2019年高考物理总复习(教科版)试题:第三章 牛顿运动定律 第2课时 牛顿第二定律 两类动力学问题含解析
2019年高考物理 试题分项解析 专题03 牛顿运动定律(第02期)
专题3 牛顿运动定律一.选择题1. (2019年1月云南昆明复习诊断测试)如图甲所示,一块质量为m A=2kg的木板A静止在水平地面上,一个质量为m B=1kg的滑块B静止在木板的左端,对B施加一向右的水平恒力F,一段时间后B从A右端滑出,A继续在地面上运动一段距离后停止,此过程中A的速度随时间变化的图像如图乙所示。
设最大静摩擦力等于滑动摩擦力,重力加速度取g=10m/s2。
则下列说法正确的是A.滑块与木板之间的动摩擦因数为0.6B.木板与地面之间的动摩擦因数为0.1C.F的大小可能为9ND.F的大小与板长L有关【参考答案】BD【命题意图】本题考查对速度----时间图像的理解、叠加体受力分析、牛顿运动定律和匀变速直线运动规律的运用。
【方法归纳】对于速度图像给出解题信息问题,从速度图像的斜率得出加速度,由速度图像面积得出位移。
对于叠加体问题,采用隔离法分析受力,利用牛顿运动定律列方程解答。
2. (2019广东惠州第三次调研)如图所示,足够长的传送带与水平面夹角为θ,以速度v0逆时针匀速转动,在传送带的上端轻轻放置一个质量为m的小木块,小木块与传送带间的动摩擦因数μ<tanθ,则图中能客观地反映小木块的速度随时间变化关系的是【参考答案】D【命题意图】本题考查传送带、牛顿运动定律、速度图像及其相关知识点。
【方法归纳】物体在倾斜传送带上运动,要注意当物体速度小于传送带速度时,滑动摩擦力是动力,大于传送带速度时,滑动摩擦力是阻力。
3.绰号“威龙”的第五代制空战机歼-20具备高隐身性、高机动性能力,为防止极速提速过程中飞行员因缺氧晕厥,歼-20新型的抗荷服能帮助飞行员承受最大9倍重力加速度。
假设某次垂直飞行测试实验中,歼-20加速达到50 m/s后离地,而后开始竖直向上飞行试验。
该飞机在10 s内匀加速到3 060 km/h,匀速飞行一段时间后到达最大飞行高度18.5 km。
假设加速阶段所受阻力恒定,约为重力的0.2。
高考物理易错题专题三物理牛顿运动定律(含解析)及解析
高考物理易错题专题三物理牛顿运动定律(含解析)及解析一、高中物理精讲专题测试牛顿运动定律1.利用弹簧弹射和传送带可以将工件运送至高处。
如图所示,传送带与水平方向成37度角,顺时针匀速运动的速度v =4m/s 。
B 、C 分别是传送带与两轮的切点,相距L =6.4m 。
倾角也是37︒的斜面固定于地面且与传送带上的B 点良好对接。
一原长小于斜面长的轻弹簧平行斜面放置,下端固定在斜面底端,上端放一质量m =1kg 的工件(可视为质点)。
用力将弹簧压缩至A 点后由静止释放,工件离开斜面顶端滑到B 点时速度v 0=8m/s ,A 、B 间的距离x =1m ,工件与斜面、传送带问的动摩擦因数相同,均为μ=0.5,工件到达C 点即为运送过程结束。
g 取10m/s 2,sin37°=0.6,cos37°=0.8,求:(1)弹簧压缩至A 点时的弹性势能;(2)工件沿传送带由B 点上滑到C 点所用的时间;(3)工件沿传送带由B 点上滑到C 点的过程中,工件和传送带间由于摩擦而产生的热量。
【答案】(1)42J,(2)2.4s,(3)19.2J【解析】【详解】(1)由能量守恒定律得,弹簧的最大弹性势能为:2P 01sin 37cos372E mgx mgx mv μ︒︒=++ 解得:E p =42J(2)工件在减速到与传送带速度相等的过程中,加速度为a 1,由牛顿第二定律得: 1sin 37cos37mg mg ma μ︒︒+=解得:a 1=10m/s 2 工件与传送带共速需要时间为:011v v t a -=解得:t 1=0.4s 工件滑行位移大小为:220112v v x a -= 解得:1 2.4x m L =<因为tan 37μ︒<,所以工件将沿传送带继续减速上滑,在继续上滑过程中加速度为a 2,则有:2sin 37cos37mg mg ma μ︒︒-=解得:a 2=2m/s 2假设工件速度减为0时,工件未从传送带上滑落,则运动时间为:22vt a = 解得:t 2=2s工件滑行位移大小为:2 3? 1n n n n n 解得:x 2=4m工件运动到C 点时速度恰好为零,故假设成立。
2019高考物理一轮复习学案:第三章牛顿运动定律 Word版含答案
第三章牛顿运动定律第1节牛顿第一定律__牛顿第三定律(1)牛顿第一定律是实验定律。
(×)(2)在水平面上运动的物体最终停下来,是因为水平方向没有外力维持其运动的结果。
(×)(3)运动的物体惯性大,静止的物体惯性小。
(×)(4)物体的惯性越大,运动状态越难改变。
(√)(5)作用力与反作用力可以作用在同一物体上。
(×)(6)作用力与反作用力的作用效果不能抵消。
(√)(1)伽利略利用“理想实验”得出“力是改变物体运动状态的原因”的观点,推翻了亚里士多德的“力是维持物体运动的原因”的错误观点。
(2)英国科学家牛顿在《自然哲学的数学原理》著作中提出了“牛顿第一、第二、第三定律”。
突破点(一) 牛顿第一定律的理解1.对牛顿第一定律的理解(1)提出惯性的概念:牛顿第一定律指出一切物体都具有惯性,惯性是物体的一种固有属性。
(2)揭示力的本质:力是改变物体运动状态的原因,而不是维持物体运动状态的原因。
2.惯性的两种表现形式(1)物体在不受外力或所受的合外力为零时,惯性表现为使物体保持原来的运动状态不变(静止或匀速直线运动)。
(2)物体受到外力时,惯性表现为抗拒运动状态改变的能力。
惯性大,物体的运动状态较难改变;惯性小,物体的运动状态容易改变。
3.与牛顿第二定律的对比牛顿第一定律是经过科学抽象、归纳推理总结出来的,而牛顿第二定律是一条实验定律。
[题点全练]1.(2018·三明检测)科学思维和科学方法是我们认识世界的基本手段。
在研究和解决问题的过程中,不仅需要相应的知识,还需要运用科学的方法。
理想实验有时更能深刻地反映自然规律,伽利略设想了一个理想实验,如图所示。
①两个对接的斜面,静止的小球沿一个斜面滚下,小球将滚上另一个斜面;②如果没有摩擦,小球将上升到原来释放的高度;③减小第二个斜面的倾角,小球在这个斜面上仍然会达到原来的高度;④继续减小第二个斜面的倾角,最后使它成为水平面,小球会沿水平面做持续的匀速运动。
2019版高考物理总复习第三章牛顿运动定律能力课1牛顿运动定律的综合应用学案
v- t 图线如图所示, 0~ 1 s 内位移为 x1= 6 m, C 项错误;
8+ 4
6+ 4
0~ 2 s 内物体总位移 x=x1+ x2= ( 2 ×1+ 2 ×1) m = 11 m, D 项正确。
答案 BD
[ 常考点 ] 动力学中的连接体问题 1. 连接体 多个相互关联的物体连接 ( 叠放、并排或由绳子、细杆联系 ) 在一起构成的物体系统称为连接 体。连接体一般具有相同的运动情况 ( 速度、加速度 ) 。 2. 解决连接体问题的两种方法
图6
A. μF C. m( g+ a)
1 B. 2m( g+ a)
3 D. 2m( g+ a)
解析 对 A、 B 整体,根据牛顿第二定律,有 2Ff - ( m+ 2m) g= ( m+ 2m) a;再隔离物体 A,根
1 据牛顿第二定律,有 Ff -mg- FfBA= ma。联立解得 FfBA= m( g+ a) ,选项 B 正确。
B. 物体的质量 m= 2 kg
C. 物体与斜面间的动摩擦因数 D. 物体与斜面间的动摩擦因数
3 μ= 3
73 μ= 15
解析 由开始运动 2 s 后物体以 2 m/s 的速度匀速运动,可知 0~ 2 s 内物体的加速度大小为
a= 1
m/s
2
;在
0~ 2 s
内对物体应用牛顿第二定律得,
F1+ mgsin 30 °- μmgcos 30 °= ma,
h 处。假设
弹跳高跷对演员的作用力类似于弹簧的弹力,演员和弹跳高跷始终在竖直方向运动,不考虑
空气阻力的影响,则该演员 (
)
图1 A. 在向下运动的过程中始终处于失重状态
B. 在向上运动的过程中始终处于超重状态
【三年高考两年模拟】2019年高考物理新课标一轮复习习题:第3章 第3讲 牛顿运动定律的综合应用(一)
第3讲牛顿运动定律的综合应用(一)A组基础题组1.如图所示,质量分别为m1、m2的两个物体通过轻弹簧连接,在力F的作用下一起沿水平方向做匀加速直线运动(m1在光滑地面上,m2在空中)。
已知力F与水平方向的夹角为θ。
则m1的加速度大小为( )A. B. C. D.2.(2014福建理综,15,6分)如图,滑块以初速度v0沿表面粗糙且足够长的固定斜面,从顶端下滑,直至速度为零。
对于该运动过程,若用h、s、v、a分别表示滑块的下降高度、位移、速度和加速度的大小,t表示时间,则下列图像最能正确描述这一运动规律的是( )3.(2016福建师大附中期中)一物体静止在水平面上,物体与水平面之间的滑动摩擦力为0.5 N(最大静摩擦力等于滑动摩擦力)。
现对物体施加一个大小变化、方向不变的水平拉力F,使物体在水平面上运动了3 s的时间。
为使物体在3 s时间内运动的位移最大,力F随时间变化情况应该为下面四个图中的哪一个(g取10 m/s2)( )4.(2015安徽合肥一模,6)如图所示,a、b两物体的质量分别为m1和m2,由轻质弹簧相连。
当用恒力F竖直向上拉着a,使a、b一起向上做匀加速直线运动时,弹簧伸长量为x1,加速度大小为a1;当用大小仍为F的恒力沿水平方向拉着a,使a、b一起沿光滑水平桌面做匀加速直线运动时,弹簧伸长量为x2,加速度大小为a2。
则有( )A.a1=a2,x1=x2B.a1<a2,x1=x2C.a1=a2,x1>x2D.a1<a2,x1>x25.如图所示,竖直放置在水平面上的轻质弹簧上叠放着两物块A、B,A、B的质量均为2 kg,它们处于静止状态,若突然将一个大小为10 N、方向竖直向下的力施加在物块A上,则此瞬间,A对B的压力大小为(g取10 m/s2)( )A.10 NB.20 NC.25 ND.30 N6.(多选)如图所示,在倾角θ=30°的光滑斜面上有两个用轻质弹簧相连接的物块A、B,它们的质量均为m,弹簧的劲度系数为k,C为一固定挡板,系统处于静止状态。
2025届高考物理一轮复习资料第三章牛顿运动定律第2讲牛顿第二定律的基本应用
第2讲牛顿第二定律的基本应用学习目标 1.会用牛顿第二定律分析计算物体的瞬时加速度。
2.掌握动力学两类基本问题的求解方法。
3.知道超重和失重现象,并会对相关的实际问题进行分析。
1.2.3.4.1.思考判断(1)已知物体受力情况,求解运动学物理量时,应先根据牛顿第二定律求解加速度。
(√)(2)运动物体的加速度可根据运动速度、位移、时间等信息求解,所以加速度由运动情况决定。
(×)(3)加速度大小等于g的物体一定处于完全失重状态。
(×)(4)减速上升的升降机内的物体,物体对地板的压力大于物体的重力。
(×)(5)加速上升的物体处于超重状态。
(√)(6)物体处于超重或失重状态时其重力并没有发生变化。
(√)(7)根据物体处于超重或失重状态,可以判断物体运动的速度方向。
(×)2.(2023·江苏卷,1)电梯上升过程中,某同学用智能手机记录了电梯速度随时间变化的关系,如图所示。
电梯加速上升的时段是()A.从20.0 s到30.0 sB.从30.0 s到40.0 sC.从40.0 s到50.0 sD.从50.0 s到60.0 s答案A考点一瞬时问题的两类模型两类模型例1 (多选)(2024·湖南邵阳模拟)如图1所示,两小球1和2之间用轻弹簧B相连,弹簧B与水平方向的夹角为30°,小球1的左上方用轻绳A悬挂在天花板上,绳A与竖直方向的夹角为30°,小球2的右边用轻绳C沿水平方向固定在竖直墙壁上。
两小球均处于静止状态。
已知重力加速度为g,则()图1A.球1和球2的质量之比为1∶2B.球1和球2的质量之比为2∶1C.在轻绳A突然断裂的瞬间,球1的加速度大小为3gD.在轻绳A突然断裂的瞬间,球2的加速度大小为2g答案BC解析对小球1、2受力分析如图甲、乙所示,根据平衡条件可得F B=m1g,F B sin30°=m2g,所以m1m2=21,故A错误,B正确;在轻绳A突然断裂的瞬间,弹簧弹力未来得及变化,球2的加速度大小为0,弹簧弹力F B=m1g,对球1,由牛顿第二定律有F合=2m1g cos 30°=m1a,解得a=3g,故C正确,D错误。
(浙江选考)版高考物理一轮复习 第三章 牛顿运动定律 第2节 牛顿第二定律 两类动力学问题达标检测(
第2节 牛顿第二定律 两类动力学问题1.(2019·4月浙江选考)如下物理量属于根本量且单位属于国际单位制中根本单位的是( )A .功/焦耳B .质量/千克C .电荷量/库仑D .力/牛顿解析:选B.质量是根本物理量,其国际单位制根本单位是千克,故B 正确;功、电荷量和力都是导出物理量,焦耳、库仑和牛顿均是导出单位.2.(多项选择)关于速度、加速度、合外力之间的关系,正确的答案是( )A .物体的速度越大,如此加速度越大,所受的合外力也越大B .物体的速度为零,如此加速度为零,所受的合外力也为零C .物体的速度为零,但加速度可能很大,所受的合外力也可能很大D .物体的速度很大,但加速度可能为零,所受的合外力也可能为零解析:选CD.物体的速度大小与加速度大小与所受合外力大小无关,故C 、D 正确,A 、B 错误.3.趣味运动会上运动员手持网球拍托球沿水平面匀加速跑,设球拍和球质量分别为M 、m ,球拍平面和水平面之间夹角为θ,球拍与球保持相对静止,它们间摩擦力与空气阻力不计,如此( )A .运动员的加速度为g tan θB .球拍对球的作用力为mgC .运动员对球拍的作用力为(M +m )g cos θD .假设加速度大于g sin θ,球一定沿球拍向上运动解析:选A.网球受力如图甲所示,根据牛顿第二定律得F N sinθ=ma ,又F N cos θ=mg ,解得a =g tan θ,F N =mgcos θ,故A 正确,B 错误;以球拍和球整体为研究对象,受力如图乙所示,根据平衡,运动员对球拍的作用力为F =〔M +m 〕g cos θ,故C 错误;当a >g tan θ时,网球才向上运动,由于g sin θ<g tan θ,故球不一定沿球拍向上运动,故D 错误.4.(2020·嘉兴检测)如下列图,某次滑雪训练,运动员站在水平雪道上第一次利用滑雪杖对雪面的作用获得水平推力F =84 N ,而从静止向前滑行,其作用时间为t 1=1.0 s ,撤除水平推力F 后经过t 2=2.0 s ,他第二次利用滑雪杖对雪面的作用获得同样的水平推力,作用距离与第一次一样.该运动员连同装备的总质量为m =60 kg ,在整个运动过程中受到的滑动摩擦力大小恒为F f =12 N ,求:(1)第一次利用滑雪杖对雪面作用获得的速度大小与这段时间内的位移;(2)该运动员(可视为质点)第二次撤除水平推力后滑行的最大距离.解析:(1)运动员利用滑雪杖获得的加速度为a 1=F -F f m =84-1260m/s 2=1.2 m/s 2 第一次利用滑雪杖对雪面作用获得的速度大小v 1=a 1t 1=1.2×1.0 m/s =1.2 m/s位移x 1=12a 1t 21=0.6 m. (2)运动员停止使用滑雪杖后,加速度大小为a 2=F f m经时间t 2速度变为v ′1=v 1-a 2t 2第二次利用滑雪杖获得的速度大小v 2,如此v 22-v ′21=2a 1x 1第二次撤除水平推力后滑行的最大距离 x 2=v 222a 2解得:x 2=5.2 m.答案:(1)1.2 m/s 0.6 m (2)5.2 m[课后达标]一、选择题1.(2018·4月浙江选考)用国际单位制的根本单位表示能量的单位,以下正确的答案是( )A .kg ·m 2/s 2B .kg ·m/s 2C .N/mD .N ·m 答案:A2.如下关于单位制的说法中,不正确的答案是( )A .根本单位和导出单位一起组成了单位制B .在国际单位制中,长度、质量、时间三个物理量被选作力学的根本物理量C .在国际单位制中,力学的三个根本单位分别是m 、kg 、sD .力的单位牛顿是国际单位制中的一个根本单位答案:D3.质量为1 t 的汽车在平直公路上以10 m/s 的速度匀速行驶,阻力大小不变.从某时刻开始,汽车牵引力减少2 000 N ,那么从该时刻起经过6 s ,汽车行驶的路程是( )A .50 mB .42 mC .25 mD .24 m答案:C4.(2020·浙江十校联考)如下列图,轻弹簧上端与一质量为m 的木块1相连,下端与另一质量为M 的木块2相连,整个系统置于水平放置的光滑木板上,处于静止状态.现将木板沿水平方向突然抽出,设抽出后的瞬间,木块1、2的加速度大小分别为a 1、a 2,重力加速度大小为g .如此有( )A .a 1=g ,a 2=gB .a 1=0,a 2=gC .a 1=0,a 2=m +M M g D .a 1=g ,a 2=m +M Mg 答案:C5.(2020·浙江猜题卷)有种台阶式自动扶梯,无人乘行时运转很慢,有人站上扶梯时,它会先慢慢加速,再匀速运转.一顾客乘扶梯上楼,正好经历了这两个过程,用G 、N 、f 表示乘客受到的重力、支持力和摩擦力,如此能正确反映该乘客在这两个过程中的受力示意图的是( )解析:选D.人和扶梯匀速运动时,人受到重力和支持力的作用,且二力平衡,不受摩擦力.人随台阶式自动扶梯加速运动时,加速度沿运动方向斜向上,台阶水平,摩擦力与接触面平行,故摩擦力是水平的.D 正确.6.(多项选择)如下列图,质量为m 的小球与弹簧Ⅰ和水平细绳Ⅱ相连,Ⅰ、Ⅱ的另一端分别固定于P 、Q 两点.小球静止时,Ⅰ中拉力的大小为F 1,Ⅱ中拉力的大小为F 2,当仅剪断Ⅰ、Ⅱ其中一根的瞬间,球的加速度a 应是( )A .假设剪断Ⅰ,如此a =g ,方向竖直向下B .假设剪断Ⅱ,如此a =F 2m ,方向水平向左C .假设剪断Ⅰ,如此a =F 1m,方向沿Ⅰ的延长线方向D .假设剪断Ⅱ,如此a =g ,方向竖直向上解析:选AB.没有剪断Ⅰ、Ⅱ时小球受力情况如下列图.在剪断Ⅰ的瞬间,由于小球的速度为0,绳Ⅱ上的力突变为0,如此小球只受重力作用,加速度为g ,选项A 正确、C 错误;假设剪断Ⅱ,由于弹簧的弹力不能突变,F 1与重力的合力大小仍等于F 2,所以此时加速度为a =F 2m,方向水平向左,选项B 正确、D 错误. 7.(2020·湖州质检)如图甲所示,一物体沿倾角为θ=37°的固定粗糙斜面由静止开始运动,同时受到水平向右的风力作用,水平风力的大小与风速成正比.物体在斜面上运动的加速度a 与风速v 的关系如图乙所示,如此(sin 37°=0.6,cos 37°=0.8,g =10 m/s 2)( )A .当风速为3 m/s 时,物体沿斜面向下运动B .当风速为5 m/s 时,物体与斜面间无摩擦力作用C .当风速为5 m/s 时,物体开始沿斜面向上运动D .物体与斜面间的动摩擦因数为0.025解析:选A.由题图乙得物体做加速度逐渐减小的加速运动,物体的加速度方向不变,当风的初速度为零时,加速度为a 0=4 m/s 2,沿斜面方向有a =g sin θ-μg cos θ,解得μ=0.25,D 错误;物体沿斜面方向开始加速下滑,随着速度的增大,水平风力逐渐增大,摩擦力逐渐增大,如此加速度逐渐减小,但加速度的方向不变,物体仍然加速运动,直到速度为5 m/s 时,物体的加速度减为零,此后物体将做匀速运动,A 正确,B 、C 错误.8.(2020·东阳中学期中)如下列图,在水平面上有三个质量分别为m 1、m 2、m 3的木块,木块1和2、2和3间分别用一原长为L 、劲度系数为k 的轻弹簧连接起来,木块1、2与水平面间的动摩擦因数为μ,木块3和水平面之间无摩擦力.现用一水平恒力向右拉木块3,当三木块一起匀速运动时,1和3两木块间的距离为(木块大小不计)( )A .L +μm 2g kB .L +μ〔m 1+m 2〕g kC .2L +μ〔2m 1+m 2〕g k D .2L +2μ〔m 1+m 2〕g k 解析:选C.对木块1受力分析,受重力、支持力、拉力和摩擦力,根据共点力平衡条件,有:kx 1-μm 1g =0对木块1和木块2整体受力分析,受总重力、总支持力、右侧弹簧的拉力和总摩擦力,有:kx 2-μ(m 1+m 2)g =0木块1与木块3之间的总长度为x =2L +x 1+x 2,由以上各式解得x =2L +μ〔2m 1+m 2〕g k,故C 正确. 9.一条足够长的浅色水平传送带自左向右匀速运行.现将一个木炭包无初速度地放在传送带的最左端,木炭包将会在传送带上留下一段黑色的径迹.如下说法中正确的答案是( )A .黑色的径迹将出现在木炭包的左侧B .木炭包的质量越大,径迹的长度越短C .传送带运动的速度越大,径迹的长度越短D .木炭包与传送带间动摩擦因数越大,径迹的长度越短解析:选D.放上木炭包后木炭包在摩擦力的作用下向右加速,而传送带仍匀速,虽然两者都向右运动,但在木炭包的速度达到与传送带速度相等之前木炭包相对于传送带向左运动,故黑色径迹出现在木炭包的右侧,A 错误.由于木炭包在摩擦力作用下加速运动时加速度a =μg 与其质量无关,故径迹长度与其质量也无关,B 错误.径迹长度等于木炭包相对传送带通过的位移大小,即二者对地的位移差:Δx =vt -0+v 2t =12vt =v 22μg,可见传送带速度越小、动摩擦因数越大,相对位移越小,黑色径迹越短,C 错误,D 正确.10.(2020·湖州质检)如下列图,质量为m 1的足够长的木板静止在光滑水平面上,其上放一质量为m 2的木块.t =0时刻起,给木块施加一水平恒力F .分别用a 1、a 2和v 1、v 2表示木板、木块的加速度和速度大小,图中可能符合运动情况的是( )解析:选A.t=0时刻起,给木块施加一水平恒力F,两者可能一起加速运动,选项A 正确,B错误;可能木块的加速度大于木板的加速度,选项C、D错误.二、非选择题11.(2020·宁波选考适应考试)小物块以一定的初速度v0沿斜面(足够长)向上运动,由实验测得物块沿斜面运动的最大位移x与斜面倾角θ的关系如下列图.取g=10 m/s2,空气阻力不计.可能用到的函数值:sin 30°=0.5,sin 37°=0.6.(1)求物块的初速度v0;(2)求物块与斜面之间的动摩擦因数μ;(3)计算说明图线中P点对应的斜面倾角为多大?在此倾角条件下,小物块能滑回斜面底端吗?说明理由(设最大静摩擦力与滑动摩擦力相等).解析:(1)当θ=90°时,物块做竖直上抛运动,末速度为0由题图得上升最大位移为x m=3.2 m由v20=2gx m,得v0=8 m/s.(2)当θ=0°时,物块相当于在水平面上做匀减速直线运动,末速度为0由题图得水平最大位移为x=6.4 m由运动学公式有:v20=2ax由牛顿第二定律得:μmg=ma,得μ=0.5.(3)设题图中P点对应的斜面倾角值为θ,物块在斜面上做匀减速运动,末速度为0由题图得物块沿斜面运动的最大位移为x′=3.2 m由运动学公式有:v20=2a′x′由牛顿第二定律有:mg sinθ+μmg cos θ=ma′得10sin θ+5cos θ=10,得θ=37°.因为mg sin θ=6m>μmg cos θ=4m,所以能滑回斜面底端.答案:(1)8 m/s (2)0.5(3)37°能滑回底端,理由见解析12.(2020·杭州质检)如下列图,倾角为30°的光滑斜面与粗糙的水平面平滑连接.现将一滑块(可视为质点)从斜面上的A点由静止释放,最终停在水平面上的C点.A点距水平面的高度h=0.8 m,B点距C点的距离L =2.0 m.(滑块经过B点时没有能量损失,取g=10 m/s2)求:(1)滑块在运动过程中的最大速度;(2)滑块与水平面间的动摩擦因数μ;(3)滑块从A点释放后,经过时间t=1.0 s时速度的大小.解析:(1)滑块先在斜面上做匀加速运动,然后在水平面上做匀减速运动,故滑块运动到B点时速度最大,设为v max,设滑块在斜面上运动的加速度大小为a1,如此mg sin 30°=ma1v2max=2a1hsin 30°解得:v max=4 m/s.(2)设滑块在水平面上运动的加速度大小为a2如此μmg=ma2v2max=2a2L解得:μ=0.4.(3)设滑块在斜面上运动的时间为t1,v max=a1t1,得t1=0.8 s,由于t>t1,故滑块已经经过B点,做匀减速运动的时间为t-t1=0.2 s,设t=1.0 s时速度大小为v,如此v=v max-a2(t-t1)解得:v=3.2 m/s.答案:(1)4 m/s (2)0.4 (3)3.2 m/s13.(2018·4月浙江选考)可爱的企鹅喜欢在冰面上玩游戏.如下列图,有一企鹅在倾角为37°的倾斜冰面上,先以加速度a=0.5 m/s2从冰面底部由静止开始沿直线向上“奔跑〞,t=8 s时,突然卧倒以肚皮贴着冰面向前滑行,最后退滑到出发点,完成一次游戏(企鹅在滑动过程中姿势保持不变).假设企鹅肚皮与冰面间的动摩擦因数μ=0.25,sin 37°=0.6,cos 37°=0.8.求:(1)企鹅向上“奔跑〞的位移大小;(2)企鹅在冰面滑动的加速度大小;(3)企鹅退滑到出发点时的速度大小.(计算结果可用根式表示)解析:(1)在企鹅向上奔跑过程中:x =12at 2,解得:x =16 m. (2)在企鹅卧倒以后将进展两个过程的运动,第一个过程是从卧倒到最高点,第二个过程是从最高点滑到最低点,两次过程由牛顿第二定律分别有:mg sin 37°+μmg cos 37°=ma 1,mg sin 37°-μmg cos 37°=ma 2,解得:a 1=8 m/s 2,a 2=4 m/s 2.(3)企鹅卧倒滑到最高点的过程中,做匀减速直线运动,设时间为t ′,位移为x ′;t ′=at a 1,x ′=12a 1t ′2,解得:x ′=1 m .企鹅从最高点滑到出发点的过程中,设末速度为v t ,初速度为0,如此有:v 2t -02=2a 2(x +x ′),解得:v t =234 m/s.答案:(1)16 m (2)8 m/s 2 4 m/s 2 (3)234 m/s。
2019年高考物理题库【考点3】牛顿运动定律(含答案)
温馨提示:此题库为Word 版,请按住Ctrl,滑动鼠标滚轴,调节合适的观 看比例,点击右上角的关闭按钮可返回目录。
考点3 牛顿运动定律一、选择题1.(2018·福建理综·T16)如图甲所示,绷紧的水平传送带始终以恒定速率1v 运行。
初速度大小为2v 的小物块从与传送带等高的光滑水平地面上的A 处滑上传送带。
若从小物块滑上传送带开始计时,小物块在传送带上运动的v -t 图像(以地面为参考系)如图乙所示。
已知2v >1v ,则A. 2t 时刻,小物块离A 处的距离达到最大B. 2t 时刻,小物块相对传送带滑动的距离达到最大C. 0~2t 时间内,小物块受到的摩擦力方向先向右后向左D. 0~3t 时间内,小物块始终受到大小不变的摩擦力作用【思路点拨】解答本题时可按以下思路分析:由运动图像得物块的运动情况,结合传送带判断相对运动情况,根据相对运动情况分析物块的对地位移与相对位移及摩擦力的情况【精讲精析】选B.由图乙可知t 1时刻物块向左运动最远, t 1~t 2这段时间物块向右加速,但相对传送带还是向左滑动,因此t 2时刻物块相对传送带滑动的距离达到最大,A 错B 对;0~t 2这段时间物块受到的摩擦力方向始终向右,t 2~t 3物块与传送带一起运动,摩擦力为零,C 、D 错;故选B.2.(2018·福建理综·T18)如图,一不可伸长的轻质细绳跨过定滑轮后,两端分别悬挂质量为1m 和2m 的物体A 和B 。
若滑轮有一定大小,质量为m 且分布均匀,滑轮转动时与绳之间无相对滑动,不计滑轮与轴之间的摩擦。
设细绳对A 和B 的拉力大小分别为1T 和2T ,已知下列四个关于1T 的表达式中有一个是正确的,请你根据所学的物理知识,通过一定的分析,判断正确的表达式是 A. 1112(2)2()m m m g T m m m +=++2 B. 12112(2)4()m m m g T m m m +=++C. 1112(4)2()m m m g T m m m +=++2 D. 2112(4)4()m m m g T m m m +=++1 【思路点拨】解答本题利用牛顿第二定律,应用整体和隔离法、极值分析法等物理方法进行处理【精讲精析】选 C.设滑轮的质量为零,即看成轻滑轮,若物体B 的质量较大,由整体法可得加速度()g m m m m a 2112+-=,隔离物体A ,据牛顿第二定律可得g m m m m T 212112+=,将m=0代入四个选项,可得选项C 是正确,故选C.3.(2018·江苏物理·T9)如图所示,倾角为α的等腰三角形斜面固定在水平面上,一足够长的轻质绸带跨过斜面的顶端铺放在斜面的两侧,绸带与斜面间无摩擦。
【物理文档】2019年高考物理二轮复习专题03牛顿运动定律讲及答案.doc
牛顿运动定律考点考纲要求专家解读牛顿运动定律及其应用Ⅱ1.从近几年的高考考点分布知道,本章主要考查考生能否准确理解牛顿运动定律的意义,能否熟练应用牛顿第二定律、牛顿第三定律和受力分析解决运动和力的问题;理解超重和失重现象,掌握牛顿第二定律的验证方法和原理。
2.高考命题中有关本章内容的题型有选择题、计算题。
高考试题往往综合牛顿运动定律和运动学规律进行考查,考题中注重与电场、磁场的渗透,并常常与生活、科技、工农业生产等实际问题相联系。
3.本章是中学物理的基本规律和核心知识,在整个物理学中占有非常重要的地位,仍将为高考命题的重点和热点,考查和要求的程度往往层次较高。
超重与失重Ⅰ单位制Ⅰ纵观近几年高考试题,预测2019年物理高考试题还会考:1、牛顿运动定律是中学物理的基本规律和核心知识,在整个物理学中占有非常重要的地位,,题型主要有选择题,高考试题往往综合牛顿运动定律和运动学规律进行考查,考题中注重与动量、能量、电场、磁场的渗透,并常常与生活、科技、工农业生产等实际问题相联系.2、本专题是高考命题的重点和热点,考查和要求的程度往往层次较高,单独考查的题目多为选择题,与直线运动、曲线运动、电磁学等知识结合的题目多为计算题。
考向01 牛顿运动定律1.讲高考(1)考纲要求主要考查考生能否准确理解牛顿运动定律的意义,能否熟练应用牛顿第一定律、牛顿第二定律、牛顿第三定律和受力分析解决运动和力的问题(2)命题规律牛顿运动定律是中学物理的基本规律和核心知识,在整个物理学中占有非常重要的地位,,题型主要有选择题,高考试题往往综合牛顿运动定律和运动学规律进行考查,考题中注重与电场、磁场的渗透,并常常与生活、科技、工农业生产等实际问题相联系.案例1.如图,轻弹簧的下端固定在水平桌面上,上端放有物块P,系统处于静止状态,现用一竖直向上的力F作用在P上,使其向上做匀加速直线运动,以x表示P离开静止位置的位移,在弹簧恢复原长前,下列表示F和x之间关系的图像可能正确的是()A. B.C. D.【来源】2018年全国普通高等学校招生统一考试物理(新课标I卷)【答案】 A【点睛】牛顿运动定律是高中物理主干知识,匀变速直线运动规律贯穿高中物理。
2019版高考物理总复习第三章牛顿运动定律基础课1牛顿第一定律牛顿第三定律学案
[ 高考导航 ]
考点内容 牛顿运动定律及其应 用 超重和失重 单位制
实验四:验证牛顿运 动定律
要求
高考 ( 全国卷 ) 三年命题情况对照分析
2015
2016
2017
Ⅰ卷·T20: v- t 图象、
Ⅱ
牛顿第二定律
Ⅰ卷·T18:牛顿
Ⅰ T25:水平面上的滑块—木 第二定律的理解
的匀速直线运动状态或静止状态,故选项
D 正确。
答案 D
2.(2017 ·河南漯河模拟 ) 下列关于牛顿运动定律的说法正确的是 (
)
A. 力是维持物体运动的原因
B. 牛顿第一定律可以用实验直接验证
C. 作用力与反作用力只存在于相互接触的两个物体之间
D. 作用力与反作用力的性质一定相同
解析 由牛顿第一定律可知,力不是维持物体运动的原因,选项
B. 不受外力作用时,物体的运动状态保持不变
C. 在水平地面上滑动的木块最终停下来,是由于没有外力维持木块运动的结果
D. 奔跑的运动员遇到障碍而被绊倒,这是因为他受到外力作用迫使他改变原来的运动状态
解析 牛顿第一定律描述了物体不受外力作用时的状态,即总保持匀速直线运动状态或静止
状态不变, 选项 A、B 正确; 牛顿第一定律还揭示了力和运动的关系, 力是改变物体运动状态
惯性 1. 定义:物体具有保持原来匀速直线运动状态或静止状态的性质。 2. 性质:惯性是一切物体都具有的性质,是物体的固有属性,与物体的运动情况和受力情况 无关。
3. 量度:质量是惯性大小的唯一量度,质量大的物体惯性大,质量小的物体惯性小。
牛顿第三定律
1. 作用力和反作用力:两个物体之间的作用总是相互的,一个物体对另一个物体施加了力,
2019届高考物理专题复习:牛顿运动定律复习2(带答案).docx
学科教师辅导讲义五、牛顿第二定律1.对牛顿第二定律的理解:(1)因果关系:力是物体产生加速度的原因,加速度是力作用在物体上所产生的效果的一种。
(2) 同体关系:即公式中F 、m 、a 均是针对同一物体。
(3) 同向关系:加速度的方向始终与产生该加速度的合外力的方向相同。
(4) 瞬时关系:加速度和合外力存在瞬时对应关系,即F 合与a 同时产生、同时变化、同时消失。
2.牛顿第二定律的适用范围牛顿运动定律只适用于解决宏观物体的低速运动问题,不能用来处理高速运动问题; 牛顿运动定律只适用于宏观物体,一般不适用于微观粒子。
六、超重和失4、 如果a=g 向下,则N=0 台秤无示数完全失重七、牛顿定律的应用:■确定研究对象一受力分析一运动状态变化分析一将力或加速度合成或分解一由牛顿运动定律列动力学方程一 根据已知条件选择运动学公式列运动学方程一代入数值、解方程(组),分析和讨论解的合理性。
牛顿定律的应用: ①整体法、隔离法 ②超重与失重 ③瞬时加速度 ④传送带和相对运动⑤临界问题⑥图像法1、 静止或匀速直线向下 N=mg 视重=重力平衡2、 向上加速或向下减速,a 向上N —mg=ma .e .N=mg+ma视重〉重力 超重3、 向下加速或向上减速,amg —N=ma /.N=mg —ma精讲提升【一、已知受力求运动】 教法指导:已知物体的受力情况求物体运动情况:首先要确定研究对象,对物体进行受力分析,作出受力图, 建立坐标系,进行力的正交分解,然后根据牛顿第二定律求加速度a,再根据运动学公式求运动中的某一物理 量.【例1】如图所示,质量为加的金属块放在水平桌面上,在与水平方向成0角斜 向上、大小为F 的拉力作用下,以速度v 向右做匀速直线运动.重力加速度为g.求:(1)求金属块与桌面间的动摩擦因数.(2)如果从某时刻起撤去拉力,则撤去拉力后金属块在桌面上还能滑行多远? 【解析】(1)取物体的运动方向为正,由平衡条件有Fcos6>-/-0F cos3 所以有〃二——竺J mg-FsmOgFcosOa = -ug = mg-Fsin 0【变式训练1】用40 N 的水平力F 拉一个静止在光滑水平面上、质量为20 kg 的物体,力F 作用3 s 后撤去,则第5 s 末物体的速度和加速度的大小分别是()2A. v —6 m/s, a —0B. v —10 m/s, a —2 m/sC. v —6 m/s, a —2 m/s 2D. 10 m/s, cz=O答案:A【变式训练2】如图所示,质量为〃=lkg 的小球穿在斜杆上,斜杆与水平方向的夹角为 "30。
高考物理总复习 第三单元 牛顿运动定律 第2讲 连接体问题(含解析)
第2讲连接体问题1 连接体的定义及分类(1)两个或两个以上的物体,以某种方式连接在一起运动,这样的物体系统就是连接体。
(2)根据两物体之间相互连接的媒介不同,常见的连接体可以分为三大类。
①绳(杆)连接:两个物体通过轻绳或轻杆的作用连接在一起;②弹簧连接:两个物体通过弹簧的作用连接在一起;③接触连接:两个物体通过接触面的弹力或摩擦力的作用连接在一起。
(3)连接体的运动特点①轻绳——轻绳在伸直状态下,两端的连接体沿绳方向的速度总是相等的。
②轻杆——轻杆平动时,连接体具有相同的平动速度;轻杆转动时,连接体具有相同的角速度,而杆上各点的线速度与转动半径成正比。
③轻弹簧——在弹簧发生形变的过程中,两端连接体的速率不一定相等;在弹簧形变最大时,两端连接体的速率相等。
【易错警示】(1)“轻”——质量和重力均不计。
(2)在任何情况下,绳中张力的大小相等,绳、杆和弹簧两端受到的弹力大小也相等。
1.1(2018衡水中学高三10月考试)如图所示,质量为m0、倾角为θ的斜面体静止在水平地面上,一质量为m 的小物块放在斜面上,轻推一下小物块后,它沿斜面向下匀速运动。
若给小物块持续施加沿斜面向下的恒力F,斜面体始终静止,重力加速度大小为g。
施加恒力F后,下列说法正确的是()。
A.小物块沿斜面向下运动的加速度为B.斜面体对地面的压力大小等于(m+m0)g+F sin θC.地面对斜面体的摩擦力方向水平向左D.斜面体对小物块的作用力的大小和方向都变化【答案】A1.2(2019福建福州三十四中检测)如图所示,材料相同的P、Q两物块通过轻绳相连,并在拉力F作用下沿斜面向上运动,轻绳与拉力F的方向均平行于斜面。
当拉力F一定时,Q受到绳的拉力()。
A.与斜面倾角θ有关B.与动摩擦因数有关C.与系统运动状态有关D.仅与两物块质量有关【答案】D2 连接体的平衡(1)关于研究对象的选取①单个物体:将物体受到的各个力的作用点全部画到物体的几何中心上。
★2019年高考物理总复习(教科版)试题第三章 牛顿运动定律 综合检测 Word版含解析
《牛顿运动定律》综合检测(时间:90分钟满分:100分)一、选择题(本题共12小题,每小题4分,共48分.在每小题给出的四个选项中,第1~7小题只有一个选项正确,第8~12小题有多个选项正确,全部选对的得4分,选对但不全的得2分,有选错或不选的得0分)1.下列有关行车安全的说法正确的是( C )A.系好安全带可以减小人的惯性B.同一辆车,速度越大停下来需要的时间越长,说明速度大的车惯性大C.系好安全带可以减轻因人的惯性而造成的伤害D.系好安全带可以减轻因车的惯性而造成的伤害解析:惯性大小唯一的量度是质量,所以A,B错误;系好安全带可减轻因人的惯性而造成的危害,C正确,D错误.2.如图所示,不计绳的质量以及绳与滑轮的摩擦,物体A的质量为M,水平面光滑.当在绳的B端挂一质量为m的物体时,物体A的加速度为a1,当在绳的B端施以F=mg的竖直向下的拉力作用时,A的加速度为a2,则a1与a2的大小关系是( C )A.a1=a2B.a1>a2C.a1<a2D.无法确定解析:当在绳的B端挂一质量为m的物体时,将它们看成一个系统,由牛顿第二定律有mg=(M+m)a1,得a1而当用F=mg的外力在B端竖直向下拉绳时,由牛顿第二定律有F=Ma2,得a2故a1<a2,选项C正确.3.以初速度v竖直向上抛出一小球,小球所受空气阻力与速度的大小成正比,下列图像中,能正确反映小球从抛出到落回原处的速度随时间变化情况的是( D )解析:设小球所受的阻力f=kv,小球的质量为m,则在小球上升的过程中有mg+f=ma,得由于上升过程中小球的速度越来越小,小球的加速度a也越来越小,故v-t图像的斜率的绝对值越来越小,A,B错误;在下落过程中有下落过程中小球的速度越来越大,故小球的加速度越来越小,则v-t图像的斜率的绝对值越来越小,C错误,D 正确.4.广州塔,昵称小蛮腰,总高度达600米,游客乘坐观光电梯大约一分钟就可以达观光平台.若电梯简化成只受重力与绳索拉力,已知电梯在t=0时由静止开始上升,a-t图像如图所示.则下列相关说法正确的是( D )A.t=4.5 s时,电梯处于失重状态B.5~55 s时间内,绳索拉力最小C.t=59.5 s时,电梯处于超重状态D.t=60 s时,电梯速度恰好为零解析:利用a-t图像可判断,t=4.5 s时,电梯有向上的加速度,电梯处于超重状态,则A错误;0~5 s时间内,加速度向上,电梯处于超重状态,拉力大于重力;5~55 s时间内,电梯加速度为0,处于匀速上升过程,拉力与重力大小相等;55~60 s时间内,电梯加速度向下,处于失重状态,拉力小于重力,即B,C错误;因a-t图线与t轴所围的“面积”代表速度改变量,而图中横轴上方的“面积”与横轴下方的“面积”相等,则电梯的速度在t=60 s时为零,D正确.5.如图(甲)所示,某人通过动滑轮将质量为m的货物提升到一定高处,动滑轮的质量和摩擦均不计,货物获得的加速度a与竖直向上的拉力T之间的函数关系如图(乙) 所示.则下列判断正确的是( A )A.图线与纵轴的交点M的纵坐标的绝对值等于gB.图线的斜率在数值上等于物体的质量mC.图线与横轴的交点N的值T N=mgD.解析:由牛顿第二定律可得2T-mg=ma,则有a=由a-T图像可判断,纵轴截距的绝对值等于g,A正确;图线的斜率在数值上等于则B,D错误;横轴截距对应a=0,则有T N则C错误.6.如图,在光滑水平面上有一质量为m1的足够长的木板,其上叠放一质量为m2的木块.假定木块和木板之间的最大静摩擦力和滑动摩擦力相等.现给木块施加一随时间t增大的水平力F=kt(k是常数),木板和木块加速度的大小分别为a1和a2.下列反映a1和a2变化的图线中正确的是( A )解析:开始阶段两物体一起做匀加速运动,有F=(m1+m2)a,即两物体加速度相同且与时间成正比.当两物体间的摩擦力达到μm2g后,两者发生相对滑动.对m2有F-f=ma2,在相对滑动之前f逐渐增大,相对滑动后f=μm2g不再变化,a2μg,故其图像斜率增大;而对m1,在发生相对滑动后,有μm2g=m1a1,故a1.故A选项正确.7.如图所示,质量均为m的木块A和B,用劲度系数为k的轻质弹簧连接,最初系统静止.现用大小F=2mg、方向竖直向上的恒力拉A直到B 刚好离开地面,则在此过程中( A )A.A上升的初始加速度大小为2gB.弹簧对A和对B的弹力是一对作用力与反作用力C.AD.A上升的速度先增大后减小解析:未作用恒力F之前,以木块A为研究对象,木块A受到重力和弹簧对其的弹力作用,且二力大小相等、方向相反,作用恒力F的一瞬间,木块A受到弹簧对其的弹力大小不变,则木块A所受合力的大小就等于恒力F的大小2mg,根据牛顿第二定律可得,木块A上升的初始加速度大小为2g,故A选项正确;弹簧对木块A和对木块B的弹力是同一弹簧对两个物体施加力,不是作用力与反作用力,故B选项错误;从恒力F作用在木块A上到木块B刚好离开地面的过程,木块A上升的最大高度为故C选项错误;从恒力F作用在木块A上到木块B刚好离开地面的过程,木块A做速度逐渐增大,加速度逐渐减小的变加速直线运动,故D选项错误.8.一个物块在粗糙水平面上受到的水平拉力F随时间t变化的图像如图(甲)所示,速度v随时间t变化的图像如图(乙)所示,g取10 m/s2,由图中数据可求得物块的质量m和物块与水平面间的动摩擦因数μ,则下列结果正确的是( BD )A.1 kgB.2 kgC.0.2D.0.4解析:4 s后物块做匀速直线运动,则f=F3=8 N,2~4 s物块做匀加速直线运动,加速度2=2 m/s2,根据牛顿第二定律得,F2-f=ma,解得kg=2 kg,动摩擦因数μ故选项B,D正确.9.将力传感器A固定在光滑水平桌面上,测力端通过轻质水平细绳与滑块相连,滑块放在较长的小车上.如图(甲)所示,传感器与计算机相连接,可获得力随时间变化的图像.一水平轻质细绳跨过光滑的定滑轮,一端连接小车,另一端系沙桶,整个装置开始处于静止状态.现在向沙桶里缓慢倒入细沙,力传感器采集的F t图像如图(乙)所示.则( BD )A.2.5 s前小车做变加速运动B.2.5 s后小车做变加速运动C.2.5 s前小车所受摩擦力不变D.2.5 s后小车所受摩擦力不变解析:当倒入细沙较少时,M处于静止状态,对M受力分析,细绳拉力与m对M的静摩擦力大小相等.在满足M静止的情况下,缓慢加细沙,细绳拉力变大,m对M的静摩擦力逐渐变大,由图像得出2.5 s前M都是静止的,A,C选项错误;2.5 s后M相对于m发生滑动,m对M的摩擦力为滑动摩擦力f=μmg保持不变,D项正确;M运动后继续倒入细沙,绳子拉力发生变化,小车将做变加速运动,B项正确.10.如图所示,A,B两物块质量均为m,用一轻弹簧相连,将A用长度适当的轻绳悬挂于天花板上,系统处于静止状态,B恰好与水平桌面接触,此时轻弹簧的伸长量为x,现将轻绳剪断,已知重力加速度为g,则下列说法正确的是( AC )A.轻绳剪断瞬间,A的加速度大小为2gB.轻绳剪断瞬间,A的加速度大小为gC.轻绳剪断后,A向下运动距离2x时速度最大D.轻绳剪断后,A向下运动距离x时加速度最小解析:剪断轻绳前,对B受力分析,B受到重力和弹簧弹力,且弹力F=mg.剪断轻绳瞬间,对A受力分析,A的合力为F合=mg+F=2mg,根据牛顿第二定律得a=2g,故选项A正确,B错误;弹簧开始处于伸长状态,弹力F=mg=kx,A向下运动x时,弹力F为零,所受合力为mg,则加速度a=g,当向下压缩,使mg=F′=kx′时,A加速度为零,速度最大,x′=x,所以A下降距离为2x时,速度最大,故选项C正确,D错误.11.如图所示,质量分别为m1,m2的A,B两个物体放在斜面上,中间用一个轻杆相连,A,B与斜面间的动摩擦因数分别为μ1,μ2,它们在斜面上加速下滑,关于杆的受力情况.下列分析正确的是( AD )A.若μ1>μ2,m1=m2,则杆受到压力B.若μ1=μ2,m1>m2,则杆受到拉力C.若μ1<μ2,m1<m2,则杆受到压力D.若μ1=μ2,m1≠m2,则杆无作用力解析:设斜面倾角为θ,A,B一起下滑,具有相同的加速度,以整体为研究对象,由牛顿第二定律得m1gsin θ+m2gsin θ-μ1m1gcos θ- μ2m2gcos θ=(m1+m2)a,假设杆受拉力,以A为研究对象,则m1gsin θ-F-μ1m1gcos θ=m1a,联立可得若F为正值,则杆受拉力;若F为负值,则杆受压力;若F为零,则杆无作用力,故选项A,D 正确.12.如图,斜面固定,CD段光滑,DE段粗糙,A,B两长方体物体叠放在一起从C点由静止下滑,下滑过程中A,B始终保持相对静止,则( ACD )A.在CD段时,A受两个力作用B.整个下滑过程中,A,B均处于失重状态C.在DE段时,A受到的摩擦力方向一定沿斜面向上D.在DE段时,A的加速度可能平行于斜面向上解析:在CD段,A,B整体的加速度a1=gsin θ,隔离A分析,有m A gsin θ+f A=m A a1,解得f A=0,可知A受重力和支持力两个力作用,故选项A正确.A,B在下滑过程中,CD段加速度沿斜面向下,均处于失重状态.在DE段由于受摩擦力作用,可能做加速运动、匀速直线运动或减速运动,不一定处于失重状态,故选项B错误.设DE段物体与斜面间的动摩擦因数为μ,沿斜面向下为正方向,则在DE段整体的加速度a2=gsin θ-μgcos θ,隔离A分析,有m A gsin θ+f A=m A a2,解得f A=-μm A gcos θ,负号表示方向沿斜面向上,故选项C正确.在DE段,若μ>tan θ,则a2<0,其方向沿斜面向上,即A,B整体的加速度方向沿斜面向上,做匀减速直线运动,故选项D正确.二、非选择题(共52分)13.(5分)用图(甲)所示的实验装置验证牛顿第二定律.(1)某同学通过实验得到如图(乙)所示的a-F图像,造成这一结果的原因是:在平衡摩擦力时木板与水平桌面间的倾角(填“偏大”或“偏小”).(2)该同学在平衡摩擦力后进行实验,实际小车在运动过程中所受的拉力(填“大于”“小于”或“等于”)砝码和盘的总重力,为了便于探究、减小误差,应使小车质量M与砝码和盘的总质量m满足的条件.(3)某同学得到如图(丙)所示的纸带,已知打点计时器电源频率为50 Hz,A,B,C,D,E,F,G是纸带上7个连续的点,由此可算出小车的加速度a= m/s2(保留两位有效数字).解析:(1)当拉力F=0时,小车具有加速度,说明平衡摩擦力时平衡过度,即木板与水平桌面间的倾角偏大.(2)对整体分析,根据牛顿第二定律得则绳子的拉力所以实际小车在运动过程中所受的拉力小于砝码和盘的总重力,当M≫m,即砝码和盘的总质量小于小车和小车上砝码的总质量时,砝码和盘的总重力在数值上近似等于小车运动时受到的拉力.(3)根据刻度尺的示数可知Δx=3.90 cm-2.10 cm=1.80 cm,时间间隔为T=0.06 s,代入Δx=aT2得加速度为a=5.0 m/s2.答案:(1)偏大(1分) (2)小于(1分) M≫m(1分)(3)5.0(2分)14.(6分)为了测量滑块与木板之间的动摩擦因数,采用如图所示装置,表面粗糙的木板固定在水平桌面上,左端装有定滑轮;木板上有一滑块,一端通过跨过定滑轮的细线与托盘连接,另一端与穿过打点计时器的纸带相连.实验中保持木板水平且细线平行于木板,在托盘中放入适量砝码后,滑块做匀加速直线运动,纸带上打出一系列的点.利用纸带测得滑块加速度为a,并已知重力加速度为g.(1)若要测出动摩擦因数,还应测量的物理量有(填入正确选项前的字母).A.木板的长度LB.木板的质量m1C.滑块的质量m2D.托盘和砝码的总质量m3E.滑块运动的时间t(2)滑块与木板间的动摩擦因数的表达式:μ= (用题干中已知量和所测物理量的符号表示).解析:滑块、托盘和砝码一起在托盘和砝码的重力和桌面对滑块的摩擦力作用下运动,由牛顿第二定律有m3g-μm2g=(m2+m3)a,解得μ由此可知,要测出动摩擦因数,还需要测量的物理量有托盘和砝码的总质量m3,滑块的质量m2,选项C,D正确.答案:(1)CD(3分) 分)15.(8分)连续刹车时,刹车片和刹车盘产生大量热量,温度升高很快,刹车效率迅速降低,容易造成刹车失灵.为了避免刹车失灵造成的危害,高速公路在一些连续下坡路段设置用沙石铺成的紧急避险车道,如图所示.现将某次汽车避险过程简化如下:一辆货车在倾角为30°的长直下坡路上以20 m/s的速度匀速行驶,突然刹车失灵开始加速,此时货车所受阻力为车重的0.4倍(发动机关闭),加速前进15 s后冲上了倾角为53°的避险车道,在避险车道上运动17.5 m后停下.将货车的加速、减速过程视为匀变速直线运动,求货车:(sin 53°=0.8,g 取10 m/s2)(1)冲上避险车道时速度的大小;(2)在避险车道上所受摩擦阻力是车重的多少倍?解析:(1)设货车加速阶段的加速度大小为a1,冲上避险车道时速度为v1,则有mgsin 30°-0.4mg=ma1, (2分)v1=v0+a1t1, (1分)得v1=35 m/s. (1分)(2)设货车在避险车道上的加速度大小为a2,货车在避险车道上所受阻力为车重的k倍,则有mgsin 53°+kmg=ma2, (2分)2x, (1分)得k=2.7. (1分)答案:(1)35 m/s (2)2.7倍16.(9分)如图所示的装置叫做阿特伍德机,是阿特伍德创造的一种著名力学实验装置,用来研究匀变速直线运动的规律.绳子两端的物体下落(或上升)的加速度总是小于自由落体时的加速度g,同自由落体相比,下落相同的高度,所花费的时间更长,这使得实验者有足够的时间从容地观测、研究实验现象.已知物体A,B的质量相等均为M,物体C的质量为m,轻绳与轻滑轮间的摩擦不计,绳子不可伸长.如果m=求:(1)物体B从静止开始下落一段距离所用的时间与其自由落体下落同样的距离所用时间的比值;(2)系统由静止释放后,运动过程中物体C对物体B的拉力.解析:(1)设物体的加速度大小为a,绳子中的张力大小为F.由牛顿第二定律,对物体A有F-Mg=Ma, (1分) 对物体B,C整体有(M+m)g-F=(M+m)a, (1分)解得分)物体B从静止开始下落一段距离h历时t,则2, (1分)自由落体相同距离历时t0,则分) 解得=3. (1分) (2)设物体B对物体C的拉力为T,由牛顿第二定律,对物体C有mg-T=ma, (1分)解得分)由牛顿第三定律可知物体C对物体B方向竖直向下. (1分)答案:(1)3 方向竖直向下17.(10分)如图所示,两个质量都是m的滑块A和B,紧挨着并排放在水平桌面上,A,B间的接触面垂直于纸面且与水平面成α角,所有接触面都光滑.现用一个水平推力F作用于滑块A上,使A,B一起向右做加速运动.(1)若A,B间不发生相对滑动,它们共同向右的最大加速度是多少?(2)若A,B间不发生相对滑动,水平推力的大小应在什么范围内才行?解析:(1)在水平推力F作用下,A,B一起加速,对整体则有F=2ma(1分) 对滑块A,受力如图(a)所示,地面对A的弹力N为零时,A与B之间将要发生相对滑动,则F-Tsin α=ma, (1分) mg-Tcos α=0, (1分)滑块B的受力如图(b)所示,则T′sin α=ma, (1分) N′=mg+T′cos α, (1分) 得A,B一起向右运动的最大加速度a=gtan α. (2分) (2)A,B不发生相对滑动的水平推力F的大小满足F≤2mgtan α, (2分) 故F的取值范围为0<F≤2mgtan α. (1分) 答案:(1)gtan α(2)0<F≤2mgtan α18.(14分)如图所示,水平传送带以v=12 m/s的速度顺时针做匀速运动,其上表面的动摩擦因数μ1=0.1,把质量m=20 kg的行李包轻放上传送带,释放位置距传送带右端4.5 m处.平板车的质量M=30 kg,停在传送带的右端,水平地面光滑,行李包与平板车上表面间的动摩擦因数μ2=0.3,平板车长10 m,行李包从传送带滑到平板车过程速度不变,行李包可视为质点.(g=10 m/s2)求:(1)行李包在平板车上相对于平板车滑行的时间是多少?(2)若要想行李包不从平板车滑出,求行李包释放位置应满足什么条件?解析:(1)若行李包放上传送带后一直做匀加速直线运动,则a1=μ1g (1分) v2=2a1x (1分) 解得v=3 m/s (1分) 因v=3 m/s<12 m/s,由此可知,行李包滑上平板车时速度为3 m/s.行李包滑上平板车后,行李包的加速度a2=μ2g=3 m/s2 (1分)平板车的加速度a3 2 (1分) 行李包减速,平板车加速,经过时间t达共同速度v-a2t=a3t (1分)解得t=0.6 s (1分)相对位移2t23t2=0.9 m<10 m,说明相对滑动过程中行李包未离开平板车,即时间为0.6 s. (1分) (2)当行李包刚好滑到平板车右端,设行李包刚滑上平板车时速度为v0,L为平板车长,则v0-a2t′=a3t′ (1分)v0t′2t′23t′2=L (1分) 解得v0=10 m/s<12 m/s (1分) 故行李包在传送带上一直做匀加速直线运动1x′ (1分) 解得x′=50 m (1分) 所以行李包释放位置距离传送带右端应不大于50 m. (1分) 答案:(1)0.6 s (2)距离传送带右端不大于50 m。
高考物理牛顿运动定律试题(有答案和解析)
高考物理牛顿运动定律试题(有答案和解析)一、高中物理精讲专题测试牛顿运动定律1.一长木板置于粗糙水平地面上,木板右端放置一小物块,如图所示。
木板与地面间的动摩擦因数μ1=0.1,物块与木板间的动摩擦因数μ2=0.4。
t=0时刻开始,小物块与木板一起以共同速度向墙壁运动,当t=1s 时,木板以速度v 1=4m/s 与墙壁碰撞(碰撞时间极短)。
碰撞前后木板速度大小不变,方向相反。
运动过程中小物块第一次减速为零时恰好从木板上掉下。
已知木板的质量是小物块质量的15倍,重力加速度大小g 取10m/s 2。
求: (1)t=0时刻木板的速度; (2)木板的长度。
【答案】(1)05/v m s =(2)163l m = 【解析】 【详解】(1)对木板和物块:()()11M m g M m a μ+=+ 令初始时刻木板速度为0v 由运动学公式:101v v a t =+ 代入数据求得:0=5m/s v(2)碰撞后,对物块:22mg ma μ=对物块,当速度为0时,经历时间t ,发生位移x 1,则有21112v x a =,112vx t =对木板,由牛顿第二定律:()213mg M m g Ma μμ++= 对木板,经历时间t ,发生位移x 2221312x v t a t =-木板长度12l x x =+代入数据,16=m 3l2.质量为2kg 的物体在水平推力F 的作用下沿水平面做直线运动,一段时间后撤去F ,其运动的图象如图所示取m/s 2,求:(1)物体与水平面间的动摩擦因数; (2)水平推力F 的大小;(3)s内物体运动位移的大小.【答案】(1)0.2;(2)5.6N;(3)56m。
【解析】【分析】【详解】(1)由题意可知,由v-t图像可知,物体在4~6s内加速度:物体在4~6s内受力如图所示根据牛顿第二定律有:联立解得:μ=0.2(2)由v-t图像可知:物体在0~4s内加速度:又由题意可知:物体在0~4s内受力如图所示根据牛顿第二定律有:代入数据得:F=5.6N(3)物体在0~14s内的位移大小在数值上为图像和时间轴包围的面积,则有:【点睛】在一个题目之中,可能某个过程是根据受力情况求运动情况,另一个过程是根据运动情况分析受力情况;或者同一个过程运动情况和受力情况同时分析,因此在解题过程中要灵活处理.在这类问题时,加速度是联系运动和力的纽带、桥梁.3.如图所示,足够长的木板与水平地面间的夹角θ可以调节,当木板与水平地面间的夹角为37°时,一小物块(可视为质点)恰好能沿着木板匀速下滑.若让该物块以大小v0=10m/s的初速度从木板的底端沿木板上滑,随着θ的改变,物块沿木板滑行的距离x将发生变化.取g=10m/s2,sin37°=0.6,cos37°=0.8.(1)求物块与木板间的动摩擦因数μ;(2)当θ满足什么条件时,物块沿木板向上滑行的距离最小,并求出该最小距离. 【答案】(1) 0.75(2) 4m 【解析】 【详解】(1)当θ=37°时,设物块的质量为m ,物块所受木板的支持力大小为F N ,对物块受力分析,有:mg sin37°=μF N F N -mg cos37°=0 解得:μ=0.75(2)设物块的加速度大小为a ,则有:mg sin θ+μmg cos θ=ma 设物块的位移为x ,则有:v 02=2ax解得:()202sin cos v x g θμθ=+令tan α=μ,可知当α+θ=90°,即θ=53°时x 最小 最小距离为:x min =4m4.如图甲所示,一长木板静止在水平地面上,在0t =时刻,一小物块以一定速度从左端滑上长木板,以后长木板运动v t -图象如图所示.已知小物块与长木板的质量均为1m kg =,小物块与长木板间及长木板与地面间均有摩擦,经1s 后小物块与长木板相对静止()210/g m s=,求:()1小物块与长木板间动摩擦因数的值; ()2在整个运动过程中,系统所产生的热量.【答案】(1)0.7(2)40.5J 【解析】 【分析】()1小物块滑上长木板后,由乙图知,长木板先做匀加速直线运动,后做匀减速直线运动,根据牛顿第二定律求出长木板加速运动过程的加速度,木板与物块相对静止时后木板与物块一起匀减速运动,由牛顿第二定律和速度公式求物块与长木板间动摩擦因数的值.()2对于小物块减速运动的过程,由牛顿第二定律和速度公式求得物块的初速度,再由能量守恒求热量. 【详解】()1长木板加速过程中,由牛顿第二定律,得1212mg mg ma μμ-=; 11m v a t =;木板和物块相对静止,共同减速过程中,由牛顿第二定律得 2222mg ma μ⋅=; 220m v a t =-;由图象可知,2/m v m s =,11t s =,20.8t s = 联立解得10.7μ=()2小物块减速过程中,有:13mg ma μ=; 031m v v a t =-;在整个过程中,由系统的能量守恒得2012Q mv = 联立解得40.5Q J =【点睛】本题考查了两体多过程问题,分析清楚物体的运动过程是正确解题的关键,也是本题的易错点,分析清楚运动过程后,应用加速度公式、牛顿第二定律、运动学公式即可正确解题.5.地震发生后,需要向灾区运送大量救灾物资,在物资转运过程中大量使用了如图所示的传送带.已知某传送带与水平面成37θ=o 角,皮带的AB 部分长 5.8L m =,皮带以恒定的速率4/v m s =按图示方向传送,若在B 端无初速度地放置一个质量50m kg =的救灾物资(P 可视为质点),P 与皮带之间的动摩擦因数0.5(μ=取210/g m s =,sin370.6)=o ,求:()1物资P 从B 端开始运动时的加速度. ()2物资P 到达A 端时的动能.【答案】()1物资P 从B 端开始运动时的加速度是()210/.2m s 物资P 到达A 端时的动能是900J . 【解析】 【分析】(1)选取物体P 为研究的对象,对P 进行受力分析,求得合外力,然后根据牛顿第三定律即可求出加速度;(2)物体p 从B 到A 的过程中,重力和摩擦力做功,可以使用动能定律求得物资P 到达A 端时的动能,也可以使用运动学的公式求出速度,然后求动能. 【详解】(1)P 刚放上B 点时,受到沿传送带向下的滑动摩擦力的作用,sin mg F ma θ+=;cos N F mg θ=N F F μ=其加速度为:21sin cos 10/a g g m s θμθ=+=(2)解法一:P 达到与传送带有相同速度的位移210.82v s m a == 以后物资P 受到沿传送带向上的滑动摩擦力作用 根据动能定理:()()2211sin 22A mg F L s mv mv θ--=- 到A 端时的动能219002kA A E mv J == 解法二:P 达到与传送带有相同速度的位移210.82v s m a == 以后物资P 受到沿传送带向上的滑动摩擦力作用,P 的加速度22sin cos 2/a g g m s θμθ=-=后段运动有:222212L s vt a t -=+, 解得:21t s =,到达A 端的速度226/A v v a t m s =+= 动能219002kA A E mv J == 【点睛】传送带问题中,需要注意的是传送带的速度与物体受到之间的关系,当二者速度相等时,即保持相对静止.属于中档题目.6.近年来,随着AI 的迅猛发展,自动分拣装置在快递业也得到广泛的普及.如图为某自动分拣传送装置的简化示意图,水平传送带右端与水平面相切,以v 0=2m/s 的恒定速率顺时针运行,传送带的长度为L =7.6m.机械手将质量为1kg 的包裹A 轻放在传送带的左端,经过4s 包裹A 离开传送带,与意外落在传送带右端质量为3kg 的包裹B 发生正碰,碰后包裹B 在水平面上滑行0.32m 后静止在分拣通道口,随即被机械手分拣.已知包裹A 、B 与水平面间的动摩擦因数均为0.1,取g =10m/s 2.求:(1)包裹A 与传送带间的动摩擦因数; (2)两包裹碰撞过程中损失的机械能; (3)包裹A 是否会到达分拣通道口.【答案】(1)μ1=0.5(2)△E =0.96J (3)包裹A 不会到达分拣通道口 【解析】 【详解】(1)假设包裹A 经过t 1时间速度达到v 0,由运动学知识有01012v t v t t L +-=() 包裹A 在传送带上加速度的大小为a 1,v 0=a 1t 1包裹A 的质量为m A ,与传输带间的动摩檫因数为μ1,由牛顿运动定律有:μ1m A g =m A a 1 解得:μ1=0.5(2)包裹A 离开传送带时速度为v 0,设第一次碰后包裹A 与包裹B 速度分别为v A 和v B , 由动量守恒定律有:m A v 0=m A v A +m B v B包裹B 在水平面上滑行过程,由动能定理有:-μ2m B gx =0-12m B v B 2 解得v A =-0.4m/s ,负号表示方向向左,大小为0.4m/s 两包裹碰撞时损失的机械能:△E =12m A v 02 -12m A v A 2-12m B v B 2 解得:△E =0.96J(3)第一次碰后包裹A 返回传送带,在传送带作用下向左运动x A 后速度减为零, 由动能定理可知-μ1m A gx A =0-12m A v A 2 解得x A =0.016m<L ,包裹A 在传送带上会再次向右运动. 设包裹A 再次离开传送带的速度为v A ′μ1m A gx A =12m A v A ′2 解得:v A ′ =0.4m/s设包裹A 再次离开传送带后在水平面上滑行的距离为x A-μ2m A gx A ′=0-12m A v A 2 解得 x A ′=0.08m x A ′=<0.32m包裹A 静止时与分拣通道口的距离为0.24m ,不会到达分拣通道口.7.如图所示,传送带水平部分x ab =0.2m ,斜面部分x bc =5.5m ,bc 与水平方向夹角α=37°,一个小物体A 与传送带间的动摩擦因数μ=0.25,传送带沿图示方向以速率v =3m/s 运动,若把物体A 轻放到a 处,它将被传送带送到c 点,且物体A 不脱离传送带,经b 点时速率不变.(取g =10m/s 2,sin37°=0.6)求:(1)物块从a 运动到b 的时间; (2)物块从b 运动到c 的时间. 【答案】(1)0.4s ;(2)1.25s . 【解析】 【分析】根据牛顿第二定律求出在ab 段做匀加速直线运动的加速度,结合运动学公式求出a 到b 的运动时间.到达b 点的速度小于传送带的速度,根据牛顿第二定律求出在bc 段匀加速运动的加速度,求出速度相等经历的时间,以及位移的大小,根据牛顿第二定律求出速度相等后的加速度,结合位移时间公式求出速度相等后匀加速运动的时间,从而得出b 到c 的时间. 【详解】(1)物体A 轻放在a 处瞬间,受力分析由牛顿第二定律得:1mg ma μ=解得:21 2.5m/s a =A 与皮带共速需要发生位移:219 1.8m 0.2m 25v x m a ===>共故根据运动学公式,物体A 从a 运动到b :21112ab x a t =代入数据解得:10.4s t =(2)到达b 点的速度:111m/s 3m/s b v a t ==<由牛顿第二定律得:22sin 37mg f ma ︒+= 2cos37N mg =︒且22f N μ=代入数据解得:228m/s a =物块在斜面上与传送带共速的位移是:2222b v v s a -=共代入数据解得:0.5m 5.5m s =<共时间为:2231s 0.25s 8b v v t a --=== 因为22sin 376m/s cos372m/s g g μ︒=︒=>,物块继续加速下滑 由牛顿第二定律得:23sin 37mg f ma ︒-= 2cos37N mg =︒,且22f N μ=代入数据解得:234m/s a =设从共速到下滑至c 的时间为t 3,由23331 2bc x s vt a t -=+共,得: 31s t =综上,物块从b 运动到c 的时间为:23 1.25s t t +=8.某种弹射装置的示意图如图所示,光滑的水平导轨MN 右端N 处于倾斜传送带理想连接,传送带长度L=15.0m ,皮带以恒定速率v=5m/s 顺时针转动,三个质量均为m=1.0kg 的滑块A 、B 、C 置于水平导轨上,B 、C 之间有一段轻弹簧刚好处于原长,滑块B 与轻弹簧连接,C 未连接弹簧,B 、C 处于静止状态且离N 点足够远,现让滑块A 以初速度v 0=6m/s 沿B 、C 连线方向向B 运动,A 与B 碰撞后粘合在一起.碰撞时间极短,滑块C 脱离弹簧后滑上倾角θ=37°的传送带,并从顶端沿传送带方向滑出斜抛落至地面上,已知滑块C 与传送带之间的动摩擦因数μ=0.8,重力加速度g=10m/s 2,sin37°=0.6,cos37°=0.8.(1)滑块A 、B 碰撞时损失的机械能; (2)滑块C 在传送带上因摩擦产生的热量Q ;(3)若每次实验开始时滑块A 的初速度v 0大小不相同,要使滑块C 滑离传送带后总能落至地面上的同一位置,则v 0的取值范围是什么?(结果可用根号表示) 【答案】(1)9J E ∆= (2)8J Q =03313m/s 397m/s 22v ≤≤ 【解析】试题分析:(1)A 、B 碰撞过程水平方向的动量守恒,由此求出二者的共同速度;由功能关系即可求出损失的机械能;(2)A 、B 碰撞后与C 作用的过程中ABC 组成的系统动量守恒,应用动量守恒定律与能量守恒定律可以求出C 与AB 分开后的速度,C 在传送带上做匀加速直线运动,由牛顿第二定律求出加速度,然后应用匀变速直线运动规律求出C 相对于传送带运动时的相对位移,由功能关系即可求出摩擦产生的热量.(3)应用动量守恒定律、能量守恒定律与运动学公式可以求出滑块A 的最大速度和最小速度.(1)A 与B 位于光滑的水平面上,系统在水平方向的动量守恒,设A 与B 碰撞后共同速度为1v ,选取向右为正方向,对A 、B 有:012mv mv = 碰撞时损失机械能()220111222E mv m v ∆=- 解得:9E J ∆=(2)设A 、B 碰撞后,弹簧第一次恢复原长时AB 的速度为B v ,C 的速度为C v 由动量守恒得:122B C mv mv mv =+由机械能守恒得:()()222111122222B C m v m v mv =+解得:4/c v m s =C 以c v 滑上传送带,假设匀加速的直线运动位移为x 时与传送带共速由牛顿第二定律得:210.4/a gcos gsin m s μθθ=-= 由速度位移公式得:2212C v v a x -=联立解得:x=11.25m <L加速运动的时间为t ,有:12.5Cv v t s a -== 所以相对位移x vt x ∆=- 代入数据得: 1.25x m ∆=摩擦生热·8Q mgcos x J μθ=∆= (3)设A 的最大速度为max v ,滑块C 与弹簧分离时C 的速度为1c v ,AB 的速度为1B v ,则C 在传送带上一直做加速度为2a 的匀减速直线运动直到P 点与传送带共速则有:22212c v v a L -=根据牛顿第二定律得:2212.4/a gsin gcos m s θμθ=--=-联立解得:1/c v s =设A 的最小速度为min v ,滑块C 与弹簧分离时C 的速度为2C v ,AB 的速度为1B v ,则C 在传送带上一直做加速度为1a 的匀加速直线运动直到P 点与传送带共速则有:22112c v v a L -=解得:2/c v s =对A 、B 、C 和弹簧组成的系统从AB 碰撞后到弹簧第一次恢复原长的过程中 系统动量守恒,则有:112max B C mv mv mc =+ 由机械能守恒得:()()22211111122222B C m v m v mv =+解得:13/2max c v v s ==同理得:/min v s =0//s v s ≤≤9.如图是利用传送带装运煤块的示意图.其中,传送带的从动轮与主动轮圆心之间的距离为3s m =,传送带与水平方向间的夹角37θ=o ,煤块与传送带间的动摩擦因数0.8μ=,传送带的主动轮和从动轮半径相等,主动轮轴顶端与运煤车底板间的竖直高度1.8H m =,与运煤车车箱中心的水平距离0.6.x m =现在传送带底端由静止释放一煤块(可视为质点).煤块恰好在轮的最高点水平抛出并落在车箱中心,取210/g m s =,sin370.6=o ,cos370.8=o ,求:(1)主动轮的半径;(2)传送带匀速运动的速度;(3)煤块在传送带上直线部分运动的时间.【答案】(1)0.1m (2)1m/s ;(3)4.25s【解析】【分析】(1)要使煤块在轮的最高点做平抛运动,则煤块到达轮的最高点时对轮的压力为零,根据平抛运动的规律求出离开传送带最高点的速度,结合牛顿第二定律求出半径的大小. (2)根据牛顿第二定律,结合运动学公式确定传送带的速度.(3)煤块在传送带经历了匀加速运动和匀速运动,根据运动学公式分别求出两段时间,从而得出煤块在传送带上直线部分运动的时间.【详解】(1)由平抛运动的公式,得x vt = ,21H gt 2=代入数据解得v =1m/s要使煤块在轮的最高点做平抛运动,则煤块到达轮的最高点时对轮的压力为零, 由牛顿第二定律,得 2v mg m R=, 代入数据得R =0.1m(2)由牛顿第二定律得mgcos mgsin ma μθθ=﹣ ,代入数据解得a =0.4m/s 2 由212v s a=得s 1=1.25m <s ,即煤块到达顶端之前已与传送带取得共同速度, 故传送带的速度为1m/s .(3)由v=at 1解得煤块加速运动的时间t 1=2.5s煤块匀速运动的位移为s 2=s ﹣s 1=1.75m ,可求得煤块匀速运动的时间t 2=1.75s煤块在传送带上直线部分运动的时间t =t 1+t 2代入数据解得t =4.25s10.如图所示,一个质量m =2 kg 的滑块在倾角为θ=37°的固定斜面上,受到一个大小为40 N 的水平推力F 作用,以v 0=20 m/s 的速度沿斜面匀速上滑.(sin 37°=0.6,取g =10 m/s 2)(1)求滑块与斜面间的动摩擦因数;(2)若滑块运动到A 点时立即撤去推力F ,求这以后滑块再返回A 点经过的时间.【答案】(1)0.5;(2)225s +()【解析】【分析】【详解】(1)滑块在水平推力作用下沿斜面向上匀速运动时,合力为零,则有Fcos37°=mgsin37°+μ(mgcos37°+Fsin37°)代入解得,μ=0.5(2)撤去F 后,滑块上滑过程:根据牛顿第二定律得:mgsin37°+μmgcos37°=ma 1, 得,a 1=g (sin37°+μcos37°) 上滑的时间为0112v t s a == 上滑的位移为01202v x t m == 滑块下滑过程:mgsin37°-μmgcos37°=ma 2,得,a 2=g (sin37°-μcos37°)由于下滑与上滑的位移大小相等,则有x=12a 2t 22 解得,22225x t s a == 故 t=t 1+t 2=(2+5s【点睛】本题分析滑块的受力情况和运动情况是关键,由牛顿第二定律和运动学公式结合是处理动力学问题的基本方法.。
高三物理复习-第三章 牛顿运动定律答案
第三章牛顿运动定律参考答案3.1当堂反馈:1、B 2、D能力训练: 1.C 2、D . 3、ABD 4.C . 5.B . 6.C 7.C .8.以a =g/2向上加速或向下减速 9.6m/s 2 10.M 2a/(F+Ma )3.2当堂反馈:1、0.5m 2、D能力训练: 1.D 2.ABC 3.CD 4.D . 5.BD 6.D 7.B 8.A9.①右滑,2.5m ,② a o ≤2.5m/s 210.(1)0.5 (2)gs 38 ........3.3当堂反馈:1.113.2N 106.6N 2.D能力训练:1.BC 2.D 3.ABC 4.CD 5.B 6.A 7.A8.沿斜面向下,g /sin α 9.(m+M )g ctg α. 10.(M+m )g sin α/m .3.4当堂反馈:1.(向右、al/g ) 2.gmg T hT )(2- 能力训练:1.C 2.A 3.A 4.AC 5、D 6.D 7.D 8.C 9.A10.当上顶板压力传感器示数为6N ,下底板的压力传感器示数为10.0N对物体有:mg +F 上-F 弹=ma ,F 弹=F 下代入数据得:m =0.50kg(1)弹簧弹力不变 mg+F/Q-F=ma ,得a 1=0。
箱静止或作匀速运动;(2)上项板压力为零,取向上为正,则F-mg=ma 2;代入数据得:a 2=10m/s 2,要使上项板示数为零,则箱向上的加速度于或等于10m/s 2均可。
11.司机在反应时间内,汽车作匀速运动的距离为s 1=vt 。
刹车时汽车加速度大小为a=f/m =4m/s 2,刹车过程中汽车运动的位移为s 2=v 2/2a总位移为s =s 1+s 2=160m12.(1)飞机在竖直方向作匀加速运动的位移为:h =(1/2)at 2,解得a=34m/s 2(2)对乘客据牛顿第二定律有:F T -mg=ma ,F T =24m (N ),即:F T :mg=2.4倍(3)若不系安全带,则乘客相对于机舱以24m/s 2的加速度向上运动,最有可能受伤的是人的头部。
2019版高考物理总复习 第三章 牛顿运动定律 3-3-2 考点强化 动力学中的图象问题教案
C.物体与斜面间的动摩擦因数
μ=
3 3
D.物体与斜面间的动摩擦因数μ
=7 3 15
转到解析
规律总结
数形结合解决动力学图象问题 (1)在图象问题中,无论是读图还是作图,都应尽量先建立 函数关系,进而明确“图象与公式”“图象与物体”间的 关系;然后根据函数关系读取图象信息或者描点作图。 (2)读图时,要注意图线的起点、斜率、截距、折点以及图 线与横坐标包围的“面积”等所对应的物理意义,尽可能 多地提取解题信息。
转到解析
题组剖析
命题角度2 动力学中的 a-t 图象
例4 广州塔,昵称小蛮腰,总高度达600米,游客乘坐观光电 梯大约一分钟就可以到达观光平台。若电梯简化成只受重力与 绳索拉力,已知电梯在t=0时由静止开始上升,a-t 图象如图3 所示。则下列相关说法正确的是( )
A.t=4.5 s时,电梯处于失重状态 B.5~55 s时间内,绳索拉力最小 解电析梯CD处..利于tt==用超56a重90-.5s状时ts图态时,象,,电可则电梯判选梯速断项处度:A于恰错t=超好误4重为.;5状零s0时态~,5 电s时梯间有内向,上电的梯加处速于度超,重 状态,拉力大于重力,5~55 s时间内,a=0,电梯处于匀速上升 过程,拉力等于重力,55~60 s时间内,电梯处于失重状态,拉力 小于重力,综上所述,选项B、C错误;因a-t图线与t轴所围的 “面积”代表速度改变量,而图中横轴上方的“面积”与横轴下 方的“面积”相等,则电梯的速度在t=60 s时为零,选项D正确。
动力学中的图象问题
01 课堂互动 02 题组剖析力学图象 v-t图象、a-t图象、F-t图象、F-a图象等。
2.图象问题的类型 (1)已知物体受到的力随时间变化的图线,要求分析物体 的运动情况。 (2)已知物体的速度、加速度随时间变化的图线。要求分 析物体的受力情况。 (3)由已知条件确定某物理量的变化图象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2课时牛顿第二定律两类动力学问题
1.汽车安全带的作用是在汽车紧急刹车或发生碰撞时,尽可能地减轻对乘员的伤害.假定乘客质量为70 kg,汽车车速为90 km/h,从踩下刹车到完全停止需要的时间为5 s,安全带对乘客的作用力大小约为(不计人与座椅间的摩擦)( C )
A.450 N
B.400 N
C.350 N
D.300 N
解析:汽车的速度v0=90 km/h=25 m/s,设汽车匀减速的加速度大小为a,则
m/s2,对乘客由牛顿第二定律得F=ma=70×5 N=350 N,所以C项正确.
2.(2018·河北唐山模拟)竖直向上飞行的子弹,到达最高点后又返回原处.假设整个运动过程中,子弹受到的阻力与速度的大小成正比,且阻力始终小于其重力,则子弹在整个运动过程中,加速度大小的变化是( B )
A.始终变大
B.始终变小
C.先变大后变小
D.先变小后变大
解析:子弹向上运动过程中速度越来越小,子弹受向下的阻力越来越小,子弹受到的合外力越来越小,由牛顿第二定律可知,子弹上升过程中加速度越来越小;子弹从最高点向下运动过程做加速运动,其速度越来越大,受到向上的空气阻力越来越大,物体受到的合外力越来越小,其加速度越来越小,选项B正确.
3.物块A1,A2的质量均为m,B1,B2的质量均为2m,A1,A2用一轻杆连接,B1,B2用轻质弹簧连接.两个装置都放在水平的支托物M上,处于平衡状态,如图所示.今突然迅速地撤去支托物M,在除去支托物的瞬间,A1,A2加速度分别为a1和a2,B1,B2的加速度分别为a1′和a2′,则( C )
A.a1=0,a2=2g;a1′=0,a2′=2g
B.a1=0,a2=2g;a1′=g,a2′=2g
C.a1=g,a2=g;a1′=0,a2′=2g
D.a1=g,a2=g;a1′=g,a2′=g
解析:A1,A2用一轻杆连接,它们的加速度始终相等,在除去支托物的瞬间,由它们组成的系统只受到重力的作用,根据牛顿第二定律可知,它们的加速度
a1=a2=g;B1,B2用轻质弹簧连接,在除去支托物的瞬间弹簧上的弹力不能突然消失,所以B1的受力不变,加速度仍为零,即a1′=0,而B2受到的竖直向上的支持力突然消失,受到的竖直向下的重力和弹簧弹力不变,加速度大小a2′=2g,选项C正确. 4.如图所示,小车内两根不可伸长的细线AO,BO拴住一小球,其中BO水平,小车沿水平地面向右做加速运动,AO与BO的拉力分别为T A,T B.若加速度增大,则( C )
A.T A,T B均增大
B.T A,T B均减小
C.T A不变,T B增大
D.T A减小,T B不变
解析:设OA与竖直方向的夹角为θ,则对小球有T A cos θ=mg,T B-
T A sin θ=ma,故若加速度增大,T A不变,T B增大.选项C正确.
5.(2018·襄阳模拟)(多选)质量均为m的A,B两个小球之间系一个质量不计的弹簧,放在光滑的水平面上.A紧靠墙壁,如图所示,现用恒力F将B球向左挤压弹簧,
达到平衡时,突然将力F撤去,此瞬间( BD )
A.A
B.A球的加速度为零
C.B
D.B
解析:恒力F作用时,A和B都平衡,它们的合力都为零,且弹簧弹力为F.突然将力F撤去,对A来说水平方向依然受弹簧弹力和墙壁的弹力,二力平衡,所以A球的合力为零,加速度为零,A项错,B项对;B球在水平方向只受水平向右的弹簧的弹力作
用,加速度故C项错,D
项对.
6.(多选)如图所示,质量为m=1 kg的物体与水平地面之间的动摩擦因数为0.3,当物体运动的速度为10 m/s时,给物体施加一个与速度
方向相反的大小为F=2 N的恒力,在此恒力作用下(g取10 m/s2)
( BC )
A.物体经10 s速度减为零
B.物体经2 s速度减为零
C.物体速度减为零后将保持静止
D.物体速度减为零后将向右运动
解析:物体受到向右的滑动摩擦力,f=μN=μG=3 N,根据牛顿第二定律
得m/s2=5 m/s2,方向向右,物体减速到0所需的时间t=
s=2 s,B正确,A错误.减速到零后,恒力F一定小于最大静摩擦力,则物体处。