牛顿第二定律难题例题及解答

合集下载

必修一牛顿第二定律典型例题(含答案)

必修一牛顿第二定律典型例题(含答案)

【例1】在光滑水平面上的木块受到一个方向不变,大小从某一数值逐渐变小的外力作用时,木块将作 [ ]A.匀减速运动B.匀加速运动C.速度逐渐减小的变加速运动 D.速度逐渐增大的变加速运动【例2】一个质量m=2kg的木块,放在光滑水平桌面上,受到三个大小均为F=10N、与桌面平行、互成120°角的拉力作用,则物体的加速度多大?若把其中一个力反向,物体的加速度又为多少?【例3】沿光滑斜面下滑的物体受到的力是 [ ]A.重力和斜面支持力 B.重力、下滑力和斜面支持力C.重力、正压力和斜面支持力 D.重力、正压力、下滑力和斜面支持力【例4】图中滑块与平板间摩擦系数为μ,当放着滑块的平板被慢慢地绕着左端抬起,α角由0°增大到90°的过程中,滑块受到的摩擦力将 [ ]A.不断增大 B.不断减少C.先增大后减少D.先增大到一定数值后保持不变【例5】如图,质量为M的凹形槽沿斜面匀速下滑,现将质量为m的砝码轻轻放入槽中,下列说法中正确的是 [ ]A.M和m一起加速下滑B.M和m一起减速下滑C.M和m仍一起匀速下滑【例6】图1表示某人站在一架与水平成θ角的以加速度a向上运动的自动扶梯台阶上,人的质量为m,鞋底与阶梯的摩擦系数为μ,求此时人所受的摩擦力。

【例7】在粗糙水平面上有一个三角形木块abc,在它的两个粗糙斜面上分别放两个质量m1和m2的木块,m1>m2,如图1所示。

已知三角形木块和两个物体都是静止的,则粗糙水平面对三角形木块[ ]A.有摩擦力作用,摩擦力方向水平向右B.有摩擦力作用,摩擦力方向水平向左C.有摩擦力作用,但摩擦力方向不能确定D.以上结论都不对【例8】质量分别为m A和m B的两个小球,用一根轻弹簧联结后用细线悬挂在顶板下(图1),当细线被剪断的瞬间,关于两球下落加速度的说法中,正确的是 [ ]A.a A=a B=0 B.a A=a B=gC.a A>g,a B=0 D.a A<g,a B=0【例9】在车箱的顶板上用细线挂着一个小球(图1),在下列情况下可对车厢的运动情况得出怎样的判断:(1)细线竖直悬挂:______;(2)细线向图中左方偏斜:___;(3)细线向图中右方偏斜:___________ 。

3.牛顿定律-典型例题-详解

3.牛顿定律-典型例题-详解

牛顿定律第2课时牛顿第二定律动力学问题题型探究题型1 区分绳与弹簧的特点【例1】如图所示,A、B两球质量相等,光滑斜面的倾角为θ,图甲中,A、B两球用轻弹簧相连,图乙中A、B两球用轻质杆相连,系统静止时,挡板C 与斜面垂直,轻弹簧、轻杆均与斜面平行,则在突然撤去挡板的瞬间有( )A.两图中两球加速度均为gsin θB.两图中A球的加速度均为0C.图乙中轻杆的作用力一定不为0D.图甲中B球的加速度是图乙中B球的加速度的2倍题型2 弹簧的动态分析【例2】如图所示,自由下落的小球下落一段时间后与弹簧接触,从它接触弹簧开始,到弹簧压缩到最短的过程中,小球的速度、加速度的变化情况如何?题型3 与弹簧相连的连接体问题【例3】两个质量均为m的相同的物块叠放在一个轻弹簧上面,处于静止状态.弹簧的下端固定于地面上,弹簧的劲度系数为k.t=0时刻,给A物块一个竖直向上的作用力F,使得两物块以0.5g的加速度匀加速上升,下列说法正确的是()A.A、B分离前合外力大小与时间的平方2t成线性关系B.分离时弹簧处于原长状态C.在t 时刻A、B分离D.分离时B题型4 斜面上的自由滑动问题【例4】一间新房即将建成时要封顶,考虑到下雨时落至房顶的雨滴能尽快地流淌离开房顶,要设计好房顶的坡度(房顶的底边长度相同).设雨滴沿房顶下流时做无初速度无摩檫的运动,那么,下图所示的情况中符合要求的是()A. B.C. D.【例5】如图所示,在光滑水平面AB上,水平恒力F 推动质量为m=1kg的物体从A点由静止开始做匀加速直线运动,物体到达B点时撤去F,接着又冲上光滑斜面(设经过B点前后速度大小不变,最高能到达C.用速度传感器测量物体的瞬时速度,表中记录了部分测量数据),(1)恒力F的大小.(2)斜面的倾角α.(3)t="2.1" s时物体的速度.题型5 等时圆问题【例6】如图所示,AD是固定斜面体底边BC的高,F、G分别是光滑斜面AB、AC的中点DE垂直于AB,DH 垂直于AC,甲、乙两个小球(均视为质点)从斜面的顶点A分别沿斜面AB、AC同时由静止下滑,下列说法正确的是()A.当甲球运动到E点时,乙球可能运动到AG间某点B.当甲球运动到E点时,乙球一定运动到H点C.当甲球运动到F点时,乙球一定运动到G点D.当甲球运动到F点时,乙球一定运动到H点题型6 滑环与杆问题【例7】.如图所示,一端固定在地面上的杆与水平方向的夹角为θ,将一质量为m1的滑块套在杆上,滑块通过轻绳悬挂一质量为m2的小球,杆与滑块之间的动摩擦因数为μ.先给滑块一个沿杆方向的初速度,稳定后,滑块和小球一起以共同的加速度沿杆运动,此时绳子与竖直方向的夹角为β,且β>0,不计空气阻力,则滑块的运动情况是( )A.沿着杆减速上滑B.沿着杆减速下滑C.沿着杆加速下滑D.沿着杆加速上滑【例8】有一质量m=2kg的小球套在长L=1m的固定轻杆顶部,杆与水平方向成θ=37o角.静止释放小球,1s后小球到达杆底端.取重力加速度大小g= 10 m/s2,sin37o=0.6,cos37o=0.8.(1)求小球到达杆底端时速度为多大?(2)求小球与杆之间的动摩擦因数为多大?(3)若在竖直平面内给小球施加一个垂直于杆方向的恒力,静止释放小球后保持它的加速度大小为1m/s2,且沿杆向下云动,则这样的恒力为多大?题型7轻绳连接问题【例9】如图所示,材料相同的物体m l、m2由轻绳连接,在恒定拉力F的作用下沿斜面向上加速运动。

牛顿第二定律典型题型

牛顿第二定律典型题型

牛顿第二定律典型题型题型1:矢量性:加速度的方向总是与合外力的方向相同。

在解题时,可以利用正交分解法进行求解。

1、如图所示,物体A放在斜面上,与斜面一起向右做匀加速运动,物体A受到斜面对它的支持力和摩擦力的合力方向可能是 ( )A.斜向右上方 B.竖直向上C.斜向右下方 D.上述三种方向均不可能1、A 解析:物体A受到竖直向下的重力G、支持力F N和摩擦力三个力的作用,它与斜面一起向右做匀加速运动,合力水平向右,由于重力没有水平方向的分力,支持力F N和摩擦力F f的合力F一定有水平方向的分力,F在竖直方向的分力与重力平衡,F向右斜上方,A正确。

2、如图所示,有一箱装得很满的土豆,以一定的初速度在摩擦因数为的水平地面上做匀减速运动,(不计其它外力及空气阻力),则其中一个质量为m的土豆A受其它土豆对它的总作用力大小应是 ( )A.mg B.mgC.mg D.mg2、C 解析:像本例这种物体系的各部分具有相同加速度的问题,我们可以视其为整体,求关键信息,如加速度,再根据题设要求,求物体系内部的各部分相互作用力。

选所有土豆和箱子构成的整体为研究对象,其受重力、地面支持力和摩擦力而作减速运动,且由摩擦力提供加速度,则有mg=ma,a=g。

而单一土豆A的受其它土豆的作用力无法一一明示,但题目只要求解其总作用力,因此可以用等效合力替代。

由矢量合成法则,得F总=,因此答案C正确。

例3、如图所示,电梯与水平面夹角为300,当电梯加速向上运动时,人对梯面压力是其重力的6/5,则人与梯面间的摩擦力是其重力的多少倍?拓展:如图,动力小车上有一竖杆,杆端用细绳拴一质量为m的小球.当小车沿倾角为30°的斜面匀加速向上运动时,绳与杆的夹角为60°,求小车的加速度和绳中拉力大小.题型2:必须弄清牛顿第二定律的瞬时性牛顿第二定律是表示力的瞬时作用规律,描述的是力的瞬时作用效果—产生加速度。

物体在某一时刻加速度的大小和方向,是由该物体在这一时刻所受到的合外力的大小和方向来决定的。

牛顿第二定律十大题型分类汇总(详解版)

牛顿第二定律十大题型分类汇总(详解版)

牛顿第二定律十大题型分类汇总(带详解)一、牛顿第二定律与斜面结合1.如图所示,一足够长的固定在水平面上的斜面,倾角37θ= ,斜面BC 与水平面AB 平滑连接,质量2kg m =的物体静止于水平面上的M 点,M 点与B 点之间的距离9m L =,物体与水平面和斜面间的动摩擦因数均为0.5μ=,现物体受到一水平向右的恒力14N F =作用,运动至B 点时撤去该力,B 点有一小圆弧,使得物体经过B 点时只有速度方向发生改变,速度大小不变,重力加速度210m/s g =,则:(1)物体到达B 点时的速度大小;(2)物体沿斜面向上滑行的最远距离。

(3)物体从开始运动到最后停止运动的总时间。

解得212m/s a =由M 到B 有212B v a L=解得6m/sB v =(2)沿斜面上滑时,根据牛顿第二定律得2sin37cos37mg mg ma μ︒+︒=解得2210m/s a =沿斜面运动的最远距离为(3)从M 点运动到B 点的时间为从B点运动到斜面最高点的时间为沿斜面下滑时的加速度为3sin37cos37mg mg ma μ︒-︒=解得232m/s a =沿斜面下滑的时间为解得下滑到B点时的速度为在水平面上运动的加速度大小为4mg ma μ=解得245m/s a =从B点到静止的时间为物体从开始运动到最后停止运动的总时间为1234t t t t t =+++解得2.一质量m =2kg 小物块从斜面上A 点由静止开始滑下,滑到斜面底端B 点后沿水平面再滑行一段距离停下来。

若物块与斜面、水平面间的动摩擦因数均为μ=0.25。

斜面A、B 两点之间的距离s =18m,斜面倾角θ=37°(sin37°=0.6;cos37°=0.8)斜面与水平面间平滑连接,不计空气阻力,g =10m/s 2。

求:(1)物块在斜面上下滑过程中的加速度大小;(2)物块滑到B 点时的速度大小;(3)物块在水平面上滑行的时间。

“牛顿第二定律”难题解析

“牛顿第二定律”难题解析

(二)“牛顿第二定律”难题--压轴题参考答案与试题解析9.(2011•历城区校级模拟)在一个与水平面成α角的粗糙斜面上的A点放着一个物体,它系于一根不可伸长的细绳上,绳子的另一端B通过小孔C穿出底面,如图所示,开始时物体与C等高,当物体开始缓慢下滑时,适当的拉动绳端B,使物体在斜面上划过一个半圆到达C,则A和斜面之间的动摩擦因数μ为()A.s inαB.c osαC.!tanαD.c otα考点:牛顿第二定律;力的合成与分解的运用;向心力.专题:压轴题;牛顿第二定律在圆周运动中的应用.分析:物体缓慢转动,近似平衡,受力分析后,根据平衡条件列式求解.~解答:解:物体在斜面上缓慢运动时,受到4个力:重力G,绳子的拉力F1,斜面的支持力F2,物体在运动时受到的摩擦力F3,这四个力的合力近似为零;其中F1和F3同斜面平行,F2同斜面垂直,G同斜面成(90°﹣α).根据各力之间的平衡的原则,可列出以下公式:在垂直斜面方向,有:F2=G•cos α因此有摩擦力F3=μ F2=μGcosα接下来考虑平行于斜面的力,为了简化问题状态,可以直接以A点处的系统状态来进行分析,此时时摩擦力和重力在斜面平行方向上的力是反向、等大的,即应该是近似平衡的,有μGcosα=Gsinα因此μ=tan α故选C.》点评:这个解法最有技巧的部分就是选取了A点处受力分析,根据平衡条件得到重力的下滑分量等于摩擦力,然后列式求解;当然,也可以对其它点处,运用平衡条件列式.11.(2007•徐州模拟)压敏电阻的阻值随所受压力的增大而减小,有位同学利用压电陶瓷设计了判断小车运动状态的装置,其工作原理如图(a)所示,将压电陶瓷和一块挡板固定在绝缘小车上,中间放置一个绝缘重球,它的直径略小于陶瓷和挡板间的距离.小车向右做直线运动过程中,电压流表示数如图(b)所示,下列判断正确的是()A.从t1到t2时间内,小车做变加速直线运动B.从t1到t2时间内,小车做匀加速直线运动,C.从t2到t3时间内,小车做匀加速直线运动D.从t2到t3时间内,小车做匀速直线运动考点:牛顿第二定律;闭合电路的欧姆定律.专题::压轴题;恒定电流专题.分析:根据图象,结合题意,得到压力的变化规律,再根据牛顿第二定律判断出加速度的变化规律,从而得到小车的运动故小球的加速度不断变大,水平向右,由于速度向右,故小球向右做加速度不断变大的加速运动,故A正确,B错误;C、D、从t2到t3时间内,电陶瓷两端电压不变,故受到的压力恒定,故其对小球有向右且恒定大的压力,故小球的加速度恒定,水平向右,由于速度向右,故小球向右做匀加速直线运动,故C正确,D错误;故选AC.点评:本题关键是对小球受力分析,根据图象得到压力的变化规律,然后根据牛顿第二定律判断出加速度的情况,最后得到小车的运动情况.16.(2010•越秀区三模)如图所示装置中,光滑的定滑轮固定在高处,用细线跨过该滑轮,细线两端各拴一个质量相等的砝码m1和m2.在铁架上A处固定环状支架z,它的孔只能让m1通过.在m1上加一个槽码m,m1和m从O点由静止释放向下做匀加速直线运动.当它们到达A时槽码m被支架z托住,m1继续下降.在下图中能正确表示m1运动速度v与时间t和位移x与时间t关系图象的是()。

牛顿第二定律典型例题分析

牛顿第二定律典型例题分析

牛顿第二定律典型例题分析(一)例1、一物体质量为10 kg,在5N的水平向右的拉力作用下沿水平桌面由静止开始运动,物体与桌面间的动摩擦因数为0.20。

①画出物体的受力图。

②加速度多大?方向如何?③求物体在4.0秒末的速度;④求物体在4.0秒末的位移⑤若在4秒末撤去拉力,求物体还能滑行多长时间?针对练习:一辆质量为1.0×103kg的小汽车正以10m/s的速度在平直公路上行驶,现在关闭发动机让它在12.5m的距离内匀减速地停下来,求所需的阻力。

例2、如图所示,质量为4 kg的物体静止于水平面上,物体与水平面间的动摩擦因数为0.5,物体受到F=20 N,与水平方向成37°角斜向上的拉力作用时,沿水平面做匀加速运动。

(g取10 m/s2) 求①物体的加速度是多大?②4秒内的位移?③经过多长时间速度变为10m/s④若在4秒末撤去拉力,求物体还能滑行多长时间?例3、一斜面AB 长为10 m,倾角为37°,一质量为2kg 的小物体(大小不计)从斜面顶端A 点由静止开始下滑,如图所示(g取10 m/s 2)①若斜面光滑,求小物体下滑到斜面底端B 点时的速度及所用时间.②若斜面与物体间的动摩擦因数为0.5,求小物体下滑到斜面底端B 点时的速度及所用时间.针对练习:2004年12月22日,一场瑞雪降临我市。

许多同学在课间追逐嬉戏,尽情玩耍,而同学王清和张华却做了一个小实验:他们造出一个方形的雪块,让它以一定的初速度从一斜坡的底端沿坡面冲上该足够长的斜坡(坡上的雪已压实,斜坡表面平整),发现雪块能沿坡面最大上冲3.4 m 。

已知雪块与坡面间的动摩擦因数为μ=0.1,他们又测量了斜坡的倾角为θ=37º,如图所示。

他俩就估测出了雪块的初速度。

那么:(1)请你算出雪块的初速度为多大?(2)请问雪块沿坡面向上滑的时间为多长?(sin37º=0.6 , cos37º=0.8,g 取10 m/s 2)。

高中物理牛顿第二定律经典练习题专题训练(含答案)

高中物理牛顿第二定律经典练习题专题训练(含答案)

高中物理牛顿第二定律经典练习题专题训
练(含答案)
高中物理牛顿第二定律经典练题专题训练(含答案)
1. Problem
已知一个物体质量为$m$,受到一个力$F$,物体所受加速度为$a$。

根据牛顿第二定律,力、质量和加速度之间的关系可以表示为:
$$F = ma$$
请计算以下问题:
1. 如果质量$m$为2kg,加速度$a$为3m/s^2,求所受的力
$F$的大小。

2. 如果质量$m$为5kg,力$F$的大小为10N,求物体的加速度$a$。

2. Solution
使用牛顿第二定律的公式$F = ma$来解决这些问题。

1. 问题1中,已知质量$m$为2kg,加速度$a$为3m/s^2。

将这些值代入牛顿第二定律的公式,可以得到:
$$F = 2 \times 3 = 6 \,\text{N}$$
所以,所受的力$F$的大小为6N。

2. 问题2中,已知质量$m$为5kg,力$F$的大小为10N。

将这些值代入牛顿第二定律的公式,可以得到:
$$10 = 5a$$
解方程可以得到:
$$a = \frac{10}{5} = 2 \,\text{m/s}^2$$
所以,物体的加速度$a$为2m/s^2。

3. Conclusion
通过计算题目中给定的质量、力和加速度,我们可以使用牛顿第二定律的公式$F = ma$来求解相关问题。

掌握这一定律的应用可以帮助我们更好地理解物体运动的规律和相互作用。

牛顿第二定律经典例题及答案

牛顿第二定律经典例题及答案

牛顿第二定律经典例题及答案
例题:如图,质量的小车停放在光滑水平面上,在小车右端施加一水平恒力F=8N。

当小车向右运动速度达到3m/s时,在小车的右端轻放一质量m=2kg的小物块,物块与小车间的动摩擦因数μ=0.2,假定小车足够长,问:
(1)经过多长时间物块停止与小车间的相对运动?
(2)小物块从放在车上开始经过t0=3s 所通过的位移是多少?(g 取10m/s2)
【分析与解答】:
(1)依据题意,物块在小车上停止运动时,物块与小车保持相对静止,应具有共同的速度。

设物块在小车上相对运动时间为t,物块、小车受力分析如图:
物块放上小车后做初速度为零加速度为a1的匀加速直线运动,小车做加速度a2的匀加速运动。

其中对物块:由μmg=ma1,
有a1=μg=2m
对小车:F-μmg=Ma2
∴a2=0.5m/s2物块在小车上停止相对滑动时,速度相同
则有:a1t1=v0+a2t1
故答案为:
(1)经多2s物块停止在小车上相对滑动;
(2)小物块从放在车上开始,经过t=3.0s,通过的位移是8.4m.本文网络搜索,如有侵权联系删除。

(完整版)高中物理牛顿第二定律经典例题

(完整版)高中物理牛顿第二定律经典例题

牛顿第二运动定律【例1】物体从某一高度自由落下,落在直立于地面的轻弹簧上,如图3-2所示,在A点物体开始与弹簧接触,到B点时,物体速度为零,然后被弹回,则以下说法正确的是:A、物体从A下降和到B的过程中,速率不断变小B、物体从B上升到A的过程中,速率不断变大C、物体从A下降B,以及从B上升到A的过程中,速率都是先增大,后减小D、物体在B点时,所受合力为零的对应关系,弹簧这种特【解析】本题主要研究a与F合殊模型的变化特点,以及由物体的受力情况判断物体的运动性质。

对物体运动过程及状态分析清楚,同时对物=0,体正确的受力分析,是解决本题的关键,找出AB之间的C位置,此时F合由A→C的过程中,由mg>kx1,得a=g-kx1/m,物体做a减小的变加速直线运动。

在C位置mg=kx c,a=0,物体速度达最大。

由C→B的过程中,由于mg<kx2,a=kx2/m-g,物体做a增加的减速直线运动。

同理,当物体从B→A时,可以分析B→C做加速度度越来越小的变加速直线运动;从C→A做加速度越来越大的减速直线运动。

C正确。

例2如图3-10所示,在原来静止的木箱内,放有A物体,A被一伸长的弹簧拉住且恰好静止,现突然发现A被弹簧拉动,则木箱的运动情况可能是A、加速下降B、减速上升肥C、匀速向右运动D、加速向左运动【解析】木箱未运动前,A物体处于受力平衡状态,受力情况为:重力mg,箱底的支持力N,弹簧拉力F和最大的静摩擦力f m(向左)由平衡条件知:N=mg F=f m。

由于发现A弹簧向右拉动(已知),可能有两种原因,一种是由A向右被拉动推知,F>f m′,(新情况下的最大静摩擦力),可见f m>f m′即是最大静摩擦力减小了,由f m=μN知正压力N减小了,即发生了失重现象,故物体运动的加速度必然竖直向下,所以木箱的运动情况可能是加速下降或减速上升,故A、B正确。

另一种原因是木箱向左加速运动,由于惯性原因,木块必然向中滑动,故D 正确。

牛顿第二定律练习题及答案解析

牛顿第二定律练习题及答案解析

(本栏目内容,在学生用书中以活页形式分册装订!)1.由牛顿第二定律知道,无论怎样小的力都可以使物体产生加速度,可是当我们用一个很小的力去推很重的桌子时,却推不动它,这是因为()A.牛顿第二定律不适用于静止的物体B.桌子的加速度很小,速度增量极小,眼睛不易觉察到C.推力小于静摩擦力,加速度是负的D.桌子所受的合力为零解析:F=ma中F指合力,用很小的力推桌子时,合力为零,故无加速度.答案: D2.关于速度、加速度和合外力之间的关系,下述说法正确的是()A.做匀变速直线运动的物体,它所受合外力是恒定不变的B.做匀变速直线运动的物体,它的速度、加速度、合外力三者总是在同一方向上C.物体受到的合外力增大时,物体的运动速度一定加快D.物体所受合外力为零时,一定处于静止状态解析:匀变速直线运动就是加速度恒定不变的直线运动,所以做匀变速直线运动的物体的合外力是恒定不变的,选项A正确;做匀变速直线运动的物体,它的加速度与合外力的方向一定相同,但加速度与速度的方向就不一定相同了.加速度与速度的方向相同时做匀加速运动,加速度与速度的方向相反时做匀减速运动,选项B错误;物体所受的合外力增大时,它的加速度一定增大,但速度不一定增大,选项C错误;物体所受合外力为零时,加速度为零,但物体不一定处于静止状态,也可以处于匀速运动状态,选项D错误.答案: A3.如右图所示,质量为10 kg的物体在水平面上向左运动,物体与水平面间的动摩擦因数为μ=0.2,与此同时,物体还受到一个水平向右的推力F=20 N,则物体产生的加速度是(g=10 m/s2)()A.0B.4m/s2,水平向右C.2 m/s2,水平向左D.2 m/s2,水平向右答案: B4.搬运工人沿粗糙斜面把一个物体拉上卡车,当力沿斜面向上,大小为F时,物体的加速度为a1;若保持力的方向不变,大小变为2F时,物体的加速度为a2,则() A.a1=a2B.a1<a2<2a1C.a2=2a1D.a2>2a1解析:设总的阻力为F′,第一次推时F-F′=ma1,式子两边同乘以2,得2F-2F′=m·2a1第二次推时,2F-F′=ma2,比较两个式子可以看出a2>2a1,所以D正确.答案: D5.力F1单独作用于某物体时产生的加速度是3 m/s2,力F2单独作用于此物体时产生的加速度是4 m/s2,两力同时作用于此物体时产生的加速度可能是()A.1 m/s2B.5 m/s2C.4 m/s2D.8m/s2解析:由题意,力F1作用于物体的加速度a1=3 m/s2,F2作用于物体的加速度a2=4 m/s2,F1与F2的合力F的范围|F1-F2|≤F≤F1+F2,故两力同时作用于此物体的加速度|a1-a2|≤a≤a1+a2.即1 m/s2≤a≤7 m/s2,故选项A、B、C正确.答案:ABC6.如右图所示,位于水平地面上的质量为m的小木块,在大小为F,方向与水平方向成α角的拉力作用下沿地面做匀加速运动.若木块与地面之间的动摩擦因数为μ,则木块的加速度为()A.F/mB.F cos α/mC.(F cos α-μmg)/mD.[F cos α-μ(mg-F sin α)]/m解析:对木块作受力分析,如右图所示,在竖直方向上合力为零,即F sin α+F N=mg,在水平方向上由牛顿第二定律有F cos α-μF N=ma.联立可得a=F cos α-μ?mg-F sin α?m,故选项D正确.答案: D7.如右图所示,物体在水平拉力F的作用下沿水平地面做匀速直线运动,速度为v.现让拉力F逐渐减小,则物体的加速度和速度的变化情况应是()A.加速度逐渐变小,速度逐渐变大B.加速度和速度都在逐渐变小C.加速度和速度都在逐渐变大D.加速度逐渐变大,速度逐渐变小解析:物体向右做匀速直线运动,滑动摩擦力F f=F=μF N=μmg,当F逐渐减小时,F f=μmg不变,所以产生与v方向相反即向左的加速度,加速度的数值a=F f-Fm随F逐渐减小而逐渐增大.因为a与v方向相反,所以v减小.答案: D8.在倾角为37°的光滑斜面上,质量为m的物体以加速度a匀加速下滑.现用沿斜面向上的推力,使物块以1.2a的加速度匀加速向上滑动,则推力的大小是(sin 37°=0.6,cos 37°=0.8)()A.1.2mg B.1.32mgC.1.96mg D.2.2mg解析:在沿斜面方向上,物块匀加速下滑时,有mg sin 37°=ma,①匀加速上滑时,有F-mg sin 37°=1.2ma.②①②联立解得推力F=1.32mg.答案: B9.如右图所示,水平面上质量相等的两木板A、B用一轻质弹簧相连,整个系统处于静止状态.现用一竖直向上的力F拉动木块A,使木块A向上做匀加速直线运动.研究从力F刚作用在木块A上的瞬间到木块B刚离开地面的瞬间这一过程,并且选定该过程中木块A的起点位置为坐标原点,则下列图中可以表示力F和木块A的位移x之间的关系的是() 解析:弹簧的形变量用x′表示,系统处于静止状态时,易知弹簧的压缩量为mg/k;研究从F刚作用在木板A上的瞬间到弹簧刚恢复原长的瞬间这个过程,由牛顿第二定律得:F+kx′-mg=ma,又因为x+x′=mg/k,所以得F=kx+ma;研究从弹簧恢复原长时到木块B刚离开地面的瞬间这个过程,同理得到F=kx+ma.故选项A正确.答案: A10.质量均为m的A、B两个小球之间系一个质量不计的弹簧,放在光滑的台面上.A紧靠墙壁,如右图所示,今用恒力F将B球向左挤压弹簧,达到平衡时,突然将力撤去,此瞬间()A.A球的加速度为F/(2m)B.A球的加速度为零C.B球的加速度为F/(2m)D.B球的加速度为F/m解析:恒力F作用时,A和B都平衡,它们的合力都为零,且弹簧弹力为F.突然将力F撤去,对A来说水平方向依然受弹簧弹力和墙壁的弹力,二力平衡,所以A球的合力为零,加速度为零,A项错,B项对.而B球在水平方向只受水平向右的弹簧的弹力作用,加速度a=Fm,故C项错,D项对.答案:BD11.如右图所示,电梯与水平面夹角为30°,当电梯加速向上运动时,梯面对人的支持力是其重力的6/5,则人与梯面间的摩擦力是其重力的多少倍?解析:本题分解加速度比分解力更显方便.对人进行受力分析:重力mg、支持力F N、摩擦力F f(摩擦力的方向一定与接触面平行,由加速度的方向可推知F f水平向右).建立直角坐标系:取水平向右(即F f方向)为x轴正向,此时只需分解加速度,其中a x=a cos 30°,a y=a sin 30°(如下图所示).建立方程并求解:x方向:F f=ma cos 30°y方向:F N-mg=ma sin 30°所以F f/(mg)=3/5.答案:3 512.某一旅游景区,建有一山坡滑草运动项目.该山坡可看成倾角θ=30°的斜面,一名游客连同滑草装置总质量m=80 kg,他从静止开始匀加速下滑,在时间t=5 s内沿斜面滑下的位移x =50 m .(不计空气阻力,取g =10 m/s 2,结果保留2位有效数字)问(1)游客连同滑草装置在下滑过程中受到的摩擦力F 为多大?(2)滑草装置与草皮之间的动摩擦因数μ为多大?解析: (1)由位移公式x =12at 2沿斜面方向,由牛顿第二定律得mg sin θ-F f =ma联立并代入数值后,得F f =m ⎝ ⎛⎭⎪⎫g sin θ-2x t 2=80 N (2)在垂直斜面方向上,F N -mg cos θ=0,又F f =μF N联立并代入数值后,得μ=F f mg cos θ=0.12.答案: (1)80 N (2)0.12。

牛顿第二定律的应用(两类问题)

牛顿第二定律的应用(两类问题)
解题思路: 利用牛顿第二定律作为桥梁,求加速度
例题1 一个静止在水平面上的物体,质量 是2kg,在水平方向受到5.0N的拉力,物体跟 水平面的滑动摩擦力是2.0N。 1)求物体在4.0秒末的速度; 解:1)前4秒 根据牛顿第二定律F合=ma列方程: 水平方向 F-f=ma a=1.5(m/s2) 由vt=v0+at: vt=6(m/s)
2:已知运动情况求解受力情况
例题2: 一辆质量为1.0×103kg的小汽车,正以 10m/s的速度行驶,现在让它在12.5m的距离内匀 减速地停下来,求所需的阻力。 • 设小车运动的初速度方向为正方向,由运动学公 式
2aS v v
2 t
据牛顿第二定律F合=ma列方程: 竖直方面 N-mg=0 水平方面 f=ma=1.0×103×( - 4 ) N
2 0 v0 10 2 a m / s 2 4m / s 2 2 12.5 2S
2 o
可得
f = - 4.0×103N
• 例题3:
一辆质量为1.0×103kg的小汽车,正以 10mห้องสมุดไป่ตู้s的速度行驶,现在让它在12.5m的距离内匀 减速地停下来。
一木箱(m=2kg)沿一粗糙斜面匀加速下滑,初 速度为零,5s内下滑25m,斜面倾角300, 求(1)木箱与斜面间的动摩擦因数, (2)若以某初速沿斜面向上冲,要能冲上4m,则 初速至少多大?
例题1 一个静止在水平面上的物体,质量 是2kg,在水平方向受到5.0N的拉力,物体跟 水平面的滑动摩擦力是2.0N。 2)若在4秒末撤去拉力,求物体滑行时间。 解:2) 4秒后 竖直方向 FN-mg=0 水平方向f=ma′ a ′= 1.0(m/S2)
由△V=at t= △ v/a=6.0(s)

牛顿第二定律讲解和例题解析

牛顿第二定律讲解和例题解析
综上所述,解决问题的关键是先根据题目中的已知条 件求加速度a,然后再去求所要求的物理量,加速度象纽 带一样将运动学与动力学连为一体.
例1:如图所示.地面上放m=40kg的木箱,用大小为 10N与水平方向夹角300的力推木箱,木箱恰好匀速运动, 若用此力与水平方向成300角斜向上拉木箱,30s可使木箱 前进多少米?(g取10m/s2)
0v2
s相

2a

032
0.9m
25
A从开始运动到相对静止经历的时间
t 0 v相 0.6s a相
在此时间内B的位移 s 1a t2 1.8m
2 B
B
A、B相对静止时的速度v=aBt==
随后A、B一起以a`=-μBg=-2m/s2作匀减速运动直至
停止,这段时间内的位移
0v2 0062
s`
0.09m
与传送带之间的动摩擦因数, AB长16米,求:以下两
种情况下物体从A到B所用的时间.
(1)传送带顺时针方向转动
A
(2)传送带逆时针方向转动
B 370
解:(1)传送带顺时针方向转动时受力如图示
:在斜面方向上有: mg sinθ-μmg cosθ= m a
N fA
则:a = gsinθ-μgcosθ= 2m/s2 B
②若v≥ v,A2 工2件aS由A到B,全程做匀加速运动,到
达B端的速度vB=
vA 22aS 23m/s
③若 vA2 >2avS>vA,工件由A到B,先做匀加速运动, 当速度增加到传送带速度v时,工件与传送带一起作匀速
运动速度相同,工件到达B端的速度vB=v.
④若v≤
v
2 A
,2a工S 件由A到B,全程做匀减速运动,到达

牛顿第二定律典型例题

牛顿第二定律典型例题

牛顿运动定律典型问题一、共点力平衡及动态平衡【例1】如图(甲)质量为m的物体,用水平细绳AB拉住,静止在倾角为θ的固定斜面上,求物体对斜面压力的大小。

【例2】如图所示,用竖直档板将小球夹在档板和光滑斜面之间,若缓慢转动挡板,使其由竖直转至水平的过程中,分析球对挡板的压力和对斜面的压力如何变化.【例3】如图所示,支杆BC一端用铰链固定于B,另一端连接滑轮C,重物P上系一轻绳经C固定于墙上A点。

若杆BC、滑轮C及绳子的质量、摩擦均不计,将绳端A点沿墙稍向下移,再使之平衡时,绳的拉力和BC杆受到的压力如何变化?【练习】1.如图所示,用一个三角支架悬挂重物,已知AB杆所受的最大压力为2000N,AC绳所受最大拉力为1000N,∠α=30°,为不使支架断裂,求悬挂物的重力应满足的条件?2.如图所示,细绳CO与竖直方向成30°角,A、B两物体用跨过滑轮的细绳相连,已知物体B所受到的重力为100N,地面对物体B的支持力为80N,试求(1)物体A所受到的重力;(2)物体B与地面间的摩擦力;(3)细绳CO受到的拉力。

3.如图所示,在质量为1kg的重物上系着一条长30cm的细绳,细绳的另一端连着圆环,圆环套在水平的棒上可以滑动,环与棒间的静摩擦因数为0.75,另有一条细绳,在其一端跨过定滑轮,定滑轮固定在距离圆环0.5m的地方。

当细绳的端点挂上重物G,而圆环将要开始滑动时,试问(1)长为30cm的细绳的张力是多少?(2)圆环将要开始滑动时,重物G的质量是多少?4.如图,A、B两物体质量相等,B用细绳拉着,绳与倾角θ的斜面平行。

A与B,A与斜面间的动摩擦因数相同,若A沿斜面匀速下滑,求动摩擦因数的值。

5.如图所示,用两根绳子系住一重物,绳OA与天花板夹角θ不变,且θ>45°,当用手拉住绳OB,使绳OB由水平慢慢转向OB′过程中,OB绳所受拉力将()A.始终减少B.始终增大C.先增大后减少D.先减少后增大6.如图所示,一重球用细线悬于O点,一光滑斜面将重球支持于A点,现将斜面沿水平面向右慢慢移动,那么细线对重球的拉力T及斜面对重球的支持力N的变化情况是:()A.T逐渐增大,N逐渐减小;B.T逐渐减小,N逐渐增大;C.T先变小后变大,N逐渐减小;D.T逐渐增大,N先变大后变小。

牛顿第二定律常见题型和解题方法

牛顿第二定律常见题型和解题方法

牛顿第二定律常见题型和解题方法一、求加速度1、瞬时加速度的求法例1、12.如图所示,吊篮P悬挂在天花板上,与吊篮质量相等的物体Q被固定在吊篮中的轻弹簧托住,当悬挂吊篮的细绳烧断的瞬间,吊篮P和物体Q的加速度大小是()A.a P = a Q = gB.a P =2 g,a Q = gC.a P = g,a Q =2 gD.a P = 2g,a Q = 02、二力合成法求加速度例2、一辆小车在水平地面上行驶,悬挂的摆球相对小车静止并与竖直方向成α角(如下图所示)下列关于小车运动情况,说法正确的是A.加速度方向向左,大小为g tanα。

B.加速度方向向右,大小为g tanαC.加速度方向向左,大小为g sinαD.加速度方向向右,大小为g sinα3、正交分解法求加速度例3、在长木板上放有一物体,从水平位置开始慢慢地抬起木板的一端,当木板与水平面的夹角α=30°时,物体恰好匀速下滑,那么当α=60°时,求物体下滑的加速度大小二、程序法结合两类基本问题例4、如图所示,一弹簧一端系在墙上O点,自由伸长到B点。

今将一小物体m压着弹簧,将弹簧压缩到A点,然后释放,小物体能运动到C点静止,物体与水平地面的摩擦系数恒定。

试判断下列说法中正确的是()A.物体从A到B速度越来越大,从B到C速度越来越小B.物体从A到B速度越来越小,从B到C加速度不变C.物体从A到B,先加速后减速,从B到C一直减速运动D.物体从B点受合外力为零例5、用平行于斜面的力推动一个质量为m 的物体,沿倾角为a 的光滑斜面向上运动,当物体运动到斜面的中点时撤去推力,物体恰能滑到斜面顶点,由此可断定推力F 的大小为?例6、水平传送带长度为20 m ,以2 m/s 的速度作匀速运动,已知某物体与传送带的动摩 擦因数为0.1,该物体放在传送带的某一端开始,到达另一端所需的时间为例7、小球质量m=1kg ,穿在与水平面成300的斜杆上,如图,小球与杆之间动摩擦因数为 =6/3小球受竖直向上的拉力F=20牛,从静止开始经2秒钟,求小球沿杆移动多大的距离?(g 取10米/秒2)三、整体法和隔离法应用例8、如图,在倾角为α的固定光滑斜面上,有一用绳子拴着的长木板,木板上站着一只猫.已知木板的质量是猫的质量的2倍.当绳子突然断开时,猫立即沿着板向上跑,以保持其相对斜面的位置不变.则此时木板沿斜面下滑的加速度为A .2g sin α B .gsin α C .23gsin α D .2gsin α 例9、如图所示,跨过定滑轮的绳的一端挂一吊板,另一端被吊板上的人拉住,已知人的质量为70 kg ,吊板的质量为10 kg ,绳及定滑轮的质量、滑轮的摩擦均可不计,取重力加速度g =10m/s 2。

牛顿第二定律习题答案

牛顿第二定律习题答案

练习2 牛顿第二定律考点一 对牛顿第第二定律的理解 【例1】【答案】CD【解析】虽然F =ma ,但m 与a 无关,因a 是由m 和F 共同决定的,即a ∝Fm,且a 与F 同时产生、同时消失、同时存在、同时改变;a 与F 的方向永远相同.综上所述,A 、B 错误,C 、D 正确.【例2】【答案】 BD考点二 牛顿第二定律的简单应用【例3】【答案】D【解析】选D 据题意可知,小车向右做匀加速直线运动,由于球固定在杆上,而杆固定在小车上,则三者属于同一整体,根据整体法和隔离法的关系分析可知,球和小车的加速度相同,所以球的加速度也向右,即沿OD 方向,故选项D 正确。

【例4】【答案】(1)g (sin θ+μcos θ),方向沿斜面向下 (2)g (sin θ-μcos θ),方向沿斜面向下【解析】(1)以木块为研究对象,木块上滑时对其受力分析,如图甲所示 根据牛顿第二定律有mg sin θ+F f =ma ,F N -mg cos θ=0 又F f =μF N联立解得a =g (sin θ+μcos θ),方向沿斜面向下.(2)木块下滑时对其受力分析如图乙所示. 根据牛顿第二定律有mg sin θ-F f ′=ma ′,F N ′-mg cos θ=0,又F f ′=μF N ′联立解得a ′=g (sin θ-μcos θ),方向沿斜面向下.1.【答案】CD【解析】a =Fm是加速度的决定式,a 与F 成正比,与m 成反比,C 正确;F =ma 说明力是产生加速度的原因,但不能说F 与m 成正比,与a 成反比,A 错误;m =F a中m 与F 、a 皆无关,但可以通过测量物体的加速度和它所受到的合力求出,B 错误,D 正确.2. 【答案】D.【解析】:牛顿第二定律中的力应理解为物体所受的合力.用一个力推桌子没有推动,是由于桌子所受推力、重力、地面的支持力与摩擦力的合力等于零,物体的加速度为零,所以物体仍静止,故选项D 正确,选项A 、B 、C 错误. 3.【答案】C【解析】根据牛顿第二定律:F =ma ,m =F 1a 1=F 2a 2,得F 2=16 N ,C 正确.4.解析:选A 物体从A 到O ,初始阶段受到向右的弹力大于阻力,合力向右。

牛顿第二定律经典习题训练含答案

牛顿第二定律经典习题训练含答案

精心整理题型一对牛顿第二定律的理解1、关于牛顿第二定律,下列说法正确的是( ) A .公式F =ma 中,各量的单位可以任意选取B .某一瞬间的加速度只决定于这一瞬间物体所受合外力,而与这之前或之后的受力无关C .公式F =ma 中,a 实际上是作用于该物体上每一个力所产生的加速度的矢量和D .物体的运动方向一定与它所受合外力方向一致 【变式】.从牛顿第二定律知道,无论怎样小的力都可以使物体产生加速度,可是当我们用一个很小的力去推很重的桌子时,却推不动它,这是因为( ) A .牛顿的第二定律不适用于静止物体B .桌子的加速度很小,速度增量极小,眼睛不易觉察到C .推力小于静摩擦力,加速度是负的D .桌子所受的合力为零题型二 牛顿第二定律的瞬时性2、如图所示,质量均为m 的A 和B 两球用轻弹簧连接,A 球用细线悬挂起来,两球均处于静止状态.如果将悬挂A 球的细线剪断,此时A 和B 两球的瞬间加速度各是多少? 【变式】.(2010·全国卷Ⅰ)如图4—3—3,轻弹簧上端与一质量为m 的木块1相连,下端与另一质量为M 的木块2相连,整个系统置于水平放置的光滑木板上,并处于静止状态.现将木板沿水平方向突然抽出,设抽出后的瞬间,木块1、2的加速度大小分别 为a 1、a 2.重力加速度大小为g .则有( ) A.a1=0,a2=gB.a1=g,a2=gC.a1=0,a2=(m+M)g/MD.a1=g,a2=(m+M)g/M 题型三 牛顿第二定律的独立性3 如图所示,质量m =2kg 的物体放在光滑水平面上,受到水平且相互垂直的两个力F 1、F 2的作用,且F 1=3N ,F 2=4N .试求物体的加速度大小. 【变式】.如图所示,电梯与水平面夹角为30°,当电梯加速向上运动时,梯面对人的支持力是其重力的6/5,则人与梯面间的摩擦力是其重力的多少倍? 题型四 运动和力的关系4 如图所示,一轻质弹簧一端固定在墙上的O 点,自由伸长到B 点.今用一小物体m 把弹簧压缩到A 点(m 与弹簧不连接),然后释放,小物体能经B 点运动到C 点而静止.小物体m 与水平面间的动摩擦因数μ恒定,则下列说法中正确的是( ) A .物体从A 到B 速度越来越大 B .物体从A 到B 速度先增加后减小 C .物体从A 到B 加速度越来越小D .物体从A 到B 加速度先减小后增加 【变式】.(2010·福建理综高考)质量为2kg 的物体静止在足够大的水平地面上,物体与地面间的动摩擦因数为0.2,最大静摩擦力与滑动摩擦力大小视为相等.从t =0时刻开始,物体受到方向不变、大小呈周期性变化的水平拉力F 的作用,F 随时间t 的变化规律如图所示.重力加速度g 取10m/s 2,则物体在t =0至t =12s 这段时间的位移大小为( ) A .18mB .54m C .72mD .198m题型五 牛顿第二定律的应用5、质量为2kg 的物体与水平面的动摩擦因数为0.2,现对物体用一向右与水平方向成37°、大小为10N 的斜向上拉力F ,使之向右做匀加速直线运动,如图甲所示,求物体运动的加速度的大小.(g 取10m/s.)牛顿第二定律经典习题训练班级姓名【变式】.一只装有工件的木箱,质量m =40kg.木箱与水平地面的动摩擦因数μ=0.3,现用200N 的斜向右下方的力F 推木箱,推力的方向与水平面成θ=30°角,如下图所示.求木箱的加速度大小.(g 取9.8m/s 2) 强化练习 一、选择题1.下列说法中正确的是( )A .物体所受合外力为零,物体的速度必为零B .物体所受合外力越大,物体的加速度越大,速度也越大C .物体的速度方向一定与物体受到的合外力的方向一致D .物体的加速度方向一定与物体所受到的合外力方向一致 2.关于力的单位“牛顿”,下列说法正确的是( ) A .使2kg 的物体产生2m/s 2加速度的力,叫做1NB .使质量是0.5kg 的物体产生1.5m/s 2的加速度的力,叫做1NC .使质量是1kg 的物体产生1m/s 2的加速度的力,叫做1N D .使质量是2kg 的物体产生1m/s 2的加速度的力,叫做1N 3.关于牛顿第二定律,下列说法中正确的是( )A .加速度和力的关系是瞬时对应关系,即a 与F 是同时产生,同时变化,同时消失B .物体只有受到力作用时,才有加速度,但不一定有速度C .任何情况下,加速度的方向总与合外力方向相同,但与速度v 不一定同向D .当物体受到几个力作用时,可把物体的加速度看成是各个力单独作用所产生的分加速度的合成 4.质量为m 的物体从高处静止释放后竖直下落,在某时刻受到的空气阻力为F f ,加速度a =g ,则F f 的大小是( )A .F f =mgB .F f =mgC .F f =mgD .F f =mg5.如图1所示,底板光滑的小车上用两个量程为20N 、完全相同的弹簧测力计甲和乙系住一个质量为1kg 的物块,在水平地面上当小车做匀速直线运动时,两弹簧测力计的示数均为10N ,当小车做匀加速直线运动时,弹簧测力计甲的示数变为8N ,这时小车运动的加速度大小是( ) A .2m/s 2B .4m/s 2 C .6m/s 2D .8m/s 26.搬运工人沿粗糙斜面把一物体拉上卡车,当力沿斜面向上,大小为F 时,物体的加速度为a 1;若保持力的方向不变,大小变为2F 时,物体的加速度为a 2,则( ) A .a 1=a 2B .a 1<a 2<2a 1 C .a 2=2a 1D .a 2>2a 1 二、非选择题7.如图2所示,三物体A 、B 、C 的质量均相等,用轻弹簧和细绳相连后竖直悬挂,当把A 、B 之间的细绳剪断的瞬间,求三物体的加速度大小为a A 、a B 、a C .8.甲、乙、丙三物体质量之比为5∶3∶2,所受合外力之比为2∶3∶5,则甲、乙、丙三物体加速度大小之比为________.9.质量为2kg 的物体,运动的加速度为1m/s 2,则所受合外力大小为多大?若物体所受合外力大小为8N ,那么,物体的加速度大小为多大?10.质量为6×103kg 的车,在水平力F =3×104N 的牵引下,沿水平地面前进,如果阻力为车重的0.05倍,求车获得的加速度是多少?(g 取10m/s 2)11.质量为2kg 物体静止在光滑的水平面上,若有大小均为10N 的两个外力同时作用于它,一个力水平向东,另一个力水平向南,求它的加速度.12.质量m 1=10kg 的物体在竖直向上的恒定拉力F 作用下,以a 1=2m/s 2的加速度匀加速上升,拉图1 图力F 多大?若将拉力F 作用在另一物体上,物体能以a 2=2m/s 2的加速度匀加速下降,该物体的质量m 2应为多大?(g 取10m/s 2,空气阻力不计)13.在无风的天气里,一质量为0.2g 的雨滴在空中竖直下落,由于受到空气的阻力,最后以某一恒定的速度下落,这个恒定的速度通常叫收尾速度.(1)雨滴达到收尾速度时受到的空气阻力是多大?(g =10m/s 2)(2)若空气阻力与雨滴的速度成正比,试定性分析雨滴下落过程中加速度和速度如何变化. 参考答案1【答案】 BC 答案:D 2答案:B 球瞬间加速度aB =0.aA =2g ,方向向下.答案c 32.5m/s 2答案 4、【答案】 BD 答案:B 5、1234答案:562F 7物体受2g 0 89101112由牛顿第二定律F -m 1g =m 1a 1,代入数据得F =120N.若作用在另一物体上m 2g -F =m 2a 2,代入数据得m 2=15kg.答案:120N 15kg 13、解析:(1)雨滴达到收尾速度时受到的空气阻力和重力是一对平衡力,所以F f =mg =2×10-3N.(2)雨滴刚开始下落的瞬间,速度为零,因而阻力也为零,加速度为重力加速度g ;随着速度的增大,阻力也逐渐增大,合力减小,加速度也减小;当速度增大到某一值时,阻力的大小增大到等于重力,雨滴所受合力也为零,速度将不再增大,雨滴匀速下落.答案:(1)2×10-3N (2)加速度由g 逐渐减小直至为零,速度从零增大直至最后不变5。

(完整word版)牛顿第二定律难题例题及解答范文

(完整word版)牛顿第二定律难题例题及解答范文

1. 在粗糙的水平面上,物体在水平推力的作用下,由静止开始做匀加速直线运动,经过一段时间后,将水平推力逐渐减小到零(物体不停止),那么,在水平推力减小到零的过程中A. 物体的速度逐渐减小,加速度逐渐减小B. 物体的速度逐渐增大,加速度逐渐减小C. 物体的速度先增大后减小,加速度先增大后减小D. 物体的速度先增大后减小,加速度先减小后增大变式1、2. 如下图所示,弹簧左端固定,右端自由伸长到O点并系住物体m,现将弹簧压缩到A点,然后释放,物体一直可以运动到B点,如果物体受到的摩擦力恒定,则A. 物体从A到O先加速后减速B. 物体从A到O加速,从O到B减速C. 物体运动到O点时,所受合力为零D. 以上说法都不对变式2、3. 如图所示,固定于水平桌面上的轻弹簧上面放一重物,现用手往下压重物,然后突然松手,在重物脱离弹簧之前,重物的运动为A. 先加速,后减速B. 先加速,后匀速C. 一直加速D. 一直减速问题2:牛顿第二定律的基本应用问题:4. 2003年10月我国成功地发射了载人宇宙飞船,标志着我国的运载火箭技术已跨入世界先进行列,成为第三个实现“飞天”梦想的国家,在某一次火箭发射实验中,若该火箭(连同装载物)的质量,启动后获得的推动力恒为,火箭发射塔高,不计火箭质量的变化和空气的阻力。

(取)求:(1)该火箭启动后获得的加速度。

(2)该火箭启动后脱离发射塔所需要的时间。

5. 如图所示,沿水平方向做匀变速直线运动的车厢中,悬挂小球的悬线偏离竖直方向角,球和车厢相对静止,球的质量为1kg。

(g取,,)(1)求车厢运动的加速度并说明车厢的运动情况。

(2)求悬线对球的拉力。

6. 如图所示,固定在小车上的折杆∠A=,B端固定一个质量为m的小球,若小车向右的加速度为a,则AB杆对小球的作用力F为()A. 当时,,方向沿AB杆B. 当时,,方向沿AB杆C. 无论a取何值,F都等于,方向都沿AB杆D. 无论a取何值,F都等于,方向不一定沿AB杆问题3:整体法和隔离法在牛顿第二定律问题中的应用:7. 一根质量为M的木杆,上端用细线系在天花板上,杆上有一质量为m的小猴,如图所示,若把细线突然剪断,小猴沿杆上爬,并保持与地面的高度不变,求此时木杆下落的加速度。

高中物理经典:牛顿第二定律 经典例题

高中物理经典:牛顿第二定律 经典例题

牛顿第二定律授课内容:例题1、一个空心小球从距离地面16m的高处由静止开始落下,经2s小球落地,已知球的质量为0.4kg,求它下落过程中所受空气阻力多大?(g=10m/s2)例题2、质量为10kg的物体放在水平面上,物体与水平面间的动摩擦因数为0.2,如果用大小40N,方向斜向上与水平方向的夹角为37°的恒力作用,使物体沿水平面向右运动,求(1)物体运动的加速度大小;(2)若物体由静止开始运动,需要多长时间速度达到8.4m/s,物体的位移多大?例题3、如图所示,质量为m=10kg的物体在水平面上向左运动,物体与水平面之间的动摩擦因数为0.2,与此同时,物体受到一个水平向右的推力F=20N的作用,则物体产生的加速度为: ( )A. 0B. 4m/s2 , 水平向右C. 2m/s2 , 水平向左D. 2m/s2 , 水平向右例题4、一根质量不计的弹簧上端固定,下端挂一重物,平衡时弹簧伸长了4㎝。

再将重物向下拉1㎝,然后放手,则在刚释放瞬间,重物的重力加速度和速度的情况是()A、a=g/4向上,v=0;B、a=g/4向上,v向上;C、a=g向上,v向上;D、a=5g/4向上,v=0。

例题5、一木块在倾角为37°的斜面上, g=10m/s2。

(1)若斜面光滑,求木块下滑时加速度大小;(2)若斜面粗糙,木块与斜面间的动摩擦因数为0.2,则当木块以某一初速度下滑时,其加速度的大小;(3)若斜面粗糙,木块与斜面间的动摩擦因数为0.2,则当木块以某一初速度上滑时,其加速度的大小。

(4)若斜面粗糙,木块与斜面间的动摩擦因数为0.2,木块质量为3Kg,木块受到沿斜面向上的大小为25.8N的推力作用,则木块由静止开始运动的加速度大小为多少?知识的力量Tel:页眉页脚双击鼠标左键删除。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 在粗糙的水平面上,物体在水平推力的作用下,由静止开始做匀加速直线运动,经过一段时间后,将水平推力逐渐减小到零(物体不停止),那么,在水平推力减小到零的过程中A. 物体的速度逐渐减小,加速度逐渐减小B. 物体的速度逐渐增大,加速度逐渐减小C. 物体的速度先增大后减小,加速度先增大后减小D. 物体的速度先增大后减小,加速度先减小后增大变式1、2. 如下图所示,弹簧左端固定,右端自由伸长到O点并系住物体m,现将弹簧压缩到A点,然后释放,物体一直可以运动到B点,如果物体受到的摩擦力恒定,则A. 物体从A到O先加速后减速B. 物体从A到O加速,从O到B减速C. 物体运动到O点时,所受合力为零D. 以上说法都不对变式2、3. 如图所示,固定于水平桌面上的轻弹簧上面放一重物,现用手往下压重物,然后突然松手,在重物脱离弹簧之前,重物的运动为A. 先加速,后减速B. 先加速,后匀速C. 一直加速D. 一直减速问题2:牛顿第二定律的基本应用问题:4. 2003年10月我国成功地发射了载人宇宙飞船,标志着我国的运载火箭技术已跨入世界先进行列,成为第三个实现“飞天”梦想的国家,在某一次火箭发射实验中,若该火箭(连同装载物)的质量,启动后获得的推动力恒为,火箭发射塔高,不计火箭质量的变化和空气的阻力。

(取)求:(1)该火箭启动后获得的加速度。

(2)该火箭启动后脱离发射塔所需要的时间。

5. 如图所示,沿水平方向做匀变速直线运动的车厢中,悬挂小球的悬线偏离竖直方向角,球和车厢相对静止,球的质量为1kg。

(g取,,)(1)求车厢运动的加速度并说明车厢的运动情况。

(2)求悬线对球的拉力。

6. 如图所示,固定在小车上的折杆∠A=,B端固定一个质量为m的小球,若小车向右的加速度为a,则AB杆对小球的作用力F为()A. 当时,,方向沿AB杆B. 当时,,方向沿AB杆C. 无论a取何值,F都等于,方向都沿AB杆D. 无论a取何值,F都等于,方向不一定沿AB杆问题3:整体法和隔离法在牛顿第二定律问题中的应用:7. 一根质量为M的木杆,上端用细线系在天花板上,杆上有一质量为m的小猴,如图所示,若把细线突然剪断,小猴沿杆上爬,并保持与地面的高度不变,求此时木杆下落的加速度。

8. 如图,在倾角为的固定光滑斜面上,有一用绳子拴着的长木板,木板上站着一只猫,已知木板的质量是猫的质量的2倍。

当绳子突然断开时,猫立即沿着板向上跑,以保持其相对斜面的位置不变。

则此时木板沿斜面下滑的加速度为A. B. C. D.例题解答:1. D2. A3. A4. (1)(2)解析:本题考查牛顿第二定律和匀变速直线运动的规律在实际中的应用,首先应对火箭进行受力分析,因火箭发射在竖直方向上,一定不要漏掉重力,再利用牛顿第二定律求出火箭加速度,利用匀变速直线运动规律求时间。

(1)如图所示,根据牛顿第二定律:∴(2)设火箭在发射塔上运动的时间为t,则:∴。

5. (1)(2)12.5N解析:小球与车厢相对静止,有相同的运动情况。

小球受重力和细线的拉力作用,求出它们的合力,由牛顿第二定律求加速度。

对小球的受力分析如图所示。

(1)球所受的合外力对由牛顿第二定律,可求得球的加速度为:。

加速度方向水平向右,车厢可能水平向右做匀加速直线运动,也可能水平向左做匀减速直线运动。

(2)由图(2)可得,线对球的拉力大小为:6.BD解析:取小球为研究对象,其受力分析如图所示,当时小球平衡,故,竖直向上,故A选项错误,分解如图,则时,,故,,沿杆方向,当时不沿杆AB,但。

7.解析:解法一:隔离法:木杆与小猴的受力如图(2)甲、乙所示,木杆受到自身重力Mg与小猴给木杆向下的静摩擦力,小猴受到自身的重力mg与木杆对它的向上的静摩擦力,在竖直方向上,由牛顿第二定律可得:对小猴:,①对木杆:。

②由牛顿第三定律有:,③∴由①②③三式可得:。

解法二:整体法,以木杆与小猴为一个整体,在竖直方向上只受重力和mg作用,如图丙所示,由牛顿第二定律的形式对整体可有:④。

又因小猴相对地面静止,故其对地加速度:,上面的④式可变为:,∴。

显然,以上两种方法得到的答案完全相同。

答案:木杆下落的加速度为。

8.C对于猫和木板的受力分析如图所示:隔离猫,则,①隔离木板,②由牛顿第三定律③①②③联立。

【模拟试题】1质量为m的物体,放在粗糙水平面上,受到一个水平力F的作用而加速运动,则在运动中加速度a的大小A. 和物体运动速度无关B. 和物体的质量无关C. 和物体的质量成反比D. 和外力F成正比2某学生做“验证牛顿第二定律”的实验在平衡摩擦力时,把长木板的一端垫得过高,使得倾角偏大,他所得到的a-F关系可用图中的哪个图线表示?图中a是小车的加速度,F是细线作用于小车的拉力。

3如图所示,A、B两条直线是在A、B两地分别用竖直向上的F拉质量分别为和的两个物体得出的加速度与力F之间的关系图线,分析图线可知:A. 比较两地的重力加速度,有B. 比较两物体的质量,有C. 比较两地的重力加速度,有D. 比较两物体的质量,有4 如图所示,底板光滑的小车上用两个量程为20N,完全相同的弹簧测力计甲和乙系住一个质量为1kg的物块,在水平地面上,当小车做匀速直线运动时,两弹簧测力计的示数均为10N,当小车做匀加速直线运动时,弹簧测力计甲的示数变为8N,这时小车运动的加速度大小是A. B. C. D.5A 雨滴在下落过程中,由于水汽的凝聚,雨滴质量将逐渐增大,同时由于下落速度逐渐增大,所受空气阻力也将越来越大,最后雨滴将以某一速度匀速下降,在雨滴下降的过程中,下列说法正确的是A. 雨滴受到的重力逐渐增大,重力产生的加速度也逐渐增大B. 雨滴质量逐渐增大,重力产生的加速度逐渐减小C. 由于雨滴受空气阻力逐渐增大,雨滴下落的加速度将逐渐减小D. 雨滴所受重力逐渐增大,雨滴下落的重力加速度不变6如图所示,是做直线运动的物体受力F与受力后位移s的关系图,则从图可知A. 该物体至位移时的速度最小B. 该物体至位移时的加速度最大C. 该物体至位移后便开始返回运动D. 该物体至位移时的速度最大7如图所示,质量为M的凹形槽沿斜面匀速下滑,现将质量为m的砝码轻轻放入槽中,下列说法正确的是A. M和m一起加速下滑B. M和m一起减速下滑C. M和m仍一起匀速下滑D. 上述三种情况均有可能8 如图所示,一根轻质弹簧的一端系着一个物体,手拉轻质弹簧的一端,轻质弹簧与物体一起在粗糙水平面上向左做匀加速运动,当手突然停止运动后的很短时间内,物体将A. 立即停止B. 向左做变加速运动C. 向左做匀加速运动D. 向左做减速运动9如图所示,质量均为m的A、B两球之间系着一条不计质量的轻弹簧放在光滑水平面上,A球紧靠墙壁,今用力F将B球向左推压弹簧,平衡后,突然将力F撤去的瞬间,则A. A球的加速度为B. A球的加速度为零C. B球的加速度为D. B球的加速度为零10在水平地面上有一质量为4kg的物体,物体在水平拉力F的作用下由静止开始运动。

10s 后拉力大小减为。

该物体v-t图象如图所示,求:(1)物体受到的水平拉力F的大小。

(2)物体与地面间的动摩擦因数。

(g取)【试题答案】1. A 粗糙水平面上运动一定要考虑摩擦力的作用,,与加速度无关的只有速度;与成正比关系,与拉力F不是简单的正比关系,摩擦力也与m有关,所以加速度与m 不是简单的反比关系。

2. C 由于斜面倾角过大,小车沿斜面方向的重力的分力将大于小车与斜面间的摩擦力,不挂砂桶时(F=0),小车将沿斜面方向做匀加速直线运动,正确答案为C。

3. B、C A和B的图象和纵坐标相交于同一点,说明两物体在不受F只受重力的作用下,它们的加速度相同,可知:两地重力加速度相同;由A和B的图象和横坐标相交于不同点,说明两物体在平衡状态时F的大小不同,A物体的F小,表明A的重力小,即A的质量小于B的质量。

4. B 设两弹簧测力计示数均为10N时,各自伸长量为,又设小车做匀加速直线运动时,甲弹簧伸长量为,由于小车长不变,则两弹簧总伸长量不变,所以乙弹簧伸长量为,则据胡克定律有,,,再由,得。

5. C、D 由题意知物体做加速度逐渐减小的加速运动,最后做匀速运动,加速度逐渐减小,是由于阻力增大造成的,重力逐渐增大,而重力加速度是不变的。

6. B、D 由题图可知,力的方向始终跟位移方向相同,所以物体始终做加速运动,在位移处,物体的速度最大,在位移处物体受力最大,则在该处物体的加速度最大。

7. C 凹形槽中放入砝码前,下滑力与摩擦力平衡,即;当凹形槽中放入砝码后,下滑力·与摩擦力仍平衡,即,凹形槽运动状态不变。

8. B 当手突然停止运动时,弹簧形变并未立即改变,其弹力仍大于滑动摩擦力,故手突然停止后一小段时间内仍向左做加速运动。

9. B、C 用力F压B球平衡后,说明了在水平方向上,弹簧对B球的弹力与力F平衡,而A球是弹簧对A球的弹力与墙壁对A球的弹力相平衡,当撤去了力F的瞬间,由于弹簧的弹力是弹簧形变而产生的,这一瞬间,弹簧的形变没有消失,弹簧的弹力还来不及变化,故弹力大小仍为F,所以B球的加速度,而A球受力不变,加速度为零,B、C两选项正确。

10. 解:由题意得解得,,。

相关文档
最新文档