北京市石景山区2017届高考数学一模试卷理科 含解析 精品
2017年数学真题及解析_2017年北京市高考数学试卷(理科)
2017年北京市高考数学试卷(理科)一、选择题.(每小题5分)1.(5分)若集合A={x|﹣2<x<1},B={x|x<﹣1或x>3},则A∩B=()A.{x|﹣2<x<﹣1}B.{x|﹣2<x<3}C.{x|﹣1<x<1}D.{x|1<x<3} 2.(5分)若复数(1﹣i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围是()A.(﹣∞,1)B.(﹣∞,﹣1)C.(1,+∞)D.(﹣1,+∞)3.(5分)执行如图所示的程序框图,输出的S值为()A.2 B.C.D.4.(5分)若x,y满足,则x+2y的最大值为()A.1 B.3 C.5 D.95.(5分)已知函数f(x)=3x﹣()x,则f(x)()A.是奇函数,且在R上是增函数B.是偶函数,且在R上是增函数C.是奇函数,且在R上是减函数D.是偶函数,且在R上是减函数6.(5分)设,为非零向量,则“存在负数λ,使得=λ”是“•<0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.(5分)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为()A.3 B.2 C.2 D.28.(5分)根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080,则下列各数中与最接近的是()(参考数据:lg3≈0.48)A.1033 B.1053 C.1073 D.1093二、填空题(每小题5分)9.(5分)若双曲线x2﹣=1的离心率为,则实数m=.10.(5分)若等差数列{a n}和等比数列{b n}满足a1=b1=﹣1,a4=b4=8,则=.11.(5分)在极坐标系中,点A在圆ρ2﹣2ρcosθ﹣4ρsinθ+4=0上,点P的坐标为(1,0),则|AP|的最小值为.12.(5分)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,若sinα=,则cos(α﹣β)=.13.(5分)能够说明“设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题的一组整数a,b,c的值依次为.14.(5分)三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中A i的横、纵坐标分别为第i名工人上午的工作时间和加工的零件数,点B i的横、纵坐标分别为第i名工人下午的工作时间和加工的零件数,i=1,2,3.(1)记Q i为第i名工人在这一天中加工的零件总数,则Q1,Q2,Q3中最大的是.(2)记p i为第i名工人在这一天中平均每小时加工的零件数,则p1,p2,p3中最大的是.三、解答题15.(13分)在△ABC中,∠A=60°,c=a.(1)求sinC的值;(2)若a=7,求△ABC的面积.16.(14分)如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD=,AB=4.(1)求证:M为PB的中点;(2)求二面角B﹣PD﹣A的大小;(3)求直线MC与平面BDP所成角的正弦值.17.(13分)为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x和y 的数据,并制成如图,其中“*”表示服药者,“+”表示未服药者.(1)从服药的50名患者中随机选出一人,求此人指标y的值小于60的概率;(2)从图中A,B,C,D四人中随机选出两人,记ξ为选出的两人中指标x的值大于1.7的人数,求ξ的分布列和数学期望E(ξ);(3)试判断这100名患者中服药者指标y数据的方差与未服药者指标y数据的方差的大小.(只需写出结论)18.(14分)已知抛物线C:y2=2px过点P(1,1).过点(0,)作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP、ON交于点A,B,其中O为原点.(1)求抛物线C的方程,并求其焦点坐标和准线方程;(2)求证:A为线段BM的中点.19.(13分)已知函数f(x)=e x cosx﹣x.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)在区间[0,]上的最大值和最小值.20.(13分)设{a n}和{b n}是两个等差数列,记c n=max{b1﹣a1n,b2﹣a2n,…,b n﹣a n n}(n=1,2,3,…),其中max{x1,x2,…,x s}表示x1,x2,…,x s这s个数中最大的数.(1)若a n=n,b n=2n﹣1,求c1,c2,c3的值,并证明{c n}是等差数列;(2)证明:或者对任意正数M,存在正整数m,当n≥m时,>M;或者存在正整数m,使得c m,c m+1,c m+2,…是等差数列.2017年北京市高考数学试卷(理科)参考答案与试题解析一、选择题.(每小题5分)1.(5分)若集合A={x|﹣2<x<1},B={x|x<﹣1或x>3},则A∩B=()A.{x|﹣2<x<﹣1}B.{x|﹣2<x<3}C.{x|﹣1<x<1}D.{x|1<x<3}【分析】根据已知中集合A和B,结合集合交集的定义,可得答案.【解答】解:∵集合A={x|﹣2<x<1},B={x|x<﹣1或x>3},∴A∩B={x|﹣2<x<﹣1}故选:A.【点评】本题考查的知识点集合的交集运算,难度不大,属于基础题.2.(5分)若复数(1﹣i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围是()A.(﹣∞,1)B.(﹣∞,﹣1)C.(1,+∞)D.(﹣1,+∞)【分析】复数(1﹣i)(a+i)=a+1+(1﹣a)i在复平面内对应的点在第二象限,可得,解得a范围.【解答】解:复数(1﹣i)(a+i)=a+1+(1﹣a)i在复平面内对应的点在第二象限,∴,解得a<﹣1.则实数a的取值范围是(﹣∞,﹣1).故选:B.【点评】本题考查了复数的运算法则、几何意义、不等式的解法,考查了推理能力与计算能力,属于基础题.3.(5分)执行如图所示的程序框图,输出的S值为()A.2 B.C.D.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:当k=0时,满足进行循环的条件,执行完循环体后,k=1,S=2,当k=1时,满足进行循环的条件,执行完循环体后,k=2,S=,当k=2时,满足进行循环的条件,执行完循环体后,k=3,S=,当k=3时,不满足进行循环的条件,故输出结果为:,故选:C.【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.4.(5分)若x,y满足,则x+2y的最大值为()A.1 B.3 C.5 D.9【分析】画出约束条件的可行域,利用目标函数的最优解求解目标函数的最值即可.【解答】解:x,y满足的可行域如图:由可行域可知目标函数z=x+2y经过可行域的A时,取得最大值,由,可得A(3,3),目标函数的最大值为:3+2×3=9.故选:D.【点评】本题考查线性规划的简单应用,画出可行域判断目标函数的最优解是解题的关键.5.(5分)已知函数f(x)=3x﹣()x,则f(x)()A.是奇函数,且在R上是增函数B.是偶函数,且在R上是增函数C.是奇函数,且在R上是减函数D.是偶函数,且在R上是减函数【分析】由已知得f(﹣x)=﹣f(x),即函数f(x)为奇函数,由函数y=3x为增函数,y=()x为减函数,结合“增”﹣“减”=“增”可得答案.【解答】解:f(x)=3x﹣()x=3x﹣3﹣x,∴f(﹣x)=3﹣x﹣3x=﹣f(x),即函数f(x)为奇函数,又由函数y=3x为增函数,y=()x为减函数,故函数f(x)=3x﹣()x为增函数,故选:A.【点评】本题考查的知识点是函数的奇偶性,函数的单调性,是函数图象和性质的综合应用,难度不大,属于基础题.6.(5分)设,为非零向量,则“存在负数λ,使得=λ”是“•<0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】,为非零向量,存在负数λ,使得=λ,则向量,共线且方向相反,可得•<0.反之不成立,非零向量,的夹角为钝角,满足•<0,而=λ不成立.即可判断出结论.【解答】解:,为非零向量,存在负数λ,使得=λ,则向量,共线且方向相反,可得•<0.反之不成立,非零向量,的夹角为钝角,满足•<0,而=λ不成立.∴,为非零向量,则“存在负数λ,使得=λ”是•<0”的充分不必要条件.故选:A.【点评】本题考查了向量共线定理、向量夹角公式、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.7.(5分)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为()A.3 B.2 C.2 D.2【分析】根据三视图可得物体的直观图,结合图形可得最长的棱为PA,根据勾股定理求出即可.【解答】解:由三视图可得直观图,再四棱锥P﹣ABCD中,最长的棱为PA,即PA===2,故选:B.【点评】本题考查了三视图的问题,关键画出物体的直观图,属于基础题.8.(5分)根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080,则下列各数中与最接近的是()(参考数据:lg3≈0.48)A.1033 B.1053 C.1073 D.1093【分析】根据对数的性质:T=,可得:3=10lg3≈100.48,代入M将M也化为10为底的指数形式,进而可得结果.【解答】解:由题意:M≈3361,N≈1080,根据对数性质有:3=10lg3≈100.48,∴M≈3361≈(100.48)361≈10173,∴≈=1093,故选:D.【点评】本题解题关键是将一个给定正数T写成指数形式:T=,考查指数形式与对数形式的互化,属于简单题.二、填空题(每小题5分)9.(5分)若双曲线x2﹣=1的离心率为,则实数m=2.【分析】利用双曲线的离心率,列出方程求和求解m 即可.【解答】解:双曲线x2﹣=1(m>0)的离心率为,可得:,解得m=2.故答案为:2.【点评】本题考查双曲线的简单性质,考查计算能力.10.(5分)若等差数列{a n}和等比数列{b n}满足a1=b1=﹣1,a4=b4=8,则=1.【分析】利用等差数列求出公差,等比数列求出公比,然后求解第二项,即可得到结果.【解答】解:等差数列{a n}和等比数列{b n}满足a1=b1=﹣1,a4=b4=8,设等差数列的公差为d,等比数列的公比为q.可得:8=﹣1+3d,d=3,a2=2;8=﹣q3,解得q=﹣2,∴b2=2.可得=1.故答案为:1.【点评】本题考查等差数列以及等比数列的通项公式的应用,考查计算能力.11.(5分)在极坐标系中,点A在圆ρ2﹣2ρcosθ﹣4ρsinθ+4=0上,点P的坐标为(1,0),则|AP|的最小值为1.【分析】先将圆的极坐标方程化为标准方程,再运用数形结合的方法求出圆上的点到点P的距离的最小值.【解答】解:设圆ρ2﹣2ρcosθ﹣4ρsinθ+4=0为圆C,将圆C的极坐标方程化为:x2+y2﹣2x﹣4y+4=0,再化为标准方程:(x﹣1)2+(y﹣2)2=1;如图,当A在CP与⊙C的交点Q处时,|AP|最小为:|AP|min=|CP|﹣r C=2﹣1=1,故答案为:1.【点评】本题主要考查曲线的极坐标方程和圆外一点到圆上一点的距离的最值,难度不大.12.(5分)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,若sinα=,则cos(α﹣β)=﹣.【分析】方法一:根据教的对称得到sinα=sinβ=,cosα=﹣cosβ,以及两角差的余弦公式即可求出方法二:分α在第一象限,或第二象限,根据同角的三角函数的关系以及两角差的余弦公式即可求出【解答】解:方法一:∵角α与角β均以Ox为始边,它们的终边关于y轴对称,∴sinα=sinβ=,cosα=﹣cosβ,∴cos(α﹣β)=cosαcosβ+sinαsinβ=﹣cos2α+sin2α=2sin2α﹣1=﹣1=﹣方法二:∵sinα=,当α在第一象限时,cosα=,∵α,β角的终边关于y轴对称,∴β在第二象限时,sinβ=sinα=,cosβ=﹣cosα=﹣,∴cos(α﹣β)=cosαcosβ+sinαsinβ=﹣×+×=﹣:∵sinα=,当α在第二象限时,cosα=﹣,∵α,β角的终边关于y轴对称,∴β在第一象限时,sinβ=sinα=,cosβ=﹣cosα=,∴cos(α﹣β)=cosαcosβ+sinαsinβ=﹣×+×=﹣综上所述cos(α﹣β)=﹣,故答案为:﹣【点评】本题考查了两角差的余弦公式,以及同角的三角函数的关系,需要分类讨论,属于基础题13.(5分)能够说明“设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题的一组整数a,b,c的值依次为﹣1,﹣2,﹣3.【分析】设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题,则若a>b >c,则a+b≤c”是真命题,举例即可,本题答案不唯一【解答】解:设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题,则若a>b>c,则a+b≤c”是真命题,可设a,b,c的值依次﹣1,﹣2,﹣3,(答案不唯一),故答案为:﹣1,﹣2,﹣3【点评】本题考查了命题的真假,举例说明即可,属于基础题.14.(5分)三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中A i的横、纵坐标分别为第i名工人上午的工作时间和加工的零件数,点B i的横、纵坐标分别为第i名工人下午的工作时间和加工的零件数,i=1,2,3.(1)记Q i为第i名工人在这一天中加工的零件总数,则Q1,Q2,Q3中最大的是Q1.(2)记p i为第i名工人在这一天中平均每小时加工的零件数,则p1,p2,p3中最大的是p2.【分析】(1)若Q i为第i名工人在这一天中加工的零件总数,则Q i=A i的综坐标+B i的纵坐标;进而得到答案.(2)若p i为第i名工人在这一天中平均每小时加工的零件数,则p i为A i B i中点与原点连线的斜率;进而得到答案.【解答】解:(1)若Q i为第i名工人在这一天中加工的零件总数,Q1=A1的纵坐标+B1的纵坐标;Q2=A2的纵坐标+B2的纵坐标,Q3=A3的纵坐标+B3的纵坐标,由已知中图象可得:Q1,Q2,Q3中最大的是Q1,(2)若p i为第i名工人在这一天中平均每小时加工的零件数,则p i为A i B i中点与原点连线的斜率,故p1,p2,p3中最大的是p2故答案为:Q1,p2【点评】本题考查的知识点是函数的图象,分析出Q i和p i的几何意义,是解答的关键.三、解答题15.(13分)在△ABC中,∠A=60°,c=a.(1)求sinC的值;(2)若a=7,求△ABC的面积.【分析】(1)根据正弦定理即可求出答案,(2)根据同角的三角函数的关系求出cosC,再根据两角和正弦公式求出sinB,根据面积公式计算即可.【解答】解:(1)∠A=60°,c=a,由正弦定理可得sinC=sinA=×=,(2)a=7,则c=3,∴C<A,由(1)可得cosC=,∴sinB=sin(A+C)=sinAcosC+cosAsinC=×+×=,=acsinB=×7×3×=6.∴S△ABC【点评】本题考查了正弦定理和两角和正弦公式和三角形的面积公式,属于基础题16.(14分)如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD=,AB=4.(1)求证:M为PB的中点;(2)求二面角B﹣PD﹣A的大小;(3)求直线MC与平面BDP所成角的正弦值.【分析】(1)设AC∩BD=O,则O为BD的中点,连接OM,利用线面平行的性质证明OM∥PD,再由平行线截线段成比例可得M为PB的中点;(2)取AD中点G,可得PG⊥AD,再由面面垂直的性质可得PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG,再证明OG⊥AD.以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系,求出平面PBD与平面PAD的一个法向量,由两法向量所成角的大小可得二面角B﹣PD﹣A的大小;(3)求出的坐标,由与平面PBD的法向量所成角的余弦值的绝对值可得直线MC与平面BDP所成角的正弦值.【解答】(1)证明:如图,设AC∩BD=O,∵ABCD为正方形,∴O为BD的中点,连接OM,∵PD∥平面MAC,PD⊂平面PBD,平面PBD∩平面AMC=OM,∴PD∥OM,则,即M为PB的中点;(2)解:取AD中点G,∵PA=PD,∴PG⊥AD,∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,∴PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG,由G是AD的中点,O是AC的中点,可得OG∥DC,则OG⊥AD.以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系,由PA=PD=,AB=4,得D(2,0,0),A(﹣2,0,0),P(0,0,),C(2,4,0),B(﹣2,4,0),M(﹣1,2,),,.设平面PBD的一个法向量为,则由,得,取z=,得.取平面PAD的一个法向量为.∴cos<>==.∴二面角B﹣PD﹣A的大小为60°;(3)解:,平面BDP的一个法向量为.∴直线MC与平面BDP所成角的正弦值为|cos<>|=||=||=.【点评】本题考查线面角与面面角的求法,训练了利用空间向量求空间角,属中档题.17.(13分)为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x和y 的数据,并制成如图,其中“*”表示服药者,“+”表示未服药者.(1)从服药的50名患者中随机选出一人,求此人指标y的值小于60的概率;(2)从图中A,B,C,D四人中随机选出两人,记ξ为选出的两人中指标x的值大于1.7的人数,求ξ的分布列和数学期望E(ξ);(3)试判断这100名患者中服药者指标y数据的方差与未服药者指标y数据的方差的大小.(只需写出结论)【分析】(1)由图求出在50名服药患者中,有15名患者指标y的值小于60,由此能求出从服药的50名患者中随机选出一人,此人指标小于60的概率.(2)由图知:A、C两人指标x的值大于1.7,而B、D两人则小于1.7,可知在四人中随机选项出的2人中指标x的值大于1.7的人数ξ的可能取值为0,1,2,分别求出相应的概率,由此能求出ξ的分布列和E(ξ).(3)由图知100名患者中服药者指标y数据的方差比未服药者指标y数据的方差大.【解答】解:(1)由图知:在50名服药患者中,有15名患者指标y的值小于60,则从服药的50名患者中随机选出一人,此人指标小于60的概率为:p==.(2)由图知:A、C两人指标x的值大于1.7,而B、D两人则小于1.7,可知在四人中随机选项出的2人中指标x的值大于1.7的人数ξ的可能取值为0,1,2,P(ξ=0)=,P(ξ=1)==,P(ξ=2)==,∴ξ的分布列如下:E(ξ)==1.(3)由图知100名患者中服药者指标y数据的方差比未服药者指标y数据的方差大.【点评】本题考查概率的求法,考查离散型随机变量的分布列、数学期望、方差等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.18.(14分)已知抛物线C:y2=2px过点P(1,1).过点(0,)作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP、ON交于点A,B,其中O为原点.(1)求抛物线C的方程,并求其焦点坐标和准线方程;(2)求证:A为线段BM的中点.【分析】(1)根据抛物线过点P(1,1).代值求出p,即可求出抛物线C的方程,焦点坐标和准线方程;(2)设过点(0,)的直线方程为y=kx+,M(x1,y1),N(x2,y2),根据韦达定理得到x1+x2=,x1x2=,根据中点的定义即可证明.【解答】解:(1)∵y2=2px过点P(1,1),∴1=2p,解得p=,∴y2=x,∴焦点坐标为(,0),准线为x=﹣,(2)证明:设过点(0,)的直线方程为y=kx+,M(x1,y1),N(x2,y2),∴直线OP为y=x,直线ON为:y=x,由题意知A(x1,x1),B(x1,),由,可得k2x2+(k﹣1)x+=0,∴x1+x2=,x1x2=∴y1+=kx1++=2kx1+=2kx1+=2kx1+(1﹣k)•2x1=2x1,∴A为线段BM的中点.【点评】本题考查了抛物线的简单性质,以及直线和抛物线的关系,灵活利用韦达定理和中点的定义,属于中档题.19.(13分)已知函数f(x)=e x cosx﹣x.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)在区间[0,]上的最大值和最小值.【分析】(1)求出f(x)的导数,可得切线的斜率和切点,由点斜式方程即可得到所求方程;(2)求出f(x)的导数,再令g(x)=f′(x),求出g(x)的导数,可得g(x)在区间[0,]的单调性,即可得到f(x)的单调性,进而得到f(x)的最值.【解答】解:(1)函数f(x)=e x cosx﹣x的导数为f′(x)=e x(cosx﹣sinx)﹣1,可得曲线y=f(x)在点(0,f(0))处的切线斜率为k=e0(cos0﹣sin0)﹣1=0,切点为(0,e0cos0﹣0),即为(0,1),曲线y=f(x)在点(0,f(0))处的切线方程为y=1;(2)函数f(x)=e x cosx﹣x的导数为f′(x)=e x(cosx﹣sinx)﹣1,令g(x)=e x(cosx﹣sinx)﹣1,则g(x)的导数为g′(x)=e x(cosx﹣sinx﹣sinx﹣cosx)=﹣2e x•sinx,当x∈[0,],可得g′(x)=﹣2e x•sinx≤0,即有g(x)在[0,]递减,可得g(x)≤g(0)=0,则f(x)在[0,]递减,即有函数f (x )在区间[0,]上的最大值为f (0)=e 0cos0﹣0=1;最小值为f ()=e cos ﹣=﹣. 【点评】本题考查导数的运用:求切线的方程和单调区间、最值,考查化简整理的运算能力,正确求导和运用二次求导是解题的关键,属于中档题.20.(13分)设{a n }和{b n }是两个等差数列,记c n =max {b 1﹣a 1n ,b 2﹣a 2n ,…,b n ﹣a n n }(n=1,2,3,…),其中max {x 1,x 2,…,x s }表示x 1,x 2,…,x s 这s 个数中最大的数.(1)若a n =n ,b n =2n ﹣1,求c 1,c 2,c 3的值,并证明{c n }是等差数列;(2)证明:或者对任意正数M ,存在正整数m ,当n ≥m 时,>M ;或者存在正整数m ,使得c m ,c m +1,c m +2,…是等差数列.【分析】(1)分别求得a 1=1,a 2=2,a 3=3,b 1=1,b 2=3,b 3=5,代入即可求得c 1,c 2,c 3;由(b k ﹣na k )﹣(b 1﹣na 1)≤0,则b 1﹣na 1≥b k ﹣na k ,则c n =b 1﹣na 1=1﹣n ,c n +1﹣c n =﹣1对∀n ∈N*均成立;(2)由b i ﹣a i n=[b 1+(i ﹣1)d 1]﹣[a 1+(i ﹣1)d 2]×n=(b 1﹣a 1n )+(i ﹣1)(d 2﹣d 1×n ),分类讨论d 1=0,d 1>0,d 1<0三种情况进行讨论根据等差数列的性质,即可求得使得c m ,c m +1,c m +2,…是等差数列;设=An +B +对任意正整数M ,存在正整数m ,使得n ≥m ,>M ,分类讨论,采用放缩法即可求得因此对任意正数M ,存在正整数m ,使得当n ≥m 时,>M . 【解答】解:(1)a 1=1,a 2=2,a 3=3,b 1=1,b 2=3,b 3=5,当n=1时,c 1=max {b 1﹣a 1}=max {0}=0,当n=2时,c 2=max {b 1﹣2a 1,b 2﹣2a 2}=max {﹣1,﹣1}=﹣1,当n=3时,c 3=max {b 1﹣3a 1,b 2﹣3a 2,b 3﹣3a 3}=max {﹣2,﹣3,﹣4}=﹣2, 下面证明:对∀n ∈N*,且n ≥2,都有c n =b 1﹣na 1,当n ∈N*,且2≤k ≤n 时,则(b k ﹣na k )﹣(b 1﹣na 1),=[(2k ﹣1)﹣nk ]﹣1+n ,=(2k﹣2)﹣n(k﹣1),=(k﹣1)(2﹣n),由k﹣1>0,且2﹣n≤0,则(b k﹣na k)﹣(b1﹣na1)≤0,则b1﹣na1≥b k﹣na k,因此,对∀n∈N*,且n≥2,c n=b1﹣na1=1﹣n,c n+1﹣c n=﹣1,∴c2﹣c1=﹣1,﹣c n=﹣1对∀n∈N*均成立,∴c n+1∴数列{c n}是等差数列;(2)证明:设数列{a n}和{b n}的公差分别为d1,d2,下面考虑的c n取值,由b1﹣a1n,b2﹣a2n,…,b n﹣a n n,考虑其中任意b i﹣a i n,(i∈N*,且1≤i≤n),则b i﹣a i n=[b1+(i﹣1)d1]﹣[a1+(i﹣1)d2]×n,=(b1﹣a1n)+(i﹣1)(d2﹣d1×n),下面分d1=0,d1>0,d1<0三种情况进行讨论,①若d1=0,则b i﹣a i n═(b1﹣a1n)+(i﹣1)d2,当若d2≤0,则(b i﹣a i n)﹣(b1﹣a1n)=(i﹣1)d2≤0,则对于给定的正整数n而言,c n=b1﹣a1n,此时c n+1﹣c n=﹣a1,∴数列{c n}是等差数列;当d2>0,(b i﹣a i n)﹣(b n﹣a n n)=(i﹣n)d2>0,则对于给定的正整数n而言,c n=b n﹣a n n=b n﹣a1n,此时c n﹣c n=d2﹣a1,+1∴数列{c n}是等差数列;此时取m=1,则c1,c2,…,是等差数列,命题成立;②若d1>0,则此时﹣d1n+d2为一个关于n的一次项系数为负数的一次函数,故必存在m∈N*,使得n≥m时,﹣d1n+d2<0,则当n≥m时,(b i﹣a i n)﹣(b1﹣a1n)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i≤n),因此当n≥m时,c n=b1﹣a1n,﹣c n=﹣a1,故数列{c n}从第m项开始为等差数列,命题成立;此时c n+1③若d1<0,此时﹣d1n+d2为一个关于n的一次项系数为正数的一次函数,故必存在s∈N*,使得n≥s时,﹣d1n+d2>0,则当n≥s时,(b i﹣a i n)﹣(b n﹣a n n)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i ≤n),因此,当n≥s时,c n=b n﹣a n n,此时==﹣a n+,=﹣d2n+(d1﹣a1+d2)+,令﹣d1=A>0,d1﹣a1+d2=B,b1﹣d2=C,下面证明:=An+B+对任意正整数M,存在正整数m,使得n≥m,>M,若C≥0,取m=[+1],[x]表示不大于x的最大整数,当n≥m时,≥An+B≥Am+B=A[+1]+B>A•+B=M,此时命题成立;若C<0,取m=[]+1,当n≥m时,≥An+B+≥Am+B+C>A•+B+C≥M﹣C﹣B+B+C=M,此时命题成立,因此对任意正数M,存在正整数m,使得当n≥m时,>M;综合以上三种情况,命题得证.【点评】本题考查数列的综合应用,等差数列的性质,考查与不等式的综合应用,考查“放缩法”的应用,考查学生分析问题及解决问题的能力,考查分类讨论及转化思想,考查计算能力,属于难题.。
2017年高考北京理科数学试题及答案(word解析版)
M
∴ PD 平面 BAH ,∴ PD BH ,∴ AEB 即为二面角 B PD A 的平面角,H
N B
A
G
AD PO AE PD ,可求得 AE 4 3 , tan AEB 4 3 ,∴ AEB 60 .
F
3
43
D
(3)解法一:
C
点
M
1,2
,
2 2
,
C
2
,4
,0
,∴
MC
以 OD 为 x 轴, OE 为 y 轴, OP 为 z 轴建立空间直角坐标,可知 D 2 ,0 ,0 , A2,0,0 ,
B 2 ,4 ,0 ,
P 0 ,0 , 2 , 易 知 面 PD 的 法 向 量 为 m 0 ,1,0 , 且
PD 2 ,0 , 2 ,
PB
2 ,4 ,
2
,设面 PBD 的法向量为 n x ,y ,z ,
N
1080
1080
,即 M 最接近1093 ,故选 D.
N
第二部分(非选择题 共 110 分)
二、填空题:共 6 小题,每小题 5 分,共 30 分。
(9)【2017 年北京,理 9,5 分】若双曲线 x2 y2 1 的离心率为 3 ,则实数 m
.
m
【答案】2
【解析】 1 m 3 m 2 .
FN 中
点,∴ MG∥ PO ,∵平面 PAD 平面 ABCD , PO AD ,∴ PO 平面 ABCD ,∴ MG 平面
ABCD .
连结 GC , GC 13 , MG 1 PO 2 ,∴ MC 3 6 .∵ PD 6 , BD 4 2 , PB 22 ,
2
2
2
2017年北京市石景山区高考数学一模试卷(理科)
2017年北京市石景山区高考数学一模试卷(理科)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)已知集合A={x|2x﹣1<0},B={x|0≤x≤1},那么A∩B等于()A.{x|x≥0}B.{x|x≤1}C.D.{x|0≤x<}2.(5分)已知实数x,y满足,则z=2x+y的最大值是()A.4 B.6 C.10 D.123.(5分)直线被圆ρ=1所截得的弦长为()A.1 B.C.2 D.44.(5分)设θ∈R,“sinθ=cosθ“是“cos2θ=0”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件5.(5分)我国南宋数学家秦九韶(约公元1202﹣1261年)给出了求n(n∈N*)次多项式a n x n+a n﹣1x n﹣1+…+a1x+a0,当x=x0时的值的一种简捷算法.该算法被后人命名为“秦九韶算法”,例如,可将3次多项式改写为a3x3+a2x2+a1x+a0=((a3x+a2)x+a1)x+a0,然后进行求值.运行如图所示的程序框图,能求得多项式()的值.A.x4+x3+2x2+3x+4 B.x4+2x3+3x2+4x+5C.x3+x2+2x+3 D.x3+2x2+3x+46.(5分)某三棱锥的三视图如图所示,则该三棱锥的表面积是()A.B.C.D.57.(5分)如图,在矩形ABCD中,AB=,BC=2,点E为BC的中点,点F在边CD上,若•=,则•的值是()A.2﹣B.1 C.D.28.(5分)如图,将正三角形ABC分割成m个边长为1的小正三角形和一个灰色菱形,这个灰色菱形可以分割成n个边长为1的小正三角形.若m:n=47:25,则三角形ABC的边长是()A.10 B.11 C.12 D.13二、填空题共6小题,每小题5分,共30分.9.(5分)若复数是纯虚数,则实数a的值为.10.(5分)在数列{a n}中,a1=1,a n•a n+1=﹣2(n=1,2,3,…),那么a8等于.11.(5分)若抛物线y2=2px的焦点与双曲线﹣y2=1的右顶点重合,则p=.12.(5分)如果将函数f(x)=sin(3x+φ)(﹣π<φ<0)的图象向左平移个单位所得到的图象关于原点对称,那么φ=.13.(5分)将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,则不同的分法的总数是.(用数字作答)14.(5分)已知.①当a=1时,f(x)=3,则x=;②当a≤﹣1时,若f(x)=3有三个不等实数根,且它们成等差数列,则a=.三、解答题共6小题,共80分.解答应写出文字说明、演算步骤或证明过程.15.(12分)已知a,b,c分别是△ABC的三个内角A,B,C的三条对边,且c2=a2+b2﹣ab.(Ⅰ)求角C的大小;(Ⅱ)求cosA+cosB的最大值.16.(12分)某超市从现有甲、乙两种酸奶的日销售量(单位:箱)的1200个数据(数据均在区间(0,50]内)中,按照5%的比例进行分层抽样,统计结果按(0,10],(10,20],(20,30],(30,40],(40,50]分组,整理如下图:(Ⅰ)写出频率分布直方图(图乙)中a的值;记所抽取样本中甲种酸奶与乙种酸奶日销售量的方差分别为,,试比较与的大小(只需写出结论);(Ⅱ)从甲种酸奶日销售量在区间(0,20]的数据样本中抽取3个,记在(0,10]内的数据个数为X,求X的分布列;(Ⅲ)估计1200个日销售量数据中,数据在区间(0,10]中的个数.17.(14分)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马P﹣ABCD中,侧棱PD⊥底面ABCD,且PD=CD,E为PC中点,点F在PB上,且PB⊥平面DEF,连接BD,BE.(Ⅰ)证明:DE⊥平面PBC;(Ⅱ)试判断四面体DBEF是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;(Ⅲ)已知AD=2,,求二面角F﹣AD﹣B的余弦值.18.(14分)已知函数f(x)=1nx.(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)求证:当x>0时,;(Ⅲ)若x﹣1>a1nx对任意x>1恒成立,求实数a的最大值.19.(14分)已知椭圆E:+=1(a>b>0)过点(0,1),且离心率为.(Ⅰ)求椭圆E的方程;(Ⅱ)设直线l:y=+m与椭圆E交于A、C两点,以AC为对角线作正方形ABCD,记直线l与x轴的交点为N,问B,N两点间距离是否为定值?如果是,求出定值;如果不是,请说明理由.20.(14分)已知集合R n={X|X=(x1,x2,…,x n),x i∈{0,1},i=1,2,…,n}(n≥2).对于A=(a1,a2,…,a n)∈R n,B=(b1,b2,…,b n)∈R n,定义A 与B之间的距离为d(A,B)=|a1﹣b1|+|a2﹣b2|+…|a n﹣b n|=.(Ⅰ)写出R2中的所有元素,并求两元素间的距离的最大值;(Ⅱ)若集合M满足:M⊆R3,且任意两元素间的距离均为2,求集合M中元素个数的最大值并写出此时的集合M;(Ⅲ)设集合P⊆R n,P中有m(m≥2)个元素,记P中所有两元素间的距离的平均值为,证明.2017年北京市石景山区高考数学一模试卷(理科)参考答案与试题解析一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)已知集合A={x|2x﹣1<0},B={x|0≤x≤1},那么A∩B等于()A.{x|x≥0}B.{x|x≤1}C.D.{x|0≤x<}【分析】由A与B,求出两集合的交集即可.【解答】解:∵A={x|2x﹣1<0}={x|x<),B={x|0≤x≤1}∴A∩B={x|0≤x<}故选:D.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)已知实数x,y满足,则z=2x+y的最大值是()A.4 B.6 C.10 D.12【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,联立,解得A(4,2),化目标函数z=2x+y为y=﹣2x+z,由图可知,当直线y=﹣2x+z过A时,直线在y 轴上的截距最大,z有最大值为10.故选:C.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.3.(5分)直线被圆ρ=1所截得的弦长为()A.1 B.C.2 D.4【分析】首先把极坐标方程转化成直角坐标方程,进一步利用圆心到直线的距离求出弦心距,最后利用勾股定理求出弦长.【解答】解:圆ρ=1的极坐标方程转化成直角坐标方程为:x2+y2=1.直线转化成直角坐标方程为:x=.所以:圆心到直线x=的距离为.则:弦长l=2=.故选:B.【点评】本题考查的知识要点:极坐标方程与直角坐标方程的互化,点到直线的距离及勾股定理的应用.4.(5分)设θ∈R,“sinθ=cosθ“是“cos2θ=0”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】根据充分必要条件的定义以及三角函数的性质判断即可.【解答】解:若sinθ=cosθ,则θ=kπ+,(k∈z),故2θ=2kπ+,故cos2θ=0,是充分条件,若cos2θ=0,则2θ=kπ+,θ=+,(k∈z),不是必要条件,故选:A.【点评】本题考查了充分必要条件,考查三角函数的性质,是一道基础题.5.(5分)我国南宋数学家秦九韶(约公元1202﹣1261年)给出了求n(n∈N*)次多项式a n x n+a n﹣1x n﹣1+…+a1x+a0,当x=x0时的值的一种简捷算法.该算法被后人命名为“秦九韶算法”,例如,可将3次多项式改写为a3x3+a2x2+a1x+a0=((a3x+a2)x+a1)x+a0,然后进行求值.运行如图所示的程序框图,能求得多项式()的值.A.x4+x3+2x2+3x+4 B.x4+2x3+3x2+4x+5C.x3+x2+2x+3 D.x3+2x2+3x+4【分析】由题意,模拟程序的运行过程,依次写出每次循环得到的k,S的值,即可得解.【解答】解:模拟程序的运行,可得k=0,S=1,k=1,S=x+1,满足条件k<4,执行循环体,k=2,S=(x+1)x+2=x2+x+2满足条件k<4,执行循环体,k=3,S=(x2+x+2)x+3=x3+x2+2x+3满足条件k<4,执行循环体,k=4,S=(x3+x2+2x+3)x+4=x4+x3+2x2+3x+4不满足条件k<4,退出循环,输出能求得多项式x4+x3+2x2+3x+4的值.故选:A.【点评】本题主要考查了循环结构的程序框图应用问题,是基础题目.6.(5分)某三棱锥的三视图如图所示,则该三棱锥的表面积是()A.B.C.D.5【分析】根据几何体的三视图,得出该几何体是侧棱垂直于底面的三棱锥,画出图形,结合图形求出它的表面积.【解答】解:根据几何体的三视图,得该几何体是如图所示的三棱锥,且侧棱PC⊥底面ABC;所以,S=×2×2=2,△ABCS△PAC=S△PBC=×1=,S△PAB=×2=;所以,该三棱锥的表面积为S=2+2×+=2+2.故选B.【点评】本题考查了空间几何体三视图的应用问题,解题时应根据三视图画出几何图形,求出各个面的面积和,是基础题7.(5分)如图,在矩形ABCD中,AB=,BC=2,点E为BC的中点,点F在边CD上,若•=,则•的值是()A.2﹣B.1 C.D.2【分析】根据题意,可分别以边AB,AD所在直线为x轴,y轴,建立平面直角坐标系,然后可得出点A,B,E的坐标,并设F(x,2),根据即可求出x值,从而得出F点的坐标,从而求出的值.【解答】解:据题意,分别以AB、AD所在直线为x,y轴,建立如图所示平面直角坐标系,则:A(0,0),B(,0),E(,1),设F(x,2);∴;∴x=1;∴F(1,2),;∴.故选C.【点评】考查通过建立平面直角坐标系,利用坐标解决向量问题的方法,向量数量积的坐标运算.8.(5分)如图,将正三角形ABC分割成m个边长为1的小正三角形和一个灰色菱形,这个灰色菱形可以分割成n个边长为1的小正三角形.若m:n=47:25,则三角形ABC的边长是()A.10 B.11 C.12 D.13【分析】设正△ABC的边长为x,根据等边三角形的高为边长的倍,求出正△ABC的面积,再根据菱形的性质结合图形表示出菱形的两对角线,然后根据菱形的面积等于两对角线乘积的一半表示出菱形的面积,然后根据所分成的小正三角形的个数的比等于面积的比列式计算即可得解.【解答】解:设正△ABC的边长为x,则高为x,S△ABC=x•x=x2,∵所分成的都是正三角形,∴结合图形可得黑色菱形的较长的对角线为x﹣,较短的对角线为(x ﹣)×=﹣1;∴黑色菱形的面积S′=(x﹣)(﹣1)=(x﹣2)2,若m:n=47:25,则=,解可得x=12或x=(舍),所以,△ABC的边长是12;故选:C.【点评】本题考查菱形的性质,等边三角形的性质,熟练掌握有一个角等于60°的菱形的两条对角线的关系是解题的关键,本题难点在于根据三角形的面积与菱形的面积列出方程.二、填空题共6小题,每小题5分,共30分.9.(5分)若复数是纯虚数,则实数a的值为1.【分析】利用两个复数代数形式的乘除法法则求得z的值,再根据它是纯虚数,求得实数a的值.【解答】解:∵复数==为纯虚数,故有a﹣1=0,且a+1≠0,解得a=1,故答案为:1.【点评】本题主要考查复数的基本概念,两个复数代数形式的乘除法,虚数单位i的幂运算性质,属于基础题.10.(5分)在数列{a n}中,a1=1,a n•a n+1=﹣2(n=1,2,3,…),那么a8等于﹣2.【分析】由已知求得a2,且得到a n﹣1•a n=﹣2(n≥2),与原递推式两边作比可得(n≥2),即数列{a n}中的所有偶数项相等,由此求得a8的值.【解答】解:由a1=1,a n•a n+1=﹣2,得a2=﹣2,•a n=﹣2(n≥2),又a n﹣1∴(n≥2),∴数列{a n}中的所有偶数项相等,则a8=﹣2.故答案为:﹣2.【点评】本题考查数列递推式,考查等比关系的确定,是中档题.11.(5分)若抛物线y2=2px的焦点与双曲线﹣y2=1的右顶点重合,则p=4.【分析】确定双曲线﹣y2=1的右顶点坐标,从而可得抛物线y2=2px的焦点坐标,由此可得结论.【解答】解:双曲线﹣y2=1的右顶点坐标为(2,0),∵抛物线y2=2px的焦点与双曲线﹣y2=1的右顶点重合,∴=2,∴p=4.故答案为:4.【点评】本题考查双曲线、抛物线的几何性质,确定双曲线的右焦点坐标是关键.12.(5分)如果将函数f(x)=sin(3x+φ)(﹣π<φ<0)的图象向左平移个单位所得到的图象关于原点对称,那么φ=﹣.【分析】利用y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,求得φ的值.【解答】解:将函数f(x)=sin(3x+φ)(﹣π<φ<0)的图象向左平移个单位,所得到y=sin[3(x+)+φ]=sin(3x++φ)的图象,若所得图象关于原点对称,则+φ=kπ,k∈Z,又﹣π<φ<0,∴φ=﹣,故答案为:.【点评】本题主要考查y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,属于基础题.13.(5分)将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,则不同的分法的总数是36.(用数字作答)【分析】本题是一个分步计数问题,先选两个元素作为一个元素,问题变为三个元素在三个位置全排列,得到结果.【解答】解:由题意知本题是一个分步计数问题,4位同学分到三个不同的班级,每个班级至少有一位同学,先选两个人作为一个整体,问题变为三个元素在三个位置全排列,共有C42A33=36种结果,故答案为:36.【点评】本题考查分步计数原理,是一个基础题,也是一个易错题,因为如果先排三个人,再排最后一个人,则会出现重复现象,注意不重不漏.14.(5分)已知.①当a=1时,f(x)=3,则x=4;②当a≤﹣1时,若f(x)=3有三个不等实数根,且它们成等差数列,则a=.【分析】①当a=1时,f(x)=3,利用分段函数建立方程,即可求出x的值;②由f(x)=3,求得x=﹣1,或x=4,根据x1<x2<x3,且它们依次成等差数列,可得a≤﹣1,f(﹣6)=3,由此求得a的值.【解答】解:①x≥1,x﹣=3,可得x=4;x<1,2﹣(x+)=3,即x2+x+4=0无解,故x=4;②由于当x>a时,解方程f(x)=3,可得x﹣=3,求得x=﹣1,或x=4.∵x1<x2<x3,且它们依次成等差数列,∴x2=﹣1,x3=4,x1 =﹣6,∴a≤﹣1.∴x<a时,方程f(x)=3只能有一个实数根为﹣6,再根据f(﹣6)=2a+6+=3,求得a=,满足a≤﹣1.故答案为4,.【点评】本题主要考查分段函数,利用函数的单调性求函数的最值,等差数列的性质,体现了分类讨论以及转化的数学思想,属于中档题.三、解答题共6小题,共80分.解答应写出文字说明、演算步骤或证明过程.15.(12分)已知a,b,c分别是△ABC的三个内角A,B,C的三条对边,且c2=a2+b2﹣ab.(Ⅰ)求角C的大小;(Ⅱ)求cosA+cosB的最大值.【分析】(Ⅰ)根据余弦定理直接求解角C的大小.(Ⅱ)根据三角形内角和定理消去B,转化为三角函数的问题求解最大值即可.【解答】解:(Ⅰ)c2=a2+b2﹣ab.即ab=a2+b2﹣c2由余弦定理:cosC==,∵0<C<π,∴C=.(Ⅱ)∵A+B+C=π,C=.∴B=,且A∈(0,).那么:cosA+cosB=cosA+cos()=sin(),∵A∈(0,).∴,故得当=时,cosA+cosB取得最大值为1.【点评】本题主要考查了余弦定理的运用和三角函数的有界限求解最值问题.属于基础题.16.(12分)某超市从现有甲、乙两种酸奶的日销售量(单位:箱)的1200个数据(数据均在区间(0,50]内)中,按照5%的比例进行分层抽样,统计结果按(0,10],(10,20],(20,30],(30,40],(40,50]分组,整理如下图:(Ⅰ)写出频率分布直方图(图乙)中a的值;记所抽取样本中甲种酸奶与乙种酸奶日销售量的方差分别为,,试比较与的大小(只需写出结论);(Ⅱ)从甲种酸奶日销售量在区间(0,20]的数据样本中抽取3个,记在(0,10]内的数据个数为X,求X的分布列;(Ⅲ)估计1200个日销售量数据中,数据在区间(0,10]中的个数.【分析】(Ⅰ)由频率和为1,列方程求出a的值,根据图甲的频率分布比图乙分散些,它的方差较大,得出;(Ⅱ)根据X的所有可能取值,计算对应的概率,写出分布列;(Ⅲ)由甲种和乙种酸奶的日销售量数据在区间(0,10]内的频率和频数,计算在1200个数据中应抽取的数据个数.【解答】解:(Ⅰ)由图(乙)知,10(a+0.02+0.03+0.025+0.015)=1,解得a=0.01,根据图甲的频率分布比图乙分散些,它的方差较大,∴;(Ⅱ)X的所有可能取值1,2,3;则,,,其分布列如下:X123P(Ⅲ)由图(甲)知,甲种酸奶的数据共抽取2+3+4+5+6=20个,其中有4个数据在区间(0,10]内,又因为分层抽样共抽取了1200×5%=60个数据,乙种酸奶的数据共抽取60﹣20=40个,由(Ⅰ)知,乙种酸奶的日销售量数据在区间(0,10]内的频率为0.1,故乙种酸奶的日销售量数据在区间(0,10]内有40×0.1=4个.故抽取的60个数据,共有4+4=8个数据在区间(0,10]内.所以,在1200个数据中,在区间(0,10]内的数据有160个.【点评】本题考查了频率分布直方图与离散型随机变量的分布列问题,是综合题.17.(14分)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马P﹣ABCD中,侧棱PD⊥底面ABCD,且PD=CD,E为PC中点,点F在PB上,且PB⊥平面DEF,连接BD,BE.(Ⅰ)证明:DE⊥平面PBC;(Ⅱ)试判断四面体DBEF是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;(Ⅲ)已知AD=2,,求二面角F﹣AD﹣B的余弦值.【分析】(Ⅰ)推导出BC⊥PD.BC⊥DC,从而BC⊥面PDC,进而DE⊥BC,再求出DE⊥PC,由此能证明DE⊥面PBC.(Ⅱ)四面体DBEF是鳖臑,,.(Ⅲ)以DA,DC,DP所在直线为x轴,y轴,z轴建立空间直角坐标系,利用向量法能求出二面角F﹣AD﹣B的余弦值.【解答】证明:(Ⅰ)因为PD⊥面ABCD,BC⊂面ABCD,所以BC⊥PD.因为四边形ABCD为矩形,所以BC⊥DC.PD∩DC=D,所以BC⊥面PDC.DE⊂面PDC,DE⊥BC,在△PDC中,PD=DC,E为PC中点,所以DE⊥PC.又PC∩BC=C,所以DE⊥面PBC.解:(Ⅱ)四面体DBEF是鳖臑,其中,.(Ⅲ)以DA,DC,DP所在直线为x轴,y轴,z轴建立空间直角坐标系.则D(0,0,0),A(2,0,0),,,.设,则.DF⊥PB得,解得.所以.设平面FDA的法向量,则,令z=1得x=0,y=﹣3.平面FDA的法向量,平面BDA的法向量,,.二面角F﹣AD﹣B的余弦值为.【点评】本题考查线面垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.18.(14分)已知函数f(x)=1nx.(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)求证:当x>0时,;(Ⅲ)若x﹣1>a1nx对任意x>1恒成立,求实数a的最大值.【分析】(Ⅰ)求出导函数,求出斜率f'(1)=1,然后求解切线方程.(Ⅱ)化简=.求出,令,解得x=1.判断函数的单调性求出极小值,推出结果.(Ⅲ)设h(x)=x﹣1﹣a1nx(x≥1),依题意,对于任意x>1,h(x)>0恒成立.,a≤1时,a>1时,判断函数的单调性,求解最值推出结论即可.【解答】解:(Ⅰ),f'(1)=1,又f(1)=0,所以切线方程为y=x﹣1;(Ⅱ)证明:由题意知x>0,令=.令,解得x=1.易知当x>1时,g'(x)>0,易知当0<x<1时,g'(x)<0.即g(x)在(0,1)单调递减,在(1,+∞)单调递增,所以g(x)min=g(1)=0,g(x)≥g(1)=0即,即x>0时,;(Ⅲ)设h(x)=x﹣1﹣a1nx(x≥1),依题意,对于任意x>1,h(x)>0恒成立.,a≤1时,h'(x)>0,h(x)在[1,+∞)上单调递增,当x>1时,h(x)>h(1)=0,满足题意.a>1时,随x变化,h'(x),h(x)的变化情况如下表:x(1,a)a(a,+∞)h'(x)﹣0+h(x)↘极小值↗h(x)在(1,a)上单调递减,所以g(a)<g(1)=0即当a>1时,总存在g(a)<0,不合题意.综上所述,实数a的最大值为1.【点评】本题考查函数的导数的应用,切线方程,函数的极值以及函数的最值的求法,考查转化思想以及计算能力.19.(14分)已知椭圆E:+=1(a>b>0)过点(0,1),且离心率为.(Ⅰ)求椭圆E的方程;(Ⅱ)设直线l:y=+m与椭圆E交于A、C两点,以AC为对角线作正方形ABCD,记直线l与x轴的交点为N,问B,N两点间距离是否为定值?如果是,求出定值;如果不是,请说明理由.【分析】(Ⅰ)由题意可知b=1,e===,即可求得a的值,求得椭圆方程;(Ⅱ)将直线方程代入椭圆方程,利用韦达定理及弦长公式求得丨AC丨及丨MN丨,丨BN丨2=丨AC丨2+丨MN丨2=,即可求得B,N两点间距离是否为定值.【解答】解:(Ⅰ)由题意可知:椭圆的焦点在x轴上,过点(0,1),则b=1,由椭圆的离心率e===,则a=2,∴椭圆的标准方程为:;(Ⅱ)设A(x1,y1),B(x2,y2),线段中点M(x0,y0),则,整理得:x2+2mx+2m2﹣2=0,由△=(2m)2﹣4(2m2﹣2)=8﹣4m2>0,解得:﹣<m<,则x1+x2=﹣2m,x1x2=2m2﹣2,则M(﹣m,m),丨AC丨=•=•=由l与x轴的交点N(﹣2m,0),则丨MN丨==,∴丨BN丨2=丨BM丨2+丨MN丨2=丨AC丨2+丨MN丨2=,∴B,N两点间距离是否为定值.【点评】本题考查椭圆的标准方程,直线与椭圆的位置关系,考查韦达定理,弦长公式及中点坐标公式,考查计算能力,属于中档题.20.(14分)已知集合R n={X|X=(x1,x2,…,x n),x i∈{0,1},i=1,2,…,n}(n≥2).对于A=(a1,a2,…,a n)∈R n,B=(b1,b2,…,b n)∈R n,定义A 与B之间的距离为d(A,B)=|a1﹣b1|+|a2﹣b2|+…|a n﹣b n|=.(Ⅰ)写出R2中的所有元素,并求两元素间的距离的最大值;(Ⅱ)若集合M满足:M⊆R3,且任意两元素间的距离均为2,求集合M中元素个数的最大值并写出此时的集合M;(Ⅲ)设集合P⊆R n,P中有m(m≥2)个元素,记P中所有两元素间的距离的平均值为,证明.【分析】(Ⅰ)根据集合的定义,写出R2中的所有元素,并求两元素间的距离的最大值;(Ⅱ)R3中含有8个元素,可将其看成正方体的8个顶点,已知集合M中的元素所对应的点,应该两两位于该正方体面对角线的两个端点,即可求集合M中元素个数的最大值并写出此时的集合M;(Ⅲ),其中表示P中所有两个元素间距离的总和,根据,即可证明结论.【解答】解:(Ⅰ)R2={(0,0),(0,1),(1,0),(1,1)},A,B∈R2,d(A,B)max=2.(Ⅱ)R3中含有8个元素,可将其看成正方体的8个顶点,已知集合M中的元素所对应的点,应该两两位于该正方体面对角线的两个端点,所以M={(0,0,0),(1,1,0),(1,0,1),(0,1,1)}或M={(0,0,1),(0,1,0),(1,0,0),(1,1,1)},集合M中元素个数最大值为4.(Ⅲ),其中表示P中所有两个元素间距离的总和.设P中所有元素的第i个位置的数字中共有t i个1,m﹣t i个0,则由于(i=1,2,…,n)所以从而【点评】本题考查新定义,考查函数的最值,考查集合知识,难度大.。
2017高考全国1卷理科数学试题及答案解析[精校解析版]
WORD 格式整理2016 年普通高等学校招生全国统一考试(全国卷Ⅰ)理科数学注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置 . 用 2B 铅笔将答题卡上试卷类型 A 后的方框涂黑 .2、选择题的作答: 每小题选出答案后, 用 2B 铅笔把答题卡上对应题目的答案标号涂黑 . 写在试题卷、草稿纸和答题卡上的非答题区域内均无效 .3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内 . 写在试题卷、草稿纸和答题卡上的非答题区域均无效 .4、选考题的作答: 先把所选题目的题号在答题卡上指定的位置用 2B 铅笔涂黑 . 答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效 .5、 考试结束后,请将本试题卷和答题卡一并上交 .第 Ⅰ 卷一 . 选择题:本大题共 12 小题 ,每小题 5 分 ,在每小题给出的四个选项中,只有一项是符合题目要求 的 .1.设集合 A x x 2 4x 3 0 , x 2x 3 0 ,则 A B( A )3, 3 ( B ) 3, 3 ( C ) 1, 3 ( D ) 3,3 2 2 2 2设i ) x 1 yi ,其中 x, y 是实数,则 x yi 2. (1 ( A ) 1( B ) 2(C )3 (D) 23.已知等差数列 a n 前 9 项的和为 27,a 108 ,则 a 100( A ) 100 ( B ) 99 (C ) 98 ( D ) 974.某公司的班车在7:00,8:00,8:30 发车,小明在7:50 至8:30 之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10 分钟的概率是( A )1( B)1(C)2( D)33234x2y21 表示双曲线,且该双曲线两焦点间的距离为4,则 n 的取值范围是5.已知方程n 3m2m2n专业技术参考资料WORD 格式整理( A )1,3 ( B) 1, 3 ( C) 0,3( D )0, 36.如图 ,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径 .若该几何体的体积是28,则它的表面积是3( A )17 ( B)18( C)20( D)287.函数 y 2x2e x在2,2 的图像大致为y y( A )1( B)12 O 2 x 2 O2xy y1 1( C)2O 2 x(D) 2 O 2 x8.若 a b 10, c 1,则( A )a cbc ( B)ab c ba c( C ) alog b cb log ac ( D) logac9.执行右面的程序框图 ,如果输入的 x 0, y 1,n1 ,则输出 x,y 的值满足( A ) y 2x ( B) y 3x ( C) y 4x ( D) y 5x10.以抛物线 C 的顶点为圆心的圆交 C 于 A、B 两点,交 C 的准线于D 、E 两点 .已知 |AB|= 4 2 ,|DE|= 2 5 ,则 C 的焦点到准线的距离为n=n+ 1(A)2 (B)4 (C)6 (D)8 11.平面过正方体ABCD顶点 A I平面ABCD=m, I 平面 ABB1A1=n,则 m、n所成角的正弦值为3 2(A) (B)2 2log b c开始输入x,y,nn-1x=x+ 2,y=nyx2+y2≥36?否是输出x,y结束专业技术参考资料WORD 格式整理12.已知函数 f (x)sin( x+ )(0,), x 为 f (x) 的零点 , x 为 y f ( x) 图像2 4 4的对称轴,且 f (x) 在5单调,则的最大值为18,36( A ) 11 ( B)9(C) 7( D)5二、填空题:本大题共3 小题 ,每小题 5 分13.设向量 a=(m,1), b=(1,2) ,且|a+b|2=|a|2+|b|2,则 m= .14. (2 xx)5的展开式中, x3的系数是.(用数字填写答案)15.设等比数列a n满足 a1+a3=10, a2+a4=5,则 a1a2 ⋯an的最大值为.16.某高科技企业生产产品A 和产品 B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5kg,乙材料 1kg,用 5 个工时;生产一件产品B 需要甲材料 0.5kg,乙材料 0.3kg ,用 3 个工时.生产一件产品 A 的利润为2100 元,生产一件产品B 的利润为 900 元.该企业现有甲材料150kg,乙材料 90kg,则在不超过600 个工时的条件下,生产产品 A、产品 B 的利润之和的最大值为元.三.解答题:解答应写出文字说明 ,证明过程或演算步骤 .17.(本小题满分为 12 分)ABC 的内角A,B,C的对边分别为a b c2cos C (a cos B+b cos A)c.,,,已知( I)求 C;( II )若 c 7 ,ABC 的面积为 3 3,求ABC 的周长.218.(本小题满分为12 分)如图,在以A,B,C,D,E, F 为顶点的五面体中,面ABEF 为正方形, AF =2FD ,AFD 90 ,且二面角 D -AF -E 与二面角 C-BE-F 都是 60 .( I)证明:平面ABEF 平面 EFDC ;D C( II )求二面角E-BC- A 的余弦值.F专业技术参考资料WORD 格式整理19.(本小题满分12 分)某公司计划购买 2 台机器 ,该种机器使用三年后即被淘汰.机器有一易损零件 ,在购进机器时,可以额外购买这种零件作为备件,每个 200 元 .在机器使用期间 ,如果备件不足再购买 ,则每个500 元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了 100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:频数40200 8 9 10 11 更换的易损零件数以这 100 台机器更换的易损零件数的频率代替 1 台机器更换的易损零件数发生的概率,记 X 表示 2台机器三年内共需更换的易损零件数, n 表示购买 2 台机器的同时购买的易损零件数.( I)求 X 的分布列;( II )若要求 P( X n) 0.5 ,确定 n 的最小值;( III )以购买易损零件所需费用的期望值为决策依据,在 n 19 与 n 20 之中选其一 ,应选用哪个?20.(本小题满分12 分)设圆x2y22x 15 0 的圆心为 A,直线 l 过点 B ( 1,0)且与 x 轴不重合, l 交圆 A 于 C,D 两点,过 B 作 AC 的平行线交A D 于点 E.( I)证明EA EB 为定值,并写出点 E 的轨迹方程;( II )设点 E 的轨迹为曲线C1,直线 l 交 C1于 M ,N 两点,过 B 且与 l 垂直的直线与圆 A 交于 P,Q两点,求四边形MPNQ 面积的取值范围 .21.(本小题满分 12 分)已知函数 f x x 2 e x2有两个零点 .a x 1(I ) 求a的取值范围;(II)设12是fx 的两个零点 ,证明:x1x2 2 .x ,x专业技术参考资料WORD 格式整理请考生在22、 23、 24 题中任选一题作答 ,如果多做 ,则按所做的第一题计分.22.(本小题满分 10 分)选修 4-1:几何证明选讲如图,△ OAB 是等腰三角形,∠ AOB=120°.以 O 为圆心, 1OA 为半径作圆 . 2(I) 证明:直线 AB 与⊙ O 相切;(II) 点 C ,D 在⊙ O 上,且 A , B , C , D 四点共圆,证明: AB ∥ CD. DCOA B23.(本小题满分 10 分)选修 4— 4:坐标系与参数方程在直角坐标系 x y 中,曲线 C 1 的参数方程为 x a cost ( t 为参数, a > 0).y 1 a sin t 在以坐标原点为极点, x 轴正半轴为极轴的极坐标系中,曲线C 2: ρ= 4 cos . ( I )说明 C 1 是哪一种曲线,并将 C 1 的方程化为极坐标方程;( II )直线 C 3 的极坐标方程为 0 ,其中 0 满足 tan 0 =2 ,若曲线 C1 与 C2 的公共点都在 C3 上,求 a .24.(本小题满分 10 分)选修 4— 5:不等式选讲已知函数 fx x 1 2x 3 .( I )画出 y f x 的图像;( II )求不等式 f x 1 的解集.专业技术参考资料WORD 格式整理2016 年高考全国1 卷理科数学参考答案 题号 1 2 3 45 6 7 8 9 10 11 12 答案D BCBAADCCBA B1. A x x 2 4x 3 0 x 1 x 3 , B x 2 x 3 0 x x 3 .2 故 A Bx 3x 3 . 2故选D .2. 由 1 i x 1 yi 可知: x xi 1 yi ,故 x 1 ,解得: x 1 . x y y 1 所以,xyi x 2y 22 .故选 B .3. 由等差数列性质可知: S 99 a 1 a992a 5 9a 5 27 ,故a 5 3 ,2 2而 a 10 8 ,因此公差 d a10 a 51 10 5∴a100 a10 90d 98 .故选C .4. 如图所示,画出时间轴:7:30 7:40 7:50 8:008:10 8:20 8:30ACDB小明到达的时间会随机的落在图中线段AB 中,而当他的到达时间落在线段AC 或 DB时,才能保证他等车的时间不超过10 分钟根据几何概型,所求概率 P 10 10 1 .40 2 故选 B.专业技术参考资料WORD 格式整理5. x2y21 表示双曲线,则m2n 3m2n 0m2n 3m2n∴m2 n 3m2由双曲线性质知:c2m2n 3m2n 4m2,其中 c 是半焦距∴焦距 2c 2 2 m 4 ,解得 m 1∴1 n 3故选 A.6.原立体图如图所示:是一个球被切掉左上角的1 后的三视图8表面积是7 的球面面积和三个扇形面积之和8S= 7 4 22 +3 1 22 =178 4故选A.7. f 2 8 e 2822.8 0 ,排除Af 2 8 e28 2.721 ,排除 Bx 0 时, fx 2x2e x f x 4x e x,当 x 0, 1时, f x 1 4 e004 4因此f x 在 0, 1 单调递减,排除 C4 故选D.8. 对 A :由于 0 c 1 ,∴函数 y x c在 R 上单调递增,因此 a b 1 a c b c, A 错误对 B :由于 1 c 1 0 ,∴函数 yx c1在 1, 上单调递减,∴ a b 1 a c 1bc 1 ba cab c , B 错误专业技术参考资料WORD 格式整理对 C :要比较 a log b c 和 blog a c ,只需比较 a ln c和 b ln c ,只需比较 ln c 和 ln c,只需 b lnbln b ln abln b aln a 和 a ln a构造函数 fx x ln xx 1 ,则 f ' x ln x 1 1 0 , f x 在1, 上单调递增,因此 f a f b 0a ln ab ln b 0 1 1a ln ab ln b又由 0 c 1 得 ln c0 ,∴ ln ca ln a对 D : 要比较 log a c 和 log b c ,只需比较ln c blog a c a log b c , C 正确b ln b lnc 和 ln cln a ln b而函数 y ln x 在 1, 上单调递增,故 a b 1 ln a 1 1ln b 0 ln b ln a又由 0 c 1 得 ln c0 ,∴ ln c ln c log a c log b c , D 错误 ln a ln b故选 C .9. 如下表:循环节运 n 1 判断是否x x ny n n n 1 x y y行次数2 2 2 36 输出 x y 运行前 0 1 / / 1 第一次 0 1 否 否 2 第二次 1 2 否 否3 2第三次36是是2输出x 3,y 6,满足y 4x 2故选 C.10.以开口向右的抛物线为例来解答,其他开口同理设抛物线为y22px p 0,设圆的方程为 x2y2r2,题目条件翻译如图:设 A x0 ,2 2 ,D p,, 5 2专业技术参考资料WORD 格式整理点 Ax 0 ,2 2 在抛物线 y 2 2 px 上,∴ 8 2 px 0 ⋯⋯ ① p p 2 , 5 在圆x 2 2 2 r 2⋯⋯ ② 点 D y r 上,∴ 52 2点 A x 0 ,22 2 2 2 2 8 r 2在圆 x y r 上,∴x0 ⋯⋯ ③ 联立①②③解得: p 4 ,焦点到准线的距离为p 4 . 故选B .D Cα B A11. 如图所示:∵ ∥平面 CB1D1 ,∴若设平面 CB1 D1 平面 ABCD m1 ,C 1D 1则 m 1∥ mA 1 B1又∵平面 ABCD ∥平面 A 1 B 1C 1 D 1 ,结合平面 B 1D 1C 平面 A 1 B 1 C 1D 1 B 1 D 1∴B 1D 1∥m 1 ,故 B 1D 1∥m 同理可得: CD 1∥n故 m 、 n 的所成角的大小与 B1D1 、 CD1 所成角的大小相等,即 CD1B1 的大小.而 B 1C B 1 D 1 CD 1 (均为面对交线) ,因此CD 1 B 1 ,即 sin CD 1B 1 3 . 3 2故选A .12. 由题意知:π + k 1 π4π +k2π+ π4 2则 2 k 1,其中 k Zf (x)在π, 5π单调, 518 π T ,1218 36 3612 2接下来用排除法若11, πsin 11xππ 3π3π 5π递减,不满,此时 f( x) , f (x) 在, 递增,在,364 4 18 44 44足 f ( x) 在π 5π单调18,36专业技术参考资料WORD 格式整理若πsin 9 xπ,满足f ( x)在π 5π单调递减9, ,此时 f( x)4 18,4 36故选 B.13.-2 14.10 15 . 64 16 . 21600013. 由已知得: a b m 1, 32 2 2232m2121222,解得m∴ a b a b m 1 2 .14.设展开式的第k 1 项为Tk1,k0,1,2,3,4,5∴ Tk 1k5k k k5k 5 kC5 2 x xC5 2 x2.k C54 255 4当 53 时,k4 ,即T5 4 x210x3 2故答案为10.15. 由于a n 是等比数列,设a na1q n 1,其中 a1是首项, q是公比.2 a18∴ a1 a310 a1 a1q 3 10,解得: 1 .a2a4 5a1q a1q5 q2 1n 4 32 ...n4故 a n,∴a1a2 ... a n1 12 2 21nn72121n 7 2 4922421当 n 3 或 4 时,n 7 49 取到最小值 6 ,此12 2 4取到最大值 26.1n 7 2 49224所以 a1 a2 ... an 的最大值为64.16.设生产 A 产品 x 件, B 产品 y 件,根据所耗费的材料要求、工时要求等其他限制条件,构造线性规则约束为专业技术参考资料WORD 格式整理目标函数 z 2100 x 900 y作出可行域为图中的四边形,包括边界,顶点为(60,100) (0,200) (0,0)(90,0)在 (60,100) 处取得最大值,z 2100 60 900 100 216000 17. 解:⑴2cosC a cosB bcosA c 由正弦定理得:2cosC sin A cosB sin BcosA sinC 2cosC sin A B sinC∵A B C , A 、B 、C 0,ππ ∴sin A B sinC 0∴ 2cos C 1 , cosC 12∵ C 0 ,π∴ C π 3⑵ 由余弦定理得: c 2 a 2 b 22ab cosC 7 a 2 b 22ab 12 a b 2 3ab 7S 1 ab sinC 3 ab 3 32 42∴ab 6∴ a b 218 7a b 5∴ △ ABC 周长为 a b c 5 7专业技术参考资料WORD 格式整理18.解: (1) ∵ ABEF 为正方形∴ A F E F ∵AFD 90∴AF DF∵ DF EF =F∴AF 面 EFDCAF 面 ABEF∴平面 ABEF 平面 EFDC⑵ 由⑴知DFE CEF 60∵AB ∥ EFAB 平面 EFDCEF 平面 EFDC∴AB ∥平面 ABCDAB 平面 ABCD∵面 ABCD 面 EFDC CD∴AB ∥ CD∴CD ∥ EF∴四边形 EFDC 为等腰梯形以 E 为原点,如图建立坐标系,设FD aE 0 ,0,0 B 0,2a ,0 C a,0 ,3 a A 2a , 2a ,2 2EB 0 ,2a ,0 ,BC a, 2a ,3 a ,AB2a ,0 ,0 2 2设面 BEC 法向量为 m x, y,z .2a y10m EB 0 ,即ax1 2ay1 3 az1x1 3 , y10,z1 1m BC 0202 m3 ,0 , 1设面 ABC 法向量为 n x2,y2,z2n BC=a 3.即 2 x22ay22 az20x2 0 , y23,z2 4n AB 02ax20专业技术参考资料WORD 格式整理n0 ,3 ,4设二面角 E BC A 的大小为 .cosm n 4 2 19m n 3 1 3 16 19∴二面角E BC A 的余弦值为2 191919 解:⑴每台机器更换的易损零件数为8, 9, 10,11记事件A i 为第一台机器3 年内换掉 i 7个零件i 1,2,3,4记事件B i 为第二台机器3 年内换掉 i 7个零件i 1,2,3,4由题知P A1P A3P A4P B1P B3P B40.2, PA2P B20.4设 2 台机器共需更换的易损零件数的随机变量为X ,则 X 的可能的取值为16, 17,18,19, 20,21, 22PX 16 P A1PB1 0.2 0.2 0.04PX 17 P A1 PB2P A2 PB1 0.2 0.40.4 0.2 0.16PX 18 P A1 PB3P A2 PB2 P A3 P B1 0.2 0.2 0.2 0.2 0.4 0.4 0.24PX 19 P A1PB4PA2 P B3PA3 P B2P A4 PB1 0.2 0.2 0.20.2 0.40.20.2 0.4 0.24PX 20 P A2PB4P A3 P B3P A4 P B20.4 0.2 0.2 0.4 0.2 0.2 0.2P x 21 P A3 P B4P A4 P B30.2 0.2 0.2 0.2 0.08 P x 22 P A4P B40.2 0.2 0.04X 16 17 18 19 20 21 22P 0.04 0.160.240.24 0.2 0.0 80.04⑵ 要令, 0.04 0.16 0.24 0.5 ,0.04 0.16 0.24 0.24 ≥ 0.5P x ≤ n ≥0.5则 n 的最小值为 19⑶ 购买零件所需费用含两部分,一部分为购买机器时购买零件的费用,另一部分为备件不足时额外购买的费用当 n 19时,费用的期望为 19 200 500 0.2 1000 0.08 1500 0.04 当 n 20 时,费用的期望为 20 200 500 0.08 1000 0.04 4080 所以应选用 n19 20. (1) 圆 A 整理为 x 2 y 2 16 , A 坐标 1,0 ,如图,1BE ∥AC ,则 ∠C ∠ EBD ,由 AC A D ,则∠ D ∠C ,∠ EBD ∠D ,E D 则 EBA E EB AE ED A D 4 4 2 2 所以 E 的轨迹为一个椭圆,方程为 x y 1 , ( y 0 );4 3 D 404043 2 C 1 A x2B 2 4 E 1 234专业技术参考资料WORD 格式整理⑵C1 : x2y2my1,41 ;设l : x3因为 PQ⊥ l ,设PQ : y m x 1 ,联立 l与椭圆 C1x my 1x2y2得 3m24 y26my 9 0 ;4 31则| MN | 1 m2 | y M y N | 1m236m236 3m2 4 12 m23m2 4 3m2圆心 A 到 PQ 距离 d | m1 1| | 2m| ,1 m2 1 m2所以 | PQ | 2| AQ |2 d 2 2 16 4m22 4 3m2 4 ,1 m 1 m2S MP NQ 1 1 12 m2 14 3m2 4 24 m2124 | MN | |PQ |3m2 1 m23m22 2 4 4 321. (Ⅰ) f '(x) ( x 1)e x2a( x 1) (x 1)(e x2a) .( i)设a 0 ,则 f(x) (x 2)e x, f (x) 只有一个零点.( ii)设a 0 ,则当x (,1)时, f'(x)0 ;当x (1,) 时, f'(x)上单调递减,在 (1, ) 上单调递增.又 f(1) e , f (2) a ,取 b 满足 b 0 且 b ln a,则a (b 2) a(b 3 2f (b) 1)2a(b2b) 0,2故 f (x) 存在两个零点.( iii)设 a 0 ,由 f '(x) 0 得 x若 ae,则ln( 2a)1 ,故当x2P 4321NA x4 2 B 2 41QM 2341;4112,8 312m 10 .所以 f ( x) 在 ( ,1)在 (1, ) 上单调递增.又专业技术参考资料WORD 格式整理当x 1f (x) 0,所以f( x)不存在两个零点.时,若 a e1 ,故当x (1,ln( 2a)) 时, f '(x)0 ;当 x(ln( 2a), ) 时,,则ln( 2a)2f '(x) 0 .因此f (x) 在 (1,ln( 2a)) 单调递减,在(ln( 2a),) 单调递增.又当x 1时,f (x) 0,所以 f ( x) 不存在两个零点.综上, a 的取值范围为(0, ) .()不妨设x1x2,由(Ⅰ)知x1 (,1) ,x2(1,) ,2 x2 (,1) , f ( x) 在(,1)上单调递减,所以x1x22 等价于 f( x1 ) f (2x2 ) ,即 f(2 x2 ) 0 .由于 f(2 x2 ) x2e2x2a( x2 1)2,而 f(x2 )( x22)e x2a( x21)20,所以f (2 x2 ) x2e2 x2( x22)e x2 .设 g( x) xe2x ( x 2)e x,则 g(x) ( x 1)(e2 x e x ) .所以当x 1 时, g(x) 0 ,而 g (1)0 ,故当x1时, g( x) 0.从而 g(x2 ) f (2 x2 ) 0 ,故x1x2 2 .22.⑴设圆的半径为 r ,作 OK AB 于 K ∵OA OB , AOB 120∴OK AB , A 30 ,OK OAsin30OAr2∴ AB 与⊙O 相切⑵方法一:假设 CD 与 AB不平行 CD 与AB 交于 F2FK FC FD ①∵ A 、B 、C 、D 四点共圆∴ FC FD FA FB FK AK FK BK ∵ AK BK专业技术参考资料WORD 格式整理∴ FC FD FK AK FK AK FK 2 AK 2②由①②可知矛盾∴AB ∥ CD方法二:因为 A, B, C, D四点共圆,不妨设圆心为T ,因为O A OB ,TA TB,O,T为 AB 的中垂线上,所以同理OC OD ,TCTD ,所以 OT 为 CD 的中垂线,所以AB∥CD .xacost( t均为参数)23.⑴ 1 a sinty∴x2y2a2①1∴ C1为以0,1 为圆心, a 为半径的圆.方程为x2y2 2 y 1 a20∵x 2y 22,y sin ∴2 2 sin1a20即为C1的极坐标方程⑵ C2:4cos两边同乘得2 4 cos 2x2y2, cos xx2y24x 即 x224②y2C3:化为普通方程为y 2 x由题意:C1和 C2 的公共方程所在直线即为 C3①—②得: 4 x2y 1 a20 ,即为 C3∴ 1 a20 ∴ a 124.⑴如图所示:x 4 ,x ≤1⑵ f x 3x 2 , 1 x 324 x,x ≥32f x 1当 x ≤ 1 , x 4 1 ,解得 x 5 或 x 3 ∴ x ≤ 1专业技术参考资料WORD 格式整理当 1 x 32 1,解得x 11 , 3x 或 x2 3∴ 1 x 1x3 或12 3当 x ≥3, 4 x 1 ,解得 x 5 或 x 32∴3≤x 3或x 52综上, x 1或1 x 3 或 x 5 3∴ f x 1 ,解集为,11 3 5,每项建议案实施完毕,实施部门应根据结果写出总结报告,实事求是的说明产生的经济,3效益或者其他积极效果,呈报总经办。
2017年全国统一高考数学 理科 新课标1 (解析版)
2017年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2017?新课标Ⅰ)已知集合A={x|x <1},B={x|3x <1},则( ) A .A ∩B={x|x <0} B .A ∪B=R C .A ∪B={x|x >1} D .A ∩B=?2.(5分)(2017?新课标Ⅰ)如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A .B .C .D .3.(5分)(2017?新课标Ⅰ)设有下面四个命题 p 1:若复数z 满足∈R ,则z ∈R ; p 2:若复数z 满足z 2∈R ,则z ∈R ; p 3:若复数z 1,z 2满足z 1z 2∈R ,则z 1=;p 4:若复数z ∈R ,则∈R . 其中的真命题为( )A .p 1,p 3B .p 1,p 4C .p 2,p 3D .p 2,p 44.(5分)(2017?新课标Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( ) A .1 B .2C .4D .85.(5分)(2017?新课标Ⅰ)函数f (x )在(﹣∞,+∞)单调递减,且为奇函数.若f (1)=﹣1,则满足﹣1≤f (x ﹣2)≤1的x 的取值范围是( ) A .[﹣2,2]B .[﹣1,1]C .[0,4]D .[1,3]6.(5分)(2017?新课标Ⅰ)(1+)(1+x )6展开式中x 2的系数为( )A .15B .20C .30D .357.(5分)(2017?新课标Ⅰ)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A.10 B.12 C.14 D.168.(5分)(2017?新课标Ⅰ)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入()A.A>1000和n=n+1 B.A>1000和n=n+2C.A≤1000和n=n+1 D.A≤1000和n=n+29.(5分)(2017?新课标Ⅰ)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C210.(5分)(2017?新课标Ⅰ)已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为()A.16 B.14 C.12 D.1011.(5分)(2017?新课标Ⅰ)设x、y、z为正数,且2x=3y=5z,则()A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z12.(5分)(2017?新课标Ⅰ)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A.440 B.330 C.220 D.110二、填空题:本题共4小题,每小题5分,共20分.13.(5分)(2017?新课标Ⅰ)已知向量,的夹角为60°,||=2,||=1,则|+2|= .14.(5分)(2017?新课标Ⅰ)设x,y满足约束条件,则z=3x﹣2y的最小值为.15.(5分)(2017?新课标Ⅰ)已知双曲线C:﹣=1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为.16.(5分)(2017?新课标Ⅰ)如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)(2017?新课标Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.18.(12分)(2017?新课标Ⅰ)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.19.(12分)(2017?新课标Ⅰ)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ﹣3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ﹣3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:经计算得==9.97,s==≈0.212,其中xi为抽取的第i个零件的尺寸,i=1,2, (16)用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除(﹣3+3)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ﹣3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592,≈0.09.20.(12分)(2017?新课标Ⅰ)已知椭圆C:+=1(a>b>0),四点P1(1,1),P2(0,1),P3(﹣1,),P4(1,)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为﹣1,证明:l过定点.21.(12分)(2017?新课标Ⅰ)已知函数f(x)=ae2x+(a﹣2)e x﹣x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.[选修4-4,坐标系与参数方程](2017?新课标Ⅰ)在直角坐标系xOy中,曲线C的参数方程为,22.(10分)(θ为参数),直线l的参数方程为,(t为参数).(1)若a=﹣1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a.[选修4-5:不等式选讲]23.(2017?新课标Ⅰ)已知函数f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范围.2017年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2017?新课标Ⅰ)已知集合A={x|x<1},B={x|3x<1},则()A.A∩B={x|x<0} B.A∪B=R C.A∪B={x|x>1} D.A∩B=?【考点】1E:交集及其运算.【专题】11 :计算题;37 :集合思想;4O:定义法;5J :集合.【分析】先分别求出集合A和B,再求出A∩B和A∪B,由此能求出结果.【解答】解:∵集合A={x|x<1},B={x|3x<1}={x|x<0},∴A∩B={x|x<0},故A正确,D错误;A∪B={x|x<1},故B和C都错误.故选:A.【点评】本题考查交集和并集求法及应用,是基础题,解题时要认真审题,注意交集、并集定义的合理运用.2.(5分)(2017?新课标Ⅰ)如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A .B .C .D .【考点】CF :几何概型.【专题】35 :转化思想;4O :定义法;5I :概率与统计.【分析】根据图象的对称性求出黑色图形的面积,结合几何概型的概率公式进行求解即可.【解答】解:根据图象的对称性知,黑色部分为圆面积的一半,设圆的半径为1,则正方形的边长为2, 则黑色部分的面积S=,则对应概率P==,故选:B .【点评】本题主要考查几何概型的概率计算,根据对称性求出黑色阴影部分的面积是解决本题的关键.3.(5分)(2017?新课标Ⅰ)设有下面四个命题 p 1:若复数z 满足∈R ,则z ∈R ; p 2:若复数z 满足z 2∈R ,则z ∈R ; p 3:若复数z 1,z 2满足z 1z 2∈R ,则z 1=;p 4:若复数z ∈R ,则∈R . 其中的真命题为( )A .p 1,p 3B .p 1,p 4C .p 2,p 3D .p 2,p 4【考点】2K :命题的真假判断与应用;A1:虚数单位i 、复数;A5:复数的运算. 【专题】2A :探究型;5L :简易逻辑;5N :数系的扩充和复数.【分析】根据复数的分类,有复数性质,逐一分析给定四个命题的真假,可得答案. 【解答】解:若复数z 满足∈R ,则z ∈R ,故命题p 1为真命题;p 2:复数z=i满足z2=﹣1∈R,则z?R,故命题p2为假命题;p 3:若复数z1=i,z2=2i满足z1z2∈R,但z1≠,故命题p3为假命题;p 4:若复数z∈R,则=z∈R,故命题p4为真命题.故选:B.【点评】本题以命题的真假判断与应用为载体,考查了复数的运算,复数的分类,复数的运算性质,难度不大,属于基础题.4.(5分)(2017?新课标Ⅰ)记Sn 为等差数列{an}的前n项和.若a4+a5=24,S6=48,则{an}的公差为()A.1 B.2 C.4 D.8【考点】85:等差数列的前n项和;84:等差数列的通项公式.【专题】11 :计算题;34 :方程思想;4O:定义法;54 :等差数列与等比数列.【分析】利用等差数列通项公式及前n项和公式列出方程组,求出首项和公差,由此能求出{an}的公差.【解答】解:∵Sn 为等差数列{an}的前n项和,a4+a5=24,S6=48,∴,解得a1=﹣2,d=4,∴{an}的公差为4.故选:C.【点评】本题考查等差数列的面公式的求法及应用,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.5.(5分)(2017?新课标Ⅰ)函数f(x)在(﹣∞,+∞)单调递减,且为奇函数.若f(1)=﹣1,则满足﹣1≤f(x﹣2)≤1的x的取值范围是()A.[﹣2,2] B.[﹣1,1] C.[0,4] D.[1,3]【考点】3P:抽象函数及其应用.【专题】35 :转化思想;4R:转化法;51 :函数的性质及应用.【分析】由已知中函数的单调性及奇偶性,可将不等式﹣1≤f(x﹣2)≤1化为﹣1≤x ﹣2≤1,解得答案.【解答】解:∵函数f(x)为奇函数.若f(1)=﹣1,则f(﹣1)=1,又∵函数f(x)在(﹣∞,+∞)单调递减,﹣1≤f(x﹣2)≤1,∴f(1)≤f(x﹣2)≤f(﹣1),∴﹣1≤x﹣2≤1,解得:x∈[1,3],故选:D.【点评】本题考查的知识点是抽象函数及其应用,函数的单调性,函数的奇偶性,难度中档.6.(5分)(2017?新课标Ⅰ)(1+)(1+x)6展开式中x2的系数为()A.15 B.20 C.30 D.35【考点】DA:二项式定理.【专题】35 :转化思想;4R:转化法.【分析】直接利用二项式定理的通项公式求解即可.【解答】解:(1+)(1+x)6展开式中:若(1+)=(1+x﹣2)提供常数项1,则(1+x)6提供含有x2的项,可得展开式中x2的系数:若(1+)提供x﹣2项,则(1+x)6提供含有x4的项,可得展开式中x2的系数:由(1+x)6通项公式可得.可知r=2时,可得展开式中x2的系数为.可知r=4时,可得展开式中x2的系数为.(1+)(1+x)6展开式中x2的系数为:15+15=30.故选:C.【点评】本题主要考查二项式定理的知识点,通项公式的灵活运用.属于基础题.7.(5分)(2017?新课标Ⅰ)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A.10 B.12 C.14 D.16【考点】L!:由三视图求面积、体积.【专题】11 :计算题;31 :数形结合;44 :数形结合法;5Q :立体几何.【分析】由三视图可得直观图,由图形可知该立体图中只有两个相同的梯形的面,根据梯形的面积公式计算即可【解答】解:由三视图可画出直观图,该立体图中只有两个相同的梯形的面,S=×2×(2+4)=6,梯形∴这些梯形的面积之和为6×2=12,故选:B.【点评】本题考查了体积计算公式,考查了推理能力与计算能力,属于中档题.8.(5分)(2017?新课标Ⅰ)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入()A.A>1000和n=n+1 B.A>1000和n=n+2C.A≤1000和n=n+1 D.A≤1000和n=n+2【考点】EF:程序框图.【专题】11 :计算题;38 :对应思想;49 :综合法;5K :算法和程序框图.【分析】通过要求A>1000时输出且框图中在“否”时输出确定“”内不能输入“A>1000”,进而通过偶数的特征确定n=n+2.【解答】解:因为要求A>1000时输出,且框图中在“否”时输出,所以“”内不能输入“A>1000”,又要求n为偶数,且n的初始值为0,所以“”中n依次加2可保证其为偶数,所以D选项满足要求,故选:D.【点评】本题考查程序框图,属于基础题,意在让大部分考生得分.9.(5分)(2017?新课标Ⅰ)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【专题】11 :计算题;35 :转化思想;57 :三角函数的图像与性质.【分析】利用三角函数的伸缩变换以及平移变换转化求解即可.【解答】解:把C1上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=cos2x图象,再把得到的曲线向左平移个单位长度,得到函数y=cos2(x+)=cos(2x+)=sin(2x+)的图象,即曲线C2,故选:D.【点评】本题考查三角函数的图象变换,诱导公式的应用,考查计算能力.10.(5分)(2017?新课标Ⅰ)已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为()A.16 B.14 C.12 D.10【考点】K8:抛物线的性质.【专题】11 :计算题;34 :方程思想;4R:转化法;5D :圆锥曲线的定义、性质与方程.【分析】方法一:根据题意可判断当A 与D ,B ,E 关于x 轴对称,即直线DE 的斜率为1,|AB|+|DE|最小,根据弦长公式计算即可.方法二:设直线l 1的倾斜角为θ,则l 2的倾斜角为 +θ,利用焦点弦的弦长公式分别表示出|AB|,|DE|,整理求得答案【解答】解:如图,l 1⊥l 2,直线l 1与C 交于A 、B 两点, 直线l 2与C 交于D 、E 两点, 要使|AB|+|DE|最小,则A 与D ,B ,E 关于x 轴对称,即直线DE 的斜率为1, 又直线l 2过点(1,0), 则直线l 2的方程为y=x ﹣1, 联立方程组,则y 2﹣4y ﹣4=0,∴y 1+y 2=4,y 1y 2=﹣4,∴|DE|=?|y 1﹣y 2|=×=8,∴|AB|+|DE|的最小值为2|DE|=16,方法二:设直线l 1的倾斜角为θ,则l 2的倾斜角为 +θ,根据焦点弦长公式可得|AB|==|DE|===∴|AB|+|DE|=+==,∵0<sin 22θ≤1,∴当θ=45°时,|AB|+|DE|的最小,最小为16, 故选:A .【点评】本题考查了抛物线的简单性质以及直线和抛物线的位置关系,弦长公式,对于过焦点的弦,能熟练掌握相关的结论,解决问题事半功倍属于中档题. 11.(5分)(2017?新课标Ⅰ)设x 、y 、z 为正数,且2x =3y =5z ,则( )A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z【考点】72:不等式比较大小.【专题】35 :转化思想;51 :函数的性质及应用;59 :不等式的解法及应用.【分析】x、y、z为正数,令2x=3y=5z=k>1.lgk>0.可得x=,y=,z=.可得3y=,2x=,5z=.根据==,>=.即可得出大小关系.另解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.可得x=,y=,z=.==>1,可得2x>3y,同理可得5z>2x.【解答】解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x=,y=,z=.∴3y=,2x=,5z=.∵==,>=.∴>lg>>0.∴3y<2x<5z.另解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x=,y=,z=.∴==>1,可得2x>3y,==>1.可得5z>2x.综上可得:5z>2x>3y.解法三:对k取特殊值,也可以比较出大小关系.故选:D.【点评】本题考查了对数函数的单调性、换底公式、不等式的性质,考查了推理能力与计算能力,属于中档题.12.(5分)(2017?新课标Ⅰ)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是( ) A .440 B .330 C .220 D .110 【考点】8E :数列的求和.【专题】35 :转化思想;4R :转化法;54 :等差数列与等比数列.【分析】方法一:由数列的性质,求得数列{b n }的通项公式及前n 项和,可知当N 为时(n ∈N +),数列{a n }的前N 项和为数列{b n }的前n 项和,即为2n+1﹣n ﹣2,容易得到N >100时,n ≥14,分别判断,即可求得该款软件的激活码;方法二:由题意求得数列的每一项,及前n 项和S n =2n+1﹣2﹣n ,及项数,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n 消去即可,分别即可求得N 的值. 【解答】解:设该数列为{an },设b n =+…+=2n+1﹣1,(n ∈N +),则=a i ,由题意可设数列{a n }的前N 项和为S N ,数列{b n }的前n 项和为T n ,则T n =21﹣1+22﹣1+…+2n+1﹣1=2n+1﹣n ﹣2, 可知当N 为时(n ∈N +),数列{a n }的前N 项和为数列{b n }的前n 项和,即为2n+1﹣n ﹣2,容易得到N >100时,n ≥14, A 项,由=435,440=435+5,可知S 440=T 29+b 5=230﹣29﹣2+25﹣1=230,故A 项符合题意. B 项,仿上可知=325,可知S 330=T 25+b 5=226﹣25﹣2+25﹣1=226+4,显然不为2的整数幂,故B项不符合题意.C项,仿上可知=210,可知S220=T20+b10=221﹣20﹣2+210﹣1=221+210﹣23,显然不为2的整数幂,故C项不符合题意.D项,仿上可知=105,可知S110=T14+b5=215﹣14﹣2+25﹣1=215+15,显然不为2的整数幂,故D项不符合题意.故选A.方法二:由题意可知:,,,…,根据等比数列前n项和公式,求得每项和分别为:21﹣1,22﹣1,23﹣1,…,2n﹣1,每项含有的项数为:1,2,3,…,n,总共的项数为N=1+2+3+…+n=,所有项数的和为Sn:21﹣1+22﹣1+23﹣1+…+2n﹣1=(21+22+23+…+2n)﹣n=﹣n=2n+1﹣2﹣n,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,则①1+2+(﹣2﹣n)=0,解得:n=1,总共有+2=3,不满足N>100,②1+2+4+(﹣2﹣n)=0,解得:n=5,总共有+3=18,不满足N>100,③1+2+4+8+(﹣2﹣n)=0,解得:n=13,总共有+4=95,不满足N>100,④1+2+4+8+16+(﹣2﹣n)=0,解得:n=29,总共有+5=440,满足N>100,∴该款软件的激活码440.故选:A.【点评】本题考查数列的应用,等差数列与等比数列的前n项和,考查计算能力,属于难题.二、填空题:本题共4小题,每小题5分,共20分.13.(5分)(2017?新课标Ⅰ)已知向量,的夹角为60°,||=2,||=1,则|+2|= 2.【考点】9P:平面向量数量积的坐标表示、模、夹角.【专题】31 :数形结合;4O:定义法;5A :平面向量及应用.【分析】根据平面向量的数量积求出模长即可.【解答】解:【解法一】向量,的夹角为60°,且||=2,||=1,∴=+4?+4=22+4×2×1×cos60°+4×12=12,∴|+2|=2.【解法二】根据题意画出图形,如图所示;结合图形=+=+2;在△OAC中,由余弦定理得||==2,即|+2|=2.故答案为:2.【点评】本题考查了平面向量的数量积的应用问题,解题时应利用数量积求出模长,是基础题.14.(5分)(2017?新课标Ⅰ)设x,y满足约束条件,则z=3x﹣2y的最小值为﹣5 .【考点】7C:简单线性规划.【专题】11 :计算题;31 :数形结合;35 :转化思想;5T :不等式.【分析】由约束条件作出可行域,由图得到最优解,求出最优解的坐标,数形结合得答案.【解答】解:由x,y满足约束条件作出可行域如图,由图可知,目标函数的最优解为A,联立,解得A(﹣1,1).∴z=3x﹣2y的最小值为﹣3×1﹣2×1=﹣5.故答案为:﹣5.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.15.(5分)(2017?新课标Ⅰ)已知双曲线C:﹣=1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为.【考点】KC:双曲线的性质.【专题】11 :计算题;35 :转化思想;49 :综合法;5D :圆锥曲线的定义、性质与方程.【分析】利用已知条件,转化求解A到渐近线的距离,推出a,c的关系,然后求解双曲线的离心率即可.【解答】解:双曲线C:﹣=1(a>0,b>0)的右顶点为A(a,0),以A为圆心,b为半径做圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,可得A到渐近线bx+ay=0的距离为:bcos30°=,可得:=,即,可得离心率为:e=.故答案为:.【点评】本题考查双曲线的简单性质的应用,点到直线的距离公式以及圆的方程的应用,考查转化思想以及计算能力.16.(5分)(2017?新课标Ⅰ)如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为4cm3.【考点】LF:棱柱、棱锥、棱台的体积.【专题】11 :计算题;35 :转化思想;49 :综合法;5E :圆锥曲线中的最值与范围问题.【分析】由题,连接OD,交BC于点G,由题意得OD⊥BC,OG=BC,设OG=x,则=3,BC=2x,DG=5﹣x,三棱锥的高h=,求出S△ABCV==,令f(x)=25x4﹣10x5,x∈(0,),f′(x)=100x3﹣50x4,f(x)≤f(2)=80,由此能求出体积最大值.【解答】解:由题意,连接OD,交BC于点G,由题意得OD⊥BC,OG=BC,即OG的长度与BC的长度成正比,设OG=x,则BC=2x,DG=5﹣x,三棱锥的高h===,=3,则V===,令f(x)=25x4﹣10x5,x∈(0,),f′(x)=100x3﹣50x4,令f′(x)≥0,即x4﹣2x3≤0,解得x≤2,则f(x)≤f(2)=80,∴V≤=4cm3,∴体积最大值为4cm3.故答案为:4cm3.【点评】本题考查三棱锥的体积的最大值的求法,考查空间中线线、线面、面面间的位置关系、函数性质、导数等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)(2017?新课标Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.【考点】HP:正弦定理;HR:余弦定理.【专题】11 :计算题;33 :函数思想;4R:转化法;56 :三角函数的求值;58 :解三角形.【分析】(1)根据三角形面积公式和正弦定理可得答案,(2)根据两角余弦公式可得cosA=,即可求出A=,再根据正弦定理可得bc=8,根据余弦定理即可求出b+c,问题得以解决.【解答】解:(1)由三角形的面积公式可得S=acsinB=,△ABC∴3csinBsinA=2a,由正弦定理可得3sinCsinBsinA=2sinA,∵sinA≠0,∴sinBsinC=;(2)∵6cosBcosC=1,∴cosBcosC=,∴cosBcosC﹣sinBsinC=﹣=﹣,∴cos(B+C)=﹣,∴cosA=,∵0<A<π,∴A=,∵===2R==2,∴sinBsinC=?===,∴bc=8,∵a2=b2+c2﹣2bccosA,∴b2+c2﹣bc=9,∴(b+c)2=9+3cb=9+24=33,∴b+c=∴周长a+b+c=3+.【点评】本题考查了三角形的面积公式和两角和的余弦公式和诱导公式和正弦定理余弦定理,考查了学生的运算能力,属于中档题.18.(12分)(2017?新课标Ⅰ)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.【考点】MJ:二面角的平面角及求法;LY:平面与平面垂直.【专题】15 :综合题;31 :数形结合;41 :向量法;5G :空间角.【分析】(1)由已知可得PA⊥AB,PD⊥CD,再由AB∥CD,得AB⊥PD,利用线面垂直的判定可得AB⊥平面PAD,进一步得到平面PAB⊥平面PAD;(2)由已知可得四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,得到AB⊥AD,则四边形ABCD为矩形,设PA=AB=2a,则AD=.取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,求出平面PBC的一个法向量,再证明PD⊥平面PAB,得为平面PAB的一个法向量,由两法向量所成角的余弦值可得二面角A﹣PB﹣C的余弦值.【解答】(1)证明:∵∠BAP=∠CDP=90°,∴PA⊥AB,PD⊥CD,∵AB∥CD,∴AB⊥PD,又∵PA∩PD=P,且PA?平面PAD,PD?平面PAD,∴AB⊥平面PAD,又AB?平面PAB,∴平面PAB⊥平面PAD;(2)解:∵AB∥CD,AB=CD,∴四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,∴AB⊥AD,则四边形ABCD为矩形,在△APD中,由PA=PD,∠APD=90°,可得△PAD为等腰直角三角形,设PA=AB=2a,则AD=.取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,则:D(),B (),P(0,0,),C().,,.设平面PBC的一个法向量为,由,得,取y=1,得.∵AB⊥平面PAD,AD?平面PAD,∴AB⊥PD,又PD⊥PA,PA∩AB=A,∴PD⊥平面PAB,则为平面PAB 的一个法向量,.∴cos <>==.由图可知,二面角A﹣PB﹣C为钝角,∴二面角A﹣PB﹣C 的余弦值为.【点评】本题考查平面与平面垂直的判定,考查空间想象能力和思维能力,训练了利用空间向量求二面角的平面角,是中档题.19.(12分)(2017?新课标Ⅰ)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ﹣3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ﹣3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:经计算得==9.97,s==≈0.212,其中x为抽取的第i个零件的尺寸,i=1,2, (16)i用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除(﹣3+3)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ﹣3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592,≈0.09.【考点】CP:正态分布曲线的特点及曲线所表示的意义.【专题】11 :计算题;35 :转化思想;4A :数学模型法;5I :概率与统计.【分析】(1)通过P(X=0)可求出P(X≥1)=1﹣P(X=0)=0.0408,利用二项分布的期望公式计算可得结论;(2)(ⅰ)由(1)及知落在(μ﹣3σ,μ+3σ)之外为小概率事件可知该监控生产过程方法合理;(ⅱ)通过样本平均数、样本标准差s估计、可知(﹣3+3)=(9.334,10.606),进而需剔除(﹣3+3)之外的数据9.22,利用公式计算即得结论.【解答】解:(1)由题可知尺寸落在(μ﹣3σ,μ+3σ)之内的概率为0.9974,则落在(μ﹣3σ,μ+3σ)之外的概率为1﹣0.9974=0.0026,因为P(X=0)=×(1﹣0.9974)0×0.997416≈0.9592,所以P(X≥1)=1﹣P(X=0)=0.0408,又因为X~B(16,0.0026),所以E(X)=16×0.0026=0.0416;(2)(ⅰ)如果生产状态正常,一个零件尺寸在(﹣3+3)之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在(﹣3+3)之外的零件的概率只有0.0408,发生的概率很小.因此一旦发生这种状况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的. (ⅱ)由=9.97,s ≈0.212,得μ的估计值为=9.97,σ的估计值为=0.212,由样本数据可以看出一个 零件的尺寸在(﹣3+3)之外,因此需对当天的生产过程进行检查.剔除(﹣3+3)之外的数据9.22,剩下的数据的平均数为(16×9.97﹣9.22)=10.02, 因此μ的估计值为10.02.2=16×0.2122+16×9.972≈1591.134,剔除(﹣3+3)之外的数据9.22,剩下的数据的样本方差为(1591.134﹣9.222﹣15×10.022)≈0.008, 因此σ的估计值为≈0.09.【点评】本题考查正态分布,考查二项分布,考查方差、标准差,考查概率的计算,考查运算求解能力,注意解题方法的积累,属于中档题. 20.(12分)(2017?新课标Ⅰ)已知椭圆C :+=1(a >b >0),四点P 1(1,1),P 2(0,1),P 3(﹣1,),P 4(1,)中恰有三点在椭圆C 上.(1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为﹣1,证明:l 过定点.【考点】KI :圆锥曲线的综合;K3:椭圆的标准方程.【专题】14 :证明题;35 :转化思想;49 :综合法;5E :圆锥曲线中的最值与范围问题.【分析】(1)根据椭圆的对称性,得到P 2(0,1),P 3(﹣1,),P 4(1,)三点在椭圆C 上.把P 2(0,1),P 3(﹣1,)代入椭圆C ,求出a 2=4,b 2=1,由此能求出椭圆C 的方程.(2)当斜率不存在时,不满足;当斜率存在时,设l :y=kx+t ,(t ≠1),联立,得(1+4k 2)x 2+8ktx+4t 2﹣4=0,由此利用根的判别式、韦达定理、直线方程,结合已知条件能证明直线l 过定点(2,﹣1). 【解答】解:(1)根据椭圆的对称性,P 3(﹣1,),P 4(1,)两点必在椭圆C上,又P 4的横坐标为1,∴椭圆必不过P 1(1,1), ∴P 2(0,1),P 3(﹣1,),P 4(1,)三点在椭圆C 上.把P 2(0,1),P 3(﹣1,)代入椭圆C ,得:,解得a 2=4,b 2=1,∴椭圆C 的方程为=1.证明:(2)①当斜率不存在时,设l :x=m ,A (m ,y A ),B (m ,﹣y A ), ∵直线P 2A 与直线P 2B 的斜率的和为﹣1, ∴===﹣1,解得m=2,此时l 过椭圆右顶点,不存在两个交点,故不满足. ②当斜率存在时,设l :y=kx+t ,(t ≠1),A (x 1,y 1),B (x 2,y 2), 联立,整理,得(1+4k 2)x 2+8ktx+4t 2﹣4=0,,x 1x 2=,则==。
2017高考全国1卷理科数学试题与答案解析[精校解析版]
WORD 格式整理2016 年普通高等学校招生全国统一考试(全国卷Ⅰ)理科数学注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置. 用2B 铅笔将答题卡上试卷类型A 后的方框涂黑.2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑. 写在试题卷、草稿纸和答题卡上的非答题区域内均无效.3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内. 写在试题卷、草稿纸和答题卡上的非答题区域均无效.4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑.答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效.5、考试结束后,请将本试题卷和答题卡一并上交.第 Ⅰ 卷一 . 选择题:本大题共12 小题 ,每小题 5 分 ,在每小题给出的四个选项中,只有一项是符合题目要求的 .1.设集合Ax x 2 4x 3 0 ,x 2 x 3 0 ,则A B( A )3,3(B )3,3( C )1,3(D )3,322 2 22.设(1 i ) x1 yi ,其中x, y 是实数,则xyi(A )1(B )2(C )3(D )23.已知等差数列a n前 9 项的和为27,a 108,则a 100( A )100 (B )99 (C )98 (D )974.某公司的班车在 7:00,8:00,8:30 发车,小明在7:50 至 8:30 之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10 分钟的概率是( A ) 1( B ) 1(C ) 2( D ) 332 3 4x 2 y 21 表示双曲线,且该双曲线两焦点间的距离为4,则 n 的取值范围是5.已知方程n 3m 2m 2nWORD 格式整理(A)1,3(B)1, 3(C)0,3(D)0,36.如图 ,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径 .若该几何体的体积是28,则它的表面积是3(A)17(B)18(C)20(D)28函数 y2x2e x在2,2的图像大致为7.y y( A )1( B)12O 2x2O 2xy y11(C)2O 2 x(D)2O 2x8.若a b10,c 1,则( A )a c b c( B)ab c ba c( C )a log b c b log a c(D)log a c9.执行右面的程序框图 ,如果输入的x 0,y1, n 1 ,则输出x,y的值满足( A )y 2 x( B)y3x (C) y4x (D) y 5x10.以抛物线 C 的顶点为圆心的圆交 C 于 A、B两点,交 C的准线于D 、E 两点 .已知 |AB|= 4 2 ,|DE|= 2 5 ,则 C 的焦点到准线的距离为n=n+1(A)2(B)4(C)6(D)811.平面过正方体ABCD -A1B1C1D1的顶点 A,//平面 CB1D 1,I平面 ABCD =m, I平面 AB B1A1=n,则 m、n 所成角的正弦值为3231(A)(B)(C)(D)2233log b c开始输入x,y,nn-1x=x+ 2,y=nyx2+y2≥36?否是输出x,y结束WORD 格式整理12.已知函数f (x) sin(x+)(0,), x为 f (x) 的零点, x为 y f ( x) 图像244的对称轴,且 f ( x) 在5单调,则的最大值为18,36(A)11(B)9(C)7(D)5二、填空题:本大题共 3 小题 ,每小题 5 分13.设向量 a=(m,1), b=(1,2) ,且 |a+b|2=|a|2+|b|2,则 m=.14. (2 xx )5的展开式中,x3的系数是.(用数字填写答案)15.设等比数列a n满足a1+a3=10,a2+a4=5,则a1a2⋯a n的最大值为.16.某高科技企业生产产品 A 和产品 B 需要甲、乙两种新型材料.生产一件产品 A 需要甲材料 1.5kg,乙材料 1kg,用 5 个工时;生产一件产品 B 需要甲材料 0.5kg,乙材料 0.3kg ,用 3 个工时.生产一件产品 A 的利润为2100 元,生产一件产品 B 的利润为 900 元.该企业现有甲材料150kg,乙材料 90kg,则在不超过600 个工时的条件下,生产产品 A、产品 B 的利润之和的最大值为元.三.解答题:解答应写出文字说明 ,证明过程或演算步骤 .17.(本小题满分为 12 分)ABC 的内角A,B,C的对边分别为a, b, c,已知2cos C (a cos B+b cos A)c.( I)求 C;( II )若c7 ,ABC 的面积为3 3,求ABC 的周长.218.(本小题满分为12 分)如图,在以A,B,C,D, E, F 为顶点的五面体中,面ABEF 为正方形, AF =2FD ,AFD 90 ,且二面角D -AF -E 与二面角 C-BE-F 都是60.( I)证明:平面ABEF平面EFDC;( II )求二面角E-BC- A 的余弦值.DC FWORD 格式整理19.(本小题满分12 分)某公司计划购买 2 台机器 ,该种机器使用三年后即被淘汰.机器有一易损零件 ,在购进机器时,可以额外购买这种零件作为备件,每个 200 元 .在机器使用期间 ,如果备件不足再购买 ,则每个 500 元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了 100 台这种机器在三年使用期内更换的易损零件数,得下面柱状图:频数40200891011更换的易损零件数以这 100 台机器更换的易损零件数的频率代替1 台机器更换的易损零件数发生的概率,记X表示 2台机器三年内共需更换的易损零件数, n表示购买 2 台机器的同时购买的易损零件数.( I)求X的分布列;( II )若要求P( Xn)0.5 ,确定 n 的最小值;( III )以购买易损零件所需费用的期望值为决策依据,在n19 与 n20 之中选其一,应选用哪个?20.(本小题满分12 分)设圆x2y22x 15 0 的圆心为A,直线 l 过点 B( 1,0)且与 x 轴不重合, l 交圆 A 于 C,D 两点,过 B 作 AC 的平行线交AD 于点 E.( I)证明EA EB 为定值,并写出点E 的轨迹方程;( II )设点 E 的轨迹为曲线C1,直线 l 交 C1于 M ,N 两点,过 B 且与 l 垂直的直线与圆 A 交于 P,Q 两点,求四边形MPNQ 面积的取值范围.21.(本小题满分 12分)已知函数 f x x 2 e x2有两个零点 .a x 1(I) 求 a 的取值范围;(II) 设 x1,x2是f x 的两个零点,证明:x1x2 2 .WORD 格式整理请考生在22、 23、 24 题中任选一题作答,如果多做 ,则按所做的第一题计分.22.(本小题满分10 分)选修4-1:几何证明选讲如图,△ OAB 是等腰三角形,∠AOB=120°.以 O 为圆心,1OA为半径作圆. 2(I)证明:直线 AB 与⊙ O 相切;(II)点 C,D 在⊙ O 上,且 A, B, C, D 四点共圆,证明: AB∥ CD.D COAB23.(本小题满分10 分)选修4— 4:坐标系与参数方程在直角坐标系 x y 中,曲线 C1的参数方程为x a cost( t 为参数, a> 0).y 1 a sin t在以坐标原点为极点, x 轴正半轴为极轴的极坐标系中,曲线C2:ρ= 4cos .( I)说明 C1是哪一种曲线,并将C1的方程化为极坐标方程;( II )直线 C3的极坐标方程为0 ,其中0满足 tan0 =2 ,若曲线 C1与 C2的公共点都在 C3上,求 a.24.(本小题满分10 分)选修4— 5:不等式选讲已知函数 f xx 1 2x3 .( I)画出yf x 的图像;( II )求不等式f x1 的解集.WORD 格式整理2016 年高考全国 1 卷理科数学参考答案题号123456789101112答案D B C B A A D C C B A B1. A x x2 4 x 3 0x 1 x 3 , B x 2 x 3 0x x 3 .2故 A B x 3x3.2故选 D.2.由 1i x1yi 可知: x xi1yi ,故x1 ,解得:x 1 .x y y1所以, x yi x2y2 2 .故选 B.3. 由等差数列性质可知:S99 a1a992a59a5 27,故 a5 3 ,22而 a108,因此公差 d a10a51 105∴ a100a1090d98 .故选 C.4.如图所示,画出时间轴:7:307:407:508:008:108:208:30A C D B小明到达的时间会随机的落在图中线段AB 中,而当他的到达时间落在线段AC 或 DB 时,才能保证他等车的时间不超过10 分钟根据几何概型,所求概率 P10 10 1 .402故选 B.WORD 格式整理5.x 2 y 21 表示双曲线,则m 2n 3m 2n 0m 2n 3m 2n∴ m 2 n 3m 2由双曲线性质知: c 2m 2 n 3m 2 n 4m 2,其中c 是半焦距∴焦距 2c 2 2 m 4 ,解得 m 1∴ 1 n 3故选 A .6. 原立体图如图所示:是一个球被切掉左上角的1后的三视图8表面积是7的球面面积和三个扇形面积之和8S=7422 +3 122 =1784 故选 A .7. f 28 e 2 8 2.82 0,排除Af2 8 e 28 2.721 ,排除 Bx 0 时,f x2x2e xf x4x e x,当x0,1时, f x1 4 e 044因此 f x 在 0,1单调递减,排除C4故选 D .8. 对A :由于 0 c1 ,∴函数 y x c 在R 上单调递增,因此 a b 1a cb c ,A 错误对 B :由于 1c 1 0 ,∴函数c 1上单调递减,y x 在 1,∴ a b 1 a c 1b c 1ba c ab c ,B 错误WORD 格式整理对 C:要比较alog b c和blog a c,只需比较a ln c和 bln c,只需比较ln c 和ln c,只需 bln b ln b ln a bln b aln a和 a ln a构造函数 f x x ln x x 1 ,则 f 'x ln x 1 1 0 , f x 在 1,上单调递增,因此 f a f b 0aln a bln b011 a ln a b ln b又由 0 c 1得 ln c0 ,∴ln caln a 对 D:要比较log a c和log b c,只需比较ln cblog a c a log b c ,C正确b ln bln c 和 ln cln a ln b而函数 y ln x 在 1,上单调递增,故a b 1ln a ln b11 0ln bln a又由 0c1得 ln c0 ,∴ln cln c log a c log b c ,D错误ln a ln b故选 C.9. 如下表:循环节运x x x n 1判断是否y y ny n n n 1行次数222输出x y36运行前01//1第一次01否否2第二次12否否3 2第三次36是是2输出 x 3, y 6 ,满足 y4x 2故选 C.10.以开口向右的抛物线为例来解答,其他开口同理设抛物线为y2 2 px p 0 ,设圆的方程为x2y2r 2,题目条件翻译如图:设 A x0 ,2 2 ,D p, 5 ,2WORD 格式整理点 A x0 ,22在抛物线 y2 2 px 上,∴8 2 px0⋯⋯①p ,p2点 D5在圆 x2y2r2上,∴ 5r 2⋯⋯②22点 A x0 ,2222228 r2在圆 x y r上,∴ x0⋯⋯③联立①②③解得: p 4 ,焦点到准线的距离为p 4 .故选 B.D CαBA11.如图所示:∵∥平面 CB1D1,∴若设平面 CB1 D1平面 ABCD m1,C1D 1则 m1∥ mA1B1又∵平面ABCD∥平面1111,结合平面B1D1C 平面 1 1 1 1 1ABCD A1BC D BD ∴B1D1∥m1,故 B1D1∥m同理可得: CD1∥n故 m 、 n 的所成角的大小与B1 D1、 CD1所成角的大小相等,即CD1B1的大小.而 B1C B1D1CD1(均为面对交线),因此CD1 B1,即 sin CD1 B1 3 .32故选 A.12. 由题意知:π +k π41π +k2π+π42则2k 1 ,其中 k Zf ( x) 在π,5π单调,518π T ,12 18 3636122接下来用排除法若11,πsin 11xππ 3π3π, 5π递减,不满,此时 f (x), f (x) 在,递增,在44184444 36足 f ( x) 在π 5π单调,3618WORD 格式整理若9,π sin 9xπ ,满足 f ( x) 在π 5π单调递减,此时 f ( x)418 ,436故选 B .13.-2 14.1015. 6416. 21600013. 由已知得: a bm 1,32 22232 m 2 12 1222,解得 m∴ abab m 2 .1 14.设展开式的第k1项为 T k1, k0,1,2,3,4,55 kk5 k∴ T k 1 C 5k xC 5k 25 k x 2.2 xk4 ,即 T5 C 54255 4当 5 3 时, k4x210x 32故答案为 10.15. 由于 a n 是等比数列,设a na 1q n 1,其中a 1是首项,q 是公比.a 1 a 3 10 a 1 a 1q 210a 1 8 ∴a 4 5a 1q a 1q3,解得: q 1 .a 25 21 n 43 2 ... n 4故 a n,∴ a 1 a 2 ...11 2a n221n n 72121n 7249 2 243或4时,121当 nn749取到最小值6 ,此时22421n 7 2 492 24取到最大值26.所以 a 1 a 2 ... a n 的最大值为64.16.设生产A 产品x 件,B 产品y 件,根据所耗费的材料要求、工时要求等其他限制条件,构造线专业技术参考资料WORD 格式整理目标函数 z2100 x900 y作出可行域为图中的四边形,包括边界,顶点为(60,100) (0,200) (0,0) (90,0)在 (60,100) 处取得最大值,z2100 6090010021600017. 解:⑴2cos C a cos B b cos A c由正弦定理得: 2cos C sin A cos B sin B cos A sin C2cos C sin A B sin C∵ A B C π,A、B、C0 ,π∴ sin A B sin C0∴ 2cosC 1 , cosC 1 2∵ C0 ,π∴ C π3⑵ 由余弦定理得:c2 a 2b2 2 ab cosC7a2b22ab12a b23ab7S 1ab sin C333 2ab24∴ ab62∴ a b187a b 5∴△ ABC 周长为 a b c 57WORD 格式整理18.解:(1)∵ ABEF为正方形∴ A FE F∵AFD 90∴AF DF∵ DF EF=F∴AF 面 EFDCAF面 ABEF∴平面 ABEF平面EFDC⑵ 由⑴知DFECEF 60∵AB∥EFAB平面 EFDCEF平面 EFDC∴AB ∥平面 ABCDAB平面 ABCD∵面 ABCD面EFDC CD∴AB∥CD∴CD∥EF∴四边形 EFDC 为等腰梯形以 E 为原点,如图建立坐标系,设FD aE 0 ,0,0 B 0 ,2a ,0C a ,,3 A 2a,a2,022EB 0 ,2a ,0 , BC a, 2a ,3a, AB2a ,0 ,0 22设面 BEC 法向量为m x ,y ,z .m EB 0 ,即2a y10ax12ay13a z10x1 3 , y10, z11m BC 022 m3,0, 1设面 ABC 法向量为n x2,y2,z2n BC=0a3.即2x2 2 ay22az20x20 , y23, z24n AB 02ax20WORD 格式整理n0, 3,4设二面角 E BC A的大小为.cosm n4219m n 3 1 3 1619∴二面角 E BC A 的余弦值为219 1919解:⑴每台机器更换的易损零件数为8, 9, 10, 11记事件 A i为第一台机器 3 年内换掉i7个零件 i1,2,3,4记事件 B i为第二台机器 3 年内换掉i7 个零件i1,2,3,4由题知 P A1P A3P A4P B1P B3P B40.2, P A2P B20.4设 2 台机器共需更换的易损零件数的随机变量为X ,则 X 的可能的取值为16, 17, 18,19, 20, 21, 22P X16P A1P B10.20.20.04P X17P A1P B2PA2PB10.20.40.40.20.16P X18P A1P B3PA2PB2P A3P B10.20.2 0.20.20.40.40.24P X19P A1P B4PA2PB3P A3P B2PA4PB10.20.20.20.2 0.4 0.20.2 0.40.24P X20P A2 P x21P A3 P x22P A4XP B4P A3 P B3P A4 P B20.40.2 0.2 0.4 0.2 0.2 0.2 P B4P A4P B30.20.20.20.20.08P B40.20.20.0416171819202122P0.040.160.240.240.20.080.04⑵要令 P x ≤ n ≥ 0.5 ,0.04 0.16 0.240.5 , 0.040.160.24 0.24≥ 0.5则 n 的最小值为19⑶购买零件所需费用含两部分,一部分为购买机器时购买零件的费用,另一部分为备件不足时额外购买的费用当 n19 时,费用的期望为192005000.2 1000 0.08 1500 0.044040当 n20时,费用的期望为202005000.08 1000 0.04 4080所以应选用 n1920. (1)圆A整理为 x2y216,A 坐标1,0,如图,1BE∥AC ,则∠C∠EBD ,由AC AD,则∠ D ∠C ,∠EBD ∠D,则 EB ED AEEBAEEDAD4CABE122专业技术参考资料WORD 格式整理x2y2my 1 ,⑵ C1: 1 ;设 l : x43P 因为 PQ⊥ l ,设 PQ : y m x 1 ,联立l与椭圆C1ANx my1B 2222得 3m4y6my9 0;x y M Q431则| MN | 1 m2 | y M y N | 1 m236m236 3m2412 m21;3m243m24圆心 A 到PQ距离d|m 1 1 || 2m |,1m21m2所以 |PQ| 2 |AQ|2 d 2 2 16 4 m2 4 3m2 4 ,1 m2 1 m2S MPNQ 11 12 m21 4 3m2 4 24 m2124112,8 3 |MN | |PQ|2221223m4431 m3m1m221. (Ⅰ)f '( x)( x1)e x2a( x1)( x 1)(e x2a).( i)设a0 ,则 f (x)(x 2)e x,f ( x)只有一个零点.( ii)设a0 ,则当x(,1) 时, f'(x)0 ;当 x(1,) 时, f '(x)0.所以 f ( x) 在 ( ,1)上单调递减,在 (1,)上单调递增.又 f (1) e , f (2) a ,取 b 满足b0且 b ln a,则a(b 2)32f (b)a(b1)2a(b2b)0 ,22( iii)设a0 ,由f '(x)0 得x 1 或x ln(2a).若 a e,则 ln(2a) 1 ,故当 x(1,) 时, f '(x) 0 ,因此 f (x) 在 (1,) 上单调递增.又2专业技术参考资料WORD 格式整理当x1f (x)0,所以f ( x)不存在两个零点.时,若 a e1 ,故当x (1,ln( 2a)) 时, f '(x)0 ;当 x (ln( 2a),) 时,,则 ln( 2a)2f '(x)0 .因此 f (x) 在 (1,ln(2a)) 单调递减,在 (ln( 2a),) 单调递增.又当x 1 时,f (x)0,所以 f ( x) 不存在两个零点.综上, a 的取值范围为(0,) .()不妨设 x1x2,由(Ⅰ)知 x1(,1) , x2(1,) , 2x2(,1) , f ( x) 在 (,1) 上单调递减,所以 x1x22等价于 f( x1 ) f (2x2 ) ,即 f (2x2 ) 0 .由于 f (2x2 )x2e2x2a( x21)2,而 f (x2 )( x22)e x2a( x21)20 ,所以f (2 x2 )x2e2 x2( x22)e x2.设 g( x)xe2 x( x2)e x,则 g (x) ( x 1)(e2 x e x ) .所以当 x 1 时,g ( x)0 ,而 g (1)0 ,故当x 1 时,g(x)0 .从而 g(x2 ) f (2 x2 )0 ,故 x1x2 2 .22.⑴设圆的半径为r,作OK AB于 K∵ OA OB , AOB120∴ OK AB , A 30 ,OK OA sin30OAr 2∴ AB与⊙O相切⑵方法一:假设 CD 与 AB 不平行CD与AB交于 F2FKFC FD①∵ A 、B 、C 、D 四点共圆∴FC FD FA FBFK AK FK BK ∵AK BKWORD 格式整理∴ FC FDFK AK FK AKFK 2AK 2② 由①②可知矛盾∴AB∥CD方法二:因为 A, B, C, D四点共圆,不妨设圆心为T ,因为OA OB,TA TB,O,T为 AB 的中垂线上,所以同理OC OD,TC 所以OT为 CD的中垂线,所以AB∥CD.TD,x a cost( t均为参数)23.⑴1 a sin ty∴ x2y2a2①1∴C1为以0 ,1 为圆心,a为半径的圆.方程为x2y2 2 y 1 a 20∵ x2y22,y sin∴2 2 sin 1 a20即为 C1的极坐标方程⑵ C2:4cos两边同乘得24cos2x2y2, cos x224 x即 x 22y24②x yC3:化为普通方程为y 2x由题意: C1和 C2的公共方程所在直线即为 C3①—②得: 4 x 2y 1a20 ,即为C3∴ 1 a 20∴ a124.⑴如图所示:x 4 ,x ≤ 1⑵ f x3x 2 , 1 x 3 24x,x ≥32f x1当 x ≤ 1 ,x4 1 ,解得x5 或 x 3∴ x ≤ 1WORD 格式整理当 1x 32 1 ,解得x 1或x1, 3 x3 2∴ 1x 1x3或 12 3当 x ≥3, 4 x 1 ,解得x 5 或 x3 2∴3≤ x3或 x5 2综上, x 1或 1x 3 或 x5 3∴ f x 1 ,解集为,1 1 ,35,每项建议案实施完毕,实施部门应根据结果写出总结报告,实事求是的说明产生的经济3效益或者其他积极效果,呈报总经办。
2017年北京市高考理科数学试卷及答案
绝密★启封并使用完毕前2017年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)若集合A={x|–2x1},B={x|x–1或x3},则AB=(A){x|–2x–1} (B){x|–2x3}(C){x|–1x1} (D){x|1x3}(2)若复数(1–i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围是(A)(–∞,1)(B)(–∞,–1)(C)(1,+∞)(D)(–1,+∞)(3)执行如图所示的程序框图,输出的s值为(A)2(B)3 2(C )53(D )85(4)若x ,y 满足,则x + 2y 的最大值为(A )1 (B )3 (C )5 (D )9(5)已知函数1(x)33xx f ⎛⎫=- ⎪⎝⎭,则(x)f(A )是奇函数,且在R 上是增函数 (B )是偶函数,且在R 上是增函数 (C )是奇函数,且在R 上是减函数(D )是偶函数,且在R 上是减函数(6)设m,n 为非零向量,则“存在负数λ,使得m n λ=”是“m n 0⋅<”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(7)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为(A )32 (B )23 (C )22 (D )2(8)根据有关资料,围棋状态空间复杂度的上限M 约为,而可观测宇宙中普通物质的原子总数N 约为.则下列各数中与MN最接近的是 (参考数据:lg3≈0.48)(A )1033 (B )1053 (C )1073 (D )1093第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
2017高考全国卷1数学试题及答案解析(理科)
2017年普通高等学校招生全国统一考试(全国I 卷)理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、 选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知集合{}{}131x A x x B x =<=<,,则() A .{}0=<A B x x B .AB =RC .{}1=>A B x xD .A B =∅2. 如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分位于正方形的中心成中心对称,在正方形内随机取一点,则此点取自黑色部分的概率是()A .14B .π8C .12D .π43. 设有下面四个命题,则正确的是()1p :若复数z 满足1z∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12z z ,满足12z z ∈R ,则12z z =; 4p :若复数z ∈R ,则z ∈R .A .13p p ,B .14p p ,C .23p p ,D .24p p , 4. 记n S 为等差数列{}n a 的前n 项和,若4562448a a S +==,,则{}n a 的公差为() A .1B .2C .4D .85. 函数()f x 在()-∞+∞,单调递减,且为奇函数.若()11f =-,则满足()121f x --≤≤的x的取值范围是() A .[]22-,B .[]11-,C .[]04,D .[]13,6.()62111x x ⎛⎫++ ⎪⎝⎭展开式中2x 的系数为A .15B .20C .30D .357. 某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形、该多面体的各个面中有若干是梯形,这些梯形的面积之和为A .10B .12C .14D .16 8. 右面程序框图是为了求出满足321000n n ->的最小偶数n ,那么在和两个空白框中,可以分别填入A .1000A >和1n n =+B .1000A >和2n n =+C .1000A ≤和1n n =+D .1000A ≤和2n n =+9. 已知曲线1:cos C y x =,22π:sin 23C y x ⎛⎫=+ ⎪⎝⎭,则下面结论正确的是()A .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2CB .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2CC .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2CD .把1C 上各点的横坐标缩短到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2C10. 已知F 为抛物线C :24y x =的交点,过F 作两条互相垂直1l ,2l ,直线1l 与C 交于A 、B 两点,直线2l 与C 交于D ,E 两点,AB DE +的最小值为()A .16B .14C .12D .1011. 设x ,y ,z 为正数,且235x y z ==,则()A .235x y z <<B .523z x y <<C .352y z x<<D .325y x z <<12. 几位大学生响应国家的创业号召,开发了一款应用软件,为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动,这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是02,接下来的两项是02,12,在接下来的三项式62,12,22,依次类推,求满足如下条件的最小整数N :100N >且该数列的前N 项和为2的整数幂.那么该款软件的激活码是( )A .440B .330C .220D .110 二、 填空题:本题共4小题,每小题5分,共20分。
(完整版)2017年高考北京理科数学试题及答案(解析版),推荐文档
2017 年普通高等学校招生全国统一考试(北京卷) 数学(理科)第一部分(选择题 共 40 分)一、选择题:本大题共 8 小题,每小题 5 分,共 40 分,在每小题列出的四个选项中,选出符合题目要求的一项.(1)【2017 年北京,理 1,5 分】若集合 A {x | –2 x 1} , B {x | x –1或x 3},则 A B =( )(A) {x | –2 x 1}(B) {x | –2 x 3}(C) {x | –1 x 1}(D) {x |1 x 3}【答案】A【解析】 A B x 2 x 1,故选 A.() 【2017 年北京,理 2,5 分】若复数 1 ia i 在复平面内对应的点在第二象限,则实数 a 的取值范围是()(A) ,1(B) , 1(C)1, (D)1, 【答案】B【解析】z1iaia11ai,因为对应的点在第二象限,所以a1 0,解得: a 1 ,故选1 a 0B.() 【2017 年北京,理 3,5 分】执行如图所示的程序框图,输出的 s 值为( )(A)23 (B)2(C) 5 3(D)8 5【答案】C【解析】k 0 时,0 3 成立,第一次进入循环11k 1, s 2 ,1 3 成立,第二次进入循环,1k2, s2 13,23成立,第三次进入循环k3,s3 21 5,33否,输出22332s5,3故选 C.x 3,() 【2017 年北京,理 4,5 分】若 x y 满足 x y 2,则 x 2 y 的最大值为( ),y x,(A)1(B)3(C)5(D)9【答案】D【解析】如图,画出可行域, z x 2 y 表示斜率为 1 的一组平行线,当过点 C 3, 3时,2目标函数取得最大值zmax323 f(9x),故3x选 (1D.() 【2017 年北京,理 5,5 分】已知函 数)x ,则 f (x) ( ) 3 (B)是偶函数,且在 R 上是增函数(A)是奇函数,且在 R 上是增函数(D)是偶函数,且在 R 上是减函数(C)是奇函数,且在 R 上是减函数【答案】A1【解析】 f x 3x 1x 1 x 3x f x,所以函数是奇函数,并且 3x 是增函数, 1x 是减函数,根 3 3 3 据增函数-减函数=增函数,所以函数是增函数故选 A.() 【2017 年北京,理 6,5 分】设 m,n 为非零向量,则“存在负数 ,使得 m n”是“ m n < 0 ”的()(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件【答案】A【解析】若 0 ,使m n,即两向量反向,夹角是1800,那么m n m n cos1800 m n0,反过来, 若 m n0,那么两向量的夹角为900,1800,KS5U 并不一定反向,即不一定存在负数 ,使得m n,所以是充分不必要条件,故选 A.() 【2017 年北京,理 7,5 分】某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为 ()(A) 3 2(B) 2 3(C) 2 2(D)2【答案】B【解析】几何体是四棱锥,如图,红色线为三视图还原后的几何体,最长的棱长为正方体的对角线, l 22 22 22 2 3 ,故选 B.() 【2017 年北京,理 8,5 分】根据有关资料,围棋状态空间复杂度的上限 M 约为 3361 , 而可M观 (测参宇考宙数中据普:通lg物3质 0的.4原8 子)总数 N 约为1080 .则下列各数中与 N 最接近的是( )(A) 1033【答案】D【解析】设 M x 3361N1080(B) 1053(C) 1073(D) 109333613618093.28,两边取对数,lgxlg 1080lg 3 lg10 361 lg 3 80 93.28 ,所以 x 10,即 M 最接近1093 ,故选 D. N第二部分(非选择题 共 110 分)二、填空题:共 6 小题,每小题 5 分,共 30 分。
北京市石景山区高三3月统一练习(一模)——数学理数学
北京市石景山区2017届高三3月统一练习(一模)数学(理)试题第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合,,那么等于( )A .B .C .D .2.已知实数满足620x y x y x y +≤⎧⎪-≤⎪⎨≥⎪⎪≥⎩,则的最大值是( )A .4B .6C .10D .123.直线被圆所截得的弦长为( )A .1B .C .2D .44.设,“”是“”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.我国南宋数学家秦九韶(约公元1202—1261年)给出了求次多项式1110n n n n a x a x a x a --++++当时的值的一种简捷算法,该算法被后人命名为“秦九韶算法”.例如,可将3次多项式改写为: 3210(())a x a x a x a =+++之后进行求值.运行如图所示的程序框图,能求得多项式( )的值.A .B .4322345x x x x ++++C .D .6.某三棱锥的三视图如图所示,则该三棱锥的表面积是( )A .B .C .D .57.如图,在矩形中,,,点为的中点,点在边上,若,则的值是( )A .B .1C .D .28.如图,将正三角形分割成个边长为1的小正三角形和一个灰色菱形,这个灰色菱形可以分割成个边长为1的小正三角形.若,则三角形的边长是( )A .10B .11C .12D .13第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分.9.若复数是纯虚数,则实数 .10.在数列中,,,那么等于 .11.若抛物线的焦点与双曲线的右顶点重合,则 .12.如果将函数()sin(3)(0)f x x ϕπϕ=+-<<的图象向左平移个单位所得到的图象关于原点对称,那么 .13.将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,则不同的分法的总数是 .(用数字做答)14.已知42(),()4,a x x a x f x x x a x ⎧-+<⎪⎪=⎨⎪-≥⎪⎩. ①当时,,则 ;②当时,若有三个不等实数根,且它们成等差数列,则 .三、解答题共6小题,共80分.解答应写出文字说明、演算步骤或证明过程.15.已知分别是的三个内角的三条对边,且.(Ⅰ)求角的大小;(Ⅱ)求的最大值.16.某超市从现有甲、乙两种酸奶的日销售量(单位:箱)的1200个数据(数据均在区间内)中,按照5%的比例进行分层抽样,统计结果按,,,,分组,整理如下图:(Ⅰ)写出频率分布直方图(图乙)中的值;记所抽取样本中甲种酸奶与乙种酸奶日销售量的方差分别为,,试比较与的大小(只需写出结论);(Ⅱ)从甲种酸奶日销售量在区间的数据样本中抽取3个,记在内的数据个数为,求的分布列;(Ⅲ)估计1200个日销售量数据中,数据在区间中的个数.17.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马中,侧棱底面,且,为中点,点在上,且平面,连接,.(Ⅰ)证明:平面;(Ⅱ)试判断四面体是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;(Ⅲ)已知,,求二面角的余弦值.18.已知函数.(Ⅰ)求曲线在点处的切线方程;(Ⅱ)求证:当时,;(Ⅲ)若对任意恒成立,求实数的最大值.19.已知椭圆2222:1(0)x y E a b a b+=>>过点,且离心率为. (Ⅰ)求椭圆的方程;(Ⅱ)设直线与椭圆交于、两点,以为对角线作正方形,记直线与轴的交点为,问、两点间距离是否为定值?如果是,求出定值;如果不是,请说明理由.20.已知集合{}{}12(,,,),0,1,1,2,,n n i R X X x x x x i n ==∈=.对于12(,,,)n n A a a a R =∈,12(,,,)n n B b b b R =∈,定义与之间的距离为1122(,)n n d A B a b a b a b =-+-+-. (Ⅰ)写出中的所有元素,并求两元素间的距离的最大值;(Ⅱ)若集合满足:,且任意两元素间的距离均为2,求集合中元素个数的最大值并写出此时的集合; (Ⅲ)设集合,中有个元素,记中所有两元素间的距离的平均值为,证明.试卷答案一、选择题1-5:DCBAA 6-8:BCC二、填空题9.1 10.-2 11.4 12.13.36 14.4,三、解答题15.解:(Ⅰ)因为,所以2221 cos22a b cCab+-==.又因为,所以.(Ⅱ)由(Ⅰ)知,又,所以且,故2cos cos cos cos()3A B A Aπ+=+-22cos cos cos sin sin33A A Aππ=++1cos sin()26A A Aπ=+=+.又,,所以当即时,的最大值为1.16.解:(Ⅰ)由图(乙)知,10(0.020.030.0250.015)1a++++=解得,.(Ⅱ)的所有可能取值1,2,3.则,2142363(2)5C CP XC===,3042361(3)5C CP XC===,其分布列如下:(Ⅲ)由图(甲)知,甲种酸奶的数据共抽取个,其中有4个数据在区间内,又因为分层抽样共抽取了个数据,乙种酸奶的数据共抽取个,由(Ⅰ)知,乙种酸奶的日销售量数据在区间内的频率为0.1,故乙种酸奶的日销售量数据在区间内有个.故抽取的60个数据,共有个数据在区间内.所以,在1200个数据中,在区间内的数据有160个.17.(Ⅰ)因为面,面,所以.因为四边形为矩形,所以.,所以面.面,,在中,,为中点,所以.,所以面.(Ⅱ)四面体是鳖臑,其中,.(Ⅲ)以,,所在直线为轴,轴,轴建立空间直角坐标系.,,,,.设,则(2)F λ.得解得.所以.设平面的法向量,n DF n DA ⎧⊥⎪⇒⎨⊥⎪⎩1024420x y z x ⎧++=⎪⎨⎪=⎩令得,. 平面的法向量,平面的法向量,,10n DPDP n DP >=== 二面角的余弦值为.18.解:(Ⅰ),,又,所以切线方程为;(Ⅱ)由题意知,令.22111'()x g x x x x-=-= 令,解得.易知当时,,易知当时,.即在单调递减,在单调递增所以, 即1()()(1)0g x f x x =--≥,即.(Ⅲ)设()11n (1)h x x a x x =--≥,依题意,对于任意,恒成立.,时,,在上单调递增,当时,,满足题意.时,随变化,,的变化情况如下表:在上单调递减,所以即当时,总存在,不合题意.综上所述,实数的最大值为1.19.解:(Ⅰ)设椭圆的半焦距为.因为点在椭圆上,所以.故.又因为,所以,.所以椭圆的标准方程为:.(Ⅱ)设,,线段中点为.联立和,得: 222220x mx m ++-=. 由222(2)4(22)840m m m ∆=--=->,可得.所以,.所以中点为.弦长AC == 又直线与轴的交点,所以MN ==所以222BN BM MN =+221542AC MN =+=. 所以、两点间距离为定值.20.解:(Ⅰ){}2(0,0),(0,1),(1,0),(1,1)R =,,.(Ⅱ)中含有8个元素,可将其看成正方体的8个顶点,已知集合中的元素所对应的点,应该两两位于该正方体面对角线的两个端点,所以{}(0,0,0),(1,1,0),(1,0,1),(0,1,1)M =或{}(0,0,1),(0,1,0),(1,0,0),(1,1,1)M =,集合中元素个数最大值为4. (Ⅲ)2,1()(,)A B Pm d P d A B C ∈=∑,其中表示中所有两个元素间距离的总和.设中所有元素的第个位置的数字中共有个1,个0,则,1(,)()ni i A B P i d A B t m t ∈==-∑∑ 由于 所以2,1(,)()4ni iA B P i nm d A B t m t ∈==-≤∑∑ 从而222,1()(,)42(1)A B P m m nm nm d P d A B C C m ∈=≤=-∑【注:若有其它解法,请酌情给分】。
北京市石景山2017届高三一模数学(理)试题【含答案】
北京石景山区高三年级2016-2017学年度第一次综合练习数学试卷(理科)2017.3一、选择题:共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知集合{}210A x x =-<,{}01B x x =≤≤,那么A B =I ( ) A .{}0x x ≥B .{}1x x ≤C .102x x ⎧⎫<<⎨⎬⎩⎭D .102x x ⎧⎫≤<⎨⎬⎩⎭2.已知实数x y ,满足0620x y x y x y +≤⎧⎪-≤⎪⎨≥⎪⎪≥⎩,则2z x y =+的最大值是( )A .4B .6C .10D .123.直线1cos 2ρθ=被圆1ρ=所截得的弦长为( )A .1BC .2D .44.设R θ∈,“sin cos θθ=”是“cos 20θ=”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件5.我国南宋数学家秦九韶(约公元1202-1261年)给出了求()n n N *∈次多项式11n n n n a x a x --++10a x a ++,当0x x =时的值的一种简捷算法,该算法被后人命名为“秦九韶算法”.例如,可将3次多项式改写为:()()323210321a x a x a x a a x a x a x a +++=+++之后进行求值.运行如图所示的程序框图,能求得多项式( )的值. A .432234x x x x ++++ B .4322345x x x x ++++ C .3223x x x +++D .32234x x x +++6.某三棱锥的三视图如图所示,则该三棱锥的表面积是( ) A.2+B.2+C.4+D .57.如图,在矩形ABCD中,2AB BC ==,点E 为BC 的中点,点F 在边CD 上,若AB AF ⋅=uu u r uu u r AE BF ⋅uu u r uu u r的值是( )A.2B .1CD .28.如图,将正ABC ∆分割成m 个边长为1的小正三角形和一个灰色菱形,这个灰色菱形可以分割成n 个边长为1的小正三角形.若:47:25m n =,则ABC ∆的边长是( ) A .10B .11C .12D .13二、填空题共6小题,每小题5分,共30分. 9.若复数1a ii+-是纯虚数,则实数a = . 10.在数列{}n a 中,11a =,()12123n n a a n +⋅=-=,,,,那么8a = . 11.若抛物线22y px =的焦点与双曲线2214x y -=的右顶点重合,则p = . 12.如果将函数()()()sin 30f x x ϕπϕ=+-<<的图象向左平移12π个单位所得到的图象关于原点对称,那么ϕ= .13.将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,则不同的分法的总数是 .(用数字做答)14.已知()424a x x a x f x x x a x ⎧⎛⎫-+< ⎪⎪⎪⎝⎭=⎨⎪-≥⎪⎩,,. ①当1a =时,()3f x =,则x = ;②当1a ≤-时,若()3f x =有三个不等实数根,且它们成等差数列,则a = .三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题共13分)已知a b c 、、分别是ABC ∆的三个内角A B C 、、的三条对边,且222c a b ab =+-. (Ⅰ)求角C 的大小;(Ⅱ)求B A cos cos +的最大值.某超市从现有甲、乙两种酸奶的日销售量(单位:箱)的1200个数据(数据均在区间(0,50]内)中,按照5%的比例进行分层抽样,统计结果按(]010, ,(]1020, ,(]2030, ,(]3040, ,(]4050, 分组,整理如下图:(Ⅰ)写出频率分布直方图(图乙)中a 的值;记所抽取样本中甲种酸奶与乙种酸奶日销售量的方差分别为21s ,22s ,试比较21s 与22s 的大小(只需写出结论);(Ⅱ)从甲种酸奶日销售量在区间(]020, 的数据样本中抽取3个,记在(]010, 内的数据个数为X ,求X 的分布列;(Ⅲ)估计1200个日销售量数据中,数据在区间(]010, 中的个数.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑(bi ē n ào ).如图,在阳马P ABCD -中,侧棱PD ⊥底面ABCD ,且PD C D =,E 为PC 中点,点F 在PB 上,且PB ⊥平面DEF ,连接BD ,BE .(Ⅰ)证明:DE ⊥平面PBC ;(Ⅱ)试判断四面体DBEF 是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;(Ⅲ)已知2AD CD ==,F AD B --的余弦值.已知函数()ln f x x =.(Ⅰ)求曲线()y f x =在点()()11f ,处的切线方程; (Ⅱ)求证:当0x >时,()11f x x≥-;(Ⅲ)若1ln x a x ->对任意1x >恒成立,求实数a 的最大值.已知椭圆()2222:10x y E a b a b +=>>过点()01, ,且离心率为2.(Ⅰ)求椭圆E 的方程; (Ⅱ)设直线1:2l y x m =+与椭圆E 交于A C 、两点,以AC 为对角线作正方形ABCD ,记直线l 与x 轴的交点为N ,问B N 、两点间距离是否为定值?如果是,求出定值;如果不是,请说明理由.已知集合(){}{}()1201122nn i R X X x x x x i n n ==∈=≥,,,,,,,,,.对于 ()12n n A a a a R =∈,,,,()12n n B b b b R =∈,,,定义A 与B 之间的距离为()11221nn n i i i d A B a b a b a b a b ==-+-+-=-∑,.(Ⅰ)写出2R 中的所有元素,并求两元素间的距离的最大值;(Ⅱ)若集合M 满足:3M R ⊆,且任意两元素间的距离均为M ,求集合M 中元素个数的最大值并写出此时的集合M ;(Ⅲ)设集合n P R ⊆,P 中有()2m m ≥个元素,记P 中所有两元素间的距离的平均值为()dP ,证明()()21mnd P m ≤-.石景山区2017年高三统一练习数学(理)试卷答案及评分参考三、解答题共6小题,共80分. 15.(本小题共13分)解:(Ⅰ)因为222c a b ab =+-,所以2221cos 22a b c C ab +-==. ……3分 又因为(0,π)C ∈, 所以π3C =. …………6分 (Ⅱ)由(Ⅰ)知π3C =, 又πA B C++=, 所以2π3B A =-且2π(0,)3A ∈, 故2πcos cos cos cos()3A B A A +=+-2π2πcos cos cos sin sin 33A A A =++ 1πcos sin()26A A A =+=+. 又2π(0,)3A ∈,5π(,)666A ππ+∈, 所以当ππ62A +=即π3A =时,cos cos AB +的最大值为1. …13分16.(本小题共13分)解:(Ⅰ)由图(乙)知,10(0.020.030.0250.015)1a ++++=解得0.01a =,22s s >.………………… 3分(Ⅱ)X 的所有可能取值1,2,3.则()124236115C C P X C ===,()214236325C C P X C ===,()304236135C C P X C ===, 其分布列如下:…………………8分 (Ⅲ)由图(甲)知,甲种酸奶的数据共抽取2345620++++=个,其中有4个数据在区间(0,10]内.又因为分层抽样共抽取了12005%60⨯=个数据, 乙种酸奶的数据共抽取602040-=个,由(Ⅰ)知,乙种酸奶的日销售量数据在区间(0,10]内的频率为0.1, 故乙种酸奶的日销售量数据在区间(0,10]内有400.14⨯=个. 故抽取的60个数据,共有448+=个数据在区间(0,10]内. 所以,在1200个数据中,在区间(0,10]内的数据有160个.……………13分17.(本小题共14分)(Ⅰ)因为PD ⊥ 面ABCD ,BC ⊂面ABCD ,所以BC PD ⊥.因为四边形ABCD 为矩形,所以BC DC ⊥.PD DC D =, 所以BC ⊥面PDC .DE ⊂面PDC , DE BC ⊥, 在PDC ∆中,PD DC =,E 为PC 中点 所以DE PC ⊥. PC BC C =,所以DE ⊥面PBC . ……………………………………4分(Ⅱ)四面体DBEF 是鳖臑,其中π2BED FED ∠=∠=,π2BFE BFD ∠=∠=. ……………………………………9分(Ⅲ)以,,DA DC DP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系.(0,0,0),(2,0,0),D A C P B .设PF PB λ=,则(2)F λ.DF PB ⊥得0DF PB =解得14λ=.所以1(,244F . ………11分 设平面FDA 的法向量(,,)n x y z =,1024420n DF x y z n DA x ⎧⎧⊥++=⎪⎪⇒⎨⎨⊥⎪⎪⎩=⎩令1z = 得0,3x y ==-. 平面FDA 的法向量(0,3,1)n =-,平面BDA的法向量DP =,cos ,10n DPn DP n DP -<>===. 二面角F AD B -- . …………………14分 18.(本小题共13分)解:(Ⅰ)1()f x x'=, (1)1f '=, 又(1)0f =,所以切线方程为1y x =-; ……3分 (Ⅱ)由题意知0x >,令11()()(1)ln 1g x f x x x x =--=-+. 22111'()x g x x x x-=-= ………5分 令21'()0x g x x-==,解得1x =. ………6分 易知当1>x 时,'()0g x >,易知当01x <<时,'()0g x <.即()g x 在(0,1)单调递减,在(1,)+∞单调递增 ………7分所以min ()(1)0g x g ==,()(1)0g x g ≥=即1()()(1)0g x f x x =--≥,即1()(1)f x x≥-. ……8分(Ⅲ)设()1ln (1)h x x a x x =--≥,依题意,对于任意1,>x ()0h x >恒成立.'()1a x a h x x x-=-=, ………9分 1≤a 时,'(),h x >0()h x 在[1,)+∞上单调增,当1>x 时,()(1)0h x h >=,满足题意. ………11分 1>a 时,随x 变化,'()h x ,()h x 的变化情况如下表:()h x 在(,)a 1上单调递减, 所以()()<=g a g 10即当 1>a 时,总存在()0<g a ,不合题意. ………12分综上所述,实数a 的最大值为1. ………13分19.(本小题共14分)解:(Ⅰ)设椭圆的半焦距为c .因为点(0,1)在椭圆C 上,所以1b =.故221a c -=.又因为2c e a ==,所以c =2a =. 所以椭圆C 的标准方程为:2214x y +=. ……………………5分 (Ⅱ) 设1122(,),(,)A x y C x y ,线段AC 中点为00(,)M x y .联立 2214402y x m x y =++-=和,得:222220x mx m ++-=.由222(2)4(22)840m m m ∆=--=->,可得m < 所以122x x m +=-,21222x x m =-. ……………8分 所以AC 中点为1(,)2M m m -. …………9分弦长||AC === ………10分又直线l 与x 轴的交点(2,0)N m -, ………11分所以||MN ==. ………12分 所以2222215||||||||||42BN BM MN AC MN =+=+=. 所以B 、N………14分20.(本小题共13分)解:(Ⅰ)2{(0,0),(0,1),(1,0),(1,1)}R =,2,A B R ∈ ,max (,)2d A B =. …………………3分 (Ⅱ)3R 中含有8个元素,可将其看成正方体的8个顶点,已知集合M 中的元素所对应的点,应该两两位于该正方体面对角线的两个端点,所以{(0,0,0),(1,1,0),(1,0,1),(0,1,1)}M = 或{(0,0,1),(0,1,0),(1,0,0),(1,1,1)}M =,集合M 中元素个数最大值为4. ………………8分 (Ⅲ)2,1()(,)A B P m d P d A B C ∈=∑ ,其中,(,)A B Pd A B ∈∑表示P 中所有两个元素间距离的总和. 设P 中所有元素的第i 个位置的数字中共有i t 个1,i m t -个0,则,1(,)()ni i A B P i d A B t m t ∈==-∑∑ 由于2()(1,2,,)4i i m t m t i n -≤= 所以2,1(,)()4n i i A B P i nm d A B t m t ∈==-≤∑∑ 从而222,1()(,)42(1)A B P mm nm nm d P d A B C C m ∈=≤=-∑ …………………13分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年北京市石景山区高考数学一模试卷(理科)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合A={x|2x﹣1<0},B={x|0≤x≤1},那么A∩B等于()A.{x|x≥0}B.{x|x≤1}C.D.{x|0≤x<}2.已知实数x,y满足,则z=2x+y的最大值是()A.4 B.6 C.10 D.123.直线被圆ρ=1所截得的弦长为()A.1 B.C.2 D.44.设θ∈R,“sinθ=cosθ“是“cos2θ=0”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件5.我国南宋数学家秦九韶(约公元1202﹣1261年)给出了求n(n∈N*)次多项式a n x n+a n﹣1x n﹣1+…+a1x+a0,当x=x0时的值的一种简捷算法.该算法被后人命名为“秦九韶算法”,例如,可将3次多项式改写为a3x3+a2x2+a1x+a0=((a3x+a2)x+a1)x+a0,然后进行求值.运行如图所示的程序框图,能求得多项式()的值.A.x4+x3+2x2+3x+4 B.x4+2x3+3x2+4x+5C.x3+x2+2x+3 D.x3+2x2+3x+46.某三棱锥的三视图如图所示,则该三棱锥的表面积是()A.B.C.D.57.如图,在矩形ABCD中,AB=,BC=2,点E为BC的中点,点F在边CD上,若•=,则•的值是()A.2﹣B.1 C.D.28.如图,将正三角形ABC分割成m个边长为1的小正三角形和一个灰色菱形,这个灰色菱形可以分割成n个边长为1的小正三角形.若m:n=47:25,则三角形ABC的边长是()A.10 B.11 C.12 D.13二、填空题共6小题,每小题5分,共30分.9.若复数是纯虚数,则实数a的值为.10.在数列{a n}中,a1=1,a n•a n=﹣2(n=1,2,3,…),那么a8等于.+111.若抛物线y2=2px的焦点与双曲线﹣y2=1的右顶点重合,则p=.12.如果将函数f(x)=sin(3x+φ)(﹣π<φ<0)的图象向左平移个单位所得到的图象关于原点对称,那么φ=.13.将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,则不同的分法的总数是.(用数字作答)14.已知.①当a=1时,f(x)=3,则x=;②当a≤﹣1时,若f(x)=3有三个不等实数根,且它们成等差数列,则a=.三、解答题共6小题,共80分.解答应写出文字说明、演算步骤或证明过程.15.(12分)已知a,b,c分别是△ABC的三个内角A,B,C的三条对边,且c2=a2+b2﹣ab.(Ⅰ)求角C的大小;(Ⅱ)求cosA+cosB的最大值.16.(12分)某超市从现有甲、乙两种酸奶的日销售量(单位:箱)的1200个数据(数据均在区间(0,50]内)中,按照5%的比例进行分层抽样,统计结果按(0,10],(10,20],(20,30],(30,40],(40,50]分组,整理如下图:(Ⅰ)写出频率分布直方图(图乙)中a的值;记所抽取样本中甲种酸奶与乙种酸奶日销售量的方差分别为,,试比较与的大小(只需写出结论);(Ⅱ)从甲种酸奶日销售量在区间(0,20]的数据样本中抽取3个,记在(0,10]内的数据个数为X,求X的分布列;(Ⅲ)估计1200个日销售量数据中,数据在区间(0,10]中的个数.17.(14分)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马P﹣ABCD中,侧棱PD⊥底面ABCD,且PD=CD,E为PC中点,点F在PB上,且PB⊥平面DEF,连接BD,BE.(Ⅰ)证明:DE⊥平面PBC;(Ⅱ)试判断四面体DBEF是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;(Ⅲ)已知AD=2,,求二面角F﹣AD﹣B的余弦值.18.(14分)已知函数f(x)=1nx.(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)求证:当x>0时,;(Ⅲ)若x﹣1>a1nx对任意x>1恒成立,求实数a的最大值.19.(14分)已知椭圆E: +=1(a>b>0)过点(0,1),且离心率为.(Ⅰ)求椭圆E的方程;(Ⅱ)设直线l:y=+m与椭圆E交于A、C两点,以AC为对角线作正方形ABCD,记直线l与x轴的交点为N,问B,N两点间距离是否为定值?如果是,求出定值;如果不是,请说明理由.20.(14分)已知集合R n={X|X=(x1,x2,…,x n),x i∈{0,1},i=1,2,…,n}(n≥2).对于A=(a1,a2,…,a n)∈R n,B=(b1,b2,…,b n)∈R n,定义A与B之间的距离为d(A,B)=|a1﹣b1|+|a2﹣b2|+…|a n﹣b n|=.(Ⅰ)写出R2中的所有元素,并求两元素间的距离的最大值;(Ⅱ)若集合M满足:M⊆R3,且任意两元素间的距离均为2,求集合M中元素个数的最大值并写出此时的集合M;(Ⅲ)设集合P⊆R n,P中有m(m≥2)个元素,记P中所有两元素间的距离的平均值为,证明.2017年北京市石景山区高考数学一模试卷(理科)参考答案与试题解析一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合A={x|2x﹣1<0},B={x|0≤x≤1},那么A∩B等于()A.{x|x≥0}B.{x|x≤1}C.D.{x|0≤x<}【考点】交集及其运算.【分析】由A与B,求出两集合的交集即可.【解答】解:∵A={x|2x﹣1<0}={x|x<),B={x|0≤x≤1}∴A∩B={x|0≤x<}故选:D.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.已知实数x,y满足,则z=2x+y的最大值是()A.4 B.6 C.10 D.12【考点】简单线性规划.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,联立,解得A(4,2),化目标函数z=2x+y为y=﹣2x+z,由图可知,当直线y=﹣2x+z过A时,直线在y 轴上的截距最大,z有最大值为10.故选:C.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.3.直线被圆ρ=1所截得的弦长为()A.1 B.C.2 D.4【考点】简单曲线的极坐标方程.【分析】首先把极坐标方程转化成直角坐标方程,进一步利用圆心到直线的距离求出弦心距,最后利用勾股定理求出弦长.【解答】解:圆ρ=1的极坐标方程转化成直角坐标方程为:x2+y2=1.直线转化成直角坐标方程为:x=.所以:圆心到直线x=的距离为.则:弦长l=2=.故选:B.【点评】本题考查的知识要点:极坐标方程与直角坐标方程的互化,点到直线的距离及勾股定理的应用.4.设θ∈R,“sinθ=cosθ“是“cos2θ=0”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分必要条件的定义以及三角函数的性质判断即可.【解答】解:若sinθ=cosθ,则θ=kπ+,(k∈z),故2θ=2kπ+,故cos2θ=0,是充分条件,若cos2θ=0,则2θ=kπ+,θ=+,(k∈z),不是必要条件,故选:A.【点评】本题考查了充分必要条件,考查三角函数的性质,是一道基础题.5.我国南宋数学家秦九韶(约公元1202﹣1261年)给出了求n(n∈N*)次多项式a n x n+a n﹣1x n﹣1+…+a1x+a0,当x=x0时的值的一种简捷算法.该算法被后人命名为“秦九韶算法”,例如,可将3次多项式改写为a3x3+a2x2+a1x+a0=((a3x+a2)x+a1)x+a0,然后进行求值.运行如图所示的程序框图,能求得多项式()的值.A.x4+x3+2x2+3x+4 B.x4+2x3+3x2+4x+5C.x3+x2+2x+3 D.x3+2x2+3x+4【考点】程序框图.【分析】由题意,模拟程序的运行过程,依次写出每次循环得到的k,S的值,即可得解.【解答】解:模拟程序的运行,可得k=0,S=1,k=1,S=x+1,满足条件k<4,执行循环体,k=2,S=(x+1)x+2=x2+x+2满足条件k<4,执行循环体,k=3,S=(x2+x+2)x+3=x3+x2+2x+3满足条件k<4,执行循环体,k=4,S=(x3+x2+2x+3)x+4=x4+x3+2x2+3x+4不满足条件k<4,退出循环,输出能求得多项式x4+x3+2x2+3x+4的值.故选:A.【点评】本题主要考查了循环结构的程序框图应用问题,是基础题目.6.某三棱锥的三视图如图所示,则该三棱锥的表面积是()A.B.C.D.5【考点】由三视图求面积、体积.【分析】根据几何体的三视图,得出该几何体是侧棱垂直于底面的三棱锥,画出图形,结合图形求出它的表面积.【解答】解:根据几何体的三视图,得该几何体是如图所示的三棱锥,且侧棱PC⊥底面ABC;=×2×2=2,所以,S△ABCS△PAC=S△PBC=×1=,S△PAB=×2=;所以,该三棱锥的表面积为S=2+2×+=2+2.故选B.【点评】本题考查了空间几何体三视图的应用问题,解题时应根据三视图画出几何图形,求出各个面的面积和,是基础题7.如图,在矩形ABCD中,AB=,BC=2,点E为BC的中点,点F在边CD上,若•=,则•的值是()A.2﹣B.1 C.D.2【考点】平面向量数量积的运算.【分析】根据题意,可分别以边AB,AD所在直线为x轴,y轴,建立平面直角坐标系,然后可得出点A,B,E的坐标,并设F(x,2),根据即可求出x值,从而得出F点的坐标,从而求出的值.【解答】解:据题意,分别以AB、AD所在直线为x,y轴,建立如图所示平面直角坐标系,则:A(0,0),B(,0),E(,1),设F(x,2);∴;∴x=1;∴F(1,2),;∴.故选C.【点评】考查通过建立平面直角坐标系,利用坐标解决向量问题的方法,向量数量积的坐标运算.8.如图,将正三角形ABC分割成m个边长为1的小正三角形和一个灰色菱形,这个灰色菱形可以分割成n个边长为1的小正三角形.若m:n=47:25,则三角形ABC的边长是()A.10 B.11 C.12 D.13【考点】三角形中的几何计算.【分析】设正△ABC的边长为x,根据等边三角形的高为边长的倍,求出正△ABC的面积,再根据菱形的性质结合图形表示出菱形的两对角线,然后根据菱形的面积等于两对角线乘积的一半表示出菱形的面积,然后根据所分成的小正三角形的个数的比等于面积的比列式计算即可得解.【解答】解:设正△ABC的边长为x,则高为x,S△ABC=x•x=x2,∵所分成的都是正三角形,∴结合图形可得黑色菱形的较长的对角线为x﹣,较短的对角线为(x﹣)×=﹣1;∴黑色菱形的面积S′=(x﹣)(﹣1)=(x﹣2)2,若m:n=47:25,则=,解可得x=12或x=(舍),所以,△ABC的边长是12;故选:C.【点评】本题考查菱形的性质,等边三角形的性质,熟练掌握有一个角等于60°的菱形的两条对角线的关系是解题的关键,本题难点在于根据三角形的面积与菱形的面积列出方程.二、填空题共6小题,每小题5分,共30分.9.若复数是纯虚数,则实数a的值为1.【考点】复数代数形式的乘除运算.【分析】利用两个复数代数形式的乘除法法则求得z的值,再根据它是纯虚数,求得实数a的值.【解答】解:∵复数==为纯虚数,故有a﹣1=0,且a+1≠0,解得a=1,故答案为:1.【点评】本题主要考查复数的基本概念,两个复数代数形式的乘除法,虚数单位i的幂运算性质,属于基础题.10.在数列{a n}中,a1=1,a n•a n=﹣2(n=1,2,3,…),那么a8等于﹣2.+1【考点】数列递推式.•a n=﹣2(n≥2),与原递推式两边作比可【分析】由已知求得a2,且得到a n﹣1得(n≥2),即数列{a n}中的所有偶数项相等,由此求得a8的值.【解答】解:由a1=1,a n•a n+1=﹣2,得a2=﹣2,•a n=﹣2(n≥2),又a n﹣1∴(n≥2),∴数列{a n}中的所有偶数项相等,则a8=﹣2.故答案为:﹣2.【点评】本题考查数列递推式,考查等比关系的确定,是中档题.11.若抛物线y2=2px的焦点与双曲线﹣y2=1的右顶点重合,则p=4.【考点】抛物线的标准方程.【分析】确定双曲线﹣y2=1的右顶点坐标,从而可得抛物线y2=2px的焦点坐标,由此可得结论.【解答】解:双曲线﹣y2=1的右顶点坐标为(2,0),∵抛物线y2=2px的焦点与双曲线﹣y2=1的右顶点重合,∴=2,∴p=4.故答案为:4.【点评】本题考查双曲线、抛物线的几何性质,确定双曲线的右焦点坐标是关键.12.如果将函数f(x)=sin(3x+φ)(﹣π<φ<0)的图象向左平移个单位所得到的图象关于原点对称,那么φ=﹣.【考点】函数y=Asin(ωx+φ)的图象变换.【分析】利用y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,求得φ的值.【解答】解:将函数f(x)=sin(3x+φ)(﹣π<φ<0)的图象向左平移个单位,所得到y=sin[3(x+)+φ]=sin(3x++φ)的图象,若所得图象关于原点对称,则+φ=kπ,k∈Z,又﹣π<φ<0,∴φ=﹣,故答案为:.【点评】本题主要考查y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,属于基础题.13.将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,则不同的分法的总数是36.(用数字作答)【考点】排列、组合的实际应用.【分析】本题是一个分步计数问题,先选两个元素作为一个元素,问题变为三个元素在三个位置全排列,得到结果.【解答】解:由题意知本题是一个分步计数问题,4位同学分到三个不同的班级,每个班级至少有一位同学,先选两个人作为一个整体,问题变为三个元素在三个位置全排列,共有C42A33=36种结果,故答案为:36.【点评】本题考查分步计数原理,是一个基础题,也是一个易错题,因为如果先排三个人,再排最后一个人,则会出现重复现象,注意不重不漏.14.已知.①当a=1时,f(x)=3,则x=4;②当a≤﹣1时,若f(x)=3有三个不等实数根,且它们成等差数列,则a=.【考点】分段函数的应用.【分析】①当a=1时,f(x)=3,利用分段函数建立方程,即可求出x的值;②由f(x)=3,求得x=﹣1,或x=4,根据x1<x2<x3,且它们依次成等差数列,可得a≤﹣1,f(﹣6)=3,由此求得a的值.【解答】解:①x≥1,x﹣=3,可得x=4;x<1,2﹣(x+)=3,即x2+x+4=0无解,故x=4;②由于当x>a时,解方程f(x)=3,可得x﹣=3,求得x=﹣1,或x=4.∵x1<x2<x3,且它们依次成等差数列,∴x2=﹣1,x3=4,x1 =﹣6,∴a≤﹣1.∴x<a时,方程f(x)=3只能有一个实数根为﹣6,再根据f(﹣6)=2a+6+=3,求得a=,满足a≤﹣1.故答案为4,.【点评】本题主要考查分段函数,利用函数的单调性求函数的最值,等差数列的性质,体现了分类讨论以及转化的数学思想,属于中档题.三、解答题共6小题,共80分.解答应写出文字说明、演算步骤或证明过程.15.(12分)(2017•石景山区一模)已知a,b,c分别是△ABC的三个内角A,B,C的三条对边,且c2=a2+b2﹣ab.(Ⅰ)求角C的大小;(Ⅱ)求cosA+cosB的最大值.【考点】余弦定理;正弦定理.【分析】(Ⅰ)根据余弦定理直接求解角C的大小.(Ⅱ)根据三角形内角和定理消去B,转化为三角函数的问题求解最大值即可.【解答】解:(Ⅰ)c2=a2+b2﹣ab.即ab=a2+b2﹣c2由余弦定理:cosC==,∵0<C<π,∴C=.(Ⅱ)∵A+B+C=π,C=.∴B=,且A∈(0,).那么:cosA+cosB=cosA+cos()=sin(),∵A∈(0,).∴,故得当=时,cosA+cosB取得最大值为1.【点评】本题主要考查了余弦定理的运用和三角函数的有界限求解最值问题.属于基础题.16.(12分)(2017•石景山区一模)某超市从现有甲、乙两种酸奶的日销售量(单位:箱)的1200个数据(数据均在区间(0,50]内)中,按照5%的比例进行分层抽样,统计结果按(0,10],(10,20],(20,30],(30,40],(40,50]分组,整理如下图:(Ⅰ)写出频率分布直方图(图乙)中a的值;记所抽取样本中甲种酸奶与乙种酸奶日销售量的方差分别为,,试比较与的大小(只需写出结论);(Ⅱ)从甲种酸奶日销售量在区间(0,20]的数据样本中抽取3个,记在(0,10]内的数据个数为X,求X的分布列;(Ⅲ)估计1200个日销售量数据中,数据在区间(0,10]中的个数.【考点】离散型随机变量及其分布列;频率分布直方图.【分析】(Ⅰ)由频率和为1,列方程求出a的值,根据图甲的频率分布比图乙分散些,它的方差较大,得出;(Ⅱ)根据X的所有可能取值,计算对应的概率,写出分布列;(Ⅲ)由甲种和乙种酸奶的日销售量数据在区间(0,10]内的频率和频数,计算在1200个数据中应抽取的数据个数.【解答】解:(Ⅰ)由图(乙)知,10(a+0.02+0.03+0.025+0.015)=1,解得a=0.01,根据图甲的频率分布比图乙分散些,它的方差较大,∴;(Ⅱ)X的所有可能取值1,2,3;则,,,其分布列如下:(Ⅲ)由图(甲)知,甲种酸奶的数据共抽取2+3+4+5+6=20个,其中有4个数据在区间(0,10]内,又因为分层抽样共抽取了1200×5%=60个数据,乙种酸奶的数据共抽取60﹣20=40个,由(Ⅰ)知,乙种酸奶的日销售量数据在区间(0,10]内的频率为0.1,故乙种酸奶的日销售量数据在区间(0,10]内有40×0.1=4个.故抽取的60个数据,共有4+4=8个数据在区间(0,10]内.所以,在1200个数据中,在区间(0,10]内的数据有160个.【点评】本题考查了频率分布直方图与离散型随机变量的分布列问题,是综合题.17.(14分)(2017•石景山区一模)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马P﹣ABCD中,侧棱PD⊥底面ABCD,且PD=CD,E为PC中点,点F在PB上,且PB⊥平面DEF,连接BD,BE.(Ⅰ)证明:DE⊥平面PBC;(Ⅱ)试判断四面体DBEF是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;(Ⅲ)已知AD=2,,求二面角F﹣AD﹣B的余弦值.【考点】二面角的平面角及求法;直线与平面垂直的判定.【分析】(Ⅰ)推导出BC⊥PD.BC⊥DC,从而BC⊥面PDC,进而DE⊥BC,再求出DE⊥PC,由此能证明DE⊥面PBC.(Ⅱ)四面体DBEF是鳖臑,,.(Ⅲ)以DA,DC,DP所在直线为x轴,y轴,z轴建立空间直角坐标系,利用向量法能求出二面角F﹣AD﹣B的余弦值.【解答】证明:(Ⅰ)因为PD⊥面ABCD,BC⊂面ABCD,所以BC⊥PD.因为四边形ABCD为矩形,所以BC⊥DC.PD∩DC=D,所以BC⊥面PDC.DE⊂面PDC,DE⊥BC,在△PDC中,PD=DC,E为PC中点,所以DE⊥PC.又PC∩BC=C,所以DE⊥面PBC.解:(Ⅱ)四面体DBEF是鳖臑,其中,.(Ⅲ)以DA,DC,DP所在直线为x轴,y轴,z轴建立空间直角坐标系.则D(0,0,0),A(2,0,0),,,.设,则.DF⊥PB得,解得.所以.设平面FDA的法向量,则,令z=1得x=0,y=﹣3.平面FDA的法向量,平面BDA的法向量,,.二面角F﹣AD﹣B的余弦值为.【点评】本题考查线面垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.18.(14分)(2017•石景山区一模)已知函数f(x)=1nx.(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)求证:当x>0时,;(Ⅲ)若x﹣1>a1nx对任意x>1恒成立,求实数a的最大值.【考点】利用导数研究函数的单调性;利用导数研究曲线上某点切线方程;导数在最大值、最小值问题中的应用.【分析】(Ⅰ)求出导函数,求出斜率f'(1)=1,然后求解切线方程.(Ⅱ)化简=.求出,令,解得x=1.判断函数的单调性求出极小值,推出结果.(Ⅲ)设h(x)=x﹣1﹣a1nx(x≥1),依题意,对于任意x>1,h(x)>0恒成立.,a≤1时,a>1时,判断函数的单调性,求解最值推出结论即可.【解答】解:(Ⅰ),f'(1)=1,又f(1)=0,所以切线方程为y=x﹣1;(Ⅱ)证明:由题意知x>0,令=.令,解得x=1.易知当x>1时,g'(x)>0,易知当0<x<1时,g'(x)<0.即g(x)在(0,1)单调递减,在(1,+∞)单调递增,所以g(x)min=g(1)=0,g(x)≥g(1)=0即,即x>0时,;(Ⅲ)设h(x)=x﹣1﹣a1nx(x≥1),依题意,对于任意x>1,h(x)>0恒成立.,a≤1时,h'(x)>0,h(x)在[1,+∞)上单调递增,当x>1时,h(x)>h(1)=0,满足题意.a>1时,随x变化,h'(x),h(x)的变化情况如下表:h(x)在(1,a)上单调递减,所以g(a)<g(1)=0即当a>1时,总存在g(a)<0,不合题意.综上所述,实数a的最大值为1.【点评】本题考查函数的导数的应用,切线方程,函数的极值以及函数的最值的求法,考查转化思想以及计算能力.19.(14分)(2017•石景山区一模)已知椭圆E: +=1(a>b>0)过点(0,1),且离心率为.(Ⅰ)求椭圆E的方程;(Ⅱ)设直线l:y=+m与椭圆E交于A、C两点,以AC为对角线作正方形ABCD,记直线l与x轴的交点为N,问B,N两点间距离是否为定值?如果是,求出定值;如果不是,请说明理由.【考点】直线与椭圆的位置关系.【分析】(Ⅰ)由题意可知b=1,e===,即可求得a的值,求得椭圆方程;(Ⅱ)将直线方程代入椭圆方程,利用韦达定理及弦长公式求得丨AC丨及丨MN丨,丨BN丨2=丨AC丨2+丨MN丨2=,即可求得B,N两点间距离是否为定值.【解答】解:(Ⅰ)由题意可知:椭圆的焦点在x轴上,过点(0,1),则b=1,由椭圆的离心率e===,则a=2,∴椭圆的标准方程为:;(Ⅱ)设A(x1,y1),B(x2,y2),线段中点M(x0,y0),则,整理得:x2+2mx+2m2﹣2=0,由△=(2m)2﹣4(2m2﹣2)=8﹣4m2>0,解得:﹣<m<,则x1+x2=﹣2m,x1x2=2m2﹣2,则M(﹣m,m),丨AC丨=•=•=由l与x轴的交点N(﹣2m,0),则丨MN丨==,∴丨BN丨2=丨BM丨2+丨MN丨2=丨AC丨2+丨MN丨2=,∴B,N两点间距离是否为定值.【点评】本题考查椭圆的标准方程,直线与椭圆的位置关系,考查韦达定理,弦长公式及中点坐标公式,考查计算能力,属于中档题.20.(14分)(2017•石景山区一模)已知集合R n={X|X=(x1,x2,…,x n),x i ∈{0,1},i=1,2,…,n}(n≥2).对于A=(a1,a2,…,a n)∈R n,B=(b1,b2,…,b n)∈R n,定义A与B之间的距离为d(A,B)=|a1﹣b1|+|a2﹣b2|+…|a n﹣b n|=.(Ⅰ)写出R2中的所有元素,并求两元素间的距离的最大值;(Ⅱ)若集合M满足:M⊆R3,且任意两元素间的距离均为2,求集合M中元素个数的最大值并写出此时的集合M;(Ⅲ)设集合P⊆R n,P中有m(m≥2)个元素,记P中所有两元素间的距离的平均值为,证明.【考点】函数的最值及其几何意义;集合的包含关系判断及应用.【分析】(Ⅰ)根据集合的定义,写出R2中的所有元素,并求两元素间的距离的最大值;(Ⅱ)R3中含有8个元素,可将其看成正方体的8个顶点,已知集合M中的元素所对应的点,应该两两位于该正方体面对角线的两个端点,即可求集合M中元素个数的最大值并写出此时的集合M;(Ⅲ),其中表示P中所有两个元素间距离的总和,根据,即可证明结论.【解答】解:(Ⅰ)R2={(0,0),(0,1),(1,0),(1,1)},A,B∈R2,d(A,B)max=2.(Ⅱ)R3中含有8个元素,可将其看成正方体的8个顶点,已知集合M中的元素所对应的点,应该两两位于该正方体面对角线的两个端点,所以M={(0,0,0),(1,1,0),(1,0,1),(0,1,1)}或M={(0,0,1),(0,1,0),(1,0,0),(1,1,1)},集合M中元素个数最大值为4.(Ⅲ),其中表示P中所有两个元素间距离的总和.设P中所有元素的第i个位置的数字中共有t i个1,m﹣t i个0,则由于(i=1,2,…,n)所以从而【点评】本题考查新定义,考查函数的最值,考查集合知识,难度大.。