两直线的位置关系--垂直_(课堂PPT)
合集下载
《两直线的位置关系》课件
![《两直线的位置关系》课件](https://img.taocdn.com/s3/m/447c3984d4bbfd0a79563c1ec5da50e2534dd153.png)
CHAPTER 04
两直线的关系应用
解析几何中的应用
解析几何的基本概念
01
解析几何是研究图形与坐标之间的关系,通过代数方法解决几
何问题。两直线的位置关系是解析几何中的基本问题。
直线的方程
02
在二维坐标系中,直线可以用一个或两个方程来表示。例如,
通过两点式、点斜式、截距式等可以求出直线的方程。
两直线的交点
两直线的斜率与截距
斜率的定义与计算
总结词
斜率是直线在平面上的一个重要属性,它表示直线相对于x轴 的倾斜程度。
详细描述
斜率是直线方程y=kx+b中k的值,它表示直线在y轴上的单 位长度内,x轴的变化量。如果k为正数,则直线向右上方倾 斜;如果k为负数,则直线向右下方倾斜。
截距的定义与计算
总结词
截距是直线与y轴和x轴相交的点,表示直线在坐标轴上的位置。
判断方法
斜率法
若两直线斜率相等且截距不等,则两 直线平行;若斜率不存在且截距相等 ,则两直线平行。
交点法
若两直线无公共点,则两直线平行或 重合;若两直线有且仅有一个公共点 ,则两直线相交;若两直线有无数个 公共点,则两直线重合。
平行与垂直的性质
平行性质
平行直线间的距离是固定的,且与两直线的方向向量或斜率有关。
03
两直线相交于一点,这个点是两直线的交点。求两直线的交点
可以通过联立两直线的方程来求解。
三角函数图象中的应用
01
三角函数的图象与性质
三角函数(如正弦、余弦、正切等)的图象是周期性的,这些图象在某
些部分表现出直线性。
02
三角函数与直线的交点
在三角函数的图象中,求直线与三角函数的交点可以通过将直线的方程
高中数学第2章平面解析几何2.2直线及其方程2.2.3两条直线的位置关系第2课时两条直线的垂直课件新
![高中数学第2章平面解析几何2.2直线及其方程2.2.3两条直线的位置关系第2课时两条直线的垂直课件新](https://img.taocdn.com/s3/m/b465f97ae55c3b3567ec102de2bd960590c6d96b.png)
解
(2)A,B 两点在直线 l 的同侧,P 是直线 l 上的一点, 则||PB|-|PA||≤|AB|, 当且仅当 A,B,P 三点共线时, ||PB|-|PA||取得最大值,为|AB|, 点 P 即是直线 AB 与直线 l 的交点, 又直线 AB 的方程为 y=x-2, 解yx= -x2-y+28,=0, 得xy= =1120, , 故所求的点 P 的坐标为(12,10).
2.常用对称的特例 (1)A(a,b)关于 x 轴的对称点为 A′(a,-b); (2)B(a,b)关于 y 轴的对称点为 B′(-a,b); (3)C(a,b)关于直线 y=x 的对称点为 C′(b,a); (4)D(a,b)关于直线 y=-x 的对称点为 D′(-b,-a); (5)P(a,b)关于直线 x=m 的对称点为 P′(2m-a,b); (6)Q(a,b)关于直线 y=n 的对称点为 Q′(a,2n-b).
解
题型四 平行与垂直的综合应用
例 4 已知 A(-4,3),B(2,5),C(6,3),D(-3,0)四点,若顺次连接 A,B,
C,D 四点,试判定图形 ABCD 的形状.
[解] 由题意知 A,B,C,D 四点在坐标平面内的位置,如图所示,由
斜率公式可得
kAB=2-5--34=13,
kCD=-0- 3-36=13,
mn--02=-2, 则
m+2 n+0 2 -2· 2 +8=0,
解得mn==8-,2,
故 A′(-2,8).
解
因为 P 为直线 l 上的一点, 则|PA|+|PB|=|PA′|+|PB|≥|A′B|, 当且仅当 B,P,A′三点共线时,|PA|+|PB|取得最小值,为|A′B|,点 P 即是直线 A′B 与直线 l 的交点, 解xx= -- 2y+2,8=0, 得xy= =- 3,2, 故所求的点 P 的坐标为(-2,3).
(2)A,B 两点在直线 l 的同侧,P 是直线 l 上的一点, 则||PB|-|PA||≤|AB|, 当且仅当 A,B,P 三点共线时, ||PB|-|PA||取得最大值,为|AB|, 点 P 即是直线 AB 与直线 l 的交点, 又直线 AB 的方程为 y=x-2, 解yx= -x2-y+28,=0, 得xy= =1120, , 故所求的点 P 的坐标为(12,10).
2.常用对称的特例 (1)A(a,b)关于 x 轴的对称点为 A′(a,-b); (2)B(a,b)关于 y 轴的对称点为 B′(-a,b); (3)C(a,b)关于直线 y=x 的对称点为 C′(b,a); (4)D(a,b)关于直线 y=-x 的对称点为 D′(-b,-a); (5)P(a,b)关于直线 x=m 的对称点为 P′(2m-a,b); (6)Q(a,b)关于直线 y=n 的对称点为 Q′(a,2n-b).
解
题型四 平行与垂直的综合应用
例 4 已知 A(-4,3),B(2,5),C(6,3),D(-3,0)四点,若顺次连接 A,B,
C,D 四点,试判定图形 ABCD 的形状.
[解] 由题意知 A,B,C,D 四点在坐标平面内的位置,如图所示,由
斜率公式可得
kAB=2-5--34=13,
kCD=-0- 3-36=13,
mn--02=-2, 则
m+2 n+0 2 -2· 2 +8=0,
解得mn==8-,2,
故 A′(-2,8).
解
因为 P 为直线 l 上的一点, 则|PA|+|PB|=|PA′|+|PB|≥|A′B|, 当且仅当 B,P,A′三点共线时,|PA|+|PB|取得最小值,为|A′B|,点 P 即是直线 A′B 与直线 l 的交点, 解xx= -- 2y+2,8=0, 得xy= =- 3,2, 故所求的点 P 的坐标为(-2,3).
直线与直线的位置关系(平行与垂直)
![直线与直线的位置关系(平行与垂直)](https://img.taocdn.com/s3/m/b11184f82e3f5727a5e962de.png)
§7.3.1两条直线的位置关系 (平行与垂直)
13.10.2020
1
1 斜率存在时两直线平行. y
l1 l2
1
2
O
x
13.10.2020
2
结论1: 如果直线L1,L2的斜截式方程为L1:y=k1x+b1,L2:y=k2x+b2,
那么L1∥L2 k1=k2且b1≠b2 注意:上面的等价是在两直线斜率存在的前提下才成立的,
4
5 的条件是
。
13.10.2020
6
2 斜率存在时两直线垂直.
y
l1
l2
2
1
O
甲
y
y
l2 l1
l1
l2
1
2
O
x
x
乙
1 2
O
x
丙
13.10.2020
7
结论2: 如果两直线的斜率为k1, k2,那么,这两条直线垂直
的充要条件是k1·k2= -1
注意:上面的等价是在两直线斜率存在的前提下才成立的, 缺少这个前提,结论并不存立.
13.10.2020
9
例5: 求过点A(2,1)且与直线2x+y-10=0垂直的直线的方程
注意: ①解法一求直线方程的方法是通法,必须掌握; ②解法二是常常采用的解题技巧:
一般地,由于与直线Ax+By+C=0垂直的直线的斜率互为负 倒数,故可得其方程为Bx-Ay+=0 ,其中待定(直线系)
13.10.2020
特殊情况下的两直线平行与垂直. 当两条直线中有一条直线没有斜率时: 当另一条直线的斜率为0时, 则一条直线的倾斜角为900,另一条直线的倾斜角为0° 两直线互相垂直
13.10.2020
1
1 斜率存在时两直线平行. y
l1 l2
1
2
O
x
13.10.2020
2
结论1: 如果直线L1,L2的斜截式方程为L1:y=k1x+b1,L2:y=k2x+b2,
那么L1∥L2 k1=k2且b1≠b2 注意:上面的等价是在两直线斜率存在的前提下才成立的,
4
5 的条件是
。
13.10.2020
6
2 斜率存在时两直线垂直.
y
l1
l2
2
1
O
甲
y
y
l2 l1
l1
l2
1
2
O
x
x
乙
1 2
O
x
丙
13.10.2020
7
结论2: 如果两直线的斜率为k1, k2,那么,这两条直线垂直
的充要条件是k1·k2= -1
注意:上面的等价是在两直线斜率存在的前提下才成立的, 缺少这个前提,结论并不存立.
13.10.2020
9
例5: 求过点A(2,1)且与直线2x+y-10=0垂直的直线的方程
注意: ①解法一求直线方程的方法是通法,必须掌握; ②解法二是常常采用的解题技巧:
一般地,由于与直线Ax+By+C=0垂直的直线的斜率互为负 倒数,故可得其方程为Bx-Ay+=0 ,其中待定(直线系)
13.10.2020
特殊情况下的两直线平行与垂直. 当两条直线中有一条直线没有斜率时: 当另一条直线的斜率为0时, 则一条直线的倾斜角为900,另一条直线的倾斜角为0° 两直线互相垂直
【课件】2.1.2 两条直线平行和垂直的判定(PPT)-(新教材人教A版选择性必修第一册)
![【课件】2.1.2 两条直线平行和垂直的判定(PPT)-(新教材人教A版选择性必修第一册)](https://img.taocdn.com/s3/m/449b33aada38376bae1fae67.png)
(1)若 l1∥l2,求 a 的值; (2)若 l1⊥l2,求 a 的值.
探究题 2 将上题中 A,B 两点的坐标分别改为 A(2,a),B(a -1,3),则结论将是如何?
探究题 3 直线 l 的倾斜角为 30°,点 P(2,1)在直线 l 上,直 线 l 绕点 P(2,1)按逆时针方向旋转 30°后到达直线 l1 的位置,此时 直线 l1 与 l2 平行,且 l2 是线段 AB 的垂直平分线,其中 A(1,m-1), B(m,2),试求 m 的值.
类题通法 1.判定两直线是否平行时,应先看两直线的斜率是否存在,若 都不存在,则平行(不重合的情况下);若存在,再看是否相等,若相 等,则平行(不重合的情况下). 2.若已知两直线平行,求某参数值时,也应分斜率存在与不存 在两种情况求解.
定向训练 已知 A(-2,m),B(m,4),M(m+2,3),N(1,1),若直线 AB∥ 直线 MN,则 m 的值为________.
第二阶段 课堂探究评价
关键能力 素养提升
一两直线平行 典例示范
【例 1】判断下列各题中的直线 l1 与 l2 是否平行: (1)l1 经过点 A(-1,-2),B(2,1),l2 经过点 M(3,4),N(-1, -1);
(2)l1 的斜率为 1,l2 经过点 A(1,1),B(2,2); (3)l1 经过点 A(0,1),B(1,0),l2 经过点 M(-1,3),N(2,0); (4)l1 经过点 A(-3,2),B(-3,10),l2 经过点 M(5,-2),N(5, 5). 解:(1)k1=12- -( (- -21) )=1,k2=- -11- -43=54, k1≠k2,l1 与 l2 不平行.
预习验收 衔接课堂
1.已知过 A(-2,m)和 B(m,4)两点的直线与斜率为-2 的直
探究题 2 将上题中 A,B 两点的坐标分别改为 A(2,a),B(a -1,3),则结论将是如何?
探究题 3 直线 l 的倾斜角为 30°,点 P(2,1)在直线 l 上,直 线 l 绕点 P(2,1)按逆时针方向旋转 30°后到达直线 l1 的位置,此时 直线 l1 与 l2 平行,且 l2 是线段 AB 的垂直平分线,其中 A(1,m-1), B(m,2),试求 m 的值.
类题通法 1.判定两直线是否平行时,应先看两直线的斜率是否存在,若 都不存在,则平行(不重合的情况下);若存在,再看是否相等,若相 等,则平行(不重合的情况下). 2.若已知两直线平行,求某参数值时,也应分斜率存在与不存 在两种情况求解.
定向训练 已知 A(-2,m),B(m,4),M(m+2,3),N(1,1),若直线 AB∥ 直线 MN,则 m 的值为________.
第二阶段 课堂探究评价
关键能力 素养提升
一两直线平行 典例示范
【例 1】判断下列各题中的直线 l1 与 l2 是否平行: (1)l1 经过点 A(-1,-2),B(2,1),l2 经过点 M(3,4),N(-1, -1);
(2)l1 的斜率为 1,l2 经过点 A(1,1),B(2,2); (3)l1 经过点 A(0,1),B(1,0),l2 经过点 M(-1,3),N(2,0); (4)l1 经过点 A(-3,2),B(-3,10),l2 经过点 M(5,-2),N(5, 5). 解:(1)k1=12- -( (- -21) )=1,k2=- -11- -43=54, k1≠k2,l1 与 l2 不平行.
预习验收 衔接课堂
1.已知过 A(-2,m)和 B(m,4)两点的直线与斜率为-2 的直
2.1.2两条直线平行与垂直的判定 课件(共15张PPT)
![2.1.2两条直线平行与垂直的判定 课件(共15张PPT)](https://img.taocdn.com/s3/m/f1de70d56394dd88d0d233d4b14e852458fb391d.png)
在同一条直线上,确定常数a的值.
2
复习回顾
复习2:平面上两条直线位置关系
y
o
x
有平行,相交两种
我们设想如何通过直线的斜率
来判定这两种位置关系.
3
学习新知 两条直线平行的判定
思考1:若两条不同直线的倾斜角相等,这两条直线
的位置关系如何?反之成立吗?
y
l1
α1
O
l2
α2
x
4
学习新知
思考2:若两条不同直线的斜率相等,这两
在两种情况求解.
两直线垂直的判定方法
3.两条直线垂直需判定k1k2=-1,使用它的前提条件
是两条直线斜率都存在,若其中一条直线斜率不存
在,另一条直线斜率为零,此时两直线也垂直.
9
例题讲解
例2:已知A(-2,m),B(m,4),M(m+2,3),N(1,1),若
AB∥MN,则m的值为
.
解析:当m=-2时,直线AB的斜率不存在,而直线MN的斜率存
D.若两条直线的斜率不相等,则两直线不平行
3.若经过点M(m,3)和N(2,m)的直线l与斜率为-4的直线互相
垂直,则m的值是________.
14
5 [由题意知,直线 MN 的斜率存在,因为 MN⊥l,
m-3 1
14
所以 kMN=
=4,解得 m= 5 .]
2-m
14
学完一节课或一个内容,
应当及时小结,梳理知识
1
即 1-3k=0,∴k=3.]
7
例题讲解
例1 已知A、B、C、D四点的坐标,试判断直线AB与CD
的位置关系.
(1)A(2,3), B(-4,0), C(-3,l), D(-l,2); 平行
2
复习回顾
复习2:平面上两条直线位置关系
y
o
x
有平行,相交两种
我们设想如何通过直线的斜率
来判定这两种位置关系.
3
学习新知 两条直线平行的判定
思考1:若两条不同直线的倾斜角相等,这两条直线
的位置关系如何?反之成立吗?
y
l1
α1
O
l2
α2
x
4
学习新知
思考2:若两条不同直线的斜率相等,这两
在两种情况求解.
两直线垂直的判定方法
3.两条直线垂直需判定k1k2=-1,使用它的前提条件
是两条直线斜率都存在,若其中一条直线斜率不存
在,另一条直线斜率为零,此时两直线也垂直.
9
例题讲解
例2:已知A(-2,m),B(m,4),M(m+2,3),N(1,1),若
AB∥MN,则m的值为
.
解析:当m=-2时,直线AB的斜率不存在,而直线MN的斜率存
D.若两条直线的斜率不相等,则两直线不平行
3.若经过点M(m,3)和N(2,m)的直线l与斜率为-4的直线互相
垂直,则m的值是________.
14
5 [由题意知,直线 MN 的斜率存在,因为 MN⊥l,
m-3 1
14
所以 kMN=
=4,解得 m= 5 .]
2-m
14
学完一节课或一个内容,
应当及时小结,梳理知识
1
即 1-3k=0,∴k=3.]
7
例题讲解
例1 已知A、B、C、D四点的坐标,试判断直线AB与CD
的位置关系.
(1)A(2,3), B(-4,0), C(-3,l), D(-l,2); 平行
两条直线的位置关系-平行和垂直
![两条直线的位置关系-平行和垂直](https://img.taocdn.com/s3/m/e258eb06c950ad02de80d4d8d15abe23492f0317.png)
直线的方程及其性质
直线的方程:一般形式为 Ax+By+C=0,其中A、B不同时为0。
直线的性质
直线上的任意两点确定的直线方程是 唯一的。
两条不重合的直线,如果斜率相等,则它们平 行;如果斜率之积为-1,则它们垂直。
两条平行线之间的距离是常数,可以 通过公式计算。
两条垂直线的斜率互为相反数的倒数, 即k1*k2=-1。
01
两条垂直相交直线的交角为90度 。
02
在同一平面内,两条直线的交角 的平分线与这两条直线所形成的 四个角中,有一个角是直角。
垂直直ቤተ መጻሕፍቲ ባይዱ在坐标系中的表示
在平面直角坐标系中,两条垂直相交直线的斜 率互为相反数的倒数。即,如果一条直线的斜 率为k,那么与它垂直的直线的斜率为-1/k。
一条直线与y轴垂直,那么它的斜率为 0,可以表示为y=b(b为常数)的形式。
利用方程联立求解交点坐标
01
02
03
04
将两条直线的方程联立,解出 交点坐标;
若方程组无解,则两直线平行 ;
若方程组有唯一解,则两直线 相交于该点;
若方程组有无穷多解,则两直 线重合。
结合图形分析实际问题
在平面直角坐标系中, 画出两条直线的图形;
结合实际问题的背景 和意义,分析两直线 位置关系对问题的影 响。
在三角形 ABC 中,已知 A(0,0), B(4,0),C(0,3)。若直线 DE 与 AB 边平行且过点 C,求 DE 所在 直线的方程。
解答
由题意知 AB 边所在直线的方程为 x/4 + y/3 = 1。因为 DE 与 AB 边平行,所以 DE 所在直线的斜率 也为 -3/4。设 DE 所在直线的方 程为 y = -3/4x + b,将点 C(0,3) 代入得 b = 3。所以,DE 所在直 线的方程为 y = -3/4x + 3。
两条直线的位置关系ppt
![两条直线的位置关系ppt](https://img.taocdn.com/s3/m/ba1188bdfbb069dc5022aaea998fcc22bcd14397.png)
两条直线的位置关系
目录 CONTENT
• 两条直线平行 • 两条直线相交 • 两条直线重合 • 两条直线的斜率关系
01
两条直线平行
定义
01
两条直线平行是指它们在同一平 面内,且不相交。
02
平行线是直线间的一种位置关系 ,而不是指两条直线的方向或斜 率相同。
判定方法
同位角相等
同旁内角互补
如果两条直线被第三条直线所截,且 同位角相等,则这两条直线平行。
在平面几何中,两条重合的直线可以视为一条直线的两种不 同表达方式,它们具有相同的长度和方向。
04
两条直线的斜率关系
斜率相等
总结词
当两条直线的斜率相等时,它们是平 行的。
详细描述
在平面坐标系中,如果两条直线的斜率 相等,那么这两条直线将平行不相交。 例如,直线$y = x$和直线$y = x + 1$ 的斜率都为1,因此它们是平行的。
详细描述
在平面坐标系中,如果一条直线垂直于x轴 ,那么它的斜率不存在。这是因为垂直于x 轴的直线的y坐标是常数,而x坐标可以取任 意值,所以斜率无法定义。例如,直线$x = 1$就是一条垂直于x轴的直线,其斜率不存 在。
感谢您的观看
THANKS
图像法
在平面直角坐标系中,我们可以直接观察两条直线的图像, 找到它们的交点。这种方法需要一定的几何直觉和观察力。
性质
唯一性
两条相交的直线在平面内 只有一个交点。
不平行性
两条相交的直线不会平行, 因为平行线在平面内没有 交点。
对称性
如果两条直线关于某一直 线对称,那么这两条直线 一定相交于该对称轴上的 一点。
两条直线相交
定义
01
目录 CONTENT
• 两条直线平行 • 两条直线相交 • 两条直线重合 • 两条直线的斜率关系
01
两条直线平行
定义
01
两条直线平行是指它们在同一平 面内,且不相交。
02
平行线是直线间的一种位置关系 ,而不是指两条直线的方向或斜 率相同。
判定方法
同位角相等
同旁内角互补
如果两条直线被第三条直线所截,且 同位角相等,则这两条直线平行。
在平面几何中,两条重合的直线可以视为一条直线的两种不 同表达方式,它们具有相同的长度和方向。
04
两条直线的斜率关系
斜率相等
总结词
当两条直线的斜率相等时,它们是平 行的。
详细描述
在平面坐标系中,如果两条直线的斜率 相等,那么这两条直线将平行不相交。 例如,直线$y = x$和直线$y = x + 1$ 的斜率都为1,因此它们是平行的。
详细描述
在平面坐标系中,如果一条直线垂直于x轴 ,那么它的斜率不存在。这是因为垂直于x 轴的直线的y坐标是常数,而x坐标可以取任 意值,所以斜率无法定义。例如,直线$x = 1$就是一条垂直于x轴的直线,其斜率不存 在。
感谢您的观看
THANKS
图像法
在平面直角坐标系中,我们可以直接观察两条直线的图像, 找到它们的交点。这种方法需要一定的几何直觉和观察力。
性质
唯一性
两条相交的直线在平面内 只有一个交点。
不平行性
两条相交的直线不会平行, 因为平行线在平面内没有 交点。
对称性
如果两条直线关于某一直 线对称,那么这两条直线 一定相交于该对称轴上的 一点。
两条直线相交
定义
01
中职数学两条直线相交(垂直)(课堂PPT)
![中职数学两条直线相交(垂直)(课堂PPT)](https://img.taocdn.com/s3/m/c1b7c8f0f5335a8103d2202b.png)
(1),设与已知直线垂直的直线方程为:
y1 kxb1或 B xA yC 10
(2),将已知点的坐标 x0, y0 代入直线方程
求出 b1或C1的值
16
课堂练习
3. 直线l经过点M(-2,2)且与直线x-y-2=0垂直,则l的方程为 .
4.直线l1,l2满足l1⊥l2,若直线l1的倾斜角为30°,则直线l2的斜
例1 根据所给的直线方程,判断下列各对直线是否
垂直.
⑴ l 1 :x2y10,
⑵
l1:
y
2 3
x,
l 2 : x y 1; l 2 :6x4y10.
(3) l 1 : y 3 ,
l 2 :x 1.
12
探究
13
例2 求过点P(2,1)且与直线2x-y+10=0 垂直的直线方程。
探究
如果直线 l1 : A1x + B1y + C1 = 0 与 l2 : A2x + B2 y + C2 = 0 垂直,则
2 l1:y3 x1 , l2:y3 1x3
观察:
两条直线在平面内是什么位置关系? l1 l2 两条直线的斜率满足什么关系式? k1 k2 18.
探求:
两直线垂直
如果两条直线的斜率不为零且存在,怎样 判断直线垂直?
如图,l1与l2的斜率分别为k1,k2.若 l1 ⊥l2,我们讨论k1与k2满足的关系.
平行
重合
相交
两个方程的系 数关系
方程组的解的
解
k1 k2
b1 b2
无解
b1 b2
无数解
k1 k2 一个解
6
例2 求经过两条直线x+2y-1=0和2x-y-7=0的 交点,且平行于直线x+3y-5=0的直线方程。
y1 kxb1或 B xA yC 10
(2),将已知点的坐标 x0, y0 代入直线方程
求出 b1或C1的值
16
课堂练习
3. 直线l经过点M(-2,2)且与直线x-y-2=0垂直,则l的方程为 .
4.直线l1,l2满足l1⊥l2,若直线l1的倾斜角为30°,则直线l2的斜
例1 根据所给的直线方程,判断下列各对直线是否
垂直.
⑴ l 1 :x2y10,
⑵
l1:
y
2 3
x,
l 2 : x y 1; l 2 :6x4y10.
(3) l 1 : y 3 ,
l 2 :x 1.
12
探究
13
例2 求过点P(2,1)且与直线2x-y+10=0 垂直的直线方程。
探究
如果直线 l1 : A1x + B1y + C1 = 0 与 l2 : A2x + B2 y + C2 = 0 垂直,则
2 l1:y3 x1 , l2:y3 1x3
观察:
两条直线在平面内是什么位置关系? l1 l2 两条直线的斜率满足什么关系式? k1 k2 18.
探求:
两直线垂直
如果两条直线的斜率不为零且存在,怎样 判断直线垂直?
如图,l1与l2的斜率分别为k1,k2.若 l1 ⊥l2,我们讨论k1与k2满足的关系.
平行
重合
相交
两个方程的系 数关系
方程组的解的
解
k1 k2
b1 b2
无解
b1 b2
无数解
k1 k2 一个解
6
例2 求经过两条直线x+2y-1=0和2x-y-7=0的 交点,且平行于直线x+3y-5=0的直线方程。
高考数学---两条直线的位置关系PPT复习课件
![高考数学---两条直线的位置关系PPT复习课件](https://img.taocdn.com/s3/m/0e19383703020740be1e650e52ea551810a6c920.png)
的 距离 点P0(x0,y0)到直线l:Ax+By+C =0的距离 平行线Ax+By+C1=0与Ax+By +C2=0间的距离
|P1P2|= x2-x12+y2-y12
d=|Ax0+A2B+y0B+2 C|
d=
|C1-C2| A2+B2
33
本例题也可通过对称直线和原直线平行,设出所求直 线,然后利用点M到两直线的距离相等求解.
34
轴对称问题(关于直线对称)
轴对称问题的两个类型及求解方法
(1)点关于直线的对称
若两点P1(x1,y1)与P2(x2,y2)关于直线l:Ax+By+C=0对称,
A×x1+2 x2+B×y1+2 y2+C=0, 由方程组 yx22- -yx11×-AB=-1,
41
1.已知入射光线经过点M(-3,4),被直线l:x-y+3=
0反射,反射光线经过点N(2,6),则反射光线所在直线的方程
为
.
42
6x-y-6=0 [设点M(-3,4)关于直线l:x-y+3=0的对称点 为M′(a,b),则反射光线所在直线过点M′,所以
a-b--43=-1, -32+a-b+2 4+3=0,
16
已知两直线l1:mx+8y+n=0和l2:2x+my-1=0,试 确定m,n的值,使
(1)l1与l2相交于点P(m,-1); (2)l1∥l2; (3)l1⊥l2,且l1在y轴上的截距为-1.
17
[解] (1)由题意得m2m2--8m+-n1==00,, 解得mn==71., 即m=1,n=7时,l1与l2相交于点P(m,-1). (2)∵l1∥l2,∴m2 =m8 ≠-n1 解得mn≠=-4,2, 或mn≠=2-. 4, 即m=4,n≠-2或m=-4,n≠2时,l1∥l2.
|P1P2|= x2-x12+y2-y12
d=|Ax0+A2B+y0B+2 C|
d=
|C1-C2| A2+B2
33
本例题也可通过对称直线和原直线平行,设出所求直 线,然后利用点M到两直线的距离相等求解.
34
轴对称问题(关于直线对称)
轴对称问题的两个类型及求解方法
(1)点关于直线的对称
若两点P1(x1,y1)与P2(x2,y2)关于直线l:Ax+By+C=0对称,
A×x1+2 x2+B×y1+2 y2+C=0, 由方程组 yx22- -yx11×-AB=-1,
41
1.已知入射光线经过点M(-3,4),被直线l:x-y+3=
0反射,反射光线经过点N(2,6),则反射光线所在直线的方程
为
.
42
6x-y-6=0 [设点M(-3,4)关于直线l:x-y+3=0的对称点 为M′(a,b),则反射光线所在直线过点M′,所以
a-b--43=-1, -32+a-b+2 4+3=0,
16
已知两直线l1:mx+8y+n=0和l2:2x+my-1=0,试 确定m,n的值,使
(1)l1与l2相交于点P(m,-1); (2)l1∥l2; (3)l1⊥l2,且l1在y轴上的截距为-1.
17
[解] (1)由题意得m2m2--8m+-n1==00,, 解得mn==71., 即m=1,n=7时,l1与l2相交于点P(m,-1). (2)∵l1∥l2,∴m2 =m8 ≠-n1 解得mn≠=-4,2, 或mn≠=2-. 4, 即m=4,n≠-2或m=-4,n≠2时,l1∥l2.
两直线平行与垂直ppt课件全
![两直线平行与垂直ppt课件全](https://img.taocdn.com/s3/m/977e5b4854270722192e453610661ed9ad51558b.png)
正解:(1)当点 C 在 x 轴上时,设 C(x,0), 则 kAC= x-+31,kBC=x--24, ∵AC⊥BC,∴kAC·kBC=-1,即 x+16x-4=-1, ∴x=1 或 x=2,故所求点为 C(1,0)或 C(2,0).
20
(2)当点 C 在 y 轴上时,设 C(0,y),由 AC⊥BC,
1 (2)l1⊥l2⇔1×(m-2)+m×3=0⇔m=2, ∴ 当 m=12时,l1⊥l2.
24
(3)∵m=0 时,l1 不平行 l2, ∴ l1∥ l2⇔m-1 2=m3 ≠26m,解得 m=-1. (4)∵m=0 时,l1 与 l2 不重合, ∴ l1与 l2重合时,有m-1 2=m3 =26m,解得 m=3.
x
(2)l1,l2重合
bk11
k2 b2
(3)l1 l2 k1 k2 1
5
2、一般式方程中
l1 : a1x b1 y c1 0, 系数都不为0
l2 : a2 x b2 y c2 0
(1)l1 // l2
a1 a2
b1 b2
c1 c2
(2)l1与l2重合
a1 a2
b1 b2
c1 c2
26
例9.直线l:4x+y=4,p:mx+y=0,q:2x-3my=4 不能组成三角形,求m。
27
5 --1
又∵直线 AB 和直线 CD 不重合,∴AB∥CD.
18
∵ 直线 AD 的斜率 kAD=--31--10=4,直线 BC 的斜率
kBC= 即直线
21A5534D- -与52=直-线12,BC∴不kA平D≠行k.BC∴,四边形
ABCD
是梯形.
又∵kAB·kBC=-12×2=-1,
20
(2)当点 C 在 y 轴上时,设 C(0,y),由 AC⊥BC,
1 (2)l1⊥l2⇔1×(m-2)+m×3=0⇔m=2, ∴ 当 m=12时,l1⊥l2.
24
(3)∵m=0 时,l1 不平行 l2, ∴ l1∥ l2⇔m-1 2=m3 ≠26m,解得 m=-1. (4)∵m=0 时,l1 与 l2 不重合, ∴ l1与 l2重合时,有m-1 2=m3 =26m,解得 m=3.
x
(2)l1,l2重合
bk11
k2 b2
(3)l1 l2 k1 k2 1
5
2、一般式方程中
l1 : a1x b1 y c1 0, 系数都不为0
l2 : a2 x b2 y c2 0
(1)l1 // l2
a1 a2
b1 b2
c1 c2
(2)l1与l2重合
a1 a2
b1 b2
c1 c2
26
例9.直线l:4x+y=4,p:mx+y=0,q:2x-3my=4 不能组成三角形,求m。
27
5 --1
又∵直线 AB 和直线 CD 不重合,∴AB∥CD.
18
∵ 直线 AD 的斜率 kAD=--31--10=4,直线 BC 的斜率
kBC= 即直线
21A5534D- -与52=直-线12,BC∴不kA平D≠行k.BC∴,四边形
ABCD
是梯形.
又∵kAB·kBC=-12×2=-1,
北师大版七年级数学下册2.1两条直线的位置关系(第二课时)课件
![北师大版七年级数学下册2.1两条直线的位置关系(第二课时)课件](https://img.taocdn.com/s3/m/6843fc6cbf1e650e52ea551810a6f524ccbfcb3f.png)
直线外一点与直线上各 点连接的所有线段中, 垂线段最短.
ZYT
探究新知
如图 ,过点 A 作 l 的垂线,垂足为 B,线段AB的长度 叫做点 A 到直线 l的距离.
ZYT
探究新知
你知道体育课上老师是怎样测量跳远成绩的?你能说说 其中的道理吗?
线段PO的长度即为所求
O P
ZYT
典例精析
例2 在灌溉时,要把河中的水引到农田P处,如何挖掘 能使渠道最短?请画出图来,并说明理由.
探究新知
垂线的性质:平面内,过一点有且只有一条直线与已知直 线垂直. 提示: 1.“过一点”中的点,可以在已知直线上,也可以在已知直线外; 2.“有且只有”中,“有”指存在,“只有”指唯一性.
ZYT
探究新知
知识点 3 点到直线的距离
如图 ,点 P 是直线 l 外一点,PO⊥l,点 O 是垂足.点 A,B,C 在直线 l 上,比较线段 PO,PA,PB,PC 的长 短,你发现了什么?
A
M
B ∴直线MF为所求垂线.
D CNF
ZYT
典例精析
例2 如图,量出 (1)村庄A与货场B的距离, (2)货场B到铁道的距离.
C
8m B
0m 10m 20m 30m
A 25m
ZYT
巩固练习
马路两旁两名同学A、B,若A同学到马路对边怎样走最近?若
A同学到B同学处怎样走最近?
解:过点A作AC⊥BC,垂足为C,A
ZYT
探究新知
知识点 1 垂线的定义
观察下面图片,你能找出其中相交的线吗?它们有什么 特殊的位置关系?
a
b
两条直线相交成四个角,如果有一个角是直角,那么 称这两条直线互相垂直 ,其中的一条直线叫做另一条直线 的垂线,它们的交点叫做垂足.
ZYT
探究新知
如图 ,过点 A 作 l 的垂线,垂足为 B,线段AB的长度 叫做点 A 到直线 l的距离.
ZYT
探究新知
你知道体育课上老师是怎样测量跳远成绩的?你能说说 其中的道理吗?
线段PO的长度即为所求
O P
ZYT
典例精析
例2 在灌溉时,要把河中的水引到农田P处,如何挖掘 能使渠道最短?请画出图来,并说明理由.
探究新知
垂线的性质:平面内,过一点有且只有一条直线与已知直 线垂直. 提示: 1.“过一点”中的点,可以在已知直线上,也可以在已知直线外; 2.“有且只有”中,“有”指存在,“只有”指唯一性.
ZYT
探究新知
知识点 3 点到直线的距离
如图 ,点 P 是直线 l 外一点,PO⊥l,点 O 是垂足.点 A,B,C 在直线 l 上,比较线段 PO,PA,PB,PC 的长 短,你发现了什么?
A
M
B ∴直线MF为所求垂线.
D CNF
ZYT
典例精析
例2 如图,量出 (1)村庄A与货场B的距离, (2)货场B到铁道的距离.
C
8m B
0m 10m 20m 30m
A 25m
ZYT
巩固练习
马路两旁两名同学A、B,若A同学到马路对边怎样走最近?若
A同学到B同学处怎样走最近?
解:过点A作AC⊥BC,垂足为C,A
ZYT
探究新知
知识点 1 垂线的定义
观察下面图片,你能找出其中相交的线吗?它们有什么 特殊的位置关系?
a
b
两条直线相交成四个角,如果有一个角是直角,那么 称这两条直线互相垂直 ,其中的一条直线叫做另一条直线 的垂线,它们的交点叫做垂足.
高中数学《解析几何》两直线的位置关系 两直线垂直教学课件 苏教版必修2
![高中数学《解析几何》两直线的位置关系 两直线垂直教学课件 苏教版必修2](https://img.taocdn.com/s3/m/24661e94fd0a79563c1e72d0.png)
Hale Waihona Puke l2时直线 l1 // l 2 的等价条件是 k1 k2 且 b1 b2。 当直线的斜率不存在时, 直线 l1∥l 2的等价条件是 l1⊥ x 轴, 与 不重合。 l 2 ⊥ x 轴且 l l2 1
0
2
x
b2
l1
0
y l2
x
当直线方程为一般式时:
l1:A1x + B1y +C1 = 0,l2:A2x + B2y +C2 = 0 (A1与B1不全为零、A2与B2也不全为零) l1∥l2 A1 B2 – A2 B1= 0且A1 C2 – A2 C1 0 或A1 B2 – A2 B1= 0且B1 C2 – B2 C1 0
斜率互为负倒数
其中一条直线的斜率知道 另一条直线的斜率 所求直线的方程
由点斜式求出 法2:待定系数法
与直线Ax By C 0垂直的直线可设为 : Bx Ay m 0
例2(1)已知四点A(5,3),B(10,6),C(3,-4),D(-6,11) 求证:AB CD;
两直线斜率存在吗? 斜率存在时,怎样确定两直线垂直?
例1:求过点A(2,1),且与直线 2 x y 10 0 垂直的直线 l 的方程。
分析:
解此题的关键在于抓住垂直这个概 念,两直线垂直,说明这两条直线的斜率 互为负倒数。其中一条直线方程知道,从 而就可轻易的得出这条已知直线的斜率, 那么,所求直线的斜率也就可以得出来了。
法1:两直线垂直 求出
k1k2 1 若k1k2 1,则必有L1 L2
归纳:
一、特殊情况下的垂直
k1不存在,且k2 0
l1 l2
二、斜率都存在情况下的垂直
北师大版数学七年级下册第二章1两条直线的位置关系(共76张PPT)
![北师大版数学七年级下册第二章1两条直线的位置关系(共76张PPT)](https://img.taocdn.com/s3/m/a6347100e53a580216fcfeae.png)
图2-1-5 注意 (1)垂线是直线,垂线段特指一条线段,点到直线的距离是指垂线段 的长度. (2)求点到直线的距离时,要从已知条件中找出垂线段或画出垂线段,然后 计算或度量垂线段的长度,在实际问题中要应用其“最近性”解决问题.
1 两条直线的位置关系
例4 在图2-1-6所示的各图中,分别过点P作AB的垂线.
点拨 除了互补的两个角和为180°外,由平角的定义也可以得到和为180°.
1 两条直线的位置关系
栏目索引
题型二 垂线性质在生活中的应用
例2 如图2-1-9所示,平原上有A,B,C,D四个村庄,为解决当地缺水问题,政 府准备投资修建一个蓄水池.
图2-1-9 (1)不考虑其他因素,请你画图确定蓄水池H的位置,使它到四个村庄距离之 和最小; (2)计划把河水引入蓄水池H中,怎样开渠使水渠最短?并说明理由.
1 两条直线的位置关系
栏目索引
知识点三 余角和补角 1.如果两个角的和是90°,那么称这两个角互为余角. 2.如果两个角的和是180°,那么称这两个角互为补角. 3.余角、补角的性质:同角或等角的余角相等,同角或等角的补角相等. 注意 (1)互余、互补都是指两个角之间的关系.当∠1+∠2+∠3=90°时,不 能说∠1、∠2、∠3互余;当∠1+∠2+∠3=180°时,也不能说∠1、∠2、 ∠3互补.(2)互余的两个角都是锐角,而互补的两个角可能是一个锐角一个 钝角,也可能都是直角.(3)互余和互补都是反映两个角的数量关系,而不是 位置关系.
栏目索引
②必须强调“平面内”,否则,在空间里,经过一点与已知直线垂直的直线 有无数条. (2)直线外一点与直线上各点连接的所有线段中,垂线段最短,简称:垂线段 最短.
中职数学基础模块下册《两条直线的位置关系》PPT
![中职数学基础模块下册《两条直线的位置关系》PPT](https://img.taocdn.com/s3/m/8207df6f5bcfa1c7aa00b52acfc789eb172d9e0b.png)
(2)与直线 x –3y + 2 = 0 垂直,求直线 l 的方程.
第十九页,共二十一页。
【解析】由
y y
x 2x
1 得交点(-1,2),
4
∵ kl = 3,
∴ 所求直线 l 的方程为: 3x + y + 1 = 0.
第二十页,共二十一页。
1.两直线平(Ping)行的判定方法 2.两直线垂直的判定方法
(2)当另一条直线的斜(Xie)率为0°时, 一条直线的倾斜角为90° 另一条直线的倾斜角为 0° 此时,两直线位置关系为: 互相垂直
l1 y o
l1 x
第六页,共二十一页。
二、斜率存(Cun)在时两直线的平行与垂直
平行:两条不重合直线
l1 : y k和1x b1 l2 : y k2 x b,2 (b1 b2 )
第十八页,共二十一页。
2.若过点 A(2, 2), B(5, 0) 的直线与过点 P(2m,1),Q(1, m) 的
直线平行,则 m 的值为( B )
(A)-1
(B)3
(C)2
3.已知直线 l 满足下列两个条件:
(D). 1 2
(1)过直线 y = – x + 1 和 y = 2x + 4 的交点;
第二十一页,共二十一页。
k1 k2
l1与l2
, ,则
(3) 由方程可知, 轴l1 x轴两l2 直 x线在 轴上截距x
不相等,所以 l.1 l2
第九页,共二十一页。
例(Li)2 求过点A1, 2,且平行于直线 2x 3y 5 0的直线方程.
解 所求直线平行于直线 2x 3y ,5 所 0以它们的斜率
相等,都为 k 2, 3
两条直线平行和垂直的判定ppt课件
![两条直线平行和垂直的判定ppt课件](https://img.taocdn.com/s3/m/f0e2319d59f5f61fb7360b4c2e3f5727a5e92432.png)
(3)由题意知,l1 的斜率不存在,且不是 y 轴,l2 的斜率也不存在,恰好是 y 轴,
所以 l1∥l2.
-1-1
3-4
(4)由题意知,k1=
=1,k2=
=1,所以 l1 与 l2 重合或平行,
-2-0
2-3
4-(-1)
因为 kFG =
=1,所以 E,F,G,H 四点共线.
3-(-2)
所以 l1 与 l2 重合.
√
3
0,-
1
2
C.l1 的倾斜角为 30°,l2 过点 P(3, 3),Q(4,2 3)
D.l1 过点 M(1,0),N(4,-5),l2 过点 P(-6,0),Q(-1,3)
√
两条直线垂直
3.已知A(5,-1),B(1,1),C(2,3)三点,试判
断△ABC的形状.
分析
结合图形可猜想AB⊥BC,△ABC为直角三角形.
l1//l2 ⇔ k1=k2.
注:若没有特别说明,
说“两条直线l1,l2”时,
显然,当α1=α2=90o时,直线l1与直线l2的斜率不存在,此时l1∥l2. 指两条不重合的直线.
两条直线平行
两条直线平行的判定
类型
斜率存在
斜率不存在
前提条件
α1=α2≠90°
α1=α2=90°
对应关系
l1∥l2⇔k1=k2 l1∥l2⇔两直线的斜率都不存在
图示
用斜率证Байду номын сангаас三点共线时,常常用到这个结论。
两条直线平行
例 1 根据下列给定的条件,判断直线 l1 与直线 l2 是否平行.
(1)l1 经过点 A(2,1),B(-3,5),l2 经过 C(3,-3),D(8,-7);
所以 l1∥l2.
-1-1
3-4
(4)由题意知,k1=
=1,k2=
=1,所以 l1 与 l2 重合或平行,
-2-0
2-3
4-(-1)
因为 kFG =
=1,所以 E,F,G,H 四点共线.
3-(-2)
所以 l1 与 l2 重合.
√
3
0,-
1
2
C.l1 的倾斜角为 30°,l2 过点 P(3, 3),Q(4,2 3)
D.l1 过点 M(1,0),N(4,-5),l2 过点 P(-6,0),Q(-1,3)
√
两条直线垂直
3.已知A(5,-1),B(1,1),C(2,3)三点,试判
断△ABC的形状.
分析
结合图形可猜想AB⊥BC,△ABC为直角三角形.
l1//l2 ⇔ k1=k2.
注:若没有特别说明,
说“两条直线l1,l2”时,
显然,当α1=α2=90o时,直线l1与直线l2的斜率不存在,此时l1∥l2. 指两条不重合的直线.
两条直线平行
两条直线平行的判定
类型
斜率存在
斜率不存在
前提条件
α1=α2≠90°
α1=α2=90°
对应关系
l1∥l2⇔k1=k2 l1∥l2⇔两直线的斜率都不存在
图示
用斜率证Байду номын сангаас三点共线时,常常用到这个结论。
两条直线平行
例 1 根据下列给定的条件,判断直线 l1 与直线 l2 是否平行.
(1)l1 经过点 A(2,1),B(-3,5),l2 经过 C(3,-3),D(8,-7);
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10
例1:求过点A(2,1),且与直线 2x y 10 0
垂直的直线 l 的方程。
分析:
两直线垂直
斜率互为负倒数
其中一条直线的 斜率知道
求出 另一条直线的斜率 由点斜式求出 所求直线的方程
11
另解:设所求直线方程为x+2y+C=0.
因为直线过点(1,2),代入方程,得C=3, 所以所求直线方程为
上的截距为1,则m
n
斜率存在时,怎样确定两直线垂直?
例2(2)已知直线L1的斜率k1
3 4
,
直线L2经过点A(3a,-2),
B(0,a2+1),且L1 L2,求实数a的值.
由两直线垂直,能得到什么结论?
它与a有关系吗?
17
二.基础练习:
1、当m为_0或__4_/_3时,直线mx-(3m2)y=7与2x+my=1互相垂直。
x12+y12+x22+y22=(x1-x2)2+(y1-y2)2
化简,得
x1x2+y1y2=0.
由假定可知B1≠0,B2 y1=-
≠0,B2
x2.
6
代入上式,得 x1x2(1+
A1 A2 B1 B2
)=0.
因为A,B都不在y轴上,所以x1x2≠0,因此
1+ A1 A2 =0,(*)
两直线的位置关系
--两直线垂直
1
一、复习提问:
直线 l1 : y k1x b1 直线 l2 : y k2x b2
l1 // l2
k1 k2 且 b1 b2
当两直线的斜率都不存在时, 两直线平行
y l1
b1
l2
01 2
x
b2
l1
yl2
0
x
2
当直线方程为一般式时:
l1:A1x + B1y +C1 = 0,l2:A2x + B2y +C2 = 0 (A1与B1不全为零、A2与B2也不全为零)
l1
l2 : y 2 y
l2
l1
0
x
l2
1)
0
x
2)
9
归纳:
一、特殊情况下的垂直
k1不存在,且k2 0 l1 l2
二、斜率都存在情况下的垂直
L1 L2 k1k2 1(k1, k2均存在)
三、直线方程为一般式时
L1 : A1x B1 y C1 0 L2 : A2 x B2 y C2 0 若L1 L2,则
2、已知直线l :ax+by+2a=0与直 已知直线l1 :(a 2)x (1-a)y-1 0和直线l2 :(a -1)x (2a 3)y 2 0
1 与两坐标轴围成的四边形有一个外接圆(圆内接四边形的对角互补)
求实数线a的值. l2:(a-1)x+y+b=0互相垂直,且 直线l1过点(-1,1),则a= 2 , b= -2 .
15
四、课堂小结:
1、若两条直线斜率都存在,直线L1与L2的斜率分别为 k1,k2则:
L1⊥L2 k1k2=-1 2、两直线若一条直线无斜率另一条直线斜率为0,则 这二直线互相垂直。 3、直线方程为一般式时
L1 : A1x B1 y C1 0 L2 : A2 x B2 y C2 0
若L1 L2,则 A1 A2 B1B2 0
16
例2(1)已知四点A(5,3),B(10,6),C(3,-4),D(-6,11)
求证:AB CD;
一条光线通过点 A(1,-2), 遇直线l : x y - 2 0反射后,经过点B(-2,-1), 求反射光线所在的直线 方程.
两直线斜率存在吗?
已知两直线l1 : mx 8y n 0和l2 : 2x my-1 0,若l1 l2,,且l1在y轴
x-2y+3=0.
求解方法:待定系数法
结论:
与直线Ax By C 0垂直的直线可设为: Bx Ay m 0
12
课堂练习:
1. 求过点A(3,2)且垂直于直线 4x+5y-8=0的直线方程. 2 . 和直线x+3y+1=0垂直,且在x轴上 的截距为2的直线方程。
13
例2:判断下列两直线是否垂直,并说明理由.
条直线L1和L2,有
L1⊥L2 A1A2+B1B2=0
③如果B1B2≠0,则L1的斜率k1=又可以得出:
A1 B1
,L2的斜率k2=-
A2,
B2
L1⊥Lfk1k2=-1
8
二、探究引入:
在同一坐标系内画出下列方程的直线,并观察它们的位置关系。
1)l1 : y 2x 1
l2
:
y
1 2
x
1
2)l1 : x 3 y
l1∥l2 A1 B2 – A2 B1= 0且A1 C2 – A2 C1 0 或A1 B2 – A2 B1= 0且B1 C2 – B2 C1 0
3
三、讲授新知: 特殊情况下的垂直
k1不存在,且k2 0
y
l1
y2
0
x1
l2
x l1 l2
4
已知两条直线: L1:A1x+B1y+C1=0, L2: A2x+B2y+C2=0。
B1 B2
即
A1A2+B1B2=0(**)
由于上面推导的每一步都是可逆的,因此,由(**)式
可以证明两条直线L1’与L2’垂直。从而也就证明了 L1与L2垂直。
7
②假定L1,L2中有一条直线与坐标轴平行或重合。
当L1⊥L2时,可以推出L1,L2中的另外一条也与坐标 轴平行或重合,因此同样有
A1A2+B1B2=0. 反过来,由条件A1 A2 +B1 B2 =0也可以推出L1⊥L2。 总结以上结论,我们得到,对坐标平面内的任意两
18
例3、已知三角形的顶点A(2,4),B(1,-2),C(-2,3), 求BC边上的高AD所在的直线方程.
10
8
L1
6
L2
4
2
L1
-15
-10
-5
5
10
15
L2
-2
-4
可转化为研究直线L1’: A1x+B1y=0 L2’: A2x+B2y=0
垂直的条件。
5
① 假定L1,L2都不与坐标轴平行或重合。
当L1⊥L2时,通过坐标原点作直线L1’∥ L1和 L2’∥ L2,则L和L2’互相垂直。
在直线L1’,L2’上分别取两点A(x1,y1)、B (x2,y2)(不含原点)。由勾股定理 ,得
(1) l1 : y 13x 1 l2 : y 3 x 8
(2) l1 : 3x 4 y 6 l2 : 4x 3y 7
(3) l1 : x 8
l2 : y 3
14
例3、已知直线L与直线2x+3y-1=0垂直,且在 两坐标轴上的截距之和为2,求直线L的方程.
例4、已知直线L1:(m+2)x+3my+1=0与直线 L2:(m-2)x+(m+2)y-3=0相互垂直,求实数m 的值. 例5、求点P(3,5)关于直线L:x-3y+2=0的 对称点P0的坐标.
例1:求过点A(2,1),且与直线 2x y 10 0
垂直的直线 l 的方程。
分析:
两直线垂直
斜率互为负倒数
其中一条直线的 斜率知道
求出 另一条直线的斜率 由点斜式求出 所求直线的方程
11
另解:设所求直线方程为x+2y+C=0.
因为直线过点(1,2),代入方程,得C=3, 所以所求直线方程为
上的截距为1,则m
n
斜率存在时,怎样确定两直线垂直?
例2(2)已知直线L1的斜率k1
3 4
,
直线L2经过点A(3a,-2),
B(0,a2+1),且L1 L2,求实数a的值.
由两直线垂直,能得到什么结论?
它与a有关系吗?
17
二.基础练习:
1、当m为_0或__4_/_3时,直线mx-(3m2)y=7与2x+my=1互相垂直。
x12+y12+x22+y22=(x1-x2)2+(y1-y2)2
化简,得
x1x2+y1y2=0.
由假定可知B1≠0,B2 y1=-
≠0,B2
x2.
6
代入上式,得 x1x2(1+
A1 A2 B1 B2
)=0.
因为A,B都不在y轴上,所以x1x2≠0,因此
1+ A1 A2 =0,(*)
两直线的位置关系
--两直线垂直
1
一、复习提问:
直线 l1 : y k1x b1 直线 l2 : y k2x b2
l1 // l2
k1 k2 且 b1 b2
当两直线的斜率都不存在时, 两直线平行
y l1
b1
l2
01 2
x
b2
l1
yl2
0
x
2
当直线方程为一般式时:
l1:A1x + B1y +C1 = 0,l2:A2x + B2y +C2 = 0 (A1与B1不全为零、A2与B2也不全为零)
l1
l2 : y 2 y
l2
l1
0
x
l2
1)
0
x
2)
9
归纳:
一、特殊情况下的垂直
k1不存在,且k2 0 l1 l2
二、斜率都存在情况下的垂直
L1 L2 k1k2 1(k1, k2均存在)
三、直线方程为一般式时
L1 : A1x B1 y C1 0 L2 : A2 x B2 y C2 0 若L1 L2,则
2、已知直线l :ax+by+2a=0与直 已知直线l1 :(a 2)x (1-a)y-1 0和直线l2 :(a -1)x (2a 3)y 2 0
1 与两坐标轴围成的四边形有一个外接圆(圆内接四边形的对角互补)
求实数线a的值. l2:(a-1)x+y+b=0互相垂直,且 直线l1过点(-1,1),则a= 2 , b= -2 .
15
四、课堂小结:
1、若两条直线斜率都存在,直线L1与L2的斜率分别为 k1,k2则:
L1⊥L2 k1k2=-1 2、两直线若一条直线无斜率另一条直线斜率为0,则 这二直线互相垂直。 3、直线方程为一般式时
L1 : A1x B1 y C1 0 L2 : A2 x B2 y C2 0
若L1 L2,则 A1 A2 B1B2 0
16
例2(1)已知四点A(5,3),B(10,6),C(3,-4),D(-6,11)
求证:AB CD;
一条光线通过点 A(1,-2), 遇直线l : x y - 2 0反射后,经过点B(-2,-1), 求反射光线所在的直线 方程.
两直线斜率存在吗?
已知两直线l1 : mx 8y n 0和l2 : 2x my-1 0,若l1 l2,,且l1在y轴
x-2y+3=0.
求解方法:待定系数法
结论:
与直线Ax By C 0垂直的直线可设为: Bx Ay m 0
12
课堂练习:
1. 求过点A(3,2)且垂直于直线 4x+5y-8=0的直线方程. 2 . 和直线x+3y+1=0垂直,且在x轴上 的截距为2的直线方程。
13
例2:判断下列两直线是否垂直,并说明理由.
条直线L1和L2,有
L1⊥L2 A1A2+B1B2=0
③如果B1B2≠0,则L1的斜率k1=又可以得出:
A1 B1
,L2的斜率k2=-
A2,
B2
L1⊥Lfk1k2=-1
8
二、探究引入:
在同一坐标系内画出下列方程的直线,并观察它们的位置关系。
1)l1 : y 2x 1
l2
:
y
1 2
x
1
2)l1 : x 3 y
l1∥l2 A1 B2 – A2 B1= 0且A1 C2 – A2 C1 0 或A1 B2 – A2 B1= 0且B1 C2 – B2 C1 0
3
三、讲授新知: 特殊情况下的垂直
k1不存在,且k2 0
y
l1
y2
0
x1
l2
x l1 l2
4
已知两条直线: L1:A1x+B1y+C1=0, L2: A2x+B2y+C2=0。
B1 B2
即
A1A2+B1B2=0(**)
由于上面推导的每一步都是可逆的,因此,由(**)式
可以证明两条直线L1’与L2’垂直。从而也就证明了 L1与L2垂直。
7
②假定L1,L2中有一条直线与坐标轴平行或重合。
当L1⊥L2时,可以推出L1,L2中的另外一条也与坐标 轴平行或重合,因此同样有
A1A2+B1B2=0. 反过来,由条件A1 A2 +B1 B2 =0也可以推出L1⊥L2。 总结以上结论,我们得到,对坐标平面内的任意两
18
例3、已知三角形的顶点A(2,4),B(1,-2),C(-2,3), 求BC边上的高AD所在的直线方程.
10
8
L1
6
L2
4
2
L1
-15
-10
-5
5
10
15
L2
-2
-4
可转化为研究直线L1’: A1x+B1y=0 L2’: A2x+B2y=0
垂直的条件。
5
① 假定L1,L2都不与坐标轴平行或重合。
当L1⊥L2时,通过坐标原点作直线L1’∥ L1和 L2’∥ L2,则L和L2’互相垂直。
在直线L1’,L2’上分别取两点A(x1,y1)、B (x2,y2)(不含原点)。由勾股定理 ,得
(1) l1 : y 13x 1 l2 : y 3 x 8
(2) l1 : 3x 4 y 6 l2 : 4x 3y 7
(3) l1 : x 8
l2 : y 3
14
例3、已知直线L与直线2x+3y-1=0垂直,且在 两坐标轴上的截距之和为2,求直线L的方程.
例4、已知直线L1:(m+2)x+3my+1=0与直线 L2:(m-2)x+(m+2)y-3=0相互垂直,求实数m 的值. 例5、求点P(3,5)关于直线L:x-3y+2=0的 对称点P0的坐标.