「精品」初中人教版七年级数学《二元一次方程组》全章复习与巩固(基础)知识讲解

合集下载

人教版七年级 数学下册《二元一次方程组》全章复习与巩固(基础)知识讲解思路点拨举一反三

人教版七年级 数学下册《二元一次方程组》全章复习与巩固(基础)知识讲解思路点拨举一反三

《二元一次方程组》全章复习与巩固(基础)知识讲解【学习目标】1.了解二元一次方程组及其解的有关概念;2.掌握消元法(代入或加减消元法)解二元一次方程组的方法;3.理解和掌握方程组与实际问题的联系以及方程组的解;4.掌握二元一次方程组在解决实际问题中的简单应用;5.通过对二元一次方程组的应用,培养应用数学的理念. 【知识网络】【要点梳理】要点一、二元一次方程组的相关概念1.二元一次方程的定义定义:方程中含有两个未知数(一般用x和y),并且未知数的次数都是1,像这样的方程叫做二元一次方程. 要点诠释:(1)在方程中“元”是指未知数,“二元”就是指方程中有且只有两个未知数.(2)“未知数的次数为1”是指含有未知数的项(单项式)的次数是1.(3)二元一次方程的左边和右边都必须是整式.2.二元一次方程的解定义:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.要点诠释:二元一次方程的每一个解,都是一对数值,而不是一个数值,一般要用大括号联立起来,即二元一次方程的解通常表示为⎩⎨⎧b a ==y x 的形式. 3. 二元一次方程组的定义定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组. 此外,组成方程组的各个方程也不必同时含有两个未知数.例如,二元一次方程组3452x y x +=⎧⎨=⎩. 要点诠释:(1)它的一般形式为111222a xb yc a x b y c +=⎧⎨+=⎩(其中1a ,2a ,1b ,2b 不同时为零).(2)更一般地,如果两个一次方程合起来共有两个未知数,那么它们组成一个二元一次方程组.(3)符号“{”表示同时满足,相当于“且”的意思.4. 二元一次方程组的解定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.要点诠释:(1)方程组中每个未知数的值应同时满足两个方程,所以检验是否是方程组的解,应把数值代入两个方程,若两个方程同时成立,才是方程组的解,而方程组中某一个方程的某一组解不一定是方程组的解.(2)方程组的解要用大括号联立;(3)一般地,二元一次方程组的解只有一个,但也有特殊情况,如方程组⎩⎨⎧=+=+6252y x y x 无解,而方程组⎩⎨⎧-=+-=+2221y x y x 的解有无数个.要点二、二元一次方程组的解法1.解二元一次方程组的思想转化消元一元一次方程二元一次方程组2.解二元一次方程组的基本方法:代入消元法和加减消元法(1)用代入消元法解二元一次方程组的一般过程:①从方程组中选定一个系数比较简单的方程进行变形,用含有x(或y)的代数式表示y(或x),即变成by+=(或ax=)的形式;x+ayb②将bax=)代入另一个方程(不能代入原ayx+y+=(或b变形方程)中,消去y(或x),得到一个关于x(或y)的一元一次方程;③解这个一元一次方程,求出x(或y)的值;④把x(或y)的值代入bax=)中,求y(或ayx+y+=(或bx)的值;⑤用“{”联立两个未知数的值,就是方程组的解.要点诠释:(1)用代入法解二元一次方程组时,应先观察各项系数的特点,尽可能选择变形后比较简单或代入后化简比较容易的方程变形;(2)变形后的方程不能再代入原方程,只能代入原方程组中的另一个方程;(3)要善于分析方程的特点,寻找简便的解法.如将某个未知数连同它的系数作为一个整体用含另一个未知数的代数式来表示,代入另一个方程,或直接将某一方程代入另一个方程,这种方法叫做整体代入法.整体代入法是解二元一次方程组常用的方法之一,它的运用可使运算简便,提高运算速度及准确率.(2)用加减消元法解二元一次方程组的一般过程:①根据“等式的两边都乘以(或除以)同一个不等于0的数,等式仍然成立”的性质,将原方程组化成有一个未知数的系数绝对值相等的形式;②根据“等式两边加上(或减去)同一个整式,所得的方程与原方程是同解方程”的性质,将变形后的两个方程相加(或相减),消去一个未知数,得到一个一元一次方程;③解这个一元一次方程,求出一个未知数的值;④把求得的未知数的值代入原方程组中比较简单的一个方程中,求出另一个未知数的值;⑤将两个未知数的值用“ ”联立在一起即可.要点诠释:当方程组中有一个未知数的系数的绝对值相等或同一个未知数的系数成整数倍时,用加减消元法较简单.要点三、实际问题与二元一次方程组要点诠释:(1)解实际应用问题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的解应该舍去;(2)“设”、“答”两步,都要写清单位名称;(3)一般来说,设几个未知数就应该列出几个方程并组成方程组.要点四、三元一次方程组1.定义:含有三个未知数,并且含有未知数的项的次数都是1的方程叫做三元一次方程;含有三个相同的未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做三元一次方程组.412,325,51,x y z x y z x y z +-=⎧⎪++=-⎨⎪-+=⎩ 273,31,34a b a c b c +=⎧⎪-=⎨⎪-+=⎩等都是三元一次方程组. 要点诠释:理解三元一次方程组的定义时,要注意以下几点:(1)方程组中的每一个方程都是一次方程;(2)如果三个一元一次方程合起来共有三个未知数,它们就能组成一个三元一次方程组.2.三元一次方程组的解法解三元一次方程组的基本思想仍是消元,一般的,应利用代入法或加减法消去一个未知数,从而化三元为二元,然后解这个二元一次方程组,求出两个未知数,最后再求出另一个未知数.解三元一次方程组的一般步骤是:(1)利用代入法或加减法,把方程组中一个方程与另两个方程分别组成两组,消去两组中的同一个未知数,得到关于另外两个未知数的二元一次方程组;(2)解这个二元一次方程组,求出两个未知数的值;(3)将求得的两个未知数的值代入原方程组中的一个系数比较简单的方程,得到一个一元一次方程;(4)解这个一元一次方程,求出最后一个未知数的值;(5)将求得的三个未知数的值用“{”合写在一起.要点诠释:(1)有些特殊的方程组可用特殊的消元法,解题时要根据各方程特点寻求比较简单的解法.(2)要检验求得的未知数的值是不是原方程组的解,将所求得的一组未知数的值分别代入原方程组里的每一个方程中,看每个方程的左右两边是否相等,若相等,则是原方程组的解,只要有一个方程的左、右两边不相等就不是原方程组的解.3. 三元一次方程组的应用列三元一次方程组解应用题的一般步骤:(1)弄清题意和题目中的数量关系,用字母(如x,y,z)表示题目中的两个(或三个)未知数;(2)找出能够表达应用题全部含义的相等关系;(3)根据这些相等关系列出需要的代数式,从而列出方程并组成方程组;(4)解这个方程组,求出未知数的值;(5)写出答案(包括单位名称).要点诠释:(1)解实际应用题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的应该舍去.(2)“设”、“答”两步,都要写清单位名称,应注意单位是否统一.(3)一般来说,设几个未知数,就应列出几个方程并组成方程组.【典型例题】类型一、二元一次方程组的相关概念1.下列方程组中,不是二元一次方程组的是().A.⎩⎨⎧+==-13032x y y xB.⎩⎨⎧=-=+211z y xC.⎩⎨⎧=+-=+63222y x y x x x D.⎩⎨⎧-=+=6352x x y 【思路点拨】利用二元一次方程组的定义一一进行判断.【答案】B.【解析】二元一次方程组中只含有两个未知数,并且含有未知数的次数都是1,方程组⎩⎨⎧=+-=+63222y x y x x x 中,y x x x 3222-=+可以整理为y x 32-=.【总结升华】准确理解二元一次方程组和二元一次方程的定义是解本题的关键.举一反三:二元一次方程组章节复习 例1(2)】【变式】若32225a b a b x y --+-=是二元一次方程,则a = ,b = .【答案】1, 0.2.以⎩⎨⎧-==11y x 为解的二元一次方程组是( ).A.⎩⎨⎧=-=+10y x y xB.⎩⎨⎧-=-=+10y x y xC.⎩⎨⎧=-=+20y x y x D.⎩⎨⎧-=-=+20y x y x 【答案】C.【解析】通过观察四个选项可知,每个选项的第一个二元一次方程都是0=+y x ,第二个方程的左边都是y x -,而右边不同,根据二元一次方程的解的意义可知,当⎩⎨⎧-==11y x 时,211)1(1=+=--=-y x .【总结升华】不满足或不全部满足方程组中的各方程的选项都不是方程组的解.举一反三:【变式】若⎩⎨⎧==12y x 是关于y x 、的方程032=+-k y x 的解,则=k .【答案】 -1.类型二、二元一次方程组的解法3.(2019•荆州)解方程组:32137①②x y x y -=-⎧⎨+=⎩. 【思路点拨】方程组利用加减消元法求出解即可.【答案与解析】解:②×3﹣①得:11y=22,即y=2,把y=2代入②得:x=1, 则方程组的解为.【总结升华】消元法是解方程组的基本方法,消元的目的是把多元一次方程组逐步转化为一元一次方程,从而使问题获解.举一反三:二元一次方程组章节复习例2(2)】【变式】已知方程组35x y x y +=⎧⎨-=⎩的解是二元一次方程m (x +1)=3(x -y )的一个解,则m = .【答案】3.4. (台湾)若二元一次方程组23343x y x y -=⎧⎨-=⎩的解为x a y b =⎧⎨=⎩,则a+b 等于( ).A .1B .6C .35D .125【思路点拨】将解代入方程组,得到关于,a b 的方程组,解之,代入要求的代数式即得答案.【答案】D【解析】解:把x a y b=⎧⎨=⎩代入原方程组中,得, 23343a b a b -=⎧⎨-=⎩, 解得9535a b ⎧=⎪⎪⎨⎪=⎪⎩. 所以9312555a b +=+=. 【总结升华】根据已知条件构造出方程组,再选择恰当方法求得方程组的解,然后再代入求出最后答案.类型三、实际问题与二元一次方程组5.2001年以来,我国曾五次实施药品降价,累计降价的总金额为269亿元,五次药品降价的年份与相应降价金额如下表所示,表中缺失了2003、2007年相关数据. 已知2007年药品降价金额是2003年药品降价金额的6倍,结合表中的信息,求2003年和2007年的药品降价金额.【思路点拨】本题的两个相等关系为:(1)五年的降价金额一共是269亿元;(2)2007年药品降价金额=6×2003年的药品降价金额.【答案与解析】解:设2003年和2007年药品降价金额分别为x亿元、y亿元.根据题意,得⎩⎨⎧=++++=2694035546y x xy ,解方程组得⎩⎨⎧==12020y x . 答:2003年和2007年的药品降价金额分别为20亿元和120亿元.【总结升华】列方程(组)解实际问题的关键就是准确地找出等量关系,列方程(组)求解.举一反三:【变式】(山东济南)如图所示,教师节来临之际,群群所在的班级准备向每位辛勤工作的教师献一束鲜花,每束由4支鲜花包装而成,其中有象征母爱的康乃馨和象征尊敬的水仙花两种鲜花,同一种鲜花每支的价格相同,请你根据第一、二束鲜花提供的信息,求出第三束鲜花的价格.【答案】解:设康乃馨每支x 元,水仙花每支y 元.根据题意,可列方程组3192218x y x y +=⎧⎨+=⎩,解得54x y =⎧⎨=⎩. 所以第三束鲜花的价格是x+3y =5+3×4=17(元). 答:第三束鲜花的价格是17元.类型四、三元一次方程组6. (2015春•繁昌县期末)解方程组:31026217①②③x y zx y zx y z-+=⎧⎪+-=⎨⎪++=⎩.【思路点拨】先用加减法消去z,变为x、y的二元一次方程组.【答案与解析】解:①+②得:4x+y=16④,②×2+③得:3x+5y=29⑤,④⑤组成方程组解得将x=3,y=4代入③得:z=5,则方程组的解为.【总结升华】此题考查了三元一次方程组的解法,利用了消元的思想,消元的方法有两种:加减消元法;代入消元法,熟练掌握两种方法是解本题的关键.。

人教版 数学 七年级 下册 第八章 二元一次方程组 知识点

人教版 数学 七年级 下册 第八章 二元一次方程组 知识点

人教版数学七年级下册第八章二元
一次方程组知识点
么就需要进行系数变换,使得同一个未知数的系数相反或相等。

2、将两个方程的同一未知数系数相反或相等的式子相加或相减,得到一个一元一次方程,解出未知数的值。

3、将求得的未知数的值代入任意一个方程中,求出另一个未知数的值。

4、将求得的两个未知数的值代入方程组中,检验是否满足原方程组。

如果满足,就是正确的解,否则需要重新计算。

三、实例分析:
例1:解方程组
2x-y=1
3x+4y=10}
解:代入法
1)将第一个方程中的y用含x的式子代入第二个方程,得到3x+4(2x-1)=10,即7x=14,x=2.
2)将x=2代入第一个方程中,得到2(2)-y=1,即y=3.
3)检验:将x=2,y=3代入原方程组中,发现满足,因此解为{x=2,y=3}。

加减法
1)将第一个方程乘以4,得到8x-4y=4.
2)将第二个方程乘以(-1),得到-3x-4y=-10.
3)将上述两个方程相加,得到5x=-6,即x=-6/5.
4)将x的值代入第一个方程中,得到2*(-6/5)-y=1,即y=-7/5.
5)检验:将x=-6/5,y=-7/5代入原方程组中,发现满足,因此解为{x=-6/5,y=-7/5}。

四、注意事项:
1、代入法和加减法都是解二元一次方程组的常用方法,需要根据具体情况选择合适的方法。

2、在使用代入法时,需要选择系数比较简单的方程进行代入。

3、在使用加减法时,需要进行系数变换,使得同一个未知数的系数相反或相等。

人教版七年级数学下册—第8章二元一次方程(组)单元总结复习

人教版七年级数学下册—第8章二元一次方程(组)单元总结复习

第八章 二元一次方程(组)知识框架⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧实际问题应用三元一次方程组的解二元一次方程的解二元一次方程组的概念二元一次方程组二元一次方程的解二元一次方程的概念二元一次方程二元一次方程(组) 知识梳理 1. 二元一次方程1. 二元一次方程的概念:含有两个未知数,并且未知项的次数都是1,像这样的方程叫做二元一次方程. (1)在方程中,“元”是指未知数,“二元”就是指方程中有且只有两个未知数; (2)“未知数的次数都是1”是指含有未知数的项的次数是1. (3)二元一次方程的左边和右边必须都是整式. 2. 二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程组的解. 2. 二元一次方程组1. 二元一次方程组的概念:具有相同未知数的的两个二元一次方程合在一起,就组成了一个二元一次方程组. 判断二元一次方程组的方法:(1)看整个方程组里含有的未知数是不是两个; (2)看含有未知数的项的次数是不是1; (3)等式两边都是整式. 2. 二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.检验一对数是否是某个二元一次方程组的解常用方法:将这组数值分别代入方程组中的每个方程,只有当这对数值满足其中的所有方程时,才能说这对数值是此方程组的解;否则,就不是此方程组的解. 3. 二元一次方程组的整数解的求法:一般情况下,一个二元一次方程都有无数个整数解,解这类问题时,先用一个未知数的代数式表示另一个未4. 二元一次方程组的常用解法:①代入法;②消元法. 3. 三元一次方程组1. 三元一次方程组的概念:由三个一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组。

2. 三元一次方程组求解的步骤:4. 实际应用 1. 和差倍分问题较大量=较小量+多余量,总量=倍数×倍量; 2. 产品配套问题 加工总量成比例; 3. 行程与航速问题行程问题和航速问题:路程=速度×时间(1)⎩⎨⎧==+初始距离慢速度追及问题:快速度初始距离慢速度相遇问题:快速度行程问题-(2)航速问题:①顺流(风):航速=静水(无风)中的速度+水(风)速; ②逆流(风):航速=静水(无风)中的速度-水(风)速; 4. 工程问题(1)工作量=工作效率×工作时间;(2)①工作总量已知;②工作总量未知时,一般设为“单位1”; 5. 利润问题利润=售价-进价;利润率=(售价-进价)/进价×100%; 6. 方案问题 7. 增长率问题原量×(1+增长率)n =增长后的量,原量×(1-增长率)n =减少后的量;(n 为时间) 8. 数字问题9. 几何问题解这类问题的基本关系式是有关几何图形的性质.周长.面积等计算公式; 10. 其他问题考点1:基础概念(二元一次方程(组)的概念、方程(组)的解的概念) 【典型例题】【针对练习】1. 下列方程中,属于二元一次方程的是( )A . 81xy -=B . 2131x y -=+C . 4535x y x y -=-D . 231x y-= 2. 下列方程组中,是二元一次方程组的是( )A . 30x y =⎧⎨=⎩B . 12235x y x y ⎧-=⎪⎨⎪-=⎩C .25xy x y =⎧⎨-=⎩ D . 2363x y y z -=⎧⎨-=⎩3. 已知3(53)40,x y a xy +--=当a = ,它是关于x 、y 的二元一次方程。

七年级数学下册第八章二元一次方程组知识点总结素材新版新人教版(含参考答案)

七年级数学下册第八章二元一次方程组知识点总结素材新版新人教版(含参考答案)

七年级数学下册知识点总结素材:
二元一次方程组
一.知识结构图
二、知识概念
1.二元一次方程:含有两个未知数,并且未知数的指数都是1,像这样的方程叫做二元一次。

方程,一般形式是 ax+by=c(a≠0,b≠0)。

2.二元一次方程组:把两个二元一次方程合在一起,就组成了一个二元一次方程组。

3.二元一次方程的解:一般地,使二元一次方程两边的值相等的未知数的值叫做二元一次方程组的解。

4.二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解叫做二元一次方程组。

5.消元:将未知数的个数由多化少,逐一解决的想法,叫做消元思想。

6.代入消元:将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法。

7.加减消元法:当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,这种方法叫做加减消元法,简称加减法。

本章通过实例引入二元一次方程,二元一次方程组以及二元一次方程组的概念,培养学生对概念的理解和完整性和深刻性,使学生掌握好二元一次方程组的两种解法. 重点:二元一次方程组的解法,列二元一次方程组解决实际问题. 难点:二元一次方程组解决实际问题
1。

人教版数学七下第八章《二元一次方程组》word知识点整理

人教版数学七下第八章《二元一次方程组》word知识点整理

第八章二元一次方程组二、基本定义:1、二元一次方程的定义:含有两个未知数,并且未知数的项的次数都是1,像这样的方程叫做二元一次方程。

2、二元一次方程组的定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组。

3、二元一次方程组的解:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解,二元一次方程有无数个解。

4、二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。

三、二元一次方程的解法:1、代入消元法解二元一次方程组:(1)基本思路:未知数又多变少。

(2)消元法的基本方法:将二元一次方程组转化为一元一次方程。

(3)代入消元法:把二元一次方程组中一个方程的未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。

这个方法叫做代入消元法,简称代入法。

(4)代入法解二元一次方程组的一般步骤:1、从方程组中选出一个系数比较简单的方程,将这个方程中的一个未知数(例如y)用含另一个未知数(例如x)的代数式表示出来,即写成y=ax+b的形式,即“变”2、将y=ax+b代入到另一个方程中,消去y,得到一个关于x的一元一次方程,即“代”。

3、解出这个一元一次方程,求出x的值,即“解”。

4、把求得的x值代入y=ax+b中求出y的值,即“回代”5、把x、y的值用{联立起来即“联”2、加减消元法解二元一次方程组(1) 两个二元一次方程中同一个未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。

(2)用加减消元法解二元一次方程组的解1、方程组的两个方程中,如果同一个未知数的系数既不互为相反数幼不相等,那么就用适当的数乘方程两边,使同一个未知数的系数互为相反数或相等,即“乘”。

2、把两个方程的两边分别相加或相减,消去一个未知数、得到一个一元一次方程,即“加减”。

人教版数学七下第八章《二元一次方程组》word知识点整理(打印)(K12教育文档)

人教版数学七下第八章《二元一次方程组》word知识点整理(打印)(K12教育文档)

人教版数学七下第八章《二元一次方程组》word知识点整理(打印)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(人教版数学七下第八章《二元一次方程组》word知识点整理(打印)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为人教版数学七下第八章《二元一次方程组》word知识点整理(打印)(word版可编辑修改)的全部内容。

第八章二元一次方程组组检验二、基本定义:1、二元一次方程的定义:含有两个未知数,并且未知数的项的次数都是1,像这样的方程叫做二元一次方程。

2、二元一次方程组的定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组。

3、二元一次方程组的解:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解,二元一次方程有无数个解。

4、二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。

三、二元一次方程的解法:1、代入消元法解二元一次方程组:(1)基本思路:未知数又多变少。

(2)消元法的基本方法:将二元一次方程组转化为一元一次方程.(3)代入消元法:把二元一次方程组中一个方程的未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。

这个方法叫做代入消元法,简称代入法.(4)代入法解二元一次方程组的一般步骤:1、从方程组中选出一个系数比较简单的方程,将这个方程中的一个未知数(例如y)用含另一个未知数(例如x)的代数式表示出来,即写成y=ax+b的形式,即“变”2、将y=ax+b代入到另一个方程中,消去y,得到一个关于x的一元一次方程,即“代”。

最新人教七年级数学二元一次方程组和一元一次不等式组复习讲义

最新人教七年级数学二元一次方程组和一元一次不等式组复习讲义

二元一次方程组相关知识归纳1.二元一次方程二元一次方程具备以下四个特征:(1)是方程;(2)有且只有两个未知数;(3)方程是整式方程,即各项都是整式;(4)各项的最高次数为1.2.二元一次方程的解.3.二元一次方程组.它有两个特点:一是方程组中每一个方程都是一次方程;二是整个方程组中含有两个且只含有两个未知数.4.二元一次方程组的解.1概念:将方程组中一个方程的某个未知数用含有另一个未知数的代数式表示出来,代入另一个方程中,消去一个未知数,得到一个一元一次方程,最后求得方程组的解. 这种解方程组的方法叫做代入消元法,简称代入法.(2)代入法解二元一次方程组的步骤①选取一个系数较简单的二元一次方程变形,用含有一个未知数的代数式表示另一个未知数;、②将变形后的方程代入另一个方程中,消去一个未知数,得到一个一元一次方程(在代入时,要注意不能代入原方程,只能代入另一个没有变形的方程中,以达到消元的目的. );③解这个一元一次方程,求出未知数的值;④将求得的未知数的值代入①中变形后的方程中,求出另一个未知数的值;⑤用“{”联立两个未知数的值,就是方程组的解;⑥最后检验求得的结果是否正确(代入原方程组中进行检验,方程是否满足左边=右边).加减消元法2概念:当方程中两个方程的某一未知数的系数相等或互为相反数时,把这两个方程的两边相加或相减来消去这个未知数,从而将二元一次方程化为一元一次方程,最后求得方程组的解,这种解方程组的方法叫做加减消元法简称加减法.(2)加减法解二元一次方程组的步骤①利用等式的基本性质,将原方程组中某个未知数的系数化成相等或相反数的形式;②再利用等式的基本性质将变形后的两个方程相加或相减,消去一个未知数,得到一个一元一次方程(一定要将方程的两边都乘以同一个数,切忌只乘以一边,然后若未知数系数相等则用减法,若未知数系数互为相反数,则用加法);③解这个一元一次方程,求出未知数的值;④将求得的未知数的值代入原方程组中的任何一个方程中,求出另一个未知数的值;⑤用“{”联立两个未知数的值,就是方程组的解;⑥最后检验求得的结果是否正确(代入原方程组中进行检验,方程是否满足左边=右边).【小结】解二元一次方程组可以用代入法,也可以用加减法.一般地说,当方程组中有一个方程的某一个未知数的系数的绝对值是1或有一个方程的常数项是0时,用代入法比较方便;当两个方程中某一未知数的系数的绝对值相等或成整数倍时,用加减法比较方便.(1)、三元一次方程的概念(2)、三元一次方程组的概念(3)、三元一次方程组的解法三元一次方程组解题的基本步骤:①利用代入法或加减法,把方程组中的一个方程与另两个方程分别组成两组,消去两组中的同一个未知数,得到关于另外两个未知数的二元一次方程组。

数学人教版七年级下册二元一次方程组复习课

数学人教版七年级下册二元一次方程组复习课

6、 已知二元一次方程组
的解也是方程
7mx-4y =-18x 的解,那么 m= 7、若点 P(x-y,3x+y)与点 Q(-1,-5)关于 X 轴对称,则 x+y=______.
深化
人到乙车间,则乙车间人数恰好是甲车间人数的 2 倍,求甲、乙 两车间原来的人数. 1、已知|x+y|+(x—y+3) =0,则
2
x=
y=
x 1 y 2 x 1
y 3
训练
方程 解是
mx+ny=10 x 1 则 y 1
的两个
ax 2 y b 4 x by 2a 1
5、解二元一次方程组的基本思路是 6、 二元一次方程组解法有 7、用代入法解方程组主要步骤 8、用消元法解方程组主要步骤
练一练: 自主 1、方程
x m1 n 1 y 5
n
是关于 x、y 的二元一
次方程,则 m= 2、任何二元 学习 A、一个解 无数个解 3、写出二元 解
;n=
。 ) D、
例 2、已知|x+2y+5|+(x-y+1) =0,求(x+y) 的值.
2
2
mx y 5 例 3.小明和小华同时解方程组 2 x ny 13 小明看错了
7 x 2 y 2
探究
m, 解得
x 3 小华看错了 n, 解得, y 7
你能知道原方程的解吗? 例 4.某厂甲车间人数比乙车间人数的 多 5 人,若从甲车间调 10
I 刘集中学 七
课 题
年级 数学
第 1 课时
教学设计
课 复习课 型 导学 教师 王竞波

人教版七年级数学下册 《复习》二元一次方程组PPT课件

人教版七年级数学下册 《复习》二元一次方程组PPT课件
一次函数图象上的点的坐标都适合 对应的二元一次方程.
方程组的解是对应的两条直 线的交点坐标
两条线的交点坐标是对应 的方程组的解
第八页,共三十页。
三、知识应用
2x y m 1,
x 1,
1.已知方程组


x
y.
n
4
的解是
y
2.
n
m
x2 px q x 1
x 2
2.已知代数式
,当
时,它的值是-5;当
第六页,共三十页。
6.列二元一次方程解决实际问题的一般步骤:
审:
审清题目中的等量关系.
设:
设未知数.
列:根据等量关系,列出方程组. 解:解方程组,求出未知数.
答:检验所求出未知数是否符合题意,写出答案.
第七页,共三十页。
二元一次方程和一次 函数的图象的关系
二元一次方程组和一 次函数的图象的关系
以二元一次方程的解为坐标的点都 在对应的函数图象上.
解:设甲、乙两种商品的标价分别为x、y元,
根据题意,得 x y 100
9 10
x
(1
5) 100
y
100(1
2 100
)
解这个方程组,得
x 20
y
80
答:甲种商品的标价是20元,乙种商品的标价是
80元.
第二十一页,共三十页。
5、配套问题
例:某车间每天能生产甲种零件120个,或者乙种零件 100个,或者丙种零件200个,甲,乙,丙3种零件分别取3个, 2个,1个,才能配一套,要在30天内生产最多的成套产品, 问甲,乙,丙3种零件各应生产多少天?
大幅下降,有些型号的汽车供不应求。某汽车生产厂 接受了一份订单,要在规定的日期内生产一批汽车,

解二元一次方程组(2个知识点+6类热点题型讲练+习题巩固)(解析版)七年级数学下册

解二元一次方程组(2个知识点+6类热点题型讲练+习题巩固)(解析版)七年级数学下册

第02讲消元—解二元一次方程组课程标准学习目标①代入消元法解二元一次方程组②加减消元法解二元一次方程组1.掌握消元思想以及利用消元解一元二次方程组的两种方法,能够根据方程组的特点选择合适的方法解二元一次方程组。

知识点01代入消元法解二元一次方程组1.消元思想:将多元方程中的未知数逐个消除转换为一元一次方程,先求出一个未知数在求其他未知数这样由多化少的转换思想叫做消元思想。

2.代入消元法:将二元一次方程组中其中一个方程的未知数用另一个未知数表示出来,在代入另一个方程中实现消元,进而求得这个二元一次方程的解的方法。

简称代入法。

3.代入消元法的具体步骤:(1)变形:即把其中一个方程中一个未知数用另一个未知数表示出来。

(2)代入:将变形得到的式子代入另一个方程。

得到消元后的一元一次方程。

(3)求解:解消元后的一元一次方程。

(4)回代:把求得的一元一次方程的解代回变形后的式子求出另一个未知数的值。

(5)写解:把两个未知数的解用{联立起来。

一定要写成⎩⎨⎧==......y x 的形式。

注意:代入消元法多使用于方程组中未知数系数为±1时的方程,有直接代入,变形代入与整体代入。

【即学即练1】1.利用带入消元法解方程组:(1);(2).【分析】(1)利用代入消元法解方程组;【解答】解:(1),把②代入①得y ﹣9+3y =7,解得y =4,把y =4代入②得x =4﹣9=﹣5,所以方程组的解为;(2),由①得③2175-=x y ,把③带入②中得5217543=-⨯+x x 解得x =3,把x =3代入③得21735-⨯=y ,解得y =﹣1,所以方程组的解为.知识点02加减消元法解二元一次方程组1.加减消元法:在二元一次方程组的两个方程中,若同一个未知数的系数相等或互为相反数时,把这两个方程分别相减或相加就能消除这个未知数,得到一个一元一次方程。

这种方法叫做加减消元法。

2.加减消元法的具体步骤:(1)变形:把方程组中系数的最小公倍数较小的未知数的系数化成相等或互为相反数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《二元一次方程组》全章复习与巩固(基础)知识讲解【学习目标】1.了解二元一次方程组及其解的有关概念;2.掌握消元法(代入或加减消元法)解二元一次方程组的方法;3.理解和掌握方程组与实际问题的联系以及方程组的解;4.掌握二元一次方程组在解决实际问题中的简单应用;5.通过对二元一次方程组的应用,培养应用数学的理念.【知识网络】【要点梳理】要点一、二元一次方程组的相关概念1.二元一次方程的定义定义:方程中含有两个未知数(和),并且未知数的次数都是1,像这样的方程叫做二元一次方程.要点诠释:(1)在方程中“元”是指未知数,“二元”就是指方程中有且只有两个未知数.(2)“未知数的次数为1”是指含有未知数的项(单项式)的次数是1.(3)二元一次方程的左边和右边都必须是整式.2.二元一次方程的解定义:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.要点诠释:二元一次方程的每一个解,都是一对数值,而不是一个数值,一般要用大括号联立起来,即二元一次方程的解通常表示为的形式.3.二元一次方程组的定义定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组. 此外,组成方程组的各个方程也不必同时含有两个未知数.例如,二元一次方程组.要点诠释:(1)它的一般形式为(其中,,,不同时为零).(2)更一般地,如果两个一次方程合起来共有两个未知数,那么它们组成一个二元一次方程组.(3)符号“”表示同时满足,相当于“且”的意思.4. 二元一次方程组的解定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.要点诠释:(1)方程组中每个未知数的值应同时满足两个方程,所以检验是否是方程组的解,应把数值代入两个方程,若两个方程同时成立,才是方程组的解,而方程组中某一个方程的某一组解不一定是方程组的解. (2)方程组的解要用大括号联立;(3)一般地,二元一次方程组的解只有一个,但也有特殊情况,如方程组无解,而方程组的解有无数个.要点二、二元一次方程组的解法1.解二元一次方程组的思想2.解二元一次方程组的基本方法:代入消元法和加减消元法(1)用代入消元法解二元一次方程组的一般过程:①从方程组中选定一个系数比较简单的方程进行变形,用含有(或)的代数式表示(或),即变成(或)的形式;②将(或)代入另一个方程(不能代入原变形方程)中,消去(或),得到一个关于(或)的一元一次方程;③解这个一元一次方程,求出(或)的值;④把(或)的值代入(或)中,求(或)的值;⑤用“”联立两个未知数的值,就是方程组的解.要点诠释:(1)用代入法解二元一次方程组时,应先观察各项系数的特点,尽可能选择变形后比较简单或代入后化简比较容易的方程变形;(2)变形后的方程不能再代入原方程,只能代入原方程组中的另一个方程;(3)要善于分析方程的特点,寻找简便的解法.如将某个未知数连同它的系数作为一个整体用含另一个未知数的代数式来表示,代入另一个方程,或直接将某一方程代入另一个方程,这种方法叫做整体代入法.整体代入法是解二元一次方程组常用的方法之一,它的运用可使运算简便,提高运算速度及准确率.(2)用加减消元法解二元一次方程组的一般过程:①根据“等式的两边都乘以(或除以)同一个不等于0的数,等式仍然成立”的性质,将原方程组化成有一个未知数的系数绝对值相等的形式;②根据“等式两边加上(或减去)同一个整式,所得的方程与原方程是同解方程”的性质,将变形后的两个方程相加(或相减),消去一个未知数,得到一个一元一次方程;③解这个一元一次方程,求出一个未知数的值;④把求得的未知数的值代入原方程组中比较简单的一个方程中,求出另一个未知数的值;⑤将两个未知数的值用“”联立在一起即可.要点诠释:当方程组中有一个未知数的系数的绝对值相等或同一个未知数的系数成整数倍时,用加减消元法较简单.要点三、实际问题与二元一次方程组要点诠释:(1)解实际应用问题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的解应该舍去;(2)“设”、“答”两步,都要写清单位名称;(3)一般来说,设几个未知数就应该列出几个方程并组成方程组.要点四、三元一次方程组1.定义:含有三个未知数,并且含有未知数的项的次数都是1的方程叫做三元一次方程;含有三个相同的求知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做三元一次方程组.等都是三元一次方程组.要点诠释:理解三元一次方程组的定义时,要注意以下几点:(1)方程组中的每一个方程都是一次方程;(2)如果三个一元一次方程合起来共有三个未知数,它们就能组成一个三元一次方程组.2.三元一次方程组的解法解三元一次方程组的基本思想仍是消元,一般的,应利用代入法或加减法消去一个未知数,从而化三元为二元,然后解这个二元一次方程组,求出两个未知数,最后再求出另一个未知数.解三元一次方程组的一般步骤是:(1)利用代入法或加减法,把方程组中一个方程与另两个方程分别组成两组,消去两组中的同一个未知数,得到关于另外两个未知数的二元一次方程组;(2)解这个二元一次方程组,求出两个未知数的值;(3)将求得的两个未知数的值代入原方程组中的一个系数比较简单的方程,得到一个一元一次方程;(4)解这个一元一次方程,求出最后一个未知数的值;(5)将求得的三个未知数的值用“{”合写在一起.要点诠释:(1)有些特殊的方程组可用特殊的消元法,解题时要根据各方程特点寻求比较简单的解法.(2)要检验求得的未知数的值是不是原方程组的解,将所求得的一组未知数的值分别代入原方程组里的每一个方程中,看每个方程的左右两边是否相等,若相等,则是原方程组的解,只要有一个方程的左、右两边不相等就不是原方程组的解.3. 三元一次方程组的应用列三元一次方程组解应用题的一般步骤:(1)弄清题意和题目中的数量关系,用字母(如x,y,z)表示题目中的两个(或三个)未知数;(2)找出能够表达应用题全部含义的相等关系;(3)根据这些相等关系列出需要的代数式,从而列出方程并组成方程组;(4)解这个方程组,求出未知数的值;(5)写出答案(包括单位名称).要点诠释:(1)解实际应用题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的应该舍去.(2)“设”、“答”两步,都要写清单位名称,应注意单位是否统一.(3)一般来说,设几个未知数,就应列出几个方程并组成方程组.【典型例题】类型一、二元一次方程组的相关概念1.下列方程组中,不是二元一次方程组的是().A. B. C. D.【思路点拨】利用二元一次方程组的定义一一进行判断.【答案】B.【解析】二元一次方程组中只含有两个未知数,并且含有未知数的次数都是1,方程组中,可以整理为.【总结升华】准确理解二元一次方程组和二元一次方程的定义是解本题的关键.举一反三:【高清课堂:二元一次方程组章节复习409413例1(2)】【变式】若是二元一次方程,则a=,b=.【答案】1, 0.2.以为解的二元一次方程组是().A. B. C. D.【答案】C.【解析】通过观察四个选项可知,每个选项的第一个二元一次方程都是,第二个方程的左边都是,而右边不同,根据二元一次方程的解的意义可知,当时,.【总结升华】不满足或不全部满足方程组中的各方程的选项都不是方程组的解.举一反三:【变式】若是关于的方程的解,则.【答案】-1.类型二、二元一次方程组的解法3.(潜江)解方程组【思路点拨】由于本题结构比较复杂,不能直接消元,应先将方程组化为一般形式,再看如何消元,即用加减或代入消元法.【答案与解析】解:将原方程组化简得①-②得:-3y=3,得y=-1,将y=-1代入①中,x=9-5=4.故原方程组的解为.【总结升华】消元法是解方程组的基本方法,消元的目的是把多元一次方程组逐步转化为一元一次方程,从而使问题获解.举一反三:【高清课堂:二元一次方程组章节复习409413例2(2)】【变式】已知方程组的解是二元一次方程m(x+1)=3(x-y)的一个解,则m=.【答案】3.4.(台湾)若二元一次方程组的解为,则a+b等于().A.1 B.6 C.D.【思路点拨】将解代入方程组,得到关于的方程组,解之,代入要求的代数式即得答案.【答案】D【解析】解:把代入原方程组中,得,,解得.所以.【总结升华】根据已知条件构造出方程组,再选择恰当方法求得方程组的解,然后再代入求出最后答案.类型三、实际问题与二元一次方程组5.2001年以来,我国曾五次实施药品降价,累计降价的总金额为269亿元,五次药品降价的年份与相应降价金额如下表所示,表中缺失了2003、2007年相关数据. 已知2007年药品降价金额是2003年药品降价金额的6倍,结合表中的信息,求2003年和2007年的药品降价金额.【思路点拨】本题的两个相等关系为:(1)五年的降价金额一共是269亿元;(2)2007年药品降价金额=6×2003年的药品降价金额.【答案与解析】解:设2003年和2007年药品降价金额分别为亿元、亿元.根据题意,得,解方程组得 .答:2003年和2007年的药品降价金额分别为20亿元和120亿元.【总结升华】列方程(组)解实际问题的关键就是准确地找出等量关系,列方程(组)求解.举一反三:【变式】(山东济南)如图所示,教师节来临之际,群群所在的班级准备向每位辛勤工作的教师献一束鲜花,每束由4支鲜花包装而成,其中有象征母爱的康乃馨和象征尊敬的水仙花两种鲜花,同一种鲜花每支的价格相同,请你根据第一、二束鲜花提供的信息,求出第三束鲜花的价格.【答案】解:设康乃馨每支x元,水仙花每支y元.根据题意,可列方程组,解得.所以第三束鲜花的价格是x+3y=5+3×4=17(元).答:第三束鲜花的价格是17元.类型四、三元一次方程组6.解方程组【思路点拨】先用加减法消去,变为、的二元一次方程组.【答案与解析】解:①+②,得.②+③,得.解方程组得把,代入①,得.所以方程组的解是【总结升华】因为的系数为或,所以先消去比先消去或更简便.。

相关文档
最新文档