人教版高数必修一第8讲:函数的零点与二分法(学生版)
高中数学人教B版必修一课件2.4函数零点与二分法
f(x)=x3+x2+1在(-2,-1)上的零点更靠近区间的哪 个端点?能不能限制在更小的区间上?
要解决这个问题,需要新的方法
问在题一个风雨交加的夜里,从某水库闸房到防
洪指挥部的一条16km长电话线发生故障,要 把故障可能发生的范围缩小到1km左右要检 查多少次?
4次 定义:每次取中点,将区间一分为二,再经比较, 按需要留下其中一个小区间的方法叫二分法,
A
B
C
D
注:二分法只适用于连续函数变号零点 的求解,不变号零点问题不能使用
练习
2.函数f(x)=x3-2x2+3x-6在区间[-2,4]上的零点必
D 定在()内其中f(1.75)<0
(A)[-2,1](B)[2.5,4] (C)[1,1.75](D)[1.75,2.5]
课堂小结
1. 二分法定义 2. 二分法是求函数零点近似解的一种计算方
高中数学课件
(金戈铁骑 整理制作)
2.4函数零点与二分法
一零点定义:
使函数y f (x)的值为0的实数x的值 称为函数的零点
函数y=f(x)的零点
数
方程f(x)=0的实数根
形
函数y=f(x)的图象与x轴的交点的横坐标
二零点的分类:
(1)变号零点(穿过x轴的零点)
如右图x1
x1 x2
(2)不变号零点(与x轴的相切的零点)
法. 2.解题步骤 ①确定初始区间
②计算并确定下一区间,定端点值符号 ③循环进行,达到精确度。 3.二分法渗透了逼近的数学思想.
y
y
0a
bxBiblioteka 0ayybx
0a
bx
0a
bx
高中数学 第8章 函数应用 8.1.1 函数的零点教学案(含解析)高一第一册数学教学案
8.1 二分法与求方程近似解8.1.1 函数的零点一般地,我们把使函数y=f(x)的值为0的实数x称为函数y=f(x)的零点.2.方程、函数、图象之间的关系(1)函数y=f(x)的零点就是方程f(x)=0的实数解.(2)函数y=f(x)的零点就是它的图象与x轴交点的横坐标.3.零点存在性定理若函数y=f(x)在区间[a,b]上的图象是一条不间断的曲线,且f(a)f(b)<0,则函数y =f(x)在区间(a,b)上有零点.1.思考辨析(正确的打“√”,错误的打“×”)(1)任何函数都有零点.( )(2)任意两个零点之间函数值保持同号.( )(3)若函数y=f(x)在区间(a,b)上有零点,则一定有f(a)·f(b)<0.( )[提示](1)可举反例f(x)=x2+1无零点.(2)两个零点间的函数值可能会保持同号,也可以异号,如f(x)=(x-1)(x-2)(x-3)有三个零点,即x=1,2,3,在(1,2)上f(x)为正,在(2,3)上f(x)为负,故在零点1和3之间有正有负.(3)举例f (x )=x 2-1,选择区间(-2,2),显然f (x )在(-2,2)上有零点1和-1,但是f (2)·f (-2)>0.[答案] (1)× (2)× (3)×2.(一题两空)函数y =x 2+3x +2的零点是________,其图象与x 轴的交点为________. -1,-2 (-1,0),(-2,0) [令x 2+3x +2=0,则(x +2)(x +1)=0,∴x =-1或x =-2.]3.若函数f (x )在区间[2,5]上是减函数,且图象是一条连续不断的曲线,f (2)·f (5)<0,则函数f (x )在区间(2,5)上零点的个数是________.1 [由f (x )在区间[2,5]上是减函数,可得f (x )至多有一个零点.又因为f (x )是一条连续不断的曲线,f (2)·f (5)<0,所以f (x )在(2,5)上至少有一个零点,可得f (x )恰有一个零点.]求函数的零点(1)f (x )=x 3-x ;(2)f (x )=2x-8;(3)f (x )=1-log 4 x ;(4)f (x )=(ax -1)(x -2)(a ∈R ).[思路点拨] 根据函数的零点和方程根的关系,求函数的零点就是求相应方程的实数根.[解] (1)∵f (x )=x 3-x =x (x 2-1)=x (x -1)(x +1),令f (x )=0,得x =0,1,-1,故f (x )的零点为x =-1,0,1.(2)令f (x )=2x-8=0,∴x =3, 故f (x )的零点为x =3.(3)令f (x )=1-log 4 x =0,∴log 4 x =1,∴x =4. 故f (x )的零点为x =4.(4)当a =0时,函数为f (x )=-x +2, 令f (x )=0,得x =2. ∴f (x )的零点为2.当a =12时,f (x )=⎝ ⎛⎭⎪⎫12x -1(x -2)=12(x -2)2,令f (x )=0,得x 1=x 2=2. ∴f (x )有零点2.当a ≠0且a ≠12时,令f (x )=0,得x 1=1a ,x 2=2.∴f (x )的零点为1a,2.综上,当a =0时,f (x )的零点为2;当a =12时,函数有零点2;当a ≠0且a ≠12时,f (x )的零点为1a,2.函数的零点的求法求函数f (x )的零点时,通常转化为解方程f (x )=0,若方程f (x )=0有实数根,则函数f (x )存在零点,该方程的根就是函数f (x )的零点;否则,函数f (x )不存在零点.[跟进训练]1.求下列函数的零点.(1)f (x )=⎩⎪⎨⎪⎧ln x -1,x >12x -1-1,x ≤1;(2)f (x )=(2x-3)ln(x -2);(3)f (x )=sin ⎝⎛⎭⎪⎫2x -π3,x ∈[0,π].[解] (1)当x >1时,令f (x )=ln(x -1)=0,得x =2;当x ≤1时,令f (x )=2x -1-1=0,得x =1.所以函数的零点是1和2.(2)因为函数f (x )的定义域为(2,+∞),所以2x>4, 由(2x-3)ln(x -2)=0,得x -2=1,所以x =3, 即函数f (x )=(2x-3)ln(x -2)的零点是3. (3)因为x ∈[0,π],所以⎝⎛⎭⎪⎫2x -π3∈⎣⎢⎡⎦⎥⎤-π3,5π3,由sin ⎝ ⎛⎭⎪⎫2x -π3=0,得2x -π3=0或2x -π3=π,解得x =π6或x =2π3,所以函数f (x )=sin ⎝⎛⎭⎪⎫2x -π3,x ∈[0,π]的零点是π6和2π3.零点存在性定理及其应用x序号)①⎝ ⎛⎭⎪⎫-14,0;②⎝ ⎛⎭⎪⎫0,14;③⎝ ⎛⎭⎪⎫14,12;④⎝ ⎛⎭⎪⎫12,34. [思路点拨] 利用函数零点的存在性定理判断,即是否具备f (a )f (b )<0,也可以利用函数图象判断,即函数图象与x 轴是否有交点.③ [∵f ⎝ ⎛⎭⎪⎫14=4e -2<0,f ⎝ ⎛⎭⎪⎫12=e -1>0,∴f ⎝ ⎛⎭⎪⎫14·f ⎝ ⎛⎭⎪⎫12<0, ∴零点在⎝ ⎛⎭⎪⎫14,12上.] 1.判断零点所在区间有两种方法:一是利用零点存在性定理,二是利用函数图象. 2.要正确理解和运用函数零点的性质在函数零点所在区间的判断中的应用,若f (x )的图象在[a ,b ]上连续,且f (a )·f (b )<0,则f (x )在(a ,b )上必有零点,若f (a )·f (b )>0,则f (x )在(a ,b )上不一定没有零点.[跟进训练]2.根据表格中的数据,可以断定方程e x-(x +3)=0(e≈2.72)的一个根所在的区间是________.(填序号)x-1 0 1 2 3e x0.37 1 2.72 7.40 20.12 x +323456①(-1,0);②(0,1);③(1,2);④(2,3).③ [设f (x )=e x-(x +3),由上表可知,f (-1)=0.37-2<0,f (0)=1-3<0,f (1)=2.72-4<0,f (2)=7.40-5>0,f (3)=20.12-6>0,∴f (1)·f (2)<0,因此方程e x-(x +3)=0的根在(1,2)内.]函数零点(方程不等实根)个数的判断1.如何去求一个方程的零点?[提示] (1)可以解方程;(2)可以结合图象;(3)可以用零点存在性定理. 2.求方程零点的方法有何优缺点?能否用来判断零点的个数? [提示] 解方程法.优点:解的准确,不需估算.缺点:有些方程,我们解不出根的精确值,如f (x )=2x-3x .图象法和零点存在性定理解得的零点未必是精确值,但我们可以通过图象的交点个数来判断方程零点的个数.【例3】 (1)函数f (x )=e x-3的零点个数为________. (2)函数f (x )=ln x -1x -1的零点个数是________. (3)已知关于x 的一元二次方程(x -1)(3-x )=a -x (a ∈R ),试讨论方程实数根的个数. [思路点拨] (1)利用函数的零点的概念解方程求解.(2)利用函数图象来求解.(3)原方程可化为(x -1)(3-x )+x =a ,利用直线y =a 与抛物线y =(x -1)(3-x )+x 的位置关系讨论,也可以利用判别式.(1)1 (2)2 [(1)令f (x )=0,∴e x-3=0,∴x =ln 3,故f (x )只有1个零点. (2)在同一坐标系中画出y =ln x 与y =1x -1的图象,如图所示,函数y =ln x 与y =1x -1的图象有两个交点,所以函数f (x )=ln x -1x -1的零点个数为2.] (3)[解] 法一:原方程化为-x 2+5x -3=a . 令f (x )=-x 2+5x -3,g (x )=a .作函数f (x )=-x 2+5x -3的图象,抛物线的开口向下,顶点的纵坐标为12-254×-1=134,画出如图所示的简图: 由图象可以看出:①当a >134时,方程没有实数根;②当a =134时,方程有两个相等的实数根;③当a <134时,方程有两个不相等的实数根.法二:原方程化为x 2-5x +3+a =0.Δ=25-4(3+a )=-4a +13.①当Δ<0,即a >134时,方程没有实数根;②当Δ=0,即a =134时,方程有两个相等的实数根;③当Δ>0,即a <134时,方程有两个不相等的实数根.(变条件)若把本例(3)中x 加以限制(1<x <3),求解相应问题. [解] 原方程可化为-x 2+5x -3=a (1<x <3),作函数f (x )=-x 2+5x -3(1<x <3)的图象,注意f (x )=-x 2+5x -3的对称轴为x =52, f ⎝ ⎛⎭⎪⎫52=-254+252-3=50-25-124=134, f (1)=-1+5-3=1,f (3)=-9+15-3=3.故f (x )在1<x <3上的草图如图所示: 由图可知,①当a =134或1<a ≤3时,方程有一个实数根;②当3<a <134时,方程有两实数根;③当a ≤1或a >134时,方程无实数根.判断函数零点的个数的方法主要有:(1)可以利用零点存在性定理来确定零点的存在性,然后借助于函数的单调性判断零点的个数.(2)利用函数图象交点的个数判定函数零点的个数.[跟进训练]3.函数f (x )=lg x -sin x 的零点有i (i ∈N *)个,记为x i ,x i ∈(k π2,k +1π2),k ∈N *,则k 构成的集合为______________.{1,4,5} [由f (x )=lg x -sin x 得lg x =sin x ,在同一坐标系中作出y =lg x 和y =sin x 的图象,如下图,由图象知,函数f (x )=lg x -sin x 有三个零点x 1∈⎝⎛⎭⎪⎫π2,π,x 2∈⎝⎛⎭⎪⎫2π,5π2,x 3∈⎝⎛⎭⎪⎫5π2,3π,因为x i ∈(k π2,k +1π2),k ∈N *,所以k =1,4,5,所以k 构成的集合为{1,4,5}.]1.在函数零点存在性定理中,要注意三点:(1)函数是连续的;(2)定理不可逆;(3)至少存在一个零点.2.方程f (x )=g (x )的根是函数y =f (x )与y =g (x )的图象交点的横坐标,也是函数y =f (x )-g (x )的图象与x 轴交点的横坐标.3.函数与方程有着密切的联系,有些方程问题可以转化为函数问题求解,同样,函数问题有时化为方程问题,这正是函数与方程思想的基础.1.下列图象表示的函数中没有零点的是( )A [B 、C 、D 的图象均与x 轴有交点,故函数均有零点,A 的图象与x 轴没有交点,故函数没有零点.]2.设函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=e x+x -3,则f (x )的零点个数为( )A .1B .2C .3D .4C [因为函数f (x )是定义域为R 的奇函数,所以f (0)=0,所以0是函数f (x )的一个零点.当x >0时,令f (x )=e x+x -3=0,则e x=-x +3.分别画出函数y =e x和y =-x +3的图象(图略),如图所示,有一个交点,所以函数f (x )在(0,+∞)上有一个零点.又根据对称性知,当x <0时函数f (x )也有一个零点. 综上所述,f (x )的零点个数为3.应选C .]3.已知函数f (x )的图象是连续不断的,有如下的x ,f (x )对应值表:4 [∵f (2)·f (3)<0,f (3)·f (4)<0,f (4)·f (5)<0,f (6)·f (7)<0,∴共有4个区间.]4.函数f (x )=x 2-ax +1在区间⎝ ⎛⎭⎪⎫12,3上有零点,求实数a 的取值范围.[解] 由题意知方程ax =x 2+1在⎝ ⎛⎭⎪⎫12,3上有解,即a =x +1x 在⎝ ⎛⎭⎪⎫12,3上有解,设t =x +1x ,x ∈⎝ ⎛⎭⎪⎫12,3, 则t 的取值范围是⎣⎢⎡⎭⎪⎫2,103.所以实数a 的取值范围是⎣⎢⎡⎭⎪⎫2,103.。
人教版高数必修一第8讲:函数的零点与二分法(教师版)
函数的零点与二分法__________________________________________________________________________________ __________________________________________________________________________________1、 掌握函数的零点和二分法的定义.2、 会用二分法求函数零点的近似值。
一、函数的零点:定义:一般地,如果函数()y f x =在实数a 处的值等于零即()0f a =,则a 叫做这个函数的零点。
对于任意函数,只要它的图像是连续不间断的,其函数的零点具有下列性质:当它通过零点(不是偶次零点)时函数值变号;相邻两个零点之间的所有的所有函数值保持同号。
特别提醒:函数零点个数的确定方法:1、判断二次函数的零点个数一般由判别式的情况完成;2、对于二次函数在某个闭区间上零点的个数以及不能用判别式判断的二次函数的零点,则要结合二次函数的图像进行;3、对于一般函数零点的个数的判断问题不仅要在闭区间[],a b 上是连续不间断的,且f(a) f (b )<0,还必须结合函数的图像和性质才能确定。
函数有多少个零点就是其对应的方程有多少个实数解。
二、二分法:定义:对于区间[],a b 上连续的,且()()0f a f b -<的函数()y f x =,通过不断地把函数()f x 的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,从而等到零点近似值的方法,叫做二分法。
特别提醒:用二分法求函数零点的近似值第一步:确定区间[],a b ,验证:f(a) f (b )<0,给定精确度; 第二步:求区间[],a b 得中点1x ;第三步:计算()1f x ;若()1f x =0,则1x 就是函数零点;若f(a) f ( )<0,则令1b x =;若f( ) f(b )<0,则令1a x =第四步:判断是否达到精确度ε,即若a b ε-<,则得到零点近似值a ()b 或,否则重复第二、 三、四步。
人教版高数必修一第8讲:函数的零点与二分法
函数的零点与二分法__________________________________________________________________________________ __________________________________________________________________________________1、 掌握函数的零点和二分法的定义.2、 会用二分法求函数零点的近似值。
一、函数的零点:定义:一般地,如果函数()y f x =在实数a 处的值等于零即()0f a =,则a 叫做这个函数的零点。
对于任意函数,只要它的图像是连续不间断的,其函数的零点具有下列性质:当它通过零点(不是偶次零点)时函数值变号;相邻两个零点之间的所有的所有函数值保持同号。
特别提醒:函数零点个数的确定方法:1、判断二次函数的零点个数一般由判别式的情况完成;2、对于二次函数在某个闭区间上零点的个数以及不能用判别式判断的二次函数的零点,则要结合二次函数的图像进行;3、对于一般函数零点的个数的判断问题不仅要在闭区间[],a b 上是连续不间断的,且f(a)∙f (b )<0,还必须结合函数的图像和性质才能确定。
函数有多少个零点就是其对应的方程有多少个实数解。
二、二分法:定义:对于区间[],a b 上连续的,且()()0f a f b -<的函数()y f x =,通过不断地把函数()f x 的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,从而等到零点近似值的方法,叫做二分法。
特别提醒:用二分法求函数零点的近似值第一步:确定区间[],a b ,验证:f(a)∙f (b )<0,给定精确度; 第二步:求区间[],a b 得中点1x ;第三步:计算()1f x ;若()1f x =0,则1x 就是函数零点;若f(a)∙f (x 1)<0,则令1b x =;若f(x 1)∙f (b )<0,则令1a x =第四步:判断是否达到精确度ε,即若a b ε-<,则得到零点近似值a ()b 或,否则重复第二、 三、四步。
高中数学第8章函数应用8.1函数的零点课件必修第一册高一第一册数学课件
合作
探究
释疑
难
素 养
课
合
时
作
分
探
层
究
作
释
业
疑
难
返
首
12/9/2021
页
第十二页,共五十页。
求函数的零点(línɡ diǎn)
情
景
导
【例1】 求下列函数的零点.
学
探 新
(1)f(x)=x3-x;(2)f(x)=2x-8;(3)f(x)=1-log4
知 -1)(x-2)(a∈R).
课 堂 小 结 提
x;(4)f(x)=(ax 素
合
时
作 探
(a,b)上必有零点,若f(a)·f(b)>0,则f(x)在(a,b)上不一定没有零
分 层
究
释 点.
作 业
疑
难
返
首
12/9/2021
页
第二十三页,共五十页。
情
[跟进训练]
课 堂
景 导
2.根据表格中的数据,可以断定方程
ex-(x+3)=0(e≈2.72)
小 结
学
提
探 新
的一个根所在的区间是________.(填序号)
[由f(x)在区间[2,5]上是减函数,可得f(x)至多有一个零点.又
课 时
作
探 因为f(x)是一条连续不断的曲线,f(2)·f(5)<0,所以f(x)在(2,5)上至少
分 层
究
作
释 疑
有一个零点,可得f(x)恰有一个零点.]
业
难
返
首
12/9/2021
页
第十一页,共五十页。
课
情
2024-2025学年高一数学必修第一册(配湘教版)教学课件4.4.2计算函数零点的二分法
试……像检修线路所用的这种方法称作二分法.
2.用二分法求函数零点近似值的一般操作方法:
设函数y=f(x)定义在区间D上,其图象是一条连续曲线.我们希望求它在D上
的一个零点x0的近似值x,使它与零点的误差不超过给定的正数ε,即使得
次数 a,+
b,-
a+b
m=
2
1
-3
-2
-2.5
1.25
1
2
-2.5
-2
-2.25
0.062 5
0.5
3
-2.25
-2
-2.125
-0.484 4
0.25
4
-2.25
-2.125
-2.187 5
-0.214 8
0.125
f(m)的近似值
区间长 b-a
得出零点的近似值为-2.187 5,误差不超过0.07.
2
解析 ∵f(1)=-1<0,f(2)=ln 2>0,f
∴下一个含零点的区间是
3
,2
2
.
3
2
3
=ln2
.
−
1
<0,
2
1 2 3 4 5 6
6.用二分法求函数f(x)=x3-x-1在区间(1,1.5)内的一个零点的近似值(误差不
超过0.1).(参考数据:1.3753≈2.600,1.312 53≈2.261)
4
1.375
1.5
1.437 5
-0.029 5
0.125
f(m)的近似值
区间长 b-a
得出零点的近似值为 1.437 5,误差不超过 0.07.
人教版(新教材)高中数学第一册(必修1)精品课件:4.5.1 函数的零点与方程的解
A.(-1,0)
B.x=-1
C.x=1
D.x=0
(2)设函数 f(x)=21-x-4,g(x)=1-log2(x+3),则函数 f(x)的零点与 g(x)的零点之
和为________.
(3)若 3 是函数 f(x)=x2-mx 的一个零点,则 m=______________________.
解析 (1)令 1+1x=0,解得 x=-1,故选 B. (2)令f(x)=21-x-4=0解得x=-1,即f(x)的零点为-1,令g(x)=1-log2(x+3)= 0,解得x=-1,所以函数f(x)的零点与g(x)的零点之和为-2. (3)由f(3)=32-3m=0解得m=3. 答案 (1)B (2)-2 (3)3
规律方法 探究函数零点的两种求法 (1)代数法:求方程f(x)=0的实数根,若存在实数根,则函数存在零点,否则 函数不存在零点. (2)几何法:与函数y=f(x)的图象联系起来,图象与x轴的交点的横坐标即为函 数的零点.
【 训 练 1 】 函 数 f(x) = ax + b 有 一 个 零 点 是 2 , 那 么 函 数 g(x) = bx2 - ax 的 零 点 是
又f(x)的图象在(0,1)内是一条连续不断的曲线,∴f(x)在(0,1)内有零点.
(2)由题意知,x≠0,则原方程即为 lg(x+2)=1x,在同一平面直角坐标系中作出函 数 y=lg(x+2)与 y=1x的图象,如图所示,由图象可知,原方程有两个根,一个在 区间(-2,-1)上,一个在区间(1,2)上,所以 k=-2 或 k=1.故选 C.
2.若函数f(x)在(a,b)内有零点,则f(a)f(b)<0.( × ) 提示 反例:f(x)=x2-2x在区间(-1,3)内有零点,但f(-1)·f(3)>0.
高一 数学 函数的零点与二分法课件
二分法在寻找函数零点中的应用
二分法是一种通过不断将区间 一分为二来逼近函数零点的数 值方法。
在给定一个连续函数和一个闭 区间,不知道零点所在的大致 位置时,可以使用二分法来找 到零点。
二分法的基本思想是,如果函 数在区间两端取值异号,则该 区间内必定存在一个零点。
二分法在解决函数零点问题中的优势
实例
以 $f(x) = x^2 - 2x - 3$ 为例, 其零点为 $x = -1, x = 3$。
高次函数的零点问题
高次函数零点定义
高次函数 $f(x)$ 的零点是满足 $f(x) = 0$ 的 $x$ 值。
零点求解方法
通过解高次方程来找到零点。
实例
以 $f(x) = x^3 - x - 1$ 为例,其零点为 $x = 1, x = -1, x = frac{1}{3}$。
以 $f(x) = x - 3$ 为例,其零点为 $x = 3$。
零点求解方法
通过解方程 $ax + b = 0$ 来找到零 点。
二次函数的零点问题
二次函数零点定义
二次函数 $f(x) = ax^2 + bx + c$ 的零点是满足 $f(x) = 0$ 的
$x$ 值。
零点求解方法
通过解二次方程 $ax^2 + bx + c = 0$ 来找到零点。
导数法
通过判断导数的正负来判 断函数的单调性,进而找 到函数的零点。
03 二分法原理
二分法的定义
二分法定义
二分法是一种求解实数近似值的方法,通过不断将区间一分 为二,使区间长度逐渐缩小,当区间长度小于给定的误差范 围时,区间内的任意实数近似值即可作为所求的近似解。
人教版高数必修一第8讲:函数的零点与二分法(学生版)
4-1函数的零点与二分法1、 掌握函数的零点和二分法的定义.2、 会用二分法求函数零点的近似值。
一、函数的零点:定义:一般地,如果函数()y f x =在实数a 处的值等于零即()0f a =,则a 叫做这个函数的零点。
对于任意函数,只要它的图像是连续不间断的,其函数的零点具有下列性质:当它通过零点(不是偶次零点)时函数值变号;相邻两个零点之间的所有的所有函数值保持同号。
特别提醒:函数零点个数的确定方法:1、判断二次函数的零点个数一般由判别式的情况完成;2、对于二次函数在某个闭区间上零点的个数以及不能用判别式判断的二次函数的零点,则要结合二次函数的图像进行;3、对于一般函数零点的个数的判断问题不仅要在闭区间[],a b 上是连续不间断的,且f(a)∙f (b )<0,还必须结合函数的图像和性质才能确定。
函数有多少个零点就是其对应的方程有多少个实数解。
二、二分法:定义:对于区间[],a b 上连续的,且()()0f a f b -<的函数()y f x =,通过不断地把函数()f x 的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,从而等到零点近似值的方法,叫做二分法。
特别提醒:用二分法求函数零点的近似值第一步:确定区间[],a b ,验证:f(a)∙f (b )<0,给定精确度; 第二步:求区间[],a b 得中点1x ;第三步:计算()1f x ;若()1f x =0,则1x 就是函数零点;若f(a)∙f (x 1)<0,则令1b x =;若f(x 1)∙f (b )<0,则令1a x =第四步:判断是否达到精确度ε,即若a b ε-<,则得到零点近似值a ()b 或,否则重复第二、 三、四步。
类型一求函数的零点例1:求函数y =x -1的零点:练习1:求函数y =x 3-x 2-4x +4的零点.练习2:函数f (x )=2x +7的零点为( )A .7B .72C .-72 D .-7类型二 零点个数的判断例2:判断函数f (x )=x 2-7x +12的零点个数练习1:二次函数y =ax 2+bx +c 中,a ·c <0,则函数的零点个数是( ) A .1个 B .2个 C .0个 D .无法确定练习2:已知二次函数f (x )=ax 2+6x -1有两个不同的零点,则实数a 的取值范围是( ) A .a >-9且a ≠0 B .a >-9 C .a <-9D .a >0或a <0类型三 函数零点的应用例3:若关于x 的方程x 2+(k -2)x +2k -1=0的两实数根中,一根在0和1之间,另一根在1和2之间,求实数k 的取值范围.练习1:已知方程x 2+2px +1=0有一个根大于1,有一个根小于1,则p 的取值范围为__________.练习2:函数f (x )=2(m +1)x 2+4mx +2m -1的一个零点在原点,则m 的值为________.类型四二分法的概念例4:函数图象与x 轴均有公共点,但不能用二分法求公共点横坐标的是( ).练习1:函数y =f (x )在区间[a ,b ]上的图象不间断,并且f (a )·f (b )<0,则这个函数在这个区间上( )A .只有一个变号零点B .有一个不变号零点C .至少有一个变号零点D .不一定有零点练习2:用二分法求函数f (x )=x 3-2的零点时,初始区间可选为( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)类型五 用二分法求函数零点的近似值例5:求函数f (x )=x 3+2x 2-3x -6的一个为正数的零点(精确到0.1).练习1:试用计算器求出函数f (x )=x 2,g (x )=2x +2的图象交点的横坐标(精确到0.1).练习2: (2014~2015学年度四川省中学高一月考)用二分法求方程x 3+3x -7=0在(1,2)内近似解的过程中,设函数f (x )=x 3+3x -7,算得f (1)<0,f (1.25)<0,f (1.5)>0,f (1.75)>0,则该方程的根落在区间( )A .(1,1.25)B .(1.25,1.5)C .(1.5,1.75)D .(1.75,2)1、(2014·湖北文)已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x .则函数g (x )=f (x )-x +3的零点的集合为( )A .{1,3}B .{-3,-1,1,3}C .{2-7,1,3}D .{-2-7,1,3}2、已知x =-1是函数f (x )=ax+b (a ≠0)的一个零点,则函数g (x )=ax 2-bx 的零点是( ) A .-1或1 B .0或-1 C .1或0D .2或13、三次方程x 3+x 2-2x -1=0的根不可能所在的区间为( ) A .(-2,-1) B .(-1,0) C .(0,1)D .(1,2)4、(2014~2015学年度黑龙江省哈尔滨市第三十二中学高一期中测试)若函数f (x )=x 3+x 2-2x -2的一个正数零点附近的函数值用二分法逐次计算,参考数据如下表:0.1)为( ) A .1.2 B .1.3 C .1.4D .1.55、已知函数y =f (x )的图象是连续不断的,有如下的对应值表:A .2个B .3个C .4个D .5个_________________________________________________________________________________ _________________________________________________________________________________基础巩固1.若函数f (x )在定义域{x |x ≠0}上是偶函数,且在(0,+∞)上是减函数,f (2)=0,则函数f (x )的零点有( )A .一个B .两个C .至少两个D .无法判断2.若关于x 的方程ax 2+bx +c =0(a ≠0)有两个实根1、2,则实数f (x )=cx 2+bx +a 的零点为( )A .1,2B .-1,-2C .1,12D .-1,-123.若a <b <c ,则函数f (x )=(x -a )(x -b )+(x -b )(x -c )+(x -c )(x -a )的两个零点分别位于区间( )A .(a ,b )和(b ,c )内B .(-∞,a )和(a ,b )内C .(b ,c )和(c ,+∞)内D .(-∞,a )和(c ,+∞)内4.下列命题中正确的是( )A .方程(x -2)(x -5)=1有两个相异实根,且一个大于5,一个小于2B .函数y =f (x )的图象与直线x =1的交点个数是1C .零点存在性定理能用来判断函数零点的存在性,也能用来判断函数零点的个数D .利用二分法所得方程的近似解是惟一的5.在用二分法求函数f (x )的一个正实数零点时,经计算, f (0.64)<0, f (0.72)>0, f (0.68)<0,则函数的一个精确到0.1的正实数零点的近似值为( )A .0.68B .0.72C .0.7D .0.6能力提升6.二次函数y =ax 2+bx +c (x ∈R )的部分对应值如下表,则使ax 2+bx +c >0成立的x 的取值范围是______.x -3 -2 -1 0 1 2 3 4 y6-4-6-6-467.已知函数2f (x )=c (c ∈R )有两个实根m 、m +6,则实数c 的值为________.8.给出以下结论,其中正确结论的序号是________. ①函数图象通过零点时,函数值一定变号; ②相邻两个零点之间的所有函数值保持同号;③函数f (x )在区间[a ,b ]上连续,若满足f (a )·f (b )<0,则方程f (x )=0在区间[a ,b ]上一定有实根;④“二分法”对连续不断的函数的所有零点都有效.9.设函数f (x )=⎩⎪⎨⎪⎧x 2+bx +c x ≤02x >0,若f (-4)=2, f (-2)=-2,则关于x 的方程f (x )=x 的解的个数是________. 10.已知函数f (x )=ax 3-2ax +3a -4在区间(-1,1)上有一个零点. (1)求实数a 的取值范围;(2)若a =3217,用二分法求方程f (x )=0在区间(-1,1)上的根.。
人教高中数学必修一B函数的零点讲课文档
(1)y=x2+7x-8
(2)y=-x2+2x+8
第十五页,共19页。
回忆总结:
1、本节课学习哪些知识?
2、在学习中你体会到了哪些数学思想方 法?
课堂总结:
1、知识方面:学习了零点的定义及其求法,利 用函数的零点作出函数的简图。 2、思想方法:主要有转化思想,数形结合的思 想。
第十六页,共19页。
值的符号有什么关系?
第十二页,共19页。
函数零点的性质
1、当函数的图象穿过x轴通过零点时, 函数值变号。
2、在被零点划分的同一区间内所有函数 值保持同号。
第十三页,共19页。
例3、 y=-x2-2x+3的自变量在什么范
围内取值时,函数值大于0、小于0或 等于0
第十四页,共19页。
练习
求下列函数的零点并画出函数的图象,并指出自变量在什么范围内取值时, 函数值大于0、小于0或等于0;
第十页,共19页。
x … -1.5 - - 0 0.5 1 1.5 2 1 0. 5
y … - 0 1.88 2 1.13 0 -0.63 0 4.3 8
在直角坐标系内描点
连线,这个函数的图
象如图所示。
2.5 … 2.63 …
第十一页,共19页。
思考问题:
1、在零点两侧附近函数值的符号怎样? 2、在被零点划分的同一区间的所有的函数
第四页,共19页。
思考问题:
零点是一个点吗? 函数的零点与方程的根是什么关系? 与图象和x 轴的交点又有什么关系?
特点:
零点指的是一个实数,
函数的零点就是相应方程的根,
也就是函数图象与x 轴交点的横坐标。
第五页,共19页。
函数的零点说课稿
函数的零点说课稿今天我说课的题目是《函数的零点》。
下面我将从教材分析、教法和学法指导、教学过程设计、评价分析、板书设计五个方面来阐述。
【教材分析】教材的地位与作用本节课是人教B版必修1第二章第二单元第四节的内容。
函数是中学数学的核心概念,与其他知识具有广泛的联系性,而函数的零点就是其中的一个链结点,它从不同的角度,将数与形,函数与方程及不等式有机的联系在一起。
本节是在学生系统地掌握了函数的概念及性质,一次与二次函数知识后,学习方程的根与函数零点之间的关系,并结合函数的图象研究函数零点的性质。
为后面“二分法求方程的近似解”和不等式提供了基础.因此本节内容具有承前启后的作用。
教学目标根据本节课教学内容的特点以及新课标对本节课的教学要求,我制定以下教学目标:(一)知识与技能:1.理解函数零点的意义,能判断二次函数零点的存在性,会求简单函数的零点。
2.了解函数零点与方程根的关系.(二)过程与方法:体验零点概念的形成过程,提高数学知识的综合利用能力。
(三)情感、态度与价值观:让学生体会事物间的转化的辩证思想。
教材重、难点本着新课程标准的教学理念,针对教学内容的特点,我确立了如下的教学重点、难点:教学重点:函数的零点概念及求法。
教学难点:利用函数的零点作图。
【教法、学法分析】在教法上,借助多媒体及几何画板软件并采用“启发—探究—讨论”式教学模式.有利于突出重点,在学法上,以培养学生探究精神为出发点,着眼于知识的形成和发展,着眼于学生的学习体验,精心设计每个问题链,由浅入深,循序渐进,给不同层次的学生提供思考,创造,表现和成功的机会。
【教学过程】(一)实例引入,形成概念问题1:求方程2x-x-6=0的实数根方程2x-x-6=0的实数根为-2、3。
问题2画出函数y=2x-x-6的图象;并观察方程的根与函数图象与x轴的交点横坐标的关系。
方程2x-x-6=0的实数根就是y=2x-x-6的图象与x轴的交点横坐标。
设计意图:以学生熟悉二次函数图象和二次方程为平台,得到二次方程实数根与二次函数图象之间的关系。
北师版高数必修一第8讲:函数的零点与二分法(教师版)
函数的零点与二分法________________________________________________________________ __________________________________________________________________________________ __________________1、掌握函数的零点和二分法的定义.2、会用二分法求函数零点的近似值。
一、函数的零点:定义:一般地,如果函数()f a=,则ay f x=在实数a处的值等于零即()0叫做这个函数的零点。
对于任意函数,只要它的图像是连续不间断的,其函数的零点具有下列性质:当它通过零点(不是偶次零点)时函数值变号;相邻两个零点之间的所有的所有函数值保持同号。
特别提醒:函数零点个数的确定方法:1、判断二次函数的零点个数一般由判别式的情况完成;2、对于二次函数在某个闭区间上零点的个数以及不能用判别式判断的二次函数的零点,则要结合二次函数的图像进行;3、对于一般函数零点的个数的判断问题不仅要在闭区间[],a b上是连续不间断的,且f(a)∙f(b)<0,还必须结合函数的图像和性质才能确定。
函数有多少个零点就是其对应的方程有多少个实数解。
二、二分法:定义:对于区间[],a b上连续的,且()()0y f x=,通过-<的函数()f a f b不断地把函数()f x的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,从而等到零点近似值的方法,叫做二分法。
特别提醒:用二分法求函数零点的近似值第一步:确定区间[],a b ,验证:f(a)∙f (b )<0,给定精确度; 第二步:求区间[],a b 得中点1x ;第三步:计算()1f x ;若()1f x =0,则1x 就是函数零点;若f(a)∙f (x 1)<0,则令1b x =;若f(x 1)∙f (b )<0,则令1a x =第四步:判断是否达到精确度ε,即若a b ε-<,则得到零点近似值a()b 或,否则重复第二、三、四步。
函数零点与二分法解析版 (1)
函数与方程[知识梳理]1.函数的零点,(1)零点的定义:对于函数y=f(x),我们把使f(x)=0的,实数x叫做函数y=f(x)的零点.函数的零点不是函数y=f(x)与x轴的交点,而是y=f(x)与x轴交点的横坐标,也就是说函数的零点不是一个点,而是一个实数.(2)零点的几个等价关系:方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.2.函数的零点存在性定理如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c 也就是方程f(x)=0的根.函数零点的存在性定理只能判断函数在某个区间上的变号零点,而不能判断函数的不变号零点,而且连续函数在一个区间的端点处函数值异号是这个函数在这个区间上存在零点的充分不必要条件.3.二分法的定义对于在区间[a,b]上连续不断且f(a)f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.[常用结论]有关函数零点的结论(1)若连续不断的函数f(x)在定义域上是单调函数,则f(x)至多有一个零点.(2)连续不断的函数,其相邻两个零点之间的所有函数值保持同号.(3)连续不断的函数图象通过零点时,函数值可能变号,也可能不变号.考点一: 函数零点所在区间判断1.设f(x)=ln x+x-2,则函数f(x)的零点所在的区间为()A.(0,1)B.(1,2)C.(2,3) D.(3,4)解析:选B∵f(1)=ln 1+1-2=-1<0,f(2)=ln 2>0,∴f (1)·f (2)<0,∵函数f (x )=ln x +x -2的图象是连续的,且为增函数, ∴f (x )的零点所在的区间是(1,2).2.若a <b <c ,则函数f (x )=(x -a )(x -b )+(x -b )(x -c )+(x -c )(x -a )的两个零点分别位于区间( )A .(a ,b )和(b ,c )内B .(-∞,a )和(a ,b )内C .(b ,c )和(c ,+∞)内D .(-∞,a )和(c ,+∞)解析:选A ∵a <b <c ,∴f (a )=(a -b )(a -c )>0, f (b )=(b -c )(b -a )<0,f (c )=(c -a )(c -b )>0,由函数零点存在性定理可知,在区间(a ,b ),(b ,c )内分别存在零点,又函数f (x )是二次函数,最多有两个零点.因此函数f (x )的两个零点分别位于区间(a ,b ),(b ,c )内,故选A.3.若x 0是方程⎝⎛⎭⎫12x =x 13的解,则x 0属于区间( ) A.⎝⎛⎭⎫23,1 B.⎝⎛⎭⎫12,23 C.⎝⎛⎭⎫13,12D.⎝⎛⎭⎫0,13 解析:选C 令g (x )=⎝⎛⎭⎫12x ,f (x )=x 13, 则g (0)=1>f (0)=0,g ⎝⎛⎭⎫12=⎝⎛⎭⎫1212<f ⎝⎛⎭⎫12=⎝⎛⎭⎫1213,g ⎝⎛⎭⎫13=⎝⎛⎭⎫1213>f ⎝⎛⎭⎫13=⎝⎛⎭⎫1313,结合图象可得13<x 0<12.4.已知函数f (x )的图象是连续不断的,且有如下对应值表:x 1 2 3 4 5 f (x )-4-2147在下列区间中,函数f (x )必有零点的区间为( ) A .(1,2)B .(2,3)C .(3,4)D .(4,5)解析:选B 由所给的函数值的表格可以看出,x =2与x =3这两个数字对应的函数值的符号不同,即f (2)·f (3)<0,所以函数在(2,3)内有零点.故选B.[解题技法]确定函数f (x )的零点所在区间的常用方法(1)利用函数零点的存在性定理:首先看函数y =f (x )在区间[a ,b ]上的图象是否连续,再看是否有f (a )·f (b )<0.若有,则函数y =f (x )在区间(a ,b )内必有零点.(2)数形结合法:通过画函数图象,观察图象与x 轴在给定区间上是否有交点来判断.考点二:判断函数零点个数[例1] 函数f (x )=⎩⎪⎨⎪⎧x 2+x -2,x ≤0,-1+ln x ,x >0的零点个数为( )A .3B .2C .7D .0[解析] 法一:(直接法)由f (x )=0得⎩⎪⎨⎪⎧x ≤0,x 2+x -2=0或⎩⎪⎨⎪⎧x >0,-1+ln x =0, 解得x =-2或x =e. 因此函数f (x )共有2个零点.法二:(图象法)函数f (x )的图象如图所示,由图象知函数f (x )共有2个零点.[答案] B[解题技法]函数零点个数的判断方法(1)直接求零点,令f (x )=0,有几个解就有几个零点;(2)零点存在性定理,要求函数f (x )在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,再结合函数的图象与性质确定函数零点个数;(3)利用图象交点个数,作出两函数图象,观察其交点个数即得零点个数.[跟踪训练]1.已知函数f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≤0,1+1x ,x >0,则函数y =f (x )+3x 的零点个数是( ) A .0 B .1 C .2D .3解析:选C 令f (x )+3x =0,则⎩⎪⎨⎪⎧x ≤0,x 2-2x +3x =0或⎩⎪⎨⎪⎧x >0,1+1x+3x =0, 解得x =0或x =-1,所以函数y =f (x )+3x 的零点个数是2.2.(2019·南宁模拟)设函数f (x )=ln x -2x +6,则f (x )零点的个数为( ) A .3 B .2 C .1D .0解析:选B 令f (x )=0,则ln x =2x -6,令g (x )=ln x (x >0),h (x )=2x -6(x >0),在同一平面直角坐标系中画出这两个函数的图象,如图所示,两个函数图象的交点个数就等于函数f (x )零点的个数,容易看出函数f (x )零点的个数为2,故选B.考点三:函数零点的应用考向(一) 根据函数零点个数求参数[例2] (2019·安徽合肥二模)设函数f (x )=⎩⎪⎨⎪⎧|ln x |,x >0,e x (x +1),x ≤0.若函数g (x )=f (x )-b 有三个零点,则实数b 的取值范围是( )A .(1,+∞) B.⎝⎛⎭⎫-1e 2,0 C .(1,+∞)∪{0}D .(0,1][解析] 令g (x )=f (x )-b =0,函数g (x )=f (x )-b 有三个零点等价于f (x )=b 有三个根,当x ≤0时,f (x )=e x (x +1),则f ′(x )=e x (x +1)+e x =e x (x +2),由f ′(x )<0得e x (x +2)<0,即x <-2,此时f (x )为减函数,由f ′(x )>0得e x (x +2)>0,即-2<x <0,此时f (x )为增函数,即当x =-2时,f (x )取得极小值f (-2)=-1e 2,作出f (x )的图象如图,要使f (x )=b 有三个根,则0<b ≤1,故选D.[答案] D考向(二) 根据函数零点的范围求参数范围[例3] 若函数f (x )=(m -2)x 2+mx +(2m +1)的两个零点分别在区间(-1,0)和区间(1,2)内,则m 的取值范围是____________.[解析] 依题意,结合函数f (x )的图象分析可知m 需满足⎩⎪⎨⎪⎧m ≠2,f (-1)·f (0)<0,f (1)·f (2)<0, 即⎩⎪⎨⎪⎧m ≠2,[m -2-m +(2m +1)](2m +1)<0,[m -2+m +(2m +1)][4(m -2)+2m +(2m +1)]<0, 解得14<m <12.[答案] ⎝⎛⎭⎫14,12考向(三) 求函数多个零点(方程根)的和[例4] 已知函数f (x )=⎩⎪⎨⎪⎧2x -2-1,x ≥0,x +2,x <0,g (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,1x ,x <0,则函数f (g (x ))的所有零点之和是________.解析:由f (x )=0,得x =2或x =-2,由g (x )=2,得x =1+3,由g (x )=-2,得x =-12,所以函数f (g (x ))的所有零点之和是-12+1+3=12+ 3.答案:12+ 3[规律探求]看个性考向(一)是根据函数零点的个数求参数范围,解决此类问题通常先对解析式变形,然后在同一坐标系内画出函数的图象,数形结合求解.考向(二)是根据函数零点所在区间求参数,解决此类问题应先判断函数的单调性,再利用零点存在性定理,建立参数所满足的不等式,解不等式,即得参数的取值范围. 考向(三)是求函数零点的和,求函数的多个零点(或方程的根以及直线y =m 与函数图象的多个交点横坐标)的和时,应考虑函数的性质,尤其是对称性特征(这里的对称性主要包括函数本身关于点的对称,直线的对称等). 找共性根据函数零点求参数范围的一般步骤为:(1)转化:把已知函数零点的存在情况转化为方程的解或两函数图象的交点的情况. (2)列式:根据零点存在性定理或结合函数图象列式.(3)结论:求出参数的取值范围或根据图象得出参数的取值范围.[跟踪训练]1.函数f (x )=x 2-ax +1在区间⎝⎛⎭⎫12,3上有零点,则实数a 的取值范围是( ) A .(2,+∞) B .[2,+∞) C.⎣⎡⎭⎫2,52 D.⎣⎡⎭⎫2,103 解析:选D 由题意知方程ax =x 2+1在⎝⎛⎭⎫12,3上有解,即a =x +1x 在⎝⎛⎭⎫12,3上有解,设t =x +1x,x ∈⎝⎛⎭⎫12,3,则t 的取值范围是⎣⎡⎭⎫2,103,∴实数a 的取值范围是⎣⎡⎭⎫2,103. 2.若函数f (x )=log 2x +x -k (k ∈Z )在区间(2,3)内有零点,则k =________.解析:因函数f (x )在区间(2,3)内递增,则f (2)f (3)<0,即(log 22+2-k )·(log 23+3-k )<0,整理得(3-k )·(log 23+3-k )<0,解得3<k <3+log 23,而4<3+log 23<5.因为k ∈Z ,所以k =4.[课时过关检测] __A 级——夯基保分练1.(2019·十堰调研)已知函数f (x )=⎩⎪⎨⎪⎧ln (x -1),x >1,2x -1-1,x ≤1,则f (x )的零点个数为( )A .0B .1C .2D .3解析:选C 当x >1时,令f (x )=ln(x -1)=0,得x =2;当x ≤1时,令f (x )=2x -1-1=0,得x =1.故选C.2.函数f (x )=ln x -2x 2的零点所在的区间为( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)解析:选B 易知f (x )=ln x -2x 2的定义域为(0,+∞),且在定义域上单调递增.∵f (1)=-2<0,f (2)=ln 2-12>0,∴f (1)·f (2)<0,∴根据零点存在性定理知f (x )=ln x -2x 2的零点所在的区间为(1,2).3.函数f (x )=|x -2|-ln x 在定义域内的零点的个数为( ) A .0 B .1 C .2D .3解析:选C 由题意可知f (x )的定义域为(0,+∞).在同一平面直角坐标系中作出函数y =|x -2|(x >0),y =ln x (x >0)的图象如图所示.由图可知函数f (x )在定义域内的零点个数为2.4.(2019·郑州质量测试)已知函数f (x )=⎩⎪⎨⎪⎧e x -a ,x ≤0,2x -a ,x >0(a ∈R ),若函数f (x )在R 上有两个零点,则实数a 的取值范围是( )A .(0,1]B .[1,+∞)C .(0,1)D .(-∞,1]解析:选A 画出函数f (x )的大致图象如图所示.因为函数f (x )在R 上有两个零点,所以f (x )在(-∞,0]和(0,+∞)上各有一个零点.当x ≤0时,f (x )有一个零点,需a ≤1;当x >0时,f (x )有一个零点,需-a <0,即a >0.综上,0<a ≤1.5.设函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=e x +x -3,则f (x )的零点个数为( ) A .1 B .2 C .3D .4解析:选C 因为函数f (x )是定义域为R 的奇函数,所以f (0)=0,即x =0是函数f (x )的1个零点.当x >0时,令f (x )=e x +x -3=0,则e x =-x +3,分别画出函数y =e x 和y =-x +3的图象,如图所示,两函数图象有1个交点,所以函数f (x )有1个零点.根据对称性知,当x <0时,函数f (x )也有1个零点. 综上所述,f (x )的零点个数为3.6.(多选)已知函数f (x )=⎝⎛⎭⎫13x-log 2x ,0<a <b <c ,f (a )f (b )f (c )<0,实数d 是函数f (x )的一个零点.给出下列四个判断,其中可能成立的是( )A .d <aB .d >bC .d >cD .d <c解析:选ABD 由y =⎝⎛⎭⎫13x 在(0,+∞)上单调递减,y =log 2x 在(0,+∞)上单调递增,可得f (x )=⎝⎛⎭⎫13x-log 2x 在定义域(0,+∞)上是单调减函数,当0<a <b <c 时,f (a )>f (b )>f (c ),又因为f (a )f (b )f (c )<0,f (d )=0,所以①f (a ),f (b ),f (c )都为负值,则a ,b ,c 都大于d ,②f (a )>0,f (b )>0,f (c )<0,则a ,b 都小于d ,c 大于d .综合①②可得d >c 不可能成立.7.已知函数f (x )=23x +1+a 的零点为1,则实数a 的值为______. 解析:由已知得f (1)=0,即231+1+a =0,解得a =-12.答案:-128.已知函数f (x )=⎩⎪⎨⎪⎧x ln x ,x >0,x 2-x -2,x ≤0,则f (x )的零点为________.解析:当x >0时,由f (x )=0, 即x ln x =0得ln x =0,解得x =1; 当x ≤0时,由f (x )=0,即x 2-x -2=0,解得x =-1或x =2. 因为x ≤0,所以x =-1. 综上,函数f (x )的零点为1,-1. 答案:1,-19.已知方程2x +3x =k 的解在[1,2)内,则k 的取值范围为________. 解析:令函数f (x )=2x +3x -k , 则f (x )在R 上是增函数.当方程2x +3x =k 的解在(1,2)内时,f (1)·f (2)<0, 即(5-k )(10-k )<0,解得5<k <10. 当f (1)=0时,k =5.综上,k 的取值范围为[5,10). 答案:[5,10)10.(一题两空)已知函数f (x )=⎩⎪⎨⎪⎧1x ,x ≥1,x 3,x <1,若f (x 0)=-1,则x 0=________;若关于x 的方程f (x )=k 有两个不同零点,则实数k 的取值范围是________.解析:解方程f (x 0)=-1,得⎩⎪⎨⎪⎧x ≥1,1x 0=-1或⎩⎪⎨⎪⎧x 0<1,x 30=-1,解得x 0=-1.关于x 的方程f (x )=k 有两个不同零点等价于y =f (x )的图象与直线y =k 有两个不同交点,观察图象可知:当0<k <1时y =f (x )的图象与直线y =k 有两个不同交点.即k ∈(0,1).答案:-1 (0,1)11.已知y =f (x )是定义域为R 的奇函数,当x ∈[0,+∞)时,f (x )=x 2-2x . (1)写出函数y =f (x )的解析式;(2)若方程f (x )=a 恰有3个不同的解,求实数a 的取值范围. 解:(1)设x <0,则-x >0,所以f (-x )=x 2+2x . 又因为f (x )是奇函数, 所以f (x )=-f (-x )=-x 2-2x .所以f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2-2x ,x <0.(2)方程f (x )=a 恰有3个不同的解,即y =f (x )与y =a 的图象有3个不同的交点.作出y =f (x )与y =a 的图象如图所示,故若方程f (x )=a 恰有3个不同的解,只需-1<a <1, 故实数a 的取值范围为(-1,1).12.已知函数f (x )=-x 2-2x ,g (x )=⎩⎪⎨⎪⎧x +14x ,x >0,x +1,x ≤0.(1)求g (f (1))的值;(2)若方程g (f (x ))-a =0有4个实数根,求实数a 的取值范围. 解:(1)利用解析式直接求解得g (f (1))=g (-3)=-3+1=-2.(2)令f (x )=t ,则有t =-x 2-2x =-(x +1)2+1<1,而原方程化为g (t )=a ,易知方程f (x )=t 在t ∈(-∞,1)内有2个不同的解,则原方程有4个解等价于函数y =g (t )(t <1)与y =a 的图象有2个不同的交点,作出函数y =g (t )(t <1)的图象,由图象可知,当1≤a <54时,函数y =g (t )(t <1)与y =a 有2个不同的交点,即所求a 的取值范围是⎣⎡⎭⎫1,54. B 级——提能综合练13.(2019·宣城二模)已知a ,b ,c ,d 都是常数,a >b ,c >d .若f (x )=2 019+(x -a )(x -b )的零点为c ,d ,则下列不等式正确的是( )A .a >c >d >bB .a >b >c >dC .c >d >a >bD .c >a >b >d解析:选A 根据题意,设g (x )=(x -a )(x -b ),则f (x )=g (x )+2 019,若g (x )=0,则x =a 或x =b ,即函数g (x )的图象与x 轴的交点为(a ,0)和(b ,0).f (x )=2 019+(x -a )(x -b )=0即g (x )=-2 019,若f (x )=2 019+(x -a )(x -b )的零点为c ,d ,则g (x )的图象与直线y =-2 019的交点坐标为(c ,-2 019)和(d ,-2 019),由图象知a >c >d >b ,故选A.14.(2019·湖南娄底二模)若x 1是方程x e x =1的解,x 2是方程x ln x =1的解,则x 1x 2等于________.解析:考虑到x 1,x 2是函数y =e x 、函数y =ln x 分别与函数y =1x的图象的公共点A ,B 的横坐标,而A ⎝⎛⎭⎫x 1,1x 1,B ⎝⎛⎭⎫x 2,1x 2两点关于直线y =x 对称,因此x 1x 2=1. 答案:115.已知函数f (x )=ax 2+bx +c ,且f (1)=-a 2,3a >2c >2b . (1)求证:a >0且-3<b a <-34; (2)求证:函数f (x )在区间(0,2)内至少有一个零点.证明:(1)∵f (1)=a +b +c =-a 2, ∴c =-32a -b .∵3a >2c =-3a -2b , ∴3a >-b .∵2c >2b ,∴-3a >4b .若a >0,则-3<b a <-34; 若a =0,则0>-b ,0>b ,不成立;若a <0,则b a <-3,b a >-34,不成立. (2)f (0)=c ,f (2)=4a +2b +c ,f (1)=-a 2,Δ=b 2-4ac =b 2+4ab +6a 2>0. 当c >0时,f (0)>0,f (1)<0,∴f (x )在(0,1)内至少有一个零点.当c =0时,f (0)=0,f (1)<0,f (2)=4a +2b =a >0,∴f (x )在(0,2)内有一个零点.当c <0时,f (0)<0,f (1)<0,b =-32a -c ,f (2)=4a -3a -2c +c =a -c >0, ∴f (x )在(0,2)内有一个零点.综上,f (x )在(0,2)内至少有一个零点.C 级——拔高创新练16.已知定义在R 上的函数f (x )满足:①f (x )+f (2-x )=0;②f (x -2)=f (-x );③当x ∈[-1,1]时,f (x )=⎩⎪⎨⎪⎧1-x 2,x ∈[-1,0],cos ⎝⎛⎭⎫π2x ,x ∈(0,1],则函数y =f (x )-⎝⎛⎭⎫12|x |在区间[-3,3]上的零点个数为( ) A .5B .6C .7D .8解析:选A 由①f (x )+f (2-x )=0可得f (x )的图象关于点(1,0)对称;由②f (x -2)=f (-x )可得f (x )的图象关于直线x =-1对称.如图,作出f (x )在[-1,1]上的图象,再由对称性,作出f (x )在[-3,3]上的图象,作出函数y =⎝⎛⎭⎫12|x |在[-3,3]上的图象,由图象观察可得它们共有5个交点,即函数y =f (x )-⎝⎛⎭⎫12|x |在区间[-3,3]上的零点个数为5.故选A.。
高中数学知识点:二分法求函数零点
高中数学知识点:二分法求函数零点1.二分法所谓二分法就是通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法.2.用二分法求函数零点的一般步骤:已知函数()y f x =定义在区间D 上,求它在D 上的一个零点x 0的近似值x ,使它满足给定的精确度.第一步:在D 内取一个闭区间[]00,a b D ⊆,使()0f a 与()0f b 异号,即()()000f a f b ⋅<,零点位于区间[]00,a b 中.第二步:取区间[]00,a b 的中点,则此中点对应的坐标为()()0000001122x a b a a b =+-=+. 计算()0f x 和()0f a ,并判断:①如果()00f x =,则0x 就是()f x 的零点,计算终止;②如果()()000f a f x ⋅<,则零点位于区间[]00,a x 中,令1010,a a b x ==; ③如果()()000f a f x ⋅>,则零点位于区间[]00,x b 中,令1010,a x b b == 第三步:取区间[]11,a b 的中点,则此中点对应的坐标为()()1111111122x a b a a b =+-=+. 计算()1f x 和()1f a ,并判断:①如果()10f x =,则1x 就是()f x 的零点,计算终止;②如果()()110f a f x ⋅<,则零点位于区间[]11,a x 中,令2121,a a b x ==; ③如果()()110f a f x ⋅>,则零点位于区间[]11,x b 中,令2121,a x b b ==; ……继续实施上述步骤,直到区间[]a b,函数的零点总位于区间,n n[]a b上,当n a和n b按照给定的精确度所取的近似值相同时,这个相,n n同的近似值就是函数()=的近似零点,计算终止.这时函数y f x()=的近似零点满足给定的精确度.y f x要点诠释:(1)第一步中要使:①区间长度尽量小;②()f b的值比较f a、()容易计算且()() <0f a f b.(2)根据函数的零点与相应方程的根的关系,求函数的零点和求相应方程的根式等价的.对于求方程()()=的根,可以构造函f xg x数()()()=的根.f xg x=-,函数()F x f x g xF x的零点即为方程()()。
人教版高数必修一第8讲:函数的零点与二分法(学生版)
函数的零点与二分法__________________________________________________________________________________ __________________________________________________________________________________1、 掌握函数的零点和二分法的定义.2、 会用二分法求函数零点的近似值。
一、函数的零点:定义:一般地,如果函数()y f x =在实数a 处的值等于零即()0f a =,则a 叫做这个函数的零点。
对于任意函数,只要它的图像是连续不间断的,其函数的零点具有下列性质:当它通过零点(不是偶次零点)时函数值变号;相邻两个零点之间的所有的所有函数值保持同号。
特别提醒:函数零点个数的确定方法:1、判断二次函数的零点个数一般由判别式的情况完成;2、对于二次函数在某个闭区间上零点的个数以及不能用判别式判断的二次函数的零点,则要结合二次函数的图像进行;3、对于一般函数零点的个数的判断问题不仅要在闭区间[],a b 上是连续不间断的,且f(a) f (b )<0,还必须结合函数的图像和性质才能确定。
函数有多少个零点就是其对应的方程有多少个实数解。
二、二分法:定义:对于区间[],a b 上连续的,且()()0f a f b -<的函数()y f x =,通过不断地把函数()f x 的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,从而等到零点近似值的方法,叫做二分法。
特别提醒:用二分法求函数零点的近似值第一步:确定区间[],a b ,验证:f(a) f (b )<0,给定精确度;第二步:求区间[],a b 得中点1x ;第三步:计算()1f x ;若()1f x =0,则1x 就是函数零点;若f(a) f ( )<0,则令1b x =;若f( ) f (b )<0,则令1a x =第四步:判断是否达到精确度ε,即若a b ε-<,则得到零点近似值a ()b 或,否则重复第二、三、四步。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的零点与二分法
__________________________________________________________________________________ __________________________________________________________________________________
1、 掌握函数的零点和二分法的定义.
2、 会用二分法求函数零点的近似值。
一、函数的零点:
定义:一般地,如果函数()y f x =在实数a 处的值等于零即()0f a =,则a 叫做这个函数的零点。
对于任意函数,只要它的图像是连续不间断的,其函数的零点具有下列性质:当它通过零点(不是偶次零点)时函数值变号;相邻两个零点之间的所有的所有函数值保持同号。
特别提醒:
函数零点个数的确定方法:
1、判断二次函数的零点个数一般由判别式的情况完成;
2、对于二次函数在某个闭区间上零点的个数以及不能用判别式判断的二次函数的零点,则要结合二次函数的图像进行;
3、对于一般函数零点的个数的判断问题不仅要在闭区间[],a b 上是连续不间断的,且f(a)∙f (b )<0,还必须结合函数的图像和性质才能确定。
函数有多少个零点就是其对应的方程有多少个实数解。
二、二分法:
定义:对于区间[],a b 上连续的,且()()0f a f b -<的函数()y f x =,通过不断地把函数
()f x 的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,从而等到零点近似值的方
法,叫做二分法。
特别提醒:
用二分法求函数零点的近似值
第一步:确定区间[],a b ,验证:f(a)∙f (b )<0,给定精确度; 第二步:求区间[],a b 得中点1x ;
第三步:计算()1f x ;若()1f x =0,则1x 就是函数零点;若f(a)∙f (x 1)<0,则令1b x =;
若f(x 1)∙f (b )<0,则令1a x =
第四步:判断是否达到精确度ε,即若a b ε-<,则得到零点近似值a ()b 或,否则重复第二、 三、四步。
类型一求函数的零点
例1:求函数y =x -1的零点:
练习1:求函数y =x 3
-x 2
-4x +4的零点.
练习2:函数f (x )=2x +7的零点为( ) A .7 B .72 C .-7
2 D .-7
类型二 零点个数的判断
例2:判断函数f (x )=x 2
-7x +12的零点个数
练习1:二次函数y =ax 2+bx +c 中,a ·c <0,则函数的零点个数是( ) A .1个 B .2个 C .0个 D .无法确定
练习2:已知二次函数f (x )=ax 2
+6x -1有两个不同的零点,则实数a 的取值范围是( ) A .a >-9且a ≠0 B .a >-9 C .a <-9
D .a >0或a <0
类型三 函数零点的应用
例3:若关于x 的方程x 2
+(k -2)x +2k -1=0的两实数根中,一根在0和1之间,另一根在1和2之间,求实数k 的取值范围.
练习1:已知方程x 2
+2px +1=0有一个根大于1,有一个根小于1,则p 的取值范围为__________.
练习2:函数f (x )=2(m +1)x 2
+4mx +2m -1的一个零点在原点,则m 的值为________.
类型四 二分法的概念
例4:函数图象与x 轴均有公共点,但不能用二分法求公共点横坐标的是( ).
练习1:函数y =f (x )在区间[a ,b ]上的图象不间断,并且f (a )·f (b )<0,则这个函数在这个区间上( )
A .只有一个变号零点
B .有一个不变号零点
C .至少有一个变号零点
D .不一定有零点
练习2:用二分法求函数f (x )=x 3
-2的零点时,初始区间可选为( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)
类型五 用二分法求函数零点的近似值
例5: 求函数f (x )=x 3
+2x 2
-3x -6的一个为正数的零点(精确到0.1).
练习1: 试用计算器求出函数f (x )=x 2
,g (x )=2x +2的图象交点的横坐标(精确到0.1).
练习2: (2014~2015学年度四川省中学高一月考)用二分法求方程x 3
+3x -7=0在(1,2)内近似解的过程中,设函数f (x )=x 3
+3x -7,算得f (1)<0,f (1.25)<0,f (1.5)>0,f (1.75)>0,则该方程的根落在区间( )
A .(1,1.25)
B .(1.25,1.5)
C .(1.5,1.75)
D .(1.75,2)
1、(2014·湖北文)已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x .则函数g (x )=f (x )-x +3的零点的集合为( )
A .{1,3}
B .{-3,-1,1,3}
C .{2-7,1,3}
D .{-2-7,1,3}
2、已知x =-1是函数f (x )=a
x
+b (a ≠0)的一个零点,则函数g (x )=ax 2
-bx 的零点是( ) A .-1或1 B .0或-1 C .1或0
D .2或1
3、三次方程x 3
+x 2
-2x -1=0的根不可能所在的区间为( ) A .(-2,-1) B .(-1,0) C .(0,1)
D .(1,2)
4、(2014~2015学年度黑龙江省哈尔滨市第三十二中学高一期中测试)若函数f (x )=x 3
+x 2
-2x -2的一个正数零点附近的函数值用二分法逐次计算,参考数据如下表:
A .1.2
B .1.3
C .1.4
D .1.5
5、已知函数y =f (x )的图象是连续不断的,有如下的对应值表:
A .2个
B .3个
C .4个
D .5个
_________________________________________________________________________________ _________________________________________________________________________________
基础巩固
1.若函数f (x )在定义域{x |x ≠0}上是偶函数,且在(0,+∞)上是减函数,f (2)=0,则函数
f (x )的零点有( )
A .一个
B .两个
C .至少两个
D .无法判断
2.若关于x 的方程ax 2
+bx +c =0(a ≠0)有两个实根1、2,则实数f (x )=cx 2
+bx +a 的零点为( )
A .1,2
B .-1,-2
C .1,12
D .-1,-1
2
3.若a <b <c ,则函数f (x )=(x -a )(x -b )+(x -b )(x -c )+(x -c )(x -a )的两个零点分别位于区间( )
A .(a ,b )和(b ,c )内
B .(-∞,a )和(a ,b )内
C .(b ,c )和(c ,+∞)内
D .(-∞,a )和(c ,+∞)内
4.下列命题中正确的是( )
A .方程(x -2)(x -5)=1有两个相异实根,且一个大于5,一个小于2
B .函数y =f (x )的图象与直线x =1的交点个数是1
C .零点存在性定理能用来判断函数零点的存在性,也能用来判断函数零点的个数
D .利用二分法所得方程的近似解是惟一的
5.在用二分法求函数f (x )的一个正实数零点时,经计算, f (0.64)<0, f (0.72)>0, f (0.68)<0,则函数的一个精确到0.1的正实数零点的近似值为( )
A .0.68
B .0.72
C .0.7
D .0.6
能力提升
6.二次函数y =ax 2
+bx +c (x ∈R )的部分对应值如下表,则使ax 2
+bx +c >0成立的x 的取值范围是______.
x -3 -2 -1 0 1 2 3 4 y
6
-4
-6
-6
-4
6
7.已知函数2
f (x )=c (c ∈R )有两个实根m 、m +6,则实数c 的值为________.
8.给出以下结论,其中正确结论的序号是________. ①函数图象通过零点时,函数值一定变号; ②相邻两个零点之间的所有函数值保持同号;
③函数f (x )在区间[a ,b ]上连续,若满足f (a )·f (b )<0,则方程f (x )=0在区间[a ,b ]上一定有实根;
④“二分法”对连续不断的函数的所有零点都有效.
9. 设函数f (x )=⎩
⎪⎨
⎪⎧
x 2
+bx +c x ≤02 x >0
,
若f (-4)=2, f (-2)=-2,则关于x 的方程f (x )=x 的解的个数是________. 10. 已知函数f (x )=ax 3
-2ax +3a -4在区间(-1,1)上有一个零点. (1)求实数a 的取值范围;
(2)若a =32
17,用二分法求方程f (x )=0在区间(-1,1)上的根.
课程顾问签字: 教学主管签字:。