新北师大版数学八年级下第一章三角形的证明导学案
最新北师大版八年级下册数学 第1讲:等腰三角形与直角三角形-学案
一、提请学生回忆并整理已经学过的8条基本事实中的5条:1.两直线被第三条直线所截,如果同位角相等,那么这两条直线平行;2.两条平行线被第三条直线所截,同位角相等;3.两边夹角对应相等的两个三角形全等(SAS);4.两角及其夹边对应相等的两个三角形全等(ASA);5.三边对应相等的两个三角形全等(SSS);在此基础上回忆全等三角形的另一判别条件:1.(推论)两角及其中一角的对边对应相等的两个三角形全等(AAS),并要求学生利用前面所提到的公理进行证明;2.回忆全等三角形的性质。
二、等腰三角形两个底角的平分线相等;等腰三角形腰上的高相等;等腰三角形腰上的中线相等.通过问题串回顾等腰三角形的性质定理以及证明的思路,要求学生独立思考后再进交流。
问题1.等腰三角形性质定理的内容是什么?这个命题的题设和结论分别是什么?问题2.我们是如何证明上述定理的?问题3.我们把性质定理的条件和结论反过来还成立么?如果一个三角形有两个角相等,那么这两个角所对的边也相等?三、顶角是60°的等腰三角形是等边三角形;底角是60°的等腰三角形是等边三角形;三个角都相等的三角形是等边三角形;三条边都相等的三角形是等边三角形。
二、1、定理斜边和一条直角边对应相等的两个直角三角形全等.这一定理可以简单地用“斜边、直角边”或“HL”表示.2、在直角三角形中,如果一个锐角等于30°,那么它所对的直角边就等于斜边的一半3、课堂练习:考点一:等腰三角形【例题】1.如图,已知AD=AE,BE=CD,∠1=∠2=110°,∠BAC=80°,则∠CAE的度数是()A.20° B.30° C.40° D.50°2.已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形顶角的度数为()A.20°或100° B.120° C.20°或120° D.36°3.如图所示,△ABC≌△AEF,AB=AE,∠B=∠E,有以下结论:①AC=AE;②∠FAB=∠EAB;③EF=BC;④∠EAB=∠FAC.其中正确的个数是()A.1个 B.2个 C.3个 D.4个4.(2014秋•西城区校级期中)已知:AD既是△ABC的角平分线又是BC边上的中线,DE⊥AB于E,DF ⊥AC于F,求证:BE=CF.5.(2015•北京)如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.求证:∠CBE=∠BAD.6.(2015•应城市二模)如图,点D、E在△ABC的BC边上,AB=AC,BD=CE.求证:AD=AE.7.如图所示,△ABC是等边三角形,D点是AC的中点,延长BC到E,使CE=CD.(1)用尺规作图的方法,过D 点作DM ⊥BE ,垂足是M (不写作法,保留作图痕迹);(2)求证:BM=EM .8.(1)如图1,已知△ABC ,以AB 、AC 为边向△ABC 外作等边△ABD 和等边△ACE ,连接BE ,CD ,判断BE 与CD 的大小关系为:BE_____CD .(不需说明理由)(2)如图2,已知△ABC ,以AB 、AC 为边向外作等腰△ABD 和等腰△ACE ,且顶角∠BAD =∠CAE ,连接BE 、CD ,BE 与CD 有什么数量关系?请说明理由;(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:如图3,要测量池塘两岸相对的两点B 、E 的距离.已经测得∠ABC =45°,∠CAE =90°,AB =BC =100米,AC =AE ,求BE 的长.9.如图,在ABC △中,AC =AB ,120=B AC ∠°,B E =A E ,D 为EC 中点.C D E B A(1)求CAE ∠的度数;(2)求证:A DE △是等边三角形【习题】1.(1)如图,△ACB 和△DCE 均为等边三角形,点A 、D 、E 在同一直线上,连接BE .求证:AD=BE .(2)如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM 为△DCE边DE上的高,连接BE.①求证:2CM+BE=AE;②若将图2中的△DCE绕点C旋转至图3所示位置,①中的结论还成立吗?若不成立,写出它们之间的数量关系.2.如图,△ABC是等边三角形,BD⊥AC,AE⊥BC,垂足分别为D、E,AE、BD相交于点O,连接DE.(1)判断△CDE的形状,并说明理由.(2)若AO=12,求OE的长.3.(2014秋•嘉鱼县校级月考)如图所示,∠1=∠2,BD=CD,试证明△ABC是等腰三角形.4(2014秋•衡阳县校级月考)已知:如图所示,AD是△ABC的高,E为AD上一点,且BE=EC,求证:△ABC是等腰三角形.5.(2013秋•滨湖区校级期中)把一张对边平行的纸条,如图所示折叠,重合部分是什么形状?说明理由.6.(2012•温州模拟)在下列四个条件中:①AB=DC;②BE=CE;③∠B=∠C;④∠BAE=∠CDE.请选出两个作为条件,得出△AED是等腰三角形(写出一个即可),并加以证明.已知:;求证:△AED是等腰三角形.7.(2012秋•文登市校级期中)如图,△ABC是等边三角形,BD是中线,P是直线BC上一点,CP=CD.求证:△DBP是等腰三角形.8.(2011秋•西城区校级期中)如图所示,已知Rt△ABC中,AB=AC,BD平分∠ABC,CE⊥BD交BD 延长线于E,BA、CE延长线相交于F点.求证:(1)△BCF是等腰三角形;(2)BD=2CE.9.(2010春•福安市期末)如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠BAD=°;点D从B向C运动时,∠BDA逐渐变(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状也在改变,判断当∠BDA等于多少度时,△ADE是等腰三角形.10.(2009春•东山县校级期末)△ABC是等腰直角三角形,∠BAC=90°,BE是角平分线,ED⊥BC.①请你写出图中所有的等腰三角形;②若BC=10,求AB+AE的长.11.(2015春•龙口市期末)将一副直角三角板如图摆放,等腰直角板ABC的斜边BC与含30°角的直角三角板DBE的直角边BD长度相同,且斜边BC与BE在同一直线上,AC与BD交于点O,连接CD.求证:△CDO是等腰三角形.考点二:直角三角形【例题】1.(2007春•南阳期末)如图:△ABC中,AD⊥BC于D,点E在AD上,△ADC和△BDE是等腰三角形,EC=5cm,求AB的长.2.(2002•呼和浩特)如图,△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过C作CF⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.(1)求证:AE=CD;(2)若AC=12cm,求BD的长.3.如图,△ABC的高BD与CE相交于点O,OD=OE,AO的延长线交BC于点M,请你从图中找出几对全等的直角三角形,并说明理由.4.(2014•南岗区模拟)如图,Rt△ABC中,AC⊥BC,AD平分∠BAC交BC于点D,DE⊥AD交AB于点E,M为AE中点,连接MD,若BD=2,CD=1.则MD的长为.5.(2015春•白城校级期中)在Rt△ABC中,∠C=90°,D是BC边上一点,且BD=AD=10,∠ADC=60°,求△ABC的面积.6.(2015秋•岳池县期中)如图所示,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,求PD的长.【习题】1.(2010•大连校级自主招生)在锐角△ABC中,CD,BE分别是AB,AC边上的高,且CD,BE交于点P,若∠A=50°,则∠BPC的度数是度.2.(2007•包头)如图,已知Rt△ABC中,∠C=90°,∠A=30°,AC=6.沿DE折叠,使得点A与点B重合,则折痕DE的长为.3.(2015春•秦淮区期末)如图,在直角三角形ABC中,∠ACB=90°,D是AB上一点,且∠ACD=∠B.求证:CD⊥AB.4.(2015秋•武威校级月考)如图,在△ACB中,∠ACB=90゜,CD⊥AB于D.(1)求证:∠ACD=∠B;(2)若AF平分∠CAB分别交CD、BC于E、F,求证:∠CEF=∠CFE.5.(2015秋•周口校级月考)如图所示,将长方形ABCD沿DE折叠,使点C恰好落在BA边上,得到点C′,若∠C′EB=40°,求∠EDC′的度数.6.如图,△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,∠AFD=152°,求∠EDF.7.(2015秋•威海期中)如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,若∠F=30°,DE=1,求BE的长.8.(2013秋•龙口市期末)如图,Rt△ABC中,∠C=90°,∠A=30°,BD平分∠ABC,若AD=6cm,求DC 的长.9.(2012•淮安)如图,△ABC中,∠C=90°,点D在AC上,已知∠BDC=45°,BD=10,AB=20.求∠A的度数.10.(2015秋•建湖县期中)如图,在四边形ABCD中,∠BAD=∠BCD=90°,M、N分别是BD、AC的中点(1)求证:MN⊥AC;(2)若∠ADC=120°,求∠1的度数.11.(2015秋•东台市期中)如图,在四边形ABCD中,∠ABC=∠ADC=90°,M、N分别是AC、BD的中点,试说明:(1)MD=MB;(2)MN⊥BD.12.(2015秋•绍兴校级期中)已知:如图,在△ABC中,AD⊥BC,垂足为点D,BE⊥AC,垂足为点E,M为AB边的中点,连接ME、MD、ED.(1)求证:△MED为等腰三角形;(2)若∠EMD=40°,求∠DAC的度数.13.(2014秋•无锡校级期末)已知:如图,∠ABC=∠ADC=90°,E、F分别是AC、BD的中点.求证:EF⊥BD.14.(2014秋•黄浦区期末)如图,在四边形ABCD中,∠ABC=∠ADC=90°,对角线AC与BD相交于点O,M、N分别是边AC、BD的中点.(1)求证:MN⊥BD;(2)当∠BCA=15°,AC=10cm,OB=OM时,求MN的长.11。
初中数学_三角形证明的复习教学设计学情分析教材分析课后反思
北师大版初中数学八下第一章《三角形的证明复习课》教学设计北师大版初中数学八年级下册第一章三角形的证明复习课第一课时一、学生学情分析学生在本章学习并证明完成了全部8条基本事实,并学习了三类特殊的三角形------等腰三角形,等边三角形,直角三角形。
通过对这三类三角形性质和判定的探索与证明积累了一定的探索经验,并继续深入学习证明的方法和格式;多数学生已经了解证明的必要性,具备了证明命题是否成立的探索经验的基础.同时已经具备了一定的合作学习的经验,具备了一定的合作与交流的能力.再将文字语言与图形语言,符号语言转换方面也有了很大提升。
八年级学生已有合情推理,慢慢的侧重于演绎推理,在经历了对八条基本事实时的探究,证明过程中,积累了更多的活动经验。
在学习了本章后,无论是对证明的必要性的体会,对证明严谨性以及证明思路的多样性上都有了长足的进步。
具备自己整理知识,进行知识梳理,逐渐将学习内容纳入知识体系的能力。
二、教学任务分析教科书要求教学活动中应注重让学生体会到证明是原有探索活动的自然延续和必要发展,引导学生从问题出发,根据观察、试验的结果,发现证明的思路.经过一个阶段的学习,有必要对有关知识进行回顾与思考,引导学生回顾总结本章学习的主要内容及其蕴含的数学思想,并思考这些内容获得的过程,帮助学生逐步构建知识体系,养成回顾与反思的学习习惯。
本节课的教学目标是:1.知识目标:在回顾与思考中建立本章的知识框架图,复习有关定理的探索与证明,证明的思路和方法,尺规作图等.2.能力目标:进一步体会证明的必要性,发展学生的初步的演绎推理能力;进一步掌握综合法的证明方法,结合实例体会反证法的含义;提高学生用规范的数学语言表达论证过程的能力.3.情感价值观要求通过积极参与数学学习活动,对数学的证明产生好奇心和求知欲,培养学生合作交流的能力,以及独立思考的良好学习习惯.4.重点与难点重点:1.构建本章知识内容框架,发现其中关联2.通过对典型例题的讲解和课堂练习对所学知识进行复习巩固难点:是本章知识的综合性应用对学生来讲是难点。
北师大版八年级数学下册第一章三角形的证明回顾与思考(教案)
3.教学过程中,我发现有些学生在解决实际问题时,难以将所学知识运用到具体情境中。为了提高学生的应用能力,我会在课堂上增加一些与生活密切相关的实例,让学生明白所学知识在实际生活中的重要性。
3.直角三角形的性质与判定
-直角三角形的内角和为180°
-直角三角形的斜边最长
-有一个角是直角的三角形是直角三角形
4.三角形全等的判定方法
- SSS(三边全等)
- SAS(两边和夹角全等)
- ASA(两角和边全等)
- AAS(两角和非夹边全等)
5.三角形相似的性质与判定
-对应角相等,对应边成比例的两个三角形相似
同学们,今天我们将要学习的是《三角形的证明回顾与思考》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要证明三角形全等或相似的情况?”(如拼图游戏、建筑设计等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索三角形证明的奥秘。
- AA(两角对应相等)
- SAS(两边和夹角对应相等)
- SSS(三边对应成比例)
6.三角形在实际问题中的应用
本节课将结合教材内容,通过实例讲解、练习巩固,帮助学生回顾与思考三角形的相关知识,提高学生的几何证明能力。
二、核心素养目标
本章节的核心素养目标旨在培养学生以下能力:
1.掌握三角形的性质与判定方法,提高空间观念和几何直观能力;
五、教学反思
在本次教学过程中,我深感三角形证明这一章节的内容对于八年级学生来说具有一定的挑战性。从教学实践来看,以下几个方面值得我反思和改进:
第一章 三角形的证明 1.1等腰三角形 2课时 导学案(最新北师大版)
1.1 等腰三角形第一课时一、课前准备:1、有 的三角形叫做等腰三角形,相等的两边叫做 ,腰与底边的夹角叫做 ; 的三角形是等边三角形。
2、公理、定理、证明公理:公认的 称为公理。
定理:经过证明的 称为定理。
证明: 的过程称为证明。
3、证明的一般步骤是:根据题意 ;根据条件、结论,结合图形 ;经过分析,找出由已知推出求证的途径, 。
对假命题的判断,只要举 来证明即可。
二、学习目标:1、了解作为证明基础的几条公理、定理的内容,掌握证明的基本步骤和书写格式。
2、掌握等腰三角形的性质。
3、结合实例体会反正法的含义。
三、自学提示: 1、你知道吗?全等三角形的判定及性质(见课本P2想一想) 2、你发现了吗? (1)把探究1中剪出的△ABC 沿折痕AD 对折,根据得到的信息,填入右表:(2)从上表中你能发现等腰三角形的角有什么样的特点吗?底边上的中线,高线,顶角平分线有什么样的特点吗? (3)你能证明你所得到的结论吗?求证:等腰三角形的两个底角相等。
已知: ΔABC 中,AB=AC.求证: ∠B= ∠C.证明:.等腰三角形的性质:性质1 等腰三角形的两个底角 (简写成“ ” );性质2 等腰三角形的顶角的 、底边上的 、底边上的 相互 。
【我是小翻译】请将等腰三角形性质(文字语言)“翻译”成图形和符号语言。
B五、夯实基础:1.等腰三角形一个底角为70°,它的顶角为______.2.等腰三角形的顶角为100°,它的底角为______.3.等腰三角形一个角为110°,它的另外两个角为___________.4.等腰三角形一个角为70°,它的另外两个角为__________________.5.在△ABC 中,AB=AC ,∠1=∠2=55°,则BD=5,CD=____。
6.在△ABC 中,AB=AC ,BM=CM ,∠BAM=35°,则∠CAM=_____°,∠AMB=_____°。
新版北师大八年级下册第一章_三角形的证明_知识点填空
八年级三角形全等证明知识梳理导学版知识点1 全等三角形的判定及性质判定定理简称判定定理的内容性质______________分别相等的两个三角形全等______ 边及其 _______ 分别相等的两个三角形全等________ 角及其 _______ 分别相等的两个三角形全等两____分别相等且其中_____________相等的两个三角形全等在直角三角形中,☆判定两个三角形全等时,必须有_____的参与,若有两边一角相等时,角必须是 ______ 角证题的思路:1.已知两边:找1) 2) 3)2.已知两角:找1) 2)3.已知一边一角1)若边为角的对边:找2)若边为角的邻边:找①②③注意:公共边、公共角、对顶角、最长的边(或最大的角)、最短的边(或最小的角)知识点2 等腰三角形的性质定理及推论定义有的三角形是等腰三角形。
性质定理①等腰三角形的相等。
(“等边对等角”)②等腰三角形的顶角平分线、、互相重合。
等腰三角形的判定定理内容几何语言条件与结论等腰三角形的_____相等。
简述为:________________在△ABC中,若_______=_______,则∠ ___ =∠ ___条件:____ 相等,即 ___ = ___结论:_____相等,即∠ __ = ∠ __推论等腰三角形顶角的_____线、底边上的 ____ 线及底边上的_____线互相____,简述为:________.在△ABC,AB=AC,AD⊥BC,则 _____ 是_____ 边上的_____线,且 ____平分∠______.1.条件:等腰三角形中,一条直线是顶点的平分线结论:该线也是 ______ 和_______线2.条件:等腰三角形中,一条直线是底边上的中线结论:该线也是 ______ 和_______线3.条件:等腰三角形中,一条直线是底边上的高线结论:该线也是 ______ 和_______线解读【注意】对“等角对等边”的理解仍然要注意,它的前提是“”拓展判定一个三角形是等腰三角形有两种方法(1)利用等腰三角形的定义;(2)利用等腰三角形的判定定理,即“等角对等边”相等线段1.等腰三角形两底角的平分线相等;2.等腰三角形两腰上的高相等3.两腰上的中线相等; 4.底边的中点到两腰的距离相等知识点3 等边三角形的性质定理定义的三角形是等边三角形。
八年级数学下册 1 三角形的证明 课题 等腰三角形的判定与反证法学案 (新版)北师大版
课题等腰三角形的判定与反证法【学习目标】1.理解等腰三角形的判定定理,并会运用其进行简单的证明.2.了解反证法的基本证明思路,并能简单应用.【学习重点】等腰三角形的判定定理,并会运用其进行简单的证明.【学习难点】反证法的证明方法.行为提示:点燃激情,引发学生思考本节课学什么.行为提示:教会学生看书,独学时对于书中的问题一定要认真探究,书写答案,教会学生落实重点.方法指导:1.等腰三角形的判定方法有两种:①根据定义判定;②等角对等边.2.“等角对等边”可以将图形中角的等量关系转化为线段的等量关系,是证明线段相等的一种重要方法.情景导入生成问题旧知回顾:1.等腰三角形性质定理内容是什么?等腰三角形两底角相等.2.我们把性质定理的条件和结论反过来还成立吗?如果一个三角形有两个角相等,那么这两角所对的边也相等吗?答:还成立.如图,△ABC中,∠B=∠C.求证:AB=AC.证明:作AD⊥BC于D,由∠ADB=∠ADC=90°,∠B=∠C,AD=AD,∴△ABD≌△ACD,∴AB=AC.自学互研生成能力知识模块一等腰三角形的判定【自主探究】阅读教材P8的内容,回答下列问题:等腰三角形的判定定理内容是什么?答:有两个角相等的三角形是等腰三角形,简称“等角对等边”.范例:如图,在△ABC中,AB=AC,点D是AB上一点,过D作DE⊥BC于E,并与CA的延长线相交于点F.求证:AD=AF.证明:在△ABC中,∵AB=AC,∴∠B=∠C(等边对等角).∵DE⊥BC,∴∠DEB=∠DEC=90°,∴∠2+∠B=∠F+∠C=90°,∴∠2=∠F,∵∠1=∠2,∴∠1=∠F,∴AF=AD(等角对等边).仿例1:如图所示,∠BAC=∠ABD,AC=BD,点O是AD、BC的交点,点E是AB的中点,试判断OE和AB的位置关系,并给出证明.证明:∵AC=BD,∠BAC=∠ABD,AB=BA,∴△ABC≌△BAD(SAS),∴∠OAB=∠OBA,∴OA=OB(等角对等边),∵OE是中线,∴OE⊥AB.仿例2:如图,在△ABC中,BC=5 cm,BP、CP分别是∠ABC和∠ACB的平分线,且PD∥AB,PE∥AC,则△PDE 的周长是5 cm.归纳:注意等角对等边的灵活应用,仿例2中平行线和角平分线结合是得出等腰三角形的范例.学习笔记:行为提示:教师结合各组反馈的疑难问题分配展示任务,各组在展示过程中,老师引导其他组进行补充,纠错,最后进行总结评分.学习笔记:教会学生整理反思.知识模块二反证法阅读教材P8-9的内容,回答下列问题:什么是反证法?有哪些重要步骤?答:先假设命题的结论不成立,然后推导出与定义、基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立.这种证明方法称为反证法.【合作探究】1.用反证法证明“等腰三角形的底角都是锐角”.已知:在△ABC中,AB=AC,求证:∠B、∠C都是锐角.证明:假设∠B、∠C都是直角或钝角,∴∠B≥90°,∠C≥90°,∴∠B+∠C≥90°+90°=180°,∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾,∴假设不成立,原命题的结论正确,即∠B、∠C都是锐角.2.用反证法证明一个三角形中不能有两个直角的第一步是假设这个三角形中有两个角是直角.3.用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”时,应先假设每一个锐角都大于45°.归纳:对直接证明有困难的命题均可用反证法证明,它有三个基本步骤:①反设;②推出矛盾;③否定反设、肯定命题成立.交流展示生成新知【交流预展】1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.【展示提升】知识模块一等腰三角形的判定知识模块二反证法检测反馈达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.课后反思查漏补缺1.收获:________________________________________________________________________2.存在困惑:________________________________________________________________________。
新北师大版 八年级下册数学 第一章 三角形的证明 1.2.1 直角三角形
巩固练习: 说出下列命题的逆命题,并判断每对 命题的真假: (1)四边形是多边形; (2)两直线平行,同旁内角互补; (3)如果ab=0,那么a=0,b=0.
提问:一个命题是真命题,它的逆命题一 定是真命题吗?
定理与逆定理
一个命题是真命题,它逆命题却不一定是 真命题.
如果一个定理的逆命题经过证明是真命 题,那么它是一个定理,这两个定理称为互逆 定理,其中一个定理称另一个定理的逆定理. 你还能举出一些例子吗?
想一想:互逆命题与互逆定理有何关系?
互逆定理:如果一个定理的逆命题经 过证明是真命题,那么它也是个定理,这 两个定理称为互逆定理,其中一个定理称 为另一个定理的逆定理.
判断正误: (1)互逆命题一定是互逆定理; (2)互逆定理一定是互逆命题. 我们已经学习了一些互逆定理,如勾 股定理及其逆定理、“两直线平行,内错 角相等与“内错角相等,两直线平行”等 . 请你再举出一些互逆定理的例子.
2 、 在 △ ABC 中 , 已 知 AB=13cm,BC=10cm,BC 边上的中线 AD=12cm.求证:AB=AC.
知识拓展
已知:△ABC中,∠ C=600,AB=14,AC=10, AD是BC边上的高,求BC的长 A 解后反思: 在直角三角形中,利用勾股定理 计算线段的长,是勾股定理的一 C 个重要应用,在有直角三角形时, 可直接应用,在没有直角三角形 时,常作垂线构造直角三角形, 为能应用勾股定理创造条件。
D
B
独立作业
3
3.如图,正四棱柱的底面边长为 5cm,侧棱长为8cm,一只蚂蚁欲从正 四棱柱的底面上的点A沿棱柱侧面 到点C1处吃食物,那么它需要爬行的 D C 最短路径是多少? C
1 1
习题1.4
北师大版八年级数学下册第一章 三角形的证明4 第2课时 三角形三条内角的平分线
1 三角形的内角平分线
证明结论
已知:如图,在△ABC 中,角平分线
BM 与角平分线 CN 相交于点 P,过点 P
分别作 AB,BC,AC 为 D,E,F.
的垂线,垂足分别
D N
求证:∠A 的平分线经过点 P,且
PD = PE = PF.
的两边距离相等的点在这个角的平分线上),
即∠A 的平分线经过点 P.
归纳总结
结论:三角形的三条角平分线相交于一点,并且 这一点到三条边的距离相等.
例1 如图,在△ABC 中,已知 AC = BC,∠C = 90°,
AD 是△ABC 的角平分线,DE⊥AB,垂足为 E.
(1) 如果 CD = 4 cm,求 AC 的长;
过点 O 作 OM⊥AC,若 OM=4,
B
(1) 点 O 到△ABC 三边的距离和
为 12 .
OP
A
DM C
温馨提示:不存在垂线段——构造应用
(2) 若 △ABC 的周长为 32,求 △ABC 的面积.
解:如图,过点 O 作 OE⊥AB 于点 E,ON⊥BC 于
点 N,连接 OC.
S ABC S AOC S BOC S AOB
三角形内角 平分线的性质
性质:三角形的三条角平分线交 于一点,并且这一点到三条边的 距离相等
应用:位置的选择问题
1. 如图,已知 △ABC,求作一点 P,使 P 到∠A 的两边
的距离相等,且 PA=PB.下列确定 P 点的方法正确的
是(B )
A. P 为∠A,∠B 两角平分线的交点
B. P 为∠A 的平分线与 AB 的垂直平分线的交点
新版北师大版八年级下册第一章三角形的证明导学案学生版
模块四:课下练习 1、 2、 在△ABC 中,AB=AC,AB 的垂直平分线与 AC 所在的直线相交所得的锐角为50°,则 如图, 已知∠ABC=20°, BD=DE=EF=FG, 求∠CGF 和∠AFG 的度数分别是_________.
∠B 等于________度.
3、
如图, 在△ABC 中, ∠B、 ∠C 的平分线交于 E, 过 E 作 DF∥BC 交 AB 于 D, 交 AC 于 F. 若 ). D.6 A.9 B.7 C.8
3.如图,A、B、F、D 在同一直线上,AB=DF, AE=BC,且 AE∥BC. 求证:⑴△AEF≌△BCD, ⑵EF∥CD.
●中考在线 1、 已知:如图,△ABC 中,AD 是高,CE 是中线,DC=BE, DG⊥CE,G 是垂足, 求证: (1)G 是 CE 中点; (2)∠B=2∠BCE.
2.C 是线段 AB 的中点,CD 平分∠ACE,CE 平分∠BCD,CD=CE. (1)求证:△ACD≌△BCE; (2)若∠D=50°,求∠B 的度数.
模块一 一.知识点
第一节 预习反馈(P5 例 1—P9)
等腰三角形(二)
达州耀华育才学校八年级下册数学集体备课教案导学案
主备人:喻茂伦
1、等腰三角形两个底角的平分线相等; 2、等腰三角形腰上的高相等; 3、等腰三角形腰上的中线相等; 4、推理论证:等腰三角形腰上的中线相等; (以上定理画图、写出已知、求证、证明过程) 5.等边三角形的三个内角都相等,并且每个内角都等于 60。 6、两个角相等的三角形是等腰三角形。 (等角对等边) 7、反证法:在证明时,先假设命题的结论不成立,然后推导出与定义、基本事实、已有 定理或已知条件相矛盾的结果,从而证明命题的结论一定成立,这种证明方法称为反证法。 模块二 基础训练 1. 在如图的等腰三角形 ABC 中, (1)如果∠ABD= 1 1 ∠ABC,∠ACE= ∠ACB 呢?由此,你能得到一个什么结论? 3 3
【新新导学案】2013-2014学年 八年级数学(北师大版)下学期备课导学案:第1章《三角形的证明》单元检测
第一章 单 元 检 测一、填空题(每小题3分):1.如图,修建抽水站时,沿着倾斜角为300的斜坡铺设管道,若量得水管AB 的长度为80米,那么点B 离水平面的高度BC 的长为 米.2. 如果一个三角形的一条角平分线恰好是对边上的高,那么这个三角形是 三角形.3. 如图,已知AC=DB ,要使△ABC ≌△DCB ,只需增加的一个条件是 或 .4. 命题:“全等三角形的对应角相等”的逆命题是 ___________________________________ ___.这条逆命题是______命题(填“真”或“假”)5. 如图,一个顶角为40º的等腰三角形纸片,剪去顶角后,得到一个四边形,则=∠+∠21_________ ;6. 在△ABC 中,已知AB =AC ,AD 是中线,∠B =70°,BC =15cm ,则∠BAC = ,∠DAC = ,BD = cm ;7. 已知,如图,O 是△ABC 的∠ABC.∠ACB 的角平分线的交点,OD ∥AB交BC 于D ,OE ∥AC 交BC 于E ,若BC = 10,则△ODE 的周长为 .8. 如图,在Rt △ABC 中,∠B=90°,∠A=40°,AC 的垂直平分线MN 与AB 相交于D 点,则∠BCD 的度数是 .9. △ABC 中,∠C=90°,AD 平分∠BAC ,交BC 于点D.若DC=7,则D 到AB 的距离是 .10. 如图,∠AOP=∠BOP=15°,PC ∥OA ,PD ⊥OA ,若PC=4,则PD的长为 .二、选择题(每小题3分)1.等腰三角形底边上的高与底边的比是1∶2,则它的顶角等于( )A.90°B.60°C.120°D.150°2.下列两个三角形中,一定全等的是 ( )A.有一个角是40°,腰相等的两个等腰三角形第18题图C B A 第1题 第5题B.两个等边三角形C.有一个角是100°,底相等的两个等腰三角形D.有一条边相等,有一个内角相等的两个等腰三角形3. 到△ABC 的三个顶点距离相等的点是△ABC 的( )A.三边中线的交点B.三条角平分线的交点C.三边上高的交点D.三边垂直平分线的交点4. △ABC 中,∠A ∶∠B ∶∠C=1∶2∶3,CD ⊥AB 于点D 若BC=a ,则AD 等于( ) A.21a B.23a C.23a D.3a 5. 如图,△ABC 中,AB=AC ,点D 在AC 边上,且BD=BC=AD ,则∠A 的度数为( )A.30°B.36°C.45°D.70°三、解答题(每题12分)1. 如图,AD ⊥CD ,AB=10,BC=20,∠A=∠C=30°.求:(1)∠ABC 的度数(2)AD 和CD 的长.2.已知:如图,△ABC 中,AB=AC ,∠A=120°.(1)用直尺和圆规作AB 的垂直平分线,分别交BC. AB 于点M.N(保留作图痕迹,不写作法).(2)猜想CM 与BM 之间有何数量关系,并证明你的猜想.四、证明题(每题10分)1.已知:如图,CE ⊥AB ,BF ⊥AC ,CE 与BF 相交于D ,且BD=CD.求证:D 在∠BAC 的平分线上.2. 已知:如图,在等边三角形ABC的AC边上取中点D,BC的延长线上取一点E,使CE=CD.求证:BD=DE.五、(本题11分)阅读下面的题目及分析过程,并按要求进行证明.已知:如图,E是BC的中点,点A在DE上,且∠BAE=∠CDE.求证:AB=CD分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等.因此,要证AB=CD,必须添加适当的辅助线,构造全等三角形或等腰三角形.现给出如下三种添加辅助线的方法提示,请任意选择其中一种,对原题进行证明.。
新北师大版 八年级下册数学 第一章 三角形的证明 1.3.2线段的垂直平分线
议一议
(2)已知等腰三角形的底边,你能用尺规作出等 腰三角形吗?如果能,能作几个?所作出的三角形都 全等吗? 这样的等腰三角形也有无数多个 .根据线段垂直平分线上的点到线段 两个端点的距离相等,只要作底边的 垂直平分线,取它上面除底边的中点 外的任意一点,和底边的两个端点相 连接,都可以得到一个等腰三角形. 如图所示,这些三角形不都全等 .
剪一个三角形纸片,通过折叠找出每 条边的垂直平分线,观察这三条垂直平分 线,你是否发现同样的结论?与同伴交流.
M A E O Q
P
B
C N
F
用心想一想,马到功成
证明结论:三角形三边的垂直平分线交于一点. 已知:在△ABC中,设AB、BC的垂直平分线交于点O. 求证:O点在AC的垂直平分线上. 证明:连接AO,BO,CO. ∵点P在线段AB的垂直平分线上, A
议一议
(3)已知等腰三角形的底边及底边上的高,你能 用尺规作出等腰三角形吗?能作几个?
这样的等腰三角形应该只 有两个,并且它们是全等的, 分别位于已知底边的两侧. 你能尝试着用尺规作出这 个三角形吗?
已知底边及底边上的高,求作等腰三角形.
已知:线段a、h 求作:△ABC,使AB=AC,BC=a,高 AD=h 作法:1.作BC=a; 2.作线段BC的垂直平分线MN交BC 于D点; 3.以D为圆心,h长为半径作弧交 MN于A点; 4.连接AB、AC ∴△ABC就是所求作的三角形 B
2.作线段BC的垂直平分线L,交BC于点D.
3.在L上作线段DA,使DA=DB.
4.连接AB,AC.
∴△ABC为所求的等腰直角三角形.
习题1.8 知识技能1、2
问题解决3、4
∴OA=OB(线段垂直平分线上的点到线段两 个端点的距离相等).
北师大版八年级数学(下) 第一章 三角形的证明 第3节 等腰三角形的判定与反证法
北师大版八年级数学(下)第一章三角形的证明第3课时等腰三角形的判定与反证法例1:在三角形中已知两个内角,能判定这个三角形是等腰三角形的是()A.30°、60°B.40°、70°C.50°、60°D.100°、30°解:A、∵三角形中已知两个内角为30°、60°,∴第三个内角为180°﹣30°﹣60°=90°,∴这个三角形是直角三角形,不是等腰三角形,故选项A不符合题意;B、∵三角形中已知两个内角为40°、70°,∴第三个内角为180°﹣40°﹣70°=70°,∴这个三角形由两个内角相等,∴这个三角形是等腰三角形,故选项B符合题意;C、∵三角形中已知两个内角为50°、60°,∴第三个内角为180°﹣50°﹣60°=70°,∴这个三角形不是等腰三角形,故选项C不符合题意;D、∵三角形中已知两个内角为100°、30°,∴第三个内角为180°﹣100°﹣30°=50°,∴不是等腰三角形,故选项D不符合题意;故选:B.练习:下列给出的5个图中,能判定△ABC是等腰三角形的有()A.2个B.3个C.4个D.5个解:图①中,∵∠C=180°﹣∠A﹣∠B=180°﹣70°﹣66°=44°,∴∠A≠∠B≠∠C,∴△ABC不是等腰三角形;图②中,∵∠B+∠C=140°,∠B=70°,∴∠C=140°﹣70°=70°,∴∠B=∠C,∴△ABC是等腰三角形;图③中,∵AD∥BC,∴∠C=∠CAD=50°,∵∠B=50°,∴∠B=∠C,∴△ABC是等腰三角形;图④中,∵AD∥BC,∴∠BCA=∠CAD=30°,∠BAD=180°﹣∠B=180°﹣120°=60°,∴∠BAC=60°﹣30°=30°,∴∠BAC=∠BCA,∴△ABC是等腰三角形;图⑤中,∵AB∥DE,∴∠A=∠D=30°,∵∠BCD=∠A+∠B=60°,∴∠B=60°﹣∠A=30°,∴∠B=∠A,∴△ABC是等腰三角形;能判定△ABC是等腰三角形的有4个,故选:C.作业:1.下面叙述不可能是等腰三角形的是()A.有两个内角分别为75°,75°的三角形B.有两个内角分别为110°和40°的三角形C.有一个外角为100°,一个内角为50°的三角形D.有一个外角为140°,一个内角为100°的三角形解:A、有两个内角分别为75°,75°的三角形,另一内角为30°,可以构成等腰三角形;B、有两个内角分别为110°和40°的三角形,另一内角为30°,不能构成等腰三角形,C、有一个外角为100°,一个内角为50°的三角形,与外角相邻的内角是80°,第三个角是50°,可以构成等腰三角形;D、有一个外角为140°,一个内角为100°的三角形,与外角相邻的内角是40°,另外一个内角是40°,可以构成等腰三角形.故选:B.例2:如图,在△ABC中,AB=AC,∠BAC=108°,BD=AD=AE,则图中等腰三角形的个数为()A.3个B.4个C.5个D.6个解:∵AB=AC,∠BAC=108°,∴△ABC是等腰三角形,∠B=∠C=(180°﹣108°)=36°,∵BD=AD=AE,∴△ABD、△ADE是等腰三角形,∠DAB=∠B=36°,∠AED =∠ADE=∠B+∠DAB=72°,∴∠EAC=∠AED﹣∠C=72°﹣36°=36°,∴∠EAC=∠C,∴△ACE是等腰三角形,AE=CE,∵∠DAE=180°﹣∠ADE﹣∠AED =180°﹣72°﹣72°=36°,∴∠BAE=∠DAB+∠DAE=72°,∴∠BAE=∠AED,∴△BAE是等腰三角形,BA=BE,同理:△CAD是等腰三角形,则图中等腰三角形的个数为6个,故选:D.练习:如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC,CE平分∠ACB,CE 交BD于点O,那么图中的等腰三角形个数()A.4B.6C.7D.8解:∵在△ABC中,AB=AC,∠A=36°,∴∠ABC=∠ACB==72°,∵BD平分∠ABC,CE平分∠ACB,∴∠ABD=∠CBD=∠ACE=∠BCE=∠A=36°,∴AE=CE,AD=BD,BO=CO,∴△ABC,△ABD,△ACE,△BOC是等腰三角形,∵∠BEC=180°﹣∠ABC﹣∠BCE=72°,∠CDB=180°﹣∠BCD﹣∠CBD=72°,∠EOB=∠DOC=∠CBD+∠BCE=72°,∴∠BEO=∠BOE=∠ABC=∠ACB=∠CDO=∠COD=72°,∴BE=BO,CO=CD,BC=BD=CE,∴△BEO,△CDO,△BCD,△CBE是等腰三角形.∴图中的等腰三角形有8个.故选:D.作业:2.如图,AD=BC,AB=AC=BD,∠C=72°,则图中一共有()个等腰三角形.A.3B.4C.5D.6解:∵AB=AC=BD,∴△ABD与△BAC是等腰三角形,在△ABD与△BAC中,,∴△ABD≌△BAC(SSS),∴∠D=∠C=72°,∴∠BAD=∠D=∠C=∠ABC=72°,∴∠∠ABD=∠BAC=36°,∴∠DAE=∠CBE=32°,∴∠AED=∠BEC=72°,∴∠D=∠AED=∠C=∠BE,∴△ADE和△BCE是等腰三角形,∵∠AED=∠BEC,∴△ADE≌△BCE(AAS),∴AE=BE,∴△ABE是等腰三角形,故选:C.例3:已知:如图△ABC中,∠B=50°,∠C=90°,在射线BA上找一点D,使△ACD 为等腰三角形,则∠ACD的度数为.解:如图,有三种情形:①当AC=AD时,∠ACD=70°.②当CD′=AD′时,∠ACD′=40°.③当AC=AD″时,∠ACD″=20°,故答案为70°或40°或20°练习: 若△ABC的边AB=8cm,周长为18cm,当边BC=8cm或5cm或2cm时,△ABC为等腰三角形.解:∵△ABC的边AB=8cm,周长为18cm,∴BC+AC=10cm.①当AB=BC=8cm时,AC=2cm,能构成三角形,符合题意.②当BC=AC=5cm时,能构成三角形,符合题意.③当AB=AC=8cm时,BC=2cm,能构成三角形,符合题意.综上所述,BC的长度是8cm或5cm或2cm时,△ABC为等腰三角形.故答案是:8cm或5cm或2.作业:3.在△ABC中,与∠A相邻的外角是130°,要使△ABC为等腰三角形,则∠B的度数是()A.50°B.65°C.50°或65°D.50°或65°或80°解:∠A=180°﹣130°=50°.当AB=AC时,∠B=∠C=(180°﹣50°)=65°;当BC=BA时,∠A=∠C=50°,则∠B=180°﹣50°﹣50°=80°;当CA=CB时,∠A=∠B=50°.∠B的度数为50°或65°或80°,故选:D.例4:如图,点D,E在△ABC的边BC上,BD=AD=DE=AE=CE.(1)求∠DAE的度数;(2)求证:△ABC是等腰三角形.解:(1)解:∵AD=DE=AE,∴△ADE是等边三角形,∴∠DAE=60°;(2)证明:∵△ADE是等边三角形∴∠ADE=∠AED=60°,∵BD=AD,∴∠B=∠BAD,∵∠ADE=∠B+∠BAD∴∠B=30°,同理∠C=30°,∴∠B=∠C,∴△ABC是等腰三角形.练习:在△ABC中,AB=AC,AD是△ABC的中线,AE是∠BAD的角平分线,DF∥AB 交AE的延长线于F.(1)若∠BAC=120°,求∠BAD的度数.(2)求证:△ADF是等腰三角形.解:(1)解:∵△ABC是等腰三角形,D为底边的中点,∴AD⊥BC,∠BAD=∠CAD,∵∠BAC=120°,∴∠BAD=60°;(2)证明:∵△ABC是等腰三角形,D为底边的中点,∴AD⊥BC即∠ADB=90°,∵AE是∠BAD的角平分线,∴∠DAE=∠EAB=30°,∵DF∥AB,∴∠F=∠BAE=30°,∴∠DAF=∠F=30°,∴AD=DF,∴△ADF是等腰三角形.作业:4.如图,在△ABC中,∠BAC=120°,∠B=40°,边AB的垂直平分线与边AB交于点E,与边BC交于点D.(1)求∠ADC的度数;(2)求证:△ACD为等腰三角形.解:(1)∵DE垂直平分AB,∴DB=DA,∴∠B=∠DAB,∵∠B=40°,∴∠B=∠DAB=40°,∴∠ADC=∠B+∠DAB=80°;(2)∵∠DAC=∠BAC﹣∠DAB=120°﹣40°=80°=∠ADC,∴CA=CD,∴△ACD为等腰三角形.例5:证明:在一个三角形中,至少有一个内角小于或等于60度.证明:假设在一个三角形中没有一个角小于或等于60°,即都大于60°;那么,这个三角形的三个内角之和就会大于180°;这与定理“三角形的三个内角之和等于180°”相矛盾,原命题正确.练习:求证:在同一平面内,如果一条直线和两条平行直线中的一条相交,那么和另一条也相交.已知:直线l1,l2,l3在同一平面内,且l1∥l2,l3与l1相交于点P.求证:l3与l2相交.作业:5.用反证法证明:一个三角形中不能有两个角是直角.已知:△ABC.求证:∠A,∠B,∠C中不能有两个角是直角.证明:假设∠A,∠B,∠C中有两个角是直角,不妨设∠A=∠B=90°,则∠A+∠B+∠C=90°+90°+∠C>180°.这与三角形内角和定理矛盾,∠A=∠B=90°不成立.所以一个三角形中不能有两个角是直角.。
北师大八年级数学下册教案:第一章三角形的证明复习教案
举例:给出一个具体直角三角形的边长,要求学生求解另一条边长。
(5)三角形面积的计算:熟练掌握海伦公式、三角形面积与底和高的关系,能够计算不同类型三角形的面积。
举例:给出一个三角形的三边长,要求学生运用海伦公式计算其面积。
2.教学难点
(1)几何逻辑推理:对于三角形性质与判定的逻辑推理过程,学生可能难以理解,需要教师通过具体实例和图示进行讲解。
难点举例:证明三角形两边之和大于第三边的过程中,学生可能对“反证法”的理解存在困难。
(2)全等三角形的判定:在实际应用中,学生可能难以找到合适的全等条件进行判断,需要教师引导学生如何观察和分析问题。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.提升学生的数学建模能力:通过全等三角形、等腰三角形和直角三角形的判定与应用,让学生在实际问题中构建数学模型,增强数学应用意识。
4.培养学生的数学抽象素养:引导学生从具体的三角形实例中抽象出一般性规律,提升数学抽象思维。
5.增强学生的数学运算能力:在三角形面积计算等方面,让学生熟练掌握相关公式,提高运算速度和准确性。
难点举例:在复杂的图形中,学生可能难以发现两个三角形之间的全等关系。
(3)等腰三角形的性质与判定:学生容易忽视等腰三角形底角相等这一性质,导致解题错误。
数学北师大版八年级下册直角三角形全等的“HL”的判定定理
第一章三角形的证明2.直角三角形全等的“HL”的判定定理希望学校吕淑霞一、学情分析学生在学习直角三角形全等判定定理“HL”之前,已经掌握了一般三角形全等的判定方法,在本章的前一阶段的学习过程中接触到了证明三角形全等的推论,在本节课要掌握这个定理的证明以及利用这个定理解决相关问题还是一个较高的要求。
二、教学任务分析本节课是三角形全等的最后一部分内容,也是很重要的一部分内容,凸显直角三角形的特殊性质。
在探索证明直角三角形全等判定定理“HL”的同时,进一步巩固命题的相关知识也是本节课的任务之一。
因此本节课的教学目标定位为:1.知识目标:①能够证明直角三角形全等的“HL”的判定定理,进一步理解证明的必要性②利用“HL’’定理解决实际问题2.能力目标:①进一步掌握推理证明的方法,发展演绎推理能力三、教学过程分析本节课设计了六个教学环节:第一环节:复习提问;第二环节:引入新课;第三环节:做一做;第四环节:议一议;第五环节:课时小结;第六环节:课后作业。
1:复习提问1.判断两个三角形全等的方法有哪几种?2.已知一条边和斜边,求作一个直角三角形。
想一想,怎么画?同学们相互交流。
3、有两边及其中一边的对角对应相等的两个三角形全等吗?如果其中一个角是直角呢?请证明你的结论。
我们曾从折纸的过程中得到启示,作了等腰三角形底边上的中线或顶角的角平分线,运用公理,证明三角形全等,从而得出“等边对等角”。
那么我们能否通过作等腰三角形底边的高来证明“等边对等角”.要求学生完成,一位学生的过程如下:已知:在△ABC 中, AB=AC .求证:∠B=∠C .证明:过A 作AD ⊥BC ,垂足为C ,∴∠ADB=∠ADC=90°又∵AB=AC ,AD=AD ,∴△ABD ≌△ACD .∴∠B =∠C (全等三角形的对应角相等)在实际的教学过程中,有学生对上述证明方法产生了质疑。
质疑点在于“在证明△ABD ≌△ACD 时,用了“两边及其中一边的对角对相等的两个三角形全等”.而我们在前面学习全等的时候知道,两个三角形,如果有两边及其一边的对角相等,这两个三角形是不一定全等的.可以画图说明.(如图所示在ABD 和△ABC 中,AB=AB ,∠B=∠B ,AC=AD ,但△ABD 与△ABC 不全等)” .也有学生认同上述的证明。
广平县第八中学八年级数学下册第一章三角形的证明1等腰三角形第3课时等腰三角形的判定教案新版北师大版9
第3课时等腰三角形的判定1.探索等腰三角形的判定定理.2.理解等腰三角形的判定定理,并会运用其进行简单的证明.3.了解反证法的基本证明思路,并能简单应用.4.培养学生的逆向思维能力.重点掌握等腰三角形的判定定理,并会运用其进行简单的证明.难点理解和掌握反证法的证明方法.一、复习导入问题1:等腰三角形性质定理的内容是什么?这个命题的题设和结论分别是什么?问题2:我们是如何证明上述定理的?问题3:我们把性质定理的条件和结论反过来还成立吗?如果一个三角形有两个角相等,那么这两个角所对的边也相等吗?二、探究新知1.等腰三角形的判定定理师:你能证明“有两个角相等的三角形是等腰三角形”吗?并与同伴交流.处理方式:学生在练习本上画图,写出已知、求证;小组之间探究讨论多种证明方法.已知:如图,在△ABC中,∠B=∠C.求证:AB=AC.证法一:过点A作BC的垂线,垂足为D.∵AD⊥BC ,∴∠BDA=∠CDA= 90°.在△ABD和△ACD中,∵∠B=∠C, ∠BDA=∠CDA, AD=AD ,∴△ABD≌△ACD (AAS).∴ AB=AC (全等三角形的对应边相等).证法二:作∠BAC的角平分线,交BC于点D.∵AD平分∠BAC,∴∠BAD=∠CAD.在△ABD和△ACD中,∵∠B=∠C, ∠BAD=∠CAD, AD=AD,∴△ABD≌△ACD (AAS) .∴AB=AC(全等三角形的对应边相等).(教师引导学生类比“等边对等角”的证明方法正确地添加辅助线,规范地写出推理过程,鼓励学生一题多解.)师指出:作△ABC的边BC的中线,虽然把△ABC分成了两个三角形,这两个三角形对应两边及其一边的对角分别相等,这是“SSA”,是不能证明两个三角形全等的.因此,这种添加辅助线的方法是不可行的.引导学生归纳等腰三角形的判定定理:定理:有两个角相等的三角形是等腰三角形.简述为:等角对等边.2.反证法课件出示:在一个三角形中,如果两个角不相等,那么这两个角所对的边也不相等.你认为这个结论成立吗?如果成立,你能证明它吗?处理方法:学生积极动脑思考,小组交流讨论.师引导:用综合法证明本结论是行不通的,因此,我们要探究一种新方法来完成它的证明,下面来看小明同学的想法:(课件出示)如图,在△ABC中,已知∠B≠∠C,此时AB与AC要么相等,要么不相等.假设AB=AC,那么根据“等边对等角”定理可得∠C=∠B,但已知条件是∠B≠∠C.这与已知条件∠B≠∠C相矛盾,因此AB≠AC.师:你能理解他的推理过程吗?师出示“反证法”的定义:先假设命题的结论不成立,然后推导出与定义、基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立.这种证明方法称为反证法.三、举例分析例1 已知:如图,AB=DC,BD=CA,BD与CA相交于点E.求证:△AED是等腰三角形.证明:∵AB=DC,BD=CA,AD=DA ,∴△ABD≌△DCA.∴∠ADB=∠DAC(全等三角形的对应角相等).∴AE=DE(等角对等边).∴△AED是等腰三角形.例2 (课件出示教材第9页例3)处理方法:学生独立完成,教师点评.四、练习巩固1.如果三角形的一个外角是130°,且它恰好等于一个不相邻的内角的2倍,那么这个三角形是( )A.钝角三角形B.直角三角形C.等腰三角形D.等边三角形2.如图,在△ABC中,∠B=∠C=40°,D,E是BC上两点,且∠ADE=∠AED=80°,则图中共有等腰三角形( )A.6个B.5个C.4个D.3个,第2题图) ,第3题图) 3.如图,已知△ABC中,CD平分∠ACB交AB于点D,又DE∥BC,交AC于点E,若DE =4 cm,AE=5 cm,则AC等于( )A.5 cm B.4 cm C.9 cm D.1 cm五、课堂小结通过本节课的学习,你有什么收获?六、课外作业1.教材第9页“随堂练习”第1、2题.2.教材第9~10页习题1.3第1~4题.本节课的主要内容是探索等腰三角形的判定定理,在复习性质定理的基础上,引导学生反过来思考猜想新的命题,并进行证明.这样可以发展学生的逆向思维能力,同时引入反证法的基本证明思路,学习与运用反证法也成为本课时的教学任务之一.第4章一次函数一、选择题(共26小题)1.2017年5月10日上午,小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿.接到通知后,小华立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一小会,小华继续录入并加快了录入速度,直至录入完成.设从录入文稿开始所经过的时间为x,录入字数为y,下面能反映y与x的函数关系的大致图象是()A.B.C.D.2.小刚以400米/分的速度匀速骑车5分,在原地休息了6分,然后以500米/分的速度骑回出发地.下列函数图象能表达这一过程的是()A.B.C.D.3.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度,下面是小明离家后他到学校剩下的路程s关于时间t的函数图象,那么符合小明行驶情况的图象大致是()A.B.C.D.4.均匀地向如图的容器中注满水,能反映在注水过程中水面高度h随时间t变化的函数图象是()A.B.C.D.5.如图,某个函数的图象由线段AB和BC组成,其中点A(0,),B(1,),C(2,),则此函数的最小值是()A.0 B.C.1 D.6.某星期天下午,小强和同学小明相约在某公共汽车站一起乘车回学校,小强从家出发先步行到车站,等小明到了后两人一起乘公共汽车回到学校.图中折线表示小强离开家的路程y(公里)和所用的时间x(分)之间的函数关系.下列说法错误的是()A.小强从家到公共汽车站步行了2公里B.小强在公共汽车站等小明用了10分钟C.公共汽车的平均速度是30公里/小时D.小强乘公共汽车用了20分钟7.货车和小汽车同时从甲地出发,以各自的速度匀速向乙地行驶,小汽车到达乙地后,立即以相同的速度沿原路返回甲地,已知甲、乙两地相距180千米,货车的速度为60千米/小时,小汽车的速度为90千米/小时,则下图中能分别反映出货车、小汽车离乙地的距离y(千米)与各自行驶时间t(小时)之间的函数图象是()A.B.C.D.8.如图,在矩形中截取两个相同的正方形作为立方体的上下底面,剩余的矩形作为立方体的侧面,刚好能组成立方体.设矩形的长和宽分别为y和x,则y与x的函数图象大致是()A.B.C.D.9.小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y(米)与时间t(分钟)之间关系的大致图象是()A.B.C.D.10.如图,挂在弹簧称上的长方体铁块浸没在水中,提着弹簧称匀速上移,直至铁块浮出水面停留在空中(不计空气阻力),弹簧称的读数F(N)与时间t(s)的函数图象大致是()A.B.C.D.11.函数y=的图象为()A.B.C.D.12.匀速地向一个容器内注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线),这个容器的形状是下图中的()A.B.C.D.13.如果两个变量x、y之间的函数关系如图所示,则函数值y的取值范围是()A.﹣3≤y≤3B.0≤y≤2C.1≤y≤3D.0≤y≤314.甲、乙两人在操场上赛跑,他们赛跑的路程S(米)与时间t(分钟)之间的函数关系如图所示,则下列说法错误的是()A.甲、乙两人进行1000米赛跑B.甲先慢后快,乙先快后慢C.比赛到2分钟时,甲、乙两人跑过的路程相等D.甲先到达终点15.如图所示的容器内装满水,打开排水管,容器内的水匀速流出,则容器内液面的高度h随时间x变化的函数图象最接近实际情况的是()A. B.C. D.16.如图,匀速地向此容器内注水,直到把容器注满,在注水过程中,下列图象能大致反映水面高度h随注水时间t变化规律的是()A.B.C.D.17.如图,小红居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小红由A处径直走到B处,她在灯光照射下的影长l与行走的路程S之间的变化关系用图象刻画出来,大致图象是()A. B.C.D.18.汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,继续以100千米/时的速度匀速行驶,则汽车行驶的路程s(千米)与行驶的时间t(时)的函数关系的大致图象是()A.B.C.D.19.小明从家出发,外出散步,到一个公共阅报栏前看了一会报后,继续散步了一段时间,然后回家,如图描述了小明在散步过程汇总离家的距离s(米)与散步所用时间t(分)之间的函数关系,根据图象,下列信息错误的是()A.小明看报用时8分钟B.公共阅报栏距小明家200米C.小明离家最远的距离为400米D.小明从出发到回家共用时16分钟20.园林队在某公园进行绿化,中间休息了一段时间.已知绿化面积S(单位:平方米)与工作时间t(单位:小时)的函数关系的图象如图,则休息后园林队每小时绿化面积为()A.40平方米B.50平方米C.80平方米D.100平方米21.图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x表示时间,y表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是()A.体育场离张强家2.5千米B.张强在体育场锻炼了15分钟C.体育场离早餐店4千米D.张强从早餐店回家的平均速度是3千米/小时22.“黄金1号”玉米种子的价格为5元/千克,如果一次购买2千克以上的种子,超过2千克部分的种子价格打6折,设购买种子数量为x千克,付款金额为y元,则y与x的函数关系的图象大致是()A.B.C.D.23.若函数,则当函数值y=8时,自变量x的值是()A.±B.4 C.±或4 D.4或﹣24.已知函数y=,当x=2时,函数值y为()A.5 B.6 C.7 D.825.一家电信公司提供两种手机的月通话收费方式供用户选择,其中一种有月租费,另一种无月租费.这两种收费方式的通话费用y(元)与通话时间x(分钟)之间的函数关系如图所示.小红根据图象得出下列结论:①l1描述的是无月租费的收费方式;②l2描述的是有月租费的收费方式;③当每月的通话时间为500分钟时,选择有月租费的收费方式省钱.其中,正确结论的个数是()A.0 B.1 C.2 D.326.如图,是一台自动测温记录仪的图象,它反映了我市冬季某天气温T随时间t变化而变化的关系,观察图象得到下列信息,其中错误的是()A.凌晨4时气温最低为﹣3℃B.14时气温最高为8℃C.从0时至14时,气温随时间增长而上升D.从14时至24时,气温随时间增长而下降二、填空题(共4小题)27.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数关系是y=x+32,如果某一温度的摄氏度数是25℃,那么它的华氏度数是℉.28.放学后,小明骑车回家,他经过的路程s(千米)与所用时间t(分钟)的函数关系如图所示,则小明的骑车速度是千米/分钟.29.已知函数,那么= .30.如图,根据所示程序计算,若输入x=,则输出结果为.第4章一次函数参考答案与试题解析一、选择题(共26小题)1.2017年5月10日上午,小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿.接到通知后,小华立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一小会,小华继续录入并加快了录入速度,直至录入完成.设从录入文稿开始所经过的时间为x,录入字数为y,下面能反映y与x的函数关系的大致图象是()A.B.C.D.【考点】函数的图象.【专题】动点型.【分析】根据在电脑上打字录入这篇文稿,录入字数增加,因事暂停,字数不变,继续录入并加快了录入速度,字数增加,变化快,可得答案.【解答】解:A.暂停后继续录入并加快了录入速度,字数增加,故A不符合题意;B.字数先增加再不变最后增加,故B不符合题意错误;C.开始字数增加的慢,暂停后再录入字数增加的快,故C符合题意;D.中间应有一段字数不变,不符合题意,故D错误;故选:C.【点评】本题考查了函数图象,字数先增加再不变最后增加的快是解题关键.2.小刚以400米/分的速度匀速骑车5分,在原地休息了6分,然后以500米/分的速度骑回出发地.下列函数图象能表达这一过程的是()A.B.C.D.【考点】函数的图象.【分析】根据匀速行驶,可得路程随时间匀速增加,根据原地休息,路程不变,根据加速返回,可得路程随时间逐渐减少,可得答案.【解答】解:由题意,得以400米/分的速度匀速骑车5分,路程随时间匀速增加;在原地休息了6分,路程不变;以500米/分的速度骑回出发地,路程逐渐减少,故选:C.【点评】本意考查了函数图象,根据题意判断路程与时间的关系是解题关键,注意休息时路程不变.3.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度,下面是小明离家后他到学校剩下的路程s关于时间t的函数图象,那么符合小明行驶情况的图象大致是()A.B.C.D.【考点】函数的图象.【分析】由于开始以正常速度匀速行驶,接着停下修车,后来加快速度匀驶,所以开始行驶路S是均匀减小的,接着不变,后来速度加快,所以S变化也加快变小,由此即可作出选择.【解答】解:因为开始以正常速度匀速行驶﹣﹣﹣停下修车﹣﹣﹣加快速度匀驶,可得S先缓慢减小,再不变,在加速减小.故选:D.【点评】此题主要考查了学生从图象中读取信息的能力.解决此类识图题,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.4.均匀地向如图的容器中注满水,能反映在注水过程中水面高度h随时间t变化的函数图象是()A.B.C.D.【考点】函数的图象.【分析】由于三个容器的高度相同,粗细不同,那么水面高度h随时间t变化而分三个阶段.【解答】解:最下面的容器较粗,第二个容器最粗,那么第二个阶段的函数图象水面高度h随时间t的增大而增长缓慢,用时较长,最上面容器最小,那么用时最短.故选A.【点评】此题主要考查了函数图象,解决本题的关键是根据容器的高度相同,每部分的粗细不同得到用时的不同.5.如图,某个函数的图象由线段AB和BC组成,其中点A(0,),B(1,),C(2,),则此函数的最小值是()A.0 B.C.1 D.【考点】函数的图象.【分析】根据函数图象的纵坐标,可得答案.【解答】解:由函数图象的纵坐标,得>>,故选:B.【点评】本题考查了函数图象,利用了有理数大大小比较.6.某星期天下午,小强和同学小明相约在某公共汽车站一起乘车回学校,小强从家出发先步行到车站,等小明到了后两人一起乘公共汽车回到学校.图中折线表示小强离开家的路程y(公里)和所用的时间x(分)之间的函数关系.下列说法错误的是()A.小强从家到公共汽车站步行了2公里B.小强在公共汽车站等小明用了10分钟C.公共汽车的平均速度是30公里/小时D.小强乘公共汽车用了20分钟【考点】函数的图象.【分析】根据图象可以确定小强离公共汽车站2公里,步行用了多长时间,等公交车时间是多少,两人乘公交车运行的时间和对应的路程,然后确定各自的速度.【解答】解:A、依题意得小强从家到公共汽车步行了2公里,故选项正确;B、依题意得小强在公共汽车站等小明用了10分钟,故选项正确;C、公交车的速度为15÷=30公里/小时,故选项正确.D、小强和小明一起乘公共汽车,时间为30分钟,故选项错误;故选D.【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.7.货车和小汽车同时从甲地出发,以各自的速度匀速向乙地行驶,小汽车到达乙地后,立即以相同的速度沿原路返回甲地,已知甲、乙两地相距180千米,货车的速度为60千米/小时,小汽车的速度为90千米/小时,则下图中能分别反映出货车、小汽车离乙地的距离y(千米)与各自行驶时间t(小时)之间的函数图象是()A.B.C.D.【考点】函数的图象.【专题】压轴题.【分析】根据出发前都距离乙地180千米,出发两小时小汽车到达乙地距离变为零,再经过两小时小汽车又返回甲地距离又为180千米;经过三小时,货车到达乙地距离变为零,故而得出答案.【解答】解:由题意得出发前都距离乙地180千米,出发两小时小汽车到达乙地距离变为零,再经过两小时小汽车又返回甲地距离又为180千米,经过三小时,货车到达乙地距离变为零,故C符合题意,故选:C.【点评】本题考查了函数图象,理解题意并正确判断辆车与乙地的距离是解题关键.8.如图,在矩形中截取两个相同的正方形作为立方体的上下底面,剩余的矩形作为立方体的侧面,刚好能组成立方体.设矩形的长和宽分别为y和x,则y与x的函数图象大致是()A.B.C.D.【考点】函数的图象.【专题】压轴题.【分析】立方体的上下底面为正方形,立方体的高为x,则得出y﹣x=2x,再得出图象即可.【解答】解:正方形的边长为x,y﹣x=2x,∴y与x的函数关系式为y=x,故选:B.【点评】本题考查了一次函数的图象和综合运用,解题的关键是从y﹣x等于该立方体的上底面周长,从而得到关系式.9.小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y(米)与时间t(分钟)之间关系的大致图象是()A.B.C.D.【考点】函数的图象.【分析】生活中比较运动快慢通常有两种方法,即比较相同时间内通过的路程多少或通过相同路程所用时间的多少,但统一的方法是直接比较速度的大小.【解答】解:根据题中信息可知,相同的路程,跑步比漫步的速度快;在一定时间内没有移动距离,则速度为零.故小华的爷爷跑步到公园的速度最快,即单位时间内通过的路程最大,打太极的过程中没有移动距离,因此通过的路程为零,还要注意出去和回来时的方向不同,故B符合要求.故选B.【点评】此题考查函数图象问题,关键是根据速度的物理意义和比较物体运动快慢的基本方法.10.如图,挂在弹簧称上的长方体铁块浸没在水中,提着弹簧称匀速上移,直至铁块浮出水面停留在空中(不计空气阻力),弹簧称的读数F(N)与时间t(s)的函数图象大致是()A.B.C.D.【考点】函数的图象.【专题】压轴题.【分析】开始一段的弹簧称的读数保持不变,当铁块进入空气中的过程中,弹簧称的读数逐渐增大,直到全部进入空气,重量保持不变.【解答】解:根据铁块的一点过程可知,弹簧称的读数由保持不变﹣逐渐增大﹣保持不变.故选:A.【点评】本题考查了函数的概念及其图象.关键是根据弹簧称的读数变化情况得出函数的图象.11.函数y=的图象为()A.B.C.D.【考点】函数的图象.【专题】压轴题.【分析】从x<0和x>0两种情况进行分析,先化简函数关系式再确定函数图象即可.【解答】解:当x<0时,函数解析式为:y=﹣x﹣2,函数图象为:B、D,当x>0时,函数解析式为:y=x+2,函数图象为:A、C、D,故选:D.【点评】本题考查的是函数图象,利用分情况讨论思想把函数关系式进行正确变形是解题的关键,要能够根据函数的系数确定函数的大致图象.12.匀速地向一个容器内注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线),这个容器的形状是下图中的()A.B.C.D.【考点】函数的图象.【分析】根据每一段函数图象的倾斜程度,反映了水面上升速度的快慢,再观察容器的粗细,作出判断.【解答】解:注水量一定,函数图象的走势是稍陡,平,陡;那么速度就相应的变化,跟所给容器的粗细有关.则相应的排列顺序就为C.故选C.【点评】此题考查函数图象的应用,需注意容器粗细和水面高度变化的关联.13.如果两个变量x、y之间的函数关系如图所示,则函数值y的取值范围是()A.﹣3≤y≤3B.0≤y≤2C.1≤y≤3D.0≤y≤3【考点】函数的图象.【分析】根据图象,找到y的最高点是(﹣2,3)及最低点是(1,0),确定函数值y的取值范围.【解答】解:∵图象的最高点是(﹣2,3),∴y的最大值是3,∵图象最低点是(1,0),∴y的最小值是0,∴函数值y的取值范围是0≤y≤3.故选:D.【点评】本题考查了函数的图象,解答本题的关键是会观察图象,找到y的最高点及最低点.14.甲、乙两人在操场上赛跑,他们赛跑的路程S(米)与时间t(分钟)之间的函数关系如图所示,则下列说法错误的是()A.甲、乙两人进行1000米赛跑B.甲先慢后快,乙先快后慢C.比赛到2分钟时,甲、乙两人跑过的路程相等D.甲先到达终点【考点】函数的图象.【分析】根据给出的函数图象对每个选项进行分析即可.【解答】解:从图象可以看出,甲、乙两人进行1000米赛跑,A说法正确;甲先慢后快,乙先快后慢,B说法正确;比赛到2分钟时,甲跑了500米,乙跑了600米,甲、乙两人跑过的路程不相等,C说法不正确;甲先到达终点,D说法正确,故选:C.【点评】本题考查的是函数的图象,从函数图象获取正确的信息是解题的关键.15.如图所示的容器内装满水,打开排水管,容器内的水匀速流出,则容器内液面的高度h随时间x变化的函数图象最接近实际情况的是()A. B.C. D.【考点】函数的图象.【分析】根据容器内的水匀速流出,可得相同时间内流出的水相同,根据圆柱的直径越长,等体积的圆柱的高就越低,可得答案.【解答】解:圆柱的直径较长,圆柱的高较低,水流下降较慢;圆柱的直径变长,圆柱的高变低,水流下降变慢;圆柱的直径变短,圆柱的高变高,水流下降变快.故选:A.【点评】本题考查了函数图象,利用了圆柱的直径越长,等体积的圆柱的高就越低.16.如图,匀速地向此容器内注水,直到把容器注满,在注水过程中,下列图象能大致反映水面高度h随注水时间t变化规律的是()A.B.C.D.【考点】函数的图象.【分析】由于三个容器的高度相同,粗细不同,那么水面高度h随时间t变化而分三个阶段.【解答】解:最下面的容器容器最小,用时最短,第二个容器最粗,那么第二个阶段的函数图象水面高度h随时间t的增大而增长缓慢,用时较长,最上面容器较粗,那么用时较短.故选B.【点评】此题主要考查了函数图象,解决本题的关键是根据容器的高度相同,每部分的粗细不同得到用时的不同.17.如图,小红居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小红由A处径直走到B处,她在灯光照射下的影长l与行走的路程S之间的变化关系用图象刻画出来,大致图象是()A. B.C.D.【考点】函数的图象;中心投影.【专题】压轴题;数形结合.【分析】根据中心投影的性质得出小红在灯下走的过程中影长随路程之间的变化,进而得出符合要求的图象.【解答】解:∵小路的正中间有一路灯,晚上小红由A处径直走到B处,她在灯光照射下的影长l 与行走的路程S之间的变化关系应为:当小红走到灯下以前:l随S的增大而减小;当小红走到灯下以后再往前走时:l随S的增大而增大,∴用图象刻画出来应为C.故选:C.【点评】此题主要考查了函数图象以及中心投影的性质,得出l随S的变化规律是解决问题的关键.18.汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,继续以100千米/时的速度匀速行驶,则汽车行驶的路程s(千米)与行驶的时间t(时)的函数关系的大致图象是()A.B.C.D.【考点】函数的图象.【分析】汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,所以前1小时路程随时间增大而增大,后来以100千米/时的速度匀速行驶,路程的增加幅度会变大一点.据此即可选择.【解答】解:由题意知,前1小时路程随时间增大而增大,1小时后路程的增加幅度会变大一点.故选:C.【点评】本题主要考查了函数的图象.本题的关键是分析汽车行驶的过程.19.小明从家出发,外出散步,到一个公共阅报栏前看了一会报后,继续散步了一段时间,然后回家,如图描述了小明在散步过程汇总离家的距离s(米)与散步所用时间t(分)之间的函数关系,根据图象,下列信息错误的是()。
八年级数学下册 第一章 三角形的证明 2 直角三角形第2课时 直角三角形全等的判定教案北师大版
八年级数学下册第一章三角形的证明2 直角三角形第2课时直角三角形全等的判定教案北师大版年级:姓名:第2课时直角三角形全等的判定【知识与技能】能够证明直角三角形全等的“HL”的判定定理,进一步理解证明的必要性【过程与方法】进一步经历用几何符号和图形描述命题的条件和结论的过程,建立初步的符号感【情感态度】进一步掌握推理证明的方法,发展演绎推理能力【教学重点】能够证明直角三角形全等的“HL”的判定定理【教学难点】进一步理解证明的必要性.一.情景导入,初步认知1.判断两个三角形全等的方法有哪几种?2.已知一条边和斜边,求作一个直角三角形.想一想,怎么画?同学们相互交流.3.有两边及其中一边的对角对应相等的两个三角形全等吗?如果其中一个角是直角呢?请证明你的结论.【教学说明】教师顺水推舟,询问能否证明:“斜边和一条直角边分别相等的两个直角三角形全等”,从而引入新课.二.思考探究,获取新知探究:“HL”定理.已知:在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,AB=A′B′,BC=B′C′.求证:Rt△ABC≌Rt△A′B′C′.证明:在Rt△ABC中,AC2=AB2一BC2(勾股定理).又∵在Rt△ A' B' C'中,A' C' 2=A'B'2一B'C'2 (勾股定理).∴AB=A'B',BC=B'C',AC=A'C'.∴Rt△ABC≌Rt△A'B'C' (SSS).【归纳结论】斜边和一条直角边对应相等的两个直角三角形全等.(这一定理可以简单地用“斜边、直角边”或“HL”表示.)【教学说明】讲解学生的板演,借此进一步规范学生的书写和表达.分析命题的条件,既然其中一边和它所对的直角对应相等,那么可以把这两个因素总结为直角三角形的斜边对应相等,于是直角三角形有自己的全等判定定理.三.运用新知,深化理解1.见教材P20例题2.填空:如下图,Rt△ABC和Rt△DEF,∠C=∠F=90°.(1)若∠A=∠D,BC=EF,则Rt△ABC≌Rt△DEF的依据是AAS.(2)若∠A=∠D,AC=DF,则Rt△ABC≌Rt△DEF的依据是ASA.(3)若∠A=∠D,AB=DE,则Rt△ABC≌Rt△DEF的依据是AAS.(4)若AC=DF,AB=DE,则Rt△ABC≌Rt△DEF的依据是HL.(5)若AC=DF,CB=FE,则Rt△ABC≌Rt△DEF的依据是SAS.3.已知:Rt△ABC和Rt△A'B'C',∠C=∠C'=90°,BC=B'C',BD、B'D'分别是AC、A'C'边上的中线,且BD=B'D'. 求证:Rt△ABC≌Rt△A'B'C'.证明:在Rt△BDC和Rt△B'D'C'中,∵BD=B'D',BC=B'C',∴Rt△BDC≌Rt△B'D'C' (HL定理).∴CD=C'D'.又∵AC=2CD,A'C'=2C'D',∴AC=A'C'.∴在Rt△ABC和Rt△A'B'C '中,∵BC=B'C ',∠C=∠C '=90°,AC=A'C',∴Rt△ABC≌Rt△A'B'C(SAS).4.如图,已知∠ACB=∠BDA=90°,要使△ACB≌△BDA,还需要什么条件?把它们分别写出来,并证明.解:AC=DB.∵AC=DB,AB=BA,∴△ACB≌△BDA(HL)其他条件:CB=DA或四边形ACBD是平行四边形等.证明略.【教学说明】这是一个开放性问题,答案不唯一,需要我们灵活地运用公理和已学过的定理,观察图形,积极思考,并在独立思考的基础上,通过同学之间的交流,获得各种不同的答案.5.如图,在△ABC与△A'B'C'中,CD、C'D'分别分别是高,并且AC=A'C',CD=C'D'.∠ACB=∠A'C'B'.求证:△ABC≌△A'B'C'.分析:要证△ABC≌△A'B'C',由已知中找到条件:一组边AC=A'C',一组角∠ACB=∠A'C'B'.如果寻求∠A=∠A',就可用ASA证明全等;也可以寻求∠B=∠B',这样就可用AAS;还可寻求BC=B'C',那么就可根据SAS……注意到题目中有CD、C'D'是三角形的高,CD=C'D'.观察图形,这里有三对三角形应该是全等的,且题目中具备了HL定理的条件,可证得Rt△ADC≌Rt△A'D'C',因此证明∠A=∠A' 就可行.证明:∵CD、C'D'分别是△ABC、△A'B'C'的高(已知),∴∠ADC=∠A'D'C'=90°.在Rt△ADC和Rt△A'D'C'中,AC=A'C'(已知),CD=C'D' (已知),∴Rt△ADC≌Rt△A'D'C' (HL).∠A=∠A',(全等三角形的对应角相等).在△ABC和△A'B'C'中,∠A=∠A' (已证),AC=A'C' (已知),∠ACB=∠A'C'B' (已知),∴△ABC≌△A'B'C' (ASA).【教学说明】通过上述师生共同活动,学生板书推理过程之后可发动学生去纠错,教师最后再总结.四.师生互动,课堂小结直角三角形的判定方法有五种,注意“HL”仅适用于直角三角形.五.教学板书布置作业:教材“习题1.6”中第3、4、5 题.本节课我们讨论了在一般三角形中两边及其一边对角对应相等的两个三角形不一定全等.而当一边的对角是直角时,这两个三角形是全等的,从而得出判定直角三角形全等的特殊方法——HL定理,并用此定理安排了一系列具体的、开放性的问题,不仅进一步掌握了推理证明的方法,而且发展了同学们演绎推理的能力.同学们这一节课的表现很值得夸赞.。
新北师大版八年级数学下册导学案
第一章三角形的证明本章总体设计介绍本章是八年级上册第七章《平行线的证明》的继续,在“平等线的证明”一章中,我们给出了8 条基本事实,并从其中的几条基本事实出发证明了有关平行线的一些结论. 运用这些基本事实和已经学习过的定理,我们还可以证明有关三角形的一些结论.在这之前,学生已经对图形的性质及其相互关系进行了大量的探索,探索的同时也经历过一些简单的推理过程,已经具备了一定的推理能力,树立了初步的推理意识,从而为本章进一步严格证明三角形有关定理打下了基础.本章所证明的命题都和等腰三角形、直角三角形有关,主要包括:1.等腰三角形的性质和判定定理;2.直角三角形的性质定理和判定定理;3.线段的垂直平分线性质和判定定理;4.角平分线性质定理和判定定理。
本章教学建议对于已有命题的证明,教学过程中要注意引导学生回忆过去的探索、说理过程,从中获取严格证明的思路;对于新增命题,教学过程中要重视学生的探索、证明过程,关注该命题与其他已有命题之间的关系;对于整章的命题,注意关注将这些命题纳入一个命题系统,关注命题之间的关系,从而形成对相关图形整体的认识。
对于证明的方法,除了注重启发和回忆,还应注意关注证明方法的多样性,力图通过学生的自主探索,获得多样的证明方法,并在比较中选择适当的方法。
证明过程中注意揭示蕴含其中的数学思想方法,如转化、归纳、类比等。
作为初中阶段几何证明的最后阶段,教学中应要求学生掌握综合法和分析法证明命题的基本要求,掌握规范的证明表述过程,达成课程标准对证明表述的要求。
1. 等腰三角形(一)一、学生知识状况分析在八年级上册第七章《平行线的证明》,学生已经感受了证明的必要性,并通过平行线有关命题的证明过程,习得了一些基本的证明方法和基本规范,积累了一定的证明经验;在七年级下,学生也已经探索得到了有关三角形全等和等腰三角形的有关命题,这些都为证明本节有关命题做了很好的铺垫。
二、教学任务分析本节将进一步回顾和证明全等三角形的有关定理,并进一步利用这些定理、公理证明等腰三角形的有关定理,由于具备了上面所说的活动经验和认知基础,为此,本节可以让学生在回顾的基础上,自主地寻求命题的证明,为此,确定本节课的教学目标如下:1.知识目标:理解作为证明基础的几条公理的内容,应用这些公理证明等腰三角形的性质定理;在证明过程中,进一步感受证明过程,掌握推理证明的基本要求,明确条件和结论,能够借助数学符号语言利用综合法证明等腰三角形的性质定理和判定定理;熟悉证明的基本步骤和书写格式。
北师大版八年级数学下册第一章三角形的证明1.2直角三角形全等的判定(教案)
另外,小组讨论的环节,我发现学生们参与度很高,他们能够积极地提出自己的看法,并尝试解决实际问题。但在成果分享时,有些小组的表达不够清晰,可能是因为他们对全等判定的理解还不够深入。在今后的教学中,我需要更多地关注学生的表达能力和逻辑思维能力,引导他们如何更清晰、更有条理地表达自己的思考过程。
此外,我还发现一些学生在面对复杂问题时,不知道如何入手。针对这一点,我计划在下一节课中,引入一些解决问题的策略和方法,如画图辅助、逐步推理等,帮助学生形成解决问题的步骤和思路。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解直角三角形全等的判定方法。全等的直角三角形是指在大小和形状上完全相同的三角形,它们可以通过SSS、SAS、ASA和HL四种方法进行判定。这些判定方法是解决几何问题的重要工具。
2.案例分析:接下来,我们来看一个具体的案例。通过比较两个直角三角形的边长和角度,展示如何使用SSS和SAS判定法来确定它们是否全等。
-在教学中,使用图形变换、动态演示等方法,帮助学生识别和选择正确的对应边和对应角。
-组织学生进行小组讨论和互评,让他们在实践中学会如何避免证明过程中的常见错误,如标记错误、逻辑跳跃等。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《直角三角形全等的判定》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要确定两个三角形是否完全一样的情况?”(如拼图游戏中的三角形板块)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索直角三角形全等的奥秘。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D C B AA第一章 三角形的证明第一节 等腰三角形(一)模块一 预习反馈(P2—P6) 一.知识点1、两角及其中一角的对边对应相等的两个三角形全等(AAS )。
(论证)2、全等三角形的对应边相等,对应角相等。
3、等腰三角形性质定理: (等边对等角)。
(论证)4、推论(三线合一): 。
(论证)5、等边三角形性质定理: 。
(论证) 论证要求(画图、写出已知、求证、证明过程) 模块二 基础训练1.如图,已知∠D =∠C ,∠A =∠B ,且AE = BF 。
求证:AD = BC 。
2.如图,在△ABC 中,AB = AC ,AD ⊥AC ∠BAC = 100°。
求∠1、∠3、∠B 的度数。
3.如图,在△ABC 中,D 为AC 上一点,并且AB = AD ,DB = DC ,若∠C = 29°,求∠A 。
模块三 能力提升 1. 填空:(1)如图,在△ABC 中,AB = AC ,点D 在AC 上,且BD = BC = AD 。
请找出所有的等腰三角形 。
(2)等腰三角形的顶角为50°,则它的底角为 。
(3)等腰三角形的一个角为40°,则另两个角为 。
(4)等边三角形的三个角都相等,并且每个角都等于60°。
2. 如图,在△ABC 中,AB = AC ,D 是BC 边上的中点,且DE ⊥AB ,DF ⊥AC 。
求证:∠1 =∠2。
A B C DE F 321AB C DD C B A模块四:课下练习☆能力提升1.△ABC中,AB=AC,∠A=50°,P是△ABC 内一点,且∠PBC=∠ACP,求∠BPC的度数 _________.2.已知:如图,在△ABC中,AB=AC,BD,CE是△ABC的角平分线. 求证:BD=CE.3.如图,A、B、F、D在同一直线上,AB=DF, AE=BC,且AE∥BC.求证:⑴△AEF≌△BCD,⑵EF∥CD.E CB F D第一节等腰三角形(二)模块一预习反馈(P5例1—P9)一.知识点1、等腰三角形两个底角的平分线相等;2、等腰三角形腰上的高相等;3、等腰三角形腰上的中线相等;4、推理论证:等腰三角形腰上的中线相等;(以上定理画图、写出已知、求证、证明过程)EAB CDE A B C D A5.等边三角形的三个内角都相等,并且每个内角都等于60︒。
6、两个角相等的三角形是等腰三角形。
(等角对等边)7、反证法:在证明时,先假设命题的结论不成立,然后推导出与定义、基本事实、 已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立,这种证明方法 称为反证法。
模块二 基础训练1. 在如图的等腰三角形ABC 中,(1)如果∠ABD=13 ∠AB C ,∠ACE=13 ∠ACB 呢?由此,你能得到一个什么结论?(2)如果AD=12 AC ,AE=12 AB ,那么BD=CE 吗?如果AD=13 AC ,AE=13 AB 呢?由此你得到什么结论?2.想想出反证法证明问题的一般步骤。
把下列命题用反证法证明时的第一步写出来。
a) 三角形中必有一个内角不少于60度; b) 一个三角形中不能有两个角是钝角; c) 垂直于同一条直线的两条直线平行。
3、如图,ABC ∆中,BD ⊥AC 于D ,CE ⊥AB 于E ,BD = CE 。
求证:ABC ∆是等腰三角形。
模块三 能力提升1、如图,在△ABC 中,AB = AC ,DE ∥BC ,求证:△ADE 是等腰三角形。
2、如图,E 是△ABC 内的一点,AB = AC ,连接AE 、BE 、CE ,且BE = CE ,延长AE , 交BC 边于点D 。
求证:AD ⊥BC 。
EAB C D模块四:课下练习1、 在△ABC 中,AB =AC ,AB 的垂直平分线与AC 所在的直线相交所得的锐角为50°, ∠B 等于________度.2、 如图,在△ABC 中,∠B 、∠C 的平分线交于E ,过E 作DF ∥BC 交AB 于D ,交AC 于F . 若BD +CF =8,则线段DF 的长( ). A .9 B .7 C .8D .63.在△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,CD ⊥AB 于D ,AB =a ,则DB 等于( ).A.a 23 B.2a C.3a D.4a第一节 等腰三角形(三)模块一 预习反馈(P10—P11) 一.知识点1、等边三角形是特殊的等腰三角形,它具有等腰三角形的一切性质。
2、等边三角形的判定1) 三个角都相等的三角形是等边三角形 。
2) 有一个角等于60︒的等腰三角形是等边三角形。
(证明)3、在直角三角形中,如果一个锐角等于30︒,那么它所对的直角边等于斜边的一半。
(证明)模块二 基础训练1、 已知:如图,△ABC 是等边三角形,DE ∥BC ,交AB 、AC 于D 、E 。
求证:△ADE 是等边三角形。
2、如图,△ABC 是等边三角形,BD = CE ,∠1 =∠2。
求证:△ADE 是等边三角形。
E A B C D EA3、如图,在Rt ABC ∆中,∠B = 30°,BD = AD ,BD = 12,求DC 的长。
模块三 能力提升 1、 填空:(1)如图1,BC = AC ,若 ,则△ABC 是等边三角形。
(2)如图2,AB = AC ,BC ⊥AD ,BD = 4,若AB = ,则△ABC 是等边三角形。
(3)如图3,在Rt ABC ∆中,∠B = 30°,AC = 6cm ,则AB = ;若AB = 7,则AC = 。
图1 图2 图3 2、如右图,已知△ABC 和△BDE 都是等边三角形,求证:AE=CD 。
模块四:课下练习 1、填空:(1)如图1,AB = AC ,AD 是△ABC 的一条中线,AB = 5,若BD = , 则△ABC 是等边三角形。
(2)如图2,∠BAC =120°,AB =AC ,AB =14,则AD = 。
图1 图22、已知:ABC ∆中,︒=∠90ACB ,AB CD ⊥,︒=∠30A ,AB = 40,C B AD 30°C B AA B C DAB CAB C D D C B ABACD求DB 的长。
3、在四边形ABCD 中,∠A=60°,∠B=∠D=90°,BC=2,CD=3,求:AB 的长第二节 直角三角形(一)模块一 预习反馈(P14—P16) 一.知识点1、直角三角形的两个锐角互余。
(性质)2、有两个角互余的三角形是直角三角形。
(判定)3、直角三角形两条直角边的平方和等于斜边的平方。
(性质)4、如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
(判定)5、在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题。
6、如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理。
模块二 基础训练1、如图,BA ⊥DA 于A ,AD = 12,DC = 9,CA = 15,求证:BA ∥DC 。
2、若直角三角形的三条边长分别是6,8,a ,则a =__________。
A BC D D C BA 129153、已知:如图,△ABC中,CD⊥AB于D,AC=4,BC=3,DB=59。
(1)求DC的长;(2)求AD的长;(3)求AB的长;(4)求证:△ABC是直角三角形.模块三能力提升1、填空:(1)直角三角形的两直角边为9、12,则斜边为;直角三角形的斜边为13,其中一条直角边为5,则另一条直角边为。
(2)如果一个三角形的三边分别是6、10、8,则这个三角形是三角形。
2、说出下列命题的逆命题,并判断每对命题的真假。
1)等边对等角;2)对顶角相等;3)平行四边形的两组对边相等;4)正方形的四条边都相等;3、某校把一块形状为直角三角形的废地开辟为生物园,如图5所示,∠ACB=90°,AC=80米,BC=60米,若线段CD是一条小渠,且D点在边AB上,已知水渠的造价为10元/米,问D点在距A点多远处时,水渠的造价最低?最低造价是多少?模块四:课下练习1、找出下列定理有哪些存在逆定理,并判断每对命题的真假。
(1)矩形是平行四边形。
(2)内错角相等,两直线平行。
(3)如果yx>,则22yx>。
(4)全等三角形对应角相等。
(5)对顶角相等(6)如果ab=0,那么a=0,b=0;2、如图,AB⊥BC,DC⊥BC,E是BC上一点,∠BAE=∠DE C=60°,AB=3,CE=4,则AD等于。
3 、如图所示的一块地,∠ADC=90°,AD=12m,CD=9m,AB=39m,BC=36m,求这块地的面积。
图5第二节 直角三角形(二)模块一 预习反馈(P18—P20) 一.知识点斜边和一条直角边对应相等的两个直角三角形全等。
(“斜边、直角边”或“HL ”) (证明)模块二 基础训练1、在Rt △ABC 中,∠C = 90°,且DE ⊥AB ,CD = ED ,求证:AD 是∠BAC 的角平分线。
2、如图,∠ACB = ∠ADB = 90°,AC = AD ,E 是AB 上的一点。
求证:CE = DE 。
3、在△ABC≌△A'B'C'中,CD ,C'D'分别分别是高,并且AC =A'C',CD=C'D'.∠ACB=∠A'C'B'.求证:△ABC≌△A'B'C'.EA C CB A D E'模块三能力提升1、填空:.如下图,Rt△ABC和Rt△DEF,∠C=∠F=90°。
(1)若∠A=∠D,BC=EF,则Rt△ABC≌Rt△DEF的依据是__________. (2)若∠A=∠D,AC=DF,则Rt△ABC≌Rt△DEF的依据是__________. (3)若∠A=∠D,AB=DE,则Rt△ABC≌Rt△DEF的依据是__________. (4)若AC=DF,AB=DE,则Rt△ABC≌Rt△DEF的依据是__________. (5)若AC=DF,CB=F E,则Rt△ABC≌Rt△DEF的依据是__________.2、如下图,CD⊥AD,CB⊥AB,AB=AD,求证:CD=CB。
模块四:课下练习1.已知x、y为正数,且()034222=-+-yx,如果以x、y的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为().A.5B.25C.7D.152.折叠矩形纸片ABCD,先折出折痕(对角线)BD,再折叠AD边与对角线BD重合,得折痕DG,如图,若AB=2,BC=1,求AG的长.ED A B C EDAB CA第三节 线段的垂直平分线(一)模块一 预习反馈(P22——P23) 一、知识点1、线段垂直平分线上的点到这条线段两个端点的距离相等。