA|=|MB|?若存在,请说明理由.解:(1)因为点P到两焦点F1,F2的距离之和为22,所以2a=22,a= 2.又已知离心率e=22,所以ca=22,c=1.又b2=a2-c2,所以b=1.所以所求椭圆方程为x22+y2=1.(2)存在满足条件的点M.设直线l 的方程为y =k (x -1)(k ≠0).由⎩⎨⎧x 2+2y 2=2,y =k (x -1)可得(1+2k 2)x 2-4k 2x +2k 2-2=0. 设A (x 1,y 1),B (x 2,y 2),以及AB 的中点C (x 0,y 0), 所以x 1+x 2=4k 21+2k 2.则x 0=x 1+x 22=2k 21+2k 2,y 0=k (x 0-1)=-k1+2k 2. 再设满足条件的点M (m,0),则0≤m ≤1. 所以CM ⊥AB ,即k CM k AB =-1.又k CM =-k 1+2k 22k 21+2k 2-m ,所以-k1+2k 22k 21+2k 2-m ×k =-1.从而m =k 21+2k 2=12+1k 2. 因为k 2>0,可得0<m <12,满足0≤m ≤1,故存在满足条件的点M .22.(2012年大连模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,以原点为圆心,椭圆的短半轴为半径的圆与直线x -y +6=0相切.又设点P (4,0),A ,B 是椭圆C 上关于x 轴对称的任意两个不同的点,连接PB 交椭圆C 于另一点E .(1)求椭圆C 的方程;(2)证明:直线AE 与x 轴相交于定点Q ; (3)求OB →·OE →的取值范围.解:(1)由题意知e =c a =12,所以e 2=c 2a 2=a 2-b 2a 2=14,即a 2=43b 2.又b =61+1=3,所以a 2=4,b 2=3.故椭圆C 的方程为x 24+y 23=1.(2)由题意知直线PB 的斜率存在,设直线PB 的方程为y =k (x -4).第 11 页 共 11 页 由⎩⎪⎨⎪⎧ y =k (x -4),x 24+y 23=1得(4k 2+3)x 2-32k 2x +64k 2-12=0.①因为4k 2+3≠0,且Δ=(-32k 2)2-4(4k 2+3)(64k 2-12)>0,即k 2<14.设点B (x 1,y 1),E (x 2,y 2),则A (x 1,-y 1),直线AE 的方程为y -y 2=y 2+y 1x 2-x 1(x -x 2).令y =0,得x =x 2-y 2(x 2-x 1)y 2+y 1. 将y 1=k (x 1-4),y 2=k (x 2-4)代入整理得x =2x 1x 2-4(x 1+x 2)x 1+x 2-8.② 由①得x 1+x 2=32k 24k 2+3,x 1x 2=64k 2-124k 2+3,代入②,解得x =1. 所以直线AE 与x 轴相交于定点Q (1,0).(3)由(2)知x 1+x 2=32k 24k 2+3,x 1x 2=64k 2-124k 2+3,所以y 1y 2=k (x 1-4)·k (x 2-4)=k 2x 1x 2-4k 2(x 1+x 2)+16k 2.所以OB →·OE →=x 1+x 2+y 1+y 2=(1+k 2)·64k 2-124k 2+3-4k 2·32k 24k 2+3+16k 2=100k 2-124k 2+3=25-874k 2+3. 因为0≤k 2<14,所以-873≤-874k 2+3<-874,所以OB →·OE →∈⎣⎢⎡⎭⎪⎫-4,134. 综上,OB →·OE →的取值范围为⎣⎢⎡⎭⎪⎫-4,134.。

2015年高考数学《新高考创新题型》之8:解析几何(含精析)

2015年高考数学《新高考创新题型》之8:解析几何(含精析)

之8.解析几何(含精析)一、选择题。

1.如图,已知椭圆221:111x C y +=,双曲线22222:1y x C a b-=(a >0,b >0),若以C 1的长轴为直径的圆与C 2的一条渐近线交于A ,B 两点,且C 1与该渐近线的两交点将线段AB 三等分,则C 2的离心率为( )A 、5B 、17C 、5D 、21472.如图所示,已知双曲线22221(0)x y a b a b-=>>的右焦点为F ,过F 的直线l 交双曲线的渐近线于A 、B 两点,且直线l 的倾斜角是渐近线OA 倾斜角的2倍,若2AF FB =,则该双曲线的离心率为( ) A.324 B.233 C.305 D.523.已知在平面直角坐标系xoy 中,圆C 的方程为2223x y y +=-+,直线l 过点(1,0)且与直线10x y -+=垂直.若直线l 与圆C 交于A B 、两点,则OAB ∆的面积为( )A .1B .2C .2D .224.方程02=+ny mx 与)0(122>>=+n m ny mx 的曲线在同一坐标系中的示意图可能是( )二、填空题。

5.圆锥曲线中不同曲线的性质都是有一定联系的,比如圆可以看成特殊的椭圆,所以很多圆的性质结论可以类比到椭圆,例如;如图所示,椭圆C:()222210x y a b a b+=>>可以被认为由圆222x y a +=作纵向压缩变换或由圆222x y b +=作横向拉伸变换得到的。

依据上述论述我们可以推出椭圆C 的面积公式为.xyb-baO -a6.若P 0(x 0,y 0)在椭圆2222x y a b+=1(a >b >0)外,则过P 0作椭圆的两条切线的切点为P 1,P 2,则切点弦P 1P 2所在直线方程是0022xx yy a b+=1.那么对于双曲线则有如下命题:若P 0(x 0,y 0)在双曲线2222x y a b-=1(a >0,b >0)外,则过P 0作双曲线的两条切线的切点为P 1,P 2,则切点弦P 1P 2所在的直线方程是.7.我们把离心率215+=e 的双曲线()0,012222>>=-b a b y a x 称为黄金双曲线.如图是双曲线()222222,0,01b a c b a by a x +=>>=-的图象,给出以下几个说法:①双曲线115222=+-y x 是黄金双曲线;②若ac b =2,则该双曲线是黄金双曲线;③若21,F F 为左右焦点,21,A A 为左右顶点,1B (0,b ),2B (0,﹣b )且021190=∠A B F ,则该双曲线是黄金双曲线;④若MN 经过右焦点2F 且21F F MN ⊥,090=∠MON ,则该双曲线是黄金双曲线. 其中正确命题的序号为.8.若存在实常数k 和b ,使得函数f(x)和g(x)对其定义域上的任意实数x 分别满足:f(x)≥kx +b 和g(x)≤kx+b ,则称直线l :y =kx +b 为f(x)和g(x)的“隔离直线”.已知h(x)=x 2,φ(x)=2eln x(其中e 为自然对数的底数),根据你的数学知识,推断h(x)与φ(x)间的隔离直线方程为.9.设,A B 分别为椭圆Γ:22221(0)x y a b a b+=>>的左右顶点,F 为右焦点,l 为Γ在点B 处的切线,P 为Γ上异于,A B 的一点,直线AP 交l 于D ,M 为BD 中点,有如下结论:①FM 平分PFB ∠;②PM 与椭圆Γ相切;③PM 平分FPD ∠;④使得PM =BM 的点P 不存在.其中正确结论的序号是_____________.10.以下四个关于圆锥曲线的命题中:①设A B 、为两个定点,k 为非零常数,||||PA PB k -=,则动点P 的轨迹为双曲线;②过定圆C 上一定点A 作圆的动点弦AB ,O 为坐标原点,若1(),2OP OA OB =+则动点P 的轨迹为圆;③设θ是ABC ∆的一内角,且7sin cos 13θθ+=,则22sin cos 1x y θθ-=表示焦点在x 轴上的双曲线;④已知两定点12(1,0),(1,0)F F -和一动点P ,若212||||(0)PF PF a a ⋅=≠,则点P 的轨迹关于原点对称.其中真命题的序号为(写出所有真命题的序号).三、解答题。

高三第一轮复习解析几何练习题含答案

高三第一轮复习解析几何练习题含答案

第九章 解析几何第1讲 直线方程和两直线的位置关系一、选择题1.已知直线l 的倾斜角α满足条件sinα+cosα=15,则l 的斜率为( )A.43B.34 C .-43 D .-34 解析 α必为钝角,且sinα的绝对值大,故选C. 答案 C2.经过两点A (4,2y +1),B (2,-3)的直线的倾斜角为3π4,则y =( ). A .-1 B .-3 C .0 D .2 解析 由2y +1--34-2=2y +42=y +2,得:y +2=tan 3π4=-1.∴y =-3.答案 B3.若直线l :y =kx -3与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值范围是( ).A.⎣⎢⎡⎭⎪⎫π6,π3 B.⎝ ⎛⎭⎪⎫π6,π2 C.⎝ ⎛⎭⎪⎫π3,π2D.⎣⎢⎡⎦⎥⎤π6,π2 解析 如图,直线l :y =kx -3,过定点P (0,-3),又A (3,0),∴k PA =33,则直线PA 的倾斜角为π6,满足条件的直线l 的倾斜角的范围是⎝ ⎛⎭⎪⎫π6,π2.答案 B4.过点A (2,3)且垂直于直线2x +y -5=0的直线方程为( ). A .x -2y +4=0 B .2x +y -7=0 C .x -2y +3=0D .x -2y +5=0解析 由题意可设所求直线方程为:x -2y +m =0,将A (2,3)代入上式得2-2×3+m =0,即m =4,所以所求直线方程为x -2y +4=0. 答案 A5.设直线l 的方程为x +y cos θ+3=0(θ∈R ),则直线l 的倾斜角α的范围是( ). A .[0,π) B.⎣⎢⎡⎭⎪⎫π4,π2C. ⎣⎢⎡⎦⎥⎤π4,3π4D.⎣⎢⎡⎭⎪⎫π4,π2∪⎝ ⎛⎦⎥⎤π2,3π4解析 (直接法或筛选法)当cos θ=0时,方程变为x +3=0,其倾斜角为π2; 当cos θ≠0时,由直线方程可得斜率k =-1cos θ. ∵cos θ∈[-1,1]且cos θ≠0, ∴k ∈(-∞,-1]∪[1,+∞). ∴tan α∈(-∞,-1]∪[1,+∞), 又α∈[0,π),∴α∈⎣⎢⎡⎭⎪⎫π4,π2∪⎝ ⎛⎦⎥⎤π2,3π4.综上知,倾斜角的范围是⎣⎢⎡⎦⎥⎤π4,3π4.答案 C6.将一张坐标纸折叠一次,使得点(0,2)与点(4,0)重合,点(7,3)与点(m ,n )重合,则m +n =( ).A .4B .6C.345D.365解析 由题可知纸的折痕应是点(0,2)与点(4,0)连线的中垂线,即直线y =2x -3,它也是点(7,3)与点(m ,n )连线的中垂线,于是⎩⎪⎨⎪⎧3+n 2=2×7+m 2-3,n -3m -7=-12,解得⎩⎪⎨⎪⎧m =35,n =315.故m +n =345.答案 C 二、填空题7.若A (-2,3),B (3,-2),C (12,m )三点共线,则m 的值为________.解析 由k AB =k BC ,即-2-33+2=m +212-3,得m =12.答案 128.直线过点(2,-3),且在两个坐标轴上的截距互为相反数,则这样的直线方程是________.解析 设直线方程为为x a -ya =1或y =kx 的形式后,代入点的坐标求得a =5和k =-32.答案 y =-32x 或x 5-y5=19.已知直线l 1:ax +3y -1=0与直线l 2:2x +(a -1)y +1=0垂直,则实数a =________.解析 由两直线垂直的条件得2a +3(a -1)=0,解得a =35. 答案 3510.若两平行直线3x -2y -1=0,6x +ay +c =0之间的距离为21313,则c +2a 的值为________.解析 由题意得,36=-2a ≠-1c ,∴a =-4且c ≠-2, 则6x +ay +c =0可化为3x -2y +c2=0, 由两平行线间的距离,得21313=⎪⎪⎪⎪⎪⎪c 2+113,解得c =2或c =-6,所以c +2a =±1. 答案 ±1 三、解答题11.已知直线l 过点M (2,1),且分别与x 轴、y 轴的正半轴交于A 、B 两点,O 为原点,是否存在使△ABO 面积最小的直线l ?若存在,求出;若不存在,请说明理由.解 存在.理由如下.设直线l 的方程为y -1=k (x -2)(k <0),则A ⎝ ⎛⎭⎪⎫2-1k ,0,B (0,1-2k ),△ AOB 的面积S =12(1-2k )⎝⎛⎭⎪⎫2-1k =12⎣⎢⎡⎦⎥⎤4+-4k+⎝ ⎛⎭⎪⎫-1k ≥12(4+4)=4. 当且仅当-4k =-1k ,即k =-12时,等号成立,故直线l 的方程为y -1=-12(x -2),即x +2y -4=0.12.已知直线l 经过直线2x +y -5=0与x -2y =0的交点. (1)点A (5,0)到l 的距离为3,求l 的方程; (2)求点A (5,0)到l 的距离的最大值.解 (1)经过两已知直线交点的直线系方程为(2x +y -5)+λ(x -2y )=0,即(2+λ)x +(1-2λ)y -5=0, ∴|10+5λ-5|(2+λ)2+(1-2λ)2=3.解得λ=2或λ=12. ∴l 的方程为x =2或4x -3y -5=0.(2)由⎩⎨⎧2x +y -5=0,x -2y =0,解得交点P (2,1),如图,过P 作任一直线l ,设d 为点A 到l 的距离, 则d ≤|PA |(当l ⊥PA 时等号成立). ∴d max =|PA |=10.13.已知直线l 过点P (2,3),且被两条平行直线l 1:3x +4y -7=0,l 2:3x +4y +8=0截得的线段长为d . (1)求d 的最小值;(2)当直线l 与x 轴平行,试求d 的值.解 (1)因为3×2+4×3-7>0,3×2+4×3+8>0,所以点P 在两条平行直线l 1,l 2外.过P 点作直线l ,使l ⊥l 1,则l ⊥l 2,设垂足分别为G ,H ,则|GH |就是所求的d 的最小值.由两平行线间的距离公式,得d 的最小值为|GH |=|8-(-7)|32+42=3.(2)当直线l 与x 轴平行时,l 的方程为y =3,设直线l 与直线l 1,l 2分别交于点A (x 1,3),B (x 2,3),则3x 1+12-7=0,3x 2+12+8=0,所以3(x 1-x 2)=15,即x 1-x 2=5,所以d =|AB |=|x 1-x 2|=5.14.已知直线l 1:x -y +3=0,直线l :x -y -1=0.若直线l 1关于直线l 的对称直线为l 2,求直线l 2的方程. 解 法一 因为l 1∥l ,所以l 2∥l , 设直线l 2:x -y +m =0(m ≠3,m ≠-1). 直线l 1,l 2关于直线l 对称, 所以l 1与l ,l 2与l 间的距离相等. 由两平行直线间的距离公式得|3-(-1)|2=|m -(-1)|2, 解得m =-5或m =3(舍去). 所以直线l 2的方程为x -y -5=0.法二 由题意知l 1∥l 2,设直线l 2:x -y +m =0(m ≠3,m ≠-1). 在直线l 1上取点M (0,3),设点M 关于直线l 的对称点为M ′(a ,b ), 于是有⎩⎪⎨⎪⎧b -3a ×1=-1,a +02-b +32-1=0,解得⎩⎨⎧a =4,b =-1,即M ′(4,-1).把点M ′(4,-1)代入l 2的方程,得m =-5, 所以直线l 2的方程为x -y -5=0.第2讲 圆的方程一、选择题1.已知点A (1,-1),B (-1,1),则以线段AB 为直径的圆的方程是( ). A .x 2+y 2=2 B .x 2+y 2= 2 C .x 2+y 2=1D .x 2+y 2=4解析 AB 的中点坐标为:(0,0), |AB |=[1--1]2+-1-12=22,∴圆的方程为:x 2+y 2=2. 答案 A2.设圆的方程是x 2+y 2+2ax +2y +(a -1)2=0,若0<a <1,则原点与圆的位置关系是( ).A .原点在圆上B .原点在圆外C .原点在圆内D .不确定解析 将圆的一般方程化为标准方程(x +a )2+(y +1)2=2a ,因为0<a <1,所以(0+a )2+(0+1)2-2a =(a -1)2>0,所以原点在圆外. 答案 B3.已知圆C 1:(x +1)2+(y -1)2=1,圆C 2与圆C 1关于直线x -y -1=0对称,则圆C 2的方程为( ) A .(x +2)2+(y -2)2=1 B .(x -2)2+(y +2)2=1C .(x +2)2+(y +2)2=1D .(x -2)2+(y -2)2=1解析 只要求出圆心关于直线的对称点,就是对称圆的圆心,两个圆的半径不变.设圆C 2的圆心为(a ,b ),则依题意,有⎩⎪⎨⎪⎧a -12-b +12-1=0,b -1a +1=-1,解得⎩⎨⎧a =2,b =-2,对称圆的半径不变,为1.答案 B4.若圆(x -3)2+(y +5)2=r 2上有且只有两个点到直线4x -3y -2=0的距离等于1,则半径r 的取值范围是( ).A .(4,6)B .[4,6)C .(4,6]D .[4,6] 解析 因为圆心(3,-5)到直线4x -3y -2=0的距离为5,所以当半径r =4 时,圆上有1个点到直线4x -3y -2=0的距离等于1,当半径r =6时,圆上有3个点到直线4x -3y -2=0的距离等于1,所以圆上有且只有两个点到直线4x -3y -2=0的距离等于1时,4<r <6. 答案 A5.已知圆C :x 2+y 2+mx -4=0上存在两点关于直线x -y +3=0对称,则实数m 的值为( ). A .8B .-4C .6D .无法确定解析 圆上存在关于直线x -y +3=0对称的两点,则x -y +3=0过圆心⎝ ⎛⎭⎪⎫-m 2,0,即-m 2+3=0,∴m =6.答案 C6.圆心为C ⎝ ⎛⎭⎪⎫-12,3的圆与直线l :x +2y -3=0交于P ,Q 两点,O 为坐标原点,且满足OP →·OQ →=0,则圆C 的方程为( ).A.⎝ ⎛⎭⎪⎫x -122+(y -3)2=52B.⎝ ⎛⎭⎪⎫x -122+(y +3)2=52C.⎝ ⎛⎭⎪⎫x +122+(y -3)2=254D.⎝ ⎛⎭⎪⎫x +122+(y +3)2=254 解析 法一 ∵圆心为C ⎝ ⎛⎭⎪⎫-12,3,∴设圆的方程为⎝ ⎛⎭⎪⎫x +122+(y -3)2=r 2.设P (x 1,y 1),Q (x 2,y 2).由圆方程与直线l 的方程联立得:5x 2+10x +10-4r 2=0, ∴x 1+x 2=-2,x 1x 2=10-4r 25. 由OP →·OQ →=0,得x 1x 2+y 1y 2=0,即: 54x 1x 2-34(x 1+x 2)+94=10-4r 24+154=0, 解得r 2=254,经检验满足判别式Δ>0. 故圆C 的方程为⎝ ⎛⎭⎪⎫x +122+(y -3)2=254.法二 ∵圆心为C ⎝ ⎛⎭⎪⎫-12,3,∴设圆的方程为⎝ ⎛⎭⎪⎫x +122+(y -3)2=r 2,在所给的四个选项中只有一个方程所写的圆心是正确的,即⎝ ⎛⎭⎪⎫x +122+(y -3)2=254,故选C. 答案 C 二、填空题7.过两点A (0,4),B (4,6),且圆心在直线x -2y -2=0上的圆的标准方程是________.解析 设圆心坐标为(a ,b ),圆半径为r ,则圆方程为(x -a )2+(y -b )2=r 2, ∵圆心在直线x -2y -2=0上,∴a -2b -2=0,①又∵圆过两点A (0,4),B (4,6),∴(0-a )2+(4-b )2=r 2,②且(4-a )2+(6-b )2=r 2,③由①②③得:a =4,b =1,r =5,∴圆的方程为(x -4)2+(y -1)2=25. 答案 (x -4)2+(y -1)2=258.已知圆C :(x -3)2+(y -4)2=1,点A (0,-1),B (0,1).P 是圆C 上的动点,当|PA |2+|PB |2取最大值时,点P 的坐标是________.解析 设P (x 0,y 0),则|PA |2+|PB |2=x 20+(y 0+1)2+x 20+(y 0-1)2=2(x 20+y 20)+2,显然x 20+y 20的最大值为(5+1)2,∴d max =74,此时OP →=-6PC →,结合点P 在圆上,解得点P 的坐标为⎝ ⎛⎭⎪⎫185,245.答案 ⎝ ⎛⎭⎪⎫185,2459.已知平面区域⎩⎨⎧x ≥0,y ≥0,x +2y -4≤0恰好被面积最小的圆C :(x -a )2+(y -b )2=r 2及其内部所覆盖,则圆C 的方程为________.解析 由题意知,此平面区域表示的是以O (0,0),P (4,0),Q (0,2)所构成的三角形及其内部,所以覆盖它的且面积最小的圆是其外接圆,又△OPQ 为直角三角形,故其圆心为斜边PQ 的中点(2,1),半径为|PQ |2=5,∴圆C 的方程为(x -2)2+(y -1)2=5. 答案 (x -2)2+(y -1)2=510.已知圆C :(x -3)2+(y -4)2=1,点A (-1,0),B (1,0),点P 是圆上的动点,则d =|PA |2+|PB |2的最大值为________,最小值为________.解析 设点P (x 0,y 0),则d =(x 0+1)2+y 20+(x 0-1)2+y 20=2(x 20+y 20)+2,欲求d 的最值,只需求u =x 20+y 20的最值,即求圆C 上的点到原点的距离平方的最值.圆C 上的点到原点的距离的最大值为6,最小值为4,故d 的最大值为74,最小值为34. 答案 74 34 三、解答题11.已知以点P 为圆心的圆经过点A (-1,0)和B (3,4),线段AB 的垂直平分线交圆P 于点C 和D ,且|CD |=410.(1)求直线CD 的方程; (2)求圆P 的方程.解 (1)直线AB 的斜率k =1,AB 的中点坐标为(1,2), ∴直线CD 的方程为y -2=-(x -1),即x +y -3=0. (2)设圆心P (a ,b ),则由P 在CD 上得a +b -3=0.①又直径|CD |=410,∴|PA |=210, ∴(a +1)2+b 2=40,②由①②解得⎩⎨⎧ a =-3,b =6或⎩⎨⎧a =5,b =-2. ∴圆心P (-3,6)或P (5,-2),∴圆P 的方程为(x +3)2+(y -6)2=40或(x -5)2+(y +2)2=40.12.已知圆M 过两点C (1,-1),D (-1,1),且圆心M 在x +y -2=0上. (1)求圆M 的方程;(2)设P 是直线3x +4y +8=0上的动点,PA ,PB 是圆M 的两条切线,A ,B 为切点,求四边形PAMB 面积的最小值.解 (1)设圆M 的方程为(x -a )2+(y -b )2=r 2(r >0),根据题意得:⎩⎨⎧(1-a )2+(-1-b )2=r 2,(-1-a )2+(1-b )2=r 2,a +b -2=0,解得a =b =1,r =2,故所求圆M 的方程为(x -1)2+(y -1)2=4. (2)因为四边形PAMB 的面积S =S △PAM +S △PBM =12|AM |·|PA |+12|BM |·|PB |,又|AM |=|BM |=2,|PA |=|PB |,所以S =2|PA |, 而|PA |=|PM |2-|AM |2=|PM |2-4, 即S =2|PM |2-4.因此要求S 的最小值,只需求|PM |的最小值即可, 即在直线3x +4y +8=0上找一点P ,使得|PM |的值最小,所以|PM |min =|3×1+4×1+8|32+42=3, 所以四边形PAMB 面积的最小值为S =2|PM |2min -4=232-4=2 5.13.已知圆C 过点P (1,1),且与圆M :(x +2)2+(y +2)2=r 2(r >0)关于直线x +y +2=0对称. (1)求圆C 的方程;(2)设Q 为圆C 上的一个动点,求PQ →·MQ→的最小值. 解(1)设圆心C (a ,b ),则⎩⎪⎨⎪⎧a -22+b -22+2=0,b +2a +2=1,解得⎩⎨⎧a =0,b =0,则圆C 的方程为x 2+y 2=r 2,将点P 的坐标代入得r 2=2, 故圆C 的方程为x 2+y 2=2.(2)设Q (x ,y ),则x 2+y 2=2,且PQ →·MQ →=(x -1,y -1)·(x +2,y +2)=x 2+y 2+x +y -4=x +y -2, 令x =2cos θ,y =2sin θ,∴PQ →·MQ →=x +y -2=2(sin θ+cos θ)-2 =2sin ⎝ ⎛⎭⎪⎫θ+π4-2,所以PQ →·MQ→的最小值为-4. 14.已知点A (-3,0),B (3,0),动点P 满足|PA |=2|PB |. (1)若点P 的轨迹为曲线C ,求此曲线的方程;(2)若点Q 在直线l 1:x +y +3=0上,直线l 2经过点Q 且与曲线C 只有一个公共点M ,求|QM |的最小值. 解 (1)设点P 的坐标为(x ,y ), 则x +32+y 2=2x -32+y 2.化简可得(x -5)2+y 2=16,此即为所求.(2)曲线C 是以点(5,0)为圆心,4为半径的圆,如图, 由直线l 2是此圆的切线,连接CQ ,则|QM|=|CQ|2-|CM|2=|CQ|2-16,当CQ⊥l1时,|CQ|取最小值,|CQ|=|5+3|2=42,此时|QM|的最小值为32-16=4.第3讲直线与圆、圆与圆的位置关系一、选择题1.已知集合A={(x,y)|x,y为实数,且x2+y2=1},B={(x,y)|x,y为实数,且x+y=1},则A∩B的元素个数为( ).A.4 B.3 C.2 D.1解析法一(直接法)集合A表示圆,集合B表示一条直线,又圆心(0,0)到直线x+y=1的距离d=12=22<1=r,所以直线与圆相交,故选C.法二(数形结合法)画图可得,故选C.答案 C2.若直线x-y+1=0与圆(x-a)2+y2=2有公共点,则实数a的取值范围是().A.[-3,-1] B.[-1,3]C.[-3,1] D.(-∞,-3]∪[1,+∞)解析由题意可得,圆的圆心为(a,0),半径为2,∴|a-0+1|12+(-1)2≤2,即|a+1|≤2,解得-3≤a≤1.答案 C3.若圆(x-a)2+(y-b)2=b2+1始终平分圆(x+1)2+(y+1)2=4的周长,则a,b满足的关系是( )A.a2+2a+2b-3=0B.a2+b2+2a+2b+5=0C.a2+2a+2b+5=0D .a 2-2a -2b +5=0解析 即两圆的公共弦必过(x +1)2+(y +1)2=4的圆心, 两圆相减得相交弦的方程为-2(a +1)x -2(b +1)y +a 2+1=0, 将圆心坐标(-1,-1)代入可得a 2+2a +2b +5=0. 答案 C4.若圆C 1:x 2+y 2+2ax +a 2-4=0(a ∈R )与圆C 2:x 2+y 2-2by -1+b 2=0(b ∈R )恰有三条切线,则a +b 的最大值为( ).A .-3 2B .-3C .3D .3 2解析 易知圆C 1的圆心为C 1(-a,0),半径为r 1=2; 圆C 2的圆心为C 2(0,b ),半径为r 2=1. ∵两圆恰有三条切线,∴两圆外切,∴|C 1C 2|=r 1+r 2,即a 2+b 2=9.∵⎝⎛⎭⎪⎫a +b 22≤a 2+b 22, ∴a +b ≤32(当且仅当a =b =32时取“=”), ∴a +b 的最大值为3 2. 答案 D5.若曲线C 1:x 2+y 2-2x =0与曲线C 2:y (y -mx -m )=0有四个不同的交点,则实数m 的取值范围是( ).A.⎝ ⎛⎭⎪⎫-33,33B.⎝ ⎛⎭⎪⎫-33,0∪⎝ ⎛⎭⎪⎫0,33C.⎣⎢⎡⎦⎥⎤-33,33D.⎝ ⎛⎭⎪⎫-∞,-33∪⎝ ⎛⎭⎪⎫33,+∞解析 C 1:(x -1)2+y 2=1,C 2:y =0或y =mx +m =m (x +1).当m =0时,C 2:y =0,此时C 1与C 2显然只有两个交点;当m ≠0时,要满足题意,需圆(x -1)2+y 2=1与直线y =m (x +1)有两交点,当圆与直线相切时,m =±33,即直线处于两切线之间时满足题意,则-33<m<0或0<m<33.综上知-33<m<0或0<m<33.答案 B6.如右图,一个直径为1的小圆沿着直径为2的大圆内壁的逆时针方向滚动,M和N是小圆的一条固定直径的两个端点.那么,当小圆这样滚过大圆内壁的一周,点M,N在大圆内所绘出的图形大致是().解析如图,建立直角坐标系,由题意可知,小圆O1总与大圆O相内切,且小圆O1总经过大圆的圆心O.设某时刻两圆相切于点A,此时动点M所处位置为点M′,则大圆圆弧的长与小圆圆弧的长之差为0或2π.切点A在三、四象限的差为0,在一、二象限的差为2π.以切点A在第三象限为例,记直线OM与此时小圆O1的交点为M1,记∠AOM=θ,则∠OM1O1=∠M1OO1=θ,故∠M1O1A=∠M1OO1+∠OM1O1=2θ.大圆圆弧的长为l1=θ×2=2θ,小圆圆弧的长为l2=2θ×1=2θ,则l1=l2,即小圆的两段圆弧与的长相等,故点M1与点M′重合.即动点M在线段MO上运动,同理可知,此时点N在线段OB上运动.点A在其他象限类似可得,故M,N的轨迹为相互垂直的线段.观察各选项知,只有选项A符合.故选A.答案 A二、填空题7.直线y=x被圆x2+(y-2)2=4截得的弦长为________.解析 由题意得,圆x 2+(y -2)2=4的圆心为(0,2),半径为2,圆心到直线x -y =0的距离d =22= 2. 设截得的弦长为l ,则由⎝ ⎛⎭⎪⎫l 22+(2)2=22,得l =2 2.答案 2 28.设集合A =(x ,y )⎪⎪⎪m2≤(x -2)2+y 2≤m 2,x ,y ∈R ,B ={(x ,y )|2m ≤x +y ≤2m+1,x ,y ∈R },若A ∩B =∅,则实数m 的取值范围是________. 解析 ∵A ∩B ≠∅,∴A ≠∅, ∴m 2≥m 2.∴m ≥12或m ≤0.显然B ≠∅.要使A ∩B ≠∅,只需圆(x -2)2+y 2=m 2(m ≠0)与x +y =2m 或x +y =2m +1有交点,即|2-2m |2≤|m |或|1-2m |2≤|m |,∴2-22≤m ≤2+ 2.又∵m ≥12或m ≤0,∴12≤m ≤2+ 2. 当m =0时,(2,0)不在0≤x +y ≤1内.综上所述,满足条件的m 的取值范围为⎣⎢⎡⎦⎥⎤12,2+2.答案 ⎣⎢⎡⎦⎥⎤12,2+29.从原点向圆x 2+y 2-12y +27=0作两条切线,则该圆夹在两条切线间的劣弧长为________.解析 (数形结合法)如图,圆x 2+y 2-12y +27=0 可化为x 2+(y -6)2=9,圆心坐标为(0,6),半径为3. 在Rt △OBC 中可得:∠OCB =π3,∴∠ACB =2π3, ∴所求劣弧长为2π. 答案 2 π10.在平面直角坐标系xOy 中,已知圆x 2+y 2=4上有且只有四个点到直线12x -5y +c =0的距离为1,则实数c 的取值范围是________.解析 画图可知,圆上有且只有四个点到直线12x -5y +c =0的距离为1,该圆半径为2即圆心O (0,0)到直线12x -5y +c =0的距离d <1,即0<|c |13<1,∴-13<c <13. 答案 (-13,13) 三、解答题11.已知:圆C :x 2+y 2-8y +12=0,直线l :ax +y +2a =0. (1)当a 为何值时,直线l 与圆C 相切;(2)当直线l 与圆C 相交于A ,B 两点,且|AB |=22时,求直线l 的方程. 解 将圆C 的方程x 2+y 2-8y +12=0化成标准方程为x 2+(y -4)2=4,则此圆的圆心为(0,4),半径为2. (1)若直线l 与圆C 相切,则有|4+2a |a 2+1=2,解得a =-34. (2)过圆心C 作CD ⊥AB ,则根据题意和圆的性质,得⎩⎪⎨⎪⎧|CD |=|4+2a |a 2+1,|CD |2+|DA |2=|AC |2=22,|DA |=12|AB |= 2.解得a =-7或a =-1.故所求直线方程为7x -y +14=0或x -y +2=0.12.已知与圆C :x 2+y 2-2x -2y +1=0相切的直线l 交x 轴,y 轴于A ,B 两点,|OA |=a ,|OB |=b (a >2,b >2). (1)求证:(a -2)(b -2)=2; (2)求线段AB 中点的轨迹方程; (3)求△AOB 面积的最小值.解 (1)证明:圆的标准方程是(x -1)2+(y -1)2=1,设直线方程为x a +y b=1,即bx +ay -ab =0,圆心到该直线的距离d =|a +b -ab |a 2+b2=1, 即a 2+b 2+a 2b 2+2ab -2a 2b -2ab 2=a 2+b 2,即a 2b 2+2ab -2a 2b -2ab 2=0, 即ab +2-2a -2b =0,即(a -2)(b -2)=2.(2)设AB 中点M (x ,y ),则a =2x ,b =2y ,代入(a -2)(b -2)=2, 得(x -1)(y -1)=12(x >1,y >1).(3)由(a -2)(b -2)=2得ab +2=2(a +b )≥4ab , 解得ab ≥2+2(舍去ab ≤2-2), 当且仅当a =b 时,ab 取最小值6+42, 所以△AOB 面积的最小值是3+2 2.13.设直线l 的方程为y =kx +b (其中k 的值与b 无关),圆M 的方程为x 2+y 2-2x -4=0.(1)如果不论k 取何值,直线l 与圆M 总有两个不同的交点,求b 的取值范围; (2)b =1时,l 与圆交于A ,B 两点,求|AB |的最大值和最小值. 解 圆M 的标准方程为(x -1)2+y 2=5, ∴圆心M 的坐标为(1,0),半径为r = 5. (1)∵不论k 取何值,直线l 总过点P (0,b ),∴欲使l 与圆M 总有两个不同的交点,必须且只需点P 在圆M 的内部,即|MP |<5,即1+b 2<5,∴-2<b <2,即b 的取值范围是(-2,2).(2)当l 过圆心M 时,|AB |的值最大,最大值为圆的直径长2 5.当l ⊥MP 时,此时|MP |最大,|AB |的值最小,|MP |2=⎝ ⎛⎭⎪⎫k +1k 2+12=k 2+2k +1k 2+1=1+2k +1k≤1+22k ·1k=2,当且仅当k =1时取等号.最小值为2r 2-|MP |2=25-2=2 3.14.已知圆M :x 2+(y -2)2=1,Q 是x 轴上的动点,QA ,QB 分别切圆M 于A ,B 两点.(1)若Q (1,0),求切线QA ,QB 的方程; (2)求四边形QAMB 面积的最小值; (3)若|AB |=423,求直线MQ 的方程.解 (1)设过点Q 的圆M 的切线方程为x =my +1,则圆心M 到切线的距离为1, ∴|2m +1|m 2+1=1,∴m =-43或0, ∴QA ,QB 的方程分别为3x +4y -3=0和x =1. (2)∵MA ⊥AQ ,∴S 四边形MAQB =|MA |·|QA |=|QA |=|MQ |2-|MA |2=|MQ |2-1≥|MO |2-1= 3.∴四边形QAMB 面积的最小值为 3.(3)设AB 与MQ 交于P ,则MP ⊥AB ,MB ⊥BQ , ∴|MP |=1-⎝⎛⎭⎪⎫2232=13. 在Rt △MBQ 中,|MB |2=|MP ||MQ |, 即1=13|MQ |,∴|MQ |=3,∴x 2+(y -2)2=9. 设Q (x,0),则x 2+22=9,∴x =±5,∴Q (±5,0), ∴MQ 的方程为2x +5y -25=0或2x -5y +25=0.第4讲 椭 圆一、选择题1.中心在原点,焦点在x 轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是( ). A.x 281+y 272=1 B.x 281+y 29=1 C.x 281+y 245=1 D.x 281+y 236=1解析 依题意知:2a =18,∴a =9,2c =13×2a ,∴c =3,∴b 2=a 2-c 2=81-9=72,∴椭圆方程为x 281+y 272=1.答案 A2.椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别是A ,B ,左、右焦点分别是F 1,F 2.若|AF 1|,|F 1F 2|,|F 1B |成等比数列,则此椭圆的离心率为 ( ). A.14B.55C.12D.5-2解析 因为A ,B 为左、右顶点,F 1,F 2为左、右焦点,所以|AF 1|=a -c ,|F 1F 2|=2c ,|F 1B |=a +c .又因为|AF 1|,|F 1F 2|,|F 1B |成等比数列, 所以(a -c )(a +c )=4c 2,即a 2=5c 2. 所以离心率e =c a =55,故选B. 答案 B3.已知椭圆x 2+my 2=1的离心率e ∈⎝ ⎛⎭⎪⎫12,1,则实数m 的取值范围是 ( ).A.⎝ ⎛⎭⎪⎫0,34B.⎝ ⎛⎭⎪⎫43,+∞ C.⎝ ⎛⎭⎪⎫0,34∪⎝ ⎛⎭⎪⎫43,+∞D.⎝ ⎛⎭⎪⎫34,1∪⎝ ⎛⎭⎪⎫1,43 解析 椭圆标准方程为x 2+y 21m=1.当m >1时,e 2=1-1m ∈⎝ ⎛⎭⎪⎫14,1,解得m >43;当0<m <1时,e 2=1m -11m =1-m ∈⎝ ⎛⎭⎪⎫14,1,解得0<m <34,故实数m 的取值范围是⎝ ⎛⎭⎪⎫0,34∪⎝ ⎛⎭⎪⎫43,+∞. 答案 C4.设F 1、F 2分别是椭圆x 24+y 2=1的左、右焦点,P 是第一象限内该椭圆上的一点,且PF 1⊥PF 2,则点P 的横坐标为( ).A .1 B.83 C .2 2 D.263解析 由题意知,点P 即为圆x 2+y 2=3与椭圆x 24+y 2=1在第一象限的交点,解方程组⎩⎨⎧x 2+y 2=3,x24+y 2=1,得点P 的横坐标为263.答案 D5.椭圆x 2a 2+y 2b 2=1(a >b >0)的两顶点为A (a,0),B (0,b ),且左焦点为F ,△FAB 是以角B 为直角的直角三角形,则椭圆的离心率e 为( ) A.3-12 B.5-12C.1+54 D.3+14解析 根据已知a 2+b 2+a 2=(a +c )2,即c 2+ac -a 2=0,即e 2+e -1=0,解得e =-1±52,故所求的椭圆的离心率为5-12.答案 B6.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32.双曲线x 2-y 2=1的渐近线与椭圆C 有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C 的方程为( ).A.x 28+y 22=1B.x 212+y 26=1 C.x 216+y 24=1D.x 220+y 25=1解析 因为椭圆的离心率为32,所以e =c a =32,c 2=34a 2,c 2=34a 2=a 2-b 2,所以b 2=14a 2,即a 2=4b 2.双曲线的渐近线方程为y =±x ,代入椭圆方程得x 2a 2+x 2b 2=1,即x 24b 2+x 2b 2=5x 24b 2=1,所以x 2=45b 2,x =±25b ,y 2=45b 2,y =±25b ,则在第一象限双曲线的渐近线与椭圆C 的交点坐标为⎝ ⎛⎭⎪⎫25b ,25b ,所以四边形的面积为4×25b ×25b =165b 2=16,所以b 2=5,所以椭圆方程为x 220+y25=1.答案 D二、填空题7.设F 1、F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上一点,M 是F 1P 的中点,|OM |=3,则P 点到椭圆左焦点的距离为________.解析 由题意知|OM |=12|PF 2|=3,∴|PF 2|=6.∴|PF 1|=2×5-6=4.答案 48.在等差数列{a n }中,a 2+a 3=11,a 2+a 3+a 4=21,则椭圆C :x 2a 6+y 2a 5=1的离心率为________.解析 由题意,得a 4=10,设公差为d ,则a 3+a 2=(10-d )+(10-2d )=20-3d =11,∴d =3,∴a 5=a 4+d =13,a 6=a 4+2d =16>a 5,∴e =16-134=34.答案 349. 椭圆31222y x =1的焦点为F 1和F 2,点P 在椭圆上.如果线段PF 1的中点在y 轴上,那么|PF 1|是|PF 2|的_____倍.解析 不妨设F 1(-3,0),F 2(3,0)由条件得P (3,±23),即|PF 2|=23,|PF 1|=2147,因此|PF 1|=7|PF 2|. 答案 710.如图,∠OFB =π6,△ABF 的面积为2-3,则以OA 为长半轴,OB 为短半轴,F 为一个焦点的椭圆方程为________.解析 设标准方程为x 2a 2+y 2b 2=1(a >b >0), 由题可知,|OF |=c ,|OB |=b ,∴|BF |=a , ∵∠OFB =π6,∴b c =33,a =2b .S △ABF =12·|AF |·|BO |=12(a -c )·b =12(2b -3b )b =2-3,∴b 2=2,∴b =2,∴a =22,∴椭圆的方程为x 28+y 22=1.答案 x 28+y 22=1 三、解答题11.如图,设P 是圆x 2+y 2=25上的动点,点D 是P 在x 轴上的投影,M 为PD 上一点,且|MD |=45|PD |.(1)当P 在圆上运动时,求点M 的轨迹C 的方程; (2)求过点(3,0)且斜率为45的直线被C 所截线段的长度.解 (1)设M 的坐标为(x ,y ),P 的坐标为(x P ,y P ),由已知得⎩⎨⎧x P =x ,y P=54y ,∵P 在圆上,∴x 2+⎝ ⎛⎭⎪⎫54y 2=25,即C 的方程为x 225+y 216=1.(2)过点(3,0)且斜率为45的直线方程为y =45(x -3),设直线与C 的交点为A (x 1,y 1),B (x 2,y 2), 将直线方程y =45(x -3)代入C 的方程,得x 225+x -3225=1,即x 2-3x -8=0. ∴x 1=3-412,x 2=3+412. ∴线段AB 的长度为|AB |=x 1-x 22+y 1-y 22=⎝⎛⎭⎪⎫1+1625x 1-x 22=4125×41=415. 12.设F 1,F 2分别为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过F 2的直线l 与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60°,F 1到直线l 的距离为2 3. (1)求椭圆C 的焦距;(2)如果AF 2→=2F 2B →,求椭圆C 的方程.解 (1)设椭圆C 的焦距为2c ,由已知可得F 1到直线l 的距离3c =23,故c =2.所以椭圆C 的焦距为4.(2)设A (x 1,y 1),B (x 2,y 2),由AF 2→=2F 2B →及l 的倾斜角为60°,知y 1<0,y 2>0, 直线l 的方程为y =3(x -2). 由⎩⎪⎨⎪⎧y =3(x -2),x 2a 2+y 2b 2=1消去x ,整理得(3a 2+b 2)y 2+43b 2y -3b 4=0. 解得y 1=-3b 2(2+2a )3a 2+b 2,y 2=-3b 2(2-2a )3a 2+b 2.因为AF 2→=2F 2B →,所以-y 1=2y 2,即3b 2(2+2a )3a 2+b 2=2·-3b 2(2-2a )3a 2+b 2,解得a =3.而a 2-b 2=4,所以b 2=5.故椭圆C 的方程为x 29+y 25=1. 13. 如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,以原点为圆心,椭圆C 的短半轴长为半径的圆与直线x -y +2=0相切. (1)求椭圆C 的方程;(2)已知点P (0,1),Q (0,2).设M ,N 是椭圆C 上关于y 轴对称的不同两点,直线PM 与QN 相交于点T .求证:点T 在椭圆C 上. (1)解 由题意知,b =22= 2. 因为离心率e =c a =32,所以ba =1-⎝ ⎛⎭⎪⎫c a 2=12. 所以a =2 2.所以椭圆C 的方程为x 28+y 22=1.(2)证明 由题意可设M ,N 的坐标分别为(x 0,y 0),(-x 0,y 0), 则直线PM 的方程为y =y 0-1x 0x +1,① 直线QN 的方程为y =y 0-2-x 0x +2.②法一 联立①②解得x =x 02y 0-3,y =3y 0-42y 0-3,即T ⎝ ⎛⎭⎪⎫x 02y 0-3,3y 0-42y 0-3.由x 208+y 202=1,可得x 20=8-4y 20.因为18⎝ ⎛⎭⎪⎫x 02y 0-32+12⎝ ⎛⎭⎪⎫3y 0-42y 0-32=x 20+4(3y 0-4)28(2y 0-3)2=8-4y 20+4(3y 0-4)28(2y 0-3)2=32y 20-96y 0+728(2y 0-3)2=8(2y 0-3)28(2y 0-3)2=1,所以点T 的坐标满足椭圆C 的方程,即点T 在椭圆C 上. 法二 设T (x ,y ),联立①②解得x 0=x 2y -3,y 0=3y -42y -3.因为x 208+y 22=1,所以18⎝ ⎛⎭⎪⎫x 2y -32+12⎝⎛⎭⎪⎫3y -42y -32=1. 整理得x 28+(3y -4)22=(2y -3)2,所以x 28+9y 22-12y +8=4y 2-12y +9,即x 28+y 22=1. 所以点T 坐标满足椭圆C 的方程,即点T 在椭圆C 上. 14.如图,设椭圆的中心为原点O ,长轴在x 轴上,上顶点为A ,左、右焦点分别为F 1,F 2,线段OF 1,OF 2的中点分别为B 1,B 2,且△AB 1B 2是面积为4的直角三角形. (1)求该椭圆的离心率和标准方程;(2)过B 1作直线l 交椭圆于P ,Q 两点,使PB 2⊥QB 2,求直线l 的方程. 解 (1) 如图,设所求椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),右焦点为F 2(c,0). 因△AB 1B 2是直角三角形, 又|AB 1|=|AB 2|, 故∠B 1AB 2为直角, 因此|OA |=|OB 2|,得b =c2. 结合c 2=a 2-b 2得4b 2=a 2-b 2,故a 2=5b 2,c 2=4b 2,所以离心率e =c a =25 5.在Rt △AB 1B 2中,OA ⊥B 1B 2,故S △AB 1B 2=12·|B 1B 2|·|OA |=|OB 2|·|OA |=c2·b =b 2.由题设条件S △AB 1B 2=4得b 2=4,从而a 2=5b 2=20.因此所求椭圆的标准方程为:x 220+y 24=1.(2)由(1)知B 1(-2,0),B 2(2,0).由题意知直线l 的倾斜角不为0,故可设直线l 的方程为x =my -2.代入椭圆方程得(m 2+5)y 2-4my -16=0. 设P (x 1,y 1),Q (x 2,y 2),则y 1,y 2是上面方程的两根, 因此y 1+y 2=4m m 2+5,y 1·y 2=-16m 2+5,又B 2P →=(x 1-2,y 1),B 2Q →=(x 2-2,y 2), 所以B 2P →·B 2Q →=(x 1-2)(x 2-2)+y 1y 2=(my 1-4)(my 2-4)+y 1y 2=(m 2+1)y 1y 2-4m (y 1+y 2)+16 =-16(m 2+1)m 2+5-16m 2m 2+5+16=-16m 2-64m 2+5,由PB 2⊥QB 2,得B 2P →·B 2Q →=0, 即16m 2-64=0,解得m =±2.所以满足条件的直线有两条,其方程分别为x +2y +2=0和x -2y +2=0.第5讲 双曲线一、选择题1.设双曲线x 2a 2-y 29=1(a >0)的渐近线方程为3x ±2y =0,则a 的值为( ).A .4B .3C .2D .1解析 双曲线x 2a 2-y 29=1的渐近线方程为3x ±ay =0与已知方程比较系数得a=2. 答案 C2.已知双曲线C :x 2a 2-y 2b 2=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为( ).A.x 220-y 25=1 B.x 25-y 220=1 C.x 280-y 220=1D.x 220-y 280=1解析 不妨设a >0,b >0,c =a 2+b 2. 据题意,2c =10,∴c =5.① 双曲线的渐近线方程为y =±b a x ,且P (2,1)在C 的渐近线上,∴1=2ba . ②由①②解得b 2=5,a 2=20,故正确选项为A. 答案 A3.已知双曲线x 2-y 23=1的左顶点为A 1,右焦点为F 2,P 为双曲线右支上一点,则PA 1→·PF 2→的最小值为 ( ).A .-2B .-8116C .1D .0解析 设点P (x ,y ),其中x ≥1.依题意得A 1(-1,0),F 2(2,0),则有y 23=x 2-1,y 2=3(x 2-1),PA 1→·PF 2→=(-1-x ,-y )·(2-x ,-y )=(x +1)(x -2)+y 2=x 2+3(x 2-1)-x -2=4x 2-x -5=4⎝ ⎛⎭⎪⎫x -182-8116,其中x ≥1.因此,当x =1时,PA 1→·PF 2→取得最小值-2,选A. 答案 A4.过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点F (-c,0)(c >0)作圆x 2+y 2=a 24的切线,切点为E ,延长FE 交双曲线右支于点P ,若OF →+OP →=2OE →,则双曲线的离心率为( ).A. 2B.105C.102D.10解析 设双曲线的右焦点为A ,则OF→=-OA →,故OF →+OP →=OP →-OA →=AP →=2OE→,即OE =12AP .所以E 是PF 的中点,所以AP =2OE =2×a 2=a .所以PF =3a .在Rt △APF 中,a 2+(3a )2=(2c )2,即10a 2=4c 2,所以e 2=52,即离心率为e=52=102,选C.答案 C5.已知双曲线x 24-y 2b 2=1的右焦点与抛物线y 2=12x 的焦点重合,则该双曲线的焦点到其渐近线的距离等于( ).A. 5B .4 2C .3D .5解析 易求得抛物线y 2=12x 的焦点为(3,0),故双曲线x 24-y 2b 2=1的右焦点为(3,0),即c =3,故32=4+b 2,∴b 2=5,∴双曲线的渐近线方程为y =±52x ,∴双曲线的右焦点到其渐近线的距离为⎪⎪⎪⎪⎪⎪52×31+54= 5.答案 A6.如图,已知点P 为双曲线x 216-y 29=1右支上一点,F 1、F 2分别为双曲线的左、右焦点,I 为△PF 1F 2的内心,若S △IPF 1=S △IPF 2+λS △IF 1F 2成立,则λ的值为()A.58B.45C.43D.34解析 根据S △IPF 1=S △IPF 2+λS △IF 1F 2,即|PF 1|=|PF 2|+λ|F 1F 2|,即2a =λ2c ,即λ=a c =45.答案 B 二、填空题7.双曲线x 23-y 26=1的右焦点到渐近线的距离是________.解析 由题意得:双曲线x 23-y 26=1的渐近线为y =±2x .∴焦点(3,0)到直线y =±2x 的距离为322+1= 6. 答案 68.在平面直角坐标系xOy 中,若双曲线x 2m -y 2m 2+4=1的离心率为5,则m 的值为________.解析 由题意得m >0,∴a =m ,b =m 2+4. ∴c =m 2+m +4,由e =ca =5,得m 2+m +4m=5,解得m =2. 答案 29.如图,已知双曲线以长方形ABCD 的顶点A 、B 为左、右焦点,且双曲线过C 、D 两顶点.若AB =4,BC =3,则此双曲线的标准方程为________.解析 设双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0).由题意得B (2,0),C (2,3),∴⎩⎨⎧4=a 2+b 2,4a 2-9b 2=1,解得⎩⎨⎧a 2=1,b 2=3,∴双曲线的标准方程为x 2-y 23=1.答案 x 2-y 23=110.如图,双曲线x 2a 2-y 2b 2=1(a ,b >0)的两顶点为A 1,A 2,虚轴两端点为B 1,B 2,两焦点为F 1,F 2.若以A 1A 2为直径的圆内切于菱形F 1B 1F 2B 2,切点分别为A ,B ,C ,D .则 (1)双曲线的离心率e =________; (2)菱形F 1B 1F 2B 2的面积S 1与矩形ABCD 的面积S 2的比值S 1S 2=________.解析 (1)由题意可得ab 2+c 2=bc ,∴a 4-3a 2c 2+c 4=0,∴e 4-3e 2+1=0,∴e 2=3+52,∴e =1+52.(2)设sin θ=b b 2+c 2,cos θ=c b 2+c 2,S 1S 2=2bc 4a 2sin θcos θ=2bc4a 2bc b 2+c 2=b 2+c 22a 2=e 2-12=2+52.答案 (1)1+52 (2)2+52 三、解答题11.中心在原点,焦点在x 轴上的一椭圆与一双曲线有共同的焦点F 1,F 2,且|F 1F 2|=213,椭圆的长半轴与双曲线半实轴之差为4,离心率之比为3∶7. (1)求这两曲线方程;(2)若P 为这两曲线的一个交点,求cos ∠F 1PF 2的值.解 (1)由已知:c =13,设椭圆长、短半轴长分别为a ,b ,双曲线半实、虚轴长分别为m ,n ,则⎩⎨⎧a -m =4,7·13a =3·13m .解得a =7,m =3.∴b =6,n =2.∴椭圆方程为x 249+y 236=1,双曲线方程为x 29-y 24=1.(2)不妨设F 1,F 2分别为左、右焦点,P 是第一象限的一个交点,则|PF 1|+|PF 2|=14,|PF 1|-|PF 2|=6,所以|PF 1|=10,|PF 2|=4.又|F 1F 2|=213, ∴cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=102+42-(213)22×10×4=45.12.已知双曲线的中心在原点,焦点F 1,F 2在坐标轴上,离心率为2,且过点(4,-10). (1)求双曲线方程;(2)若点M (3,m )在双曲线上,求证:MF 1→·MF 2→=0; (3)求△F 1MF 2的面积.(1)解 ∵e =2,∴设双曲线方程为x 2-y 2=λ. 又∵双曲线过(4,-10)6,∴双曲线方程为x 2-y 2=6.(2)证明 法一 由(1)知a =b∴F 1(-23,0),F 2(23,0), ∴kMF 1=m 3+23,kMF 2=m3-23,∴kMF 1·kMF 2=m 29-12=m 2-3,又点(3,m )在双曲线上,∴m 2=3,∴kMF 1·kMF 2=-1,MF 1⊥MF 2,MF 1→·MF 2→=0.法二 ∵MF 1→=(-3-23,-m ),MF 2→=(23-3,-m ), ∴MF 1→·MF 2→=(3+23)(3-23)+m 2=-3+m 2. ∵M 在双曲线上,∴9-m 2=6, ∴m 2=3,∴MF 1→·MF 2→=0.(3)解 ∵在△F 1MF 2中,|F 1F 2|=43,且|m |=3, ∴S △F 1MF 2=12·|F 1F 2|·|m |=12×43×3=6.13.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两个焦点分别为F 1,F 2,点P 在双曲线上,且PF 1⊥PF 2,|PF 1|=8,|PF 2|=6. (1)求双曲线的方程;(2)设过双曲线左焦点F 1的直线与双曲线的两渐近线交于A ,B 两点,且F 1A →=2F 1B →,求此直线方程.解 (1)由题意知,在Rt △PF 1F 2中, |F 1F 2|=|PF 1|2+|PF 2|2, 即2c =82+62=10,所以c =5.由椭圆的定义,知2a =|PF 1|-|PF 2|=8-6=2,即a =1. 所以b 2=c 2-a 2=24,故双曲线的方程为x 2-y 224=1.(2)左焦点为F 1(-5,0),两渐近线方程为y =±26x . 由题意得过左焦点的该直线的斜率存在.设过左焦点的直线方程为y =k (x +5),则与两渐近线的交点为⎝ ⎛⎭⎪⎫5k 26-k ,106k 26-k 和⎝ ⎛⎭⎪⎫-5k k +26,106k k +26.由F 1A →=2F 1B →,得⎝ ⎛⎭⎪⎫5k 26-k +5,106k 26-k =2⎝ ⎛⎭⎪⎫-5k k +26+5,106k k +26或者⎝ ⎛⎭⎪⎫-5k k +26+5,106k k +26=2⎝ ⎛⎭⎪⎫5k 26-k +5,106k 26-k ,解得k =±263.故直线方程为y =±263(x +5).14. P (x 0,y 0)(x 0≠±a )是双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)上一点,M ,N 分别是双曲线E 的左,右顶点,直线PM ,PN 的斜率之积为15. (1)求双曲线的离心率;(2)过双曲线E 的右焦点且斜率为1的直线交双曲线于A ,B 两点,O 为坐标原点,C 为双曲线上一点,满足OC→=λOA →+OB →,求λ的值.解 (1)由点P (x 0,y 0)(x 0≠±a )在双曲线x 2a 2-y 2b 2=1上,有x 20a 2-y 20b 2=1. 由题意有y 0x 0-a ·y 0x 0+a=15, 可得a 2=5b 2,c 2=a 2+b 2=6b 2,e =c a =305. (2)联立⎩⎨⎧x 2-5y 2=5b 2,y =x -c ,得4x 2-10cx +35b 2=0.设A (x 1,y 1),B (x 2,y 2), 则⎩⎪⎨⎪⎧x 1+x 2=5c2,x 1x 2=35b 24.①设OC →=(x 3,y 3),OC →=λOA →+OB →,即⎩⎨⎧x 3=λx 1+x 2,y 3=λy 1+y 2.又C 为双曲线上一点,即x 23-5y 23=5b 2,有(λx 1+x 2)2-5(λy 1+y 2)2=5b 2.化简得λ2(x 21-5y 21)+(x 22-5y 22)+2λ(x 1x 2-5y 1y 2)=5b 2.②又A (x 1,y 1),B (x 2,y 2)在双曲线上,所以x 21-5y 21=5b 2,x 22-5y 22=5b 2.由①式又有x 1x 2-5y 1y 2=x 1x 2-5(x 1-c )(x 2-c )=-4x 1x 2+5c (x 1+x 2)-5c 2=10b 2,②式可化为λ2+4λ=0,解得λ=0或λ=-4.第6讲 抛物线一、选择题1.抛物线x 2=(2a -1)y 的准线方程是y =1,则实数a =( ) A.52 B.32 C .-12 D .-32解析 根据分析把抛物线方程化为x 2=-2⎝ ⎛⎭⎪⎫12-a y ,则焦参数p =12-a ,故抛物线的准线方程是y =p 2=12-a 2,则12-a2=1,解得a =-32.答案 D 2.若抛物线y 2=2px (p >0)的焦点在圆x 2+y 2+2x -3=0上,则p =( ) A.12 B .1 C .2D .3解析 ∵抛物线y 2=2px (p >0)的焦点为(p 2,0)在圆x 2+y 2+2x -3=0上,∴p 24+p -3=0,解得p =2或p =-6(舍去). 答案 C3.已知抛物线C :y 2=4x 的焦点为F ,直线y =2x -4与C 交于A ,B 两点,则cos ∠AFB = ( ). A.45B.35C .-35D .-45解析 由⎩⎨⎧y 2=4xy =2x -4,得x 2-5x +4=0,∴x =1或x =4.不妨设A (4,4),B (1,-2),则|FA →|=5,|FB →|=2,FA →·FB →=(3,4)·(0,-2)=-8,∴cos ∠AFB =FA →·FB →|FA →||FB →|=-85×2=-45.故选D. 答案 D4.已知双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2.若抛物线C 2:x 2=2py (p >0)的焦点到双曲线C 1的渐近线的距离为2,则抛物线C 2的方程为( ).A .x 2=833y B .x 2=1633y C .x 2=8yD .x 2=16y解析 ∵x 2a 2-y 2b 2=1的离心率为2,∴c a =2,即c 2a 2=a 2+b 2a 2=4,∴ba = 3.x 2=2py 的焦点坐标为⎝⎛⎭⎪⎫0,p 2,x 2a 2-y 2b 2=1的渐近线方程为y =±b a x ,即y =±3x .由题意,得p21+(3)2=2,∴p =8.故C 2:x 2=16y ,选D.答案 D5.已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,|AB |=12,P 为C 的准线上一点,则△ABP 的面积为( ). A .18 B .24 C .36 D .48 解析 如图,设抛物线方程为y 2=2px (p >0). ∵当x =p2时,|y |=p ,∴p =|AB |2=122=6. 又P 到AB 的距离始终为p ,∴S△ABP=12×12×6=36.答案 C6.已知P是抛物线y2=4x上一动点,则点P到直线l:2x-y+3=0和y轴的距离之和的最小值是().A. 3B. 5 C.2 D.5-1解析由题意知,抛物线的焦点为F(1,0).设点P到直线l的距离为d,由抛物线的定义可知,点P到y轴的距离为|PF|-1,所以点P到直线l的距离与到y轴的距离之和为d+|PF|-1.易知d+|PF|的最小值为点F到直线l的距离,故d+|PF|的最小值为|2+3|22+(-1)2=5,所以d+|PF|-1的最小值为5-1.答案 D二、填空题7.已知动圆过点(1,0),且与直线x=-1相切,则动圆的圆心的轨迹方程为________.解析设动圆的圆心坐标为(x,y),则圆心到点(1,0)的距离与其到直线x=-1的距离相等,根据抛物线的定义易知动圆的圆心的轨迹方程为y2=4x.答案y2=4x8.已知抛物线y2=4x的焦点为F,准线与x轴的交点为M,N为抛物线上的一点,且满足|NF|=32|MN|,则∠NMF=________.解析过N作准线的垂线,垂足是P,则有PN=NF,∴PN=32MN,∠NMF=∠MNP.又cos∠MNP=3 2,∴∠MNP=π6,即∠NMF=π6.答案π69.如图是抛物线形拱桥,当水面在l时,拱顶离水面2米,水面宽4米.水位下降1米后,水面宽________米.。

2015届高考数学(文)第一轮复习达标课时跟踪检测:8-7 抛物线含答案

2015届高考数学(文)第一轮复习达标课时跟踪检测:8-7 抛物线含答案

[A 组 基础演练·能力提升]一、选择题1.设抛物线的顶点在坐标原点,准线方程为x =-2,则抛物线的方程是( ) A .y 2=-8x B .y 2=-4x C .y 2=8xD .y 2=4x解析:由准线方程为x =-2,可知抛物线的焦点在x 轴的正半轴上,依题意设抛物线的方程为y 2=2px (p >0),得p =4,所以抛物线的标准方程为y 2=8x .故选C.答案:C2.过点(0,1)作直线,使它与抛物线y 2=4x 仅有一个公共点,这样的直线有( ) A .1条 B .2条 C .3条D .4条解析:结合图形分析可知,满足题意的直线共有3条:直线x =0,过点(0,1)且平行于x 轴的直线以及过点(0,1)且与抛物线相切的直线(非直线x =0).答案:C3.若抛物线y 2=2px (p >0)上一点P 到焦点和抛物线的对称轴的距离分别为10和6,则p 的值为( )A .2B .18C .2或18D .4或16解析:设P (x 0,y 0),则⎩⎪⎨⎪⎧x 0+p2=10,|y 0|=6,y 2=2px 0,∴36=2p ⎝ ⎛⎭⎪⎫10-p 2,即p 2-20p +36=0,解得p =2或18. 答案:C4.(2013年高考四川卷)抛物线y 2=8x 的焦点到直线x -3y =0的距离是( ) A .2 3 B .2 C. 3D .1解析:由抛物线方程知2p =8⇒p =4,故焦点F (2,0),由点到直线的距离公式知,F 到直线x -3y =0的距离d =|2-3³0|1+3=1.故选D.答案:D5.已知点A (2,1),抛物线y 2=4x 的焦点是F ,若抛物线上存在一点P ,使得|PA |+|PF |最小,则P 点的坐标为( )A .(2,1)B .(1,1)C.⎝ ⎛⎭⎪⎫12,1D.⎝ ⎛⎭⎪⎫14,1 解析:由抛物线定义知|PF |=|PM |,如图所示.∴|PA |+|PF |=|PA |+|PM |,要使|PA |+|PF |最小,只需使P 、A 、M 三点共线,即最小值为点A 到准线的距离,∴|PA |+|PF |的最小值为3,此时P 的坐标为⎝ ⎛⎭⎪⎫14,1. 答案:D6.(2014年衡阳模拟)若点P 到定点F (4,0)的距离比它到直线x +5=0的距离小1,则点P 的轨迹方程是( )A .y 2=-16x B .y 2=-32xC .y 2=16xD .y 2=16x 或y =0(x <0)解析:∵点F (4,0)在直线x +5=0的右侧,且P 点到定点F (4,0)的距离比它到直线x +5=0的距离小1,∴点P 到F (4,0)的距离与它到直线x +4=0的距离相等.故点P 的轨迹为抛物线,且顶点在原点,开口向右,设抛物线方程为y 2=2px (p >0),则p =8.故点P 的轨迹方程为y 2=16x .答案:C 二、填空题7.(2013年高考北京卷)若抛物线y 2=2px 的焦点坐标为(1,0),则p =________;准线方程为________.解析:p 2=1,∴p =2;准线方程:x =-p2=-1.答案:2 x =-18.在平面直角坐标系xOy 中,设抛物线y 2=4x 的焦点为F ,准线为l ,P 为抛物线上一点,PA ⊥l ,A 为垂足.如果直线AF 的倾斜角为120°,那么|PF |=________.解析:抛物线的焦点坐标为F (1,0),准线方程为x =-1.因为直线AF 的倾斜角为120°,所以∠AFO =60°,又tan 60°=y A1--,所以y A =2 3.因为PA ⊥l ,所以y P =y A =23,代入y 2=4x ,得x P =3,所以|PF |=|PA |=3-(-1)=4.答案:49.如图所示是抛物线形拱桥,当水面在l 时,拱顶离水面2 m ,水面宽4 m .水位下降1 m 后,水面宽____________m.解析:用数形结合法.建立如图所示的平面直角坐标系,设抛物线方程为x 2=-2py (p >0),则A (2,-2),将其坐标代入x 2=-2py 得p =1.∴x 2=-2y .当水面下降1 m ,得D (x 0,-3)(x 0>0),将其坐标代入x 2=-2y 得x 20=6, ∴x 0= 6.∴水面宽|CD |=2 6 m. 答案:2 6 三、解答题10.已知抛物线的顶点在原点,对称轴是x 轴,抛物线上的点M (-3,m )到焦点的距离为5,求抛物线的方程和m 的值.解析:根据已知条件,抛物线方程可设为y 2=-2px (p >0),则焦点F ⎝ ⎛⎭⎪⎫-p2,0.∵点M (-3,m )在抛物线上,且|MF |=5,得方程组⎩⎪⎨⎪⎧m 2=6p , ⎝ ⎛⎭⎪⎫-3+p 22+m 2=5,解得⎩⎨⎧p =4,m =26或⎩⎨⎧p =4,m =-2 6.∴抛物线方程为y 2=-8x ,m =±2 6.11.如图所示,抛物线关于x 轴对称,它的顶点在坐标原点,点P (1,2),A (x 1,y 1),B (x 2,y 2)均在抛物线上.(1)写出该抛物线的方程及其准线方程;(2)当PA 与PB 的斜率存在且倾斜角互补时,求y 1+y 2的值及直线AB 的斜率. 解析:(1)由已知条件,可设抛物线的方程为y 2=2px (p >0).∵点P (1,2)在抛物线上,∴22=2p ³1,解得p =2.故所求抛物线的方程是y 2=4x ,准线方程是x =-1.(2)设直线PA 的斜率为k PA ,直线PB 的斜率为k PB ,则k PA =y 1-2x 1-1(x 1≠1),k PB =y 2-2x 2-1(x 2≠1), ∵PA 与PB 的斜率存在且倾斜角互补,∴k PA =-k PB . 由A (x 1,y 1),B (x 2,y 2)均在抛物线上,得y 21=4x 1,①y 22=4x 2,②∴y 1-214y 21-1=-y 2-214y 22-1,∴y 1+2=-(y 2+2). ∴y 1+y 2=-4.由①-②得,y 21-y 22=4(x 1-x 2), ∴k AB =y 1-y 2x 1-x 2=4y 1+y 2=-1(x 1≠x 2). 12.(能力提升)设P (x 1,y 1),Q (x 2,y 2)是抛物线y 2=2px (p >0)上相异两点,Q ,P 到y 轴的距离的积为4且OP →²OQ →=0,PQ 交x 轴于E .(1)求该抛物线的标准方程;(2)过Q 的直线与抛物线的另一交点为R ,与x 轴的交点为T ,且Q 为线段RT 的中点,试求弦PR 长度的最小值.解析:(1)∵OP →²OQ →=0,∴x 1x 2+y 1y 2=0, 又P ,Q 在抛物线上,故y 21=2px 1,y 22=2px 2,故得y 212p ²y 222p+y 1y 2=0,则y 1y 2=-4p 2,∴|x 1x 2|=y 1y 224p2=4p 2.又|x 1x 2|=4,故得4p 2=4,p =1. ∴抛物线的标准方程为y 2=2x . (2)设E (a,0),且方程为x =my +a .联立方程⎩⎪⎨⎪⎧x =my +ay 2=2x ,消去x 得y 2-2my -2a =0.∴⎩⎪⎨⎪⎧y 1+y 2=2my 1y 2=-2a.①设直线PR 与x 轴交于点M (b,0),则可设直线PR 的方程为x =ny +b ,并设R (x 3,y 3), 同理可知,⎩⎪⎨⎪⎧y 1+y 3=2n y 1y 3=-2b .②由①②可得y 3y 2=ba.由题意,Q 为线段RT 的中点,∴y 3=2y 2,∴b =2a , 又由(1)知,y 1y 2=-4,代入①中,可得-2a =-4, ∴a =2故b =4. ∴y 1y 3=-8.∴|PR |=1+n 2|y 1-y 3|=1+n 2²y 1+y 32-4y 1y 3=21+n 2²n 2+8≥4 2.当n =0,即直线PR 垂直于x 轴时,|PR |取最小值4 2.。

2015高考数学《解析几何》一轮复习测试题

2015高考数学《解析几何》一轮复习测试题

3 1 3 ,故可知结论为 或 ,选 D 2 2 2
错误! 未指定书签。 . (山东省聊城市某重点高中 2014 届高三上学期期初分班教学测试数学 (理)
试题)椭圆
x2 y2 1(a b 0) 的 左 . 右 焦 点 分 别 为 F1.F2,P 是 椭 圆 上 的 一 a2 b2
点, l : x
解析几何
一、选择题 错误!未指定书签。 . (山东师大附中 2014 届高三第一次模拟考试数学试题)已知点 M 是直
线 3 x 4 y 2 0 上的动点,点 N 为圆 ( x 1) 2 ( y 1)2 1 上的动点,则 MN 的最小 值为 A. ( B. 1 C. )
9 5
【答案】解:(1) 由已知得 c 2
2,
c 6 ,解得 a 2 3 a 3
于是 b a c 4
2
2
2
x2 y 2 ∴求椭圆 G 的方程为 1 12 4
(2)设直线 l 的方程为 y x m ,交点 A( x1 , y1 ), B ( x2 , y2 ) , AB 中点 E ( x0 , y0 )
3 3m 2 12 m, x1 x2 2 4
3 1 3 1 m , y0 x0 m m ,即 E ( m, m) 4 4 4 4
∵ AB 为等腰三角形的底边,∴ PE AB
∴ k PE
1 2 m 4 1 ,解得 m 2 ,符合要求 3 3 m 4
此时 x1 x2 3, x1 x2 0 所以 AB
A. 或
( D. 或
)2 33 2来自B. 或 22 3
C. 或 2
1 2
1 2
3 2 1 ,当当为 2

2015届高考数学(文科)一轮总复习解析几何

2015届高考数学(文科)一轮总复习解析几何

2015届高考数学(文科)一轮总复习解析几何第九篇解析几何第1讲直线的方程基础巩固题组(建议用时:40分钟)一、填空题1.直线3x-y+a=0(a为常数)的倾斜角为________.解析直线的斜率为k=tanα=3,又因为α∈0,π),所以α=π3.答案π32.已知直线l经过点P(-2,5),且斜率为-34.则直线l的方程为________.解析由点斜式,得y-5=-34(x+2),即3x+4y-14=0.答案3x+4y-14=03.(2014•长春模拟)若点A(4,3),B(5,a),C(6,5)三点共线,则a的值为________.解析∵kAC=5-36-4=1,kAB=a-35-4=a-3.由于A,B,C三点共线,所以a-3=1,即a=4.答案44.(2014•泰州模拟)直线3x-4y+k=0在两坐标轴上的截距之和为2,则实数k=________.解析令x=0,得y=k4;令y=0,得x=-k3.则有k4-k3=2,所以k=-24.答案-245.若直线(2m2+m-3)x+(m2-m)y=4m-1在x轴上的截距为1,则实数m=________.解析由题意可知2m2+m-3≠0,即m≠1且m≠-32,在x轴上截距为4m-12m2+m-3=1,即2m2-3m-2=0,解得m=2或-12.答案2或-126.(2014•佛山调研)直线ax+by+c=0同时要经过第一、第二、第四象限,则a,b,c应满足________.①ab>0,bc0,bc>0;③ab0;④ab解析由题意,令x=0,y=-cb>0;令y=0,x=-ca>0.即bc答案①7.(2014•淮阳模拟)直线l经过点A(1,2),在x轴上的截距的取值范围是(-3,3),则其斜率的取值范围是________.解析设直线的斜率为k,如图,过定点A的直线经过点B时,直线l在x轴上的截距为3,此时k=-1;过定点A的直线经过点C时,直线l 在x轴的截距为-3,此时k=12,满足条件的直线l的斜率范围是(-∞,-1)∪12,+∞.答案(-∞,-1)∪12,+∞8.一条直线经过点A(-2,2),并且与两坐标轴围成的三角形的面积为1,则此直线的方程为________.解析设所求直线的方程为xa+yb=1,∵A(-2,2)在直线上,∴-2a+2b=1.①又因直线与坐标轴围成的三角形面积为1,∴12|a|•|b|=1.②由①②可得(1)a-b=1,ab=2或(2)a-b=-1,ab=-2.由(1)解得a=2,b=1或a=-1,b=-2,方程组(2)无解.故所求的直线方程为x2+y1=1或x-1+y-2=1,即x+2y-2=0或2x+y+2=0为所求直线的方程.答案x+2y-2=0或2x+y+2=0二、解答题9.(2014•临沂月考)设直线l的方程为(a+1)x+y+2-a=0(a∈R).(1)若l在两坐标轴上的截距相等,求l的方程;(2)若l不经过第二象限,求实数a的取值范围.解(1)当直线过原点时,该直线在x轴和y轴上的截距为0,当然相等.∴a =2,方程即为3x+y=0.当直线不过原点时,由截距存在且均不为0,得a-2a+1=a-2,即a+1=1,∴a=0,方程即为x+y+2=0.综上,l的方程为3x+y=0或x+y+2=0.(2)将l的方程化为y=-(a+1)x+a-2,∴-+>0,a-2≤0或-+=0,a-2≤0.∴a≤-1.综上可知a的取值范围是(-∞,-1].10.已知直线l过点M(2,1),且分别与x轴、y轴的正半轴交于A,B 两点,O为原点,是否存在使△ABO面积最小的直线l?若存在,求出直线l的方程;若不存在,请说明理由.解存在.理由如下:设直线l的方程为y-1=k(x-2)(k<0),则A2-1k,0,B(0,1-2k),△AOB 的面积S=12(1-2k)2-1k=124+-+-1k≥12(4+4)=4.当且仅当-4k=-1k,即k=-12时,等号成立,故直线l的方程为y-1=-12(x-2),即x+2y-4=0.能力提升题组(建议用时:25分钟)一、填空题1.(2014•北京海淀一模)已知点A(-1,0),B(cosα,sinα),且|AB|=3,则直线AB的方程为________.解析|AB|=++sin2α=2+2cosα=3,所以cosα=12,sinα=±32,所以kAB=±33,即直线AB的方程为y=±33(x+1),所以直线AB的方程为y=33x+33或y=-33x-33.答案y=33x+33或y=-33x-332.若直线l:y=kx-3与直线2x+3y-6=0的交点位于第一象限,则直线l的倾斜角的取值范围是________.解析如图,直线l:y=kx-3,过定点P(0,-3),又A(3,0),∴kPA=33,则直线PA的倾斜角为π6,满足条件的直线l的倾斜角的范围是π6,π2.答案π6,π23.已知直线x+2y=2分别与x轴、y轴相交于A,B两点,若动点P(a,b)在线段AB上,则ab的最大值为________.解析直线方程可化为x2+y=1,故直线与x轴的交点为A(2,0),与y 轴的交点为B(0,1),由动点P(a,b)在线段AB上,可知0≤b≤1,且a+2b=2,从而a=2-2b,故ab=(2-2b)b=-2b2+2b=-2b-122+12,由于0≤b≤1,故当b=12时,ab取得最大值12.答案12二、解答题4.如图,射线OA,OB分别与x轴正半轴成45°和30°角,过点P(1,0)作直线AB分别交OA,OB于A,B两点,当AB的中点C恰好落在直线y=12x上时,求直线AB的方程.解由题意可得kOA=tan45°=1,kOB=tan(180°-30°)=-33,所以直线lOA:y=x,lOB:y=-33x,设A(m,m),B(-3n,n),所以AB的中点Cm-3n2,m+n2,由点C在y=12x上,且A,P,B三点共线得m+n2=12•m-3n2,m-0m-1=n-0-3n-1,解得m=3,所以A(3,3).又P(1,0),所以kAB=kAP=33-1=3+32,所以lAB:y=3+32(x-1),即直线AB的方程为(3+3)x-2y-3-3=0.。

高三数学一轮复习 解析几何单元练习题

高三数学一轮复习 解析几何单元练习题

高三数学一轮复习 解析几何单元练习题第Ⅰ卷一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(本大题共12个小题,每小题5分,共60分). 1.圆2x 2+2y 2=1与直线x sin θ+y -1=0(θ∈R ,θ≠2π+k π,k ∈Z )的位置关系是( )A .相交B .相切C .相离D .不确定的2.下列方程的曲线关于x =y 对称的是 ( )A .x 2-x +y 2=1B .x 2y +xy 2=1C .x -y =1D .x 2-y 2=13.设动点P 在直线x =1上,O 为坐标原点.以OP 为直角边,点O 为直角顶点作等腰Rt △OP Q ,则动点Q 的轨迹是 ( ) A .圆 B .两条平行直线 C .抛物线 D .双曲线4.已知双曲线)0( 1222>=-a y ax 的一条准线为23=x ,则该双曲线的离心率为 ( )A .23B .23 C .26 D .332 5.当θ是第四象限时,两直线0cos 1sin =-++a y x θθ和0cos 1=+-+b y x θ的位置关系是( )A .平行B .垂直C .相交但不垂直D .重合6.抛物线24x y =上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为 ( )A .2B .3C .4D .57.设直线l 过点)0,2(-,且与圆122=+y x 相切,则l 的斜率是( )A .1±B .21±C .33±D .3±8.设直线:220l x y ++=关于原点对称的直线为l ',若l '与椭圆2214y x +=的交点为A 、B 、,点P 为椭圆上的动点,则使PAB ∆的面积为12的点P 的个数为 ( )A .1B .2C .3D .4 9.直线3+=x y 与曲线1492=-x x y 的公共点的个数是 ( )A .1B .2C .3D .410.已知x ,y 满足0))(1(≤+--y x y x ,则22)1()1(+++y x 的最小值是( )A .0B .21C .22D .211.已知P 是椭圆192522=+y x 上的点,Q 、R 分别是圆41)4(22=++y x 和圆41)4(22=+-y x 上的点,则|PQ|+|PR|的最小值是 ( )A .89B .85C .10D .912.动点P (x ,y )是抛物线y =x 2-2x -1上的点,o 为原点,op 2当x=2时取得极小值,求,op 2的最小值 ( ) A.43116- B.43611+ C.43611- D.43116+第Ⅱ卷二、填空题:请把答案填在题中横线上(本大题共4个小题,每小题4分,共16分). 13.将直线220x y +-=绕原点逆时针旋转90︒所得直线方程是 . 14.圆心为(1,2)且与直线51270x y --=相切的圆的方程为_____________.15.已知⊙M :,1)2(22=-+y x Q 是x 轴上的动点,QA ,QB 分别切⊙M 于A ,B 两点,求动弦AB 的中点P 的轨迹方程为 .16.如图把椭圆2212516x y +=的长轴AB 分成8分,过每个 作x轴的垂线交椭圆的上半部分于1P ,2P ,……7P 七个点, F 是椭圆的一个焦点,则127......PF P F P F +++=______.三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6个大题,共74分)。

2015年高中数学解析几何组卷解析

2015年高中数学解析几何组卷解析

2015年高中数学解析几何组卷一.选择题(共16小题)1.(2013秋•七里河区校级期末)直线l过点A(3,0)和点B(0,2),则直线l的方程是2.(2014秋•平阳县校级期末)圆C1:(x+1)2+(y+4)2=16与圆C2:(x﹣2)2+(y+2)2=93.(2012秋•浙江校级月考)已知两点A(2,m)与点B(m,1)之间的距离等于,4.(2011•漳浦县校级模拟)已知集合M={(x,y)|x+y=1},N=[(x,y)|x﹣y=1},则M∩N6.(2011•东莞模拟)已知直线l:x+2y+k+1=0被圆C:x2+y2=4所截得的弦长为4,则k是7.(2014•天津学业考试)若,则直线=1必不经过()8.(2014春•益阳校级期末)已知F1、F2是椭圆+=1的两个焦点,过F1的直线与椭圆9.(2012秋•定西期末)抛物线y2=4x,经过点P(3,m),则点P到抛物线焦点的距离等B10.(2011•西安模拟)方程所表示的曲线为()11.(2012•荆州区校级模拟)设集合M={(x,y)|x2+y2=1,x,y∈R},N={x|x2﹣y=0,x,•铜仁市模拟)已知双曲线的离心率为,则双曲12.(201514.(2014•湖南二模)过抛物线焦点F的直线与抛物线交于A、B两点,若A、B在抛物线15.(2014•和平区校级模拟)过抛物线y2=﹣8x的焦点作一条直线与抛物线相交于A,B两2217.(2014秋•邗江区校级期中)方程+=1表示椭圆,则k的取值范围是.18.双曲线上一点P的两条焦半径夹角为60°,F1,F2为焦点,则△PF1F2的面积为.19.(2015•北京)已知双曲线﹣y2=1(a>0)的一条渐近线为x+y=0,则a=.20.(2015•陕西)如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线所示),则原始的最大流量与当前最大流量的比值为.21.(2015•山东)平面直角坐标系xOy中,双曲线C1:﹣=1(a>0,b>0)的渐近线与抛物线C2:x2=2py(p>0)交于点O,A,B,若△OAB的垂心为C2的焦点,则C1的离心率为.22.(2015•北京校级模拟)2003年10月15日,我国自行研制的首个载人宇宙飞船“神州五号”在酒泉卫星发射中心胜利升空,实现了中华民族千年的飞天梦,飞船进入的是椭圆轨道,已知该椭圆轨道与地球表面的最近距离约为200公里,最远距离约350公里(地球半径约为6370公里),则轨道椭圆的标准方程为(精确到公里).(注:地球球心位于椭圆轨道的一个焦点,写出一个方程即可)23.(2015•闸北区一模)关于曲线C:=1,给出下列四个结论:①曲线C是椭圆;②关于坐标原点中心对称;③关于直线y=x轴对称;④所围成封闭图形面积小于8.则其中正确结论的序号是.(注:把你认为正确命题的序号都填上)24.(2015•浦东新区一模)若直线l的方程为ax+by+c=0,(a,b不同时为零),则下列命题正确的是.(1)以方程ax+by+c=0的解为坐标的点都在直线l上;(2)方程ax+by+c=0可以表示平面坐标系中的任意一条直线;(3)直线l的一个法向量为(a,b);(4)直线l的倾斜角为.三.解答题(共6小题)25.(2015•陕西)如图,AB切⊙O于点B,直线AO交⊙O于D,E两点,BC⊥DE,垂足为C.(Ⅰ)证明:∠CBD=∠DBA;(Ⅱ)若AD=3DC,BC=,求⊙O的直径.26.(2015春•保定期末)已知△ABC的顶点A(5,1),AB边上的中线CM所在的直线方程为2x﹣y﹣5=0,AC边上的高BH所在的直线方程为x﹣2y﹣5=0,(1)求直线AC的方程;(2)求点B的坐标(x0,y0);(3)求△ABC的面积.27.(2015春•海淀区期末)已知椭圆C:=1(a>b>0)上的点到它的两个焦点的距离之和为4,以椭圆C的短轴为直径的圆O经过这两个焦点,点A,B分别是椭圆C的左、右顶点.(Ⅰ)求圆O和椭圆C的方程;(Ⅱ)已知P,Q分别是椭圆C和圆O上的动点(P,Q位于y轴两侧),且直线PQ与x轴平行,直线AP,BP分别与y轴交于点M,N.求证:∠MQN为定值.28.(2015•杨浦区一模)如图,曲线Γ由曲线和曲线组成,其中点F1,F2为曲线C1所在圆锥曲线的焦点,点F3,F4为曲线C2所在圆锥曲线的焦点;(1)若F2(2,0),F3(﹣6,0),求曲线Γ的方程;(2)对于(1)中的曲线Γ,若过点F4作直线l平行于曲线C2的渐近线,交曲线C1于点A、B,求三角形ABF1的面积;(3)如图,若直线l(不一定过F4)平行于曲线C2的渐近线,交曲线C1于点A、B,求证:弦AB的中点M必在曲线C2的另一条渐近线上.29.(2015春•宁波校级期中)如图,已知抛物线C:y2=2px(p>0),焦点为F,过点G(p,0)作直线l交抛物线C于A,M两点,设A(x1,y1),M(x2,y2).(Ⅰ)若y1•y2=﹣8,求抛物线C的方程;(Ⅱ)若直线AF与x轴不垂直,直线AF交抛物线C于另一点B,直线BG交抛物线C于另一点N.求证:直线AB与直线MN斜率之比为定值.30.(2010•安徽)椭圆E经过点A(2,3),对称轴为坐标轴,焦点F1,F2在x轴上,离心率e=.(Ⅰ)求椭圆E的方程;(Ⅱ)求∠F1AF2的角平分线所在直线的方程.2015年高中数学解析几何组卷参考答案与试题解析一.选择题(共16小题)1.(2013秋•七里河区校级期末)直线l过点A(3,0)和点B(0,2),则直线l的方程是2.(2014秋•平阳县校级期末)圆C1:(x+1)2+(y+4)2=16与圆C2:(x﹣2)2+(y+2)2=9=3.(2012秋•浙江校级月考)已知两点A(2,m)与点B(m,1)之间的距离等于,|AB|=4.(2011•漳浦县校级模拟)已知集合M={(x,y)|x+y=1},N=[(x,y)|x﹣y=1},则M∩N=6.(2011•东莞模拟)已知直线l:x+2y+k+1=0被圆C:x2+y2=4所截得的弦长为4,则k是==27.(2014•天津学业考试)若,则直线=1必不经过()8.(2014春•益阳校级期末)已知F1、F2是椭圆+=1的两个焦点,过F1的直线与椭圆9.(2012秋•定西期末)抛物线y2=4x,经过点P(3,m),则点P到抛物线焦点的距离等B10.(2011•西安模拟)方程所表示的曲线为(),﹣﹣=11.(2012•荆州区校级模拟)设集合M={(x,y)|x2+y2=1,x,y∈R},N={x|x2﹣y=0,x,12.(2015•铜仁市模拟)已知双曲线的离心率为,则双曲由离心率的值,可设,可得的值,进而得到渐近线方,,则得本题考查双曲线的标准方程,以及双曲线的简单性质的应用,求出13.(2015春•玉溪校级期末)方程(x+y﹣1)=0所表示的曲线是().B.C..,或解:原方程等价于:有14.(2014•湖南二模)过抛物线焦点F的直线与抛物线交于A、B两点,若A、B在抛物线15.(2014•和平区校级模拟)过抛物线y2=﹣8x的焦点作一条直线与抛物线相交于A,B两﹣+2=2+22a=b=,,e=.又离心率是双曲线的离心率为17.(2014秋•邗江区校级期中)方程+=1表示椭圆,则k的取值范围是k>3.+=1表示椭圆,则解:方程+18.双曲线上一点P的两条焦半径夹角为60°,F1,F2为焦点,则△PF1F2的面积为16.∵双曲线上一点=161619.(2015•北京)已知双曲线﹣y2=1(a>0)的一条渐近线为x+y=0,则a=.±,结合条件可得=,即可得到解:双曲线±,由题意可得=.故答案为:积,导致水渠截面边界呈抛物线型(图中虚线所示),则原始的最大流量与当前最大流量的比值为 1.2.,×(等腰梯形的面积为:﹣=1.221.(2015•山东)平面直角坐标系xOy中,双曲线C1:﹣=1(a>0,b>0)的渐近线与抛物线C2:x2=2py(p>0)交于点O,A,B,若△OAB的垂心为C2的焦点,则C1的离心率为.的坐标,可得,利用×):﹣±x±,,=,×(﹣=.故答案为:.22.(2015•北京校级模拟)2003年10月15日,我国自行研制的首个载人宇宙飞船“神州五号”在酒泉卫星发射中心胜利升空,实现了中华民族千年的飞天梦,飞船进入的是椭圆轨道,已知该椭圆轨道与地球表面的最近距离约为200公里,最远距离约350公里(地球半径约为6370公里),则轨道椭圆的标准方程为(精确到公里)=1.(注:地球球心位于椭圆轨道的一个焦点,写出一个方程即可)设椭圆方程为:解:设椭圆方程为:=1故答案为:=123.(2015•闸北区一模)关于曲线C:=1,给出下列四个结论:①曲线C是椭圆;②关于坐标原点中心对称;③关于直线y=x轴对称;④所围成封闭图形面积小于8.则其中正确结论的序号是②④.(注:把你认为正确命题的序号都填上)::,方程变为:24.(2015•浦东新区一模)若直线l的方程为ax+by+c=0,(a,b不同时为零),则下列命题正确的是(1)(2)(3).(1)以方程ax+by+c=0的解为坐标的点都在直线l上;(2)方程ax+by+c=0可以表示平面坐标系中的任意一条直线;(3)直线l的一个法向量为(a,b);(4)直线l的倾斜角为.()或()或三.解答题(共6小题)25.(2015•陕西)如图,AB切⊙O于点B,直线AO交⊙O于D,E两点,BC⊥DE,垂足为C.(Ⅰ)证明:∠CBD=∠DBA;(Ⅱ)若AD=3DC,BC=,求⊙O的直径.,,,程为2x﹣y﹣5=0,AC边上的高BH所在的直线方程为x﹣2y﹣5=0,(1)求直线AC的方程;(2)求点B的坐标(x0,y0);(3)求△ABC的面积.﹣,的面积为27.(2015春•海淀区期末)已知椭圆C:=1(a>b>0)上的点到它的两个焦点的距离之和为4,以椭圆C的短轴为直径的圆O经过这两个焦点,点A,B分别是椭圆C的左、右顶点.(Ⅰ)求圆O和椭圆C的方程;(Ⅱ)已知P,Q分别是椭圆C和圆O上的动点(P,Q位于y轴两侧),且直线PQ与x轴平行,直线AP,BP分别与y轴交于点M,N.求证:∠MQN为定值.(Ⅰ)依题意得的方程为.,则即得.得..,即.,即.的斜率为,..,28.(2015•杨浦区一模)如图,曲线Γ由曲线和曲线组成,其中点F1,F2为曲线C1所在圆锥曲线的焦点,点F3,F4为曲线C2所在圆锥曲线的焦点;(1)若F2(2,0),F3(﹣6,0),求曲线Γ的方程;(2)对于(1)中的曲线Γ,若过点F4作直线l平行于曲线C2的渐近线,交曲线C1于点A、B,求三角形ABF1的面积;(3)如图,若直线l(不一定过F4)平行于曲线C2的渐近线,交曲线C1于点A、B,求证:,可得,解得即可.,点CDF1=与基本不等y=(由数形结合知的方程为+和.,点,化为(,=CDF1==t=SCDF1=t=,即n=时,y=(==x29.(2015春•宁波校级期中)如图,已知抛物线C:y2=2px(p>0),焦点为F,过点G(p,0)作直线l交抛物线C于A,M两点,设A(x1,y1),M(x2,y2).(Ⅰ)若y1•y2=﹣8,求抛物线C的方程;(Ⅱ)若直线AF与x轴不垂直,直线AF交抛物线C于另一点B,直线BG交抛物线C于另一点N.求证:直线AB与直线MN斜率之比为定值.=30.(2010•安徽)椭圆E经过点A(2,3),对称轴为坐标轴,焦点F1,F2在x轴上,离心率e=.(Ⅰ)求椭圆E的方程;(Ⅱ)求∠F1AF2的角平分线所在直线的方程.(Ⅰ)设椭圆方程为+e==|x+,得,∴)代入,有的方程为y=的角平分线所在直线上任一点,则有+。

2015届高考理科数学一轮第八章平面解析几何复习题(附答案)

2015届高考理科数学一轮第八章平面解析几何复习题(附答案)

2015届高考理科数学一轮第八章平面解析几何复习题(附答案)第1课时直线及其方程1.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.2.掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式等),了解斜截式与一次函数的关系.对应学生用书P127]【梳理自测】一、直线的倾斜角与斜率1.(教材改编)直线过点(0,2)和点(3,0),则它的斜率为()A.23B.32C.-23D.-322.(教材改编)直线3x-y+a=0(a为常数)的倾斜角为()A.30°B.60°C.150°D.120°答案:1.C2.B◆以上题目主要考查了以下内容:(1)直线的倾斜角①定义:当直线l与x轴相交时,取x轴作为基准,x轴正方向与直线l向上的方向之间所成的角α叫做直线l的倾斜角,当直线l与x轴平行或重合时,规定它的倾斜角为0°.②倾斜角的取值范围:0°,180°).(2)直线的斜率①定义:当α≠90°时,一条直线的倾斜角α的正切值叫做这条直线的斜率,斜率通常用小写字母k表示,即k=tan_α,倾斜角是90°的直线,其斜率不存在.②经过两点的直线的斜率公式:经过两点P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的斜率公式为k=y1-y2x1-x2.二、直线方程1.(教材改编)过点(-1,2)且倾斜角为30°的直线方程为()A.3x-3y+6+3=0B.3x-3y-6+3=0C.3x+3y+6+3D.3x+3y-6+3=02.已知直线l的倾斜角α满足3sinα=cosα,且它在x轴上的截距为2,则直线l的方程是________.3.经过两点M(1,-2),N(-3,4)的直线方程为________.答案:1.A2.x-3y-2=03.3x+2y+1=0◆以上题目主要考查了以下内容:直线方程的五种形式名称方程适用范围点斜式y-y0=k(x-x0)不含垂直于x轴的直线斜截式y=kx+b不含垂直于x轴的直线两点式y-y1y2-y1=x-x1x2-x1(x1≠x2,y1≠y2)不含垂直于坐标轴的直线截距式xa+yb=1(ab≠0)不含垂直于坐标轴和过原点的直线一般式Ax+By+C=0(A、B不同时为零)平面直角坐标系内的直线都适用【指点迷津】1.一个关系——直线的倾斜角和斜率的关系(1)任何直线都存在倾斜角,但并不是任意的直线都存在斜率.(2)直线的倾斜角α和斜率k之间的对应α0°0°<α<90°90°90°<α<180°k0k>0不存在k<02.两种方法——求直线方程(1)直接法:根据已知条件,选择恰当形式的直线方程,直接求出方程中系数,写出直线方程;(2)待定系数法:先根据已知条件设出直线方程.再根据已知条件构造关于待定系数的方程(组)求系数,最后代入求出直线方程.3.三个因素——确定直线的倾斜角①前提:直线l与x轴相交;②基准:x轴;③方向:x轴正向与l 向上的方向.对应学生用书P128]考向一直线的倾斜角与斜率(1)若直线l:y=kx-3与直线2x+3y-6=0的交点位于第一象限,则直线l的倾斜角的取值范围是()A.π6,π3B.π6,π2C.π3,π2D.π3,π2(2)已知点A(2,-3),B(-3,-2),直线l过点P(1,1)且与线段AB有交点,则直线l的斜率k的取值范围为________.【审题视点】确定直线过的定点,结合图象,使直线绕定点转动,使之符合题意,找出边界线所处的位置.【典例精讲】(1)由题意,可作两直线的图象,如图所示,从图中可以看出,直线l的倾斜角的取值范围为π6,π2.(2)如图,由斜率公式,得kAP=1-(-3)1-2=-4,kBP=1-(-2)1-(-3)=34,∴k≥34或k≤-4.【答案】(1)B(2)(-∞,-4]∪34,+∞)【类题通法】直线倾斜角的范围是0,π),但这个区间不是正切函数的单调区间.因此在考虑倾斜角与斜率的关系时,要分0,π2与π2,π两种情况讨论.由正切函数图象可以看出,当α∈0,π2时,斜率k∈0,+∞);当α=π2时,斜率不存在;当α∈π2,π时,斜率k∈(-∞,0).1.(2014•贵阳模拟)直线l经过点A(1,2),在x轴上的截距的取值范围是(-3,3),则其斜率的取值范围是()A.-1<k<15B.k>1或k<12C.k>15或k<1D.k>12或k<-1解析:选D.设直线的斜率为k,则直线方程为y-2=k(x-1),直线在x 轴上的截距为1-2k,令-3<1-2k<3,解不等式可得.也可以利用数形结合.考向二求直线方程求适合下列条件的直线方程:(1)经过点P(3,2),且在两坐标轴上的截距相等;(2)过点A(-1,-3),斜率是直线y=3x的斜率的-14;(3)过点A(1,-1)与已知直线l1:2x+y-6=0相交于B点且|AB|=5. 【审题视点】选择适当的直线方程形式,把所需要的条件求出即可.【典例精讲】(1)设直线l在x,y轴上的截距均为a,若a=0,即l过点(0,0)和(3,2),∴l的方程为y=23x,即2x-3y=0.若a≠0,则设l的方程为xa+ya=1,∵l过点(3,2),∴3a+2a=1,∴a=5,∴l的方程为x+y-5=0,综上可知,直线l的方程为2x-3y=0或x+y-5=0.(2)设所求直线的斜率为k,依题意k=-14×3=-34.又直线经过点A(-1,-3),因此所求直线方程为y+3=-34(x+1),即3x+4y+15=0.(3)过点A(1,-1)与y轴平行的直线为x=1.解方程组x=1,2x+y-6=0,求得B点坐标为(1,4),此时|AB|=5,即x=1为所求.设过A(1,-1)且与y轴不平行的直线为y+1=k(x-1),解方程组2x+y-6=0,y+1=k(x-1).得两直线交点为x=k+7k+2y=4k-2k+2.(k≠-2,否则与已知直线平行).则B点坐标为k+7k+2,4k-2k+2.∴k+7k+2-12+4k-2k+2+12=52解得k=-34,∴y+1=-34(x-1),即3x+4y+1=0.综上可知,所求直线的方程为x=1或3x+4y+1=0.【类题通法】在求直线方程时,应先选择适当的直线方程的形式,并注意各种形式的适用条件,用斜截式及点斜式时,直线的斜率必须存在,而两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直或经过原点的直线,故在解题时,若采用截距式,应注意分类讨论,判断截距是否为零;若采用点斜式,应先考虑斜率不存在的情况.2.(1)求过点A(1,3),斜率是直线y=-4x的斜率的13的直线方程;(2)求经过点A(-5,2),且在x轴上的截距等于在y轴上截距的2倍的直线方程.解析:(1)设所求直线的斜率为k,依题意k=-4×13=-43.又直线经过点A(1,3),因此所求直线方程为y-3=-43(x-1),即4x+3y-13=0.(2)当直线不过原点时,设所求直线方程为x2a+ya=1,将(-5,2)代入所设方程,解得a=-12,此时,直线方程为x+2y+1=0.当直线过原点时,斜率k=-25,直线方程为y=-25x,即2x+5y=0,综上可知,所求直线方程为x+2y+1=0或2x+5y=0.考向三直线方程的应用为了绿化城市,拟在矩形区域ABCD内建一个矩形草坪(如图),另外△EFA内部有一文物保护区不能占用,经测量AB=100m,BC=80m,AE=30m,AF=20m,应如何设计才能使草坪面积最大?【审题视点】首先明确题目的要求,借助直线方程解决,需要建立直角坐标系,然后设出参数进行求解.【典例精讲】如图所示,建立平面直角坐标系,则E(30,0)、F(0,20),∴直线EF的方程为x30+y20=1(0≤x≤30).易知当矩形草坪的一个顶点在EF上时,可取最大值,在线段EF上取点P(m,n),作PQ⊥BC于点Q,PR⊥CD于点R,设矩形PQCR的面积为S,则S=|PQ|•|PR|=(100-m)(80-n).又m30+n20=1(0≤m≤30),∴n=20-23m.∴S=(100-m)80-20+23m=-23(m-5)2+180503(0≤m≤30).。

2015届高三文科解析几何综合测试题

2015届高三文科解析几何综合测试题

2015届高三文科解析几何综合测试题(时间:120分钟 满分:150分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知圆O 的方程是x 2+y 2-8x -2y +10=0,过点M (3,0)的最短弦所在的直线方程是( )A .x +y -3=0B .x -y -3=0C .2x -y -6=0D .2x +y -6=0 2.过点(-1,3)且平行于直线x -2y +3=0的直线方程为( )A .x -2y +7=0B .2x +y -1=0C .x -2y -5=0D .2x +y -5=03.曲线y =2x -x 3在横坐标为-1的点处的切线为l ,则点P (3,2)到直线l 的距离为( )A.722B.922C.1122D.910104.若曲线x 2+y 2+2x -6y +1=0上相异两点P 、Q 关于直线kx +2y -4=0对称,则k 的值为( )A .1B .-1 C.12 D .25.直线ax -y +2a =0(a ≥0)与圆x 2+y 2=9的位置关系是( )A .相离B .相交C .相切D .不确定6.设A 为圆(x +1)2+y 2=4上的动点,PA 是圆的切线,且|PA |=1,则P 点的轨迹方程为( )A .(x +1)2+y 2=25B .(x +1)2+y 2=5C .x 2+(y +1)2=25D .(x -1)2+y 2=57.(2011·济宁一中高三模拟)双曲线mx 2+y 2=1的虚轴长是实轴长的2倍,则m 等于( )A .- 14B .-4C .4 D.148.点P 是双曲线x 24-y 2=1的右支上一点,M 、N 分别是(x +5)2+y 2=1和(x -5)2+y 2=1上的点,则|PM |-|PN |的最大值是( )A .2B .4C .6D .89.已知F 1、F 2是两个定点,点P 是以F 1和F 2为公共焦点的椭圆和双曲线的一个交点,并且PF 1⊥PF 2,e 1和e 2分别是上述椭圆和双曲线的离心率,则( )A.1e 21+1e 22=4 B .e 21+e 22=4 C.1e 21+1e 22=2 D .e 21+e 22=210.已知双曲线x 2a 2-y 2b2=1的两条渐近线互相垂直,则双曲线的离心率为( )A. 3B. 2C.52 D.2211.若双曲线x 2a 2-y 2b2=1(a >0,b >0)的焦点到渐近线的距离等于实轴长,则双曲线的离心率为( )A. 2B. 3C. 5 D .212.(2011·济南质量调研)已知点F 1、F 2分别是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,过点F 1且垂直于x 轴的直线与双曲线交于A ,B 两点,若△ABF 2是锐角三角形,则该双曲线离心率的取值范围是( )A .(1,3)B .(3,22)C .(1+2,+∞)D .(1,1+2)二、填空题:本大题共4小题,每小题4分,共16分,将答案填在题中的横线上.13.(2011·安徽“江南十校”联考)设F 1、F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上任一点,点M 的坐标为(6,4),则|PM |+|PF 1|的最大值为________.14.(2011·潍坊市高考适应性训练)已知双曲线的中心在坐标原点,焦点在x 轴上,且一条渐近线为直线3x +y =0,则该双曲线的离心率等于________. 15.(2011·潍坊模拟)双曲线x 23-y 26=1的右焦点到渐近线的距离是________.16.(2011·郑州市质量预测)设抛物线x 2=4y 的焦点为F ,经过点P (1,4)的直线l 与抛物线相交于A 、B两点,且点P 恰为AB 的中点,则|AF →|+|BF →|=________.三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)如图,设P 是圆x 2+y 2=25上的动点,点D 是P 在x 轴上的投影,M 为PD 上一点,且|MD |=45|PD |.(1)当P 在圆上运动时,求点M 的轨迹C 的方程;(2)求过点(3,0)且斜率为45的直线被C 所截线段的长度.18.(本小题满分12分)(2011·广东)设圆C 与两圆(x +5)2+y 2=4,(x -5)2+y 2=4中的一个内切,另一个外切.(1)求圆C 的圆心轨迹L 的方程;(2)已知点M ⎝ ⎛⎭⎪⎫355,455,F (5,0)且P 为L 上动点,求||MP |-|FP ||的最大值及此时点P 的坐标.19.(本小题满分12分)(2011·安徽)设λ>0,点A 的坐标为(1,1),点B 在抛物线y =x 2上运动,点Q 满足BQ →=λQA →,经过点Q 与x 轴垂直的直线交抛物线于点M ,点P 满足QM →=λMP →,求点P 的轨迹方程.20.(本小题满分12分) (2011·天津)在平面直角坐标系xOy 中,点P (a ,b )(a >b >0)为动点,F 1、F 2分别为椭圆x 2a 2+y 2b2=1的左、右焦点.已知△F 1PF 2为等腰三角形.(1)求椭圆的离心率e .(2)设直线PF 2与椭圆相交于A ,B 两点,M 是直线PF 2上的点,满足AM →·BM →=-2,求点M 的轨迹方程.21.(本小题满分12分)(2011·山东)已知动直线l 与椭圆C :x 23+y 22=1交于P (x 1,y 1),Q (x 2,y 2)两不同点,且△OPQ 的面积S △OPQ =62,其中O 为坐标原点. (1)证明x 21+x 22和y 21+y 22均为定值;(2)设线段PQ 的中点为M ,求|OM |·|PQ |的最大值; (3)椭圆C 上是否存在三点D ,E ,G ,使得S △ODE =S △ODG =S △OEG =62?若存在,判断△DEG 的形状;若不存在,请说明理由.22.(本小题满分14分)(2011·江苏)如图,在平面直角坐标系xOy 中,M 、N 分别是椭圆x 24+y 22=1的顶点,过坐标原点的直线交椭圆于P ,A 两点,其中点P 在第一象限,过P 作x 轴的垂线,垂足为C ,连接AC ,并延长交椭圆于点B ,设直线PA 的斜率为k .(1)若直线PA 平分线段MN ,求k 的值;(2)当k =2时,求点P 到直线AB 的距离d ; (3)对任意的k>0,求证:PA ⊥PB.2015届高三文科解析几何综合测试题参考答案1解析:x 2+y 2-8x -2y +10=0,即(x -4)2+(y -1)2=7,圆心O (4,1),设过点M (3,0)的直线为l ,2解析:因为直线x -2y +3=0的斜率是12,故所求直线的方程为y -3=12(x +1),即x -2y +7=0.答案:A3解析:曲线y =2x -x 3在横坐标为-1的点处的纵坐标为-1,故切点坐标为(-1,-1).切线斜率为k=y ′|x =-1=2-3×(-1)2=-1,故切线l 的方程为y -(-1)=-1×[x -(-1)],整理得x +y +2=0,由点到直线的距离公式得点P (3,2)到直线l 的距离为|3+2+2|12+12=722.答案:A 4解析:方程可化为(x +1)2+(y -3)2=9,由题设直线过圆心,即k ×(-1)+2×3-4=0,∴k =2.故选D.5解析:圆x 2+y 2=9的圆心为(0,0),半径为3.由点到直线的距离公式d =|Ax 0+By 0+C |A 2+B 2得该圆圆心(0,0)到直线ax -y +2a =0的距离d =2aa 2+-2=2aa 2+12,由基本不等式可以知道2a ≤a 2+12,从而d =2aa 2+12≤1<r =3,故直线ax -y +2a =0与圆x 2+y 2=9的位置关系是相交.答案:B6解析:设圆心为O ,则O (-1,0),在Rt △AOP 中,|OP |=|OA |2+|AP |2=4+1= 5.答案:B7解析:双曲线标准方程为:y 2-x 2-1m=1,由题意得-1m =4,∴m =-14.答案:A8解析:如图,当点P 、M 、N 在如图所示的位置时,|PM |-|PN |可取得最大值,注意到两圆圆心分别为双曲线两焦点,故|PM |-|PN |=(|PF 1|+|F 1M |)-(|PF 2|-|F 2N |)=|PF 1|-|PF 2|+|F 1M |+|F 2N |=2a +2R =6.答案:C9解析:设椭圆的长半轴长为a ,双曲线的实半轴长为m ,则⎩⎪⎨⎪⎧|PF 1|+|PF 2|=2a ①||PF 1|-|PF 2||=2m ②.①2+②2得2(|PF 1|2+|PF 2|2)=4a 2+4m 2,又|PF 1|2+|PF 2|2=4c 2,代入上式得4c 2=2a 2+2m 2,两边同除以2c 2,得2=1e 21+1e 22,故选C.答案:C10解析:两条渐近线y =± b a x 互相垂直,则-b 2a 2=-1,则b 2=a 2,离心率为e =c a =2a 2a=2,选B.11解析:焦点到渐近线的距离等于实轴长,可得b =2a ,e 2=c 2a 2=1+b 2a 2=5,所以e = 5.答案:C12解析:依题意得,0<∠AF 2F 1<π4,故0<tan ∠AF 2F 1<1,则b2a 2c =c 2-a 22ac <1,即e -1e<2,e 2-2e -1<0,(e -1)2<2,所以1<e <1+2,选D.答案:D13解析:由定义|PM |+|PF 1|=|PM |+2×5-|PF 2|,而|PM |-|PF 2|≤|MF 2|=5,所以|PM |+|PF 1|≤2×5+5=15.答案:1514解析:设双曲线方程为x 2a 2-y 2b 2=1,则b a =3,b 2a 2=3,c 2-a 2a 2=3,∴e =ca=2.答案:215解析:双曲线右焦点为(3,0),渐近线方程为:y =±2x ,则由点到直线的距离公式可得距离为 6.16解析:∵x 2=4y ,∴p =2.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2,y 1+y 2=8.∵|AF →|=y 1+p 2,|BF →|=y 2+p 2,∴|AF →|+|BF →|=y 1+y 2+p =8+2=10.答案:10 17解:(1)设M 的坐标为(x ,y ),P 的坐标为(x P ,y P ),由已知得⎩⎪⎨⎪⎧x P =x ,y P =54y ,∵P 在圆上,∴x 2+⎝ ⎛⎭⎪⎫54y 2=25,即点M 的轨迹C 的方程为x 225+y 216=1. (2)过点(3,0)且斜率为45的直线方程为y =45(x -3),设直线与C 的交点为A (x 1,y 1),B (x 2,y 2),将直线方程y =45(x -3)代入C 的方程,得x225+x -225=1,即x 2-3x -8=0.∴x 1=3-412,x 2=3+412. ∴线段AB 的长度为|AB |=x 1-x 22+y 1-y 22=⎝ ⎛⎭⎪⎫1+1625x 1-x 22=4125×41=415. 18解:(1)设动圆C 的圆心C (x ,y ),半径为r .两个定圆半径均为2,圆心分别为F 1(-5,0),F 2(5,0),且|F 1F 2|=2 5.若⊙C 与⊙F 1外切与⊙F 2内切,则 |CF 1|-|CF 2|=(r +2)-(r -2)=4 若⊙C 与⊙F 1内切与⊙F 2外切,则|CF 2|-|CF 1|=(r +2)-(r -2)=4.∴||CF 1|-|CF 2||=4且4<2 5.∴动点C 的轨迹是以F 1,F 2为焦点,实轴长为4的双曲线.这时a =2,c =5,b =c 2-a 2=1,焦点在x 轴上.∴点C 轨迹方程为x 24-y 2=1.(2)若P 在x 24-y 2=1的左支上,则||PM |-|PF ||<|MF |.若P 在x 24-y2=1的右支上,由图知,P 为射线MF 与双曲线右支的交点,||FM |-|PF ||max =|MF |= ⎝⎛⎭⎪⎫5-3552+⎝ ⎛⎭⎪⎫4552=2.直线MF :y =-2(x -5).由⎩⎪⎨⎪⎧y =-x -5x 24-y 2=1得15x 2-325x +84=0,解之得:⎩⎪⎨⎪⎧x 1=655y 1=-255,或⎩⎪⎨⎪⎧x 2=14515<5y 2=-58515舍,所以P 点坐标为⎝⎛⎭⎪⎫655,-255.19解:由QM →=λMP →知Q ,M ,P 三点在同一条垂直于x 轴的直线上,故可设P (x ,y ),Q (x ,y 0),M (x ,x 2),则x 2-y 0=λ(y -x 2),即y 0=(1+λ)x 2-λy . ①再设B (x 1,y 1),由BQ →=λQA →,即(x -x 1,y 0-y 1)=λ(1-x,1-y 0),解得 ⎩⎪⎨⎪⎧x 1=+λx -λ,y 1=+λy 0-λ. ② 将①式代入②式,消去y 0,得 ⎩⎪⎨⎪⎧x 1=+λx -λ,y 1=+λ2x 2-λ+λy -λ. ③ 又点B 在抛物线y =x 2上,所以y 1=x 21,再将③式代入y 1=x 21,得(1+λ)2x 2-λ(1+λ)y -λ=[(1+λ)x -λ]2.(1+λ)2x 2-λ(1+λ)y -λ=(1+λ)2x 2-2λ(1+λ)x +λ2. 2λ(1+λ)x -λ(1+λ)y -λ(1+λ)=0.因λ>0,两边同除以λ(1+λ),得2x -y -1=0.故所求点P 的轨迹方程为y =2x -1.20解:(1)设F 1(-c,0),F 2(c,0)(c >0),由题意,可得|PF 2|=|F 1F 2|,即a -c 2+b 2=2c ,整理得2⎝ ⎛⎭⎪⎫c a 2+c a-1=0,得c a =-1(舍)或c a =12,所以e =12.(2)由(1)知a =2c ,h =3c ,可得椭圆方程为3x 2+4y 2=12c 2.直线PF 2方程为y =3(x -c ).A ,B 两点的坐标满足方程组⎩⎨⎧3x 2+4y 2=12c 2,y =3x -c消去y 并整理,得5x 2-8cx =0,得x 1=0,x 2=85c ,得方程组的解⎩⎨⎧x 1=0,y 1=-3c ,⎩⎪⎨⎪⎧x 2=85c ,y 2=335c .不妨设A ⎝ ⎛⎭⎪⎫85c ,335c ,B (0,-3c ).设点M 的坐标为(x ,y ),则AM →=⎝ ⎛⎭⎪⎫x -85c ,y -335c ,BM →=(x ,y +3c ).由y =3(x -c ),得c =x -33y ,于是AM →=⎝⎛⎭⎪⎫8315y -35x ,85y -335x ,BM →=(x ,3x ),由AM →·BM →=-2,即⎝ ⎛⎭⎪⎫8315y -35x ·x +⎝ ⎛⎭⎪⎫85y -335x ·3x =-2,化简得18x 2-163xy -15=0.将y =18x 2-15163x 代入c =x -33y ,得c =10x 2+516x >0,所以x >0.因此,点M 的轨迹方程是18x 2-163xy -15=0(x >0).21解:(1)证明:①当直线l 的斜率不存在时,P ,Q 两点关于x 轴对称.所以x 2=x 1,y 2=-y 1,因为P (x 1,y 1)在椭圆上,因此x 213+y 212=1. ①又因为S △OPQ =62.所以|x 1|·|y 1|=62.②由①②得|x 1|=62,|y 1|=1,此时x 21+x 22=3,y 21+y 22=2. ②当直线l 的斜率存在时,设直线l 的方程为y =kx +m .由题意知m ≠0,将其代入x 23+y 22=1得(2+3k 2)x 2+6kmx +3(m 2-2)=0.其中Δ=36k 2m 2-12(2+3k 2)(m 2-2)>0.即3k 2+2>m 2. (*)又x 1+x 2=-6km 2+3k 2,x 1x 2=m 2-2+3k 2. 所以|PQ |=1+k 2·x 1+x 22-4x 1x 2=1+k 2·263k 2+2-m 22+3k2.因为点O 到l 的距离为d =|m |1+k2.所以S △OPQ =12|PQ |·d =121+k 2·263k 2+2-m 22+3k 2·|m |1+k2=6|m |3k 2+2-m 22+3k 2又S △OPQ =62. 整理得3k 2+2=2m 2,且符合(*)式.此时,x 21+x 22=(x 1+x 2)2-2x 1x 2=⎝ ⎛⎭⎪⎫-6km 2+3k 22-2×m 2-2+3k 2=3. y 21+y 22=23(3-x 21)+23(3-x 22)=4-23(x 21+x 22)=2.综上所述,x 21+x 22=3;y 21+y 22=2,结论成立.(2)解法一:①当l 的斜率不存在时.由(1)知|OM |=|x 1|=62.|PQ |=2|y 1|=2.因此|OM |·|PQ |=62×2= 6.②当直线l 的斜率存在时,由①:x 1+x 22=-3k 2m . y 1+y 22=k ⎝ ⎛⎭⎪⎫x 1+x 22+m =-3k 22m +m =-3k 2+2m 22m =1m . |OM |2=⎝ ⎛⎭⎪⎫x 1+x 222+⎝ ⎛⎭⎪⎫y 1+y 222=9k 24m 2+1m 2=6m 2-24m 2=12⎝ ⎛⎭⎪⎫3-1m 2. |PQ |2=(1+k 2)k 2+2-m 2+3k 22=m 2+m 2=2⎝ ⎛⎭⎪⎫2+1m 2. 所以|OM |2·|PQ |2=12×⎝ ⎛⎭⎪⎫3-1m 2×2×⎝ ⎛⎭⎪⎫2+1m 2=⎝ ⎛⎭⎪⎫3-1m 2⎝ ⎛⎭⎪⎫2+1m 2≤⎝⎛⎭⎪⎪⎫3-1m2+2+1m 222=254. 所以|OM |·|PQ |≤52,当且仅当m =±2时,等号成立.综合①②得|OM |·|PQ |的最大值为52.解法二:因为4|OM |2+|PQ |2=(x 1+x 2)2+(y 1+y 2)2+(x 2-x 1)2+(y 2-y 1)2=2[(x 21+x 22)-(y 21+y 22)]=10.所以2|OM |·|PQ |≤4|OM |2+|PQ |22=102=5.即|OM |·|PQ |≤52,当且仅当2|OM |=|PQ |=5时等号成立.因此|OM |·|PQ |的最大值为52.(3)椭圆C 上不存在三点D ,E ,G ,使得S △ODE =S △ODG =S △OEG =62. 证明:假设存在D (u ,v ),E (x 1,y 1),O (x 2,y 2)满足S △ODE =S △ODG =S △OEG =62, 由(1)得u 2+x 21=3,u 2+x 22=3,x 21+x 22=3,v 2+y 21=2,v 2+y 22=2,y 21+y 22=2,解得:u 2=x 21=x 22=32,v 2=y 21=y 22=1.因此,u ,x 1,x 2只能从±62中选取,v ,y 1,y 2只能从±1中选取,因此D 、E 、G 只能在⎝ ⎛⎭⎪⎫± 62,±1这四点中选取三个不同点,而这三点的两两连线中必有一条过原点.与S △ODE =S △ODG =S △OEG =62矛盾.所以椭圆C 上不存在满足条件的三点D ,E ,G .22解:(1)由题设知,a =2,b =2,故M (-2,0),N (0,-2),所以线段MN 中点的坐标为⎝ ⎛⎭⎪⎫-1,-22.由于直线PA 平分线段MN ,故直线PA 过线段MN 的中点,又直线PA 过坐标原点,所以k =-22-1=22.(2)直线PA 的方程为y =2x ,代入椭圆方程得x 24+4x 22=1,解得x =±23,因此P ⎝ ⎛⎭⎪⎫23,43,A ⎝ ⎛⎭⎪⎫-23,-43.于是C ⎝ ⎛⎭⎪⎫23,0,直线AC 的斜率为0+4323+23=1,故直线AB 的方程为x -y -23=0.因此,d =⎪⎪⎪⎪⎪⎪23-43-2312+12=223.(3)证法一:将直线PA 的方程y =kx 代入x 24+y 22=1,解得x =±21+2k 2记μ=21+2k2, 则P (μ,μk ),A (-μ,-μk ).于是C (μ,0).故直线AB 的斜率为0+μk μ+μ=k2,其方程为y =k2(x -μ),代入椭圆方程得(2+k 2)x 2-2μk 2x -μ2(3k 2+2)=0,解得x =μk 2+2+k 2或x =-μ.因此B ⎝⎛⎭⎪⎫μk 2+2+k 2,μk 32+k 2 .于是直线PB 的斜率k 1=μk32+k 2-μk μk 2+2+k2-μ=k 3-k +k 23k 2+2-+k 2=-1k.因此k 1k =-1,所以PA ⊥PB . 证法二:设P (x 1,y 1),B (x 2,y 2),则x 1>0,x 2>0,x 1≠x 2,A (-x 1,-y 1),C (x 1,0).设直线PB ,AB 的斜率分别为k 1,k 2.因为C 在直线AB 上,所以k 2=0--y 1x 1--x 1=y 12x 1=k2.从而k 1k +1=2k 1k 2+1=2·y 2-y 1x 2-x 1 · y 2--y 1x 2--x 1+1=2y 22-2y 21x 22-x 21+1=x 22+2y 22-x 21+2y 21x 22-x 21=4-4x 22-x 21=0. 因此k 1k =-1,所以PA ⊥PB .。

(完整)解析几何高考真题

(完整)解析几何高考真题
∴ = = .
【考点定位】双曲线的定义;直线与双曲线的位置关系;最值问题
【名师点睛】解决解析几何问题,先通过已知条件和几何性质确定圆锥曲线的方程,再通过方程研究直线与圆锥曲线的位置关系,解析几何中的计算比较复杂,解决此类问题的关键要熟记圆锥曲线的定义、标准方程、几何性质及直线与圆锥曲线位置关系的常见思路.
4.B
【解析】由抛物线 得准线 ,因为准线经过点 ,所以 ,
所以抛物线焦点坐标为 ,故答案选
【考点定位】抛物线方程和性质.
【名师点睛】1.本题考查抛物线方程和性质,采用待定系数法求出 的值.本题属于基础题,注意运算的准确性.2.给出抛物线方程要求我们能够找出焦点坐标和直线方程,往往这个是解题的关键.
23.【2015高考陕西,文20】如图,椭圆 经过点 ,且离心率为 .
(Ⅰ)求椭圆 的方程;
(Ⅱ)经过点 ,且斜率为 的直线与椭圆 交于不同两点 (均异于点 ),证明:直线 与 的斜率之和为2.
24.【2015高考四川,文20】如图,椭圆E: (a>b>0)的离心率是 ,点P(0,1)在短轴CD上,且 =-1
(Ⅰ)求椭圆 的离心率;
(Ⅱ)若 垂直于 轴,求直线 的斜率;
(Ⅲ)试判断直线 与直线 的位置关系,并说明理由.
19.【2015高考福建,文19】已知点 为抛物线 的焦点,点 在抛物线 上,且 .
(Ⅰ)求抛物线 的方程;
(Ⅱ)已知点 ,延长 交抛物线 于点 ,证明:以点 为圆心且与直线 相切的圆,必与直线 相切.
11.
【解析】设双曲线的左焦点为 ,由双曲线定义知, ,
∴△APF的周长为|PA|+|PF|+|AF|=|PA|+ +|AF|=|PA|+ +|AF|+ ,

【与名师对话】2015高考数学一轮复习解析几何质量检测文(含解析)新人教a版

【与名师对话】2015高考数学一轮复习解析几何质量检测文(含解析)新人教a版

测试内容:解析几何时间:90分钟 分值:120分一、选择题(本大题共10小题,每小题5分,共50分) 1.过两点(-1,1)和(0,3)的直线在x 轴上的截距为( ) A .-32B.32 C .3D .-3解析:由两点式,得y -31-3=x -0-1-0,即2x -y +3=0,令y =0,得x =-32,即在x 轴上的截距为-32.答案:A2.到直线3x -4y +1=0的距离为3且与此直线平行的直线方程是( ) A .3x -4y +4=0B .3x -4y +4=0或3x -4y -2=0C .3x -4y +16=0D .3x -4y +16=0或3x -4y -14=0 解析:设所求直线方程为3x -4y +m =0. 由|m -1|5=3,解得m =16,或m =-14. 即所求直线方程为3x -4y +16=0或3x -4y -14=0 答案:D3.若椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,则双曲线x 2a 2-y 2b2=1的渐近线方程为( )A .y =±12xB .y =±2xC .y =±4xD .y =±14x解析:由题意a 2-b 2a =32,所以a 2=4b 2.故双曲线的方程可化为x 24b 2-y 2b2=1,故其渐近线方程为y =±12x .答案:A4.双曲线mx 2+y 2=1的虚轴长是实轴长的2倍,则m 等于( ) A .-14B .-4C .4D.14解析:双曲线方程化为标准形式:y 2-x 2-1m=1则有:a 2=1,b 2=-1m,∴2a =2,2b =2-1m,∴2×2=2 -1m ,∴m =-14. 答案:A5.过点A (0,3),被圆(x -1)2+y 2=4截得的弦长为23的直线的方程是( ) A .y =-43x +3B .x =0或y =-43x +3C .x =0或y =43x +3D .x =0解析:当过点A (0,3)且斜率不存在的直线与圆的相交弦长为23,此时,弦所在直线方程为x =0;当弦所在的直线斜率存在时,设弦所在直线l 的方程为y =kx +3,即kx -y +3=0. 因为弦长为23,圆的半径为2,所以弦心距为22-32=1,由点到直线距离公式得|k +3|k 2+-2=1,解得k =-43.综上,所求直线方程为x =0或y =-43x +3.答案:B6.如果实数x 、y 满足(x -2)2+y 2=3,那么y x的最大值( ) A.12 B.33C.22D. 3解析:设y x=k ,则得直线l :kx -y =0,∴圆心(2,0)到直线l 的距离d =|2k -0|k 2+1≤ 3解得-3≤k ≤ 3,∴k max =3,故选D.答案:D7(2013·江西六校联考)已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是( )A.355 B .2 C.115D .3解析:由抛物线定义知动点P 到l 2的距离与到焦点F 的距离相等,故将问题转化成焦点F (1,0)到直线l 1的距离即可.d =|4×1-3×0+6|32+42=2,故选B. 答案:B8.(2012·课标全国卷)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB |=43,则C 的实轴长为( )A. 2 B .2 2 C .4 D .8解析:设双曲线的方程为x 2a 2-y 2a 2=1,抛物线的准线为x =-4,且|AB |=43,故可得A (-4,23),B (-4,-23),将点A 坐标代入双曲线方程得a 2=4,故a =2,故实轴长为4.答案:C9.(2013·大纲卷)椭圆C :x 24+y 23=1的左、右顶点分别为A 1、A 2,点P 在C 上且直线PA 2斜率的取值范围是[-2,-1],那么直线PA 1斜率的取值范围是( )A.⎣⎢⎡⎦⎥⎤12,34B.⎣⎢⎡⎦⎥⎤38,34C.⎣⎢⎡⎦⎥⎤12,1D.⎣⎢⎡⎦⎥⎤34,1 解析:由题意知点P 在第一象限,设P 点横坐标为x ,则纵坐标为y =32×4-x 2,由PA 2的斜率得:1≤32× 2+x 2-x ≤2,即23≤ 2+x 2-x ≤43,PA 1的斜率为32× 2-x2+x,所以PA 1的斜率取值范围为⎣⎢⎡⎦⎥⎤38,34.故选B.答案:B10.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP →的最大值为( )A .2B .3C .6D .8解析:由椭圆x 24+y 23=1可得点F (-1,0),点O (0,0),设P (x ,y ),-2≤x ≤2,则OP →· FP→=x 2+x +y 2=x 2+x +3⎝ ⎛⎭⎪⎫1-x 24=14x 2+x +3=14(x +2)2+2,当且仅当x =2时,OP →·FP →取得最大值6.答案:C二、填空题(本大题共4小题,每小题5分,共20分)11.“直线ax +2y +1=0和直线3x +(a -1)y +1=0平行”的充要条件是“a =________”.解析:由⎩⎪⎨⎪⎧aa --2×3=0,a -,得a =-2,∴两直线平行的充要条件是“a =-2”. 答案:-212.(2012·江苏卷)在平面直角坐标系xOy 中,若双曲线x 2m -y 2m 2+4=1的离心率为5,则m 的值为________.解析:根据双曲线方程的结构形式可知,此双曲线的焦点在x 轴上,且a 2=m ,b 2=m 2+4,故c 2=m 2+m +4,于是e 2=c 2a 2=m 2+m +4m=(5)2,解得m =2,经检验符合题意.答案:213.(2013·温州市高三第二次适应性测试)已知F 1,F 2分别是双曲线x 2-y 2b2=1的左、右焦点,A 是双曲线上在第一象限内的点,若|AF 2|=2且∠F 1AF 2=45°,延长AF 2交双曲线右支于点B ,则△F 1AB 的面积等于________.解析:如图,根据双曲线的定义知|AF 1|-|AF 2|=2, 又|AF 2|=2,∴|AF 1|=4. 又|BF 1|-|BF 2|=2, 得|BF 1|=|AB |.∴△F 1AB 是等腰直角三角形,其中∠ABF 1=90°. ∴|AB |=|BF 1|=22, ∴S △F 1AB =12×22×22=4.答案:414.(2013·山东泰安第二次模拟)过抛物线y 2=4x 的焦点F 的直线交抛物线于A ,B 两点,点O 是坐标原点,则|AF |·|BF |的最小值是________.解析:当直线斜率不存在时|AF |·|BF |=4 当直线斜率存在时,设y =k (x -1)与y 2=4x联立得k 2x 2-(2k 2+4)x +k 2=0,∴x 1+x 2=2+4k2,x 1x 2=1|AF ||BF |=(x 1+1)(x 2+1)=x 1x 2+(x 1+x 2)+1=2+4k 2+2=4+4k2>4∴最小值为4. 答案:4三、解答题(本大题共4小题,共50分.解答应写出文字说明,证明过程或演算步骤.) 15.(满分12分)求经过7x +8y =38及3x -2y =0的交点且在两坐标轴上截得的截距相等的直线方程.解:设所求直线为7x +8y -38+λ(3x -2y )=0, 即(7+3λ)x +(8-2λ)y -38=0, 令x =0,y =388-2λ,令y =0,x =387+3λ,由已知,388-2λ=387+3λ,∴λ=15,即所求直线方程为x +y -5=0.又直线方程不含直线3x -2y =0,而当直线过原点时,在两轴上的截距也相等,故3x -2y =0亦为所求.16.(满分12分)设圆上的点A (2,3)关于直线x +2y =0的对称点仍在圆上,且与直线x -y +1=0相交的弦长为22,求圆的方程.解:设所求圆的圆心为(a ,b ),半径为r ,∵点A (2,3)关于直线x +2y =0的对称点A ′仍在这个圆上, ∴圆心(a ,b )在直线x +2y =0上, ∴a +2b =0,① (2-a )2+(3-b )2=r 2②又直线x -y +1=0截圆所得的弦长为22, ∴r 2-(a -b +12)2=(2)2③解由方程①、②、③组成的方程组得:⎩⎪⎨⎪⎧b =-3,a =6,r 2=52.或⎩⎪⎨⎪⎧b =-7,a =14,r 2=244,∴所求圆的方程为(x -6)2+(y +3)2=52或(x -14)2+(y +7)2=244.17.(满分12分)(2013·福建卷)如图,抛物线E :y 2=4x 的焦点为F ,准线l 与x 轴的交点为A .点C 在抛物线E 上,以C 为圆心,|CO |为半径作圆,设圆C 与准线l 交于不同的两点M ,N .(1)若点C 的纵坐标为2,求|MN |; (2)若|AF |2=|AM |·|AN |,求圆C 的半径. 解:(1)抛物线y 2=4x 的准线l 的方程为x =-1. 由点C 的纵坐标为2,得点C 的坐标为(1,2), 所以点C 到准线l 的距离d =2,又|CO |=5, 所以|MN |=2|CO |2-d 2=25-4=2.(2)设C ⎝ ⎛⎭⎪⎫y 204,y 0,则圆C 的方程为⎝ ⎛⎭⎪⎫x -y 2042+(y -y 0)2=y 4016+y 20,即x 2-y 202x +y 2-2y 0y =0.由x =-1,得y 2-2y 0y +1+y 202=0,设M (-1,y 1),N (-1,y 2),则⎩⎪⎨⎪⎧Δ=4y 2-4⎝ ⎛⎭⎪⎫1+y 202=2y 20-4>0,y 1y 2=y 22+1.由|AF |2=|AM |·|AN |,得|y 1y 2|=4, 所以y 202+1=4,解得y 0=±6,此时Δ>0.所以圆心C 的坐标为⎝ ⎛⎭⎪⎫32,6或⎝ ⎛⎭⎪⎫32,-6,从而|OC |2=334,|CO |=332,即圆C 的半径为332.18.(满分14分)(2013·天津五区县高三质量调查(一))已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的长轴长是短轴长的两倍,且过点C (2,1),点C 关于原点O 的对称点为点D .(1)求椭圆E 的方程;(2)点P 在椭圆E 上,直线CP 和DP 的斜率都存在且不为0,试问直线CP 和DP 的斜率之积是否为定值?若是,求此定值;若不是,请说明理由;(3)平行于CD 的直线l 交椭圆E 于M ,N 两点,求△CMN 面积的最大值,并求此时直线l 的方程.解:(1)∵2a =2·2b ,∴a =2b , 椭圆E 过点C (2,1),代入椭圆方程得 224b 2+1b2=1,∴b =2,a =22, 所求椭圆E 的方程为x 28+y 22=1.(2)依题意得D (-2,-1)在椭圆E 上,CP 和DP 的斜率K CP 和K DP 均存在,设P (x ,y )则K CP =y -1x -2,K DP =y +1x +2, K CP ×K DP =y -1x -2×y +1x +2=y 2-1x 2-4,又∵点P 在椭圆E 上,∴x 28+y 22=1,∴x 2=8-4y 2.∴x 2=8-4y 2代入K CP ×K DP =y 2-1x 2-4=-14.所以CP 和DP 的斜率K CP 和K DP 之积为定值-14.(3)CD 的斜率为12,∵CD 平行于直线l ,∴设直线l 方程为y =12x +t ,由⎩⎪⎨⎪⎧y =12x +t x 28+y 22=1消去y ,整理得x 2+2tx +(2t 2-4)=0. 设M (x 1,y 1),N (x 2,y 2), 由⎩⎪⎨⎪⎧Δ=4t 2-t 2-=-t2x 1+x 2=-2t x 1·x 2=2t 2-4,|MN |=x 1-x 22+y 1-y 22=1+⎝ ⎛⎭⎪⎫122|x 1-x 2|= 54-t 2(-2<t <2), d =|t |1+14=2|t |5, S =12|MN |·d =12·54-t 2·2|t |5 =|t |·4-t 2=t2-t2≤42=2. 当且仅当t 2=4-t 2时取等号,即t 2=2时取等号. 所以△MNC 面积的最大值为2. 此时直线l 的方程y =12x ± 2.。

【高考题型强练】(人教A版,文科)2015届第一轮大练习复习:压轴 平面解析几何(典型题+详解)

【高考题型强练】(人教A版,文科)2015届第一轮大练习复习:压轴 平面解析几何(典型题+详解)

所以当半径 r=4 时,圆上有 1 个点到直线 4x-3y-2=0 的距离等于 1,当半径 r=6 时, 圆上有 3 个点到直线 4x-3y-2=0 的距离等于 1, 所以圆上有且只有两个点到直线 4x-3y-2=0 的距离等于 1 时,4<r<6. x2 y2 3.已知双曲线 2- 2=1 (a>0,b>0)与抛物线 y2=8x 有一个公共的焦点 F,且两曲线的一个交 a b 点为 P,若|PF|=5,则双曲线的渐近线方程为 A.y=± 3x 答案 A 3 B.y=± x 3 C.y=± 2x 2 D.y=± x 2 ( )
2 2
2பைடு நூலகம்
2
( x B.y2- =1 4 y2 x2 D. - =1 3 2
2
)
答案 A
|PF2| 解析 由题意可知,∠F1PF2 是直角,且 tan∠PF1F2=2,∴ |PF1| =2,又|PF1|+|PF2|=2a,∴|PF1|= 2a 4a ,|PF2|= . 3 3
2a2 4a2 2 根据勾股定理得 3 + 3 =(2c) , c 5 所以离心率 e= = . a 3 二、填空题 6. 如果 x2 y2 + =- 1 表示焦点在 y 轴上的双曲线,那么它的半焦距 c 的取值范围是 k-2 1-k
D.(1, 3)
答案 C π π π π π π π 解析 直线 l1 的倾斜角为 ,依题意 l2 的倾斜角的取值范围为 4-12,4∪4,4+12,即 4
π,π∪π,π,从而 l2 的斜率 a 的取值范围为 3,1∪(1, 3). 6 4 4 3 3
2.若圆(x-3)2+(y+5)2=r2 上有且只有两个点到直线 4x-3y-2=0 的距离等于 1,则半径 r 的取值范围是 A.(4,6) 答案 A 解析 因为圆心(3,-5)到直线 4x-3y-2=0 的距离为 |4×3-3×-5-2| =5, 42+32 B.[4,6) C.(4,6] D.[4,6] ( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年高三数学(文科)一轮复习《解析几何》测试题一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.圆1)3()1(22=++-y x 的切线方程中有一个是 ( )A .x -y =0B .x +y =0C .x =0D .y =02.若抛物线22y px =的焦点与椭圆22162x y +=的右焦点重合,则p 的值为 ( )A .2-B .2C .4-D .43.若直线220(,0)ax by a b +-=>始终平分圆224280x y x y +---=的周长,则12a b+ 的最小值为( )A .1B .5C .42D .322+4.设圆222(3)(5)(0)x y r r -++=>上有且仅有两个点到直线4320x y --=的距离等于1,则圆半径r 的取值范围是( )A .35r <<B .46r <<C .4r >D .5r >5.已知2{(,)|9,0}M x y y x y ==-≠,{(,)|}N x y y x b ==+,若MN ≠∅,则b ∈( )A .[32,32]-B .(32,32)-C .(3,32]-D .[3,32]-6.如果方程221x y p q+=-表示曲线,则下列椭圆中与该双曲线共焦点的是( )A .2212x y q p q +=+B . 2212x y q p p+=-+C .2212x y p q q+=+ D . 2212x y p q q+=-+7.曲线221(6)106x y m m m+=<--与曲线221(59)59x y m m m +=<<--的 ( ) A .焦距相等 B .离心率相等 C .焦点相同 D .准线相同8.双曲线221mx y +=的虚轴长是实轴长的2倍,则m = ( )A .14-B .4-C .4D .149.一束光线从点(1,1)A -出发,经x 轴反射到圆22:(2)(3)1C x y -+-=上的最短路径是( )A .4B .5C .321-D .2610.抛物线2y x =-上的点到直线4380x y +-=距离的最小值是 ( )A .43B .75C .85D .3二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)11.已知直线1:sin 10l x y θ+-=,2:2sin 10l x y θ++=,若12//l l ,则θ=12.若圆2221:240C x y mx m +-+-=与圆2222:24480C x y x my m ++-+-=相交,则m 的取值范围是 .13.椭圆221123x y +=的两个焦点为12,F F ,点P 在椭圆上.如果线段1PF 的中点在y 轴上,那么1||PF 是2||PF 的______________倍.14.要建造一座跨度为16米,拱高为4米的抛物线拱桥,建桥时,每隔4米用一根柱支撑,两边的柱长应为____________.15.已知两点(5,0),(5,0)M N -,给出下列直线方程:①530x y -=;②53520x y --=;③40x y --=.则在直线上存在点P 满足||||6MP PN =+的所有直线方程是_______.(只填序号)三、解答题(本大题共6小题, 共75分,解答应写出文字说明,证明过程或演算步骤)16.(本小题满分12分)已知ABC ∆的顶点A 为(3,-1),AB 边上的中线所在直线方程为610590x y +-=,B ∠的平分线所在直线方程为4100x y -+=,求BC 边所在直线的方程.17.(本小题满分12分)设圆满足:①截y 轴所得弦长为2;②被x 轴分成两段圆弧,其弧长之比为3:1;③圆心到直线:20l x y -=的距离为55,求该圆的方程. 18.(本小题满分12分)已知三点P (5,2)、1F (-6,0)、2F (6,0)。

(1)求以1F 、2F 为焦点且过点P 的椭圆的标准方程;(2)设点P 、1F 、2F 关于直线y =x 的对称点分别为P '、'1F 、'2F ,求以'1F 、'2F 为焦点且过点P '的双曲线的标准方程.19.(本小题满分12分)已知椭圆的中心在原点,离心率为12,一个焦点是(,0)F m -(m 为大于0的常数).(1)求椭圆的方程;(2)设Q 是椭圆上一点,且过点,F Q 的直线l 与y 轴交于点M ,若||2||MQ QF =,求直线l 的斜率.20.(本小题满分13分)已知抛物线28y x =,是否存在过点(1,1)Q 的弦AB ,使AB 恰被Q 平分.若存在,请求AB 所在直线的方程;若不存在,请说明理由.21.(本小题满分14分)设,x y R ∈,,i j 为直角坐标平面内,x y 轴正方向上的单位向量,若向量(2)a xi y j =++,(2)b xi y j =+-,且||||8a b +=. (1)求点(,)M x y 的轨迹C 的方程;(2)过点(0,3)作直线l 与曲线C 交于,A B 两点,设OP OA OB =+,是否存在这样的直线l ,使得四边形OAPB 是矩形?若存在,求出直线l 的方程;若不存在,试说明理由.4l答案与解析1.C .圆心为(1,3-),半径为1,故此圆必与y 轴(x =0)相切,选C.2.D . 椭圆22162x y +=的右焦点为(2,0),所以抛物线22y px =的焦点为(2,0),则4p =,故选D .3.D .已知直线过已知圆的圆心(2,1),即1a b +=.所以12122()()3322b aa b a b a b a b+=++=++≥+. 4.B .注意到圆心(3,5)C -到已知直线的距离为22|433(5)21|54(3)⨯-⨯--=+-,结合图形可知有两个极端情形:其一是如图7-28所示的小圆,半径为4;其二是如图7-28所示的大圆,其半径为6,故46r <<.5.C .数形结合法,注意29,0y x y =-≠等价于229(0)x y y +=>.6.D .由题意知,0pq >.若0,0p q >>,则双曲线的焦点在y 轴上,而在选择支A,C 中,椭圆的焦点都在x 轴上,而选择支B,D 不表示椭圆;若0,0p q <<,选择支A,C 不表示椭圆,双曲线的半焦距平方2c p q =--,双曲线的焦点在x 轴上,选择支D 的方程符合题意.7.A .由221(6)106x y m m m+=<--知该方程表示焦点在x 轴上的椭圆,由221(59)59x y m m m+=<<--知该方程表示焦点在y 轴上的双曲线,故只能选择答案A . 8.A . 一看带参,马上戒备:有没有说哪个轴是实轴?没说,至少没有明说。

分析一下,因为等号后为常数“+”,所以等号前为系数为“+”的对应实轴。

y 2的系数为“+”,所以这个双曲线是“立”着的。

接下来排除C 、D 两过于扯淡的选项 —— 既然说是双曲线,“x 2”与“y 2”的系数的符号就不能相同.在接下来是一个“坑儿”:双曲线的标准形式是22221x y a b -=或22221y x a b -=(,0a b >),题目中的双曲线方程并不是标准形式,所以要变一下形儿,变成2211/||x y m -+=。

由题意,半虚轴长的平方:半实轴长的平方 = 4.即1:14||m =,所以14m =-。

选A .当然,我们也可以不算,只利用半虚轴比半实轴长即可直接把答案A 圈出来9.A .先作出已知圆C 关于x 轴对称的圆'C ,问题转化为求点A 到圆'C 上的点的最短路径,即|'|14AC -=.10.A .抛物线上任意一点(t ,2t -)到直线的距离22|438||348|55t t t t d ---+==.因为244380-⨯⨯<,所以23480t t -+>恒成立.从而有()213485d t t =-+,2min 1438445433d ⨯⨯-=⨯=⨯.选A . 10.A .抛物线上任意一点(t ,2t -)到直线的距离22|438||348|55t t t t d ---+==.因为244380-⨯⨯<,所以23480t t -+>恒成立.从而有()213485d t t =-+,2min1438445433d ⨯⨯-=⨯=⨯.选A .11.()4k k Z ππ±∈.sin 0θ=时不合题意;sin 0θ≠时由21122sin sin sin sin 224k πθθθθπθ-=-⇒=⇒=±⇒=±, 这时11sin θ≠-. 12.122(,)(0,2)55--.由R r d R r -<<+解之得.13.13.7倍. 由已知椭圆的方程得1223,3,3,(3,0),(3,0)a b c F F ===-.由于焦点12F F 和关于y 轴对称,所以2PF 必垂直于x 轴.所以222133373(3,),||,||(33)()2222P PF PF ==++=,所以21||7||PF PF =.14.1米. 由题意知,设抛物线的方程为22(0)x py p =->,又抛物线的跨度为16,拱高为4,所以点(8,-4)为抛物线上的点,所以8p =.即抛物线方程为216x y =-.所以当4x =时,1y =-,所以柱子的高度为1米.15.②③. 由||||6MP PN -=可知点P 在双曲线221916x y -=的右支上,故只要判断直线与双曲线右支的交点个数.因为双曲线的渐近线方程为43y x =±,直线①过原点且斜率5433>,所以直线①与双曲线无交点;直线②与直线①平行,且在y 轴上的截距为523-故与双曲线的右支有两个交点;直线③的斜率413<,故与双曲线的右支有一个交点.16.设11(410,)B y y -,由AB 中点在610590x y +-=上,可得:0592110274611=--⋅+-⋅y y ,y 1 = 5,所以(10,5)B . 设A 点关于4100x y -+=的对称点为'(',')A x y ,则有)7,1(14131********A x y y x '⇒⎪⎪⎩⎪⎪⎨⎧-=⋅-'+'=+-'⋅-+'.故:29650BC x y +-=. 17.设圆心为(,)a b ,半径为r ,由条件①:221r a =+,由条件②:222r b =,从而有:2221b a -=.由条件③:|2|5|2|155a b a b -=⇒-=,解方程组2221|2|1b a a b ⎧-=⎨-=⎩可得:11a b =⎧⎨=⎩或11a b =-⎧⎨=-⎩,所以2222r b ==.故所求圆的方程是22(1)(1)2x y -+-=或22(1)(1)2x y +++=.18.(1)由题意,可设所求椭圆的标准方程为22a x +122=by )0(>>b a ,其半焦距6=c 。

相关文档
最新文档