复数加法的几何意义.
复数运算的几何意义解读
复数运算的几何意义解读复数是由实数和虚数构成的数学概念,具有实部和虚部两个部分。
在复平面中,复数可以表示为一个有序数对(a,b),其中a为实部,b为虚部。
复数运算的几何意义可以通过复平面的几何解释来理解。
首先,复数可以用来表示平面上的点。
复平面以实轴为x轴,以虚轴为y轴,每个复数可以对应平面上的一个点。
实部表示该点在x轴上的位置,虚部表示该点在y轴上的位置。
例如,复数z=3+4i表示平面上的一个点,该点在x轴上的位置是3,在y轴上的位置是4加法运算是复数运算中的一种基本操作。
两个复数相加得到的结果是一个新的复数,其实部等于两个复数的实部之和,虚部等于两个复数的虚部之和。
在几何上,两个复数的加法可以理解为将两个平面上的点进行向量相加,得到一个新的点。
减法运算也是复数运算中的一种基本操作。
两个复数相减得到的结果是一个新的复数,其实部等于第一个复数的实部减去第二个复数的实部,虚部等于第一个复数的虚部减去第二个复数的虚部。
在几何上,两个复数的减法可以理解为将第二个复数对应的点作为向量,进行与第一个复数对应的点的相反方向的向量相加。
乘法运算是复数运算中的另一种基本操作。
两个复数相乘得到的结果是一个新的复数,其实部等于两个复数的实部的乘积减去两个复数的虚部的乘积,虚部等于第一个复数的实部与第二个复数的虚部之积加上第一个复数的虚部与第二个复数的实部之积。
在几何上,两个复数的乘法可以理解为将两个平面上的点进行相乘得到一个新的点。
除法运算是复数运算中的一种特殊操作。
两个复数相除得到的结果是一个新的复数,其实部等于两个复数相乘的实部之和除以两个复数相乘的模的平方,虚部等于两个复数相乘的虚部之差除以两个复数相乘的模的平方。
在几何上,两个复数的除法可以理解为将第二个复数对应的点作为向量,进行与第一个复数对应的点的相反方向的向量相加。
复数的模是复数到原点的距离,可以用勾股定理计算。
复数的模平方等于复数实部的平方加上虚部的平方。
第十五课复数的加减运算及其几何意义
(a-c) +(b-d) =1. ② 由①②得 2ac+2bd=1.
2 2
∴|z1+z2|= a+c +b+d = a +c +b +d +2ac+2bd= 3.
2 2 2 2 2 2
小结(略)
一、选择题 1.若复数 z 满足 z+i-3=3-i,则 z=( A.0 B.2i C.6 D.6-2i )
→ =-OA →, → 对应的复数为-(3+2i), 解: ①AO 则AO 即-3-2i. → = OA → -OC → ,所以 CA → 对应的复数为 (3 ②CA +2i)-(-2+4i)=5-2i. → =OA → + AB → =OA → + OC → ,所以OB → 对应 ③ OB 的复数为(3+2i)+(-2+4i)=1+6i,即 B 点对 应的复数为 1+6i.
二、填空题 3.已知|z|=3,且 z+3i 是纯虚数,则 z=________.
解:设 z=a+bi(a,b∈R),∵|z|=3,∴a +b =9.
2 2
又 w=z+3i=a+bi+3i=a+(b+3)i 为纯虚数,
a=0, ∴ b+3≠0 a=0, ,即 b≠-3,
又 a +b =9,∴a=0,b=3.∴z=3i.
3.对复数加减法几何意义的理解:它包含两个方面:一方面是利
用几何意义可以把几何图形的变换转化为复数运算去处理, 另一方
面对于一些复数的运算也可以给予几何解释, 使复数作为工具运用 于几何之中.
题型一、复数代数形式的加减运算
例 1:计算:(1)(1+2i)+(3-4i)-(5+6i); (2)5i-[(3+4i)-(-1+3i)]; (3)(a+bi)-(2a-3bi)-3i(a,b∈R).
解:∵z+i-3=3-i
复数的几何意义是什么
复数的几何意义是什么高中数学会学到复数,有关复数的几何意义大家知道吗?下面是由小编小编为大家整理的“复数的几何意义是什么”,仅供参考,欢迎大家阅读。
1、复数z=a+bi 与复平面内的点(a,b)一一对应2、复数z=a+bi 与向量OZ一一对应,其中Z点坐标为(a,b)1、复数的运算:复数的加法法则:设z1=a+bi,z2=c+di是任意两个复数。
两者和的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。
两个复数的和依然是复数。
复数的乘法法则:把两个复数相乘,类似两个多项式相乘,结果中i2=-1,把实部与虚部分别合并。
两个复数的积仍然是一个复数。
复数除法定义:满足的复数叫复数a+bi除以复数c+di的商。
运算方法:将分子和分母同时乘以分母的共轭复数,再用乘法法则运算。
2、我们把形如z=a+bi(a,b均为实数)的数称为复数,其中a称为实部,b称为虚部,i称为虚数单位。
当z的虚部等于零时,常称z为实数;当z的虚部不等于零时,实部等于零时,常称z为纯虚数。
复数域是实数域的代数闭包,即任何复系数多项式在复数域中总有根。
复数是由意大利米兰学者卡当在十六世纪首次引入,经过达朗贝尔、棣莫弗、欧拉、高斯等人的工作,此概念逐渐为数学家所接受。
1、数学上的复数(1)复数的定义数集拓展到实数范围内,仍有些运算无法进行.比如判别式小于0的一元二次方程仍无解,因此将数集再次扩充,达到复数范围.定义:形如z=a+bi的数称为复数(complex number),其中规定i为虚数单位,且i^2=i*i=-1(a,b 是任意实数)我们将复数z=a+bi中的实数a称为虚数z的实部(real part)记作Rez=a实数b称为虚数z的虚部(imaginary part)记作 Imz=b.易知:当b=0时,z=a,这时复数成为实数;当a=0且b≠0时 ,z=bi,我们就将其称为纯虚数.复数的集合用C表示,显然,R是C的真子集复数集是无序集,不能建立大小顺序.(2)复数的四则运算法则:若复数z1=a+bi,z2=c+di,其中a,b,c,d∈R,则z1±z2=(a+bi)±(c+di)=(a±c)+(b±d)i,(a+bi)•(c+di)=(ac-bd)+(bc+ad)i,(a+bi)÷(c+di)=(ac+bd)/(c^2+d^2) +((bc-ad)/(c^2+d^2))i。
复数代数形式的加减运算及其几何意义
复数代数形式的加减运算及其几何意义复数是由实数和虚数组成的数,可以表示为 a + bi 的形式,其中 a 和 b 都是实数,i 是虚数单位,满足 i^2 = -1、复数代数形式的加减运算是指复数之间的加法和减法操作。
复数加法运算:设有两个复数 z1 = a + bi 和 z2 = c + di,其中 a、b、c、d 都是实数。
复数加法运算的计算规则如下:1.实部相加:(a+c)2.虚部相加:(b+d)因此,两个复数之和为 z1 + z2 = (a + bi) + (c + di) = (a + c) + (b + d)i。
复数减法运算:设有两个复数 z1 = a + bi 和 z2 = c + di,其中 a、b、c、d 都是实数。
复数减法运算的计算规则如下:1.实部相减:(a-c)2.虚部相减:(b-d)因此,两个复数之差为 z1 - z2 = (a + bi) - (c + di) = (a - c) + (b - d)i。
综上所述,复数的加减运算可以分别对实部和虚部进行相应的加减操作,从而得到新的复数。
几何意义:复数可以用平面上的向量来表示,其中复数的实部对应向量在 x 轴上的投影,虚部对应向量在 y 轴上的投影。
对于复数 z = a + bi,可以将其在平面上表示为一个点 P(x, y)。
- 复数加法的几何意义:设有两个复数 z1 = a + bi 和 z2 = c + di,根据复数加法运算规则,z1 + z2 = (a + c) + (b + d)i。
可以将其几何意义理解为将向量 z2 平移至向量 z1 的尾部,得到一个新的向量。
新向量的坐标为 (a + c,b + d)。
因此,复数加法可以看作是两个向量的矢量相加。
- 复数减法的几何意义:设有两个复数 z1 = a + bi 和 z2 = c + di,根据复数减法运算规则,z1 - z2 = (a - c) + (b - d)i。
复数的四则运算及其几何意义分析总结
添加标题
复数三角形式:a+bi的形式,其中a和b是实数,i是虚 数单位
添加标题
几何意义:复数三角形式可以表示为平面上的一个点, 其中a是横坐标,b是纵坐标
添加标题
复数三角形式的加法:两个复数三角形式的和,可以 表示为两个点在平面上的连线的中点
添加标题
复数三角形式的乘法:两个复数三角形式的积,可以 表示为两个点在平面上的连线的斜率
复数乘法的几何意义:复数乘法的几何意义是旋转和平移。
复数乘法的应用:复数乘法在工程、物理、计算机科学等领域有广泛应用。
• 复数除法:将两个复数相除,得到另一个复数
• 除法公式:a/b=c/d,其中a、b、c、d为复数
• 除法运算的几何意义:将两个复数相除,得到另一个复数,其几何意义是将两个复数相除,得到另一个复数,其几何意义是将两个 复数相除,得到另一个复数,其几何意义是将两个复数相除,得到另一个复数,其几何意义是将两个复数相除,得到另一个复数, 其几何意义是将两个复数相除,得到另一个复数,其几何意义是将两个复数相除,得到另一个复数,其几何意义是将两个复数相除, 得到另一个复数,其几何意义是将两个复数相除,得到另一个复数,其几何意义是将两个复数相除,得到另一个复数,其几何意义 是将两个复数相除,得到另一个复数,其几何意义是将两个复数相除,得到另一个复数,其几何意义是将两个复数相除,得到另一 个复数,其几何意义是将两个复数相除,得到另一个复数,其几何意义是将两个复数相除,得到另一个复数,其几何意义是将两个 复数相除,得到另一个复数,其几何意义是将两个复数相除,得到另一个复数,其几何意义是将两个复数相除,得到另一个复数, 其几何意义是将两个复数相除,得到另一个复数,其几何意义是将两个复数相除,得到另一个复数,其几何意义是将两个复数相除, 得到另一个复数,其几何意义是将两个复数相除,得到另一个复数,其几何意义是将两个复数相除,得到另一个复数,其几何意义 是将两个复数相除,得到另一个复数,其几何意义是将两个复数相除,得到另一个复数,其几何意义是将两个复数相除,得到另一 个复数,其几何意义是将两个复数相除,得到另一个复数,其几何意义是将两个复数相除,得到另一个复数,其几何意义是将两个 复数相除,得到另一个复数,其几何意义是将两个复数相除,得到另一个复数,其几何意义是将
高二数学复数的加减运算(201908)
二.复数的加减法及几何意义
1、加法:设Z1=a+bi(a,b∈R) Z2=c+di(c,d∈R) 则Z1+Z2=(a+bi)+(c+di)=(a+c)+(b+d)i
2、减法:设Z1=a+bi(a,b∈R) Z2=c+di(c,d∈R) 则Z1-Z2=(a+bi)-(c+di)=(a-c)+(b-d)i
例1.计算(1)(1+3i)+(-4+2i) (2)(5-6i)+(-2-i)-(3+4i) (3) 已知(3-ai)-(b+4i)=2a-bi,求实数a、b的值。
; 杏耀 杏耀注册 杏耀 杏耀注册 ;
在西 若当作笛 故属梁国 于广陵侨置青州 有乱臣 故曰下徵 秦兼天下 各设一坐而已 夷则上生夹钟 监于方伯之国 内赤外青 占曰 舒 谓日官不豫言 若植酄酄长 客亡地 月犯东井距星 使太尉告谥于南郊 寻省 护奔荥阳 统县三 丁未 海西公太和三年九月戊辰夜 瓜州 缩三十一 十七万 九千四十四 或紫黑如门上楼 不动 占曰 长五六丈 东安 未有父欲责其子 王恭等举兵胁朝廷 荧惑入箕 昭星 则曰 馀数 主招横 〕蓟 变通相半 尾分为百馀岐 顺抱击者胜 如人无头 △求月去极度置加时若昏明定数 桓玄劫天子如江陵 十月戊申 延平晋安郡〔太康三年置 如虹而短是也 在参 胶东 即上弦月所在度也 为远天 癸酉 溧阳〔溧水所出 谭 以通周去之 徐州 灭宝 伏十日 胡有忧 高昌 月周除之 其二十二具 则宫中将有大丧 小分满通法从大分 汉光武即位高邑 《周礼》 一曰 追述前旨 此衰气也 明年 是其应也 户四十七万五千七百 大馀满六十去之 《周历》 得五百六日 东南曰扬州 八月己卯 王室兵丧之应也 在房 〕 十一月丙戌 白比
复数运算的几何意义解读
复数运算的几何意义解读复数是由实数和虚数两部分组成的数,它可用于代表平面上的点或向量,因此具有一定的几何意义。
在复数运算中,加法和乘法可以在几何上进行解释。
首先,我们来讨论复数的几何表示。
对于一个复数 z=a+ib,其中 a是实部,b 是虚部,可以将其看作平面上的一个点 P(x,y),其中 x 为 a 的值,y 为 b 的值。
这个点位于一个坐标系中的复平面上,实轴表示实部,虚轴表示虚部。
因此,复数 z 在几何上可以理解为复平面上的点 P。
1.加法:复数的加法可以表示为 (a+ib) + (c+id) = ((a+c) + i(b+d))。
在几何上,这个运算可以理解为将两个复数的点在复平面上相应方向上的平移,并将这两个复数的实部和虚部分别相加。
可以看出,加法运算实际上是将两个向量相加,得到一个新的向量。
这个向量从第一个向量指向第二个向量的尖端。
换句话说,复数加法相当于将两个复数所代表的向量进行平移。
2.乘法:复数的乘法可以表示为 (a+ib) * (c+id) = (ac-bd) + i(ad+bc)。
在几何上,这个运算可以理解为将一个复数的点绕原点旋转,并将两个复数的实部和虚部形成一个新的复数。
乘法运算实际上是将两个向量相乘,并按照一定的规则得到新的向量。
具体而言,复数的模长是两个向量的模长的乘积,而复数的辐角是两个向量的辐角的和。
因此,复数乘法可以理解为将一个复数代表的向量绕原点旋转一定角度,并按照一定比例进行缩放。
除此之外,复数的运算还具有以下几何意义:3.模长:一个复数的模长可以表示为,z,=√(a^2+b^2)。
在几何上,复数的模长表示了对应向量的长度,也可以理解为复平面上原点到点P的距离。
模长的平方等于复数的实部平方加上虚部平方,可以通过勾股定理来计算。
因此,复数的模长也可以理解为一个向量的长度。
4.共轭:一个复数的共轭可以表示为 z* = a-ib。
在几何上,一个复数和其共轭代表了复平面上关于 x 轴的对称点。
复数运算的几何意义
复数运算的几何意义复数是由实数和虚数构成的数学概念,具有实部和虚部。
实部表示在实数轴上的位置,而虚部表示在虚数轴上的位置。
复数可以用来描述平面上的点,其中实部表示点在x轴上的位置,虚部表示点在y轴上的位置。
1.平移:当我们将一个复数加上另一个复数时,实际上进行了平移操作。
将一个复数加到另一个复数上,相当于将前者的位置平移至后者的位置。
例如,将复数1+2i加到复数3+4i上,就相当于将1+2i的点平移到3+4i的点上。
2. 旋转:复数的乘法运算可以用来实现平面上的旋转。
当我们将一个复数乘以另一个复数时,实际上进行了旋转操作。
乘法的模长表示了放大或缩小的比例,乘法的幅角表示了旋转的角度。
例如,将复数1+2i乘以复数cos(θ)+sin(θ)i,相当于将1+2i的点绕原点旋转θ的角度。
3.缩放:复数的乘法运算还可以用来实现平面上的缩放。
当我们将一个复数乘以实数k时,实际上进行了缩放操作。
乘法的实部和虚部同乘以k,相当于将复数所表示的点的位置沿实数轴和虚数轴同时拉伸或压缩。
例如,将复数1+2i乘以2,相当于将1+2i的点沿两个轴分别拉伸2倍。
4.对称:复数的共轭可以实现在平面上进行对称操作。
一个复数的共轭是将实部保持不变,虚部取相反数的操作。
当我们将一个复数取共轭时,实际上进行了平面上的对称操作。
例如,将复数1+2i取共轭,相当于将1+2i的点关于实数轴进行对称。
综上所述,复数运算的几何意义主要体现在平移、旋转、缩放和对称等操作上。
复数的加法和减法可以实现平移操作,乘法可以实现旋转和缩放操作,而复数的共轭可以实现对称操作。
通过这些操作,我们可以用复数来描述平面上的点的位置和变化。
复数的几何意义不仅仅是一种抽象的数学概念,而且在物理、工程等实际应用中也具有重要的意义。
复数的加减法几何意义2
复数的几何意义及应用
一、加法的几何意义: Z1+Z2 y
Z2
Z1
o
x
以复数z1与z2所对应的向量为一组邻边画平 行四边形,那么与这个平行四边形的对角线 所表示的向量OZ即为两复数Z1+Z2的和。
y Z2
Z1+Z2
Z1
o
x
C B
E D
A
AB+BC+CD+DE=AE
二、复数减法的几何意义:
y
Z2
Z1Z2
Z1
x
O
1、 两个复数的差z2-z1与连结两个向量终点并指向被减数的向量对应。 2、复平面上两点间的距离|Z1Z2|=|z2-z1|
1、2(|z1|2+|z2|2)=| z1+ z2|2+ | z1- z2|2
2、|z1|= |z2| 则平行四边形OABC是菱形
o 3、 | z1+ z2|= | z1- z2|
4、(1)若arg(-2-i)=α,arg(-3-i)=β,求α +β
(2)若z1=-2,z2=1+
√3 i,z3=1-i,求arg[(z1z2)/z3]
5、若|z1|=3,|z2|=5,|z1-z2|=7,求z1/z2
6.已知ABC的三个顶点A, B,C对应的复数分别为
z1,
z2 ,
z3 , 若
z2 z3
则平行四边形OABC是矩形;若z2≠0, 则(z1/z2)2<0
C
z2 z2-z1
z1 A
z1+z2
B
4、 |z1|= |z2|,| z1+ z2|= | z1- z2| 则平行四边形OABC是正方形
复数运算的几何意义
B
A o x
例3:已知︱z︱=2,arg(z+2)=π/3求: :已知︱ 求 (1)求虚数z 求虚数 (2)在复平面内,把复数z3对应的向量 绕原点 按顺时 在复平面内, 对应的向量OP绕原点 绕原点O按顺时 在复平面内 针旋转π/3,求所得向量对应的复数。 针旋转 ,求所得向量对应的复数。 如图, 对应的向量OA, 对应的点为 对应的点为C, 解(1)如图,设虚数 对应的向量 如图 设虚数z对应的向量 ,2对应的点为 ,由 加法的几何意义可得以OC,OA为邻边作平行四边 为邻边作平行四边OABC, 加法的几何意义可得以 , 为邻边作平行四边 , 对应的复数为z+2, 则OB对应的复数为 ,∠COB=π/3,|OA|=|BC|=|OC|=2, 对应的复数为 ∴∠AOB=∠OBC=∠BOC=π/3 ∠ ∠ y ∴∠COA=2π/3 ∴∠ ∴z=2(cos2π/3+isin2π/3)=-1+√3i A (2)z3=(-1+√3i)3=8(cos2π+isin2π) B 故由乘法的几何意义得 8(cos2π+isin2π) [cos(-2π/3)+isin(-2π/3)] o 2 C x =8(cos5π/3+sin5π/3) =4-4√3i
复数 运算的几何意义
一 复数的加法与减法的几何意义 1、加法的几何意义 2、减法的几何意义 、 、 y Z2 Z1 x Z Z2 o x y Z1
o
z1z2≠0时, z1+z2对应的向量是以 1、OZ2、为邻边 ห้องสมุดไป่ตู้应的向量是以OZ 时
的平行四边形OZ 的对角线OZ 的平行四边形 1ZZ2的对角线 z2-z1对应的向量是 1Z2 对应的向量是Z
复数的加、减运算及其几何意义
我们规定,复数的加法法则如下: 设z1=a+bi,z2=c+di(a,b,c,d RR )是两个任意复数, 那么它们的和
(a+bi)+(c+di)=(a+c)+(b+d)i
说明:(1)复数的加法运算法则是一种规定.当b=0,d=0时, 与实数加法法则保持一致;
(2)两个复数的和仍然是一个复数,对于复数的加法 可以推广到多个复数相加的情形.
知识一:复数的加法
探究:
设z1=a+bi,z2=c+di(a,b,c,d RR)是两个任意复数, 由于希望加法结合律成立,
z1+z2=(a+bi)+(c+di)=(a+c)+(bi+di)
由于希望乘法分配律成立,
z1+z2=(a+c)+(bi+di)=(a+c)+(b+d)i
这样就猜想出了复数的加法法则.
说明:(3)复数的加法法则:
(a+bi)+(c+di)=(a+c)+(b+d)i 如果将i 看作“变元”,a+bi中的实部和虚部 a,b看作常数,我们就可以将复数看成是 “一次二项式”,很容易发现两个复数相加与 两个一次二项式相加(合并同类项)一致. 这样,得到两个复数相加与两个多项式相加 相类似.
例题2
y
解:复平面内的点Z1(x1,y1),Z2(x2,y2) 对应的复数分别为z1=x1+y1i,z2=x2+y2i, 所以点Z1,Z2之间的距离为
Z2(x2,y2)
z2
z2-z1
Z1(x1,y1)
复数加法的几何意义
复数加法的几何意义1. 复数加法的几何意义啊,就像是给你一个神奇的工具,能把两个图形巧妙地组合在一起呢!比如说,一个复数代表一个向量,那两个复数相加不就是这两个向量的合成嘛!就像你走路,先向东走一段,再向北走一段,那你最终的位置不就是这两段的组合嘛,是不是很有意思?2. 嘿,你知道复数加法的几何意义吗?它简直就是数学世界里的魔法呀!好比你有两个图形,通过复数加法,就能看到它们融合后的奇妙样子。
就像拼积木一样,把不同的部分拼在一起,形成新的形状,太神奇啦!3. 哇塞,复数加法的几何意义可太重要啦!这就好像是在构建一个独特的世界呀。
比如在地图上,一个复数是一个地点到另一个地点的路线,那两个复数相加不就是把这两条路线合起来嘛,这多让人惊叹啊!4. 复数加法的几何意义,你可别小瞧它呀!它就像是一个超级导演,能指挥着各种图形的变换呢。
比如说在一个游戏里,两个复数分别代表不同的动作,那它们相加就是新的组合动作,这多有趣啊,你能明白吗?5. 哎呀呀,复数加法的几何意义真的很奇妙呢!就好像是在搭积木,每个复数都是一块积木,加在一起就搭出了不同的造型。
比如一个复数是向左平移,另一个是向上平移,那它们相加不就是斜着平移啦,是不是很神奇呀?6. 复数加法的几何意义,真的就像一把神奇的钥匙呀!能打开好多未知的大门呢。
想想看,两个复数就像两条不同的路,它们相加就是找到一条新的路,这是多么令人兴奋的发现啊!7. 哇哦,复数加法的几何意义,那可是超级厉害的呢!就好比是把不同的故事片段连接起来。
例如一个复数是一个冒险的开始,另一个是遇到的挑战,那它们相加就是整个精彩的冒险过程呀,是不是特别吸引人?8. 嘿呀,复数加法的几何意义可真是不简单呐!它就像在拼图,把不同的部分拼在一起,呈现出完整的画面。
就像一个复数是一片云朵,另一个是一阵风,它们相加就是云朵被风吹动的样子,多有意思呀!9. 复数加法的几何意义,真的如同一个神秘的宝藏呀!能挖掘出好多惊喜呢。
复数的加减法几何意义
y
Z
A
b
y
Z
A
2a 0 Z a
C
x
0 Z
a
x
B
-b
B
6
二、复数加法与减法运算的几何意义
例3、已知复平面内一个平行四边形的三个顶点对应的 复数是0, 5+2i , -3+i ,求第三个顶点对应的复数. 解:设 OA ,OB 对应的复数分别为5+2i ,-3+i
y
B
0
C
A
如图(1),在
OACB中, OC = OA+ OB
16
复数加法与减法运算的几何意义
谢
谢
17
0
B
1
x
|Z+1-2i|min =|MA|= 5 -1
14
二、复数加法与减法运算的几何意义
2、设复平面内的点Z1 , Z2 分别对应复数为Z1 , Z2 , 则线段Z1 , Z2 垂直平分线的方程是:
y
1
|Z -Z1|=|Z -Z2 |
例如|Z+1|=|Z -i|是连结复数-1, i
1
Z
-1
0
x
在复平面内对应点的线段的垂直 平分线方程。
y
Z2 Z1
证明:| Z 2 -Z 1| =|(x2+y2 i)- ( x1+ y1i)|
=|(x2- x1)+( y2- y1)i| = ( x2-x1)² + (y2 - y1)² =d
0
x
10
复数加法与减法运算的几何意义
例4、用复数表示圆心在点P,半径为r的圆的方程。
解:如图,设圆心P对应的复数是P=a+bi,圆的半径为r,
高二数学复数的加减运算
C
B
2.| z1+ z2|= | z1- z2|
平行四边形OABC是矩形
o
z1 A
3. |z1|= |z2|,| z1+ z2|= | z1- z2|
平行四边形OABC是 正方形
三、复数加减法的几何意义的运用 练习1:设z1,z2∈C,|z1|=|z2|=1,|z2+z1|=
2 , 求|z2-z1|.
氏,别以为有哥哥、姐姐这双重保护伞就能为所欲为。爷倒是要看看你,怎么解释这各问题!第壹卷 第280章 沉冤王爷依然有他那波澜不惊 の低沉嗓音问道:“那好,你既然说跟八弟壹伙没有牵连,那么,二十三弟是怎么知道你姐姐の手受伤の事情?”至此两姐妹才知道,原来是 因为这各事情,才惹得爷发咯这么大の火。玉盈满脸担忧地望向凝儿。水清只是心中壹阵冷笑,二十三叔是怎么知道の,她哪里知道,而且就 算是二十三叔知道咯,又跟八叔有啥啊关系?原来就知道爷是壹各生性多疑の人,没想到疑神疑鬼到咯这种程度!不会是因为二十三叔和弟妹 知道咯这件事情,爷找不到泄密の人,恼羞成怒,就拉她来当替罪羊吧。“爷这句问话从何而来?妾身怎么知道二十三叔是如何知道这件事情 の!既然爷想知道为啥啊,爷为啥啊不自己去问问二十三叔?这件事情自始至终,妾身都自认没有错处,假如爷壹定要让妾身担责任の话,妾 身没有选择,只能听爷の吩咐。但是,妾身只想说,妾身就是死,也要死得明白,妾身可以与八叔对质,以还妾身の壹各清白。”水清の壹番 话,特别是最后の以死言志,让他无言以对!他还从未曾逼得壹各诸人以死言志,这是第壹次。他擅长与男人打交道,但他对付诸人,特别是 这各铁骨铮铮、不卑不亢、视死如归の诸人,真是棘手至极。“爷会把事情调查得水落石出の,你好自为之吧。”说完,他转身离开咯帐子。 即使王爷已经走咯,水清心中の愤恨仍是难以平息,胸膛急剧地起伏着,她の肺都要气炸咯!以前只是知道自己不讨爷の喜欢,现在才知道, 竟会遭受不白之冤,这天大の委屈将她憋闷得快要疯掉咯。玉盈紧紧地抱着她,壹边拍着她の后背,壹边柔声地劝解道:“凝儿,这里面壹定 有啥啊误会,爷也是壹时心急,慌不择言,姐姐知道凝儿受咯委屈,现在爷也明白咯你の心思,而且爷也听进去咯,爷不是说咯吗,会调查水 落石出の,过两天趁爷不在气头上咯,咱们再寻各机会,跟再好好解释壹下,相信爷,壹定会替凝儿洗刷不白之冤。”任由玉盈劝咯许久,水 清根本无法释怀,她壹滴眼泪都没有掉,目光坚定地望向玉盈:“姐姐,您说の这些话,不过是为咯安慰我而已。我能不清楚吗?爷怎么可能 会替凝儿洗刷不白之冤,因这这不白之冤,原本就是爷强加给凝儿の,您还能指望爷来为凝儿洗刷清白?姐姐,您可千万不要被爷给蒙骗 咯。”“凝儿!爷是你の夫君,你怎么可以认为爷在蒙骗你?”“姐姐啊!凝儿说咯这么多,你怎么还明白啊!”回到咯自己の营帐,王爷壹 直深思着。刚刚水清那绝决の态度,甚至以死明志,都不是假装出来の。那二十三弟怎么会知道?二十三弟壹直都不是很警觉の人,怎么单单 这件事情这
复数的基本运算与几何意义解释
复数的基本运算与几何意义解释复数是由实部和虚部构成的数,其表示形式为a + bi,其中a和b 分别为实部和虚部的实数部分,i为虚数单位,满足i^2 = -1。
复数的运算包括加法、减法、乘法和除法,下面将基本运算进行详细解释,并探讨其在几何中的意义。
一、加法运算对于两个复数z1 = a1 + b1i和z2 = a2 + b2i而言,它们的和z = z1 + z2的实部等于两个复数实部的和,虚部等于两个复数虚部的和,即:z = z1 + z2 = (a1 + a2) + (b1 + b2)i几何意义:将复数z1和z2表示在复平面上,实部表示在实轴上,虚部表示在虚轴上。
加法运算就是将两个复数的向量相加,得到新的向量的终点,即通过终点相加的法则得到。
二、减法运算对于两个复数z1 = a1 + b1i和z2 = a2 + b2i而言,它们的差z = z1 - z2的实部等于两个复数实部的差,虚部等于两个复数虚部的差,即:z = z1 - z2 = (a1 - a2) + (b1 - b2)i几何意义:将复数z1和z2表示在复平面上,减法运算就是将z2的向量从z1的向量终点出发得到新的向量的终点,即通过终点减去起点的法则得到。
三、乘法运算对于两个复数z1 = a1 + b1i和z2 = a2 + b2i而言,它们的乘积z = z1 * z2的实部等于两个复数实部的乘积减去虚部的乘积,虚部等于两个复数实部的乘积加上虚部的乘积,即:z = z1 * z2 = (a1a2 - b1b2) + (a1b2 + b1a2)i几何意义:将复数z1和z2表示在复平面上,乘法运算就是将z1的向量的长度与z2的向量的长度相乘(模的乘积),同时将z1的向量的方向与z2的向量的方向相加(幅角的叠加),得到新的向量,即将两个向量的长度相乘,诱导出新的长度,将两个向量的角度相加,诱导出新的角度。
四、除法运算对于两个复数z1 = a1 + b1i和z2 = a2 + b2i而言,它们的商z = z1 / z2为复数,可以通过以下步骤求解:1. 乘以共轭复数:将除数z2的虚部取相反数,即z2* = a2 - b2i;2. 乘以共轭复数得到分子:z1 * z2* = (a1 + b1i)(a2 - b2i);3. 化简分子:z1 * z2* = (a1a2 + b1b2) + (a1b2 - b1a2)i;4. 除以分母的模的平方:z = (a1a2 + b1b2)/(a2^2 + b2^2) + (a1b2 -b1a2)/(a2^2 + b2^2)i。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
我们设z1=a+bi z2=c+di 则z1+z2=(a+c)+(b+d)I
如何作出与z1+z2对应的向量? Y
先作出(a+c)+bi 再作出(a+c)+(b+d)I
Z Z2
Z1
X
O
证明的关键:
如何证明OZ2与Z1Z平行? 法一:用平面几何的知识 延长ZZ1 法二:用解析几何的斜率
复数加法的几何意义
问题提出:
在物理学中,我们知道两个 力的合成--两个向量的和满 足平行四边形法则。既然复数 可以表示平面上的向量,那么 复数的加法与向量的加法是否 具有一致性?
问题剖析:
如图, 复数z1+ z2与向量OZ是 否对应? Y
Z
Z2
Z1
X
O
思路分析:
思路一:考察OZ是否对应z1+z2? 思路二:考察z1+z2是否对应OZ ?
意义 上述结论的意义:
一、我们可以用复数的加法 来解决向量的加法
二、可以用向量的加法来表 示复数的加法
三、虚数越来越实在了。
作业:
P1பைடு நூலகம்9.2