六年级奥数的整除问题及答案

合集下载

高斯小学奥数六年级上册含答案第15讲数论综合提高一

高斯小学奥数六年级上册含答案第15讲数论综合提高一

高斯小学奥数六年级上册含答案第15讲数论综合提高一第十五讲数论综合提高本讲知识点汇总:一. 整除1. 整除的定义如果整数a除以整数b b 0,所得的商是整数且没有余数,我们就说a能被b整除,也可以说b能整除a,记作b|a .如果除得的结果有余数,我们就说a不能被b整除,也可以说b 不整除a.2. 整除判定(1)尾数判断法能被2、5整除的数的特征:个位数字能被2或5整除;能被4、25整除的数的特征:末两位能被4或25整除;能被& 125整除的数的特征:末三位能被8或125整除.(2)截断求和法能被9、99、999及其约数整除的数的特征.(3)截断求差法能被11、101、1001及其约数整除的数的特征.(4)分解判定:一些复杂整数的整除性,例如63、72等,可以把它们分拆成互质的整数,分别验证整除性.3. 常用整除性质(1)已知 a | b、a |c,则a | b c 以及a| b c . ( b>c)(2)已知ab |ac,则b |c .(3)已知 a | bc 且a,b 1,则 a | c ?(4)已知 a | c 且 b |c,贝V a, b c .4. 整除的一些基本方法:(1)分解法:①分解得到的数有整除特性;②两两互质.(2)数字谜法:①被除数的末位已知;②除数变为乘法数字谜的第一个乘数.(3)试除法:①除数比较大;②被除数的首位已知(4) 同除法:①被除数与除数同时除以相同的数;②简化后的除数有整除特性?二、质数与合数1. 质数与合数的定义质数是只能被1和自身整除的数;合数是除了1和它本身之外,还能被其它数整除的数.2. 分解质因数分解质因数是指把一个数写成质因数相乘的形式. 女口:100 225 , 28 0 235 7 ?典型题型一.整除1. 基本整除问题:对各种整除的判别法要非常熟悉,尤其是9和11这种常见数字;(1)9的考点:乱切法;(2)11的考点:① 奇位和减偶位和;② 两位截断求和;③ 三位截断,奇段和减偶段和.2. 整除性质的使用;3. 整除与位值原理;4. 整除方法在数字谜中的应用.二.质数合数1. 质数合数填数字:注意2和5的特殊性;2. 判断大数是否为质数:逐一试除法;3. 末尾0的个数问题:层除法.例1. ( 1)五位数3口6口5没有重复数字,如它能被75整除,那么这个五位数可能是多少?(2)如果六位数387□匚|□能被624整除,则三个方格中的数是多少?(3)末三位是999的自然数能被29整除,这个数最小是多少?「分析」(1)75可以分解为3和25; (2)试除法解答这道题目;(3)试着把这道题目改为数字谜的形式进行解答.练习1、(1)六位数10 37 没有重复数字,如它能被36整除,那么这个六位数是多少?(2)如果六位数374□□口能被324整除,则三个方格中的数是多少?(3)末三位是999的自然数能被23整除,这个数最小是多少?例 2.将自然数1, 2, 3,…,依次写下去组成一个数:12345678910111213L,如果写到某个自然数N时,所组成的数恰好第一次能被36整除,那么这个自然数N是多少?「分析」36可以分解为4和9,然后分别满足N能被4和9整除,接下来就要用到整除特性了,尤其是9的整除特性如何运用是关键.练习2、将自然数1,2,3,…,依次写下去组成一个数:12345678910111213L,如果写到某个自然数N时,所组成的数恰好第一次能被45整除,那么这个自然数N是多少?例3.已知3a7 bOc是495的倍数,其中a,b,c分别代表不同的数字.请问:三位数abc 是多少?「分析」分解495=5 X 9X 11,可知只要两个三位数分别满足是5、9、11的倍数即可, 分情况讨论即可确定两个三位数分别是多少?练习3、已知aOOb 3c5是396的倍数,其中a、b、c分别代表不同的数字.请问:位数abc是多少?例4. 一个各位数字互不相同的五位数可以被9整除,去掉末两位之后形成的三位数可以被23整除,这个五位数的最小值等于多少?最大值呢?「分析」根据“去掉末两位之后形成的三位数可以被23整除”及最大值或最小值可确定五位数的前三位,然后根据9的整除特性确定其余数字.练习4、一个各位数字互不相同的四位数可以被9整除,去掉末两位之后形成的两位数可以被29 整除,这个四位数的最大值等于多少?最小值呢?例5. 72 乘以一个三位数后,正好得到一个立方数? 这个三位数最大是多少?「分析」立方数需满足所含质因数个数均为3的倍数,分解72可以确定质因数的种类, 满足上述条件基础上试数即可得出这个三位数.例6.在数列1、4、7、10、13、16、19、……中,如果前n个数的乘积的末尾0的个数比前n 1个数的乘积的末尾0的个数少3个,那么n最小是多少?「分析」末尾0 的个数决定于2和5的对数,有一对2、5就可以确定一个0,而题目数列中2的个数一定多于5的个数,所以只要使数列中数字满足有三个质因数5即可.数学王国里的一颗明珠一一梅森素数早在公元前300多年,古希腊数学家欧几里得就开创了研究2p1的先河,他在名著《几何原本》第九章中论述完美数时指出:如果2P 1是素数,则(2p- 1)2(P1)是完美数(Perfect number).1640年6月,费马在给马林梅森的一封信中写道:“在艰深的数论研究中,我发现了三个非常重要的性质.我相信它们将成为今后解决素数问题的基础”.这封信讨论了形如2P1的数(其中p为素数).梅森在欧几里得、费马等人的有关研究的基础上对2P1作了大量的计算、验证工作,并于1644年在他的《物理数学随感》一书中断言:对于p=2 , 3, 5, 7, 13 ,17, 19, 31, 67, 127, 257时,2p1是素数;而对于其他所有小于257的数时,2p1是合数.前面的7个数(即2, 3, 5, 7, 13, 17和19)属于被证实的部分,是他整理前人的工作得到的;而后面的4个数(即31, 67, 127和257)属于被猜测的部分. 不过,人们对其断言仍深信不疑.虽然梅森的断言中包含着若干错误,但他的工作极大地激发了人们研究2p1型素数的热情,使其摆脱作为“完美数”的附庸的地位.梅森的工作是素数研究的一个转折点和里程碑.由于梅森学识渊博,才华横溢,为人热情以及最早系统而深入地研究2p1型的数,为了纪念他,数学界就把这种数称为“梅森数”;并以Mp记之(其中M为梅森姓名的首字母),即Mp 2p1 .如果梅森数为素数,则称之为“梅森素数”(即2p1 型素数).2300多年来,人类仅发现47个梅森素数.由于这种素数珍奇而迷人,因此被人们誉为数海明珠”.自梅森提出其断言后,人们发现的已知最大素数几乎都是梅森素数;因此,寻找新的梅森素数的历程也就几乎等同于寻找新的最大素数的历程.作业1.五位数3口0口5没有重复数字,如它能被225整除,那么这个五位数是多少?2. (1)已知六位数2口01口2是99的倍数,那么这个六位数是多少?(2)已知六位数19 49 是72的倍数,那么这个六位数是多少?3. 201 202 203 L 500的末尾有多少个连续的0?4. 两个连续自然数的乘积是1190,这两个数中较小的是多少?5. 太上老君炼仙丹,第一次炼一丹,第二次炼三丹,第三次炼五丹,第四次炼七丹,…,颗颗炼成不老长生丹.然后装入金葫芦,每个葫芦六十丹,恰装满葫芦若干.已知丹数不足千,问共炼多少颗仙丹?第十五讲数论综合提高一例7.答案:(1) 30675、38625、39675; (2) 504; (3) 26999详解:(1)据分解法可知,75能分成25与3,满足是25的倍数,末两位要是25的倍数,即后一个空填2或7,填2时,没有重复数字又是3的倍数,所以只能是38625,填7时,满足条件是30675或39675,所以答案是30675、38625、39675.(2)将六位数补成387999 , 387999除以624余495,所以387999减去495的差387504 一定是624的倍数,所以答案是504.(3)改成竖式的数字谜,29乘以某某某答案后三位是999,填完整就是29乘以931 等于26999.例&答案:36详解:要是36的倍数,只要是4和9的倍数即可.9的整除特性是乱切法就可以,所以一位数的时候我们截成一位,两位数就截成两位,几位数就截成几位,所以有1+2+3+…+ N是9的倍数,即N N 1是9的倍数,即N或N 1是9的倍数,所以2满足条件的N是8、9、17、18、26、27、35、36,写到36时,第一次满足是4的倍数,所以N最小是36.例9.答案:865详解:495 5 9 11,即只要满足是5、9、11的倍数即可?对肓,不论a取哪一个一位数都不可能是11和5的倍数,所以b0C 一定是11和5的倍数,即是605.于是307是9的倍数,所以a是8,所以a、b、c组成的三位数是865.例10 . 答案:13806、94365详解:最小且数字不同,则前三位只能是138,再根据9的整除特性,所以最小是13806 ;最大且数字不同,则前三位只能是943,再根据9的整除特性,所以最大是94365. 例11 . 答案:648例12 . 答案:83详解:这是一个首项为1,公差为3的等差数列,由题意知第n 1个数应为125的倍数,即3n 1 125k,可知k取2时符合要求,此时n为83.练习:练习1、答案:(1) 105372; (2) 220、544 或868; (3) 20999练习2、答案:35练习3、答案:548或908简答:即a00b 3c5要分别被4、9和11整除,由a00b与3c5整除特性且a、b、c代表不同数字可知^0b与3c5分别要被(4、9)与11整除,所以可求得abc是548或908.练习4、答案:最小值是2907;最大是8793作业6. 答案:38025简答:能被225整除,即能分别被9和25整除,所以可得该五位数为38025.7. 答案:(1) 260172 ; (2) 197496简答:(1)设该六位数为2a01b2,其为99的倍数,即2a 1 b2能被99整除,又a、b为个位数,所以易知a 6, b 7,所以该六位数为260172 ; (2)能被72整除,即能分别被8和9整除,所以可得该六位数为197496.8. 答案:75简答:500!所含0的个数减去200!所含0的个数即可,答案为75.9. 答案:34简答:易知3421190 352,所以可估算出所求的数为34.10. 答案:900简答:前n次共炼制n2颗仙丹,且n2是60的倍数,所以n含有质因数2、3和5,于是当n 235 30时,n2900为所求答案.。

100题六年级奥数题目及解题思路和答案之2(共3)

100题六年级奥数题目及解题思路和答案之2(共3)

1.已知x=3,y=4,求(x+y)^2的值。

解题思路:(x+y)^2 = x^2 + 2xy + y^2,带入x=3,y=4得到(3+4)^2 = 49。

答案:49。

2.有31个小球,其中有一个比其他小球轻,最多称几次可以找出这个轻球?解题思路:可以用三次称重法。

先把小球分成两份,比较他们的重量。

如果相等,那么轻球在剩下的29个小球里,可以再把这些小球分成两份,以此类推,最多可以比较三次,找出轻球。

答案:最多可以称三次。

3.小华的数学期末考试得了68分,班级平均分为75分,他比班级平均分低了多少分?解题思路:68分与75分之间的相差值为75-68=7分,小华比班级平均分低了7分。

答案:7分。

4.甲、乙两人同时从相距10公里的两点出发相向而行,甲的速度是12km/h,乙的速度是8km/h。

当两人相遇后,甲又调头走回原处,两人相遇和甲回到原点所用时间相等,求这段时间是多少?解题思路:设相遇的时间为t,那么甲走的路程为12t,乙走的路程为8t,两人相向而行,所以两人走过的路程之和为10km,即12t + 8t = 10,解得t=0.5小时,所以甲回到原点的时间也是0.5小时。

答案:这段时间是0.5小时。

5.一块长方形草坪的长为20米,宽为15米,现要在草坪四周修建一条宽为1米的人行路,这条路的面积是多少平方米?解题思路:先求草坪的面积,即2015=300平方米,四周修建的人行路面积为2(20+15)*1=70平方米。

答案:这条路的面积是70平方米。

6.一份工作需要A、B两人一起完成,如果A独立工作需要10天,B独立需要20天,两人一起工作需要几天才能完成?解题思路:做这份工作所需工作量为1,A独立工作的速率是1/10,B独立工作的速率是1/20,两人一起工作的速率为1/10+1/20=3/20,所以两人一起工作完成这份工作需要的时间为(1/3)/(3/20) = 20/3 = 6.66天(保留两位小数即可)。

六年级数学经典奥数20题及答案解析

六年级数学经典奥数20题及答案解析

六年级数学经典奥数20题及答案解析【题-001】抽屉原理有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。

【题-002】牛吃草:(中等难度)一只船发现漏水时,已经进了一些水,水匀速进入船内.如果10人淘水,3小时淘完;如5人淘水8小时淘完.如果要求2小时淘完,要安排多少人淘水?【题-003】奇偶性应用:(中等难度)桌上有9只杯子,全部口朝上,每次将其中6只同时“翻转”.请说明:无论经过多少次这样的“翻转”,都不能使9只杯子全部口朝下。

【题-004】整除问题:(中等难度)用一个自然数去除另一个整数,商40,余数是16.被除数、除数、商数与余数的和是933,求被除数和除数各是多少?【题-005】填数字:(中等难度)请在下图的每个空格内填入1至8中的一个数字,使每行、每列、每条对角线上8个数字都互不相同.【题-006】灌水问题:(中等难度)公园水池每周需换一次水.水池有甲、乙、丙三根进水管.第一周小李按甲、乙、丙、甲、乙、丙……的顺序轮流打开小1时,恰好在打开某根进水管1小时后灌满空水池.第二周他按乙、丙、甲、乙、丙、甲……的顺序轮流打开1小时,灌满一池水比第一周少用了15分钟;第三周他按丙、乙、甲、丙、乙、甲……的顺序轮流打开1小时,比第一周多用了15分钟.第四周他三个管同时打开,灌满一池水用了2小时20分,第五周他只打开甲管,那么灌满一池水需用________小时.【题-007】浓度问题:(中等难度)瓶中装有浓度为15%的酒精溶液1000克,现在又分别倒入100克和400克的A、B两种酒精溶液,瓶中的浓度变成了14%.已知A种酒精溶液浓度是B种酒精溶液浓度的2倍,那么A种酒精溶液的浓度是百分之几?【题-008】水和牛奶:(中等难度)一个卖牛奶的人告诉两个小学生:这儿的一个钢桶里盛着水,另一个钢桶里盛着牛奶,由于牛奶乳脂含量过高,必须用水稀释才能饮用.现在我把A桶里的液体倒入B桶,使其中液体的体积翻了一番,然后我又把B桶里的液体倒进A桶,使A桶内的液体体积翻番.最后,我又将A桶中的液体倒进B桶中,使B桶中液体的体积翻番.此时我发现两个桶里盛有同量的液体,而在B桶中,水比牛奶多出1升.现在要问你们,开始时有多少水和牛奶,而在结束时,每个桶里又有多少水和牛奶?【题-009】巧算:(中等难度)计算:【题-010】队形:(中等难度)做少年广播体操时,某年级的学生站成一个实心方阵时(正方形队列)时,还多10人,如果站成一个每边多1人的实心方阵,则还缺少15人.问:原有多少人?【题-011】计算:(中等难度)一个自然数,如果它的奇数位上各数字之和与偶数位上各数字之和的差是11的倍数,那么这个自然数是11的倍数,例如1001,因为1+0=0+1,所以它是11的倍数;又如1234,因为4+2-(3+1)=2不是11的倍数,所以1234不是11的倍数.问:用0、1、2、3、4、5这6个数字排成不含重复数字的六位数,其中有几个是11的倍数?【题-012】分数:(中等难度)某学校的若干学生在一次数学考试中所得分数之和是8250分.第一、二、三名的成绩是88、85、80分,得分最低的是30分,得同样分的学生不超过3人,每个学生的分数都是自然数.问:至少有几个学生的得分不低于60分?【题-013】四位数:(中等难度)某个四位数有如下特点:(1)这个数加1之后是15的倍数;(2)这个数减去3是38的倍数;(3)把这个数各数位上的数左右倒过来所得的数与原数之和能被10整除,求这个四位数.【题-014】行程:(中等难度)王强骑自行车上班,以均匀速度行驶.他观察来往的公共汽车,发现每隔12分钟有一辆汽车从后面超过他,每隔4分钟迎面开来一辆,如果所有汽车都以相同的匀速行驶,发车间隔时间也相同,那么调度员每隔几分钟发一辆车?【题-015】跑步:(中等难度)狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。

六年级数学整除的性质试题答案及解析

六年级数学整除的性质试题答案及解析

六年级数学整除的性质试题答案及解析1.某个七位数1993□□□能够同时被2,3,4,5,6,7,8,9整除,那么它的最后三位数字依次是多少?【答案】320【解析】方法一:利用整除特征因为这个数能被5整除,所以末位只能是0或5,又能被2整除,所以其末位为偶数,所以只能是0.在满足以上条件的情况下,还能被4整除,那么末两位只能是20、40、60或80.又因为还能同时被9整除,所以这个数的数字和也应该是9的倍数,有,,,的数字和分别为24+A,26+B,28+C,30+D,对应的A、B、C、D只能是3,1,8,6.即末三位可能是320,140,860,680.而只有320,680是8的倍数,再验证只有1993320,1993680中只有1993320是7的倍数.因为有同时能被2,4,5,7,8,9整除的数,一定能同时被2,3,4,5,6,7,8,9这几个数整除,所以1993320为所求的这个数.显然,其末三位依次为3,2,0.方法二:采用试除法一个数能同时被2,3,4,5,6,7,8,9整除,而将这些数一一分解质因数:,所以这个数一定能被23×32×5×7=8×9×5×7=2520整除.用1993000试除,1993000÷2520=790……2200,余2200可以看成不足2520-2200=320,所以在末三位的方格内填入320即可.2.用数字6,7,8各两个,组成一个六位数,使它能被168整除.这个六位数是多少?【答案】768768【解析】因为168=23×3×7,所以组成的六位数可以被8、3、7整除.能够被8整除的数的特征是末三位组成的数一定是8的倍数,末两位组成的数一定是4的倍数,末位为偶数.在题中条件下,验证只有688、768是8的倍数,所以末三位只能是688或768,而又要求是7的倍数,由上题知形式的数一定是7、11、13的倍数,所以768768一定是7的倍数,□□□688的□不管怎么填都得不到7的倍数.至于能否被3整除可以不验证,因为整除3的数的规律是数字和为3的倍数,在题中给定的条件下,不管怎么填数字和都是定值,必须满足,不然本题无解.当然验证的确满足.所以768768能被168整除,且验证没有其他满足条件的六位数了.3.有15位同学,每位同学都有编号,他们是1号到15号.1号同学写了一个自然数,2号说:“这个数能被2整除”,3号说:“这个数能被3整除”,……,依次下去,每位同学都说,这个数能被他的编号数整除.1号作了一一验证:只有编号连续的两位同学说得不对,其余同学都对.问:(1)说得不对的两位同学,他们的编号是哪两个连续自然数?(2)如果告诉你,1号写的数是五位数,请求出这个数.【答案】(1)8、9 (2)60060【解析】(1)列出这14个除数:2、3、4、5、6、7、8、9、10、11、12、13、14、15.注意到如果这个数不能被2整除,那么一定不能被4、6、8、10…等整除,显然超过两个自然数;类似这种情况的还有3~6、9…;4~8、12…;5~10、15…;6~12…;而不能被7整除,那么一定不能被14整除,而这两个自然数不连续;而不能被12整除,那么4和3中至少有一个不能整除1号所说的自然数,而12与3、4均不连续;类似这种情况的还有10(对应2和5);14(对应2和7);15(对应3和5);这样只剩下8、9、11、13,而连续的只有8、9.所以说的不对的两位同学的编号为8、9这两个连续的自然数.(2) 由(1)知,这个五位数能被2,3,4,5,6,7,10,11,12,13,14,15整除.所以[2,3,4,5,6,7,10,11,12,13,14,15]=22×3×5×7×11×13=60060.所以1号写出的五位数为60060.4.试求6个不同的正整数,使得它们中任意两数之积可被这两个数之和整除.【答案】27720,55440,83160,110880,138600及166320.【解析】取六个数1,2,3,4,5,6,并把它们两两相加得到15个和:1+2,1+3,…,5+6.这15个和的最小公倍数是:23×32×5×7×11=27720.把它依次乘所取的六个数得:27720,55440,83160,110880,138600及166320.这六个数就满足题目得要求.5.975×935×972×□,要使这个连乘积的最后4个数字都是0,那么在方框内最小应填什么数?【答案】20【解析】975含有2个质因数5,935含有1个质因数5,972含有2个质因数2.而975×935×972×□的乘积最后4个数都是0.那么,至少需要4个质因数5,4个质因数2.所以,□至少含有1个质因数5,2个质因数2,即最小为5×2×2=20.6.如图,依次排列的5个数是13,12,15,25,20.它们每相邻的两个数相乘得4个数.这4个数每相邻的两个数相乘得3个数.这3个数每相邻的两个数相乘得2个数.这2个数相乘得1个数.请问:最后这个数从个位起向左数,可以连续地数出几个零?【答案】10【解析】如下图,我们在图中标出每个数含有质因数2、5的个数,除第一行外,每个数都是上一行左、右上方两数的乘积,所以每个数含有质因数2、5的个数也都是上一行左、右上方两数含有质因数2、5个数的和.所以,最后一行的一个数含有10个质因数2,15个质因数5.而一个数末尾含有连续0的个数决定于质因数2、5个数的最小值,所以最后一行的一个数末尾含有10个连续的0.7.由1,3,4,5,7,8这六个数字所组成的六位数中,能被11整除的最大的数是多少?【答案】875413【解析】根据11的整除判定特征我们知道六位数的奇数位与偶数位三个数字的和的差要为11的倍数,我们不妨设奇数位上的数和为a,偶数位上的数和为b,那么有a+b=1+3+4+5+7+8=28,同时有a-b=0或a-b=11或a-b=22…等情况,根据奇偶性分析自然数a与b的和为偶数,那么差也必须为偶数,但是a-b不可能为22,所以a-b=0,解得a=b=14,则容易排列出最大数875413.8.从50到100的这51个自然数的乘积的末尾有多少个连续的0?【答案】14【解析】首先,50、60、70、80、90、100中共有7个0.其次,55、65、85、95和任意偶数相乘都可以产生一个0,而75乘以偶数可以产生2个0,50中的因数5乘以偶数又可以产生1个0,所以一共有个0.9. 11个连续两位数的乘积能被343整除,且乘积的末4位都是0,那么这11个数的平均数是多少?【答案】45【解析】因为,由于在11个连续的两位数中,至多只能有2个数是7的倍数,所以其中有一个必须是49的倍数,那就只能是49或98.又因为乘积的末4位都是0,所以这连续的11个自然数至少应该含有4个因数5.连续的11个自然数中至多只能有3个是5的倍数,至多只能有1个是25的倍数,所以其中有一个必须是25的倍数,那么就只能是25、50或75.所以这11个数中应同时有49和50,且除50外还有两个是5的倍数,只能是40,41,42,43,44,45,46,47,48,49,50,它们的平均数即为它们的中间项45.10.从左向右编号为1至1991号的1991名同学排成一行.从左向右1至11报数,报数为11的同学原地不动,其余同学出列;然后留下的同学再从左向右1至11报数,报数为11的同学留下,其余的同学出列;留下的同学第三次从左向右1至1l报数,报到11的同学留下,其余同学出列.那么最后留下的同学中,从左边数第一个人的最初编号是多少?【答案】1331【解析】第一次报数后留下的同学,他们最初编号都是11的倍数;第二次报数后留下的同学,他们最初编号都是的倍数;第三次报数后留下的同学,他们最初编号都是的倍数.因此,第三次报数后留下的同学中,从左边数第一个人的最初编号是11.如果能被6整除,那么也能被6整除.【答案】略【解析】∵∴2|∴2|e∴6|3e∵3|∴3|a+b+c+d+e∴6|2(a+b+c+d+e)∴6|2(a+b+c+d+e)-3e∴6|2(a+b+c+d)-e12.两个四位数和相乘,要使它们的乘积能被72整除,求和.【答案】4【解析】考虑到,而是奇数,所以必为8的倍数,因此可得;四位数2752各位数字之和为不是3的倍数也不是9的倍数,因此必须是9的倍数,其各位数字之和能被9整除,所以.13.一个六位数,如果满足,则称为“迎春数”(如,则就是“迎春数”).请你求出所有“迎春数”的总和.【答案】999999【解析】方法一:显然,不小于4,原等式变形为化简得,当时,,于是为.同理.,6,7,8,9,可以得到为,,,,.所有的和是.方法二:显然,不小于4,若,为末尾数字,所以;为的末2位,所以;为的末3位,所以;为的末4位,所以;为的末5位,所以;于是为.同理.,6,7,8,9,可以得到为,,,,.所有的和是.14.一个4位数,把它的千位数字移到右端构成一个新的4位数.已知这两个4位数的和是以下5个数的一个:①9865;②9866;③9867;④9868;⑤9869.这两个4位数的和到底是多少?【答案】9867【解析】设这个4位数是,则新的4位数是.两个数的和为,是11的倍数.在所给的5个数中只有9867是11的倍数,故正确的答案为9867.15.用1,9,8,8这四个数字能排成几个被11除余8的四位数?【答案】1988,1889,8918,8819【解析】现在要求被11除余8,我们可以这样考虑:这样的数加上3后,就能被11整除了.所以我们得到“一个数被11除余8”的判定法则:将偶位数字相加得一个和数,再将奇位数字相加再加3,得另一个和数,如果这两个和数之差能被11整除,那么这个数是被11除余8的数;否则就不是.要把1,9,8,8排成一个被11除余8的四位数,可以把这4个数分成两组,每组2个数字.其中一组作为千位和十位数,它们的和记作;另外一组作为百位和个位数,它们之和加上3记作.我们要适当分组,使得能被11整除.现在只有下面4种分组法:偶位奇位⑴ 1,8 9,8⑵ 1,9 8,8⑶ 9,8 1,8⑷ 8,8 1,9经过验证,只有第⑴种分组法满足前面的要求:,,能被11整除.其余三种分组都不满足要求.根据判定法则还可以知道,如果一个数被11除余8,那么在奇位的任意两个数字互换,或者在偶位的任意两个数字互换得到的新数被11除也余8.于是,上面第⑴种分组中,1和8任一个可以作为千位数,9和8中任一个可以作为百位数.这样共有4种可能的排法:1988,1889,8918,8819.16.从1,2,3,……,n中,任取57个数,使这57个数必有两个数的差为13,则n的最大值为多少?【答案】108【解析】被13除的同余序列当中,如余1的同余序列,1、14、27、40、53、66……,其中只要取到两个相邻的,这两个数的差为13;如果没有两个相邻的数,则没有两个数的差为13,不同的同余序列当中不可能有两个数的差为13,对于任意一条长度为x的序列,都最多能取个数,使得取出的数中没有两个数的差为13,即从第1个数起隔1个取1个.基于以上,n个数分成13个序列,每条序列的长度为或,两个长度差为1的序列,要使取出的数中没有两个数的差为13,能够被取得的数的个数之差也不会超过1,所以为使57个数中任意两个数的差都不等于13,则这57个数被分配在13条序列中,在每条序列被分配的数的个数差不会超过1,那么13个序列有8个序列分配了4个数,5个序列分配了5个数,则这13个序列中8个长度为8,5个长度为9,那么当n最小为时,可以取出57个数,其中任两个数的差不为13,所以要使任取57个数必有两个数的差为13,那么n的最大值为108.17.某三位数和它的反序数的差被99除,商等于______与______的差;【答案】a-c【解析】本题属于基础型题型。

六年级数学奥赛题汇总附答案

六年级数学奥赛题汇总附答案

六年级奥数六年级数学难题汇总(解析+答案)例1.只修改970405的某一个数字,就可使修改后的六位数能被225整除,修改后的六位数是_____.(安徽省1997年竞赛题)解:逆向思考:因为225=25×9,且25和9,所以,只要修改后的数能分别被25和9整除,这个数就能被225整除。

我们来分别考察能被25和9整除的情形。

由能被25整除的数的特征(末两位数能被25整除)知,修改后的六位数的末两位数可能是25,或75.再据能被9整除的数的特征(各位上的数字之和能被9整除)检验,得9+7+0+4+5=25,25+2=27,25+7=32.故知,修改后的六位数是970425.7. 在三位数中,个位、十位、百位都是一个数的平方的共有个。

【答案】48【解】百位有1、4、9三种选择,十位、个位有0、1、4、9四种选择。

满足题意的三位数共有3×4×4=48(个)。

12. 已知三位数的各位数字之积等于10,则这样的三位数的个数是_____ 个. 【答案】6【解】因为10=2×5,所以这些三位数只能由1、2、5组成,于是共有=6个.12. 下图中有五个三角形,每个小三角形中的三个数的和都等于50,其中A7=25,A1+A2+A3+A4=74,A9+A3+A5+A10=76,那么A2与A5的和是多少?【答案】25【解】有A1+A2+A8=50,A9+A2+A3=50,A4+A3+A5=50,A10+A5+A6=50,A7+A8+A6=50,于是有A1+A2+A8+A9+A2+A3+A4+A3+A5+A10+A5+A6+A7+A8+A6=250,即(A1+A2+A3+A4)+(A9+A3+A5+A10)+A2+A5+2A6+2A8+ A7=250.有74+76+A2+A5+2(A6+A8) + A7=250,而三角形A6A7A8中有A6+A7+A8=50,其中A7=25,所以A6+A8=50-25=25.那么有A2+A5=250-74-76-50-25=25.【提示】上面的推导完全正确,但我们缺乏和总体把握性。

六年级奥数优胜教育第9讲:整除和位值原理含答案

六年级奥数优胜教育第9讲:整除和位值原理含答案

第九讲 整除和位值原理例1:证明:当a c >时,abc cba -必是9的倍数。

例2:有一个两位数,把数码1加在它的前面可以得到一个三位数,加在它的后面也可以得到一个三位数,这两个三位数相差666。

求原来的两位数。

例3: a ,b ,c 是1~9中的三个不同的数码,用它们组成的六个没有重复数字的三位数之和是(a+b+c )的多少倍?例4:用2,8,7三张数字卡片可以组成若干个不同的三位数,所有这些三位数的平均值是多少?例5:一个两位数,各位数字的和的5倍比原数大6,求这个两位数。

例6:将一个三位数的数字重新排列,在所得到的三位数中,用最大的减去最小的,正好等于原来的三位数,求原来的三位数。

A1.一个自然数与13的和是5的倍数,与13的差是6的倍数,则满足条件的最小自然数是 .2.有三个正整数a 、b 、c 其中a 与b 互质且b 与c 也互质,给出下面四个判断:①(a+c)2不能被b 整除,②a 2+c 2不能被b 整除:③(a+b)2不能被c 整除;④a 2+b 2不能被c 整除,其中,不正确的判断有( ).A .4个B .3个C 2个D .1个3.已知7位数61287xy 是72的倍数,求出所有的符合条件的7位数.4.(1)一个自然数N 被10除余9,被9除余8,被8除余7,被7除余6,被6除余5,被5除余4,被3除余2,被2除余1,则N 的最小值是 .(北京市竞赛题)(2)若1059、1417、2312分别被自然数x 除时,所得的余数都是y ,则x —y 的值等于( ).A .15B .1C .164D .174(“五羊杯”竞赛题)(3)设N=个1990111,试问N 被7除余几?并证明你的结论. (安徽省竞赛题)5.盒中原有7个球,一位魔术师从中任取几个球,把每一个小球都变成了7个小球,将其放回盒中,他又从盒中任取一些小球,把每一个小球又都变成了7个小球后放回盒中,如此进行,到某一时刻魔术师停止取球变魔术时,盒中球的总数可能是( )A .1990个B .1991个C 1992个D .1993个B6.在100以内同时被2、3、5整除的正整数有多少个?7.某商场向顾客发放9999张购物券,每张购物券上印有一个四位数的号码,从0001到9999号,如果号码的前两位数字之和等于后两位数字之和,则称这张购物券为“幸运券”.证明:这个商场所发放的购物券中,所有的幸运券的号码之和能被101整除.8.写出都是合数的13个连续自然数.9.已知定由“若大于3的三个质数a 、b 、c 满足关系式20+5b=c ,则a+b+c 是整数n 的倍数”.试问:这个定理中的整数n 的最大可能值是多少?请证明你的结论.10.一个正整数N 的各位数字不全相等,如果将N 的各位数字重新排列,必可得到一个最大数和一个最小数,若最大数与最小数的差正好等于原来的数N ,则称N 为“新生数”,试求所有的三位“新生数”.11.设N 是所求的三位“新生数”,它的各位数字分别为a 、b 、c (a 、b 、c 不全相等),将其各位数字重新排列后,连同原数共得6个三位数:cba cab bca bac acb abc ,,,,,,不妨设其中的最大数为abc ,则最小数为cba .由“新生数”的定义,得N=abc —cba =(100a+l0b+c)一(100c+l0b+d)=99(a —c).C12.从左向右将编号为1至2002号的2002个同学排成一行,从左向右从1到11报数,报到11的同学原地不动,其余同学出列;然后,留下的同学再从左向右从1到11报数,报到11的同学留下,其余同学出列;留下的同学再从左向左从1到11地报数,报到11的同学留下,其余同学出列.问最后留下的同学有多少?他们的编号是几号?13.在一种游戏中,魔术师请一个人随意想一个三位数cba cab bca bac abc、、、、的和N ,把N 告诉魔术师,于是魔术师就能说出这个人所想的数abc .现在设N=3194,请你做魔术师,求出数abc 来.14.某公园门票价格对达到一定人数的团队按团队票优惠.现有A 、B 、C 三个旅游团共72人,如果各团单独购票,门票费依次为360元、384元、480元;如果三个团合起来购票,总共可少花72元.(1)这三个旅游团各有多少人?(2)在下面填写一种票价方案,使其与上述购票情况相符.15.在下边的加法算式中,每个口表示一个数字,任意两个数字都不同:试求A 和B 乘积的最大值.16.任给一个自然数N ,把N 的各位数字按相反的顺序写出来,得到一个新的自然数N ′,试证明:N N '-能被9整数.17.证明:111111+112112十113113能被10整除.1.在下列数中,哪些能被4整除?哪些能被9整除?哪些能被3整除?28、96、120、225、540、768、423、224、2922.(1)五位数A1A72能被12整除;(2)五位数4B97B 能被12整除,求这两个五位数。

六年级下册数学试题-奥数专练:数的整除之四大方法综合应用(含答案)全国通用

六年级下册数学试题-奥数专练:数的整除之四大方法综合应用(含答案)全国通用

数的整除之四大方法综合应用知识要点一、整除的定义:当两个整数a和b(b≠0),a被b除的余数为零时(商为整数),则称a被b整除或b整除a,也把a叫做b的倍数,b叫a的约数,记作b|a,如果a被b除所得的余数不为零,则称a不能被b整除,或b不整除a,记作b…a。

二、数的整除性质:⑴对称性:若甲数能被乙数整除,乙数也能被甲数整除,那么甲、乙两数相等。

记作:a|b,b|a,则a=b。

⑵传递性:若甲数能被乙数整除,乙数能被丙数整除,那么甲数能被丙数整除。

记作:若a|b,b|c,则a|c。

⑶若两个数能被一个自然数整除,那么这两个数的和与差都能该自然数整除。

记作:若a|b,a|c,则a|(bc)。

⑷几个数相乘,若其中有一个因子能被某一个数整除,那么它们的积也能被该数整除。

⑸若一个数能被两个互质数中的每一个数整除,那么这个数也能分别被这两个互质数的积整除。

记作:若a|b,c|b,(a,c)=1,则ac|b。

⑹若一个数能被两个互质数的积整除,那么,这个数也能分别被这两个互质数整除。

记作:若ac|b,(a,c)=1,则a|b,c|b。

⑸若一个整数的末位是0或5,则这个数能被5整除。

⑹若一个整数能被2和3整除,则这个数能被6整除。

⑺若一个质数能整除两个自然数的乘积,那么这个质数至少能整除这两个自然数中的一个。

⑻若a|b,m≠0,则am|bm。

⑼若am|bm,m≠0,则a|b。

⑽若c|a,c|b,则c|(ma+nb),其中m、n为任意整数(这一性质还可以推广到更多项的和)三、整除特征⑴1与0的特性:1是任何整数的约数,即对于任何整数a,总有1/a。

0是任何非零整数的倍数,a≠0,a为整数,则a/0。

⑵若一个整数的末位是0、2、4、6或8,则这个数能被2整除。

⑶若一个整数的数字和能被3整除,则这个整数能被3整除。

⑷若一个整数的末尾两位数能被4整除,则这个数能被4整除。

⑸若一个整数的末位是0或5,则这个数能被5整除。

⑹若一个整数能被2和3整除,则这个数能被6整除。

高斯小学奥数六年级上册含答案第15讲数论综合提高一

高斯小学奥数六年级上册含答案第15讲数论综合提高一

第十五讲数论综合提高本讲知识点汇总:一. 整除1. 整除的定义如果整数a除以整数b b 0,所得的商是整数且没有余数,我们就说a能被b整除,也可以说b能整除a,记作b|a .如果除得的结果有余数,我们就说a不能被b整除,也可以说b不整除a.2. 整除判定(1)尾数判断法能被2、5整除的数的特征:个位数字能被2或5整除;能被4、25整除的数的特征:末两位能被4或25整除;能被& 125整除的数的特征:末三位能被8或125整除.(2)截断求和法能被9、99、999及其约数整除的数的特征.(3)截断求差法能被11、101、1001及其约数整除的数的特征.(4)分解判定:一些复杂整数的整除性,例如63、72等,可以把它们分拆成互质的整数,分别验证整除性.3. 常用整除性质(1)已知 a | b、a |c,则a | b c 以及a| b c . ( b>c)(2)已知ab |ac,则b |c .(3)已知 a | bc 且a,b 1,则 a | c •(4)已知 a | c 且 b |c,贝V a, b c .4. 整除的一些基本方法:(1)分解法:①分解得到的数有整除特性;②两两互质.(2)数字谜法:①被除数的末位已知;②除数变为乘法数字谜的第一个乘数.(3)试除法:①除数比较大;②被除数的首位已知(4) 同除法:①被除数与除数同时除以相同的数;②简化后的除数有整除特性•二、质数与合数1. 质数与合数的定义质数是只能被1和自身整除的数;合数是除了1和它本身之外,还能被其它数整除的数.2. 分解质因数分解质因数是指把一个数写成质因数相乘的形式. 女口:100 225 , 28 0 235 7 •典型题型一.整除1. 基本整除问题:对各种整除的判别法要非常熟悉,尤其是9和11这种常见数字;(1)9的考点:乱切法;(2)11的考点:① 奇位和减偶位和;② 两位截断求和;③ 三位截断,奇段和减偶段和.2. 整除性质的使用;3. 整除与位值原理;4. 整除方法在数字谜中的应用.二.质数合数1. 质数合数填数字:注意2和5的特殊性;2. 判断大数是否为质数:逐一试除法;3. 末尾0的个数问题:层除法.例1. ( 1)五位数3口6口5没有重复数字,如它能被75整除,那么这个五位数可能是多少?(2)如果六位数387□匚|□能被624整除,则三个方格中的数是多少?(3)末三位是999的自然数能被29整除,这个数最小是多少?「分析」(1)75可以分解为3和25; (2)试除法解答这道题目;(3)试着把这道题目改为数字谜的形式进行解答.练习1、(1)六位数10 37 没有重复数字,如它能被36整除,那么这个六位数是多少?(2)如果六位数374□□口能被324整除,则三个方格中的数是多少?(3)末三位是999的自然数能被23整除,这个数最小是多少?例2.将自然数1, 2, 3,…,依次写下去组成一个数:12345678910111213L,如果写到某个自然数N时,所组成的数恰好第一次能被36整除,那么这个自然数N是多少?「分析」36可以分解为4和9,然后分别满足N能被4和9整除,接下来就要用到整除特性了,尤其是9的整除特性如何运用是关键.练习2、将自然数1,2,3,…,依次写下去组成一个数:12345678910111213L,如果写到某个自然数N时,所组成的数恰好第一次能被45整除,那么这个自然数N是多少?例3.已知3a7 bOc是495的倍数,其中a,b,c分别代表不同的数字.请问:三位数abc 是多少?「分析」分解495=5 X 9X 11,可知只要两个三位数分别满足是5、9、11的倍数即可, 分情况讨论即可确定两个三位数分别是多少?练习3、已知aOOb 3c5是396的倍数,其中a、b、c分别代表不同的数字.请问:位数abc是多少?例4. 一个各位数字互不相同的五位数可以被9整除,去掉末两位之后形成的三位数可以被23整除,这个五位数的最小值等于多少?最大值呢?「分析」根据“去掉末两位之后形成的三位数可以被23整除”及最大值或最小值可确定五位数的前三位,然后根据9的整除特性确定其余数字.练习4、一个各位数字互不相同的四位数可以被9整除,去掉末两位之后形成的两位数可以被29 整除,这个四位数的最大值等于多少?最小值呢?例5. 72 乘以一个三位数后,正好得到一个立方数• 这个三位数最大是多少?「分析」立方数需满足所含质因数个数均为3的倍数,分解72可以确定质因数的种类, 满足上述条件基础上试数即可得出这个三位数.例6.在数列1、4、7、10、13、16、19、……中,如果前n个数的乘积的末尾0的个数比前n 1个数的乘积的末尾0的个数少3个,那么n最小是多少?「分析」末尾0 的个数决定于2和5的对数,有一对2、5就可以确定一个0,而题目数列中2的个数一定多于5的个数,所以只要使数列中数字满足有三个质因数5即可.数学王国里的一颗明珠一一梅森素数早在公元前300多年,古希腊数学家欧几里得就开创了研究2p1的先河,他在名著《几何原本》第九章中论述完美数时指出:如果2P 1是素数,则(2p- 1)2(P1)是完美数(Perfect number).1640年6月,费马在给马林梅森的一封信中写道:“在艰深的数论研究中,我发现了三个非常重要的性质.我相信它们将成为今后解决素数问题的基础”.这封信讨论了形如2P1的数(其中p为素数).梅森在欧几里得、费马等人的有关研究的基础上对2P1作了大量的计算、验证工作,并于1644年在他的《物理数学随感》一书中断言:对于p=2 , 3, 5, 7, 13 ,17, 19, 31, 67, 127, 257时,2p1是素数;而对于其他所有小于257的数时,2p1是合数.前面的7个数(即2, 3, 5, 7, 13, 17和19)属于被证实的部分,是他整理前人的工作得到的;而后面的4个数(即31, 67, 127和257)属于被猜测的部分. 不过,人们对其断言仍深信不疑.虽然梅森的断言中包含着若干错误,但他的工作极大地激发了人们研究2p1型素数的热情,使其摆脱作为“完美数”的附庸的地位.梅森的工作是素数研究的一个转折点和里程碑.由于梅森学识渊博,才华横溢,为人热情以及最早系统而深入地研究2p1型的数,为了纪念他,数学界就把这种数称为“梅森数”;并以Mp记之(其中M为梅森姓名的首字母),即Mp 2p1 .如果梅森数为素数,则称之为“梅森素数”(即2p1 型素数).2300多年来,人类仅发现47个梅森素数.由于这种素数珍奇而迷人,因此被人们誉为数海明珠”.自梅森提出其断言后,人们发现的已知最大素数几乎都是梅森素数;因此,寻找新的梅森素数的历程也就几乎等同于寻找新的最大素数的历程.作业1.五位数3口0口5没有重复数字,如它能被225整除,那么这个五位数是多少?2. (1)已知六位数2口01口2是99的倍数,那么这个六位数是多少?(2)已知六位数19 49 是72的倍数,那么这个六位数是多少?3. 201 202 203 L 500的末尾有多少个连续的0?4. 两个连续自然数的乘积是1190,这两个数中较小的是多少?5. 太上老君炼仙丹,第一次炼一丹,第二次炼三丹,第三次炼五丹,第四次炼七丹,…,颗颗炼成不老长生丹.然后装入金葫芦,每个葫芦六十丹,恰装满葫芦若干.已知丹数不足千,问共炼多少颗仙丹?第十五讲数论综合提高一例7.答案:(1) 30675、38625、39675; (2) 504; (3) 26999详解:(1)据分解法可知,75能分成25与3,满足是25的倍数,末两位要是25的倍数,即后一个空填2或7,填2时,没有重复数字又是3的倍数,所以只能是38625,填7时,满足条件是30675或39675,所以答案是30675、38625、39675.(2)将六位数补成387999 , 387999除以624余495,所以387999减去495的差387504 一定是624的倍数,所以答案是504.(3)改成竖式的数字谜,29乘以某某某答案后三位是999,填完整就是29乘以931 等于26999.例&答案:36详解:要是36的倍数,只要是4和9的倍数即可.9的整除特性是乱切法就可以,所以一位数的时候我们截成一位,两位数就截成两位,几位数就截成几位,所以有1+2+3+…+ N是9的倍数,即N N 1是9的倍数,即N或N 1是9的倍数,所以2满足条件的N是8、9、17、18、26、27、35、36,写到36时,第一次满足是4的倍数,所以N最小是36.例9.答案:865详解:495 5 9 11,即只要满足是5、9、11的倍数即可•对肓,不论a取哪一个一位数都不可能是11和5的倍数,所以b0C 一定是11和5的倍数,即是605.于是307是9的倍数,所以a是8,所以a、b、c组成的三位数是865.例10 . 答案:13806、94365详解:最小且数字不同,则前三位只能是138,再根据9的整除特性,所以最小是13806 ;最大且数字不同,则前三位只能是943,再根据9的整除特性,所以最大是94365. 例11 . 答案:648例12 . 答案:83详解:这是一个首项为1,公差为3的等差数列,由题意知第n 1个数应为125的倍数,即3n 1 125k,可知k取2时符合要求,此时n为83.练习:练习1、答案:(1) 105372; (2) 220、544 或868; (3) 20999练习2、答案:35练习3、答案:548或908简答:即a00b 3c5要分别被4、9和11整除,由a00b与3c5整除特性且a、b、c代表不同数字可知^0b与3c5分别要被(4、9)与11整除,所以可求得abc是548或908.练习4、答案:最小值是2907;最大是8793作业6. 答案:38025简答:能被225整除,即能分别被9和25整除,所以可得该五位数为38025.7. 答案:(1) 260172 ; (2) 197496简答:(1)设该六位数为2a01b2,其为99的倍数,即2a 1 b2能被99整除,又a、b为个位数,所以易知 a 6, b 7,所以该六位数为260172 ; (2)能被72整除,即能分别被8和9整除,所以可得该六位数为197496.8. 答案:75简答:500!所含0的个数减去200!所含0的个数即可,答案为75.9. 答案:34简答:易知3421190 352,所以可估算出所求的数为34.10. 答案:900简答:前n次共炼制n2颗仙丹,且n2是60的倍数,所以n含有质因数2、3和5,于是当n 235 30时,n2900为所求答案.。

高斯小学奥数六年级上册含答案第15讲 数论综合提高一

高斯小学奥数六年级上册含答案第15讲 数论综合提高一

第十五讲 数论综合提高一本讲知识点汇总:一. 整除1. 整除的定义如果整数a 除以整数b ,所得的商是整数且没有余数,我们就说a 能被b 整除,也可以说b 能整除a ,记作. 如果除得的结果有余数,我们就说a 不能被b 整除,也可以说b 不整除a .2. 整除判定(1) 尾数判断法能被2、5整除的数的特征:个位数字能被2或5整除;能被4、25整除的数的特征:末两位能被4或25整除;能被8、125整除的数的特征:末三位能被8或125整除.(2) 截断求和法能被9、99、999及其约数整除的数的特征.(3) 截断求差法能被11、101、1001及其约数整除的数的特征.(4) 分解判定:一些复杂整数的整除性,例如63、72等,可以把它们分拆成互质的整数,分别验证整除性.3. 常用整除性质(1) 已知、,则以及.(b >c ) (2) 已知,则. (3) 已知且,则. (4) 已知且,则.4. 整除的一些基本方法:(1) 分解法:①分解得到的数有整除特性;②两两互质.(2) 数字谜法:①被除数的末位已知;②除数变为乘法数字谜的第一个乘数.(3) 试除法:[],a b c |b c |a c |a c (),1a b = |a bc|b c |ab ac()|a b c - ()|a b c +|a c |a b |b a()0b ≠①除数比较大;②被除数的首位已知.(4) 同除法:①被除数与除数同时除以相同的数;②简化后的除数有整除特性.二、质数与合数1. 质数与合数的定义质数是只能被1和自身整除的数;合数是除了1和它本身之外,还能被其它数整除的数.2. 分解质因数分解质因数是指把一个数写成质因数相乘的形式.如:,. 典型题型一.整除1. 基本整除问题:对各种整除的判别法要非常熟悉,尤其是9和11这种常见数字;(1) 9的考点:乱切法;(2) 11的考点:① 奇位和减偶位和;② 两位截断求和;③ 三位截断,奇段和减偶段和.2. 整除性质的使用;3. 整除与位值原理;4. 整除方法在数字谜中的应用.二.质数合数1. 质数合数填数字:注意2和5的特殊性;2. 判断大数是否为质数:逐一试除法;3. 末尾0的个数问题:层除法.例1. (1)五位数365没有重复数字,如它能被75整除,那么这个五位数可能是多少?(2)如果六位数387能被624整除,则三个方格中的数是多少?(3)末三位是999的自然数能被29整除,这个数最小是多少?3280257=⨯⨯ 2210025=⨯「分析」(1)75可以分解为3和25;(2)试除法解答这道题目;(3)试着把这道题目改为数字谜的形式进行解答.练习1、(1)六位数1037没有重复数字,如它能被36整除,那么这个六位数是多少?(2)如果六位数374能被324整除,则三个方格中的数是多少?(3)末三位是999的自然数能被23整除,这个数最小是多少?例2.将自然数1,2,3,…,依次写下去组成一个数:12345678910111213L,如果写到某个自然数N时,所组成的数恰好第一次能被36整除,那么这个自然数N是多少?「分析」36可以分解为4和9,然后分别满足N能被4和9整除,接下来就要用到整除特性了,尤其是9的整除特性如何运用是关键.练习2、将自然数1,2,3,…,依次写下去组成一个数:12345678910111213L,如果写到某个自然数N时,所组成的数恰好第一次能被45整除,那么这个自然数N是多少?例3.已知370⨯是495的倍数,其中a,b,c分别代表不同的数字.请问:三位数abca b c是多少?「分析」分解495=5×9×11,可知只要两个三位数分别满足是5、9、11的倍数即可,分情况讨论即可确定两个三位数分别是多少?练习3、已知0035⨯是396的倍数,其中a、b、c分别代表不同的数字.请问:三a b c位数abc是多少?例4.一个各位数字互不相同的五位数可以被9整除,去掉末两位之后形成的三位数可以被23整除,这个五位数的最小值等于多少?最大值呢?「分析」根据“去掉末两位之后形成的三位数可以被23整除”及最大值或最小值可确定五位数的前三位,然后根据9的整除特性确定其余数字.练习4、一个各位数字互不相同的四位数可以被9整除,去掉末两位之后形成的两位数可以被29整除,这个四位数的最大值等于多少?最小值呢?例5.72乘以一个三位数后,正好得到一个立方数.这个三位数最大是多少? 「分析」立方数需满足所含质因数个数均为3的倍数,分解72可以确定质因数的种类,满足上述条件基础上试数即可得出这个三位数.例6.在数列1、4、7、10、13、16、19、……中,如果前n 个数的乘积的末尾0的个数比前个数的乘积的末尾0的个数少3个,那么n 最小是多少?「分析」末尾0的个数决定于2和5的对数,有一对2、5就可以确定一个0,而题目数列中2的个数一定多于5的个数,所以只要使数列中数字满足有三个质因数5即可.1n数学王国里的一颗明珠——梅森素数 早在公元前300多年,古希腊数学家欧几里得就开创了研究的先河,他在名著《几何原本》第九章中论述完美数时指出:如果是素数,则是完美数(Perfect number ).1640年6月,费马在给马林·梅森的一封信中写道:“在艰深的数论研究中,我发现了三个非常重要的性质.我相信它们将成为今后解决素数问题的基础”.这封信讨论了形如的数(其中p 为素数).梅森在欧几里得、费马等人的有关研究的基础上对作了大量的计算、验证工作,并于1644年在他的《物理数学随感》一书中断言:对于p =2,3,5,7,13,17,19,31,67,127,257时,是素数;而对于其他所有小于257的数时,是合数.前面的7个数(即2,3,5,7,13,17和19)属于被证实的部分,是他整理前人的工作得到的;而后面的4个数(即31,67,127和257)属于被猜测的部分.不过,人们对其断言仍深信不疑.虽然梅森的断言中包含着若干错误,但他的工作极大地激发了人们研究型素数的热情,使其摆脱作为“完美数”的附庸的地位.梅森的工作是素数研究的一个转折点和里程碑.由于梅森学识渊博,才华横溢,为人热情以及最早系统而深入地研究型的数,为了纪念他,数学界就把这种数称为“梅森数”;并以Mp 记之(其中M 为梅森姓名的首字母),即.如果梅森数为素数,则称之为“梅森素数”(即型素数).2300多年来,人类仅发现47个梅森素数.由于这种素数珍奇而迷人,因此被人们誉为“数海明珠”.自梅森提出其断言后,人们发现的已知最大素数几乎都是梅森素数;因此,寻找新的梅森素数的历程也就几乎等同于寻找新的最大素数的历程.21p - 21p Mp =- 21p - 21p - 21p - 21p - 21p - 21p - (1)22p p -⋅(-1) 21p - 21p -作业1.五位数305没有重复数字,如它能被225整除,那么这个五位数是多少?2.(1)已知六位数2012是99的倍数,那么这个六位数是多少?(2)已知六位数1949是72的倍数,那么这个六位数是多少?3.201202203500L的末尾有多少个连续的0?⨯⨯⨯⨯4.两个连续自然数的乘积是1190,这两个数中较小的是多少?5.太上老君炼仙丹,第一次炼一丹,第二次炼三丹,第三次炼五丹,第四次炼七丹,……,颗颗炼成不老长生丹.然后装入金葫芦,每个葫芦六十丹,恰装满葫芦若干.已知丹数不足千,问共炼多少颗仙丹?第十五讲 数论综合提高一例7. 答案:(1)30675、38625、39675;(2)504;(3)26999详解:(1)据分解法可知,75能分成25与3,满足是25的倍数,末两位要是25的倍数,即后一个空填2或7,填2时,没有重复数字又是3的倍数,所以只能是38625,填7时,满足条件是30675或39675,所以答案是30675、38625、39675.(2)将六位数补成387999,387999除以624余495,所以387999减去495的差387504一定是624的倍数,所以答案是504.(3)改成竖式的数字谜,29乘以某某某答案后三位是999,填完整就是29乘以931等于26999.例8. 答案:36详解:要是36的倍数,只要是4和9的倍数即可.9的整除特性是乱切法就可以,所以一位数的时候我们截成一位,两位数就截成两位,几位数就截成几位,所以有1+2+3+…+N 是9的倍数,即()12N N +是9的倍数,即N 或1N +是9的倍数,所以满足条件的N 是8、9、17、18、26、27、35、36,写到36时,第一次满足是4的倍数,所以N 最小是36.例9.答案:865 详解:,即只要满足是5、9、11的倍数即可.对,不论a 取哪一个一位数都不可能是11和5的倍数,所以一定是11和5的倍数,即是605.于是是9的倍数,所以a 是8,所以a 、b 、c 组成的三位数是865.例10. 答案:13806、94365详解:最小且数字不同,则前三位只能是138,再根据9的整除特性,所以最小是13806;最大且数字不同,则前三位只能是943,再根据9的整除特性,所以最大是94365.37a 0b c 37a 4955911=⨯⨯例11. 答案:648例12. 答案:83详解:这是一个首项为1,公差为3的等差数列,由题意知第个数应为125的倍数,即,可知k 取2时符合要求,此时n 为83.练习:练习1、答案:(1)105372;(2)220、544或868;(3)20999练习2、答案:35练习3、答案:548或908简答:即0035a b c ⨯要分别被4、9和11整除,由00a b 与35c 整除特性且a 、b 、c 代表不同数字可知00a b 与35c 分别要被(4、9)与11整除,所以可求得abc 是548或908. 练习4、答案:最小值是2907;最大是879331125n k += 1n +作业6. 答案: 38025简答:能被225整除,即能分别被9和25整除,所以可得该五位数为38025.7. 答案:(1)260172;(2)197496 简答:(1)设该六位数为2012a b ,其为99的倍数,即212a b ++能被99整除,又a 、b 为个位数,所以易知67a b ==,,所以该六位数为260172;(2)能被72整除,即能分别被8和9整除,所以可得该六位数为197496.8. 答案:75简答:500!所含0的个数减去200!所含0的个数即可,答案为75.9. 答案:34简答:易知2234119035<<,所以可估算出所求的数为34.10. 答案:900简答:前n 次共炼制n 2颗仙丹,且n 2是60的倍数,所以n 含有质因数2、3和5,于是当23530n =⨯⨯=时,2900n =为所求答案.。

小学数学奥数题六年级

小学数学奥数题六年级

一.工程问题1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?解: 1/20+1/16=9/80表示甲乙的工作效率 ,9/80×5=45/80表示5小时后进水量1-45/80=35/80表示还要的进水量 ,35/80÷(9/80-1/10)=35表示还要35小时注满答:5小时后还要35小时就能将水池注满。

2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。

如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。

现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效>甲的工效>乙的工效。

又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。

只有这样才能“两队合作的天数尽可能少”。

设合作时间为x天,则甲独做时间为(16-x)天1/20*(16-x)+7/100*x=1 x=10 答:甲乙最短合作10天3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。

现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。

乙单独做完这件工作要多少小时?解:由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量(1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量。

根据“甲、丙合做2小时后,余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1。

所以1-9/10=1/10表示乙做6-4=2小时的工作量。

小学六年级奥数题100道及答案解析(完整版)

小学六年级奥数题100道及答案解析(完整版)

小学六年级奥数题100道及答案解析(完整版)1. 一种商品先提价10%,再降价10%,现价与原价相比()A. 提高了B. 降低了C. 不变D. 无法确定答案:B解析:假设原价为100 元,提价10%后价格为100×(1 + 10%) = 110 元,再降价10%,价格为110×(1 - 10%) = 99 元,所以现价比原价降低了。

2. 一个圆的半径扩大3 倍,它的面积扩大()倍。

A. 3B. 6C. 9D. 27答案:C解析:圆的面积= π×半径²,半径扩大3 倍,面积扩大3²= 9 倍。

3. 甲数的2/3 等于乙数的3/4,甲数()乙数。

A. 大于B. 小于C. 等于D. 无法比较答案:A解析:设甲数×2/3 = 乙数×3/4 = 1,可得甲数= 3/2,乙数= 4/3,3/2 > 4/3,所以甲数大于乙数。

4. 把20 克盐放入200 克水中,盐和盐水的比是()A. 1:10B. 1:11C. 10:1D. 11:1答案:B解析:盐20 克,盐水= 20 + 200 = 220 克,盐和盐水的比是20:220 = 1:115. 一个三角形三个内角的度数比是1:2:3,这个三角形是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 无法确定答案:B解析:三个内角分别为180×1/(1 + 2 + 3) = 30°,180×2/(1 + 2 + 3) = 60°,180×3/(1 + 2 + 3) = 90°,是直角三角形。

6. 要反映某地气温变化情况,应绘制()统计图。

A. 条形B. 折线C. 扇形D. 以上都可以答案:B解析:折线统计图能清晰反映数据的变化情况。

7. 一个圆柱和一个圆锥等底等高,它们的体积相差18 立方厘米,圆锥的体积是()立方厘米。

小学奥数5-2-3 数的整除之四大判断法综合运用(三).专项练习及答案解析

小学奥数5-2-3 数的整除之四大判断法综合运用(三).专项练习及答案解析

1. 了解整除的性质;2. 运用整除的性质解题;3. 整除性质的综合运用.一、常见数字的整除判定方法1. 一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除;2. 一个位数数字和能被3整除,这个数就能被3整除;一个数各位数数字和能被9整除,这个数就能被9整除;3. 如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除.4. 如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除.5.如果一个数能被99整除,这个数从后两位开始两位一截所得的所有数(如果有偶数位则拆出的数都有两个数字,如果是奇数位则拆出的数中若干个有两个数字还有一个是一位数)的和是99的倍数,这个数一定是99的倍数。

【备注】(以上规律仅在十进制数中成立.)二、整除性质性质1 如果数a 和数b 都能被数c 整除,那么它们的和或差也能被c 整除.即如果c ︱a ,c ︱b ,那么c ︱(a ±b ).知识点拨教学目标5-2-1.数的整除之四大判断法综合运用性质2 如果数a能被数b整除,b又能被数c整除,那么a也能被c整除.即如果b∣a,c∣b,那么c∣a.用同样的方法,我们还可以得出:性质3如果数a能被数b与数c的积整除,那么a也能被b或c整除.即如果bc∣a,那么b∣a,c∣a.性质4如果数a能被数b整除,也能被数c整除,且数b和数c互质,那么a一定能被b与c的乘积整除.即如果b∣a,c∣a,且(b,c)=1,那么bc∣a.例如:如果3∣12,4∣12,且(3,4)=1,那么(3×4) ∣12.性质5 如果数a能被数b整除,那么am也能被bm整除.如果b|a,那么bm|am(m 为非0整数);性质6如果数a能被数b整除,且数c能被数d整除,那么ac也能被bd整除.如果b|a,且d|c,那么bd|ac;例题精讲综合系列【例 1】甲、乙两个三位数的乘积是一个五位数,这个五位数的后四位为1031.如果甲数的数字和为10,乙数的数字和为8,那么甲乙两数之和是_________.【考点】整除之综合系列【难度】3星【题型】填空【关键词】迎春杯,高年级,初赛,第2题【解析】根据弃九法可得知,乘积是310313171113=⨯⨯⨯,适当组合可得知两数为317217⨯=,和为360.⨯=和1113143【答案】360【例 2】有5个不同的正整数,它们中任意两数的乘积都是12的倍数,那么这5个数之和的最小值是________.【考点】整除之综合系列【难度】3星【题型】填空【关键词】迎春杯,六年级,初赛,第7题)【解析】为了5个数的和最小,那么12=1⨯12=2⨯6=3⨯4。

奥数数论:数的整除问题要点及解题技巧(六年级)

奥数数论:数的整除问题要点及解题技巧(六年级)

奥数数论:数的整除问题要点及解题技巧(六年级)
一、基本概念和符号:
1、整除:如果一个整数a,除以一个自然数b,得到一个整数商c,而且没有余数,那么叫做a能被b整除或b能整除a,记作b|a。

2、常用符号:整除符号“|”,不能整除符号“ ”;因为符号“∵”,所以的符号“∴”;
二、整除判断方法:
1. 能被2、5整除:末位上的数字能被2、5整除。

2. 能被4、25整除:末两位的数字所组成的数能被4、25整除。

3. 能被8、125整除:末三位的数字所组成的数能被8、125整除。

4. 能被3、9整除:各个数位上数字的和能被3、9整除。

5. 能被7整除:
①末三位上数字所组成的数与末三位以前的数字所组成数之差能被7整除。

②逐次去掉最后一位数字并减去末位数字的2倍后能被7整除。

6. 能被11整除:
①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被11整除。

②奇数位上的数字和与偶数位数的数字和的差能被11整除。

③逐次去掉最后一位数字并减去末位数字后能被11整除。

7. 能被13整除:
①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被13整除。

②逐次去掉最后一位数字并减去末位数字的9倍后能被13整除。

三、整除的性质:
1. 如果a、b能被c整除,那么(a+b)与(a-b)也能被c整除。

2. 如果a能被b整除,c是整数,那么a乘以c也能被b整除。

3. 如果a能被b整除,b又能被c整除,那么a也能被c整除。

4. 如果a能被b、c整除,那么a也能被b和c的最小公倍数整除。

六年级奥数(数地整除)

六年级奥数(数地整除)

整除是整数问题中一个重要的基本概念.如果整数a除以自然数b,商是整数且余数为0,我们就说a能被b整除,或b能整除a,或b整除a,记作b丨a.此时,b是a的一个因数(约数),a是b的倍数.1.整除的性质性质1如果a和b都能被m整除,那么a+b,a-b也都能被m整除(这里设a>b).例如:3丨18,3丨12,那么3丨(18+12),3丨(18-12).性质2如果a能被b整除,b能被c整除,那么a能被c整除。

例如: 3丨6,6丨24,那么3丨24.性质3如果a能同时被m、n整除,那么a也一定能被m和n的最小公倍数整除.例如:6丨36,9丨36,6和9的最小公倍数是18,18丨36.如果两个整数的最大公约数是1,那么它们称为互质的.例如:7与50是互质的,18与91是互质的.性质4整数a,能分别被b和c整除,如果b与c互质,那么a能被b×c整除.例如:72能分别被3和4整除,由3与4互质,72能被3与4的乘积12整除.性质4中,“两数互质”这一条件是必不可少的.72分别能被6和8整除,但不能被乘积48整除,这就是因为6与8不互质,6与8的最大公约数是2.性质4可以说是性质3的特殊情形.因为b与c互质,它们的最小公倍数是b×c.事实上,根据性质4,我们常常运用如下解题思路:要使a被b×c整除,如果b与c互质,就可以分别考虑,a被b整除与a被c整除.能被2,3,4,5,8,9,11整除的数都是有特征的,我们可以通过下面讲到的一些特征来判断许多数的整除问题.2.数的整除特征(1)能被2整除的数的特征:如果一个整数的个位数是偶数,那么它必能被2整除.(2)能被5整除的数的特征:如果一个整数的个位数字是0或5,那么它必能被5整除.(3)能被3(或9)整除的数的特征:如果一个整数的各位数字之和能被3(或9)整除,那么它必能被3(或9)整除.(4)能被4(或25)整除的数的特征:如果一个整数的末两位数能被4(或25)整除,那么它必能被4(或25)整除.(5)能被8(或125)整除的数的特征:如果一个整数的末三位数能被8(或125)整除,那么它必能被8(或125)整除.(6)能被11整除的数的特征:如果一个整数的奇数位数字之和与偶数位数字之和的差(大减小)能被11整除,那么它必能被11整除.例1:四位数7a4b能被18整除,要是这个四位数尽可能的小,a和b是什么数字?解:18=2×9,并且2与9互质,根据前面的性质4,可以分别考虑被2和9整除.要被2整除,b只能是0,2,4,6,8.再考虑被9整除,四个数字的和就要被9整除,已有7+4=11.如果 b=0,只有 a=7,此数是 7740;如果b=2,只有a=5,此数是7542;如果b=4,只有a=3,此数是 7344;如果 b=6,只有 a=1,此数是 7146;如果b=8,只有a=8,此数是7848.因此其中最小数是7146.根据不同的取值,分情况进行讨论,是解决整数问题常用办法,例1就是一个典型.例2一本老账本上记着:72只桶,共□67.9□元,其中□处是被虫蛀掉的数字,请把这笔账补上.解:把□67.9□写成整数679,它应被72整除.72=9×8,9与8又互质.按照前面的性质4,只要分别考虑679被8和被9整除.从被8整除的特征,79要被8整除,因此b=2.从6792能被9整除,按照被9整除特征,各位数字之和+24能被9整除,因此a=3.这笔帐是367.92元.例3在1,2,3,4,5,6六个数字中选出尽可能多的不同数字组成一个数(有些数字可以重复出现),使得能被组成它的每一个数字整除,并且组成的数要尽可能小.解:如果选数字5,组成数的最后一位数字就必须是5,这样就不能被偶数2,4,6整除,也就是不能选2,4,6.为了要选的不同数字尽可能多,我们只能不选5,而选其他五个数字1,2,3,4,6.1+2+3+4+6=16,为了能整除3和6,所用的数字之和要能被3整除,只能再添上一个2,16+2=18能被3整除.为了尽可能小,又要考虑到最后两位数能被4整除.组成的数是122364.例4四位数7□4□能被55整除,求出所有这样的四位数.解:55=5×11,5与11互质,可以分别考虑被5与11整除.要被5整除,个位数只能是0或5.再考虑被11整除.(7+4)-(百位数字+0)要能被11整除,百位数字只能是0,所得四位数是7040.(7+4)-(百位数字+5)要能被11整除,百位数字只能是6(零能被所有不等于零的整数整除),所得四位数是7645.满足条件的四位数只有两个:7040,7645.例5一个七位数的各位数字互不相同,并且它能被11整除,这样的数中,最大的是哪一个?解:为了使这个数最大,先让前五位是98765,设这个七位数是98765ab,要使它被11整除,要满足(9+7+5+b)-(8+6+a)=(21+b)-(14+a)能被11整除,也就是7+b-a要能被11整除,但是a与b只能是0,1,2,3,4中的两个数,只有b=4,a=0,满足条件的最大七位数是9876504.思考题:如果要求满足条件的数最小,应如何去求,是哪一个数呢?(答:1023495)例6某个七位数1993□□□能被2,3,4,5,6,7,8,9都整除,那么它的最后三个数字组成的三位数是多少?解一:从整除特征考虑.这个七位数的最后一位数字显然是0.另外,只要再分别考虑它能被9,8,7整除.1+9+9+3=22,要被9整除,十位与百位的数字和是5或14,要被8整除,最后三位组成的三位数要能被8整除,因此只可能是下面三个数:1993500,1993320,1993680,其中只有199320能被7整除,因此所求的三位数是320.一个整数,它的约数只有1和它本身,就称为质数(也叫素数).例如,2,5,7,101,….一个整数除1和它本身外,还有其他约数,就称为合数.例如,4,12,99,501,….1不是质数,也不是合数.也可以换一种说法,恰好只有两个约数的整数是质数,至少有3个约数的整数是合数,1只有一个约数,也就是它本身.质数中只有一个偶数,就是2,其他质数都是奇数.但是奇数不一定是质数,例如,15,33,….例9○×(□+△)=209.在○、□、△中各填一个质数,使上面算式成立.解:209可以写成两个质数的乘积,即209=11×19.不论○中填11或19,□+△一定是奇数,那么□与△是一个奇数一个偶数,偶质数只有2,不妨假定△内填2.当○填19,□要填9,9不是质数,因此○填11,而□填17.这个算式是 11×(17+2)=209,11×(2+17)= 209.解例9的首要一步是把209分解成两个质数的乘积.把一个整数分解成若干个整数的乘积,特别是一些质数的乘积,是解决整数问题的一种常用方法,这也是这一节所讲述的主要内容.一个整数的因数中,为质数的因数叫做这个整数的质因数,例如,2,3,7,都是42的质因数,6,14也是42的因数,但不是质因数.任何一个合数,如果不考虑因数的顺序,都可以唯一地表示成质因数乘积的形式,例如360=2×2×2×3×3×5.还可以写成360=23×32×5.这里23表示3个2相乘,32表示2个3相乘.在23中,3称为2的指数,读作2的3次方,在32中,2称为3的指数,读作3的2次方.例10有四个学生,他们的年龄恰好是一个比一个大1岁,而他们的年龄的乘积是5040,那么,他们的年龄各是多少?解:我们先把5040分解质因数5040=24×32×5×7.再把这些质因数凑成四个连续自然数的乘积:24×32×5×7=7×8×9×10.所以,这四名学生的年龄分别是7岁、8岁、9岁和10岁.利用合数的质因数分解式,不难求出该数的约数个数(包括1和它本身).为寻求一般方法,先看一个简单的例子.我们知道24的约数有8个:1,2,3,4,6,8,12,24.对于较大的数,如果一个一个地去找它的约数,将是很麻烦的事.因为24=23×3,所以24的约数是23的约数(1,2,22,23)与3的约数(1,3)之间的两两乘积.1×1,1×3,2×1,2×3,22×1,22×3,23×1,23×3.这里有4×2=8个,即(3+1)×(1+1)个,即对于24=23×3中的23,有(3+1)种选择:1,2,22,23,对于3有(1+1)种选择.因此共有(3+1)×(1+1)种选择.这个方法,可以运用到一般情形,例如,144=24×32.因此144的约数个数是(4+1)×(2+1)=15(个).例11在100至150之间,找出约数个数是8的所有整数.解:有8=7+1; 8=(3+1)×(1+1)两种情况.(1)27=128,符合要求,37>150,所以不再有其他7次方的数符合要求.(2)23=8,8×13=104, 8×17=136,符合要求.33=27;只有27×5=135符合要求.53=135,它乘以任何质数都大于150,因此共有4个数合要求:128,104,135,136.利用质因数的分解可以求出若干个整数的最大公约数和最小公倍数.先把它们各自进行质因数分解,例如720=24×32×5,168=23×3×7.那么每个公共质因数的最低指数次方的乘积就是最大公约数,上面两个整数都含有质因数2,较低指数次方是23,类似地都含有3,因此720与168的最大公约数是23×3= 24.在求最小公倍数时,很明显每个质因数的最高指数次方的乘积是最小公倍数.请注意720中有5,而168中无5,可以认为较高指数次方是51=5.720与168的最小公倍数是24×32×5×7=5040.例12两个数的最小公倍数是180,最大公约数是30,已知其中一个数是90,另一个数是多少?解:180=22×32×5,30=2×3×5.对同一质因数来说,最小公倍数是在两数中取次数较高的,而最大公约数是在两数中取次数较低的,从22与2就知道,一数中含22,另一数中含2;从32与3就知道,一数中含32,另一数中含3,从一数是90=2×32×5.就知道另一数是22×3×5=60.还有一种解法:另一数一定是最大公约数30的整数倍,也就是在下面这些数中去找30, 60, 90, 120,….这就需要逐一检验,与90的最小公倍数是否是180,最大公约数是否是30.现在碰巧第二个数60就是.逐一去检验,有时会较费力.例13有一种最简真分数,它们的分子与分母的乘积都是420.如果把所有这样的分数从小到大排列,那么第三个分数是多少?解:把420分解质因数420=2×2×3×5×7.为了保证分子、分母不能约分(否则约分后,分子与分母的乘积不再是420了),相同质因数(上面分解中的2),要么都在分子,要么都在分母,并且分子应小于分母.分子从小到大排列是1,3,4,5,7,12,15,20.分子再大就要超过分母了,它们相应的分数是两个整数,如果它们的最大公约数是1.就称这两个数是互质的.例13实质上是把420分解成两个互质的整数.利用质因数分解,把一个整数分解成若干个整数的乘积,是非常基本又是很有用的方法,再举三个例题.例14将8个数6,24,45,65,77,78,105,110分成两组,每组4个数,并且每组4个数的乘积相等,请写出一种分组.解:要想每组4个数的乘积相等,就要让每组的质因数一样,并且相同质因数的个数也一样才行.把8个数分解质因数.6=2×3, 24=23×3,45=32×5, 65=5×13,77=7×11, 78=2×3×13,105=3×5×7, 110=2×5×11.先放指数最高的质因数,把24放在第一组,为了使第二组里也有三个2的因子,必须把6,78,110放在第二组中,为了平衡质因数11和13,必须把77和65放在第一组中.看质因数7,1 05应放在第二组中,45放在第一组中,得到第一组:24,65,77,45.第二组:6,78,110,105.在讲述下一例题之前,先介绍一个数学名词--完全平方数.一个整数,可以分解成相同的两个整数的乘积,就称为完全平方数.例如:4=2×2, 9=3×3, 144=12×12, 625=25×25.4,9,144,625都是完全平方数.一个完全平方数写出质因数分解后,每一个质因数的次数,一定是偶数.例如:144=32×42, 100=22×52,…例15甲数有9个约数,乙数有10个约数,甲、乙两数最小公倍数是2800,那么甲数和乙数分别是多少?解:一个整数被它的约数除后,所得的商也是它的约数,这样的两个约数可以配成一对.只有配成对的两个约数相同时,也就是这个数是完全平方数时,它的约数的个数才会是奇数.因此,甲数是一个完全平方数.2800=24×52×7.在它含有的约数中是完全平方数,只有1,22,24,52,22×52,24×52.在这6个数中只有22×52=100,它的约数是(2+1)×(2+1)=9(个).2800是甲、乙两数的最小公倍数,上面已算出甲数是100=22×52,因此乙数至少要含有24和7,而24×7=112恰好有(4+1)×(1+1)=10(个)约数,从而乙数就是112.综合起来,甲数是100,乙数是112.例16小明买红蓝两种笔各1支共用了17元.两种笔的单价都是整元,并且红笔比蓝笔贵.小强打算用35元来买这两种笔(也允许只买其中一种),可是他无论怎么买都不能把35元恰好用完,问红笔、蓝笔每支各多少元?解:35=5×7.红、蓝的单价不能是5元或7元(否则能把35元恰好用完),也不能是17-5=12(元)和17-7=10(元),否则另一种笔1支是5元或7元.记住:对笔价来说,已排除了5,7,10,12这四个数.笔价不能是35-17=18(元)的约数.如果笔价是18的约数,就能把18元恰好都买成笔,再把17元买两种笔各一支,这样就把35元恰好用完了.因此笔价不能是18的约数:1,2,3,6,9.当然也不能是17-1=16,17-2=15,17-3=14,17-6=11, 17-9=8.现在笔价又排除了:1,2,3,6,8,9,11,14,15,16.综合两次排除,只有4与13未被排除,而4+13=17,就知道红笔每支 13元,蓝笔每支4元.三、余数在整数除法运算中,除了前面说过的“能整除”情形外,更多的是不能整除的情形,例如 95÷3, 48÷5.不能整除就产生了余数.通常的表示是:65÷3=21…… 2, 38÷5=7…… 3.上面两个算式中2和3就是余数,写成文字是被除数÷除数=商……余数.上面两个算式可以写成65=3×21+2, 38=5×7+3.也就是被除数=除数×商+余数.通常把这一算式称为带余除式,它使我们容易从“余数”出发去考虑问题,这正是某些整数问题所需要的.特别要提请注意:在带余除式中,余数总是比除数小,这一事实,解题时常作为依据.例175397被一个质数除,所得余数是15.求这个质数.解:这个质数能整除5397-15=5382,而 5382=2×31997×13×23.因为除数要比余数15大,除数又是质数,所以它只能是23.当被除数较大时,求余数的一个简便方法是从被除数中逐次去掉除数的整数倍,从而得到余数.例18求645763除以7的余数.解:可以先去掉7的倍数630000余15763,再去掉14000还余下 1763,再去掉1400余下3 63,再去掉350余13,最后得出余数是6.这个过程可简单地记成645763→15763→1763→363→13→6.如果你演算能力强,上面过程可以更简单地写成:645763→15000→1000→6.带余除法可以得出下面很有用的结论:如果两个数被同一个除数除余数相同,那么这两个数之差就能被那个除数整除.例19有一个大于1的整数,它除967,1000,2001得到相同的余数,那么这个整数是多少?解:由上面的结论,所求整数应能整除 967,1000,2001的两两之差,即1000-967=33=3×11,2001-1000=1001=7×11×13,2001-967=1034=2×11×47.这个整数是这三个差的公约数11.请注意,我们不必求出三个差,只要求出其中两个就够了.因为另一个差总可以由这两个差得到.例如,求出差1000-967与2001-1000,那么差2001-967=(2001-1000)+(1000-967)=1001+33=1034.从带余除式,还可以得出下面结论:甲、乙两数,如果被同一除数来除,得到两个余数,那么甲、乙两数之和被这个除数除,它的余数就是两个余数之和被这个除数除所得的余数.例如,57被13除余5,152被13除余9,那么57+152=209被13除,余数是5+9=14被13除的余数1.例20有一串数排成一行,其中第一个数是15,第二个数是40,从第三个数起,每个数恰好是前面两个数的和,问这串数中,第1998个数被3除的余数是多少?解:我们可以按照题目的条件把这串数写出来,再看每一个数被3除的余数有什么规律,但这样做太麻烦.根据上面说到的结论,可以采取下面的做法,从第三个数起,把前两个数被3除所得的余数相加,然后除以3,就得到这个数被3除的余数,这样就很容易算出前十个数被3除的余数,列表如下:从表中可以看出,第九、第十两数被3除的余数与第一、第二两个数被3除的余数相同.因此这一串数被3除的余数,每八个循环一次,因为1998= 8×249+ 6,所以,第1998个数被3除的余数,应与第六个数被3除的余数一样,也就是2.一些有规律的数,常常会循环地出现.我们的计算方法,就是循环制.计算钟点是1,2,3,4,5,6,7,8,9,10,11,12.这十二个数构成一个循环.按照七天一轮计算天数是日,一,二,三,四,五,六.这也是一个循环,相当于一些连续自然数被7除的余数0, 1, 2, 3, 4, 5, 6的循环.用循环制计算时间:钟表、星期、月、四季,说明人们很早就发现循环现象.用数来反映循环现象也是很自然的事.循环现象,我们还称作具有“周期性”,12个数的循环,就说周期是12,7个数的循环,就说周期是7.例20中余数的周期是8.研究数的循环,发现周期性和确定周期,是很有趣的事.下面我们再举出两个余数出现循环现象的例子.在讲述例题之前,再讲一个从带余除式得出的结论:甲、乙两数被同一除数来除,得到两个余数.那么甲、乙两数的积被这个除数除,它的余数就是两个余数的积,被这个除数除所得的余数.例如,37被11除余4,27被11除余5,37×27=999被 11除的余数是 4×5=20被 11除后的余数 9.1997=7×285+2,就知道1997×1997被7除的余数是2×2=4.例 21 191997被7除余几?解:从上面的结论知道,191997被7除的余数与21997被7除的余数相同.我们只要考虑一些2的连乘,被7除的余数.先写出一列数2,2×2=4,2×2×2 =8,2×2×2×2=16,….然后逐个用7去除,列一张表,看看有什么规律.列表如下:事实上,只要用前一个数被7除的余数,乘以2,再被7除,就可以得到后一个数被7除的余数.(为什么?请想一想.)从表中可以看出,第四个数与第一个数的余数相同,都是2.根据上面对余数的计算,就知道,第五个数与第二个数余数相同,……因此,余数是每隔3个数循环一轮.循环的周期是3.1997= 3× 665 + 2.就知道21997被7除的余数,与21997被 7除的余数相同,这个余数是4.再看一个稍复杂的例子.例2270个数排成一行,除了两头的两个数以外,每个数的三倍都恰好等于它两边两个数的和.这一行最左边的几个数是这样的:0,1,3,8,21,55,….问:最右边一个数(第70个数)被6除余几?解:首先要注意到,从第三个数起,每一个数都恰好等于前一个数的3倍减去再前一个数:3=1×3-0,8=3×3-1,21=8×3-3,55=21×3-8,……不过,真的要一个一个地算下去,然后逐个被6去除,那就太麻烦了.能否从前面的余数,算出后面的余数呢?能!同算出这一行数的办法一样(为什么?),从第三个数起,余数的计算办法如下:将前一个数的余数乘3,减去再前一个数的余数,然后被6除,所得余数即是.用这个办法,可以逐个算出余数,列表如下:注意,在算第八个数的余数时,要出现0×3-1这在小学数学范围不允许,因为我们求被6除的余数,所以我们可以 0×3加6再来减 1.从表中可以看出,第十三、第十四个数的余数,与第一、第二个数的余数对应相同,就知道余数的循环周期是12.70 =12×5+10.因此,第七十个数被6除的余数,与第十个数的余数相同,也就是4.在一千多年前的《孙子算经》中,有这样一道算术题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”按照今天的话来说:一个数除以3余2,除以5余3,除以7余2,求这个数.这样的问题,也有人称为“韩信点兵”.它形成了一类问题,也就是初等数论中解同余式.这类问题的有解条件和解的方法被称为“中国剩余定理”,这是由中国人首先提出的.目前许多小学数学的课外读物都喜欢讲这类问题,但是它的一般解法决不是小学生能弄明白的.这里,我们通过两个例题,对较小的数,介绍一种通俗解法.例23有一个数,除以3余2,除以4余1,问这个数除以12余几?2, 5, 8, 11,14, 17, 20, 23….它们除以12的余数是:2,5,8,11,2,5,8,11,….除以4余1的数有:1, 5, 9, 13, 17, 21, 25, 29,….它们除以12的余数是:1, 5, 9, 1, 5, 9,….一个数除以12的余数是唯一的.上面两行余数中,只有5是共同的,因此这个数除以12的余数是5.上面解法中,我们逐个列出被3除余2的整数,又逐个列出被4除余1的整数,然后逐个考虑被12除的余数,找出两者共同的余数,就是被12除的余数.这样的列举的办法,在考虑的数不大时,是很有用的,也是同学们最容易接受的.如果我们把例23的问题改变一下,不求被12除的余数,而是求这个数.很明显,满足条件的数是很多的,它是5+ 12×整数,整数可以取0,1,2,…,无穷无尽.事实上,我们首先找出5后,注意到12是3与4的最小公倍数,再加上12的整数倍,就都是满足条件的数.这样就是把“除以3余2,除以4余1”两个条件合并成“除以12余5”一个条件.《孙子算经》提出的问题有三个条件,我们可以先把两个条件合并成一个.然后再与第三个条件合并,就可找到答案.例24一个数除以3余2,除以5余3,除以7余2,求符合条件的最小数.解:先列出除以3余2的数:2, 5, 8, 11, 14, 17, 20, 23, 26,…,再列出除以5余3的数:3, 8, 13, 18, 23, 28,….这两列数中,首先出现的公共数是8.3与5的最小公倍数是15.两个条件合并成一个就是8+15×整数,列出这一串数是8, 23, 38,…,2, 9, 16, 23, 30,…,就得出符合题目条件的最小数是23.事实上,我们已把题目中三个条件合并成一个:被105除余23.最后再看一个例子.例25在100至200之间,有三个连续的自然数,其中最小的能被3整除,中间的能被5整除,最大的能被7整除,写出这样的三个连续自然数.解:先找出两个连续自然数,第一个能被3整除,第二个能被5整除(又是被3除余1).例如,找出9和10,下一个连续的自然数是11.3和5的最小公倍数是15,考虑11加15的整数倍,使加得的数能被7整除.11+15×3=56能被7整除,那么54,55,56这三个连续自然数,依次分别能被3,5,7整除.为了满足“在100至200之间”将54,55,56分别加上3,5,7的最小公倍数105.所求三数是159, 160, 161.注意,本题实际上是:求一个数(100~200之间),它被3整除,被5除余4,被7除余5.请考虑,本题解法与例24解法有哪些相同之处?。

数的整除答案

数的整除答案

数的整除答案【篇一:奥数数的整除讲义及答案】=txt>教室:姓名:学号:【知识要点】:整除性质:(1)如果数a、b都能被c整除,那么它们的和(a+b)或差(a-b)也能被c整除。

(2)如果数a能被自然数b整除,自然数b能被自然数c整除,则数a必能被数c整除。

(3)若干个数相乘,如其中有一个因数能被某一个数整除,那么,它们的积也能被这个数整除。

(4)如果一个数能被两个互质数中的每一个数整除,那么,这个数能被这两个互质数的积整除。

反之,若一个数能被两个互质数的积整除,那么这个数能分别被这两个互质数整除。

整除特征:(1)若一个数的末两位数能被4(或25)整除,则这个数能被4(或25)整除。

(2)若一个数的末三位数能被8(或125)整除,则这个数能被8(或125)整除。

(3)若一个数的各位数字之和能被3(或9)整除,则这个数能被3(或9)整除。

(4)若一个数的奇数位数字和与偶数数字和之差(以大减小)能被11整除,则这个数能被11整除。

(5)若一个数的末三位数字所表示的数与末三位以前的数字所表示的数之差(大数减小数)能被7(或13)整除,则这个数能被7(或13)整除。

【典型例题】例1:一个三位数能被3整除,去掉它的末尾数后,所得的两位数是17的倍数,这样的三位数中,最大是几?例2:1~200这200个自然数中,能被6或8整除的数共有多少个?例3:任意取出1998个连续自然数,它们的总和是奇数还是偶数?解:任意取出的1998个连续自然数,其中奇数、偶数各占一半,即999个奇数和999个偶数。

999个奇数的和是奇数,999个偶数的和是偶数,奇数加上偶数和为奇数,所以它们的和是奇数。

解:根据能被7整除的数的特征,555555与999999都能被7因为上式中等号左边的数与等号右边第一个数都能被7整除,所以等号右边第二个数也能被7整除,推知55□99能被7整除。

根据能被7整除的数的特征,□99-55=□44也应能被7整除。

六年级下册奥数试题数的整除特征(一)全国通用(含答案)

六年级下册奥数试题数的整除特征(一)全国通用(含答案)

第1讲数的整除特征(一)知识网络数的整除性质主要有:(1)若甲数能被乙数整除,乙数能被丙数整除,那么甲数能被丙数整除。

(2)若两个数能被一个自然数整除,那么这两个数的和与差都能被这个自然数整除。

(3)几个数相乘,若其中有一个因数能被某一个数整除,那么它们的积也能被这个数整除。

(4)若一个数能被两个互质数中的每一个数整除,那么这个数也能被这两个互质数的积整除。

(5)若一个数能被两个互质数的积整除,那么这个数也能分别被这两个互质数整除。

(6)若一个质数能整除两个自然数的乘积,那么这个质数至少能整除这两个自然数中的一个。

(7)个位上是0、2、4、6、8的数都能被2整除。

(8)个位上是0或者5的数都能被5整除。

(9)若一个整数各位数字之和能被3整除,则这个整数能被3整除。

(10)若一个整数末尾两位数能被4整除,则这个数能被4整除。

(11)若一个整数末尾三位数能被8整除,则这个数能被8整除。

(12)若一个整数各位数字之和能被9整除,则这个整数能被9整除。

重点·难点数的整除概念、性质及整除特征为解决一些整除问题带来了很大方便,在实际问题中应用广泛。

要学好数的整除问题,就必须找到规律,牢记上面的整除性质,不可似是而非。

学法指导能被2和5,4和25,8和125整除的数的特征是分别看这个数的末一位、末两位、末三位。

我们可以综合推广成一条:末n位数能被(或)整除的数,本身必能被(或)整除;反过来,末n位数不能被(或)整除的数,本身必不能被(或)整除。

例如,判断253200、371601能否被16整除,因为,所以只要看各数的末四位数能否被16整除。

学习这一讲知识要学会举一反三。

经典例题[例1]在568后面补上三个数字,组成一个六位数,使它能分别被3、4、5整除,且使这个数尽可能小。

思路剖析这个六位数分别被3、4、5整除,故它应满足如下三个条件:(1)各位数字和是3的奇数;(2)末两位数组成的两位数是4的倍数;(3)末位数为0或5。

六年级下册奥数试题数的整除特征(二)全国通用(含答案)

六年级下册奥数试题数的整除特征(二)全国通用(含答案)

第2讲数的整除特征(二)知识网络上一章我们已经学习了被2、3、5、8、9、25、125等整除的数的特征和一些整除的基本性质,但作为奥林匹克竞赛仅仅掌握以上知识还不够,这一讲继续学习有关数的整除知识。

(1)能被7、11和13整除的数的特征:如果一个数的末三位数字所表示的数与末三以前的数字所表示的差(一定要大数减小数)能被7、11或13整除,那么这个数就能被7、11或13整除。

(2)能被11整除的数的特征还有:一个数的奇数位上的数字之和与偶数位上的数字之和的差(大减小)是11的倍数。

重点·难点同学们在牢记上面整除的数的特征的同时,重点应弄清楚能被7、11、13整除的数为什么有上面的特征。

学法指导上面数的整除特征可以结合例子来理解。

例如:443716,判断它能否被7、11、13整除的方法是:716-443=273。

因为273能被7整除,所以443716能被7整除;因为273不能被11整除,所以443716不能被11整除;因为273能被13整除,所以443716能被13整除。

记忆要理论联系实际。

经典例题[例1]用1、9、8、8这四个数字能排成几个被11除余8的四位数?思路剖析能被11整除的数的特征是这个数的奇位数字之和与偶位数字之和的差能被11整除。

一个数要能被11除余8,那么这样的数加上3后,就能被11整除了,于是得到被11除余8的数的特征是:将偶位数字相加得到一个和数,再将奇位数字相加再加上3,得到另一个和数,如果这两个和数之差能被11整除,那么这个数就是被11除余8的数。

解答要把1、9、8、8排成被11除余8的四位数,可以把这四个数字分成两组,每组两个数字,其中一组作为千位和十位数,它们的和记作p,另外一组作为百位和个位数,它们之和加上3记作q,且p 和q的差能被11整除,满足要求的分组只可能是p=1+8=9,q=(9+8)+3=20,q-p=20-9=11,所以1988是被11除余8的四位数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档