(完整word版)初中几何三角形五心及定理性质
三角形五心性质概念整理(超全)
重心
1、重心到顶点的距离与重心到对边中点的距离之比为2:1。
2、重心和三角形3个顶点组成的3个三角形面积相等。
3、重心到三角形3个顶点距离平方的和最小。
证明方法:
设三角形三个顶点为(x
1,y
1
),(x
2
,y
2
),(x
3
,y
3
) 平面上任意一点为(x,y)则该点到三顶点距离平
方和为:
(x
1-x)2+(y
1
-y)2+(x
2
-x)2+(y
2
-y)2+(x
3
-x)2+(y
3
-y)2
=3x2-2x(x
1+x
2
+x
3
)+3y2-2y(y
1
+y
2
+y
3
)+x
1
2+x
2
2+x
3
2+y
1
2+y
2
2+y
3
2
=3[x-1/3*(x
1+x
2
+x
3
)]2+3[y-1/3*(y
1
+y
2
+y
3
)]2+x
1
2+x
2
2+x
3
2+y
1
2+y
2
2+y
3
2-1/3(x
1
+x
2
+x
3
)2-1/3(y
1
+y
2
+y
3
)2
显然当x=(x
1+x
2
+x
3
)/3,y=(y
1
+y
2
+y
3
)/3(重心坐标)时
上式取得最小值x
12+x
2
2+x
3
2+y
1
2+y
2
2+y
3
2-1/3(x
1
+x
2
+x
3
)2-1/3(y
1
+y
2
+y
3
)2
最终得出结论。
4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,
即其坐标为[(X1+X2+X3)/3,(Y1+Y2+Y3)/3];
空间直角坐标系——横坐标:(X1+X2+X3)/3,纵坐标:(Y1+Y2+Y3)/3,纵坐标:(Z1+Z2+Z3)/3
5、三角形内到三边距离之积最大的点。
6、在△ABC中,若MA向量+MB向量+MC向量=0(向量),则M点为△ABC的重心,反之也成立。
7、设△ABC重心为G点,所在平面有一点O,则向量OG=1/3(向量OA+向量OB+
(完整word版)三角形的五心问题
自主招生讲座—平面几何5
三角形的五心问题
一.重心:中线交点 1。:2:1AG GD =
2。2222111
224AD AB AC BC =+-
3.1
3
GBC ABC S S ∆∆=
4。
(1)
2222222222
333()3
BC GA CA GB AB GC AB AC BC +=+=+=++
(2)2222221
()3GA GB GC AB AC BC ++=++
(3) 222GA GB GC ++最小.
二.外心:三边中垂线交点,外接圆圆心。 如图,OE BC ⊥交BC 于D . 1.OA OB OC R ===
2.2BOC A ∠=∠(非钝角三角形) 2(180)BOC A ∠=-∠(钝角三角形) 3。,BD DC BE EC ==
4。4ABC abc
S R
∆=
三.内心:角平分线交点,内切圆圆心。
内心)的延长线交外接
设ABC ∆的内切圆O 切边AB 于点P ,AI (I 为圆于D ,内切圆半径为r ,则
1.1
902BIC A ∠=+∠
2.1
cot ()22
A AP r b c a ==+-
3.DB DC DI ==
4。()2
ABC r
S a b c ∆=++
四.垂心:高线的交点 设,,O G H 分别是ABC ∆的外心、重心和垂心,OD BC ⊥于D ,AH 的延长
线交外接圆于1H ,则 1.2AH OD =
2。H 与1H 关于BC 成轴对称。 3。
BCH 与ABC 的半径相同。
4.,,ABH CBO BCO ACH BAH CAO ∠=∠∠=∠∠=∠
5。旁心:三角形任意两角的外角平分线和第三个内角的角平分线相交于一点,这个交点即为三角形的旁心。
初中的几何三角形五心及定理性质
初中几何三角形五心定律及性质
三角形的重心,外心,垂心,内心和旁心称之为三角形的五心。
三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理,旁心定理的总称
重心定理
三角形的三条边的中线交于一点。该点叫做三角形的重心。三中线交于一点可用燕尾定理证明,十分简单。(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)重心的性质:
1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。
2、重心和三角形任意两个顶点组成的3个三角形面积相等。即重心到三条边的距离与三条边的长成反比。
3、重心到三角形3个顶点距离的平方和最小。
4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3)。
5. 以重心为起点,以三角形三顶点为终点的三条向量之和等于零向量。
外心定理
三角形外接圆的圆心,叫做三角形的外心。
外心的性质:
1、三角形的三条边的垂直平分线交于一点,该点即为该三角形的外心。
2、若O是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或
∠BOC=360°-2∠A(∠A为钝角)。
3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。
5、外心到三顶点的距离相等
垂心定理
图1 图2
三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。
垂心的性质:
1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。
中考必备三角形的五个“心”及一些平面几何的著名定理
三角形的五个“心”
一、重心:(又叫中心)
1.重心:三角形的三条中线交于一点,这点就是三角形的重心。
2. 重心定理:(1)一个三角形三条边上的中线必交一点;
证明:找AB 中点F ,AC 中点E ,连接这两条中线交于点O ,连接AO 并延长,交BC 于点D ,可得S 三角形ABE =S 三角形ACF =1/2×S 三角形ABC (同底同高),得S 三角形
BOF =S 三角形COE (两三角形同减S 四边形AEOF )
,得S 三角形AOB =S 三角形AOC (都为上面两三角形面积的两倍),得B 到AD 和C 到AD 的距离h 相等(面积相等,底相等),所以S 三角形BOD =S 三角形COD (同底OD ,等高h ),所以BD=CD (面积相等,高相等),即D 为BC 中点,所以三角形三条中线交于一点。
(2)三角形的三条中线交于一点,这点到顶点的距离是它到对边中点距离的2倍。
证明:方法一
△ABC ,AB 、BC 、CA 中点分别为D 、E 、F ,交于一点G 。
∴DF//BC ,DF=BC/2 ①(中位线定理)。
∴△ADF ∽△ABC, E 为BC 中点,∴H 为DF 中点(可证AH /AE=DH /BE=HF
/EC, BE=EC, ∴DH=HF)
∴HF=DF /2 , BE=BC /2, 又可由①知HF=BE /2
∴HF//BE. 又∵∠BGE=∠FGH 。
∴△BGE ∽△FGH ∴BG/GF=BE/HF=2。
∴BG=(2/3)BF
方法二:(简单)
如图:△ABC 的中线AD 、BE 交于G (G 为重心),求证:
初中几何三角形五心及定理性质
初中几何三角形五心定律及性质
三角形的重心,外心,垂心,内心和旁心称之为三角形的五心。
三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理,旁心定理的总称
重心定理
三角形的三条边的中线交于一点。该点叫做三角形的重心。三中线交于一点可用燕尾定理证明,十分简单。(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)重心的性质:
1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。
2、重心和三角形任意两个顶点组成的3个三角形面积相等。即重心到三条边的距离与三条边的长成反比。
3、重心到三角形3个顶点距离的平方和最小。
4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3)。
5. 以重心为起点,以三角形三顶点为终点的三条向量之和等于零向量。
外心定理
三角形外接圆的圆心,叫做三角形的外心。
外心的性质:
1、三角形的三条边的垂直平分线交于一点,该点即为该三角形的外心。
2、若O是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或∠BOC=360°-2∠A (∠A为钝角)。
3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。
5、外心到三顶点的距离相等
垂心定理
图1 图2
三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。
垂心的性质:
1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。
三角形五心性质概念整理(超全)
三角形五心性质概念整理(超全)
重心
1、重心到顶点的距离与重心到对边中点的距离之比为2:1。
2、重心和三角形3个顶点组成的3个三角形面积相等。
3、重心到三角形3个顶点距离平方的和最小。
证明方法:
设三角形三个顶点为(x1,y1),(x2,y2),(x3,y3) 平面上任意一点为(x,y)则该点到三顶点距离平方和为:(x1-x)2+(y1-y)2+(x2-x)2+(y2-y)2+(x3-x)2+(y3-y)2
=3x2-2x(x1+x2+x3)+3y2-
2y(y1+y2+y3)+x12+x22+x32+y12+y22+y32
=3[x-1/3*(x1+x2+x3)]2+3[y-
1/3*(y1+y2+y3)]2+x12+x22+x32+y12+y22+y32-
1/3(x1+x2+x3)2-1/3(y1+y2+y3)2显然当x=(x1+x2+x3)/3,y=(y1+y2+y3)/3(重心坐标)时
上式取得最小值x12+x22+x32+y12+y22+y32-1/3(x1+x2+x3)2-1/3(y1+y2+y3)2
最终得出结论。
4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,
即其坐标为[(X1+X2+X3)/3,(Y1+Y2+Y3)/3];
空间直角坐标系——横坐标:(X1+X2+X3)/3,纵坐标:(Y1+Y2+Y3)/3,纵坐标:
(Z1+Z2+Z3)/3
5、三角形内到三边距离之积最大的点。
6、在△ABC中,若MA向量+MB向量+MC向量=0(向量),则M点为△ABC 的重心,反之也成立。
初中几何三角形五心及定理性质
初中几何三角形五心定律及性质
三角形的重心,外心,垂心,内心和称之为三角形的五心。
三角形五心定理是指,,,,的总称
重心定理
三角形的三条边的中线交于一点。该点叫做三角形的重心。三中线交于一点可用证明,十分简单。(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)
重心的性质:
1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。
2、重心和三角形任意两个顶点组成的3个三角形面积相等。即重心到三条边的距离与三条边的长成反比。
3、重心到三角形3个顶点距离的平方和最小。
4、在中,重心的坐标是顶点坐标的算术平均数,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3)。
5. 以重心为起点,以三角形三顶点为终点的三条向量之和等于零向量。
外心定理
三角形的圆心,叫做三角形的外心。
外心的性质:
1、三角形的三条边的交于一点,该点即为该三角形的外心。
2、若O是△ABC的外心,则∠BOC=2∠A(∠A为锐角或)或
∠BOC=360°-2∠A(∠A为钝角)。
3、当三角形为时,外心在三角形内部;当三角形为时,外心在三角形外部;当三角形为时,外心在斜边上,与斜边的中点重合。
5、外心到三顶点的距离相等
垂心定理
图1 图2
三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。
的性质:
1、三角形三个顶点,三个,垂心这7个点可以得到6个四点圆。
2、O、重心G和垂心H,且OG︰GH=1︰2。(此直线称为三角形的(Euler line))
3、垂心到三角形一顶点距离为此三角形外心到此顶点距离的2倍。
(完整版)初中几何三角形五心及定理性质
初中几何三角形五心定律及性质
三角形的重心,外心,垂心,内心和旁心称之为三角形的五心。
三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理,旁心定理的总称
重心定理
三角形的三条边的中线交于一点。该点叫做三角形的重心。三中线交于一点可用燕尾定理证明,十分简单。(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)重心的性质:
1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。
2、重心和三角形任意两个顶点组成的3个三角形面积相等。即重心到三条边的距离与三条边的长成反比。
3、重心到三角形3个顶点距离的平方和最小。
4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3)。
5. 以重心为起点,以三角形三顶点为终点的三条向量之和等于零向量。
外心定理
三角形外接圆的圆心,叫做三角形的外心。
外心的性质:
1、三角形的三条边的垂直平分线交于一点,该点即为该三角形的外心。
2、若O是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或
∠BOC=360°-2∠A(∠A为钝角)。
3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。
5、外心到三顶点的距离相等
垂心定理
图1 图2
三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。
垂心的性质:
1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。
最新初中几何三角形五心及定理性质
初中几何三角形五心定律及性质
三角形的重心,外心,垂心,内心和旁心称之为三角形的五心。
三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理,旁心定理的总称
重心定理
三角形的三条边的中线交于一点。该点叫做三角形的重心。三中线交于一点可用燕尾定理证明,十分简单。(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)重心的性质:
1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。
2、重心和三角形任意两个顶点组成的3个三角形面积相等。即重心到三条边的距离与三条边的长成反比。
3、重心到三角形3个顶点距离的平方和最小。
4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3)。
5. 以重心为起点,以三角形三顶点为终点的三条向量之和等于零向量。
外心定理
三角形外接圆的圆心,叫做三角形的外心。
外心的性质:
1、三角形的三条边的垂直平分线交于一点,该点即为该三角形的外心。
2、若O是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或
∠BOC=360°-2∠A(∠A为钝角)。
3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。
5、外心到三顶点的距离相等
垂心定理
图1 图2
三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。
垂心的性质:
1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。
初中几何三角形五心及定理性质
初中几何三角形五心及定理性质
初中几何三角形五心定律及性质
三角形的重心,外心,垂心,内心和旁心称之为三角形的五心。
三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理,旁心定理的总称
重心定理
三角形的三条边的中线交于一点。该点叫做三角形的重心。三中线交于一点可用燕尾定理证明,十分简单。(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)重心的性质:
1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。
2、重心和三角形任意两个顶点组成的3个三角形面积相等。即重心到三条边的距离与三条边的长成反比。
3、重心到三角形3个顶点距离的平方和最小。
4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3)。
5. 以重心为起点,以三角形三顶点为终点的三条向量之和等于零向量。
外心定理
三角形外接圆的圆心,叫做三角形的外心。
外心的性质:
1、三角形的三条边的垂直平分线交于一点,该点即为该三角形的外心。
2、若O是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或
∠BOC=360°-2∠A(∠A为钝角)。
3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。
5、外心到三顶点的距离相等
垂心定理
图1 图2
三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。
垂心的性质:
1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。
初中几何三角形五心及定理性质
初中几何三角形五心定律及性质之马矢奏春创作
三角形的重心,外心,垂心,内心和旁心称之为三角形的五心.
三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理,旁心定理的总称
重心定理
三角形的三条边的中线交于一点.该点叫做三角形的重心.三中线交于一点可用燕尾定理证明,十分简单.(重心原是一个物理概念,对等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)
重心的性质:
1、重心到极点的距离与重心到对边中点的距离之比为2︰1.
2、重心和三角形任意两个极点组成的3个三角形面积相等.即重心到三条边的距离与三条边的长成反比.
3、重心到三角形3个极点距离的平方和最小.
4、在平面直角坐标系中,重心的坐标是极点坐标的算术平均数,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3).
5. 以重心为起点,以三角形三极点为终点的三条向量之和即是零向量.
外心定理
三角形外接圆的圆心,叫做三角形的外心.
外心的性质:
1、三角形的三条边的垂直平分线交于一点,该点即为该三角形的外心.
2、若O是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或∠BOC=360°-2∠A(∠A为钝角).
3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合.
5、外心到三极点的距离相等
垂心定理
图1 图2
三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心.
垂心的性质:
1、三角形三个极点,三个垂足,垂心这7个点可以获得6个四点圆.
初中几何三角形五心及定理性质
初中几何三角形五心定律及性质
三角形的重心,外心,垂心,内心和旁心称之为三角形的五心。
三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理,旁心定理的总称
重心定理
三角形的三条边的中线交于一点。该点叫做三角形的重心。三中线交于一点可用燕尾定理证明,十分简单。(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名) 重心的性质:
1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。
2、重心和三角形任意两个顶点组成的3个三角形面积相等。即重心到三条边的距离与三条边的长成反比。
3、重心到三角形3个顶点距离的平方和最小。
4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3)。
5.以重心为起点,以三角形三顶点为终点的三条向量之和等于零向量。
外心定理
三角形外接圆的圆心,叫做三角形的外心。
外心的性质:
1、三角形的三条边的垂直平分线交于一点,该点即为该三角形的外心。
2、若O是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或∠BO
C=360°-2∠A(∠A为钝角)。
3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。
5、外心到三顶点的距离相等
垂心定理
图1图2
三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。
垂心的性质:
1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。
初中几何三角形五心及定理性质
初中几何三角形五心定律及性质
令狐采学
三角形的重心,外心,垂心,内心和旁心称之为三角形的五心。三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理,旁心定理的总称
重心定理
三角形的三条边的中线交于一点。该点叫做三角形的重心。三中线交于一点可用燕尾定理证明,十分简单。(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)
重心的性质:
1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。
2、重心和三角形任意两个顶点组成的3个三角形面积相等。即重心到三条边的距离与三条边的长成反比。
3、重心到三角形3个顶点距离的平方和最小。
4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3)。
5. 以重心为起点,以三角形三顶点为终点的三条向量之和等于零向量。
外心定理
三角形外接圆的圆心,叫做三角形的外心。
外心的性质:
1、三角形的三条边的垂直平分线交于一点,该点即为该三角形的外心。
2、若O是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或∠BOC=360°-2∠A(∠A为钝角)。
3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。
5、外心到三顶点的距离相等
垂心定理
图1 图2
三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。
垂心的性质:
1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。
初中的几何三角形五心及定理性质
初中几何三角形五心定律及性质
三角形的重心,外心,垂心,内心和旁心称之为三角形的五心。
三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理,旁心定
理的总称
重心定理
三角形的三条边的中线交于一点。该点叫做三角形的重心。三中线交于一点可用燕尾定理证明,十分简单。(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)重心的性质:
1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。
2、重心和三角形任意两个顶点组成的3个三角形面积相等。即重心到三条边的距离与三条边的长成反比。
3、重心到三角形3个顶点距离的平方和最小。
4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,即其重心坐
标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3)。
5. 以重心为起点,以三角形三顶点为终点的三条向量之和等于零向量。
外心定理
三角形外接圆的圆心,叫做三角形的外心。
外心的性质:
1、三角形的三条边的垂直平分线交于一点,该点即为该三角形的外心。
2、若O是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或
∠BOC=360°-2∠A(∠A为钝角)。
3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重
合。
5、外心到三顶点的距离相等
垂心定理
图1 图2
三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。
垂心的性质:
1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。
初中几何三角形五心及定理性质
初中几何三角形五心定律及性质
三角形的重心,外心,垂心,心里和旁心称之为三角形的五心。
三角形五心定理是指三角形重心定理,外心定理,垂心定理,心里定理,旁心定
理的总称
重心定理
三角形的三条边的中线交于一点。该点叫做三角形的重心。三中线交于一点可用燕尾定理证明,十分简单。(重心原是一个物理观点,关于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因此得名)重心的性质:
1、重心到极点的距离与重心到对边中点的距离之比为2︰1。
2、重心和三角形随意两个极点构成的 3 个三角形面积相等。即重心到三条边的距离与三条边的长成反比。
3、重心到三角形 3 个极点距离的平方和最小。
4、在平面直角坐标系中,重心的坐标是极点坐标的算术均匀数,即其重心坐
标为(( X1+X2+X3 )/3,( Y1+Y2+Y3 )/3)。
5.以重心为起点,以三角形三极点为终点的三条向量之和等于零向量。
外心定理
三角形外接圆的圆心,叫做三角形的外心。
外心的性质:
1、三角形的三条边的垂直均分线交于一点,该点即为该三角形的外心。
2、若 O 是△ ABC 的外心,则∠ BOC=2 ∠A(∠ A 为锐角或直角)或
∠B OC=360° -2∠A(∠ A 为钝角)。
3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外面;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。
5、外心到三极点的距离相等
垂心定理
图 1图 2
三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。
垂心的性质:
1、三角形三个极点,三个垂足,垂心这7 个点能够获得 6 个四点圆。
初中的几何三角形五心及定理性质
初中几何三角形五心定律及性质
三角形的重心,外心,垂心,内心和旁心称之为三角形的五心。
三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理,旁心定理的总称
重心定理
三角形的三条边的中线交于一点。该点叫做三角形的重心。三中线交于一点可用燕尾定理证明,十分简单。(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)重心的性质:
1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。
2、重心和三角形任意两个顶点组成的3个三角形面积相等。即重心到三条边的距离与三条边的长成反比。
3、重心到三角形3个顶点距离的平方和最小。
4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3)。
5. 以重心为起点,以三角形三顶点为终点的三条向量之和等于零向量。
外心定理
三角形外接圆的圆心,叫做三角形的外心。
外心的性质:
1、三角形的三条边的垂直平分线交于一点,该点即为该三角形的外心。
2、若O是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或
∠BOC=360°-2∠A(∠A为钝角)。
3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。
5、外心到三顶点的距离相等
垂心定理
图1 图2
三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。
垂心的性质:
1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中几何三角形五心定律及性质
三角形的重心,外心,垂心,内心和旁心称之为三角形的五心。
三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理,旁心定理的总称
重心定理
三角形的三条边的中线交于一点。该点叫做三角形的重心。三中线交于一点可用燕尾定理证明,十分简单。(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)重心的性质:
1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。
2、重心和三角形任意两个顶点组成的3个三角形面积相等。即重心到三条边的距离与三条边的长成反比。
3、重心到三角形3个顶点距离的平方和最小。
4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3)。
5. 以重心为起点,以三角形三顶点为终点的三条向量之和等于零向量。
外心定理
三角形外接圆的圆心,叫做三角形的外心。
外心的性质:
1、三角形的三条边的垂直平分线交于一点,该点即为该三角形的外心。
2、若O是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或
∠BOC=360°-2∠A(∠A为钝角)。
3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。
5、外心到三顶点的距离相等
垂心定理
图1 图2
三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。
垂心的性质:
1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。
2、三角形外心O、重心G和垂心H三点共线,且OG︰GH=1︰2。(此直线称为三角形的欧拉线(Euler line))
3、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的2倍。
4、垂心分每条高线的两部分乘积相等。
推论:
1. 若D 、E 、F 分别是△ABC 三边的高的垂足,则∠1 = ∠2 。(图1)
2. 三角形的垂心是其垂足三角形的内心。(图1)
3. 若D 、E 、F 分别是△ABC 三边的高的垂足,则∠1 = ∠2 。(图2)
定理证明
已知:ΔABC中,AD、BE是两条高,AD、BE相交于点O,连接CO并延长交AB于点F ,求证:CF⊥AB
证明:
连接DE
∵∠ADB=∠AEB=90度
∴A、B、D、E四点共圆
∴∠ADE=∠ABE
又∵∠ODC=∠OEC=90度
∴O、D、C、E四点共圆
∴∠ACF=∠ADE=∠ABE
又∵∠ABE+∠BAC=90度
∴∠ACF+∠BAC=90度
∴CF⊥AB
因此,垂心定理成立
内心定理
三角形内切圆的圆心,叫做三角形的内心。
内心的性质:
1、三角形的三条内角平分线交于一点。该点即为三角形的内心。
2、直角三角形的内心到边的距离等于两直角边的和与斜边的差的二分之一。
3、P为ΔABC所在空间中任意一点,点0是ΔABC内心的充要条件是:向量P0=(a×向量PA+b×向量PB+c×向量PC)/(a+b+c).
4、O为三角形的内心,A、B、C分别为三角形的三个顶点,延长AO交BC 边于N,则有AO:ON=AB:BN=AC:CN=(AB+AC):BC
5、(欧拉定理)⊿ABC中,R和r分别为外接圆为和内切圆的半径,O和I分别为其外心和内心,则OI^2=R^2-2Rr.
6、(内角平分线分三边长度关系)
△ABC中,0为内心,∠A 、∠B、∠C的内角平分线分别交BC、AC、AB 于Q、P、R,则BQ/QC=c/b, CP/PA=a/c, BR/RA=a/b.
7、内心到三角形三边距离相等。
旁心定理
三角形的旁切圆(与三角形的一边和其他两边的延长线相切的圆)的圆心,叫做三角形的旁心。
旁心的性质:
1、三角形一内角平分线和另外两顶点处的外角平分线交于一点,该点即为三角形的旁心。旁心一定在三角形外。
2、任何三角形都存在三个旁切圆、三个旁心。
3、旁心到三角形三边的距离相等。
如图,点M就是△ABC的一个旁心。三角形任意两角的外角平分线和第三个角的内角平分线的交点。一个三角形有三个旁心,而且一定在三角形外。
附:三角形的中心:只有正三角形才有中心,这时重心,内心,外心,垂心,四心合一。
巧记诗歌
三角形五心歌(重外垂内旁)
三角形有五颗心,重外垂内和旁心,五心性质很重要,认真掌握莫记混.重心
三条中线定相交,交点位置真奇巧,交点命名为“重心”,重心性质要明了,重心分割中线段,数段之比听分晓;长短之比二比一,灵活运用掌握好.外心
三角形有六元素,三个内角有三边.作三边的中垂线,三线相交共一点.此点定义为外心,用它可作外接圆.内心外心莫记混,内切外接是关键.垂心
三角形上作三高,三高必于垂心交.高线分割三角形,出现直角三对整,直角三角形有十二,构成六对相似形,四点共圆图中有,细心分析可找清.
内心
三角对应三顶点,角角都有平分线,三线相交定共点,叫做“内心”有根源;
点至三边均等距,可作三角形内切圆,此圆圆心称“内心”,如此定义理当然.