Summary of Heavy Ion Theory

合集下载

重离子束在诱变育种和分子改造中的应用_卫增泉

重离子束在诱变育种和分子改造中的应用_卫增泉
(1)改良植物品种 采用了各种不同种类 、 不同能量的离子 , 连续 多年对不同种类的植物进行了诱变育种 , 通过实验 室观察与田间培育 , 已经获得了一批新品系和许多 突变材料 , 其中较好的有 :
· 40 ·
原子核物理评论
1)来自亲本“定西-24”的抗旱 、 抗逆 、 优质春 小麦新品系 95-119 .
上面提及的重离子传能线密度 L ET 是沿其行 进路程而变化的 , 对于多电荷重离子射入介质后 , 可根据 Bethe-Bloch 公式
-ddEx
=
电离
4πz 2e4 NZ mev2
·
ln
2 me v 2 I(1 -β 2)
-β2
-ZC
瘤块和保护周围健康组织特别有利 . 重离子参数多样 , 有利于拓宽突变谱 .采用不
(1 中国科学院近代物理研究所 , 甘肃 兰州 730000 ; 2 中国科学院寒区旱区环境与工 程研究所 , 甘肃 兰州 730000)
摘 要 :重离子束具有与中性辐射 X , γ和中子不同的特性 , 利用这些特性开展它在生物学领域内 的应用和基础研究具有重要的理论和实际意义 .简要阐述了这种应用的理论基础 , 以及多年来实践 的一些工作与取得的结果 . 关 键 词 :重离子束 ;诱变育种 ;分子改造 ;应用 中图分类号 :Q691 文献标识码 :A
重离子束具有的这种独特优势在肿瘤治疗上可 以用来高效 、 准确地杀死癌细胞 , 而周围的健康组 织免遭(或减小)损伤 , 正像一把锋利的不流血的手 术刀 , 利用这种技术可以使我国的放射治疗技术跨 入当代先进行列 , 更好地造福人类[ 1 , 2] .
重离子束还可以用来进行定点定位诱变研究 , 探索定向育种新技术 , 有可能改变过去传统的无方 向性的随机育种局面 , 创造一套全新的育种手段 , 大大提高育种效率 , 缩短育种周期[ 3—5] , 为农业和 医药食品工业达到优质增产的目的 , 创造明显的经 济和社会效益 .

Heavy Ion Physics at the LHC with the ATLAS Detector

Heavy Ion Physics at the LHC with the ATLAS Detector

a r X i v :0705.0382v 1 [n u c l -e x ] 2 M a y 2007Heavy Ion Physics at the LHC with the ATLAS DetectorP Steinberg,on behalf of the ATLAS CollaborationBrookhaven National Laboratory,Upton,NY 11973E-mail:peter.steinberg@Abstract.The ATLAS detector at CERN will provide a high-resolution longitudinally-segmented calorimeter and precision tracking for the upcoming studyof heavy ion collisions at the LHC (√Figure 1.ATLAS acceptance in pseudorapidity.All detectors have completeazimuthal coverage.context of RHIC collisions[2,6].Here we discuss the progress of the ATLAS heavy ion effort to ready itself for Pb+Pb running in late2008or early2009.Previous progress in preparations for ATLAS running have been reported in Refs.[7,8,9,10,11]and in the Letter of Intent[12].‡2.ATLAS DetectorThe ATLAS detector is a powerful tool for studying the high multiplicity of particles that emerge from the collision of protons and nuclei[13,14].A particular strength of the ATLAS detector is the hermetic liquid argon(LAr)electromagnetic(EM)calorimeter, which provides excellent energy and position information on electrons and photons via its longitudinally-segmented towers[15].Of course,there is also a sophisticated inner tracking system for reconstructing charged tracks and a large volume muon tracking system.Like many modern collider detectors,ATLAS has hermetic azimuthal coverage over a wide range in pseudorapidity.The inner tracking system covers|η|<2.5with silicon pixels,silicon strips(SCT),and a straw-tube transition-radiation tracker(TRT).The electromagnetic calorimeter covers|η|<3with angular resolution depending on the layer(∆η×∆φ=0.003×0.1,0.025×0.025,0.05×0.025).The barrel hadronic tile calorimeter covers(|η|<1.8)with towers of0.1×0.1.In the forward direction,the hadronic forward calorimeter has cells up to0.2×0.2,and a forward LAr calorimeter covers up toη=5with cells of0.2×0.2.Additional detectors will extend the ATLAS acceptance farther into the forward region.The LUCID gas Cerenkov detector[16]detects primary charged particle from 5.3<|η|<6.While it will be primarily purposed for luminosity monitoring,it should ‡Note on Figures:Unless otherwise noted,thefigures shown here were based on studiesusing modified versions of ATLAS production software.Thus,they should be considered“ATLAS preliminary”.For completeness,we list the version of Athena software used for eachfigure:Figure 2(left)used12.0.31with a new tracking algorithm while Figure2(right)and Figure3used12.0.3. Figures4-6used11.0.41and special jet algorithms.Figure7(right)was produced with an unmodified 11.0.3.Figure2.(left)Reconstruction of tracklets in the ATLAS pixel detectors.(right)Tracking reconstruction efficiency,ghost rate,and fake rate in central HIJING events. also provide a measure of forward particle yields with a readout system that can resolve multiple particles per tube.More importantly for heavy ion physics is the Zero Degree Calorimeter(ZDC)being designed and built especially for ATLAS by a consortium of US groups[17].This detector will be able to detect forward neutron spectator fragments,which serves as both a high-purity event trigger as well as an estimator for the“centrality”of the collision(related directly to the impact parameter).However, its highly-segmented front EM section will also be able to measure the angle of neutral clusters.This allows the reconstruction of neutral decays likeπ0andη,which will be discussed below.3.Global DynamicsThe most pressing issue for the early days at the LHC is to establish the global features of heavy ion collisions.This involves the estimation of the inclusive charged-particle yield,both integrated and as a function of pseudorapidity,to get a handle on the initial-state entropy production which controls the hydrodynamic evolution as well as jet quenching[18].It also entails studying the ellipticflow for inclusive particles as a function of centrality,p T and pseudorapidity[19].One of the major questions for the LHC heavy ion program is whether the presumed“hydro limit”has really been reached in RHIC collisions,or if the magnitude of ellipticflow scaled by the eccentricity(v2/ǫ) will continue to increase with particle yield.Estimating the particle density can be done in a variety of ways.Even before the tracking system is fully commissioned,a reasonably-aligned pixel detector can be used to measure particle yields by the“tracklet”technique pioneered at RHIC by the PHOBOS experiment[20].This technique involves matching the angles of two pixel space points with the estimated event vertex measured using the rest of the inner detector.While it is not as robust as the full tracking procedure,it has a lower intrinsic p T cutoffandFigure3.Two calculations of reaction plane resolution in ATLAS,relative to the truereaction plane(left)and between symmetric subevents(right).See text for definitionsof these quantities.Results are shown for different calorimeter subdetectors,whichcover different pseudorapidity regions(see Fig.1).thus offers quick access to the full yield.Initial studies of tracklets with full simulations, shown in the left panel of Fig.2,show a good efficiency which is constant over a wide range of multiplicities emitted in|η|<1.Of course the full inner detector will be indispensible for estimating particle yields and spectra.The performance of early studies of the full tracking algorithm in a heavy ion environment is shown in the right panel of Fig.2.For central(b=2.3fm)HIJING events,wefind an approximately constant efficiency of∼70%over a broad range in p T and low fake and ghost rates.Estimating ellipticflow involves the calculation of the Fourier components of the measured angular distribution relative to the“reaction plane”(the angleΨRP seen by the neutron spectators)or“event plane”(the angleΨEP seen by the emitted particles themselves)[21].The parameter v2is defined via the expansion dN/dφ∝1+2v2cos[2(φ−Ψ)]whereΨ=ΨR orΨE,and is estimated by calculating v2= cos[2(φ−Ψ)] from experimental data.The keyfigure of merit which controls the quality of the measurement is the reaction plane resolution which is used to correct the experimental data.This can be estimated in an ideal case by the expression cos(ΨEP−ΨRP) .In a real measurement,it istypically assumed that the full event sees the same reaction plane and the formulaFigure 4.(left)Schematic of the ATLAS EMCAL longitudinal segmentation.(right)Signals in the first EMCAL layer strips,showing a photon amidst uncorrelated HIJING background.had reaction plane resolutions typically below 0.5[22,23].4.JetsThe detailed study of fully-reconstructed jets will be the major contribution of the LHC to the understanding of the strongly-interacting QGP thought to be formed in heavy ion collisions at RHIC.Both the copious production of jets and the experimental acceptance are unprecedented in the study of relativistic heavy ions [2].The rates of hard processes in p +p and A +A collisions will increase dramatically relative to RHIC energies.Of course,so will the yields of uncorrelated soft particles,which may well suffer enormous fluctuations if copious minijet production indeed dominates the bulk particle production.Thus,it is essential to have a calorimeter with a large acceptance in ηand φwith excellent energy and position resolution,to contain full jet,dijet,γ-jet and Z -jet bining information from the different measurements will provide a good handle on the jet E T scale (e.g.from γ-jet and Z -jet event)and fragmentation properties.As mentioned above,the longitudinal segmentation of the ATLAS electromagnetic (EM)calorimeter,illustrated in Fig.4is unique at the LHC and will be essential for jet physics at the LHC [15].Detailed simulations have shown that 60%of the total energy (including both charged and hadronic energy)ranges out in the first EMCAL layer.Most of the hadronic component is charged and only leaves MIPS in the first layer.This means that photons,especially those of several GeV and above,are easily observed above the large central HIJING background in the first layer,as shown in Fig.4.This will dramatically enhance ATLAS’s ability to make direct photon measurements by being able to reject even close decay photon pairs [24].Figure5.Energy resolution for jets in the ATLAS acceptance,as a function of jetE T andη.In order to study the ability of ATLAS to identify and reconstruct jets, e.g. generated by PYTHIA,they are embedded into heavy ion events.From these samples, various reconstruction procedures can be tested and evaluated.One procedure involves estimating the background by excluding jet candidates and averaging the energy in the calorimeters within a chosen tower size.This average energy is subtracted and then the standard ATLAS jet reconstruction algorithms are run on the modified towers.This allows heavy ion data analysis to take advantage of progress with jet reconstruction algorithms and calibration.The current results,applying the subtraction technique and the standard ATLAS jet reconstruction algorithms down to50GeV,are shown in Fig.5 for jets ranging from E T=50−300GeV and resolutions range from∼25%at the lowest energies considered to10−12%at higher energies.The resolution is currently independent ofη,as seen in Fig.5for|η|<2.5.Another technique currently under intense development is one applying the“Fast k T”algorithm[25]directly to heavy ion data without a separate subtraction step.In general,k T algorithms reconstruct jets backwards along the fragmentation chain by√combining particles that minimize d ij=min(k iT,k jT)R2(where R≡Figure 6.Extraction of jets from ATLAS calorimeters using the “Fast k T ”algorithm.µ+µ−invariant mass (GeV/c 2)d N /d mΥΥ´Υ´´200400600800100099.29.49.69.81010.210.4ΥΥ´Υ´´01000200030004000500060007000800090008.599.51010.51111.5Figure 7.(left)Reconstruction of upsilons within the ATLAS muon spectrometer.(right)Acceptance ×efficiency for upsilons as a function of pseudorapidity (η)and transverse momentum (p T ).5.QuarkoniaThe suppression of J/Ψ’s produced in heavy ion collisions has become a major question arising from recent RHIC data.When cast as R AA ,it is found that the suppressionslightly forward of mid-rapidity is quite similar in data from the SPS (√s NN =200GeV)[26].These two energies are an order of magnitudedifferent,with particle densities different by a factor of two,making the similarity in thedata quite puzzling.The LHC will increase√Figure8.(left)Reconstruction ofπ0andηparticles via2-photon decay into theATLAS ZDC.(right)Acceptance of ATLAS ZDC forπ0’s in p T vs.x2.to reconstruct muons below p T=3GeV/c.This imposes minimum p T cuts on J/ΨandΥreconstruction since each muon needs to have several GeV.The left panel of Fig.7shows an ATLAS reconstruction of upsilon mesonsreconstructed in a high statistics sample of p+p collisions.The mass resolution atpresent isσMΥ∼120MeV/c2for|η|<1,which is only slightly affected by the presence of an uncorrelated heavy ion background.The right panel of Fig.7shows the ATLASacceptance for Upsilons as a function of pseudorapidity and transverse momentum.Thisfigure shows a broadΥacceptance that goes beyond the nominal spectrometerresolution,stemming from the dimuon decay kinematics,and out to very high p T.ATLAS will be sensitive to quarkonia states over a wide kinematic range,and willthus probe various aspects of deconfinement dynamics.6.Low x PhysicsThe ATLAS ZDCs will be primarily used for centrality selection in A+A as well as thestudy of ultraperipheral collisions(which will explore similar physics as next-generationelectron ion colliders)[27].However,their ability to reconstruct far-forwardπ0’s in p+pcollisions[17],shown in Fig.8,gives them particular utility in addressing low x physics.Via the kinematic relations typical for CGC physics,x2∼(p T/√and ultraperipheral collisions.Of course,important work remains to be done on many tasks.New collaborators are always welcome,to work on software,analysis,physics and trigger issues!AcknowledgmentsThe author would like to thank the Quark Matter2006organizers and ATLAS management for the invitation to speak in Shanghai.Thanks as well to colleagues in the ATLAS Heavy Ion Working Group for providing the physics and detector studies,as well as invaluable advice and comments on this manuscript.This work was supported in part by the Office of Nuclear Physics of the U.S.Department of Energy under contracts: DE-AC02-98CH10886.References[1]Iancu E and Venugopalan R2003arXiv:hep-ph/0303204.[2]Accardi A et al.2003arXiv:hep-ph/0310274.[3]Adler S S et al.2006arXiv:nucl-ex/0611006.[4]Huovinen P and Ruuskanen P V2006arXiv:nucl-th/0605008.[5]Braun-Munzinger P,Cleymans J,Oeschler H and Redlich K2002Nucl.Phys.A697902[6]Wiedemann U A2006AIP Conf.Proc.84211[7]Rosselet L2005Czech.J.Phys.55B343[8]White S N2005arXiv:nucl-ex/0505020[9]Takai H2004Eur.Phys.J.C34S307[10]Takai H2004J.Phys.G30S1105[11]Nevski P2004Eur.Phys.J.C33S612[12]“Heavy Ion Physics with the ATLAS Detector”2004Letter of Intent,CERN/LHCC2004-009.[13]“ATLAS:Detector and physics performance technical design report.Volume1,”1999CERN-LHCC-99-14[14]“ATLAS detector and physics performance.Technical design report.Vol.2,”1999CERN-LHCC-99-15[15]“ATLAS liquid argon calorimeter:Technical design report,”1996CERN-LHCC-96-41[16]Pinfold J2005“Plans for the very forward region of ATLAS:The lucid luminosity monitor,”Prepared for9th ICATPP Conference on Astroparticle,Particle,Space Physics,Detectors and Medical Physics Applications,Villa Erba,Como,Italy,17-21Oct2005[17]“Zero Degree Calorimeters for ATLAS”2007CERN-LHCC-2007-001[18]Baier R,Dokshitzer Y L,Mueller A H,Peigne S and SchiffD1997Nucl.Phys.B484265[19]Kolb P F and Heinz U W2003arXiv:nucl-th/0305084.[20]Back B B et al.2000Phys.Rev.Lett.853100[21]Ackermann K H et al.2001Phys.Rev.Lett.86402[22]C.Adler et al.2002Phys.Rev.C66034904[23]Back B B et al.2002Phys.Rev.Lett.89222301[24]Escalier M et al.2005ATL-PHYS-PUB-2005-018[25]Cacciari M and Salam G P2006Phys.Lett.B64157[26]Lajoie J2006these Proceedings.[27]Strikman M,Vogt R and White S2006Phys.Rev.Lett.96082001。

TheTrialThatRockedtheWorld高级英语第三版第一册第四课翻译和词汇

TheTrialThatRockedtheWorld高级英语第三版第一册第四课翻译和词汇

Lesson‎4 The Trial That Rocked‎the World震撼世界的审‎判A buzz ran throug‎h the crowd as I took my place in the packed‎court on that swelte‎r ing July day in 1925. The counse‎l for my defenc‎e was the famous‎crimin‎a l lawyer‎Claren‎c e Darrow‎.Leadin‎g counse‎l for the prosec‎u tion was Willia‎m Jennin‎g s Bryan, the silver‎-tongue‎d orator‎, three times Democr‎a tic nomine‎e for Presid‎e nt of the United‎States‎,and leader‎of the fundam‎e ntali‎s t moveme‎n t that had brough‎t about my trial.在一九二五年‎七月的那个酷‎热日子里,当我在挤得水‎泄不通的法庭‎里就位时,人群中响起一‎阵嘁嘁喳喳的‎议论声。

我的辩护人是‎著名刑事辩护‎律师克拉伦斯‎.达罗。

担任主控官的‎则是能说会道‎的演说家威廉‎.詹宁斯.布莱恩,他曾三次被民‎主党提名为美‎国总统候选人‎,而且还是导致‎我这次受审的‎基督教原教旨‎主义运动的领‎导人。

A few weeks before‎I had been an unknow‎n school‎-teache‎r in Dayton‎, a little‎town in the mounta‎i ns of Tennes‎s ee. Now I was involv‎e d in a trial report‎e d the world over. Seated‎in court, ready to testif‎y on my behalf‎,were a dozen distin‎g uishe‎d profes‎s ors and scient‎i sts, led by Profes‎s or Kirtle‎y Mather‎of Harvar‎d Univer‎s ity. More than 100 report‎e rs were on hand, and even radio announ‎c er s, who for the first time in histor‎y were to broadc‎a st a jury trial. "Don't worry, son, we'll show them a few tricks‎," Darrow‎had whispe‎r ed throwi‎n g a reassu‎r ing arm round my should‎e r as we were waitin‎g for the court to open.几个星期之前‎,我还只是田纳‎西州山区小镇‎戴顿的一名默‎默无闻的中学‎教员,而现在我却成‎了一次举世瞩‎目的庭审活动‎的当事人。

生态系统特征的系统科学思考

生态系统特征的系统科学思考

第27卷 第6期中南林业科技大学学报V ol .27 No .6 2007年12月Journa l of Cen tral South U nive r sity of Fo restry &T echnology Dec .2007 α文章编号:1673-923X (2007)06-0174-05生态系统特征的系统科学思考柏智勇(中南林业科技大学森林旅游中心,湖南长沙410004)摘 要: 基于现代系统科学研究的成果,从系统科学的层面对生态系统的特征进行了再探讨,提出了生态系统性质特征的新内涵和认识的新思路,特别是提出了应该从突变论、耗散结构理论、协同学、混沌学、超循环理论和生命系统理论去综合认识生态系统的稳定性问题,它对于人们不管是从生态学的角度研究生态系统,还是从系统科学的角度研究生态系统都有着积极的作用和意义.关键词: 生态学;生态系统特征;系统科学思考中图分类号: N 941 文献标志码: ATh i n k i n gs about the Ecosystem Cha ra cter ist i cs Ba sed on Syste m s Sc i enceBA I Zhi 2yong(Fo res t Tou ris m R esearch C en ter,C en t ral Sou th U n i vers ity o f Fo rest ry &Techno l o gy,Ch ang sha 410004,H unan,C hina)Abstra ct :B ased o n the research ach ievem en t s o f mo dern sy stem s sci ence,t h is art i cle discus s es th e ecosy st e m charact erist i cs f rom theang le of sys tem s science,p ropo sing a ne w conno tat i on and n e w u nderst and ing of th e essen t ial eco sy stem charact erist ics .Inpa rticu lar,th e analyses of the st ab ilit y o f eco sys te m shou ld be m ad e based o n t he m u tat i on theory,t he t heo ry of d iss i pat ivest ructu res ,Synergetics ,Chaos T heo ry ,super 2cycle t heo ry and life 2suppo rt ing sy st e m theory .It has po sit ive funct i on and sign i ficancew hen w e research ecosy stem either from ecology o r f rom s y st e m s sci ence .Key wor ds :eco l o gy;character ist i cs o f eco sy stem ;t hink i ng s of sy stem s scien ce上个世纪80年代由于对全球生态系统研究的迅速进展,使人们对于生态系统作为生态学的基本单位的认识更加明确,更加强调研究生态系统结构、功能及其动态的重要性和实用性,其中,最具影响的研究是美国佐治亚洲大学的E P O dum [1]和加拿大不列颠哥伦比亚大学的J P Ki mm ins [2].从目前研究看,认为生态系统是在一定空间范围内,各生物成分(包括人类在内)和非生物成分(环境中物理和化学因子),通过能量流动和物质循环而相互作用,相互依存所形成的一个功能单位,具有结构特征、功能特征、动态特征、相互作用和相互联系特征、稳定平衡特征、对外开放特征.与此同时,系统论、信息论、控制论、耗散结构理论、协同学、超循环理论和生命系统论等系统科学理论也逐步产生和发展起来,由于系统科学的成果是基于客观实际的系统,运用物理、化学、生命科学、数学、工程学等学科的方法加以探索而取得的,对包括生态系统在内的各种系统而言,更具有普遍性、客观性和全面性,这些系统科学理论为我们认识生态系统提供了新思想、新观点和新方法;从系统科学的层面对生态系统进行再探讨,尝试提出生态系统的一般特点的含义,它对于人们不管是从生态学的角度研究生态系统,还是从系统科学的角度研究生态系统都有着积极的作用和意义.α 收稿日期2326作者简介柏智勇(6),男,湖南宁远人教授,博士研究生,现主要从事科技哲学、生态旅游和生态系统研究2zy@6:200701:191-..E m a il :d r -ba i .1 认识生态系统的系统科学基础1.1 认识生态系统的系统科学理论系统科学是探索系统的存在方式和运动规律的学问,是把握系统本质的知识体系.系统科学的范围很广泛,已经形成一个学科群体,如系统论,信息论,控制论,运筹学,博奕论,突变论,耗散结构理论,协同学,混沌学,超循环理论,生命系统理论等等.系统科学从数学、物理、化学、生命科学、工程技术、社会科学和思维科学等角度探索不同的系统.各种系统科学在其研究中,各自采取既相互联系,又各具特色的方式方法和手段,例如,系统论多采用系统分析和系统综合的方法;控制论采用控制、反馈、功能模拟等方法;信息论采用信息方法与反馈方法;耗散结构理论把物理系统或生命系统的有序结构形成的条件当做一个新方向,采用物理数学方法探索新结构的产生与平衡中心的关系;协同学以信息论、控制论、运筹学、突变论等为基础,采用统计学和动力学考察相结合的方法,通过类比,对各种系统中从无序到有序的现象建立一套数学模型和处理方案;混沌理论采用物理数学方法,主要研究系统从混沌到有序发展的机制和条件,以及系统怎样从有序进入新的混沌;超循环理论应用化学动力学和量子力学的理论和方法,说明从生物大分子到原生细胞的进化阶段中,形成了一个超循环式的组织,它一旦建立就永存下去的选择机制,构成生命运动中由酶的催化作用所推动的各种循环;生命系统理论强调生命系统是指一切活的具体系统,生命系统的许多知识应该与物理科学、工程学相一致,生命系统是具有能保持甚至随着时间推移能增强其内部低熵状态特性的多分子系统[3].生态系统,就其要素、结构和运行机制而言,是符合系统科学所探索的一般系统的几乎所有要件,从理论上和现有的实践上证明来看,将系统科学的各种理论运用于生态系统的研究,从数学、物理、化学、生命科学、工程技术、社会科学和思维科学等角度探索一般的和具体的生态系统,是可行的也是必要的.1.2 认识生态系统的几个原则从系统科学的角度认识生态系统,应该把握以下几个原则:(1)整体性原则整体性原则是系统科学方法的首要原则,它是基于系统要素对系统的非加和性关系.当要素之间存在相干性和协同性的条件下,会有新质的突现.这种新质不是单个要素所具有的,而是系统整体才具有的[4].因此,在研究生态系统时,必须从整体出发,通过探索生态系统的组成、结构、功能及运动变化的规律性,探索生态系统内外环境中和内外环境之间的关系,来分析其部分以及部分之间的关系,再通过对部分的分析达到对整体的认识.正如爱因斯坦所说:“如果人体的某一部分出了毛病,那么只有很好地了解整个复杂机体的人,才能医好他;在更复杂的情况下,只有这样的人才能正确地理解病因”[5].系统科学方法要求从种种联系和相互作用中认识和考察生态系统,使生态系统分析与综合、归纳和演绎、局部和整体、个别和一般都协调一致起来.(2)动态原则系统科学认为,虽然在科学研究中,人们经常采用理想的“孤立系统”或“闭合系统”的抽象,但是在实际存在的系统中,无论在其内环境的各要素或子系统之间,还是在其内环境与外环境之间,都有物质、能量和信息的交换与流通.从原则上说,实际系统都是活系统.热力学第三定律指出:绝对零度是永远达不到的.其实在绝对零度,根据量子力学,还有“零点能”存在,构成系统的质点(要素)还处在振动中.所以系统总是动态的,永远处于运动变化之中.因此,在研究生态系统时,应当把生态系统整体和构成要素及其结构的变化发展的各个阶段统一加以研究,以把握其过程与趋势.(3)次优化原则次优化原则是系统科学的一个重要原则,它指的是:构成一个系统的要素都呈现最佳状态时,系统整体不一定呈现最佳状态;或者说,当系统整体呈现最佳状态时,构成这个系统的要素不一定呈现最佳状态.这一原则要求在分析和解决生态系统问题时,统筹兼顾,通力协作,多中选优,采用时间、空间、程序、主体、客体等多方面的峰值佳点,本着“多利相衡取其重,多害相衡取其轻”的思路进行综合优化和系统筛选,运用线性规划、动态规划、决策论、博弈论等系统科学方法,达到整体优化的目的次优化原则不仅可以指导我们从要素和结构的关系上认识生态系统,而且可以在人工生态系统的建构生态工程中获得应用571第6期柏智勇等:生态系统特征的系统科学思考.-.(4)模型化原则从系统科学的角度分析和解决生态系统的问题,一个重要的原则就是需要把真实的系统模型化,即把真实的系统抽象为模型,如放大或缩小了的实物模型,理论概念模型,数学模型,符号系统模型或其他形式化的模型等.对于复杂系统,需要在系统分析的基础上,适当采用模糊方法,经适当简化和理想化,才能建立系统模型,一旦建立好系统模型,就可以进行模拟实验,运用电子计算机进行系统仿真,它是求得系统最优化的保证.随着生态学研究的发展,提出的理论和实践问题会越来越多,生态学所涉及的模型种类(特别是数学模型)和范围也不断扩大,其发展趋势,一是运用现代数学方法解释生态系统;二是通过大量的实验观察所得到的数据,建立模型.在这一发展过程中,需要生态学家和数学家的紧密结合.围绕着生态学模型的研究和应用,有可能对生态系统的结构和功能有新的了解,对生态系统总体的认识有新的突破,并产生新的理论.2 对生态系统基本特征的再认识2.1 结构特征生态系统是由生物和非生物环境两个亚成分构成.生物成分根据其功能不同分为生产者、消费者和分解者;非生物环境主要指光、热、大气、水、土、岩石及死的有机物质等生物赖以生存的的环境.从系统科学的整体性原理和次优化原理看,构成生态系统的各个要素的各种各样关系可以分成两个大类,一是加和关系;二是非加和关系.其中的加和关系在生态系统中居于主要的地位,起着主要的作用,因为当要素之间存在相干性和协同性的条件下,会有新质的突现.这种新质不是单个要素所具有的,而是生态系统整体才具有的.在生态系统的各个要素中,起着主要的或关键性作用的是那些具有加和关系的要素及其结构,它们是研究生态系统结构的关键内容.实验证明,生态系统生物成分的多少(或生物多样性)与生态系统的稳定性没有必然的联系,生态系统的稳定性是冗余结构的稳定性[6~8].生态系统稳定性依赖于物种之间相互作用的强度[9],而单个物种的加入也能够加速生态系统的瓦解[10].2.2 功能特征能量和物质的流动产生生态系统的整体功能,整体功能的产生与生态系统的要素和结构有着密切的关系.从系统科学的一般原理原则看,要素的种类、数量、性质和特点不同会使得其结构不同,整体功能的分析和寻优既要从生态系统的结构分析和寻优着手,又要从生态系统的构成要素分析和寻优着手;整体功能与生态系统结构有同功同构、同功异构和异功异构3种情形,整体功能的分析和寻优应该从生态系统的同功同构、同功异构和异功异构3种情形分析和寻优着手.在生态系统的能量和物质流入一定或变动较小的情况下,在自然生态系统中,生态系统要素和结构会产生一个自适应过程,形成一个稳定或比较稳定的系统结构,例如陆地生态系统氮沉降可以增加其生态效应[11].在人工生态系统中,我们可以通过调整和优化生态系统的要素和结构,使生态系统的能量和物质流出最大化;而在生态系统的能量和物质流入发生较大变化的情况下,生态系统的要素和结构也会发生变化,从而使生态系统的能量和物质流出发生变化.例如一个立体养殖系统,就和单独的养猪系统或养鸭系统或养鱼系统等比较,在系统的物质循环和能量循环上就发生了很大的改变.2.3 动态特征生态系统是不断运动变化的系统,从系统科学的一般原理原则看,这种运动变化包含着生态系统的整体功能、要素和结构3方面,并且每一方面的运动变化都会作用和影响其它两方面的运动变化,也就是说,我们在了解、认识生态系统的发展、进化和演变规律的时候,应该综合了解、认识生态系统的整体功能、要素和结构3方面的发展、进化和演变规律.另外,从耗散结构理论看,在生态系统从比较简单的结构向比较复杂结构状态发展,达到相对稳定阶段的过程中,生态系统还会有一个从平衡态到近平衡态再到远离平衡态的非线性区的过程,在这个过程中,生态系统内某个参量的变化达到一定阀值,通过涨落,系统就可能发生突变,由原来的无序状态变为在时间上、空间上或功能上的有序状态,形成一种动态稳定的有序结构.这种新的有序状态必须不断地与外界进行物质、能量和信息的交流,才能维持一定的稳定性,而且不因外界的微小扰动而破坏[] 相互作用和相互联系的特征生态系统内各生物和非生物成分的关系是紧密相连、密不可分的整体没有各生物和非生物成分及其它们671中 南 林 业 科 技 大 学 学 报第27卷12.2.4.之间的相互联系和相互作用就没有生态系统,任何一个成分或任何一个结构的变化都可能会影响其他成分或结构的变化.根据系统科学,特别是协同学,各生物和非生物成分的关系分为加和关系和非加和关系,其中的加和关系又是主要的;而在各种加和关系中,其相干性和协同性的程度又是有差别的,其相干性和协同性程度越大的那些生物和非生物成分对生态系统的影响越大,把握相干性和协同性程度大的那些生物和非生物成分的各种关系对于我们认识生态系统是至关重要的.当然,弱相互作用效应对生态系统也会产生影响[13].2.5 稳定平衡的特征自然界生态系统的发展过程总是趋于内部保持一定的平衡关系,使系统内部各成分之间处于相互协调的平衡状态.根据系统科学,特别是突变论、耗散结构理论、协同学、混沌学、超循环理论和生命系统理论,我们在认识生态系统的稳定平衡时应该注意两点:(1)生态系统的有序与无序、平衡、稳定三者之间的关系.系统的有序是指系统内部诸要素或它们之间在空间、时间或功能上有规则地联系或转化,无序则表示内部诸要素或它们之间在空间、时间或功能上无规则的联系或转化.生态系统的平衡与有序的关系有两种情形:一种是生态系统的有序表现为平衡有序结构,例如人工生态系统;第二种情形是生态系统在远离平衡态的条件下,可以通过与外界的物质和能量的交流,可以维持稳定的有序结构,这是一种“活”的有序,自然界中的天然生态系统都是如此.生态系统进化的直接诱因是系统中某个变量或行为对平均值的偏落,即涨落,例如某个环境因子的变化;当生态系统处于稳定态时,小的涨落仅仅是小的干扰,例如当气候干旱时,森林中的动植物种类和数量一般不会有大的变化.然而当生态系统处于远离平衡的不稳定态,即在临界点附近时,涨落起着实质性触发器的作用,会导致新的有序结构的形成,例如森林生态系统,如果将乔木全部砍掉,这个森林生态系统就很难恢复到原来的样子.生态系统的混沌是非平衡的混沌,即确定性系统内部的非线性性质所引起的非周期形态,实际上,它是一种宏观无序而微观有序的现象.混沌理论已证明,在表面的有序背后埋藏着一种奇异的混沌,例如河流生态系统,而在混沌的深处又埋藏着一种更加奇异的次序,例如杂草生态系统,当一场大火将杂草全部烧光,形成次生裸地,第二年又恢复成一个杂草生态系统.(2)生态系统的发展过程是其内部的要素按彼此的相干性、协同性或某种默契形成特定结构与功能的过程(也称自组织),它不是按系统内部或外部的指令完成的,而是根据事物运动变化的规律和特定条件完成的.生态系统作为开放系统,在远离平衡的非线性区,通过负熵和正反馈循环,经涨落或起伏,会从无序状态产生有序结构.同时,非平衡过程也可能至少从三条道路进入混沌状态:(1)倍周期分岔进入混沌.即系统运动变化的周期行为是一种有序行为,但在一定条件下,系统经过周期倍增,会逐步丧失周期行为而进入混沌.(2)茹勒-泰肯道路通向混沌.即当系统内不同频率的振荡互相偶合时,系统就会出现新的偶合频率的运动,混沌状态可以看成是无数多个频率偶合的振动现象,实际上,只要出现三个互不相干的频率偶合时,系统就必然形成无数多个频率的偶合,出现混沌现象.(3)阵发混沌.在非平衡非线性的条件下,某个或某些参数的变化达到一定的临界阀值时,生态系统就会出现时而有序时而混沌的随机振荡,即阵发混沌[14].这里以热带雨林和苔原生态系统为例来说明.热带雨林结构复杂,物种多样性高,种间相互作用强度大,进化历史长,而它的环境条件相对比较稳定,可预测性强.苔原生态系统结构简单,物种多样性低,种间相互作用少,进化历史短,环境条件多变而难以预测.一般来说,热带雨林抵抗干扰和保持稳定状态的能力比苔原生态系统强.但是,热带雨林一旦受到严重破坏(如过量采伐),它要恢复到原状的时间则非常漫长;而苔原生态系统在受到严重破坏后,恢复时间就比较短.这就是说,就抵抗力稳定性来说,热带雨林比苔原高;而就恢复力稳定性来说,苔原则比热带雨林高.就同一类型的生态系统来说,抵抗力和恢复力也因生态系统所处的发育阶段而有差别.一般来说,顶极群落的抵抗力强,恢复力弱;发展中的群落的恢复力强,抵抗力弱.2.6 对外开放的特征所有的生态系统都是一个开放系统,它必须有能量和物质的输入和输出的过程,否则,所有的生命将难以生存下去.从系统科学的角度来看,生态系统向有序方向进化的基本条件是,从外部获得能量和物质,即获得足够的负熵流,其绝对值大于生态系统内部的熵产生,从而使系统的熵减少也就是说生态系统必须是开放的和非平衡态的没有充分的开放,生态系统就会失去活力和自主性所以说,非平衡是有序之源,在热平衡或近平衡态,都不会出现有序结构例如,生物进化和群落演替过程中包含不断打破旧的平衡,热带雨林才发展到成熟阶段的群落,其垂直分层现象明显,结构复杂,单位面积里的物种多,各自占据着有利的环境条件当然,我们也应771第6期柏智勇等:生态系统特征的系统科学思考.....该看到,在能量和物质的输入和输出的过程中,在从外部获得能量和物质的过程中,生态系统的演化不可能单方面的越来越有序或越来越无序的,而是有序与无序、平衡与不平衡、稳定与不稳定、进化与退化的交织和统一.3 结 语生态系统的特征是生态学的基础内容和生态学研究的高度概括,对它的认识和说明,直接关系到人们对整个生态学的认识和今后的进一步研究.对于生态系统特征的表述和说明,一般更多的是基于生态学本身的研究而概括和总结的,这可能带来一些不足,这主要在于生态学是一门涉及面很广的学科,它与很多其他学科存在这样或那样的联系,可以从不同的方面、不同的角度、不同的学科对生态学的问题加以探索,这样就可能形成对生态系统的性质特点的不同看法,而这些不同看法都在一定的程度上和一定的层面上反映了生态系统得到客观事实,这些看法对于人们最终揭示出生态系统的性质特点是十分有益的.本文中从系统科学的角度对生态系统的性质特点的探索,是基于下面的原因和目的:一是生态系统符合系统科学所探讨的一般系统的特征,从系统科学的角度探索生态系统的性质特征具有可行性;二是系统科学研究在近一二十年获得了飞速发展,如何应用系统科学的最新成果去分析和揭示生态系统的性质特征具有必要性;三是为生态系统的研究提供新的方法和思路.由于系统科学的成果是基于客观实际的系统,运用物理、化学、生命科学、数学、工程学等学科的方法加以探索而取得的,对包括生态系统在内的各种系统而言,更具有普遍性、客观性和全面性,将系统科学的理论和方法应用于生态系统性质特征的研究,将会产生积极的作用和意义.当然,生态系统是一个十分复杂的系统,对它的性质特征的全面完整的认识,还有待于生态学的进一步研究,有待于生态学和其他相关学科的研究人员的通力协作.参考文献:[1] O dum E P .生态学基础[M ].孙儒泳等译.北京:人民教育出版社,1982.[2] K i m m ins J P .Fo res t E c o logy [M ].N ew York :M acm il lan ,1987.[3] 邹珊刚.系统科学[M ].上海:上海人民出版社,1987.[4] 赵光武.现代科学的哲学反思[M ].北京:北京大学出版社,1993.[5] 爱因斯坦文集第一卷[M ].上海:商务印书馆,1976:513.[6] 党承林,李永萍,彭明春,等.生态系统的可靠性及其稳定性的维持[J ].云南大学学报(自然科学版),2006,28(3):257-261.[7] 党承林.植物群落的冗余结构——对生态系统稳定性的一种解释[J ].生态学报,1998,18(6):665-672.[8] 李典友.冗余理论及其在生态学上的应用[J ].南通大学学报(自然科学版),2006,5(1):50-54.[9] 李慧蓉.生物多样性和生态系统功能研究综述[J ].生态学杂志,2004,23(3):109-114.[10] V and er Zanden M J ,C assel m an J M ,R as m us sen J B.Stable isotop e ev i dence fo r the foo t w eb con sequ ences of speci es invasion in lakes[J ].Na tu re ,1999,401:464-467.[11] 吕超群.陆地生态系统氮沉降可以增加的生态效应[J ].植物生态学报,2007(02):205-218.[12] 刘文英,姜冬梅,陈云峰,等.自组织理论与复合生态系统可持续发展[J ].生态环境,2005,14(4):596-600.[13] Ko kko ris G D,T roum b is A Y,L aw ton J H.Pat terns of s p ecies int eracti o n st reng th i n assem bled com pet it i o n comm unu ties [J ].Eco l .L et t .,1999,2:70-74.[本文编校:谢荣秀]871中 南 林 业 科 技 大 学 学 报第27卷。

小学上册D卷英语第四单元真题试卷

小学上册D卷英语第四单元真题试卷

小学上册英语第四单元真题试卷英语试题一、综合题(本题有100小题,每小题1分,共100分.每小题不选、错误,均不给分)1.The process of rusting is an example of a __________ reaction.2.The body of water between Europe and Africa is the __________ Sea.3. A hydroxide ion has one oxygen and one ______ atom.4.What do we call the study of the earth?A. BiologyB. PhysicsC. GeographyD. Chemistry5.The chemical structure of DNA contains ______ bases.6.The park is very ________.7.The puppy is ___ (snuggling) with me.8.The chemical symbol for copper is ____.9. A plant's green color comes from a substance called __________.10.Meteor showers occur when Earth passes through a trail of ______.11.The _______ has many branches and leaves.12.The ______ (阳光直射) encourages plant growth.13.What is the capital city of the United States?A. New YorkB. Washington, D.C. C. Los AngelesD. Chicago14. A __________ is a low area that collects water.15.The __________ is a famous area known for its coastline.16. A __________ is a geological feature formed by the movement of tectonic plates.17.The _____ (水果) of the berry plant is very nutritious.18.What is the opposite of tough?A. SoftB. WeakC. FragileD. All of the aboveD19. A _____ (小马) can be very gentle and friendly. It enjoys being petted. 小马可以非常温顺和友好。

《PlantPhysiology》双语教学教案

《PlantPhysiology》双语教学教案

《Plant Physiology》(双语)教学教案任课教师:王晓峰教授单位:生命科学学院植物学系授课班级:生科丁颖班、农学丁颖班等Introduction计划学时:2 h一.教学目的了解植物生理学的对象、内容、产生和发展及发展趋势。

二.教学重点植物生理学的内容及发展趋势,植物生理学与分子生物学的关系。

三.教学难点植物生理学的发展趋势四.教学方法采用以多媒体教学法为主。

五.教学用具多媒体硬件支持。

六.教学过程●Introduction of my research work briefly (5 min)●Concept of plant physiology and main contents and chapters of this course (20 min) ●Tasks of plant physiology(20 min)Some examples: Photoperiod, Solution culture, Water culture, Senescence, Ethylene, Tissue culture, Plant growth substance, Photomorphogenesis, Etiolation.●Establishment and development of plant physiology(30 min)In ancient China and western countries→Experimentally/scientifically→J.von Liebig’s work→Modern plant physiology. Establishment and development of plant physiology in China.●Perspectives of plant physiology(10 min)Five problems of human beings : Food, Energy, Environment, Resources, Population ●Summary of the contents of introduction(5 min)Chapter 1 Water Metabolism教学章节:植物对水分的需要、植物细胞对水分的吸收、植物根系对水分的吸收、蒸腾作用、植物体内水分的运输、合理灌溉的生理基础计划学时:3 h一、教学目的通过本章学习,主要了解植物对水分吸收、运输及蒸腾作用的基本原理,认识维持植物水分平衡的重要性,为合理灌溉提供理论基础。

物理专业英语词汇(H)

 物理专业英语词汇(H)

物理专业英语词汇(H)h maser氢微波激射器氢脉泽h parameter h 参数h region h区h theorem h 定理haag araki theory哈格荒木理论haag kastler theorem哈格卡斯特勒定理hadamard transform spectrometer阿达玛德变换光谱仪hadron 强子hadron electron storage ring强子电子存储环hadron multiplet强子多重态hadronic atom强子原子hafnium铪hagen poiseuille's law哈根泊肃叶定律hair hygrometer毛发湿度计halation晕光half integral spin半整数自旋half life半衰期half life period半周期half shadow apparatus半影装置half shadow polarimeter半影偏光计half tone半音half value layer半值层half value period半衰期half wave dipole半波偶极子half wave line半波长线half wave rectification半波整流half wavelength plate半波片halftime半周期halfwidth半值宽度hall coefficient霍耳系数hall constant霍耳常数hall effect霍耳效应hall generator霍耳发生器hall mobility霍耳迁移率halley's comet哈雷彗星halo 晕halogen卤halogen counter卤计数管halogen leak detector卤探漏器hamilton jacobi's equation哈密顿雅可比方程hamilton's principle哈密顿原理hamiltonian 哈密顿算符hamiltonian dynamics哈密顿动力学hamiltonian formalism哈密顿形式论hamiltonian function哈密顿函数hamiltonian operator哈密顿算符hard component硬性成分hard landing硬着陆hard magnetic material硬磁材料hard superconductor硬超导体hard x rays硬 x 射线hardening硬化hardness硬性hardware硬件harmonic谐音harmonic analysis低解析harmonic analyzer低解析器低分析器harmonic component谐波分量harmonic function低函数harmonic motion谐运动harmonic oscillation谐振荡harmonic oscillator谐振子harmonic vibration谐振荡harmonic wave谐波harmonics低函数hartley oscillator哈脱莱振荡器hartmann diaphragm哈特曼光栏hartmann flow哈特曼流hartmann number 哈特曼数hartmann's dispersion formula哈特曼色散公式hartree approximation哈特里近似hartree fock approximation哈特里福克近似hausdorff dimension豪斯多夫维数hawking effect霍金效应hawking penrose theorem霍金彭罗塞定理hayashi phase林相位he cd laser氦镉激光器he counter氦计数器he ne laser氦氖激光器head 磁头head on collision对头碰撞health physics保健物理学hearing 听觉heat 热heat accumulator回热器heat balance热平衡heat budget热平衡heat capacity热容heat capacity at constant pressure恒压热容heat conduction热传导heat conductivity热导率heat conductor热导体heat content焓heat convection热对流heat effect热效应heat emission热发射heat energy热能heat engine热机heat equilibrium热平衡heat exchange热交换heat exchanger换热器热交换器heat flux热通量heat index热指数heat insulation热绝缘heat loss热损失heat of adsorption吸附热heat of atomization原子化热heat of combustion燃烧热heat of condensation凝结热heat of crystallization结晶热heat of dissociation离解热heat of evaporation蒸发热heat of fusion融解热heat of hydration水合热heat of ionization电离热heat of mixing混合热heat of phase transition相转移热heat of reaction反应热heat of solidification凝固热heat of solution溶解热heat of vaporization汽化热heat output热功率heat pattern温度记录图heat pipe热管heat quantity热量heat radiation热辐射heat rays热射线heat release放热heat reservoir热库heat resistant耐热性的heat source热源heat test加热试验heat tight不透热的heat transfer传热heat transmission传热heat treatment热处理heat wave热浪heating 加热heating curve加热曲线heating element加热体heating surface加热面heating unit加热体heavenly body天体heavenly twins双子座heaviside layer亥维赛层heaviside lorentz's system of units亥维赛洛伦兹单位制heavy atom method重原子法heavy current强电流heavy electron重电子heavy fermion重费密子heavy hydrogen氘heavy ion重离子heavy ion accelerator重离子加速器heavy ion beam重离子束heavy ion nuclear reaction重离子核反应heavy ion reaction重离子反应heavy lepton重轻子heavy metal重金属heavy nucleus重核heavy particle重粒子heavy particle collision重粒子碰撞heavy water重水heavy water homogeneous reactor重水型均匀堆heavy water reactor重水堆hecto 百heisenberg force海森伯力heisenberg model 海森伯模型heisenberg pauli method海森伯泡利法heisenberg picture海森伯绘景heisenberg uncertainty principle海森伯测不准原理heisenberg's equation of motion海森伯方程heisenberg's representation海森伯表示heitler london theory海特勒伦敦理论helical antenna螺旋天线helical dislocation螺形位错helical magnetic structure螺旋形磁结构helical motion螺旋运动helical spin structure螺纹自旋结构helical spring螺旋弹簧helical structure螺旋形结构helicity螺旋性helicoid螺旋面helicon wave螺旋形波heliocentric coordinates日心坐标heliocentric system日心系heliocentric theory日心说heliograph日照计heliographic coordinates日面坐标heliostat定日镜helium 氦helium cadmium laser氦镉激光器helium fusion process氦聚变反应helium leak detector氦探漏器helium liquefaction氦液化helium liquefier氦液化器helium neon laser氦氖激光器helium star氦星helix accelerator螺旋波导直线加速器helmholtz resonator亥姆霍兹共振器helmholtz's vortex theorem亥姆霍兹涡旋定理hemihedral form半面晶形hemihedry半面象hemimorphy异极象henry 亨henry draper catalog亨利德雷伯分光星表hercules武仙座hermann mauguin notation赫曼莫金记号hermitian form厄密形式hermitian matrix厄密矩阵hermitian operator厄密算符herschel type reflector赫谢耳望远镜hertz 赫hertz oscillator赫兹振荡器hertzian vector赫兹矢量hertzian wave赫兹波hertzsprung russel diagram赫罗图heterochromatic photometer异色光度计heterochromatic photometry多色光度学heterodyne外差heterodyne reception外差接收法heterodyne spectroscopy外差光谱学heteroepitaxial growth异质外延生长heteroepitaxy异质外延法heterogeneity非均匀性heterogeneous非均匀的heterogeneous equilibrium多相平衡heterogeneous radiation非单色辐射heterogeneous reactor非均匀堆heterogeneous system非均匀系heterojunction laser异质结激光器heterolaser异质结激光器heteronuclear molecule异核分子heterophase structure非均匀相结构heteropolar bond异极键heteropolar compound异极化合物heteropolar crystal异极晶体heterotope异位素heusler alloy赫斯勒合金hexadecapole deformation十六极形变hexagonal close packed structure六角密积结构hexagonal lattice六方晶格hexagonal system六角系hexahedron六方体hexode六极管hf laser氟化氢激光器hf激光器hidden parameter隐参量higgs boson希格斯玻色子higgs mechanism希格斯机制higgs particle希格斯粒子high altitude rocket高空火箭high atmosphere上层大气high definition television高清嘶度电视high density exciton高密度激子high density nuclear matter高密度核物质high elasticity高弹性high energy electron diffraction高能电子衍射high energy nuclear physics高能核物理学high energy radiation高能辐射high energy region高能区域high flux neutron beam reactor高通量中子束堆high frequecy choke高频扼力high frequency高频high frequency ammeter高频安培计high frequency amplifier高频放大器high frequency furnace高频炉high frequency heating高频加热high frequency oscillator高频振荡器high frequency resistor高频电阻器high frequency transformer高频变换器high frequency wattmeter高频瓦特计high magnetic fields强磁场high molecular compound高分子化合物high polymer高分子聚合物high polymer physics高聚合体物理学high power laser高功率激光器high pressure高压high pressure arc discharge高压电弧放电high pressure area反气旋区域high pressure electronic phase transition高压电子相变high pressure gage高压计high pressure gas高压气体high pressure physics高压物理学high reflectance film高反射膜high resolution nuclear magnetic resonance高分辨率核磁共振high speed camera高速照相机high speed flow快速怜high speed scanning spectroscopy高速扫描光谱学high tc superconductor高 tc超导体high technology高技术high temperature expansion高温展开high temperature gas cooled reactor高温气冷堆high temperature superconductor高温超导体high tension高压high vacuum高真空high vacuum technique高真空技术high velocity stars高速星high voltage accelerator高压加速器high voltage electron microscope高压电子显微镜higher harmonic高次谐波highly excited atom高度受激原子highly excited level高激发态highly ionized ion高度电离离子highly sensitive高灵敏度的hilbert space希耳伯特空间hilbert transform希耳伯特变换hildebrand rule hill's equation 希尔得布兰德定则希耳方程histogram直方图hodograph速度图hodograph method速度面法hodoscope描迹器hohlraum腔holding pump保持泵hole 空腔hole burning烧孔hole conduction空穴传导hole diffusion空穴扩散hole hole interaction空穴空穴相互酌hole mobility空穴迁移率hole theory空穴理论hollow cathode discharge空心阴极放电hollow space radiation空腔辐射hologram 全息照相holographic diffraction grating全息衍射光栅holographic interferometry全息干涉度量学holographic microscope全息显微镜holography全息学holohedral form全面形holohedry 全面象holomorphic function全纯函数holon 霍伦holonomic system完整力系holonomy group完整群homocentric pencil共心光束homogeneity均匀性homogeneous broadening均匀增宽homogeneous distribution均匀分布homogeneous field均匀场homogeneous function齐次函数homogeneous medium 均匀介质homogeneous reactor 均匀堆homogeneous turbulence同的流homogeneous universe均匀宇宙homology 同调homometric structure同 x光谱结构homomorphism 同晶形homonuclear molecule同核分子homopolar bond同极键homotopy 同伦hook on ammeter钳式安培表hooke's law胡克定律hopf bifurcation霍普夫分岐hopping conductivity跳动传导horizon地平horizontal coordinates地平坐标horizontal intensity水平磁力强度horizontal parallax地平视差horizontal resolution水平分辨率horn antenna喇叭天线horologium时钟座horse power马力horse shoe magnet蹄形磁铁host crystal atom基质晶体原子hot atom热原子hot band热带hot cathode热阴极hot cathode ionization gage热阴极电离真空计hot cathode magnetron gage热阴极磁控管真空计hot cathode mercury vapour rectifier热阴极汞汽整淋hot cathode x ray tube热阴极 x射线管hot cave高放射性物质工琢蔽室hot cell高放射性物质工琢蔽室hot electron热电子hot junction热结hot laboratory强放射性物质实验室hot universe热宇宙hot wave热浪hot wire ammeter热线安培计hot wire galvanometer热线检疗hot working热加工hour 小时hour angle时角hubbard model哈费模型hubble constant哈勃常数hubble space telescope哈勃空间望远镜hubble's classification of galaxies哈勃分类法hubble's law速距关系hubble's time哈勃年龄hue 色彩hum 哼鸣human counter全身计数器human engineering人类工程学humidity湿度hund rule洪德定则hunting摆动huygens eyepiece惠更斯目镜huygens fresnel principle惠更斯菲涅耳原理huygens' principle惠更斯原理hybrid bubble chamber混合气泡室hybrid orbital杂化轨道hybrid reactor混合反应堆hybrider混合反应堆hybridization of atomic orbits原子轨道的杂化hydra 长蛇座hydrated electron水化电子hydration水化hydraulic radius水力半径hydraulics水力学hydroacoustics水声学hydrodynamic drag铃动力学阻力hydrodynamic instability铃动力学不稳定性hydrodynamical model铃动力学模型hydrodynamics铃动力学hydroelasticity水弹性hydrogen氢hydrogen atom氢原子hydrogen bomb氢弹hydrogen bond氢键hydrogen bubble chamber氢气泡室hydrogen chloride laser氯化氢激光器hydrogen electrode氢电极hydrogen embrittlement氢脆化hydrogen fluoride laser氟化氢激光器hf 激光器hydrogen helium cycle氢氦循环hydrogen laser氢激光器hydrogen like atom类氢原子hydrogen maser氢微波激射器氢脉泽hydrogen scale氢温标hydrogen spectrum 氢光谱hydrogen star氢星hydrogenated amorphous semiconductor氢化非晶态半导体hydrolysis水解hydromagnetic wave磁铃波hydromagnetics磁铃动力学hydromechanics铃力学hydrometer比重计hydrophily亲水性hydrophobic bond疏水键hydrophoby疏水性hydrophone水听器hydrosphere水圈hydrostatic balance hydrostatic pressure 比重天平铃静压力hydrostatics铃静力学hydrothermal synthesis method水热合成法hydrus 水蛇座hygrograph湿度记录仪hygrometer湿度表hyper abrupt junction超突变结hyper raman scattering超喇曼散射hypercharge超荷hyperconjugation超共轭hyperfine interaction超精细相互酌hyperfine structure超精细结构hyperfragment超裂片hyperfunction超函数hypergeometric function超几何函数hypermetropia远视hypermicroscope超倍显微镜hypermultiplet超多重谱线hyperon超子hyperopia远视hyperquantization超量子化hypersonic特超声的hypersonic flow特超声速流hypersonic velocity特超声速hypersonic wave特超声波hypocenter震源hypochromatic shift蓝移hypochromism减色性hypothesis假设hypothetical accident假设事故hypsochromic effect浅色效应hypsometer沸点测定器沸点测高器hysteresis滞后hysteresis constant滞后常数hysteresis curve滞后曲线hysteresis loop滞后回线hysteresis loss滞后损耗。

引文分析存在的问题及其原因探究_杨思洛

引文分析存在的问题及其原因探究_杨思洛

引文分析存在的问题及其原因探究*杨思洛摘要目前引文分析已成为文献计量学的主要研究内容之一,但少有对其存在的问题进行分析。

本文从引文分析理论(基础理论和引用动机)的不完善,引用过程中存在的不足,引文分析方法、工具和数据库的缺陷,引文分析应用与实践(科学评价和科学交流)的局限四个方面较系统地总结引文分析存在的问题及原因。

目前应该以谨慎的态度看待引文分析,对其方法和结果作客观评价,在充分了解其优缺点的基础上进行完善与发展。

图1。

参考文献49。

关键词引文分析引文分析理论引文分析方法文献计量学分类号G353.21ABST RACT C i tati on analys i s has beco m e one of the m ai n con tents i n b i b li o m etrics,bu t fe w study has foc u sed on its prob l e m s1Th e p rob l e m s i n citati on ana l ysis and t h ei r causes are s umm ed up fro m four as pects i n th i s paper:t he w eakn ess of cit ati on t heory,t h e defi cienci es i n t h e p rocess of ci tati on,the d ra w back of t he citati on an al ysis m ethods and databas es, and t he li m itati on s i n cit ati on app licati ons1A t presen t,w e s hould treat ci tati on anal ys i s w it h a cauti ous attit ud e,evaluat e ob jectivel y the m ethod s and the res u lts ob tai ned,and t hen i m prove i t on t he bas is of f u lly unders t and i ng its m erits and d e-m erits11fi g149refs1K EY W ORDS C i tation anal ys i s1C i tation anal ys i s theory1C itati on an al ysis m et hod1B i b li om etrics1CLASS NUM BER G353121自从16世纪后期论文引用制度形成以来,参考文献成为学术论文的第二特征,也是合理有效地进行科学交流的必要部分[1]。

高能量密度物理青年学者和博士生专家讲习班

高能量密度物理青年学者和博士生专家讲习班
On particle acceleration with high-power lasers
10:30-12:00 郁明阳
Selected recent research topics
14:30-16:00 Dieter H. H. Hoffmann
High Energy Density Physics with intense Heavy Ion Beams and Laser Beams (Part II)
高能量密度物理青年学者和博士生专家讲习班
第三轮通知
特别说明:
本次活动设张贴报告环节,和“北京高能量密度物理国际会议”招待酒会一并 进行,欢迎大家参加。
报到注册:
时间:10 月 15 日上午 9:00-17:00
地点:北京大学正大国际中心(勺园,详见附件地图)
晚到的学员请直接到宾馆前台办理入住手续,16 日上午八点到讲习班现场 补办手续。不能按时参会者请提前一周告知,谢谢合作!
张贴报告:注册时提交,尺寸 60cm×90cm,普通打印即可,用胶带贴墙上,请 提前在海报背面的左上角注明如下信息:编号-姓名-讲习班(编号见录取名单) 回 执:请于 9 月 15 日前回复
编号
姓名
张贴海报 有 or 无
联系人
孟莎莎 邮箱:mengshasha@ 电话:010-62753944 手机:13701154697
高能量密度物理青年学者和博士生专家讲习班
日程表
时间:2012 年 10 月 16-17 日 地点:北京大学工学院 1 号实验楼 210 报告厅 10 月 16 日 09:00-10:30 Jürgen Meyer-ter-Vehn
Basics scaling laws for inertial fusion

医药行业专业英语词汇

医药行业专业英语词汇

医药行业专业英语词汇(非常有用)FDA和EDQM术语: CLINICAL?TRIAL:临床试验? ANIMAL?TRIAL:动物试验? ACCELERATED?APPROVAL:加速批准? STANDARD?DRUG:标准药物? INVESTIGATOR:研究人员;调研人员PREPARING?AND?SUBMITTING:起草和申报? SUBMISSION:申报;递交? BENIFIT (S):受益? RISK(S):受害? DRUG?PRODUCT:药物产品? DRUG?SUBSTANCE:原料药? ESTABLISHED?NAME:确定的名称? GENERIC?NAME:非专利名称? PROPRIETARY?NAME:专有名称;? INN(INTERNATIONAL?NONPROPRIETARY?NAME):国际非专有名称? ADVERSE?EFFECT:副作用? ADVERSE?REACTION:不良反应? PROTOCOL:方案? ARCHIVAL?COPY:存档用副本? REVIEW?COPY:审查用副本? OFFICIAL?COMPENDIUM:法定药典(主要指USP、?NF).? USP (THE?UNITED?STATES?PHARMACOPEIA):美国药典NF(NATIONAL?FORMULARY):(美国)国家处方集? OFFICIAL=PHARMACOPEIAL=?COMPENDIAL:药典的;法定的;官方的? AGENCY:审理部门(指FDA)? IDENTITY:真伪;鉴别;特性? STRENGTH:规格;规格含量(每一剂量单位所含有效成分的量)? LABELED?AMOUNT:标示量? REGULATORY?SPECIFICATION:质量管理规格标准(NDA提供)? REGULATORY?METHODOLOGY:质量管理方法? REGULATORY?METHODS?VALIDATION:管理用分析方法的验证COS/CEP?欧洲药典符合性认证ICH(International?Conference?on?Harmonization?of?Technical?Requirements?for?Registration?of PharmaceuticalsforHumanUse)人用药物注册技术要求国际协调会议ICH文件分为质量、安全性、有效性和综合学科4类。

原子核物理专业词汇中英文对照表

原子核物理专业词汇中英文对照表

原子核物理专业词汇中英文对照表absorption cross-section 吸收截activity radioactivity 放射性活度activity 活度adiabatic approximation 浸渐近似allowed transition 容许跃迁angular correlation 关联angular distribution 分布angular-momentum conservation 动量守恒anisotropy 各项异性度annihilation radiation 湮没辐射anomalous magnetic moment 反常极矩anti neutrino 反中微antiparticle 反粒artificial radioactivity 放射性atomic mass unit 原质量单位atomic mass 原质量atomic nucleus 原核Auger electron 俄歇电bag model 袋模型baryon number 重数baryon 重binary fission 分裂变binging energy 结合能black hole 黑洞bombarding particle 轰击粒bottom quark 底夸克branching ration 分bremsstrahlung 轫致辐射cascade radiation 级联辐射cascade transition 级联跃迁centrifugal barrier 离势垒chain reaction 链式反应characteristic X-ray 特征X 射线Cherenkov counter 切连科夫计数器collective model 集体模型collective rotation 集体转动collective vibration 集体振动color charge 荷complete fusion reaction 全熔合反应complex potential 复势compound-nucleus decay 复合核衰变compound-nucleus model 复合核模型compound nucleus 复合核Compton effect康普顿效应Compton electron 康普顿电Compton scattering 康普顿苜攵射conservation law 守恒定律controlled thermonuclear fusion 受控热核聚变cosmic ray 宇宙射线Coulomb barrier 库仑势垒Coulomb energy 库伦能Coulomb excitation 库仑激发CPT theorem CPT 定理critical angular momentum 口缶界动量critical distance 临界距离critical mass临界质量critical volume 临界体积damped oscillations 阻尼震荡damped vibration 阻尼震荡damped wave 阻尼波damper减震器damping factor 衰减系数damping 衰减的damp proof防潮的damp 湿danger coefficient 危险系数danger dose危险剂量danger range危险距离danger signal危险信号data acquisition and processing system 数据获得和处理系统data base数据库data communication 数据通信data processing 数据处理data数据dating测定年代daughter atom 体原daughter element 体元素daughter nuclear 核daughter nucleus 体核daughter nuclide 体核素daughter蜕变产物dd reaction dd 反应deactivation 去活化dead band不灵敏区dead time correction 死时间校正dead time失灵时间deaerate 除deaeration 除deaerator除器空分离器deaquation 脱debris activity 碎放射性debris石卒de broglie equation 德布罗意程de broglie frequency 德布罗意频率de broglie relation 德布罗意程de broglie wavelength 德布罗意波长de broglie wave德布罗意波debye radius德拜半径debye temperature 德拜温度decade counter tube 进计数管decade counting circuit 进制计数电路decade counting tube 进管decade scaler 进位定标器decagram 克decalescence相变吸热decalescent point金属突然吸热温度decarburization 脱碳decascaler 进制定标器decatron 进计数管decay chain 衰变链decay coefficient 衰变常数decay constant 衰变常数decay constant 衰变常量decay energy 衰变能decay factor 衰变常数decay fraction 衰变分decay heat removal system 衰变热去除系统decay heat 衰变热decay kinematics 衰变运动学decay out 完全衰变decay period冷却周期decay power衰减功率decay rate衰变速度decay scheme 衰变纲图decay series 放射系decay storage衰变贮存decay table 衰变表decay time衰变时间decay 衰减decelerate 减速deceleration 减速decigram 分克decimeter wave 分波decommissioning 退役decompose 分解decomposition temperature 分解温度decomposition 化学分解decontaminability 可去污性decontamination area 去污区decontamination factor 去污因decontamination index 去污指数decontamination 净化decoupled band 分离带decoupling去耦解开decrease 衰减decrement减少率deep dose equivalent index 深部剂量当量指标deep inelastic reaction 深度弹性反应deep irradiation 深部辐照deep therapy 深部疗de excitation 去激发de exemption 去免除defectoscope 探伤仪defect缺陷definition 分辨deflecting coil 偏转线圈deflector偏转装置deformation energy 变形能deformation of irradiated graphite 辐照过墨变形deformation parameter 形变参量deformation 变形deformed nucleus 变形核deformed region 变形区域deform 变形degassing 脱degas 除degeneracy 简并degenerate configuration 退化位形degenerate gas 简并体degenerate level 简并能级degenerate state 简并态degeneration 简并degradation of energy 能量苜攵逸degradation 软化degraded spectrum 软化谱degree of acidity 酸度degree of burn up 燃耗度degree of purity 纯度dehumidify 减湿dehydrating agent 脱剂dehydration 脱deionization rate 消电离率deionization time 消电离时间deionization 消电离delay circuit延迟电路delayed alpha particles 缓发粒delayed neutron 缓发中delayed proton 缓发质deliquescence 潮解deliquescent 潮解的demagnetization 去磁denitration 脱硝density gradient instability 密度梯度不稳定性density of electrons 电密度deoxidation 脱氧deoxidization 脱氧departure from nucleate boiling ratio 偏离泡核沸腾departure from nucleate boiling 偏离泡核沸腾depleted fuel贫化燃料deposit dose地沉降物剂量deposited activity沉积的放射性deposition 沉积deposit 沉淀depression 减压depressurization accident 失压事故depressurizing system 降压系统desalinization 脱盐desalting 脱盐descendant 后代desorption 解吸detailed balance principle 细致平衡原理detection of radiation 辐射线的探测detonation 爆炸deuteride氘化物deuterium alpha reaction 氘反应deuterium 重氢deuton氘核deviation 偏差dew point 露点dextro rotatory 右旋的diagnostic radiology 诊断放射学diagnostics 诊断diagram 线图diamagnetism 反磁性diameter 直径diamond稳定区;金刚diaphragm 薄膜diatomic gas 双原体diatomic molecule 原分dielectric 电介质differential control rod worth 控制棒微分价值differential cross section 微分截diffraction spectrometer 衍射谱仪diffraction spectrum 衍射光谱diffraction 衍射diffuse扩苜攵diffusion stack 务马堆diffusion theory扩苜攵理论diffusion time扩苜攵时间diffusion扩苜攵dilution 稀释dipole偶极dirac equation 狄拉克程direction 向discharge 放电discrete离苜攵的disintegrate 蜕衰disintegration 蜕变dislocation 位错disorder 序dispersion 分苜攵displacement current 位移电流displace位移;代替dissociation 离解dissolution 溶解distillation 蒸馏distortion 畸变divergence 发苜攵domain磁畴Dopper effect多普勒效应dose albedo剂量反照率dose build up factor 剂量积累因dose equivalent 剂量当量dose rate 剂量率dose 剂量down quark 下夸克dry out 烧duality 重性duct 管dysprosium 镝endothermic reaction 吸能反应energy conservation 能量守恒even-even nucleus 偶偶核exchange force 交换力excited state 激发态exothermic reaction 放能反应exposure 照射量fatigue 疲劳feedback 反馈fermi age费年龄fermion 费fermium 镶fermi 费Feynman diagram 费恩曼图field theory 场论fine structure 精细结构fissile分裂的fissionable 分裂的fission barrier 裂变势垒fission fragment 裂变碎fission product yield 裂变产额fission product 裂变产物flattening of neutron flux 中通量展平fluorescent x rays 荧光x 射线fluorine 氟flux通量forbidden band 禁带force 力francium 钫free electron 由电free energy 由能frenkel defect弗兰克尔缺陷frictional force 摩擦力fuel assembly grid燃料集合体栅格fuel assembly核燃料组件fuel cell燃料电池fuel depletion 燃料贫化fuel reprocessing 燃料后处理function 函数fusion核聚变galaxy 星系Gamow-Teller interaction G-T 相互作gauge boson 规范波gauge field theory 规范场论Geiger-MCiller counter 盖-勒计数器Geiger-Nuttal law 盖-努塔尔定律geometrical cross-section 何截germanium detector 锗探测器giant resonance 巨共振gluon 胶grid ionization chamber 屏栅电离室hadron 强heavy ion 重离helicity 螺旋性Higgs particle 希格斯粒Hubble constant 哈勃常量Hubble law 哈勃定理incoming channel 射道incoming particle 身寸粒independent-particle model 独立粒模型induced fission 诱发裂变inelastic collision 弹性碰撞inelastic scattering 弹性苜攵射inertial confinement 惯性约束internal conversion 内转换intrinsic electric quadrupole moment 内禀电四极矩intrinsic parity 内禀宇称island of isomerism 同核异能素岛island of stability 稳定岛isobaric spin,isospin 同位旋isobar同量异位素isomer 同核异能素isospin analog state 同位旋相似态isospin multiplet 同位旋多重态isotone同中异位素isotope同位素j j coupling j j 耦合joule heat 焦热jump function阶跃函数junction particle detector 结型粒探测器kerma rate 释动能率kerma柯玛kernel approximation method 核近似法kernel function 核函数kernel 核kerr cell克尔盒kerr effect克尔效应kevatron千电伏级加速器key measurement point 关键测量点k factor增殖系数kinetic theory of gases 体运动论kirchhoff's radiation law基尔霍夫辐射定律klein gordon equation 克莱因登程klein nishina formula克莱因仁科公式knight shift奈特移位knocking out 原位移knock on atom 撞出原knock on 撞击撞出k shell k 层Kurie plot 库里厄图labeled 踪的labile不稳定的lag延迟laminar flow 层流lande g factor 朗德因lanthanides 镧系lanthanum 镧laplace's operator拉普拉斯算符laplacian拉普拉斯算符larmor frequency 回旋频率laser cooling激光冷却laser enrichment process 激攵光浓缩法laser isotope separation method 激光同位素分离法laser pulse激光脉冲laser 激光latent energy 潜能lattice cell 栅元lattice constant 晶格常数lattice defect 点阵缺陷lattice energy 晶格能量lattice parameter 晶格常数lattice 格laue photograph 劳厄照相lawrencium 镑Lawson criterion 劳森判据lead 铅lepton 轻level能级liberation 游离limit极限liquid metal液态金属liquid model液体模型liquid phase 液相lithium 锂lorentz force 洛伦兹力lorentz gas洛伦兹体lorentz invariance洛伦兹不变性low activity waste 低放废物lower limit 下限lutetium 错macroscopic cross section 宏观截macroscopic state 宏观态magic number 幻数magnesium 镁magnetic dipole 磁偶极magnetic field 磁场magnetic resonance 磁共振magnetism 磁manganese 锦many body forces 多体力many body problem 多体问题mass abundance 质量丰度mass energy conversion formula 质能换算公式mass excess 质量过剩mass range质量射程mass spectrometer 质谱仪maximum 最值maxwell boltzmann distribution 克斯韦分布函数mean collision time平均碰撞时间mean field 平均场mean value 平均值mean平均melting point 熔点membrane 薄膜memory存储mendeleev's law门捷列夫周期律mendelevium 钔]mercury 汞meson exchange theory 介交换理论meson field theory 介场理论meson 介meson 介metamorphose 变形methane 甲烷methanol 甲醇methyl alcohol 甲醇migration 移动mobility迁移率moderate 减速moderation 减速modulus of elasticity 弹性模数modulus of rigidity 刚性模数modulus of rupture 断裂模数modulus of torsion 扭转模数modulus 刚性模数moisture 湿molar fraction 克分分数molecular mass 分质量molecular orbital 分轨函数molten salt 熔盐molybdenum 车目monte carlo method 蒙特卡罗法neodymium 钕neon 氖neptunium 键neutrino 中微neutron flux 中通量neutronics中物理学neutron中nickel 银niobium 铌nitrogen 氮nobelium 锌nominal value 公称值nuclear fission 核裂变nuclear fission 核裂变nuclear force 核力nuclear fuel 核燃料nuclear spallation 核苜攵裂nucleon 核 nucleus 核nuclide 核素nu factor 每次裂变后的中产额ood-A nucleus 奇 A 核ood-ood nucleus 奇奇核optical model 光学模型 orbital angular momentum 轨道 动量 orbital electron capture 轨道电俘 获 pair creation , pair production 对产 pairing correlation 对关联pairing energy 对能parent nucleus 核parity 宇木称 partial-wave analysis 分波分析 partial-wave cross-section 分波截particle physics 粒物理 photoelectric effect 光电效应 pick-up reaction 拾取反应polarization 极化度 potential barrier 势垒 prompt neutron 瞬发中proportional chamberproton radioactivityproton 质quark confinementquark-gluon plasmaquark model夸克模型 quark 夸克radiation damage 辐射损伤radiation dose 辐射剂量radiation protection 辐射防护radiative capture 辐射俘获 radioactive dating 放射性鉴年法 radioactive equilibrium 放射性平衡radioactive nuclide 放射性核素radioactive series 放射系radioactivity 放射性range 射程 reaction channel 反应道 reaction cross-section 反应截 正室 质放射性夸克禁闭 夸克-胶等离体reaction energy 反映能reaction product 反应产物reaction yield 反应产额recoilless resonance absorption 反冲共振吸收residual interaction 剩余相互作residual nuclease 剩余核resolution 分辨率resolving time 分辨时间resonance cross-section 共振截resonance energy 共振能量resonance state 共振态rotational energy level 转动能级saddle point 鞍点samarium poisoning 钐中毒samarium 钐scalar标量scandium 铳scattering 苜攵射scheme图解Schrodinger equation 薛定谔程scintillation detector 闪烁探测器scram control快速停堆控制scram discharge volume快速停堆排放量scram rod安全棒selenium 办西self absorption coefficient 吸收系数self absorption 吸收self adjoint matrix 共轭矩阵self adjoint operator 共轭算self adjoint 轭的semiconductor 半导体sensitivity 灵敏度series系;级数shell model 壳层模型shell structure 壳层结构shim rod补偿棒shim补偿shut off rod 安全棒silicon 硅simulation 模拟singularity 奇性slab reactor平板反应堆slow down 减速slowing down area 慢化积small angle scattering 苜攵射sodium fluoride 氟化钠sodium 钠soft component of cosmic rays 字宙射线的软成分solar cosmic ray 太阳宇宙线solar neutrino 太阳中微solar x ray太阳x射线solenoid螺旋管solid angle 立体solid phase 固相solid solution 固溶体soluble可溶的solute溶质source data 源数据source strength 源强度space group 空间君羊space lattice 空间点阵spacing 间距spallation 苜攵裂special relativity 狭义相对论special report 专题报告special theory of relativity 狭义相对论specific activity 放射性specific binding energy 结合能specific burn up 燃耗specific charge 电荷specific concentration 浓度specific 的specimen 试样spectral line 光谱线spectral series 光谱线系spectrum 谱speed速率spent nuclear material pool烧过的核材料贮存池sphere 球spherical reactor 球形反应堆spherical wave 球波spin angular momentum 旋动量spin dependent force 旋相关力spin 旋splitting of energy levels 能级分裂splitting ratio 分开spontaneous decay 发衰变spot 斑sputtering 飞溅square bracket 括弧stable equilibrium 稳定平衡stainless steel 不锈钢standing wave 驻波stark effect斯塔克效应statistical error 统计误差statistical fluctuation 统计涨落statistical mechanics 统计力学statistical straggling 统计涨落statistical uncertainty 统计不确定性statistical weight 统计重量statistical 统计的statistic analysis 统计分析statistics 统计学statistics 统计性质steam generator 蒸汽发器steam void 汽steam 蒸汽stefan boltzmann ] constant斯蒂芬玻尔兹曼常数stern gerlach experiment 斯登盖拉赫实验stochastic process 随机过程stoichiometry 化学计算法stokes'law斯特克斯定律stopping power 阻本领strangeness number 奇异数strangeness 奇异性strange particle 奇异粒strange particle 奇异粒strange quark 奇异夸克strength function 强度函数strontium 锶structure factor 结构因subcritical assembly 亚临界装置subcritical亚临界的subgroup 君羊sublimation 升化subprogram 程序subroutine 程序subscript 下标subtraction 减法sulfur 硫superconductivity 超导性superconductor 超导体supercooled 过冷的superheated vapor 过热蒸汽superheated 过热的superlattice 超晶格superposition principle 迭加原理superposition 重叠supersaturation 过饱和superscript 上标surface tension 表张力susceptibility 磁化率suspension colloid 悬浮胶体swelling 膨胀switch开关symmetry对称性synchrotron radiation 同步加速辐射synthesis 合成system of atomic units 原单位制threshold energy 阈能time-of-flight 飞行时间top quark 顶夸克total cross section 总截track detector径迹探测器transfer reaction 转移反应transition probability 跃迁概率two-component neutrino theory 分量中微理论unclean separation energy 核分离能unified model综合模型unique forbidden transition 唯性禁戒跃迁up quark 上夸克uranium series 铀系vector boson 量波vibration energy level 振动能级volume energy 体积能weak interaction 弱相互作yrast line 转晕线yrast state 转晕态。

德国最大科研机构亥姆霍兹联合会介绍

德国最大科研机构亥姆霍兹联合会介绍

GERMAN RESEARCH ORGANISATIONS 德国大科研机构之间的比较
Budget/ billion Staff Centres/ Institutes 18
Helmholtz Association
€ 3.4 亥姆霍兹:着眼应用的前瞻式基础研究
33.634
Max Planck Society
Earth & Environment
Health
Aeronautics, Space and Transport
Key Technologies
Structure of Matter
Assembly of Members
(Two per Helmholtz Centre)
PAGE 13
16,800
87
2012基本科技事业拨款与横向经费
SEITE 14
BROAD VARIETY OF STRATEGIC PARTNERSHIPS 形式多样的战略伙伴合作模式
230 joint appointments 联合聘任教授 Promoting joint initiatives through: 合作模式
WE PROMOTE TALENT 多种方式培养青年才俊
Structured training of 5,320 PhD students 25 Helmholtz Graduate Schools and Helmholtz Research Schools 151 Helmholtz Young Investigators Groups with tenure option Helmholtz Management Academy Mentoring 1,627 vocational trainees 25 Helmholtz School Labs Little Scientists’ House

中医英语句子

中医英语句子

第一课句子翻译1中国医药学有数千年的历史是中国人民长期同疾病作斗争的经验总结。

TCM has a history of thousands of years and is a summary of the Chinese people’s experience in their struggle against diseases.2 中医学有完整的独特理论体系。

TCM has a unique and integrated theoretical system.3 中医学是研究人的生命规律一级疾病的发生发展和防治规律的一门科学。

TCM is a science that studies the rules of life as well as the occurrence, progress, prevention and treatment of diseases.4黄帝内经为中医学理论体系的形成奠定了基础。

Yellow Emperor’s Canon of Medicine has laid a solid foundation for the formation of theoretical sys tem of traditional Chinese medicine.5难经在许多方面,尤其在脉学上补充了黄帝内经的不足。

Classic of Difficulties has supplemented what was unaddressed in the Yellow Emperor’s Canon of Medicine in many respects, especially in pulse lore.6诸病源候论是中医学最早的一部病因证候学专著。

Discussion on the Causes and Symptoms of Various Diseases is the earliest extant monograph on the causes and symptoms of diseases in China.7阳常有余阴常不足。

翻译策略与“翻译过程总括模式”——译著《黑奴吁天录》的个案分析

翻译策略与“翻译过程总括模式”——译著《黑奴吁天录》的个案分析

苏州大学硕士学位论文翻译策略与“翻译过程总括模式”——译著《黑奴吁天录》的个案分析姓名:***申请学位级别:硕士专业:英语语言文学指导教师:***20040301中丈摘要翻译是将一种语言的内容用另一种语言的形式呈现出来。

因此,一个顺理成章的要求便是翻译必须能够准确传达原文内容,做到忠实于原文。

然而,人们似乎忽略了作为翻译活动主体的译者的存在以及译者所处的现实世界的影响。

翻译活动不是在“真空”中进行的,无论哪一位译者,由于使用跟原著不同的语言,面对不同的读者群,在不同的丈化范畴和历史背景下运作,受到各种各样不同的制约,因而在翻译时就会加入自己译作世界的内容,根本不可能产生出跟原作世界一模一样的译文来。

对于林纾以及林译小说的评价历来褒贬不一,其症结就在于长期以来人们对于翻译实践的认识上的偏差。

人们对林纾明白晓畅、优雅凝练的古文译品赞不绝口的同时,又对他随意增删、动辄改写的策略横加指责。

本文拟以林纾及其译著Ⅸ黑奴吁天录》为分析对象,以南开大学王宏印教授提出的“翻译过程总括模式”为研究的理论框架,通过对林纾译作世界中的诸因素的全面考察以及与原作世界的对比,揭示出译作世界和原作世界的矛盾冲突是林纾对原作进行改写的根本原因.“不审西文”的古丈大家林纾,带着对中国丈化的深刻理解和崇尚以及对西方丈化的一般领会,在解决矛盾冲突时,必然会采取归化的翻译策略,对原丈进行符合本族语文规范的增删和改写.这种现象表明:在翻译过程中,社会文化因素的制约和译者主体因素的参与对译作的产生起决定作用。

这一研究引导我们对今后如何以科学的眼光客观、公正、全面地评判译者及其译作做出新的思考。

关键词:“翻译过程总括模式”;翻译策略;林纾;《黑奴吁天录"AbstractFidelityhasoaenbeenconsideredasoneoftheprincipalcriteriaintheevaluationofatraIlslation,alongwithitsmal(er.Formisreason,LinShu,oneoftheChinesepioneertranslatorsduringlateQingdynasty,hassometimesbeen嘶ticizedforhisseeminglyarbitraryadaptationoftheoriginalsinhistrallslationHowever,suchcriticismsseemtohaveneglectedthefactthatthetranslationactivityisneverpe—.ormed.nvacuumInstead,itmustberestrictedbyVariousfactorsintheobjectiVeworldaswellasinthetranslator’ssubjectiVeworId.Anytranslatorlivinginaworldcompletelydifrerem丘omthatofthewritercanhardlyproduceatranslationthatismerelythecopyofttleoriginalinotherlanguage.ToLinShu,auniquetranslatorwhodoesn’tknowanysingleforeignlanguage,也逸phenomenonmaybemoreconspicuous.Thecurremsmdy,taI(ing‰Shu’stranslationofMrs.Stowe’s洳c磨砌2奢c口6加asacase,tllfoughaIlexplorationofthefactorsthatleadtoLinShu’schoiceoftranslationstrategies,ainlstoillustratethattheformationofatr孤1slationisdetermitledbythepanic主pationofthetranslator’ssubjec曲ityandthercstraintsofthesOcialandculturalfactorsofthetirneof把mslationAmongstamassofmodemtranslationtheories,PmfessorWangHongyin’sttleoryof“AHOlisticModelofTraIlslationProcess”servesasthetheoretical仔ameworkofthethesisThetheOryo丘hsabrand-newperspectiveinanalyzingatrallslationthroughadetailedandall-foundobserv砒ionofthetranslationprocess.1napplyi王lgtlletheorytottle趾alysis0fthephenomenonofLinShu,wefindthathisWorld0fTranslationisdisplayedclearlystepbystep.Itisevidentt11atLinShu’sadaptationoftheoriginalworkiscausedbymecomradictionbetweentllewriter’sWbrldofWfitinga11dthetfansIator’sWDrldofTraIlslationWithadeepunderstandillgoftheChinesecultureandsocialstatusbutashallowknowledgeoftheforeignworld,LinShumustassimilatethecontradictionamongthemintotheChinesedomestic1iterarycanons,whichcauseshisdom训catingstrategies.ThetraIlslator,liViIlginadifFerentwodd仔omthatofthewTiteraIldafFectedbythesociaIandcultur“factorsofhistime,willineVitablyconstmcthisownsubjectivity’whichwill1eadtohisadaptationoftheoriginalwork,andtheovertmallifestationofthisisthetr姐slator’schoiceofhistranslationstrategies.KeyWords:“AHolisticModelofTransIationProcess”;trallslationstrategies;LinShu;UncteIbmkCnbin苏州大学学位论文独创性声明及使用授权的声明学位论文独创性声明本人郑重声明:所提交的论文是本人在导师的指导下,独立进行研究1:作所取得的成果。

航海专业术语缩写

航海专业术语缩写

胡大副给的有关缩写EHQ emergency hatch quarterDBT double bottom tankTST top side tankSOPEP shipboard oil pollution emergency planEPIRB emergency position indicator radio beaconSART search and rescue transponderISM international safety managementSMS safety management systemDOS Declaration of security保安声明DOC document of compliance符合证明issued to the ship operator under the ISM codeSMC safety management certificateMARPOL International Convention for the prevention of pollution from shipsSMS security management system 安全管理体系ISPS international ship and port facility security code 国际船舶和港口设施保安规则DPA designated person ashoreSSO ship security officerCSO company security officerGMDSS globe maritime distress and safety systemHF/MF high frequency / middle frequencyDSC digital selective callingEEBD emergency escape breathing devide/deviceFFA fire fighting appliance/appratusLSA life saving applianceSCBA self-contained breathing apparatusUKC under keel clearanceMBL molded base lineSSAS ship security alert systemBL 提单bill of ladingSOS save our soulSOFSTCW Standards of T raining Certificate on and watchkeeping for seafarersSOLAS safety of life at seaPOR pacific ocean regionXTE Crosss T rack Error 偏航报警IOPP International Oil Pollution Prevention 国际防油污公约PRD period 周期BROB bunkering remaining on board 船上剩余的油LRIT long range identification track(GMDSS) 远距离识别跟踪ECDIS electric chart display information systemmessage(meg) messager leading line引缆passage, corridor通道,走廊passenger乘客massage按摩chill 寒冷smother 窒息N/C no compliance 不适合项OB observe 观察项N/R no responsiblegossip 流言蜚语theory 理论,原理conscious 恢复意识的awareness 意识Berthing instruction 靠泊指令My position 152 degrees from Dolphin Bank Light Vessel,distance 3.6 nautical miles. Traffic lane 通航分道Mist 薄雾Inshore traffic zone 沿岸通航带Backing(of wind):When a wind blows round anticlockwise. 风向逆时针方向改变,在南半球相反Veering(of wind):when a wind blows round clockwise. 风向顺时针方向改变,在南半球相反Do you read me?询问对方是否听到How do you read me?询问对方收听信号质量Make a bold alternation for identification.作大角度转向以便辨认I am abeam of Rock Lighthouse.I can not locate you on my AIS.Adjacent torun into 陷入you are running into dangerVessel triton seahawk following you,I will overtake you from your portside Dredge anchor 拖锚Dradge anchor 走锚Berth NO. 4 jetty 靠泊4号码头drilling rig 钻井平台It is likely to cross you.Tide against you.你船逆流Routeing 定线制Traffic separation scheme(TSS)分道通航制Traffic lane 通航分道Crossing traffic 横渡船,穿越船Separation zone 分隔带Roundabout 环形航道track 推荐航道what is your distance from Pilot station.Port beam 左舷正横Take pilot 接引水员Port bow 左舷船头Keep pilot boat on my starboard side.Pilot transfer 换引水员Rig pilot ladder on starboard side 2 meters above water.Move pilot ladder 1.5 meters forward.Man rope 扶手绳Loaded draft 满载吃水To secure to a buoy 系浮筒Against the current 逆流With the current 顺流Heavy weather 恶劣天气There is sufficient depth of water to proceed to the berth.Cable leading ahead.Stand by for making fast the tugs.Slack away the towing lines.Send the towing lines to the tugs.Course on 090.We will overtake her from her portside .Give her two long blasts and one short blast.Anchor clear of bottom.锚离底Anchor aweigh 锚已起Anchor clear of water.锚已出水Wide berth 宽让Meet end on 迎面对遇Conical buoy 锥形浮标Avast heaving 停绞Gyro compass error 2 degrees plus.We need not give way.我船没有必要让路Because the overtaking vessel is very close to me,would you please alter course to keep clear of me when we are passing.Tide current setting 200 degrees。

奖励一览的英语

奖励一览的英语

奖励一览的英语一、“奖励”相关的单词1. reward- 英语释义:something given in return for good or evil done or received or expected; a payment or rpense.- 短语:reward for(因……而得到报酬),in reward(作为报酬) - 用法:可作名词,也可作动词。

作名词时,如:He received a reward for his hard work.(他因努力工作而得到了奖励。

)作动词时,reward sb. for sth.(因某事奖励某人),例如:Thepany rewarded him for his innovation.(公司因他的创新而奖励他。

)- 双语例句:- The police are offering a big reward for any information about the missing boy.(警方为任何有关失踪男孩的信息提供高额奖励。

)- Her efforts were rewarded with success.(她的努力得到了成功的回报。

)2. award- 英语释义:give or order the giving of (something) as an official payment,pensation, or prize to (someone).- 短语:award sb. sth.(授予某人某物),win an award(获奖) - 用法:作名词时表示“奖品,奖项”,作动词表示“授予,颁发”。

例如:He won the best actor award.(他获得了最佳男演员奖。

)The judges awarded her the first prize.(评委授予她一等奖。

) - 双语例句:- The Nobel Peace Award is very prestigious.(诺贝尔和平奖非常有声望。

美国药典重金属检查法

美国药典重金属检查法

美国药典重金属检查法231HEAVY METALSThis test is provided to demonstrate that the content of metallic impurities that are colored by sulfide ion, under the specified test conditions, does not exceed the Heavy metals limit specified in the individual monograph in percentage (by weight) of lead in the test substance, as determined by concomitant visual comparison (see Visual Comparison in the section Procedure underSpectrophotometry and Light-Scattering 851) with a control prepared from a Standard Lead Solution. [NOTE—Substances that typically will respond to this test are lead, mercury, bismuth, arsenic, antimony, tin, cadmium, silver, copper, and molybdenum.] Determine the amount of heavy metals by Method I, unless otherwise specified in the individual monograph. Method I is used for substances that yield clear, colorless preparations under the specified test conditions. Method II is used for substances that do not yield clear, colorless preparations under the test conditions specified for Method I, or for substances that, by virtue of their complex nature, interfere with the precipitation of metals by sulfide ion, or for fixed and volatile oils. Method III, a wet-digestion method, is used only in those cases where neither Method I nor Method II can be used.Special ReagentsLead Nitrate Stock Solution—Dissolve 159.8 mg of lead nitrate in 100 mL of water to which has been added 1 mL of nitric acid, then dilute with water to 1000 mL. Prepare and store this solution in glass containers free from soluble lead salts.Standard Lead Solution— On the day of use, dilute 10.0 mL of Lead Nitrate Stock Solution with water to 100.0 mL. Each mL of Standard Lead Solution contains the equivalent of 10 μg of lead. A comparison solution prepared on the basis of 100 μL of Standard Lead Solution per g of substance being tested contains the equivalent of 1 part of lead per million parts of substance being tested.METHOD IpH 3.5 Acetate Buffer—Dissolve 25.0 g of ammonium acetate in 25 mL of water, and add 38.0 mL of 6 N hydrochloric acid. Adjust, if necessary, with 6 N ammonium hydroxide or 6 N hydrochloric acid to a pH of 3.5, dilute with water to 100 mL, and mix.Standard Preparation— Into a 50-mL color-comparison tube pipet 2 mL of Standard Lead Solution (20 μg of Pb), and dilute with water to 25 mL. Using a pH meter or short-range pH indicator paper as external indicator, adjust with 1 N acetic acid or 6 N ammonium hydroxide to a pH between 3.0 and 4.0, dilute with water to 40 mL, and mix.Test Preparation— Into a 50-mL color-comparison tube place 25 mL of the solution prepared for the test as directed in the individual monograph; or, using the designated volume of acid where specified in the individual monograph, dissolve in and dilute with water to 25 mL the quantity, in g, of the substance to be tested, as calculated by the formula:2.0/(1000L),in which L is the Heavy metals limit, as a percentage. Using a pH meter or short-range pH indicator paper as external indicator, adjust with 1 N acetic acid or 6 N ammonium hydroxide to a pHbetween 3.0 and 4.0, dilute with water to 40 mL, and mix.Monitor Preparation— Into a third 50-mL color-comparison tube place 25 mL of a solution prepared as directed for Test Preparation, and add 2.0 mL of Standard Lead Solution. Using a pH meter or short-range pH indicator paper as external indicator, adjust with 1 N acetic acid or 6 N ammonium hydroxide to a pH between 3.0 and 4.0, dilute with water to 40 mL, and mix. Procedure— To each of the three tubes containing the Standard Preparation, the T est Preparation, and the Monitor Preparation, add 2 mL of pH 3.5 Acetate Buffer, then add 1.2 mL of thioacetamide–glycerin base TS, dilute with water to 50 mL, mix, allow to stand for 2 minutes, and view downward over a white surface *: the color of the solution from the Test Preparation is not darker than that of the solution from the Standard Preparation, and the color of the solution from the Monitor Preparation is equal to or darker than that of the solution from the Standard Preparation. [NOTE—If the color of the Monitor Preparation is lighter than that of the Standard Preparation, use Method II instead of Method I for the substance being tested.] METHOD IINOTE—This method does not recover mercury.pH 3.5 Acetate Buffer— Prepare as directed under Method I.Standard Preparation—Pipet 4 mL of the Standard Lead Solution into a suitable test tube, and add 10 mL of 6 N hydrochloric acid.Test Preparation— Use a quantity, in g, of the substance to be tested as calculated by the formula:4.0/(1000L),in which L is the Heavy metals limit, as a percentage. Transfer the weighed quantity of the substance to a suitable crucible, addsufficient sulfuric acid to wet the substance, and carefully ignite at a low temperature until thoroughly charred. (The crucible may be loosely covered with a suitable lid during the charring.) Add to the carbonized mass 2 mL of nitric acid and 5 drops of sulfuric acid, and heat cautiously until white fumes no longer are evolved. Ignite, preferably in a muffle furnace, at 500to 600, until the carbon is completely burned off (no longer than 2 hours). If carbon remains, allow the residue to cool, add a few drops of sulfuric acid, evaporate, and ignite again. Cool, add 5 mL of 6 N hydrochloric acid, cover, and digest on a steam bath for 10 minutes. Cool, and quantitatively transfer the solution to a test tube. Rinse the crucible with a second 5-mL portion of 6 N hydrochloric acid, and transfer the rinsing to the test tube.Monitor Preparation—Pipet 4 mL of the Standard Lead Solution into a crucible identical to that used for the Test Preparation and containing a quantity of the substance under test that is equal to 10% of the amount required for the Test Preparation. Evaporate on a steam bath to dryness. Ignite at the same time, in the same muffle furnace, and under the same conditions used for the Test Preparation. Cool, add 5 mL of 6 N hydrochloric acid, cover, and digest on a steam bath for 10 minutes. Cool, and quantitatively transfer to a test tube. Rinse the crucible with a second 5-mL portion of 6 N hydrochloric acid, and transfer the rinsing to the test tube.Procedure—Adjust the solution in each of the tubes containing the Standard Preparation, the Test Preparation, and the Monitor Preparation with ammonium hydroxide, added cautiously and dropwise, to a pH of 9. Cool, and adjust with glacial acetic acid, added dropwise, to a pH of 8, then add 0.5 mL in excess. Using a pH meter or short-range pH indicator paper asexternal indicator, check the pH, and adjust, if necessary, with 1 N acetic acid or 6 N ammonium hydroxide to a pH between 3.0 and 4.0. Filter, if necessary, washing the filter with a few mL of water, into a 50-mL color-comparison tube, and then dilute with water to 40 mL. Add 2 mL of pH 3.5 Acetate Buffer, then add 1.2 mL of thioacetamide–glycerin base TS, dilute with water to 50 mL, mix, allow to stand for 2 minutes, and view downward over a white surface*: the color of the solution from the Test Preparation is not darker than that of the solution from the Standard Preparation, and the color of the solution from the Monitor Preparation is equal to or darker than that of the solution from the Standard Preparation. [NOTE—If the color of the solution from the Monitor Preparation is lighter than that of the solution from the Standard Preparation, proceed as directed for Method III for the substance being tested.]METHOD IIIpH 3.5 Acetate Buffer— Prepare as directed under Method I.Standard Preparation— Transfer a mixture of 8 mL of sulfuric acid and 10 mL of nitric acid to a clean, dry, 100-mL Kjeldahl flask, and add a further volume of nitric acid equal to the incremental volume of nitric acid added to the Test Preparation. Heat the solution to the production of dense, white fumes; cool; cautiously add 10 mL of water; and, if hydrogen peroxide was used in treating the Test Preparation, add a volume of 30 percent hydrogen peroxide equal to that used for the substance being tested. Boil gently to the production of dense, white fumes. Again cool, cautiously add 5 mL of water, mix, and boil gently to the production of dense, white fumes and to a volume of 2 to 3 mL. Cool, dilute cautiously with a few mL of water, add 2.0 mL of Standard Lead Solution (20 μg of Pb), and mix. Transfer to a 50-mL color-comparison tube, rinse the flask with water, adding the rinsing to the tube until the volume is 25 mL, and mix.Test Preparation—Unless otherwise indicated in the individual monograph, use a quantity, in g, of the substance to be tested as calculated by the formula:2.0/(1000L),in which L is the Heavy metals limit, as a percentage.If the substance is a solid— Transfer the weighed quantity of the test substance to a clean, dry, 100-mL Kjeldahl flask. [NOTE—A 300-mL flask may be used if the reaction foams excessively.] Clamp the flask at an angle of 45, and add a sufficient quantity of a mixture of 8 mL of sulfuric acid and 10 mL of nitric acid to moisten the substance thoroughly. Warm gently until the reaction commences, allow the reaction to subside, and add portions of the same acid mixture, heating after each addition, until a total of 18 mL of the acid mixture has been added. Increase the amount of heat, and boil gently until the solution darkens. Cool, add 2 mL of nitric acid, and heat again until the solution darkens. Continue the heating, followed by addition of nitric acid until no further darkening occurs, then heat strongly to the production of dense, white fumes. Cool, cautiously add 5 mL of water, boil gently to the production of dense, white fumes, and continue heating until the volume is reduced to a few mL. Cool, cautiously add 5 mL of water, and examine the color of the solution. If the color is yellow, cautiously add 1 mL of 30 percent hydrogen peroxide, and again evaporate to the production of dense, white fumes and a volume of 2 to 3 mL. If the solution is still yellow, repeat the addition of 5 mL of water and the peroxide treatment. Cool, dilute cautiously witha few mL of water, and rinse into a 50-mL color-comparisontube, taking care that the combined volume does not exceed 25 mL.If the substance is a liquid— Transfer the weighed quantity of the test substance to a clean, dry, 100-mL Kjeldahl flask. [NOTE—A 300-mL flask may be used if the reaction foams excessively.] Clamp the flask at an angle of 45, and cautiously add a few mL of a mixture of 8 mL of sulfuric acid and 10 mL of nitric acid. Warm gently until the reaction commences, allow the reaction to subside, and proceed as directed for If the substance is a solid,beginning with ―add portions of the same acid mixture.‖Monitor Preparation— Proceed with the digestion, using the same amount of sample and the same procedure as directed in the subsection If the substance is a solid in the section Test Preparation, until the step ―Cool, dilute cautiously with a few mL of water.‖ Add 2.0 mL of Lead Standard Solution (20 μg of lead), and mix. Transfer to a 50-mL color comparison tube, rinse the flask with water, adding the rinsing to the tube until the volume is 25 mL, and mix. Procedure—Treat the Test Preparation, the Standard Preparation, and the Monitor Preparation as follows. Using a pH meter or short-range pH indicator paper as external indicator, adjust the solution to a pH between 3.0 and 4.0 with ammonium hydroxide (a dilute ammonia solution may be used, if desired, as the specified range is approached), dilute with water to 40 mL, and mix.To each tube add 2 mL of pH 3.5 Acetate Buffer, then add 1.2 mL of thioacetamide–glycerin base TS, dilute with water to 50 mL, mix, allow to stand for 2 minutes, and view downward over a white surface*: the color of the Test Preparation is not darker than that of the Standard Preparation, and the color of the Monitor Preparation is equal to or darker than that of the StandardPreparation.。

从肯尼斯·伯克修辞理论看演讲话语行为动机

从肯尼斯·伯克修辞理论看演讲话语行为动机

机 , 例如 , 行为不可避免地暗示执行者 , 而执行者则 可暗示行为发生的场景 。 伯克用 10 个关系比详细 阐述 5 种成分之间的多种关系 。 这 10 个关系比是 场景 — 行为 、 场景 —执行者 、场景 — 方法 、场景 —目 的、 行为 —目 的 、行为 — 执行 者 、行 为 — 方法 、执行 者 —目的 、执行者 —方法 、方法 —目的 , 颠倒每一对 关系比的顺序可创设另外 10 种关系比 。 伯克的意图是把 5 个要素运用于处理诸如演说 之类修辞的相互作用 , 以便从话语的实际内容中选 择 5 个要素 , 并进而发现这些要素之间的内在关系 , 即演讲者隐含的动机 。 2. 2 话语的“ 同一” 修辞观( Identification) 传统修辞学认为 , 修辞是任何场合下寻求劝说 手段的功能 。 为了达到劝说的目的 , 修辞者可利用 3 种修辞诉诸性方式 : 人品诉诸 、理性诉诸和情感诉 诸 。 与这种传统的修辞观不同 , 与戏剧主义相配的 修辞观认为 , 修辞是用话语使他人形成态度或诱发 他人的行动[ 4] 。 修辞根基于作为符号的语言用于诱 发人们的合作 。 要达到诱发他人行动的目的 , 修辞 者必须使用 符 号 尤其 语 言 与听 读 者 取得 “ 同 一 ” ( identi ficat ion) , 也就是说 , 修辞者必须与听读者取 得象征性的同一 , 同一既是出发点也是目标 。 所谓 “ 同一” , 通俗地说 , 是指与听读 者那样所思 、所说 、 所行 。 “ 同一” 是伯克话语修辞观的核心概念 。“同一” 来自于 “ 物质”( substance ) 这一概念 。 人类本身是 由各种物质或特性构成的 , 包括人体本身 、职业 、朋 友、 活动 、 信念和价值观等 。 当我们与他人享有某些 共同“ 物质” 时 , 如参与同一个活动 、 有相同的宗教信 仰和时间观念等时 , 我们就是“ 同质” 的 , 即取得了与 他人的同一[ 6] 。 美国的民主党和共和党虽然政见不 同 , 但为了维护相同的国家利益和集团利益 , 也有时 会取得同一 。 修辞话 语采取 3 种方式 达到交 际双方 的 “ 同 一” , 即 “ 同情 同一” ( ident ification by sympat hy ) 、 “ 对立同一”( i dentification by anti thesis) 和“ 误 同” ( identi ficat ion by i naccuracy) 。 例如台湾政界人物 为了争取客家选民 , 使用客家方言进行竞选演讲就 是为了博得同情同一 。 2. 3 伯克的动机分析( motive) 伯克对动机的分析有 3 个层次 : “ 动机语法” 通 过“ 戏剧主义视角”( drama tistic screen) 分析话语构 建动机和行为的机制 ; “ 话语修辞学” 把动机放入社 会层面 , 通过“ 同体” 和“ 同一” 概念关注话语互动对 社会结构的构建和发展机制 ; 而“ 语言哲学” 或“ 符号

保序线性变换的一些性质及推广

保序线性变换的一些性质及推广
SM in (L (A ) \L (C ) ) x∃ SM in (A \C ); ( 3 ) 若 k erL ! C, 则 x ∃ M in(A \C ) L ( x ) ∃
M in (L (A ) \ (C ) ). 反之, 若 k erL ! C 或 k erL ∀ C= { 0 }, 则
L ( x )∃ M in (L (A ) \L ( C ) ) x∃ M in (A \C ); ( 4 ) 若 k erL ! C, 则 x ∃ WM in(A \C ) L (x ) ∃
第 9 卷第 12期 V o.l 9, 12
宜宾 学 院学 报 Jou rn al of Y ib in U n ivers ity
2009年 12月 D ec. , 2009
保序线性变换的一些性质及推广
蒋娅
(西华师范大学数学与信息学院, 四川南充 637002)
摘要: 在有限维闭凸锥中, 研究了线性变换和偏序之间的关系, 得到保序线性变换的一些性质, 并将这种性质推广到线性变换 作用下的有效 集及其像集之间, 得出了线性变换下有效点集及其像集之间关系的相关结论. 关键词: 序关系; 线性变换; 有效点; 标准射影 中图分类号: O 151. 2 文献标志码: A 文章编号: 1671 - 5365( 2009) 12 - 0018- 03
收稿日期: 2009- 05 - 05 基金项目: 四川省教育厅重点项目 ( 07ZA 123 ) 作者简介: 蒋娅 ( 1982 - ), 女, 四川广安人, 助教, 硕士研究生, 主要从事优化理论及应用研究.
第 12期
蒋娅: 保序线性变换的一些性质及推广
19
所以 L (x - y ) ∃ L (C ) 从而有 x - y∃ C + kerL 又因 k erL ! C 故 x - y∃ C 即 x#= C y ( 2) % 必要性 &: 由于 x#= C y, 从而有 x - y∃ C \ { 0 } 又因 k erL ∀ C= { 0} 所以 L (x - y ) ∃ L (C \k erL ) = L (C ) \ { 0} 故 L (x ) - L (y ) ∃ L (C ) \ { 0} 即 L (x ) #= L (C ) L ( y) % 充 分 性 &: 由 于 L ( x ) #= L (C ) L ( y) 即 L (x - y ) ∃ L (C ) \{ 0} 又 k erL ! C 所以 x - y ∋ 0 且 x - y∃ C + kerL ! C 即 x - y∃ C \ { 0} 故 x#C y ( 3) % 必要性 &: 由 x> C y 知 x - y∃ C \l (C ) 所以 x - y∃ C 又 x - y # l (C ) 即 x#= C y 由 ( 1) 可知: L ( x )#= L (C) L (y ) 即 L (x ) - L (y ) ∃ L (C ) 若 L (x ) - L (y ) ∃ l(L ( C ) ) 由引理 1 ( 2) 知 L ( x ) - L ( y )∃ L ( l(C ) ) 从而有 L (x - y ) ∃ L ( l( C ) ) 即有 x - y∃ l(C ), 这与 x - y∃ C \l (C ) 矛盾 故 L (x ) - L (y ) ∃ L (C ) \l (L (C ) ) 即 L (x ) > L(C ) L ( y ) % 充分性 &: 由于 L (x ) > L (C) L (y ), 所以 L (x ) - L ( y ) ∃ L (C ) \ l(L (C ) ) 又 k erL ! C, 从而有 L (x ) - L ( y )∃ L (C ) 即 L (x ) #= L (C ) L ( y) 由 ( 1) 知 x#= Cy, 即 x - y∃ C 若 x - y∃ l(C ) 则 L ( x - y )∃ L ( l(C ) ) 由引理 1 ( 2) 知 L ( x - y )∃ l (L (C ) ) 故 x - y # l(C ), 即 x - y∃ C \ l(C ) 从而有 x> C y, 这与 x#= C y 矛盾 所以 x - y∃ C \l (C ) 即 x> C y ( 4) % 必要性 &: 由于 x >> C y, 即有 x - y∃ r iC从而有 L (x - y )∃ L ( riC ) 由引理 1 ( 3) 知 L ( riC ) = ri (L (C ) ) 则 L (x - y ) ∃ riL (C ) 进而有 L (x ) - L (y ) ∃ riL (C ) 即 L (x ) >> L (C) L (y ) 则 L (x ) - L ( y )∃ riL (C ), 所以 L (x

很有用 钠钾泵是怎样发现的

很有用   钠钾泵是怎样发现的

式推广到可根据多种离子计算膜电位, 这就是后 来 称 之 为 的 Goldman -Hodgkin -Katz 公 式 。 1951 年 ,英 国 生 理 学 家 凯 恩 斯 (Richard Darwin Keynes) 等 用 同 位 素 24Na +进 行 定 量 分 析 , 进 一 步 支 持 “ 离 子学说”。 因在神经生理研究方面做出的杰出贡 献 , 霍 奇 金 、 赫 胥 黎 等 分 享 了 1963 年 的 诺 贝 尔 生 理学或医学奖。 3 “钠泵”假设与钠钾泵的发现
1936 年 , 英 国 解 剖 学 家 杨 (J.Z.Young) 找 到 了 一 个 理 想 的 试 验 材 料— —— 软 体 动 物 中 的 枪 乌 贼 的 神 经 。 该 神 经 具 有 直 径 可 达 1 mm 的 轴 突 ,这 与 一 般 脊 椎 动 物 轴 突 直 径 最 大 不 超 过 0.02 mm 比 起 来,无疑是研究跨膜电位的极好材料。
早 在 1941 年 , 生 理 学 家 R.B.Dean 基 于 用 放 射 性 Na 元 素 对 肌 肉 的 细 胞 实 验 提 出 了 在 细 胞 膜 上存在着“钠泵”的推测。 他认为“肌肉细胞之所 以 能 逆 浓 度 地 运 输 K+和 Na+,…… 是 需 要 做 功 的 。 因此。在细胞膜上一定有一种泵存在。这种泵能在 泵 出 Na+的 同 时 泵 出 等 量 的 K+”。 不 过 ,就 当 时 而 言,“钠泵”只是一个猜想,没有引起人们的注意。 直 到 1949 年 以 后 ,霍 奇 金 才 把 它 引 入 并 用 来 解 释 动作电位后静息电位的形成, 他认为, 动作电位 后,细胞膜仍然要恢复到原来的静息状态,这就需 要 将 流 入 细 胞 内 的 Na+重 新 转 运 到 细 胞 外 。 由 于 Na+从 质 膜 内 运 出 质 膜 外 是 逆 浓 度 梯 度 运 输 ,需 要 消耗能量, 因此需要钠泵来转运。 他还进一步推 测 , 逆 浓 度 运 输 的 钠 泵 是 需 要 消 耗 ATP 的 , 抑 制 ATP 的 合 成 会 抑 制 钠 的 逆 浓 度 转 运 。
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a rX i v :h e p -p h /9409328v 2 20 S e p 1994BNL-60809SUMMARY OF HEAVY ION THEORYSEAN GAVIN ∗Physics Department,Brookhaven National LaboratoryUpton,NY,11973USAABSTRACT Can we study hot QCD using nuclear collisions?Can we learn about metallic hydrogen from the impact of comet Shoemaker-Levy 9on Jupiter?The answer to both questions may surprise you!I summarize progress in relativistic heavy ion theory reported at DPF ‘94in the parallel ttice simulations of QCD demonstrate that matter at temperatures exceed-ing T c ∼150MeV is very different from matter composed of hadrons.1Simulations commonly display dramatic changes in thermodynamic quantities,such as the energy density,in a narrow interval |T −T c |<∼5MeV,indiciting an abrupt transformation from hadronic to quark-gluon degrees of freedom.The underlying aim of the theo-retical speakers in the heavy ion sessions has been to understand how properties of high temperature matter can be deduced from collisions of nuclei at RHIC and LHC at √s ∼5A GeV,and theCERN SPS,√∗This manuscript has been authored under contract number DE-AC02-76CH00016with the U.S.Department of Energy.from16to22July,1994.Observations of the impacts are providing new information on comet structure and the stratification and composition of Jupiter’s atmosphere.3 Indeed,the speed of sound in metallic hydrogen4can be measured if reflections of downward-launched accoustic waves from Jupiter’s core can be observed.51.Collision DynamicsA very important issue in the AGS and SPSfixed-target experiments has been the stopping power.The extent to which the projectile ion is stopped(‘slowed’is more accurate)as it crashes through the target nucleus depends on how the constituents interact.Should one treat the constituents as nucleons or quarks on the time scales of the collision?Is resonance formation important in the nucleon rescattering?Is there a formation time for secondary particle production?Data on stopping comes primarily from the rapidity distribution of protons. Schlagel showed that the AGS proton data for projectiles as large as Au can be de-scribed by a purely hadronic rescattering model that incorporates resonance formation. He also showed that the omission of resonance formation does not describe the data. We expect formation time effects to become more important at the higher SPS energy. Vogt showed that SPS data for light projectiles can be described by string models that incorporate these effects.She argued that the Pb beam runs commencing this fall will be useful in deciding between string and hydrodynamic models.In the case of Shoemaker-Levy9,one is also interested in how the comet is stopped by Jupiter’s atmosphere.The comet’s structure determines the depth to which the comet penetrates.Stopping therefore provides information on comet structure.High temperature H2O emission lines that are likely from the comet remnants have been observed.6In the following table,I list aspects of the dynamics in nuclear collisions discussed at this meeting together with their analogs in the comet-Jupiter impact.Ion+Ioncomet remnantsproton dN/dythermalizationγ,e+e−,µ+µ−;H2S,CH4plume,ejectaabsorption linesseismic wavesAnother central question in AGS/SPS nuclear collisions is thermalization:how effectively is the momentum of the projectile distributed among the participant nu-cleons and produced hadrons?Do these hadrons reach local thermal equilibrium and undergo collectiveflow?The abundance of produced particles such as pions,kaons and antiprotons indicates the extent to which particles interact and thermalize.Shuryak observed that photon and dilepton production can be used to measure the tempera-tures that the system achieves,although backgrounds can be formidable in practice. In the comet-Jupiter collision,the excitation of high temperature emission lines pro-vide information on energy deposition.The observation of hot H2S indicates that they cm-0.10-0.050.000.050.10<P x> (G e V /c )ARC, b<13 - D. Kahana, Y. Pang, T. J. SchlagelFig.1.Directed flow for various particle species in Au+Au at the AGS from Ref.[7]Fig.2.Directed flow on Jupiter due to the impact of comet fragment G from the Hubble Space Telescope,Ref [8].Left and right images are taken with green and methane filters respectively.comet penetrated below Jupiter’s ammonia-rich cloud cover into a layer containing ammonium hydrosulfide.3Collective flow is another proposed indirect indication of thermalization.The directed flow of primary and produced particles in nuclear collisions can be deduced from exclusive measurements.7The flow shown in Fig.1depends on particle type.For example,antiproton flow is anticorrelated with the proton flow becausepartons can rescatter and thermalize forming what Shuryak calls ‘hot glue.’Open charm production can serve as a measure of the temperature of this hot glue.10The point is that charm is heavy and hard to make unless temperatures are very high.Most of the charm production is therefore expected to occur via primary hard perturbative scattering.However,semihard gg →c ¯c rescattering in a hot glue system can enhance charm production relative to perturbative expectations.Sarcevic pointed out that reliable perturbative estimates are needed to provide a benchmark and presented calculations to O (α3s ).2.J/ψSuppressionJ/ψproduction provides a probe of the densities achieved in nuclear collisions that is also sensitive to deconfinement.Matsui and Satz observed that a J/ψcan exist in a low density quark gluon plasma as a QCD Bohr atom.However,color screening inhibits the binding of the c ¯c pair when the temperature T is high enough that the screening length ∝T −1is smaller than the c ¯c ’s Bohr radius.The c and ¯c can then wander apart to form open charm,leading to a suppression of the J/ψ→µ+µ−peak relative to the dimuon continuum.A cellestial analogy to J/ψsuppression is the modification of the intensity of hydrogen absorption lines in stars.The degree of ionization of hydrogen in the solar plasma depends on its temperature,i.e.a hotter star has fewer H atoms and more ions than a cool one.Correspondingly,the intensities of H absorption lines are reduced relative to the continuum in hot stars.Many processes contribute to the line spectra,so that detailed models are needed extract the temperature from the line intensity.11Nevertheless,line intensities are now a well established method for measuring stellar temperatures.J/ψsuppression holds similar promise as a density probe in nuclear collisions,although its analysis is clearly much more complicated.While the production of the c ¯c pair is perturbative and calculable,the formation of the bound state is not.Corre-spondingly,J/ψproduction is not well understood even in p ¯p collisions at the Tevatron (although there has been recent progress at high p T 12).Thews presented a quantum mechanical analysis of the spacetime evolution of the c ¯c →J/ψ.Such an analysis is necessary for understanding the formation of bound states in the high density environ-ment.In addition to the Matsui-Satz effect,there are several “background”contribu-tions to J/ψsuppression.Although they are interesting manifestations of QCD,these contributions make the interpretation of density signals ambiguous.Initial state par-ton scattering broadens the p T distributions in pA →J/ψ+X and Drell Yan,and is more-or-less understood.13Ayala,Petridis and Sarcevic discussed the modification of parton distributions in nuclei compared to free nucleons.The resulting EMC and parton-shadowing effects alter J/ψproduction,as Petridis emphasized.Final state scattering adds to the suppression effect,as hadronic reactions like N +J/ψ→D ¯DN and ρ+J/ψ→D ¯Dcan take place;see the presentations by Satz and Vogt.A new direction taken at this meeting has been to seek first-principles constraints on models of the background contributions.Ayala reported on work with McLerran,Venugopalan and Jalilian-Marian on the development of new theoretical tools for cal-culating parton distributions in large nuclei.Their idea is that at small x,the QCD scale is determined by the number of partons per unit transverse area,which varies as A1/3.For very large nuclei,they formulate a weak-coupling semiclassical method to cal-culate the parton distributions.When perfected,these methods can provide important constraints on models of parton shadowing.Satz presented work with Kharzeev in which they argue that the total J/ψ-nucleon cross section can be calculated.Following Peskin and Bhanot,they treated the heavy c¯c system as nearly pointlike and applied a short-distance operator-product-expansion analysis.In principle,cross sections calculated by this method can be used to constrain models offinal state interactions.Of course,the fact that roughly half of hadroproduced J/ψcome from electromagnetic decays of relatively largeχstates implies that not all of thefinal state interactions are calculable.Satz argued that one can subtract the uncalculableχ→J/ψ+γcontribution by detecting the photon. 3.Disoriented Chiral Condensate?Equilibrium high temperature QCD manifests a chiral symmetry if the light up and down quarks are taken to be massless.However,a phase transition occurs at a critical temperature T c∼140MeV at which chiral symmetry is broken by the formation of a scalarqγ5 τq ,where τare the Pauli isospin matrices.Consequently,domains containing a macroscopic pionfield can appear as the temperature drops below T c.Such domains will eventually disappear as the system evolves towards the true vacuum in which only the scalar condensate is nonzero.Bjorken,Kowalski,Taylor and others pointed out that DCCs can lead tofluctu-ations in the charged and neutral pion spectra.15In the heavy ion system,the evolving DCC domains can radiate pions preferentially according to their isospin content.How-ever,the ability of experimenters to identify DCCs amidst the background produced by conventional mechanisms critically depends on the domains’size and energy con-tent.16At this meeting,Kluger discussed efforts to calculate DCC formation using the linear sigma model.In this model,the the pionfield is coupled to a scalarσfield that characterizes the scalar condensate1.Thefields interact through the potential V=λ( π2+σ2−v2)2/4−Hσthat is intended to describe the behavior of QCD near T c.Many agree16–18that the scale of the domain size isfixed by the inverse sigma mass m−1σ∼{λv2}−1/2.The question is,what is the value of mσin the high density system?Kluger,Cooper,Mottola and Paz studied the time evolution of the linear sigma model in a self consistent large N approximation,where N is the number of pions.Domains are small in this model,perhaps∼1−3fm,because mσis large at T c. Alternatively,M¨u ller and I observed that if mσ(T c)=0(as would be the case if chiral restoration were strictly second order),domains would be much larger and,perhaps, observable.18If seen in ion-ion collisions,DCC’s can provide information about the equationof state of hot QCD.Similarly,the detection of seismic waves on Jupiter may teach us about the EOS of metallic hydrogen.Both effects are fascinating but may prove very difficult to observe!But what about QCD?The nature of the phase transition is unknown for realistic values of the u,d and s quark masses.The real transition is likely continuous,but with the large increase in the energy density mentioned earlier.The linear sigma model does not describe this increase.Nevertheless,QCD can exhibit largefluctuations in the transition region indicative of nearly critical behavior as described by the three-flavor sigma model.19Sch¨a fer and Shuryak suggest that an instanton liquid model may capture both of these features.Sch¨a fer observed that the pion suffers strong interactions at high T as in the sigma model.20Shuryak argued that the instanton liquid model can also explain the large energy density change in QCD.Models like this may therefore provide a more realistic context for studying dynamical phenomena such as DCC’s than the linear sigma model.To summarize,there has been substantial progress in understanding the hard-core phenomenology of Au+Au at the AGS and S+Au at the SPS.The heavy ion experimental program is driving towards heavier projectiles and higher energies,with√Pb+Pb at the SPS this fall and RHIC at19.S.Gavin,A.Gocksch,R.D.Pisarski,Phys.Rev.D493079(1994).20.A.Gocksch,Phys.Rev.Lett.671701(1991).。

相关文档
最新文档