3.2.2函数模型应用实例
课件9:3.2.2 函数模型的应用实例
似满足g(t)=80-2t(件),价格近似满足于
1
15 + , (0 ≤ ≤ 10)
2
f(t)=൞
(元).
1
25 − , (10 < ≤ 20)
2
典型例题
类型3 分段函数模型的应用
(1)试写出该种商品的日销售额y与时间t(0≤t≤20)的函数表
10−6
代入得Y=10lg −12
10
=10lg 106=60,即声强级为60分贝.
(2)当Y=0时,即为10lg
10−12
=0,所以
I=10-12 W/m2,
则能听到的最低声强为10-12 W/m2.
10−12
=1,
典型例题
−7
5×10
(3)当声强I=5×10-7W/m2时,声强级Y=10lg −12
所以,商场要获取最大利润的75%,每件标价为250元
或150元.
名师指导
在函数模型中,二次函数模型占有重要的地位,根据实
际问题建立二次函数解析式后,可以利用配方法、判别
式法、换元法、函数的单调性等方法来求函数的最值,
从而解决实际问题中的利润最大、用料最省等问题.
跟踪训练
1.某水厂的蓄水池中有400吨水,每天零点开始由池
即 S=
2
-10x
+1 200x-15 000,30<x≤75.
跟踪训练
因为当0<x≤30时,S=900x-15 000为增函数,
所以x=30时,Smax=12 000;
当30<x≤75时,S=-10x2+1 200x-15 000
3.2.2 函数模型的应用举例
教学目标
1 能够写出函数解析式,确定函数模型; 2 能利用数据表格、函数图像讨论模型 3 注意限制条件,选出正确的函数模型
教学重难点
1用函数思想解决实际问题 2确定函数模型及利用表格,图象等讨论 函数模型
教学方法
自主求学式
问题
王老师今天从市中心到梅中上课,来的时候坐了 出租车。我们知道无锡出租车的价格,凡上车起步 价为8元,行程不超过3km者均按此价收费,行程超 过3km,按1.8元/km收费。 市中心到梅中的路程是 25公里,问王老师今天坐 车用了多少钱? 市中心到梅中的路程是 x公里,问王老师今天坐车 会用多少钱?
例3.为保护环境,实现城市绿化,某房地产公司要在拆迁地矩形 ABCD(如下图所示)上规划出一块矩形地面建造住宅区小公园 POCR(公园的两边分别落在BC和CD上),但不能超过文物保 护三角形AEF的红线EF.问如何设计才能使公园占地面积最大? 并求出最大面积.已知AB=CD=200m,BC=AD=160m, AE=60m,AF=40m. 120≤x≤160 解析:设PR=x m,
0
A
时间
0
B
时间
0
C
时间
0
D
时间
c对应的参考事件:我出发后感到时间较紧,所以加速前进,后来发现 时间还很充裕,于是放慢了速度。
例题讲解
例1
某桶装水经营部每天的房租、人员工资等固定成本为200元, 每桶水的进价是5元,销售单价与日均销售量的关系如表所示:
销售单价/元 日均销售量/桶
6 480
7
440
小结:
1.解题四步骤:设、列、解、答. 2.解题过程:从问题出发,引进数学符号,建立函数 关系式,再研究函数关系式的定义域,并结合问题的 实际意义做出回答. 即建立数学模型,并推理演算求出数学模型的解, 再结合实际做出回答.
3.2.2 函数模型的应用实例
3.2.2 函数模型的应用实例(A)200只 (B)300只 (C)400只 (D)500只解析:由题意,繁殖数量y(只)与时间x(年)的关系为y=alog3(x+1),这种动物第2年有100只,所以100=alog3(2+1),所以a=100,所以y=100log3(x+1),所以当x=8时,y=100log3(8+1)=100×2=200.4.(2019·海淀区高一月考)2019年12月,某人的工资纳税额是245元,若不考虑其他因素,则他该月工资收入为( A )级数全月应纳税所得额税率(%)1 不超过1 500元 32 1 500~4 500元10注:本表所称全月应纳税所得额是以每月收入额减去3 500元(起征点)后的余额.(A)7 000元 (B)7 500元 (C)6 600元 (D)5 950元解析:设此人该月工资收入为x元.1 500×3%=45元.(x-3 500-1 500)×10%=245-45,得x=7 000元.5.某商店迎来店庆,为了吸引顾客,采取“满一百送二十,连环送”的酬宾促销方式,即顾客在店内花钱满100元(可以是现金,也可以是奖励券或两者合计),就送20元奖励券;满200元,就送40元奖励券;满300元,就送60元奖励券;…当日花钱最多的一位顾客共花出现金70 040元,如果按照酬宾促销方式,他最多能得到优惠( C )(A)17 000元 (B)17 540元(C)17 500元 (D)17 580元解析:这位顾客花的70 000元可得奖励券700×20=14 000(元),只有这位顾客继续把奖励券消费掉,也才能得到最多优惠,但当他把14 000元奖励券消费掉可得140×20=2 800(元)奖励券,再消费又可得到28×20=560(元)奖励券,560元消费再加上先前70 040中的40元共消费600元应得奖励券6×20=120元.120元奖励券消费时又得20元奖励券.所以他总共会得到14 000+2 800+560+120+20=17 500(元)优惠.故选C.6.(2019·泉州高一月考)在某种新型材料的研制中,实验人员获得了下列一组实验数据:现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是( B )x 1.992 3 4 5.15 6.126 y 1.517 4.041 8 7.5 12 18.01 (A)y=2x-2 (B)y=(x2-1)(C)y=log2x (D)y=lo x解析:由题意可得表中数据y随x的变化趋势.函数在(0,+∞)上是增函数,且y的变化随x的增大越来越快.因为A中函数是线性增加的函数,C中函数是比线性增加还缓慢的函数,D中函数是减函数,所以排除A,C,D;所以B中函数y=(x2-1)符合题意.7.(2019·湖北宜昌一中月考)把物体放在冷空气中冷却,如果物体原来的温度是θ1℃,空气的温度是θ0℃,t min后物体的温度θ℃可由公式θ=θ0+(θ1-θ0)e-0.24t求得.把温度是100 ℃的物体,放在10 ℃的空气中冷却t min后,物体的温度是40 ℃,那么t的值约等于.(保留三位有效数字,参考数据:ln 3取 1.099,ln 2取0.693)解析:依题意将θ1=100,θ0=10,θ=40代入公式θ=θ0+(θ1-θ0)e-0.24t 可得,e-0.24t=,即-0.24t=ln ,解得t=≈4.58.答案:4.588.现测得(x,y)的两组值为(1,2),(2,5),现有两个拟合模型,甲:y= x2+1,乙:y=3x-1,若又测得(x,y)的一组对应值为(3,10.2),则应选用作为拟合模型较好.解析:对于甲:x=3时,y=32+1=10,对于乙:x=3时,y=8,因此用甲作为拟合模型较好.答案:甲9.为了发展电信事业,方便用户,电信公司对移动电话采用不同的收费方式,其中所使用的“如意卡”与“便民卡”在某市范围内每月(30天)的通话时间x(分)与通话费用y(元)的关系如图所示.(1)分别求出通话费用y1,y2与通话时间x之间的函数解析式;(2)请帮助用户计算在一个月内使用哪种卡便宜.解:(1)由题中图象可设y1=k1x+29,y2=k2x,把点B(30,35),C(30,15)分别代入y1,y2的解析式,得k1=,k2=.所以y1=x+29(x≥0),y2=x(x≥0).(2)令y1=y2,即x+29=x,则x=96.当x=96时,y1=y2,两种卡收费一致;当x<96时,y1>y2,使用“便民卡”便宜;当x>96时,y1<y2,使用“如意卡”便宜.10.某租赁公司拥有汽车100辆,当每辆车的月租金为3 000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3 600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?解:(1)当每辆车的月租金定为3 600元时,未租出的车辆数为=12,所以这时租出了88辆车.(2)设每辆车的月租金定为x元,则租赁公司的月收益为f(x)=(100-)(x-150)-×50,整理得f(x)=-+162x-21 000=-(x-4 050)2+307 050.所以当x=4 050时,f(x)最大,最大值为f(4 050)=307 050,即当每辆车的月租金定为4 050元时,租赁公司的月收益最大,最大月收益为307 050元.。
人教a版必修1学案:3.2.2函数模型的应用实例(含答案)
3.2.2 函数模型的应用实例自主学习1.掌握几种初等函数的应用.2.理解用拟合函数的方法解决实际问题的方法. 3.了解应用实例的三个方面和数学建模的步骤.1.函数模型的应用实例主要包括三个方面:(1)________________________________________________; (2)________________________________________________; (3)________________________________________________. 2.面临实际问题,自己建立函数模型的步骤:(1)________________;(2)________;(3)______________; (4)______________; (5)________;(6)______________.对点讲练已知函数模型的应用问题【例1】 某公司生产一种电子仪器的固定成本为20 000元,每生产一台仪器需增加投入100元,已知总收益满足函数:R (x )=⎩⎪⎨⎪⎧400x -12x 2 (0≤x ≤400)80 000 (x >400).其中x 是仪器的月产量.(1)将利润表示为月产量的函数f (x );(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?(总收益=总成本+利润)变式迁移1 为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t的函数关系式为y =(116)t -a (a 为常数)如图所示.根据图中提供的信息,回答下列问题:(1)从药物释放开始,每立方米空气中的含药量y (毫克)与时间t (小时)之间的函数关系式为__________________;(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那么从药物释放开始,至少需要经过________小时后,学生才能回到教室.自建函数模型的应用问题【例2】某公司每年需购买某种元件8 000个用于组装生产,每年分n次等量进货,每进一次货(不分进货量大小)费用500元,为了持续生产,需有每次进货的一半库存备用,每件每年库存费2元,问分几次进货可使得每年购买和贮存总费用最低?变式迁移2 某工厂拟建一座平面图为矩形且面积为200 m2的三级污水处理池(平面图如图所示),由于地形限制,长、宽都不能超过16 m,如果池外周壁建造单价为每米400元,中间墙建造单价为每米248元,池底建造单价为每平方米80元(池壁的厚度忽略不计,且池无盖).(1)写出总造价y(元)与污水处理池长x(m)的函数关系式,并指出其定义域.(2)求污水处理池的长和宽各为多少时,污水处理池的总造价最低?并求出最低总造价.函数模型的选择【例3】某工厂今年1月、2月、3月生产某种产品的数量分别是1万件、1.2万件、1.3万件,为了估测以后每个月的产量,以这三个月的产品数量为依据,用一个函数模拟该产品的月产量y与月份x的关系,模拟函数可以选用二次函数或函数y=ab x+c(其中a,b,c为常数,a≠0),已知4月份该产品的产量为1.37万件,请问用以上哪个函数作为模拟函数较好,并说明理由.变式迁移3 某地西红柿从2月1日起开始上市,通过市场调查,得到西红柿种植成本Q (单位:元/102kg)(1)Q 与上市时间t 的变化关系;Q =at +b ,Q =at 2+bt +c ,Q =a ·b t ,Q =a ·log b t ;(2)利用你选取的函数,求西红柿种植成本最低时的上市天数及最低种植成本.1.解答应用题的基本步骤: (1)设:合理、恰当地设出变量;(2)写:根据题意,抽象概括数量关系,并能用数学语言表示,得到数学问题; (3)算:对所得数学问题进行分析、运算、求解;(4)答:将数学问题的解还原到实际生活问题中,给出最终的答案. 2.在中学阶段,用函数拟合解决实际问题的基本过程是:课时作业一、选择题1现准备用下列函数中的一个近似地表示这些数满足的规律,其中最接近的一个是( )A .V =log 2tB .V =log 12t C .V =t 2-12D .V =2t -22.计算机成本不断降低,若每隔3年计算机价格降低13,则现在价格为8 100元的计算机,9年后的价格可降为( )A .2 400元B .900元C .300元D .3 600元3. 一个高为H ,盛水量为V 0的水瓶的轴截面如图所示,现以均匀速度往水瓶中灌水,直到灌满为止,如果水深h 时水的体积为V ,则函数V =f (h )的图象大致是( )4.某种电热水器的水箱盛满水是200升,加热到一定温度可浴用.浴用时,已知每分钟放水34升,在放水的同时注水,t分钟注水2t2升,当水箱内水量达到最小值时,放水自动停止.现假定每人洗浴用水65升,则该热水器一次至多可供几人洗澡() A.3人B.4人C.5人D.6人二、填空题5.60年国庆,举国欢腾,某旅游胜地的客流量急速增加.某家客运公司为招揽游客,推出了客运定票的优惠政策:如果行程不超过100 km,票价是0.4元/km;如果超过100 km,则超过100 km的部分按0.3元/km定价.则客运票价y元与行程公里x km之间的函数关系是______________________________.6. 右图表示一位骑自行车和一位骑摩托车者在相距为80 km的两城镇间旅行的函数图象,由图可知:骑自行车者用6 h(含途中休息的1 h),骑摩托车者用了2 h.有人根据这个函数图象,提出了关于这两个旅行者的如下信息:①骑自行车者比骑摩托车者早出发3 h,晚到1 h;②骑自行车者是变速运动,骑摩托车者是匀速运动;③骑摩托车者在出发1.5 h后追上骑自行车者.其中正确的序号是__________________________________________________.三、解答题7.某产品的总成本y(万元)与产量x(台)之间的函数关系式是y=3 000+20x-0.1x2(0<x<240,x∈N*),若每台产品的售价为25万元,则生产者不赔本时(销售收入不小于总成本)的最低产量是多少.8.某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100个时,凡多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元.(1)当一次订购量为多少时,零件的实际出厂单价恰降为51元?(2)设一次订购量为x个,零件的实际出厂单价为P元,写出函数P=f(x)的表达式;(3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1 000个,利润又是多少元?3.2.2函数模型的应用实例答案自学导引1.(1)利用给定的函数模型解决实际问题 (2)建立确定性的函数模型解决问题 (3)建立拟合函数模型解决实际问题2.(1)收集数据 (2)描点 (3)选择函数模型 (4)求函数模型 (5)检验 (6)用函数模型解决实际问题对点讲练【例1】 解 (1)设每月产量为x 台,则总成本为20 000+100x ,从而f (x )=⎩⎪⎨⎪⎧-12x 2+300x -20 000 (0≤x ≤400)60 000-100x (x >400).(2)当0≤x ≤400时,f (x )=-12(x -300)2+25 000,∴当x =300时,有最大值25 000;当x >400时,f (x )=60 000-100x 是减函数, f (x )<60 000-100×400<25 000. ∴当x =300时,f (x )取最大值.∴每月生产300台仪器时,利润最大, 最大利润为25 000元.变式迁移1 (1) y =⎩⎨⎧10t , 0≤t ≤110,⎝⎛⎭⎫116t -110, t >110(2)0.6解析 (1)设y =kt (k ≠0),由图象知y =kt 过点(0.1,1),则1=k ×0.1,k =10, ∴y =10t (0≤t ≤0.1);由y =⎝⎛⎭⎫116t -a过点(0.1,1)得1=⎝⎛⎭⎫1160.1-a , a =0.1,∴y =⎝⎛⎭⎫116t -0.1(t >0.1).∴y =⎩⎨⎧10t , 0≤t ≤110,⎝⎛⎭⎫116t -110,t >110.(2)由⎝⎛⎭⎫116t -0.1≤0.25=14,得t ≥0.6, 故至少需经过0.6小时.【例2】 解 设每年购买和贮存元件总费用为y 元,其中购买成本费为固定投入, 设为c 元,则y =500n +2×8 000n ×12+c=500n +8 000n +c =500(n +16n )+c=500(n -4n )2+4 000+c ,当且仅当n =4n,即n =4时,y 取得最小值且y min =4 000+c .所以分4次进货可使得每年购买和贮存元件总费用最低.变式迁移2 解 (1)设污水处理池的长为x m ,则宽为200xm ,总造价为y .∴y =400(2x +2×200x )+248×200x ×2+80×200=800(x +324x )+16 000.∵⎩⎪⎨⎪⎧0<x ≤160<200x≤16,∴12.5≤x ≤16.故其定义域为[12.5,16].(2)先讨论y =800(x +324x)+16 000在[12.5,16]上的单调性.设x 1,x 2∈[12.5,16]且x 1<x 2,则y 1-y 2=800[(x 1-x 2)+324(1x 1-1x 2)]=800(x 1-x 2)(1-324x 1x 2).∵x 1,x 2∈[12.5,16],x 1<x 2, ∴x 1·x 2<162<324.∴1-324x 1x 2<0,x 1-x 2<0.∴y 1-y 2>0.∴此函数在[12.5,16]上单调递减. ∴当x =16时,y min =45 000(元),此时,宽为20016m =12.5 m.∴当池长为16 m ,宽为12.5 m 时, 总造价最低为45 000元.【例3】 解 设f (x )=px 2+qx +r (p ≠0),则有 ⎩⎪⎨⎪⎧f (1)=p +q +r =1,f (2)=4p +2q +r =1.2,f (3)=9p +3q +r =1.3.解得p =-0.05,q =0.35,r =0.7. ∴f (x )=-0.05x 2+0.35x +0.7,∴f (4)=-0.05×42+0.35×4+0.7=1.3. 设g (x )=ab x +c (a ≠0),则有 ⎩⎪⎨⎪⎧g (1)=ab +c =1,g (2)=ab 2+c =1.2,g (3)=ab 3+c =1.3.解得a =-0.8,b =0.5,c =1.4. ∴g (x )=-0.8×0.5x +1.4,∴g (4)=-0.8×0.54+1.4=1.35.经比较可知,用g (x )=-0.8×0.5x +1.4作为模拟函数较好. 变式迁移3 解 (1)由表中数据知,当时间t 变化时,种植成本并不是单调的, 故只能选取Q =at 2+bt +c .即⎩⎪⎨⎪⎧150=a ×502+b ×50+c 108=a ×1102+b ×110+c 150=a ×2502+b ×250+c, 解得Q =1200t 2-32t +4252. (2)Q =1200(t -150)2+4252-2252=1200(t -150)2+100, ∴当t =150天时,西红柿的种植成本最低,为100元/102 kg. 课时作业 1.C 2.A3.D [考察相同的Δh 内ΔV 的大小比较.] 4.B [设最多用t 分钟,则水箱内水量y =200+2t 2-34t ,当t =172时,y 有最小值,此时共放水34×172=289(升),可供4人洗澡.]5.y =⎩⎪⎨⎪⎧0.4x ,0<x ≤100,40+0.3(x -100),x >1006.①②解析 ③错,骑摩托车者出发1.5 h 时走了60 km ,而从图中可看出骑自行车者走的距离大于60 km.7.解 由题意得⎩⎪⎨⎪⎧3 000+20x -0.1x 2≤25x 0<x <240解得150≤x <240,x ∈N *∴生产者不赔本时的最低产量是150台.8.解 (1)设每个零件的实际出厂价恰好降为51元时,一次订购量为x 0个,则x 0=100+60-510.02=550(个).∴当一次订购量为550个时,每个零件的实际出厂价恰好降为51元. (2)当0<x ≤100时,P =60; 当100<x <550时,P =60-0.02(x -100)=62-0.02x ; 当x ≥550时,P =51.∴P =f (x )=⎩⎪⎨⎪⎧60, 0<x ≤100,62-0.02x , 100<x <550,51, x ≥550(x ∈N +).(3)设销售商一次订购量为x 个时,工厂获得的利润为S 元,则 S =(P -40)x =⎩⎪⎨⎪⎧20x , 0<x ≤100,22x -0.02x 2, 100<x <550,11x , x ≥550(x ∈N +)当x =500时,S =22×500-0.02×5002=6 000(元);当x =1 000时,S =11×1 000=11 000(元).∴当销售商一次订购500个零件时,该厂获得的利润是6 000元;如果一次订购1 000个零件时,利润是11 000元.。
课件5:3.2.2 函数模型的应用实例
图 3-2-8
【解】 OB 所在的直线方程为 y= 3x.当 x∈(0,1]时,由 x =t,求得 y= 3t,所以 f(t)= 23t2;
当 t∈(1,2]时,f(t)= 3- 23(2-t)2; 当 t∈(2,+∞)时,f(t)= 3,
23t2,t∈0,1],
∴f(t)=
3- 232-t2,t∈1,2],
3,t∈2,+∞.
指数(对数)型函数建模问题
例 3.大西洋鲑鱼每年都要逆流而上,游回产地产卵.记鲑鱼的 游速为 v(m/s),鲑鱼的耗氧量的单位数为 Q,研究中发现 v 与 log31Q00成正比,且当 Q=900 时,v=1.
24x-9.6 x>34.
(2)由于 y=f(x)在各段区间上均单调递增, 所以当 x∈0,45时,y≤f45<26.40; 当 x∈45,43时,y≤f43<26.40; 当 x∈43,+∞时,令 24x-9.6=26.40, 得 x=1.5.∴甲用户用水量为 5x=7.5(吨), 付费 y1=4×1.80+3.5×3.00=17.70(元). 乙用户用水量为 3x=4.5(吨), 付费 y2=4×1.80+0.5×3.00=8.70(元).
【自主解答】 (1)设 y=kx+b(k≠0), ∵x=8 时,y=400;x=10 时,y=320. ∴430200= =810k+k+b, b, 解之得kb==-72400,, ∴y 关于 x 的函数关系式为 y=-40x+720(x>0). (2)该班学生买饮料每年总费用为 51×120=6 120(元). 当 y=380 时,380=-40x+720,得 x=8.5, 该班学生集体饮用桶装纯净水的每年总费用为 380×8.5+ 228=3 458(元), 所以,饮用桶装纯净水的年总费用少.
3.2.2函数模型应用实例
60266
61456
62828
64563
65994
67207
y y0e
n (1)如果以各年人口增长平均值l作为我国这一时期的人口增长 率(精确到0.0001),用马尔萨斯人口增长模型建立我国在 这一时期具体人口增长模型,并检验所得模型与实际人口数 据是否相符;
解:设1951~1959年的人口增长率分别为 r1 ,r 2 ,......,r 9 . 由
y 其中t表示经过的时间,y0表示t=0时的人口数, r表示人口 的年平均增长率。
0
y y0e
n
表3是1950~1959年我国的人口数据资料:
年份
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
人数/ 万人55196 Nhomakorabea56300
57482
58796
3.2.2 函数模型的应用实例
一辆汽车在某段路中的行驶速率与时间的关系 如图1所示,
(1)求图1中阴影部 分的面积,并说明所 求面积的实际含义; (2)假设这辆汽车的 里程表在汽车行行驶 这段路程前的读数为 2004km,试建立行 驶这段路程时汽车里 程表读数s km与时间t h的函数解析式,并作 出相应的图象。
由图4可以看出,所 得模型与 1950~1959年的实 际人口数据基本吻 合.
(2)如果按表3的增长趋势,大约在哪一年我国 的人口达到13亿?
将y=130000代入 y 55196e0.0221t .t N.
由计算可得
t 38.76
所以,如果按表3的增长趋势,那么大约在1950 年后的第39年(即1989年)我国的人口就已达到 13亿.由此可以看到,如果不实行计划生育,而是让 人口自然增长,今天我国将面临难以承受的人口压 力.
3.2.2 函数模型的应用实例训练
3.2.2函数模型的应用实例一、基础达标1.某同学家门前有一笔直公路直通长城,星期天,他骑自行车匀速前往,他先前进了a km,觉得有点累,就休息了一段时间,想想路途遥远,有些泄气,就沿原路返回骑了b km(b<a),当他记起诗句“不到长城非好汉”,便调转车头继续前进,则该同学离起点的距离与时间的函数关系图象大致为()答案 C解析由题意可知,s是关于时间t的一次函数,所以其图象特征是直线上升.由于中间休息了一段时间,该段时间的图象应是平行于横轴的一条线段.然后原路返回,图象下降,再调转车头继续前进,则直线一致上升.2.国内快递1 000 g以内的包裹的邮资标准如下表:如果某人在西安要快递800 g的包裹到距西安1 200 km的某地,那么他应付的邮资是() A.5.00元B.6.00元C.7.00元D.8.00元答案 C解析由题意可知,当x=1 200时,y=7.00元.3.某机器总成本y(万元)与产量x(台)之间的函数关系式是y=x2-75x,若每台机器售价为25万元,则该厂获利润最大时应生产的机器台数为() A.30 B.40C.50 D.60答案 C解析 设安排生产x 台,则获得利润 f (x )=25x -y =-x 2+100x =-(x -50)2+2 500.故当x =50台时,获利润最大.4.根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎪⎨⎪⎧cx ,x <A ,c A ,x ≥A (A ,c 为常数).已知工人组装第4件产品用时30 min ,组装第A 件产品用时15 min ,那么c 和A 的值分别是 ( )A .75,25B .75,16C .60,25D .60,16答案 D解析 由题意知,组装第A 件产品所需时间为cA=15,故组装第4件产品所需时间为c 4=30,解得c =60.将c =60代入c A=15,得A =16. 5.某工厂生产某产品x 吨所需费用为P 元,而卖出x 吨的价格为每吨Q 元,已知P =1 000+5x +1102,Q =a +xb ,若生产出的产品能全部卖出,且当产量为150吨时利润最大,此时每吨的价格为40元,则有 ( )A .a =45,b =-30B .a =30,b =-45C .a =-30,b =45D .a =-45,b =-30答案 A解析 设生产x 吨产品全部卖出,获利润为y 元,则y =xQ -P =x ⎝⎛⎭⎪⎫a +xb -⎝ ⎛⎭⎪⎫1 000+5x +110x 2 =⎝ ⎛⎭⎪⎫1b -110x 2+(a -5)x -1 000(x >0). 由题意知,当x =150时,y 取最大值,此时Q =40.∴⎩⎨⎧-a -52⎝⎛⎭⎪⎫1b -110=150,a +150b =40,解得⎩⎨⎧a =45,b =-30.6.已测得(x ,y )的两组值为(1,2),(2,5),现有两个拟合模型,甲:y =x 2+1,乙:y =3x -1.若又测得(x ,y )的一组对应值为(3,10.2),则选用________作为拟合模型较好. 答案 甲解析 对于甲:x =3时,y =32+1=10,对于乙:x =3时,y =8,因此用甲作为拟合模型较好.7.武汉市的一家报摊主从报社买进《武汉晚报》的价格是每份0.40元,卖出的价格是每份0.50元,卖不掉的报纸还可以以每份0.08元的价格退回报社.在一个月(以30天计算)里,有20天每天可卖出400份,其余10天每天只能卖出250份,但每天从报社买进的份数必须相同,他应该每天从报社买进多少份,才能使每月所获得的利润最大?并计算他一个月最多可赚得多少元? 解 设报摊主每天买进报纸x 份,每月利润为y 元(x 为正整数). 当x ≤250时,y =0.1×30×x =3x . 当250≤x ≤400时,y =0.1×20×x +0.1×10×250-(x -250)×0.32×10 =2x +250-3.2x +800 =1 050-1.2x . 当x ≥400时,y =0.1×20×400+0.1×10×250-(x -400)×0.32×20-(x -250)×0.32×10 =800+250-6.4x +2 560-3.2x +800 =-9.6x +4 410.当x ≤250时,取x =250,y max =3×250=750(元). 当250≤x ≤400时,取x =250,y max =750(元). 当x ≥400时,取x =400,y max =570(元).故他应该每天从报社买进250份报纸,才能使每月所获得的利润最大,最大值为750元.二、能力提升8.衣柜里的樟脑丸,随着时间会挥发而体积缩小,刚放进的新丸体积为a ,经过t 天后体积V 与天数t 的关系式为:V =a ·e -kt .已知新丸经过50天后,体积变为49a .若一个新丸体积变为827a ,则需经过的天数为( )A .125B .100C .75D .50答案 C解析 由已知,得49a =a ·e -50k ,∴e -k=⎝⎛⎭⎪⎫49150.设经过t 1天后,一个新丸体积变为827a ,则827a =a ·e -kt 1, ∴827=(e -k)t 1=⎝⎛⎭⎪⎫49t 150, ∴t 150=32,t 1=75. 9.“学习曲线”可以用来描述学习某一任务的速度,假设函数t =-144lg ⎝ ⎛⎭⎪⎫1-N 90中,t 表示达到某一英文打字水平所需的学习时间,N 表示每分钟打出的字数.则当N =40时,t =________(已知lg 2≈0.301,lg 3≈0.477). 答案 36.72解析 当N =40时,则t =-144lg ⎝ ⎛⎭⎪⎫1-4090=-144lg 59144(lg 5-2lg 3)=36.72.10.如图所示,某池塘中浮萍蔓延的面积y (m 2)与时间t (月)的关系y =a t ,有以下几种说法:①这个指数函数的底数为2;②第5个月时,浮萍面积就会超过30 m2;③浮萍从4 m2蔓延到12 m2需要经过1.5个月;④浮萍每月增加的面积都相等.其中正确的命题序号是________.答案①②解析由图象知,t=2时,y=4,∴a2=4,故a=2,①正确.当t=5时,y=25=32>30,②正确,当y=4时,由4=2t1知t1=2,当y=12时,由12=2t2知t2=log212=2+log23.t2-t1=log23≠1.5,故③错误;浮萍每月增长的面积不相等,实际上增长速度越来越快,④错误.11.在对口扶贫活动中,为了尽快脱贫(无债务)致富,企业甲将经营状况良好的某种消费品专卖店以5.8万元的优惠价格转让给了尚有5万元无息贷款没有偿还的小型残疾人企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支3 600元后,逐步偿还转让费(不计息).根据甲提供的资料有:①这种消费品的进价为每件14元;②该店月销量Q(百件)与销售价格P(元)的关系如下图所示;③每月需各种开支2 000元.(1)当商品的价格为每件多少元时,月利润扣除职工最低生活费的余额最大?并求最大余额.(2)企业乙只依靠该店,最早可望在几年后脱贫? 解 设该店月利润余额为L ,则由题设得: L =Q (P -14)×100-3 600-2 000.①由销量图易得:Q =⎩⎪⎨⎪⎧-2P +50,14≤P ≤20,-32P +40,20<P ≤26,代入①式得L =⎩⎪⎨⎪⎧(-2P +50)(P -14)×100-5 600,14≤P ≤20,(-32P +40)(P -14)×100-5 600,20<P ≤26,(1)当14≤P ≤20时,L max =450(元), 此时P =19.5(元);当20<P ≤26时,L max =1 2503(元),此时P =613(元).故当P =19.5(元)时,月利润余额最大,为450元. (2)设可在n 年后脱贫,依题意有12n ×450-50 000-58 000≥0,解得n ≥20. 即最早可望在20年后脱贫. 三、探究与创新12.物体在常温下的温度变化可以用牛顿冷却规律来描述:设物体的初始温度是T 0,经过一定时间t 后的温度是T ,则T -T a =(T 0-T a )·⎝ ⎛⎭⎪⎫12th ,其中T a 表示环境温度,h 称为半衰期.现有一杯用88℃热水冲的速溶咖啡,放在24℃的房间中,如果咖啡降温到40℃需要20 min ,那么降温到35℃时,需要多少时间? 解 由题意知40-24=(88-24)·⎝ ⎛⎭⎪⎫1220h , 即14=⎝ ⎛⎭⎪⎫1220h . 解之,得h =10.故T -24=(88-24)·⎝ ⎛⎭⎪⎫12t 10. 当T =35时,代入上式,得 35-24=(88-24)·⎝ ⎛⎭⎪⎫12t 10, 即⎝⎛⎭⎪⎫12t 10=1164.两边取对数,用计算器求得t ≈25. 因此,约需要25 min ,可降温到35℃.13.(2014·成都高一期末)今年冬季,我国大部分地区遭遇雾霾天气,给人们的健康、交通安全等带来了严重影响.经研究,发现工业废气等污染物排放是雾霾形成和持续的重要因素,污染治理刻不容缓.为此,某工厂新购置并安装了先进的废气处理设备,使产生的废气经过过滤后排放,以降低对空气的污染.已知过滤过程中废气的污染物数量P (单位:mg/L)与过滤时间t (单位:小时)间的关系为P (t )=P 0e -kt (P 0,k 均为非零常数,e 为自然对数的底数),其中P 0为t =0时的污染物数量.若经过5小时过滤后还剩余90%的污染物. (1)求常数k 的值;(2)试计算污染物减少到40%至少需要多少时间(精确到1小时,参考数据:ln 0.2≈-1.61,ln 0.3≈-1.20,ln 0.4≈-0.92,ln 0.5≈-0.69,ln 0.9≈-0.11.) 解 (1)由已知,当t =0时,P =P 0; 当t =5时,P =90%P 0. 于是有90%P 0=P 0e -5t .解得k =-15ln 0.9(或0.022).(2)由(1)得,知P =P 0e ⎝ ⎛⎭⎪⎫15ln 0.9t . 当P =40%P 0时,有0.4P 0=P 0e ⎝ ⎛⎭⎪⎫15t . 解得t =ln 0.415ln 0.9≈-0.9215×(-0.11)=4.600.11≈41.82.故污染物减少到40%至少需要42小时.。
3.2.2_函数模型的应用举例(1)
当 100<x≤500 时,P=60-0.02(x-100), 所以 P=f(x)=62-5x0, 100<x≤500, (x∈N*).
(6 分)
(2)设销售商一次订购量为 x 件时,工厂获得的利润为 L 元则,
返回
该经营者准备下月投入12万元经营这两种商品,但不 知投资A、B两种商品各多少才最合算.请你帮助制定一个 资金投入方案,使得该经营者能获得最大利润,并按你的 方案求出该经营者下月可获得的最大纯利润.(结果保留两 个有效数字)
[思路点拨] 先画出投资额与获利的图像,再选择函数 模型.
返回
[精解详析] 设投资额为x万元时, 获得的利润为y万元.在直角坐标系中 画出散点图并依次连接各点,如图所示, 观察散点图可知图像接近直线和抛物线, 因此可考虑用二次函数描述投资A种商品的利润y万元 与投资额x万元之间的函数关系;用一次函数描述投资 B种商品的利润y万元与投资额x万元之间的函数关系.
解析:(1)由图象可知,当 t≤3 时,电话费都是 3.6 元. (2)由图象可知,当 t=5 时,y=6,需付电话费 6 元. (3)当 t≥3 时,y 关于 x 的图象是一条直线,且经过(3,3.6) 和(5,6)两点,故设函数关系式为 y=kt+b, 则35kk++bb==36.,6, 解得kb==10..2, 故 y 关于 t 的函数关系式为 y=1.2t(t≥3)
1.如图所示,这是某电信局规定的打长途电 话所需要付的电话费y(元)与通话时间t(分 钟)之间的函数关系图象,根据图象填空: (1)通话2分钟,需要付电话费__________元; (2)通话5分钟,需要付电话费________元; (3)如果t≥3,则电话费y(元)与通话时间t(分钟)之间的函 数关系式为____________.
2018高中数学必修1课件:3.2.2 函数模型的应用举例 第1课时 一次函数、二次函数、幂函数模型
3.二次函数模型
(1)二次函数常设成y=ax2+bx+c(a,b,c为常数,a≠0)的形式,其图象是
抛 为物线,顶点,坐经标常是需用(配2ba方,4法ac4来a b求2 )最,当值a.>0时,在x=-
时,有最小值
b 2a
4ac b2
(2)在4实a 际中普遍存在的诸如造价成本最低而产出利润最大,风险决
【方法技巧】用一次函数模型解决实际问题的策略 用一次函数模型解决实际问题时,对于给出图象的应用题可先结
合图象利用待定系数法求出解析式.对于一次函数y=ax+b(a≠0),当 a>0时为增函数,当a<0时是减函数.另外,要结合题目理解(0,b)或
这些特殊点的意义.
( b,0) a
【变式训练】(2015·集宁高一检测)大气中的温度随着高度的上升而 降低,温度的降低大体上与升高的距离成正比,根据实测的结果:上升 12km为止,在12km以上温度不变,保持在-55℃. (1)当地球表面大气的温度是a℃时,设xkm上空的温度为y℃,求 0≤x≤12时,y随x变化的函数解析式. (2)当地球表面大气的温度是29℃时,3km上空的温度是多少?
(2)若使y≤1000,即20x+960≤1000,得x≤2. 又0≤x≤6,x∈N,所以0≤x≤2,x∈N. 所以x=0,1,2,即有3种调运方案. (3)因为y=20x+960是R上的增函数,又0≤x≤6且x∈N,所以当x=0 时,y有最小值为960. 所以总运费最低的调运方案为从甲地调运6台到A地,从乙地应调运8 台电脑至B地,运4台到A地,运费最低为960元.
【解题探究】本例中空闲率如何表示?如何求得最大值?
提示:由于最大蓄养量为m只,实际蓄养量为x只,则畜养率为 x,故空 闲率为1- x.建立函数模型后,利用函数的最值求羊群年增长量m的最 大值. m
探究式导学案2:3.2.2 函数模型的应用实例
3.2.2 函数模型的应用实例学习目标1.掌握几种初等函数的应用.2.理解用拟合函数的方法解决实际问题的方法. 3.了解应用实例的三个方面和数学建模的步骤. 课前预习1.函数模型的应用实例主要包括三个方面:(1)________________________________________________; (2)________________________________________________; (3)________________________________________________. 2.面临实际问题,自己建立函数模型的步骤:(1)________________;(2)________;(3)______________; (4)______________; (5)________;(6)______________.对点讲练1.已知函数模型的应用问题【例1】 某公司生产一种电子仪器的固定成本为20 000元,每生产一台仪器需增加投入100元,已知总收益满足函数:R (x )=⎩⎪⎨⎪⎧400x -12x 2 0≤x ≤40080 000 x >400.其中x 是仪器的月产量.(1)将利润表示为月产量的函数f (x );(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?(总收益=总成本+利润)变式迁移1 为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为y=(116)t-a(a为常数)如图所示.根据图中提供的信息,回答下列问题:(1)从药物释放开始,每立方米空气中的含药量y(毫克)与时间t(小时)之间的函数关系式为__________________;(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那么从药物释放开始,至少需要经过________小时后,学生才能回到教室.2.自建函数模型的应用问题【例2】某公司每年需购买某种元件8 000个用于组装生产,每年分n次等量进货,每进一次货(不分进货量大小)费用500元,为了持续生产,需有每次进货的一半库存备用,每件每年库存费2元,问分几次进货可使得每年购买和贮存总费用最低?变式迁移2 某工厂拟建一座平面图为矩形且面积为200 m2的三级污水处理池(平面图如图所示),由于地形限制,长、宽都不能超过16 m,如果池外周壁建造单价为每米400元,中间墙建造单价为每米248元,池底建造单价为每平方米80元(池壁的厚度忽略不计,且池无盖).(1)写出总造价y(元)与污水处理池长x(m)的函数关系式,并指出其定义域.(2)求污水处理池的长和宽各为多少时,污水处理池的总造价最低?并求出最低总造价.3.函数模型的选择【例3】某工厂今年1月、2月、3月生产某种产品的数量分别是1万件、1.2万件、1.3万件,为了估测以后每个月的产量,以这三个月的产品数量为依据,用一个函数模拟该产品的月产量y与月份x的关系,模拟函数可以选用二次函数或函数y=ab x+c(其中a,b,c为常数,a≠0),已知4月份该产品的产量为1.37万件,请问用以上哪个函数作为模拟函数较好,并说明理由.变式迁移3 某地西红柿从2月1日起开始上市,通过市场调查,得到西红柿种植成本Q(单位:元/102kg)与上市时间t(单位:天)的数据如下表:(1)根据表中数据,从下列函数中选取一个函数,描述西红柿种植成本Q与上市时间t 的变化关系;Q=at+b,Q=at2+bt+c,Q=a·b t,Q=a·log b t;(2)利用你选取的函数,求西红柿种植成本最低时的上市天数及最低种植成本.课堂小结1.解答应用题的基本步骤:(1)设:合理、恰当地设出变量;(2)写:根据题意,抽象概括数量关系,并能用数学语言表示,得到数学问题;(3)算:对所得数学问题进行分析、运算、求解;(4)答:将数学问题的解还原到实际生活问题中,给出最终的答案.2.在中学阶段,用函数拟合解决实际问题的基本过程是:课时作业一、选择题1.今有一组实验数据如下:现准备用下列函数中的一个近似地表示这些数满足的规律,其中最接近的一个是( ) A .V =log 2t B .V =log 12t C .V =t 2-12 D .V =2t -22.计算机成本不断降低,若每隔3年计算机价格降低13,则现在价格为8 100元的计算机,9年后的价格可降为( )A .2 400元B .900元C .300元D .3 600元 3. 一个高为H ,盛水量为V 0的水瓶的轴截面如图所示,现以均匀速度往水瓶中灌水,直到灌满为止,如果水深h 时水的体积为V ,则函数V =f (h )的图象大致是( )4.某种电热水器的水箱盛满水是200升,加热到一定温度可浴用.浴用时,已知每分钟放水34升,在放水的同时注水,t 分钟注水2t 2升,当水箱内水量达到最小值时,放水自动停止.现假定每人洗浴用水65升,则该热水器一次至多可供几人洗澡( )A .3人B .4人C .5人D .6人 二、填空题5.60年国庆,举国欢腾,某旅游胜地的客流量急速增加.某家客运公司为招揽游客,推出了客运定票的优惠政策:如果行程不超过100 km ,票价是0.4元/km ;如果超过100 km ,则超过100 km 的部分按0.3元/km 定价.则客运票价y 元与行程公里x km 之间的函数关系是______________________________.6.如图表示一位骑自行车和一位骑摩托车者在相距为80 km 的两城镇间旅行的函数图象,由图可知:骑自行车者用6 h(含途中休息的1 h),骑摩托车者用了2 h .有人根据这个函数图象,提出了关于这两个旅行者的如下信息:①骑自行车者比骑摩托车者早出发3 h ,晚到1 h ;②骑自行车者是变速运动,骑摩托车者是匀速运动;③骑摩托车者在出发1.5 h 后追上骑自行车者.其中正确的序号是_________________________.三、解答题7.某产品的总成本y(万元)与产量x(台)之间的函数关系式是y=3 000+20x-0.1x2(0<x<240,x∈N*),若每台产品的售价为25万元,则生产者不赔本时(销售收入不小于总成本)的最低产量是多少.8.某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100个时,凡多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元.(1)当一次订购量为多少时,零件的实际出厂单价恰降为51元?(2)设一次订购量为x个,零件的实际出厂单价为P元,写出函数P=f(x)的表达式;(3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1 000个,利润又是多少元?参考答案自学导引1.(1)利用给定的函数模型解决实际问题(2)建立确定性的函数模型解决问题(3)建立拟合函数模型解决实际问题2.(1)收集数据(2)描点(3)选择函数模型(4)求函数模型(5)检验(6)用函数模型解决实际问题对点讲练【例1】 解 (1)设每月产量为x 台,则总成本为20 000+100x , 从而f (x )=⎩⎪⎨⎪⎧-12x 2+300x -20 0000≤x ≤40060 000-100x x >400.(2)当0≤x ≤400时,f (x )=-12(x -300)2+25 000,∴当x =300时,有最大值25 000; 当x >400时,f (x )=60 000-100x 是减函数, f (x )<60 000-100×400<25 000. ∴当x =300时,f (x )取最大值. ∴每月生产300台仪器时,利润最大, 最大利润为25 000元.变式迁移1 (1) y =⎩⎨⎧10t , 0≤t ≤110,⎝⎛⎭⎫116t -110, t >110(2)0.6解析 (1)设y =kt (k ≠0),由图象知y =kt 过点(0.1,1),则1=k ×0.1,k =10,∴y =10t (0≤t ≤0.1);由y =⎝⎛⎭⎫116t -a过点(0.1,1)得1=⎝⎛⎭⎫1160.1-a , a =0.1,∴y =⎝⎛⎭⎫116t -0.1(t >0.1).∴y =⎩⎨⎧10t , 0≤t ≤110,⎝⎛⎭⎫116t -110,t >110.(2)由⎝⎛⎭⎫116t -0.1≤0.25=14,得t ≥0.6, 故至少需经过0.6小时.【例2】 解 设每年购买和贮存元件总费用为y 元,其中购买成本费为固定投入, 设为c 元,则y =500n +2×8 000n ×12+c=500n +8 000n +c =500(n +16n )+c=500(n -4n)2+4 000+c , 当且仅当n =4n,即n =4时,y 取得最小值且y min =4 000+c . 所以分4次进货可使得每年购买和贮存元件总费用最低.变式迁移2 解 (1)设污水处理池的长为x m ,则宽为200x m ,总造价为y .∴y =400(2x +2×200x )+248×200x ×2+80×200=800(x +324x )+16 000.∵⎩⎪⎨⎪⎧0<x ≤160<200x ≤16,∴12.5≤x ≤16.故其定义域为[12.5,16].(2)先讨论y =800(x +324x )+16 000在[12.5,16]上的单调性.设x 1,x 2∈[12.5,16]且x 1<x 2,则 y 1-y 2=800[(x 1-x 2)+324(1x 1-1x 2)]=800(x 1-x 2)(1-324x 1x 2).∵x 1,x 2∈[12.5,16],x 1<x 2, ∴x 1·x 2<162<324. ∴1-324x 1x 2<0,x 1-x 2<0.∴y 1-y 2>0.∴此函数在[12.5,16]上单调递减. ∴当x =16时,y min =45 000(元), 此时,宽为20016 m =12.5 m.∴当池长为16 m ,宽为12.5 m 时, 总造价最低为45 000元.【例3】 解 设f (x )=px 2+qx +r (p ≠0),则有 ⎩⎪⎨⎪⎧f 1=p +q +r =1,f 2=4p +2q +r =1.2,f 3=9p +3q +r =1.3.解得p =-0.05,q =0.35,r =0.7.∴f (x )=-0.05x 2+0.35x +0.7, ∴f (4)=-0.05×42+0.35×4+0.7=1.3. 设g (x )=ab x +c (a ≠0),则有 ⎩⎪⎨⎪⎧g 1=ab +c =1,g 2=ab 2+c =1.2,g 3=ab 3+c =1.3.解得a =-0.8,b =0.5,c =1.4. ∴g (x )=-0.8×0.5x +1.4, ∴g (4)=-0.8×0.54+1.4=1.35.经比较可知,用g (x )=-0.8×0.5x +1.4作为模拟函数较好. 变式迁移3 解 (1)由表中数据知, 当时间t 变化时,种植成本并不是单调的, 故只能选取Q =at 2+bt +c . 即⎩⎪⎨⎪⎧150=a ×502+b ×50+c 108=a ×1102+b ×110+c 150=a ×2502+b ×250+c , 解得Q =1200t 2-32t +4252. (2)Q =1200(t -150)2+4252-2252=1200(t -150)2+100, ∴当t =150天时,西红柿的种植成本最低,为100元/102 kg. 课时作业 1.C 2.A3.D [考察相同的Δh 内ΔV 的大小比较.]4.B [设最多用t 分钟,则水箱内水量y =200+2t 2-34t ,当t =172时,y 有最小值,此时共放水34×172=289(升),可供4人洗澡.]5.y =⎩⎪⎨⎪⎧0.4x ,0<x ≤100,40+0.3x -100,x >1006.①②解析 ③错,骑摩托车者出发1.5 h 时走了60 km ,而从图中可看出骑自行车者走的距离大于60 km.7.解 由题意得⎩⎪⎨⎪⎧3 000+20x -0.1x 2≤25x 0<x <240解得150≤x <240,x ∈N *∴生产者不赔本时的最低产量是150台.8.解 (1)设每个零件的实际出厂价恰好降为51元时,一次订购量为x 0个, 则x 0=100+60-510.02=550(个).∴当一次订购量为550个时,每个零件的实际出厂价恰好降为51元. (2)当0<x ≤100时,P =60; 当100<x <550时,P =60-0.02(x -100)=62-0.02x ; 当x ≥550时,P =51.∴P =f (x )=⎩⎪⎨⎪⎧60, 0<x ≤100,62-0.02x , 100<x <550,51, x ≥550(x ∈N +).(3)设销售商一次订购量为x 个时,工厂获得的利润为S 元,则 S =(P -40)x =⎩⎪⎨⎪⎧20x , 0<x ≤100,22x -0.02x 2, 100<x <550,11x , x ≥550(x ∈N +)当x =500时,S =22×500-0.02×5002 =6 000(元);当x =1 000时,S =11×1 000=11 000(元).∴当销售商一次订购500个零件时,该厂获得的利润是6 000元;如果一次订购1 000个零件时,利润是11 000元.。
人教A版必修一3.2.2函数模型的应用实例
类型一:难题,需要55的接受能力以及13 min时间,老师能否及时在学生一直达到 所需接受能力的状态下讲授完这个难题?. 思路点拨:利用所给函数关系式解决有关问题
规律方法:本题是常数函数、一次函数、二次函数混合在一起的分段函数,自变量的取值 不同函数解析式可能不一样,这一点要特别注意.另外,函数的最值也是通过先求每一段 的最值,然后再作比较而求得. 变式训练1-1:某工厂今年1月、2月、3月生产某产品分别为1万件、1.2万件、1.3万件.为 了估测以后每个月的产量,以这三个月的产品数量为依据,用一个函数模拟该产品的月产 量y与月份数x的关系,模拟函数可以选用二次函数或指数型函数,已知4月份该产品的产 量为1.37万件,请问用以上哪个函数作为模拟函数较好,并说明理由.
思路点拨:解答本题可首先根据表中数据作出散点图,然后通过观 察图象判断问题所适用的函数模型.
这样,我们得到一个函数模型:y=2.2+1.8x.作出函数图象如图(乙),可以发现,这 个函数模型与已知数据的拟合程度较好,这说明它能较好地反映积雪深度与灌溉面积的关 系. (3)由y=2.2+1.8×25,求得y=47.2,即当积雪深度为25 cm时,可以灌溉土地47.2公顷. 规律方法:对于此类实际应用问题,关键是建立适当的函数关系式,再解决数学问题 ,最后验证并结合问题的实际意义作出回答,这个过程就是先拟合函数再利用函数解题. 函数拟合与预测的一般步骤是:
类型二:自建函数模型解应用题 【例2】 某市原来民用电价为0.52元/kW·h.换装分时电表后,峰时段(早上八点到晚上 九点)的电价为0.55元/kW·h,谷时段(晚上九点到次日早上八点)的电价为0.35元 /kW·h.对于一个平均每月用电量为200 kW·h的家庭,要使节省的电费不少于原来电费的 10%,则这个家庭每月在峰时段的平均用电量至多为多少kW·h?
学案3:3.2.2 函数模型的应用实例
3.2.2 函数模型的应用实例导入新知1.常见的函数模型(1)正比例函数模型:f (x )= (k 为常数,k ≠0); (2)反比例函数模型:f (x )= (k 为常数,k ≠0); (3)一次函数模型:f (x )= (k ,b 为常数,k ≠0); (4)二次函数模型:f (x )= (a ,b ,c 为常数,a ≠0);(5)指数函数模型:f (x )= (a ,b ,c 为常数,a ≠0,b >0,b ≠1); (6)对数函数模型:f (x )= (m ,n ,a 为常数,m ≠0,a >0,a ≠1); (7)幂函数模型:f (x )= (a ,b ,n 为常数,a ≠0,n ≠1). 2.建立函数模型解决问题的框图表示化解疑难求解函数应用题的程序常考题型题型一 二次函数模型例1 已知某种商品涨价x 成(1成=10%)时,每天的销售量减少45x (其中x >0)成.(1)应该涨价多少,才能使每天的营业额(售出的总金额)最大? (2)如果适当涨价,能使每天的营业额增加,求x 的取值范围. 类题通法利用二次函数模型解决问题的方法在函数模型中,二次函数模型占有重要的地位.根据实际问题建立二次函数解析式后,可以利用配方法、判别式法、换元法、函数的单调性等方法来求函数的最值,从而解决实际问题中的利润最大、用料最省等问题.活学活用1.如图所示,已知边长为8米的正方形钢板有一个角被锈蚀,其中AE=4米,CD=6米.为合理利用这块钢板,在五边形ABCDE内截取一个矩形BNPM,使点P在边DE上.(1)设MP=x米,PN=y米,将y表示成x的函数,求该函数的解析式及定义域;(2)求矩形BNPM面积的最大值.题型二分段函数模型例2提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(单位:千米/时)是车流密度x(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/时.研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.(1)当0≤x≤200时,求函数v(x)的表达式;(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/时)f(x)=x·v(x)可以达到最大,并求出最大值(精确到1辆/时).类题通法构建分段函数模型的关键点建立分段函数模型的关键是确定分段的各边界点,即明确自变量的取值区间,对每一区间进行分类讨论,从而写出函数的解析式. 活学活用2.某医疗研究所开发一种新药,如果成人按规定的剂量服用,据监测:服药后每毫升血液中的含药量y 与时间t 之间近似满足如图所示的曲线.(1)写出服药后y 与t 之间的函数关系式;(2)据测定:每毫升血液中含药量不少于4 μg 时治疗疾病有效,假若某病人一天中第一次服药为上午7:00,问:一天中怎样安排服药时间(共4次)效果最佳?题型三 指数、对数型函数模型例3 一片森林原来面积为a ,计划每年砍伐一些树,且使森林面积每年比上一年减少p %,10年后森林面积变为a 2.为保护生态环境,所剩森林面积至少要为原面积的14.已知到今年为止,森林面积为22a . (1)求p %的值.(2)到今年为止,该森林已砍伐了多少年? (3)该森林今后最多还能砍伐多少年? 类题通法指数函数模型的应用在实际问题中,有关人口增长、银行利率、细胞分裂等增长率问题常可以用指数函数模型表示.通常可以表示为y =N (1+p )x (其中N 为基础数,p 为增长率,x 为时间)的形式.活学活用3.某化工厂生产一种溶液,按市场要求,杂质含量不能超过0.1%,若初时含杂质2%,每过滤一次可使杂质含量减少13,问:至少应过滤几次才能使产品达到市场要求?(已知: lg 2=0.301 0,lg 3=0.477 1)随堂即时演练1.某电视新产品投放市场后第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好地反映销量y 与投放市场的月数x (1≤x ≤4,x ∈N *)之间关系的是( ) A .y =100x B .y =50x 2-50x +100 C .y =50×2xD .y =100x2.已知A ,B 两地相距150千米,某人开汽车以60千米/时的速度从A 地到达B 地,在B 地停留1小时后再以50千米/时的速度返回A 地,则汽车离开A 地的距离x 关于时间t (时)的函数解析式是( ) A .x =60t B .x =150-50tC .x =⎩⎪⎨⎪⎧60t ,0≤t ≤2.5150-50t ,t >3.5D .x =⎩⎪⎨⎪⎧60t ,0≤t ≤2.5150,2.5<t ≤3.5150-50t -3.5,3.5<t ≤6.53.由于电子技术的飞速发展,计算机的成本不断降低,若每隔5年计算机的价格降低13,则现在价格为8 100元的计算机15年后的价格应降为________元.4.如图所示,折线是某电信局规定打长途电话所需要付的电话费y (元)与通话时间t (分)之间的函数关系图象,根据图象填空:(1)通话2分钟,需付的电话费为________元;(2)通话5分钟,需付的电话费为________元;(3)如果t≥3,则电话费y(元)与通话时间t(分)之间的函数关系式为________.5.在扶贫活动中,为了尽快脱贫(无债务)致富,企业甲将经营状况良好的某种消费品专卖店以5.8万元的优惠价格转让给了尚有5万元无息贷款没有偿还的小型企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支3 600元后,逐步偿还转让费(不计息).在甲提供的资料中:①这种消费品的进价为每件14元;②该店月销量Q(百件)与销量价格P(元)的关系如图所示;③每月需各种开支2 000元.(1)当商品的价格为每百件多少元时,月利润扣除职工最低生活费的余额最大?并求最大余额;(2)企业乙只依靠该店,最早可望在几年后脱贫?参考答案导入新知1.(1) kx(2) k x(3) kx+b(4)ax2+bx+c(5) ab x +c (6)m log a x +n (7) ax n +b例1 解:设商品原价格为m ,每天的原销售量为n ,则每天的原营业额为m ·n ,涨价后每天的营业额为y =m ·⎝⎛⎭⎫1+x 10·⎝⎛⎭⎫1-45·x10·n . (1)y =m ·⎝⎛⎭⎫1+x 10·⎝⎛⎭⎫1-45·x 10·n =⎣⎡⎦⎤-1125⎝⎛⎭⎫x -542+8180·m ·n . 当x =54,即涨价125%时,每天的营业额最大.(2)要使涨价后每天的营业额比原来增加, 则需m ·⎝⎛⎭⎫1+x 10·⎝⎛⎭⎫1-45·x10·n >m ·n , 即2x 2-5x <0,变形得x (2x -5)<0. 又x >0,故0<x <52.∴x 的取值范围为⎝⎛⎭⎫0,52. 活学活用1. 解:(1)作PQ ⊥AF 于Q ,所以PQ =(8-y )米,EQ =(x -4)米. 又△EPQ ∽△EDF , 所以EQ PQ =EFFD ,即x -48-y =42.所以y =-12x +10,定义域为{x |4≤x ≤8}.(2)设矩形BNPM 的面积为S 平方米, 则S (x )=xy =x ⎝⎛⎭⎫10-x 2=-12(x -10)2+50, S (x )是关于x 的二次函数,且其图象开口向下,对称轴为x =10, 所以当x ∈[4,8]时,S (x )单调递增.所以当x =8时,矩形BNPM 的面积取得最大值,为48平方米. 例2 解:(1)由题意,当0≤x ≤20时,v (x )=60;当20<x ≤200时,设v (x )=ax +b (a ≠0),再由已知得⎩⎪⎨⎪⎧200a +b =0,20a +b =60,解得⎩⎨⎧a =-13,b =2003.故函数v (x )的表达式为v (x )=⎩⎪⎨⎪⎧60,0≤x ≤20,13(200-x ),20<x ≤200.(2)依题意并结合(1)可得 f (x )=⎩⎪⎨⎪⎧60x ,0≤x ≤20,13x (200-x ),20<x ≤200.当0≤x ≤20时,f (x )为增函数,故当x =20时,其最大值为60×20=1 200;当20<x ≤200时,f (x )=13x (200-x )=-13(x -100)2+10 0003≤10 0003,当且仅当x =100时,等号成立.所以,当x =100时,f (x )在区间(20,200]上取得最大值10 0003. 综上,当x =100时,f (x )在区间[0,200]上取得最大值10 0003≈3 333. 即当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3 333辆/时. 活学活用2. 解:(1)依题意得y =⎩⎪⎨⎪⎧6t ,0≤t ≤1,-23t +203,1<t ≤10.(2)设第二次服药时在第一次服药后t 1小时,则-23t 1+203=4,解得t 1=4,因而第二次服药应在11:00.设第三次服药在第一次服药后t 2小时,则此时血液中含药量应为前两次服药后的含药量的和,即有-23t 2+203-23(t 2-4)+203=4,解得t 2=9,故第三次服药应在16:00.设第四次服药在第一次服药后t 3(t 3>10)小时,则此时第一次服进的药已吸收完,血液中含药量应为第二、第三次的和-23(t 3-4)+203-23(t 3-9)+203=4,解得t 3=13.5,故第四次服药应在20:30.例3 解:(1)由题意得a (1-p %)10=a2,即(1-p %)10=12,解得p %=1-⎝⎛⎭⎫12. (2)设经过m 年森林面积为22a , 则a (1-p %)m=22a ,即⎝⎛⎭⎫12=⎝⎛⎭⎫12,m 10=12,解得m =5. 故到今年为止,已砍伐了5年. (3)设从今年 ,n 年后森林面积为22a ·(1-p %)n . 令22a (1-p %)n ≥14a , 即(1-p %)n ≥24, ⎝⎛⎭⎫12≥⎝⎛⎭⎫12,得n 10≤32,解得n ≤15, 故今后最多还能砍伐15年. 活学活用3.解:依题意,得2100·⎝⎛⎭⎫23n ≤11 000,即⎝⎛⎭⎫23n ≤120. 则n (lg 2-lg 3)≤-(1+lg 2),故n ≥1+lg 2lg 3-lg 2≈7.4,考虑到n ∈N ,即至少要过滤8次才能达到市场要求.随堂即时演练 1.【答案】C【解析】当x =4时,A 中,y =400;B 中,y =700;C 中,y =800;D 中,y =1004.故选C. 2.【答案】D【解析】显然出发、停留、返回三个过程中行车速度是不同的,故应分三段表示函数. 3.【答案】2 400【解析】y =a ·⎝⎛⎭⎫1-13,所以当x =15时,y =8 100×⎝⎛⎭⎫1-133=8 100×827=2 400(元). 4. 【答案】(1)3.6 (2)6 (3)y =1.2t (t ≥3)【解析】(1)由题图可知,当t ≤3时,电话费都是3.6元. (2)由题图可知,当t =5时,y =6,即需付电话费6元.(3)当t ≥3时,y 关于x 的图象是一条直线,且经过(3,3.6)和(5,6)两点, 故设函数关系式为y =kt +b ,11010m1210n325x则⎩⎪⎨⎪⎧3k +b =3.6,5k +b =6, 解得⎩⎪⎨⎪⎧k =1.2,b =0.故y 关于t 的函数关系式为y =1.2t (t ≥3). 5. 解:设该店月利润余额为L 元,则由题设得L =Q (P -14)×100-3 600-2 000,① 由销量图易得Q =⎩⎪⎨⎪⎧-2P +50,14≤P ≤20,-32P +40,20<P ≤26,代入①式得L =⎩⎪⎨⎪⎧(-2P +50)(P -14)×100-5 600,14≤P ≤20,⎝⎛⎭⎫-32P +40(P -14)×100-5 600,20<P ≤26, (1)当14≤P ≤20时,L max =450元,此时P =19.5元; 当20<P ≤26时,L max =1 2503元,此时P =613元. 故当P =19.5元时,月利润余额最大,为450元.(2)设可在n 年后脱贫,依题意有12n ×450-50 000-58 000≥0,解得n ≥20.即最早可望在20年后脱贫.。
3.2.2函数模型的应用实例
时间的关系如图所示:
(1)求图中阴影部分的面积,并说明所求面
积的实际含义; v
(2)假设这辆汽车的 90
里程表在汽车行驶 80 70
这段路程前的读数 60 50
为2004 km,试建立
40 30
汽车行驶这段路程时 20 10
汽车里程表读数s km
1 2 3 4 5t
与时间t h的函数解析式,并作出图象.
由y=a(1+r)x 得 y=1131.4 答:5期后本利和是1131.4元。
【总一总★成竹在胸】
解决实际问题的步骤:
实际问题 问 题 解 决
抽象概括
数学模型
数学化
(设、列)
数
(解)
学 解
答
推 理 演 算
实际问题 的解
还原说明
符合实际 (答)
数学模型 的解
买进 卖出 退回
数量(份)
30x 20x+10*250
10(x-250)
价格(元)
0.20 0.30 0.08
金额(元)
6x 6x+750 0.8x-200
解: 每月获利润:
y 6x 750 0.8x 200 6x
0.8x 550 (250≤x≤400)
∴x=400份时,y取得最大值870元 答:每天从报社买进400份时,每月获的利润 最大,最大利润为870元.
就可获得最大的利润
解2:设每桶水定价x元时,日均利润为y元,
则日均销售量为 480 40(x 6) 720 40x 桶
y (720 40x)(x 5) 200
40x2 920x 3800
40(x 11.5)2 1490
而 x 5,且720 40 x 0,即5 x 18 当x 11.5时,y 有最大值 只需将销售单价定为11.5元,
高中数学人教A版必修1课件:3.2.2函数模型的应用实例
设甲项目投资 x 亿元,投资这两个项目所获得的总利润为 y 亿元.
(1)写出 y 关于 x 的函数表达式;
(2)求总利润 y 的最大值.
分析:(1)总利润=投资甲项目利润+投资乙项目利润=M+N;(2)
转化为求(1)中函数的最大值.
-12-
3.2.2
题型一
函数模型的应用实例
题型二
题型三
M 目标导航
-3-
3.2.2
函数模型的应用实例
M 目标导航
UBIAODAOHANG
Z 知识梳理
HISHI SHULI
Z 重难聚焦
HONGNAN JVJIAO
D典例透析
IANLI TOUXI
名师点拨巧记函数建模过程:
收集数据,画图提出假设;
依托图表,理顺数量关系;
抓住关键,建立函数模型;
精确计算,求解数学问题;
Z 重难聚焦
HONGNAN JVJIAO
D典例透析
IANLI TOUXI
题型四
【变式训练 2】 大西洋鲑鱼每年都要逆流而上,游回产地产卵.
记鲑鱼的游速为 v(单位:m/s),鲑鱼的耗氧量的单位数为 Q,研究中发
现 v 与 log3
成正比, 且当Q=900 时,v=1.
100
(1)求出 v 关于 Q 的函数解析式;
米)的关系式为 p=1 000·
7
100
ℎ
3 000
, 则海拔6 000 米处的大气压强为
百帕.
解析:当 h=6 000 米时,p=1 000·
7
100
6 000
3 000
= 4.9(百帕).
答案:4.9
3.2.2函数模型的应用举例
新授课§3.2.2函数模型的应用实例(2)能够收集图表数据信息,建立拟合函数解决实际问题。
体验收集图表数据信息、拟合数据的过程与方法,体会函数拟合的思想方法。
教学重点:收集图表数据信息、拟合数据,建立函数模型解决实际问题。
教学难点:对数据信息进行拟合,建立起函数模型,并进行模型修正。
一体化设计:实例---选择变量、建立模型---用模感性具体归纳、抽象理性抽象辨析、完善步骤分析、应用具体教学过程:(一)创设情景,揭示课题2003年5月8日,西安交通大学医学院紧急启动“建立非典流行趋势预测与控制策略数学模型”研究项目,马知恩教授率领一批专家昼夜攻关,于5月19日初步完成了第一批成果,并制成了要供决策部门参考的应用软件。
这一数学模型利用实际数据拟合参数,并对全国和北京、山西等地的疫情进行了计算仿真,结果指出,将患者及时隔离对于抗击非典至关重要、分析报告说,就全国而论,非典病人延迟隔离1天,就医人数将增加1000人左右,推迟两天约增加工能力100人左右;若外界输入1000人中包含一个病人和一个潜伏病人,将增加患病人数100人左右;若4月21日以后,政府不采取隔离措施,则高峰期病人人数将达60万人。
这项研究在充分考虑传染病控制中心每日工资发布的数据,建立了非典流行趋势预测动力学模型和优化控制模型,并对非典未来的流行趋势做了分析预测。
本例建立教学模型的过程,实际上就是对收集来的数据信息进行拟合,从而找到近似度比较高的拟合函数。
(二)研探新知:例1 课本P104-例5确定函数模型,并对所确定模型进行适当的检验和评价.例2课本P105-例6探索以下问题:1)借助计算器或计算机,根据统计数据,画出它们相应的散点图;2)观察所作散点图,你认为它与以前所学过的何种函数的图象较为接近?3)你认为选择何种函数来描述这个地区未成年男性体重ykg与身高xcm的函数关系比较合适?4)确定函数模型,并对所确定模型进行适当的检验和评价.5)怎样修正所确定的函数模型,使其拟合程度更好?本例给出了通过测量得到的统计数据表,要想由这些数据直接发现函数模型是困难的,要引导学生借助计算器或计算机画图,帮助判断.根据散点图,利用待定系数法确定几种可能的函数模型,然后进行优劣比较,选定拟合度较好的函数模型.在此基础上,引导学生对模型进行适当修正,并做出一定的预测. 此外,注意引导学生体会本例所用的数学思想方法.(三)课堂练习:某地新建一个服装厂,从今年7月份开始投产,并且前4个月的产量分别为1万件、1 .2万件、1.3万件、1.37万件. 由于产品质量好,服装款式新颖,因此前几个月的产品销售情况良好. 为了在推销产品时,接收定单不至于过多或过少,需要估测以后几个月的产量,你能解决这一问题吗?探索过程如下:1)首先建立直角坐标系,画出散点图;2)根据散点图设想比较接近的可能的函数模型:一次函数模型:()(0);f x kx b k =+≠二次函数模型:2()(0);g x ax bx c a =++≠ 幂函数模型:12()(0);h x ax b a =+≠指数函数模型:()x l x ab c =+(0,a b ≠>0,1b ≠)利用待定系数法求出各解析式,并对各模型进行分析评价,选出合适的函数模型;由于尝试的过程计算量较多,可同桌两个同学分工合作,最后再一起讨论确定. (四)课堂总结通过以上三题的练习,师生共同总结出了利用拟合函数解决实际问题的一般方法,指出函数是描述客观世界变化规律的重要数学模型,是解决实际问题的重要思想方法. 利用函数思想解决实际问题的基本过程如下:(五)课后作业:教材P12 0练习第 1 题.P125 复习A 1--4 板书设计:教学反思:。
高中数学3.2.2.1一次函数、二次函数、幂函数模型的应用举例
营这种货物的件数x与按新价让利总额y之间的函数关系
是
.
【解题指南】1.分析题意,明确各个量之间的关系,建立峰时段 用电量与总电量之间的关系式,弄清利润=(售价-进价)×件数,本题数学模型为一次 函数.
【自主解答】1.选D.①原来电费y1=0.52×200=104(元). ②设峰时段用电量为xkW·h,总电费为y, 则y=0.55x+(200-x)×0.35=0.2x+70, 由题意知0.2x+70≤(1-10%)y1,所以x≤118. 所以这个家庭每月在峰时段的平均用电量至多为118kW·h.
3.2.2 函数模型的应用实例
第1课时 一次函数、二次函数、 幂函数模型的应用举例
类型 一 一次函数模型的应用实例
1.某市原来民用电价为0.52元/kW·h.换装分时电表后,峰时段
(早上八点到晚上九点)的电价为0.55元/kW·h,谷时段(晚上九
点到次日早上八点)的电价为0.35元/kW·h.对于一个平均每月
【拓展延伸】解函数应用问题的基本步骤 第一步:阅读理解,审清题意. 读懂题中的文字叙述,理解叙述所反映的实际背景,在此基础上, 分析出已知什么,求什么,从中提炼出相应的数学问题. 第二步:引进数学符号,建立数学模型. 一般地,设自变量为x,函数为y,必要时引入其他相关辅助变量, 并用x,y和辅助变量表示各相关量,然后根据问题已知条件,运 用已掌握的数学知识、物理知识及其他相关知识建立关系式, 将实际问题转化为函数问题,即所谓建立数学模型.
件不变的条件下,每裁员一人,则留岗员工每人每年可多创收
0.01万,但每年需付给每位下岗工人0.4万元的生活费,并且企
业正常运转所需人数不得少于现有员工的 3 ,设该企业裁员x
高中数学 第三章 §3.2.2函数模型的应用实例课件 新人教A版必修1
第五页,共22页。
小结 在实际问题中,有很多问题的两变量之间的关系是一次 函数模型,其增长特点是直线上升(自变量的系数大于 0)或直 线下降(自变量的系数小于 0),构建一次函数模型,利用一次 函数模型,利用一次函数的图象与单调性求解.
年份
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
人数/万人 55 196 56 300 57 482 58 796 60 266 61 456 62 828 64 563 65 994 67 207
(1)如果以各年人口增长率的平均值作为我国这一时期的人口增
第十一页,共22页。
跟踪训练 2 某游乐场每天的盈利额 y 元 与售出的门票数 x 张之间的关系如图所示, 试问盈利额为 750 元时,当天售出的门票 数为多少? 解 根据题意,每天的盈利额 y 元与售出的门 票数 x 张之间的函数关系是:y=31..7255xx+0≤1 0x0≤0440000<x≤600 . ①当 0≤x≤400 时,由 3.75x=750,得 x=200. ②当 400<x≤600 时,由 1.25x+1 000=750,得 x=- 200(舍去). 综合①和②,盈利额为 750 元时,当天售出的门票数为 200 张. 答 当天售出的门票数为 200 张时盈利额为 750 元.
第十七页,共22页。
当 y=10 时,解得 t≈231. 所以,1881 年世界人口约为 10 年的 2 倍.
(2)由此看出,此模型不太适宜估计跨度时间非常大的人口增长 情况.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数
y 55196e0.0221t , t N . 的图象(图3).
由图3可以看出, 所得模型与 1950~1959年的 实际人口数据 基本吻合.
图3
(2)如果按表3的增长趋势,大约 在哪一年我国的人口达到13亿?
将y=130000 代入 y 55196e0.0221t , t N . 由计算可得 t 38.76. 所以,如果按表3的增长趋势,那么大约在 1950年后的第39年(即1989年)我国的人口就 已达到13亿.由此可以看到,如果不实行计划生 育,而是让人口自然增长,今天我国将面临难以 承受的人口压力.
实例
例1 一辆汽车在某段路中的行驶速率与时间的 关系如图1所示, v/ (km/h)
(1)求图1中阴影部分的面积, 并说明所求面积的实际含义; (2)假设这辆汽车的里程表 在汽车行行驶这段路程前的读 数为2004km, 试建立行驶这段路程时汽车 0 里程表读数s km与时间t h的函数 解析式,并作出相应的图象.
人数/ 万人
55196
(1) 如果以各年人口增长谐振平均值作为我 国这一时期的人口增长率(精确到0.0001),用 马尔萨斯人口增长模型建立我国在这一时期具体 人口增长模型,并检验所得模型与实际人口数据 是否相符;
解:设1951~1959年的人口增长率分
别为 r1 ,r 2 , ,r 9 . 由55196(1+r1)=56300, 可得
函数模型的 应用举例
对比三种函数的增长差异
对于指数函数、对数函数、幂函数
y a x (a 1), y log a x(a 1)和y x n (n 0) 在区间(0,+∞)上,尽管它们都是增函数,
但它们的增长速度不同,而且不在同一个 “档次”上. 随着 x 的增大, y a x (a 1) 的 增长速度越来越快,会超过并远远大于 y x n (n 0)的增长速度,而 y log a x(a 1) 的增长速度则会越来越慢.因此,总会存在一 个x0,当x>x0 时,就有 log a x xn a x
90 80 70 60 50 40 30 20 10
1
2
3
4
5
t/h
图1
解:(1)阴影部分的面积为
所以阴影部分的面积表示汽车在这5小
时内行驶的为360 km.
根据图1,有
s
t
这个函数的图象如图2所示.
图2
实例
例2 人口问题是当今世界各国普遍关注 的问题,认识人口数量的变化规律,可以为 有效控制人口增长提供依据.早在1798年,英 国经济学家马尔萨(T.R.Malthus,1766-1834) 就提出了自然状态下的人口增长模型:
小结
数学模型为二次函数的问题
二次函数为生活中最常见的一种数学 模型,因二次函数可求其最大值(最小值),
故很多最优、最省等最值问题都是二次函
数的模型.比如书中105页的例5.
1951年的人口增长率r1 ≈ 0.0200.
于是, 1951~1959年期间,我国人口的年 均增长率为
r (r r ... r ) 9 0.0221
1 2 9
令y0=55196,则我国在1950~1959年期 间的人口增长模型为
y 55196e
0.0221t
.t N .
y y0e
rt
其中t表示经过的时间,y0 表示t=0时的人口 数,r表示人口的年平均增长率.
下表3是1950~1959年我国的人口数据资料 : 年份
1950 1951 56300 1952 57482 1953 58796 1954 60266 1955 61456 1956 62828 1957 64563 1958 65994 1959 67207