压电式加速度传感器

合集下载

振动试验中加速度传感器的选择

振动试验中加速度传感器的选择

振动试验中加速度传感器的选择导语:振动试验中,我们对控制点、监测点等的振动量值大多是通过加速度传感器采样得到的,该数值的正确性、可信性,直接影响到对试验的结果的判定。

影响振动试验中振动量值的正确获得,除了与传感器的安装位置、试件的安装等外,还跟传感器的技术指标有关,它是得到振动量值的最直接也是最重要的单元之一。

本文结合理论及实际经验,介绍振动试验中压电式加速度传感器的选择。

振动试验中,我们对控制点、监测点等的振动量值大多是通过加速度传感器采样得到的,该数值的正确性、可信性,直接影响到对试验的结果的判定。

影响振动试验中振动量值的正确获得,除了与传感器的安装位置、试件的安装等外,还跟传感器的技术指标有关,它是得到振动量值的最直接也是最重要的单元之一。

本文结合理论及实际经验,介绍振动试验中压电式加速度传感器的选择。

1.灵敏度压电式加速度传感器的灵敏度有两种表示方法,一个是电荷灵敏度Sq,另一个是电压灵敏度Sv,其电学特性等效电路如图1。

图1压电式加速度传感器的是电学特性等效电路压电片上承受的压力为F1=ma,在压电片的工作表面上产生的qa 与被测振动的加速度a成正比:即展开剩余85%Qa=Sqa其中,比例系数Sq就是压电式加速度传感器的电荷灵敏度,量纲是[pC/ms²]。

传感器的开路电压:Ua=Qa/Ca式中,Ca为传感器的内部电容量,对于一个特定的传感器来说,Ca为一个确定值。

所以也就是说,加速度传感器的开路电压Ua也与被测加速度a成正比,比例系数Sv就是压电式加速度传感器的电压灵敏度,量纲是[mV/ms²]。

Ua=(Sq/Ca)*a在压电式加速度传感器的使用说明书上所标出的电压灵敏度,一般是指在限定条件下的频率范围内的电压灵敏度Sv。

在通常条件下,当其它条件相同时,几何尺寸较大的加速度传感器有较大的灵敏度。

使用说明书上还会给出最小加速度测量值,也称最小分辨率,考虑到后级放大电路噪声问题,应尽量远离最小可能值,以确保最佳信噪比。

压电式加速度传感器的信号输出形式

压电式加速度传感器的信号输出形式

电荷输出型传统的压电加速度计通过内部敏感芯体输出一个与加速度成正比的电荷信号。

实际使用中传感器输出的高阻抗电荷信号必须通过二次仪表将其转换成低阻抗电压信号才能读取。

由于高阻抗电荷信号非常容易受到干扰,所以传感器到二次仪表之间的信号传输必须使用低噪声屏蔽电缆。

由于电子器件的使用温度范围有限,所以高温环境下的测量一般还是使用电荷输出型。

北智BW-Sensor采用进口陶瓷的加速度计可在温度-40oC~250oC范围内长期使用。

低阻抗电压输出型(IEPE)IEPE型压电加速度计即通常所称的ICP型压电加速度计。

压电传感器换能器输出的电荷通过装在传感器内部的前置放大器转换成低阻抗的电压输出。

IEPE型传感器通常为二线输出形式,即采用恒电流电压源供电;直流供电和信号使用同一根线。

通常直流电部分在恒电流电源的输出端通过高通滤波器滤去。

IEPE型传感器的最大优点是测量信号质量好、噪声小、抗外界干扰能力强和远距离测量,特别是新型的数采系统很多已配备恒流电压源,因此,IEPE传感器能与数采系统直接相连而不需要任何其它二次仪表。

在振动测试中IEPE传感器已逐渐取代传统的电荷输出型压电加速度计。

传感器的灵敏度,量程和频率范围的选择压电型式的加速度计是振动测试的最主要传感器。

虽然压电型加速度计的测量范围宽,但因市场上此类加速度计品种繁多,所以给正确的选用带来一定的难度。

艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。

如需进一步了解图尔克、奥托尼克斯、科瑞、山武、倍加福、邦纳、亚德客、施克等各类传感器的选型,报价,采购,参数,图片,批发信息,请关注艾驰商城/。

压电式压力传感器原理及应用

压电式压力传感器原理及应用

压电式压力传感器原理及应用自动化研1302班王民军压电式压力传感器是工业实践中最为常用的一种传感器。

而我们通常使用的压力传感器主要是利用压电效应制造而成的,这样的传感器也叫压电式压电传感器。

压电式压力传感器可以用来测量发动机内部燃烧压力的测量与真空度的测量。

也可以用于军事工业,例如用它来测量枪炮子弹在膛中击发的一瞬间的膛压的变化和炮口的冲击波压力。

它既可以用来测量大的压力,也可以用来测量微小的压力。

一、压电式传感器的工作原理1、压电效应某些离子型晶体电介质(如石英、酒石酸钾钠、钛酸钡等)沿着某一个方向受力而发生机械变形(压缩或伸长)时,其内部将发生极化现象,而在其某些表面上会产生电荷。

当外力去掉后,它又会重新回到不带电的状态,此现象称为“压电效应”。

压电式传感器的原理是基于某些晶体材料的压电效应。

2、压电式压力传感器的特点压电式压力传感器是基于压电效应的传感器。

是一种自发电式和机电转换式传感器。

它的敏感元件由压电材料制成。

压电材料受力后表面产生电荷。

此电荷经电荷放大器和测量电路放大和变换阻抗后就成为正比于所受外力的电量输出。

压电式压力传感器用于测量力和能变换为力的非电物理量,如压力、加速度等(见压电式压力传感器、加速度计)。

压电式压力传感器是利用压电材料的压电效应将被测压力转换为电信号的。

由压电材料制成的压电元件受到压力作用时产生的电荷量与作用力之间呈线性关系:Q=k*S*p。

式中 Q为电荷量;k为压电常数;S为作用面积;p为压力。

通过测量电荷量可知被测压力大小。

压电式压力传感器的工作原理与压电式加速度传感器和力传感器基本相同,不同的是弹性元件是由膜片等把压力转换成集中力,再传给压电元件。

为了保证静态特性及稳定性,通常多采用压电晶片并联。

在压电式压力传感器中常用的压电材料有石英晶体和压电陶瓷,其中石英晶体应用得最为广泛。

二、压电压力传感器等效电路和测量电路在校准用的标准压力传感器或高精度压力传感器中采用石英晶体做压电元件外,一般压电式压力传感器的压电元件材料多为压电陶瓷,也有用高分子材料(如聚偏二氟乙稀)或复合材料的合成膜的。

传感器 简答题

传感器 简答题

1.简述压电式加速度传感器和压电式力传感器在基本结构上的不同点。

答:压电式加速度传感器有一惯性质量块,并通过弹簧压在压电元件上,感受了被测振动的质量块产生的惯性力,使得压电元件受力变形。

压电式力传感器,被测力通过传力元件实现测量,不需要惯性质量块。

2.涡流式位移传感器的涡流大小与哪些参数有关?答:(1)线圈激励电源的频率与幅值。

(2)线圈的几何参数,如匝数、半径等。

(3)金属导体的电阻率、磁导率、厚度等。

(4)线圈与金属导体的距离。

3.图示为电感式压力传感器原理图,图中p为被测压力试说明其工作原理。

答:(1)压力p作用时,膜片变形产生位移,且位移与压力成正比。

(2)膜片与铁芯的距离变化,导致线圈的电感发生变化,电感变化量与输入压力成正比。

4.简述金属热电阻的测温机理。

答:金属导体通过自由电子导电,而导电的实质是电子的定向运动过程。

当温度升高时,金属导体中的自由电子获得了更多的能量,因此使自由电子进行定向运动所需要的电能将增大,导电率减弱,电阻率增大。

反之当温度降低时,导电率增强,电阻率减小。

5.人工视觉系统图像输出装置大致分为哪两类?(1)一类是软拷贝。

(2)另一类是硬拷贝。

6.试回答与干扰有关的下列问题(1)什么是噪声?(2)形成干扰的条件是什么?答:(1)噪声定义为:在一有用频带内任何不希望的干扰或任何不希望的信号。

(2)形成干扰的三个条件为:干扰源、干扰的耦合通道、干扰的接收通道。

7.用框图表示传感器的组成原理,并简要说明各部分的作用。

答:框图如下所示:敏感元件感受被测物理量,且以确定关系输出另一个物理量;转换元件是将敏感元件输出的非电量转换为电路参数及电流或电压信号;基本转换电路将电信号转换为便于传输、处理的电量。

8.在光栅式位移传感器中,光路系统选择的依据是什么?有哪几种光路系统?答:光路系统应根据传感器中所采用的光栅的形式来选择。

光路系统有透射式光路和反射式光路。

9.说明人工视觉系统中图像处理部分的作用。

EN060压电式加速度传感器使用说明书

EN060压电式加速度传感器使用说明书
3
力变形时,其极化面会产生与应力相应的电荷。 则有: Q= d F
其中 Q 为电荷量,d 为压电晶体的压电常数,F 为作用力 我们一般在晶体上加一惯性质量,则根据牛顿第二定律
F=ma 其中 m 为质量,a 为加速度 将此公式带入上式,在晶体的两端即可得到与加速度成正比的电荷 量,这就实现了加速度的测量。 为提高环境性能,国际上大都使用先进的剪切敏感原理,该产品也 使用了剪切原理。 压电敏感件在承受外力时就产生电荷,当压电元件电极表面聚集电荷 时,它又相当于一个以压电材料为电介质的电容器 C1——敏感件电容 C2——放大器反馈电容 R——放大器反馈电阻 A——运放的开环增益 为防止传感器在实际现场测量时地回路干扰,我们在其内部对敏感 件及电路进行了隔离悬浮处理,这样,传感器的外壳仅是一个屏蔽外壳 直接接地回路,从结构设计上保证减少地回路影响。 由于二线制负恒电流电压源供电,其输出是一带负直流偏置的交流 动态信号,其直流偏置电压为-10 ~ -12VDC,这样在不感受振动加速度 时传感器亦应有-10 ~ -12VDC 的直流电压(零点输出),以此为参考点,其 交流输出幅度为±5Vp,频响低端实测可至 0.3Hz,对应灵敏度 500mv/g。
2、 电缆 (一头 5/8-24 两芯屏蔽线 L=3 米,密封整体线、线质、
长度另外特定,可定制铠装接线)。
3、 安装钢螺栓 1/4-28×10 1 只
4、 产品出厂检验合格证
1份
5、 使用说明书
1份
9
10
检查 安装 紧固 接线 模拟、敲击、观察 使用 9、该加速度传感器为计测产品,年灵敏度变化<1%,在需精确测量时, 应一年检定一次,可选择计量部门或生产厂用比较法进行检定。 10、用户不得自行随意拆卸、更换产品的电气元件。 11,接线示意图

压电式加速度传感器检定规程

压电式加速度传感器检定规程

压电式加速度传感器检定规程如下:
外观检查:检查传感器的外观是否完好,无破损、裂纹等缺陷。

灵敏度检定:通过施加一定的加速度,测量传感器的输出电压,计算其灵敏度,判断是否符合要求。

频率响应检定:在不同频率下施加加速度,测量传感器的输出电压,绘制频率响应曲线,判断其是否符合要求。

横向灵敏度检定:在传感器敏感轴以外的方向上施加加速度,测量传感器的输出电压,判断其横向灵敏度是否符合要求。

温度影响检定:在不同温度下施加加速度,测量传感器的输出电压,判断其温度影响是否符合要求。

以上是压电式加速度传感器的基本检定规程,具体检定步骤和方法可能因不同的传感器型号和应用场景而有所不同。

各种传感器介绍范文

各种传感器介绍范文

各种传感器介绍范文传感器是指能够接收并感知外界的物理量并转换成可供处理和控制的电信号或其他形式信号的装置。

在现代生活中,各种传感器被广泛应用于工业、农业、医疗、航空航天和智能家居等领域。

下面将介绍几种常见的传感器。

1.温度传感器:温度传感器用于测量物体的温度。

常用的温度传感器有热电偶和热敏电阻。

热电偶通过两种不同金属的导线焊接在一起,当两端温差形成时,产生微弱的电势差,并通过电路放大成可测量的信号。

热敏电阻则利用材料的电阻与温度之间的关系来测量温度。

2.湿度传感器:湿度传感器用于测量空气中的湿度水分含量。

常见的湿度传感器有电容式湿度传感器和电阻式湿度传感器。

电容式湿度传感器利用空气中水分对电容器电容值的影响来测量湿度。

电阻式湿度传感器则利用一种特殊的材料,当被湿气吸附后会导致电阻发生变化,通过测量电阻的变化来判断湿度。

3.光传感器:光传感器用于测量物体或环境的光强度。

光传感器的种类很多,包括光敏电阻、光电二极管和光电池等。

光敏电阻利用材料的电阻与光强度之间的关系来测量光照度。

光电二极管通过漏光效应产生电流,来测量光强度。

光电池则可以将光能转换为电能,输出可测量的电压或电流信号。

4.压力传感器:压力传感器用于测量物体或环境的压强。

常见的压力传感器有压电式压力传感器和电阻式压力传感器。

压电式压力传感器利用压电效应使物体变形,进而产生电荷,通过测量电荷的大小来得到压力值。

电阻式压力传感器则利用元件的电阻与受力时单位面积上受力导致的电阻变化的关系来测量压力。

5.加速度传感器:加速度传感器用于测量物体的加速度或振动。

常见的加速度传感器有压电式加速度传感器和微机电系统(MEMS)加速度传感器。

压电式加速度传感器通过材料在受力时产生电荷来测量加速度。

MEMS加速度传感器则通过微小的机械结构和电路来检测物体的微弱振动并转换成电信号。

以上是几种常见的传感器介绍,它们在各个领域都有重要的应用价值。

除了这些传感器,还有许多其他类型的传感器,例如声音传感器、气体传感器和磁场传感器等。

压电式传感器的发展和应用

压电式传感器的发展和应用

压电式传感器的发展和应用摘要:压电式传感器是以某些电介质的压电效应为基础,在外力作用下,在电介质的表面上产生电荷,从而实现非电量测量。

压电传感元件是力敏感元件,所以它能测量最终能变换为力的那些物理量,例如力、压力、加速度等。

压电式传感器具有响应频带宽、灵敏度高、信噪比大、结构简单、工作可靠、重量轻等优点,因此,在工程力学、生物医学、石油勘探、声波测井、电声学等许多技术领域中获得了广泛的应用。

关键字:压电式传感器,压电效应,发展与应用正文:1.压电式传感器的工作原理1.1压电效应压电式传感器是利用电解质的压电效应工作的。

某些晶体,在一定方向受到外力作用是,内部将产生极化现象,相应的在晶体的两个表面产生符号相反的电荷;当外力作用除去时,又恢复到不带电状态。

当外力方向改变时,电荷的极性也随之改变,这种现象称为压电效应。

1.2压电材料压电材料分三类压电晶体,如石英等;压电陶瓷,如钛酸钡、锆钛酸铅等;压电半导体,如硫化锌、碲化镉等。

1.3压电式传感器等效电路右图是压电压电式传感器的等效电路。

当压电传感器中的压电晶体承受被测机械应力的作用时,在它的两个极面上出现极性相反但电量相等的电荷。

其电容量为2.压电式传感器的发展2.1压电式传感器的发展压电传感器技术的发展历程可分为三个阶段。

第一个阶段是60~70年代,传感器以电荷输出为主,测量系统包括压电传感器和以电荷放大器为主的信号适调装置;到了80~90年代中期,出现了IEPE(In Electronics Piezoelectricity)传感器,也被称为低阻抗电压输出传感器,它主要解决了压电信号以高阻抗传输带来的一系列问题;第三阶段是90年代中期至今,即插即用智能TEDS 混合模式接口传感器2.2国内发展现状在我国压电传感器的研究与应用明显落后于世界先进水平,自70年代以来,压电传感器的应用主要是为了满足航天技术发展的需要。

改革开放之后,随着引进国外先进技术和管理经验,国民经济进入快阶段,现代测量技术的发展与应用成为必然。

加速度传感器及压电式传感器应用

加速度传感器及压电式传感器应用

加速度传感器及压电式传感器应用摘要:加速度传感器是一种惯性传感器,它能感受加速度并转换成可用输出信号,被广泛用于航空航天、武器系统、汽车、消费电子等。

通过加速度的测量,本文简单介绍了加速度传感器的种类、原理及相关应用并着重介绍了压电式加速度传感器。

关键词:加速度,传感器,应用一加速度传感器概况加速度检测是基于测试仪器检测质量敏感加速度产生惯性力的测量,是一种全自主的惯性测量,加速度检测广泛应用于航天、航空和航海的惯性导航系统及运载武器的制导系统中,在振动试验、地震监测、爆破工程、地基测量、地矿勘测等领域也有广泛的应用。

测量加速度,目前主要是通过加速度传感器(俗称加速度计),并配以适当的检测电路进行的,在(1~64)Hz的设备频率下典型的加速度测量范围为(0.1~10)g。

加速度传感器的种类繁多,依据对加速度计内检测质量所产生的惯性力的检测方式来分,加速度计可分为压电式、压阻式、应变式、电容式、振梁式、磁电感应式、隧道电流式、热电式等;按检测质量的支承方式来分,则可分为悬臂梁式、摆式、折叠梁式、简支承梁式等。

多数加速度传感器是根据压电效应的原理来工作的,当输入加速度时,加速度通过质量块形成的惯性力加在压电材料上,压电材料产生的变形和由此产生的电荷与加速度成正比,输出电量经放大后就可检测出加速度大小。

下表为部分加速度计的检测方法及其主要性能特点。

(~(~(~(~(~~((~部分加速度计的检测方法及其主要性能特点从测量维数上来看,单维的加速度传感器技术比较成熟,绝大多数加速度传感器为一维型(单轴),而微惯性系统以及其他~些应用场合常常需要双轴或者三轴的加速度传感器来检测加速度矢量,目前市场上有越来越多的产品应用了双轴以及三轴加速度传感器。

如美国美新半导体有限公司(MEMSIC)开发出了用于车身控制的双轴加速度传感器,该产品的特点是没有机械可动部分,而且产品供货后的故障发生率一直控制在一位数多的ppm值。

压电式加速度传感器的工作原理

压电式加速度传感器的工作原理

压电式加速度传感器的工作原理
压电式加速度传感器是一种利用压电效应测量加速度的传感器。

它由一个压电晶体和质量块组成。

工作原理如下:
1. 当加速度传感器受到加速度作用时,质量块会受到力的作用而发生位移。

2. 位移的变化引起压电晶体的压电效应,从而在晶体上产生电荷。

3. 电荷由传感器输出接口传送到外部电路进行信号处理。

4. 根据电荷的大小,可以计算得到加速度的数值。

压电式加速度传感器的工作原理主要基于压电效应,即一些材料在受到力或压力作用时会产生电荷。

这种工作原理具有快速响应、高精度和宽工作频率范围等优点,因此常被应用于振动测量、机械设备监测、运动控制等领域。

压电式传感器

压电式传感器

3.压电元件
用压电材料制造的传感元件称作压电元件。
第一节
压电式传感器的工作原理
4.压电效应机理 现以石英晶体为例,简要说明压电效应的机理。 (1)石英晶体的结构 石英晶体是二氧化硅单晶,属于六角 晶系。右图是天然晶体的外形图,它为规 则的六角棱柱体。 z 轴又称光轴,它与晶体的纵轴线方向 一致; x 轴又称电轴,它通过六面体相对的两 个棱线并垂直于光轴; y 轴又称为机械轴,它垂直于两个相对 的晶柱棱面。
AQ Uo [Ca Cc Ci (1 A)Cf ]
当 A 足够大时,则(1 + A)Cf >>(Ca + Cc + Ci),这样
AQ Q Uo (1 A)Cf Cf
由此可见,电荷放大器的输出电压仅与输入电荷和反馈电 容有关,电缆电容等其他因素的影响可以忽略不计。
第一节
压电式传感器的工作原理
(2)纵向压电效应 从晶体上沿 x y z 轴线切下的一片平 行六面体的薄片称为晶体切片。 它的六个面分别垂直于光轴、电轴 和机械轴。通常把垂直于 x 轴的上下两
个面称为 x 面,把垂直于 y 轴的面称为
y 面。 如右图所示。当沿着 x 轴对晶片施 加力时,将在 x 面上产生电荷,这种现 象称为纵向压电效应。
压电式传感器:一种典型的自发电式传感器。它以某些电 介质的压电效应为基础,在外力作用下,在电介质表面将产生 电荷,从而实现非电量电测的目的。压电传感元件是力敏感元 件。 应用:它可以测量那些最终可以变换为力的非电物理量, 但不能用于静态参数的测量。
第一节 压电式传感器的工作原理
一、压电效应
二、压电材料
第三节
压电式传感器的结构与应用
二、压电式加速度传感器

压电式加速度传感器及其应用

压电式加速度传感器及其应用

微型化与集成化发展趋势
微型化设计
随着微电子技术和微纳加工技术的不断进步,压电式加速 度传感器的体积不断缩小,实现了更高的集成度。
集成化技术
将传感器与信号调理电路、微处理器等集成于一体,形成 具有自检测、自校准、自诊断等功能的智能传感器模块。
MEMS技术
基于MEMS(微机电系统)技术的压电式加速度传感器具 有体积小、重量轻、功耗低等优点,广泛应用于消费电子 和汽车电子等领域。
04 压电式加速度传感器性能 指标评价方法
灵敏度与分辨率评价
灵敏度
压电式加速度传感器的灵敏度反映了其输出信号与被测加速度之间的比例关系。 高灵敏度意味着传感器能够检测到更微小的加速度变化,提高测量精度。
分辨率
分辨率是指传感器能够区分的最小加速度变化量。高分辨率的传感器能够提供更 详细的加速度信息,有助于更准确地分析和诊断振动问题。
多功能化与复合测量
可靠性与耐久性提升
开发具有多功能特性的压电式加速度传感 器,实现复合物理量的同时测量,如温度 、压力等,提高传感器的综合性能。
针对恶劣环境和特殊应用需求,加强压电 式加速度传感器的可靠性和耐久性研究, 确保长期稳定运行。
THANKS FOR WATCHING
感谢您的观看
06 总结与展望
压电式加速度传感器研究总结
01
压电效应与传感器设计
压电材料在受到外力作用时会产生电荷,利用这一特性可设计出高灵敏
度的加速度传感器。通过优化压电材料选择和结构设计,可提高传感器
的性能。
02
信号处理与数据分析
压电式加速度传感器输出的信号需要经过放大、滤波等处理,以提取有
用的加速度信息。借助现代信号处理技术,可实现高精度、高稳定性的

解析加速度传感器使用及干扰

解析加速度传感器使用及干扰

解析加速度传感器使用及干扰来源:大比特商务网摘要:压电式加速度传感器又称压电加速度传感器。

它也属于惯性式传感器。

它是利用某些物质如石英晶体的压电效应,在加速度传感器受振时,质量块加在压电元件上的力也随之变化。

当被测振动频率远低于加速度传感器的固有频率时,则力的变化与被测加速度成正比。

关键字:传感器,数码相机,仪器仪表压电式加速度传感器又称压电加速度传感器。

它也属于惯性式传感器。

它是利用某些物质如石英晶体的压电效应,在加速度传感器受振时,质量块加在压电元件上的力也随之变化。

当被测振动频率远低于加速度传感器的固有频率时,则力的变化与被测加速度成正比。

由于压电式加速度传感器的输出电信号是微弱的电荷,而且传感器本身有很大内阻,故输出能量甚微,这给后接电路带来一定困难。

为此,通常把传感器信号先输到高输入阻抗的前置放大器。

经过阻抗变换以后,方可用于一般的放大、检测电路将信号输给指示仪表或记录器。

压电晶体加速度传感器的横向灵敏度表示它对横向(垂直于加速度传感器轴线)振动的敏感程度,横向灵敏度常以主灵敏度(即加速度传感器的电压灵敏度或电荷灵敏度)的百分比表示。

一般在壳体上用小红点标出最小横向灵敏度方向,一个优良的加速度传感器的横向灵敏度应小于主灵敏度的3%。

因此,压电式加速度传感器在测试时具有明显的方向性。

我们平时在使用传感器时,最需要的就是它的精准测量了,但是有时候加速度传感器在出厂的时候明明好好的,但一到现场就出现一些问题,比如没有信号输出或者产生无序信号的情况,而加速度传感器没有问题,这时候很可能我们周围产生了感应干扰,影响加速度传感器输出的外界感应干扰我们可以分为以下几种:静电感应干扰:静电感应是由于两条支电路或元件之间存在着寄生电容,使一条支路上的电荷通过寄生电容传送到另一条支路上去,有时候也被称为电容性耦合。

电磁感应干扰:当两个电路之间有互感存在时,一个电路中电流的变化就会通过磁场耦合到另一个电路,这一现象称为电磁感应。

加速度传感器

加速度传感器

加速度传感器————————————————————————————————作者: ————————————————————————————————日期:加速度传感器一、简介加速度传感器是一种能够测量加速度的传感器。

通常由质量块、阻尼器、弹性元件、敏感元件和适调电路等部分组成。

传感器在加速过程中,通过对质量块所受惯性力的测量,利用牛顿第二定律获得加速度值。

根据传感器敏感元件的不同,常见的加速度传感器包括电容式、电感式、应变式、压阻式、压电式等。

二、分类压电式压电式加速度传感器又称压电加速度计。

它也属于惯性式传感器。

压电式加速度传感器的原理是利用压电陶瓷或石英晶体的压电效应,在加速度计受振时,质量块加在压电元件上的力也随之变化。

当被测振动频率远低于加速度计的固有频率时,则力的变化与被测加速度成正比。

压阻式基于世界领先的MEMS硅微加工技术,压阻式加速度传感器具有体积小、低功耗等特点,易于集成在各种模拟和数字电路中,广泛应用于汽车碰撞实验、测试仪器、设备振动监测等领域。

电容式电容式加速度传感器是基于电容原理的极距变化型的电容传感器。

电容式加速度传感器/电容式加速度计是对比较通用的加速度传感器。

在某些领域无可替代,如安全气囊,手机移动设备等。

电容式加速度传感器/电容式加速度计采用了微机电系统(MEMS)工艺,在大量生产时变得经济,从而保证了较低的成本。

伺服式伺服式加速度传感器是一种闭环测试系统,具有动态性能好、动态范围大和线性度好等特点。

其工作原理,传感器的振动系统由"m-k”系统组成,与一般加速度计相同,但质量m 上还接着一个电磁线圈,当基座上有加速度输入时,质量块偏离平衡位置,该位移大小由位移传感器检测出来,经伺服放大器放大后转换为电流输出,该电流流过电磁线圈,在永久磁铁的磁场中产生电磁恢复力,力图使质量块保持在仪表壳体中原来的平衡位置上,所以伺服加速度传感器在闭环状态下工作。

由于有反馈作用,增强了抗干扰的能力,提高测量精度,扩大了测量范围,伺服加速度测量技术广泛地应用于惯性导航和惯性制导系统中,在高精度的振动测量和标定中也有应用。

压电式传感器与超声波传感器

压电式传感器与超声波传感器

在很宽频带范围内具有较高灵敏度;
Ø 密封型超声波传感器:密封型超声波传感器对环境的适应 性较强,可应用于汽车后方检测物体的装置; Ø 高频型超声波传感器:中心频率高于100kHz。
五、超声波传感器驱动及接收电路
与晶体振荡一样,利用传感器本身的谐振特性在谐 振频率附近产生振荡的电路。
采用运放的接收电路
发送信号脉冲40kHz
发送器T
脉冲变压器
1k
BG D3 MA40 被 测 物 体 25ms 直射波 D1 D2
3.3k
47k
3.7k
3 1
5.6k 0.001 F
UO
51k
7
22 F
6
0.47 F
2 4 5
3.3k
33 F
10 F
反射波(信号波)
接收信号脉冲
3.3k
47k
3.7k
3 1
5.6k 0.001 F
UO
51k
7
22 F
6
0.47 F
2 4 5
3.3k
33 F
10 F
反射波(信号波)
接收信号脉冲
接收器R
发送器:由门电路、缓冲器以及脉冲变压器的升压电路组成。 用20Hz调制40kHz的高频信号加到脉冲变压器上,经脉冲变 压器升压,得到较高的脉冲电压供给超声波传感器,传感器 获得的能量以声能形式辐射出去。
膜片 预紧筒
晶片组
电极 外壳 芯体
4、 压电式玻璃破碎报警器 • 利用压电元件对振动敏感的特性来感知玻璃受撞 击和破碎时产生的振动波。传感器把振动波转换 成电压输出 输出电压经放大、 滤波、 比较等处 理后提供给报警系统。 • 传感器的最小输出电压为 100 mV, 最大输出 电压为 100 V, 内阻抗为 15~20 kΩ。

5-4 压电式传感器的应用

5-4 压电式传感器的应用
q' =2q; U'=U; C'=2C 图5-22(b)为串联形式,正电荷集中在上极板,负电荷集中在下极板, 而中间的极板上产生的负电荷与下片产生的正电荷相互抵消。从图中可知, 输出的总电荷 q' 等于单片电荷 q ,而输出电压 U'为单片电压 U 的二倍,总 电容 C' 为单片电容 C 的一半,即
当膜片 5 受到压力 P 作用后,则在压电晶片上产生电荷。在一个压电片
上所产生的电荷 q 为
q=d11F=d11SP
式中 F——作用于压电片上的力;
(5-42)
d11——压电系数; P ——压强,P=F/S;
S ——膜片的有效面积。
测压传感器的输入量为压力 P,如果传感器只由一个压电晶片组成,则 根据灵敏度的定义有:
第五章习题
5.7 .分析压电式加速度计的频率响应特性。若测量电路的总电容 C= 1 000 pF,总电阻 R= 500 MΩ,传感器机械系统固有频率 f0=30 kHz,相对阻尼 系数ξ=0.5,求幅值误差小于 2 %时,其使用的频率范围 。
5.8.用石英晶体加速度计测量机器的振动,已知加速度计的灵敏度为 5 pC/g (g为重力加速度,g=9.8 m/s2),电荷放大器灵敏度为 50 mV/pC,当机 器达到最大加速度时,相应输出幅值电压为2V。试计算机器的振动加速 度。
1
0

1

0
2 2




2


0
2
(5-35) (5-36)
§5-4 压电式传感器的应用
相频特性



arctan
2

0

压电式加速度传感器(最新整理)

压电式加速度传感器(最新整理)

压电式加速度传感器摘要:本文介绍了压电式加速度传感器的结构和工作原理,推导了传感器的数学模型,并分析了测量电路,压电传感器的产生零漂现象的各种原因,并针对这些原因提出相应的解决措施。

关键词:压电式;加速度传感器;零漂1 引言现代工业和自动化生产过程中,非电物理量的测量和控制技术会涉及大量的动态测试问题。

所谓动态测试是指量的瞬时值以及它随时间而变化的值的确定,即被测量为变量的连续测量过程。

它以动态信号为特征,研究了测试系统的动态特性问题,而动态测试中振动和冲击的精确测量尤其重要。

振动与冲击测量的核心是传感器,常用压电加速度传感器来获取冲击和振动信号。

压电式传感器是基于某些介质材料的压电效应,当材料受力作用而变形时,其表面会有电荷产生,从而实现非电量测量。

压电式传感器具有体积小,质量轻,工作频带宽等特点,因此在各种动态力、机械冲击与振动的测量以及声学、医学、力学、体育、制造业、军事、航空航天等领域都得到了非常广泛的应用。

加速度传感器作为测量物体运动状态的一种重要的传感器,加速度传感器主要分为压阻式、电容式、应变式、压电式、振弦式、挠性摆式、液浮摆式等类型。

压电式加速度传感器是以压电材料为转换元件,将加速度输入转化成与之成正比的电荷或电压输出的装置,具有结构简单、重量轻、体积小、耐高温、固有频率高、输出线性好、测量的动态范围大、安装简单的特点。

2工作原理压电式加速度传感器又称为压电加速度计,它也属于惯性式传感器。

它是典型的有源传感器。

利用某些物质如石英晶体、人造压电陶瓷的压电效应,在加速度计受振时,质量块加在压电元件上的力也随之变化。

压电敏感元件是力敏元件,在外力作用下,压电敏感元件的表面上产生电荷,从而实现非电量电测量的目的。

压电加速度传感器的原理框图如图1所示,原理如图2所示。

图1 加速度传感器的组成框图支座图2 压电加速度传感器原理图实际测量时,将图中的支座与待测物刚性地固定在一起。

当待测物运动时,支座与待测物以同一加速度运动,压电元件受到质量块与加速度相反方向的惯性力的作用,在晶体的两个表面上产生交变电荷(电压)。

压电式加速度传感器解读

压电式加速度传感器解读

华东交通大学理工学院论文题目:压电式加速度传感器课程:传感器原理及其应用姓名;吕进专业:通信工程班级: 12 通信2班学号:20120210420243压电式加速度传感器前言目前,国内研制的高冲击压电加速度传感器的性能受材料、结构、工艺和安装等因素的影响,量程和上限频率难以得到提高,从而导致在高冲击下测量的线性度较差。

现在国内研制的压电传感器样机可测量的最大冲击加速度为 1 OO,OOOg,安装谐振频率约为9.5kHz,线性度为10%,还不能完全满足工程使用的要求。

因此,为了满足高速碰撞测试和常规触发引信用压电加速度传感器的要求,本文研究提高压电加速度传感器的量程和频响的设计技术,这项技术可应用在钻地武器试验和深层钻地弹引信中。

在核武器飞行试验中,均要进行触地测试,了解核弹头碰地的状况,测量其触地加速度,为其触发引信的设计和验证提供依据。

在常规钻地弹、侵彻弹等武器研究中,均需要大量程高频响的加速度传感器进行测量。

目前国内的传感器难以满足要求,现采用国外的传感器(如7270A),但价格昂贵且对华禁运。

综上所述,本文研究提高压电传感器的量程和频响的设计技术,为改进压电加速度传感器的性能奠定基础,为高速触地用测试传感器和深侵彻引信传感器的研究提供技术参考。

目录前言 (1)摘要 (3)关键词 (3)国内外现状 (3)压电式加速度传感器原理 (4)灵敏度 (8)误差形成因素分析 (9)提高传感器频响的措施 (9)实际应用 (11)总结 (12)参考文献 (12)摘要二十一世纪的高效发展中,信息时代已然来临,掌握信息的重要性日益重要,在人们在日常生活,生产过程中,主要依靠检测技术对信息经获取、筛选和传输,来实现制动控制,自动调节,目前我国已将检测技术列入优先发展的科学技术之一随着社会的进步,科学技术的发展,特别是近20年来,电子技术日新月异,计算机的普及和应用把人类带到了信息时代,各种电器设备充满了人们生产和生活的各个领域,相当大一部分的电器设备都应用到了传感器件,传感器技术是现代信息技术中主要技术之一,在国民经济建设中占据有极其重要的地位。

压电式加速度传感器

压电式加速度传感器

压电式加速度传感器(1) 压电式加速度计的结构和安装压电式加速度传感器又称压电加速度计。

它也属于惯性式传感器。

它是利用某些 物质如石英晶体的压电效应,在加速度计受振时,质量块加在压电元件上的力也 随之变化。

当被测振动频率远低于加速度计的固有频率时,则力的变化与被测加 速度成正比。

由于压电式传感器的输出电信号是微弱的电荷,而且传感器本身有很大内阻,故 输岀能量甚微,这给后接电路带来一定困难。

为此,通常把传感器信号先输到 高输入阻抗的前置放大器。

经过阻抗变换以后,方可用于一般的放大、检测电路 将信号输给指示仪表或记录器。

目前,制造厂家已有把压电式加速度传感器与 前置放大器集成在一起的产品,不仅方便了使用,而且也大大降低了成本。

常用的压电式加速度计的结构形式如图13. 18所示。

S 是弹簧,M 是质块,B 是基座,P 是压电元件,R 是 夹持环。

图13. 18a 是中央安装压缩型,压电元件一质量块一弹簧系统装在圆形中心支柱上,支柱与基座连接。

这种结构有高的共振频率。

然而基座B 与测试对象连接时,如果基座 B 有变形则将直接影响拾振器输出。

此外,测试对象和环境温度变化将影响压电 元件,并使预紧力发生变化,易引起温度漂移。

图13.18c 为三角剪切形,压电 元件由夹持环将其夹牢在三角形中心柱上。

加速度计感受轴向振动时,压电元件 承受切应力。

这种结构对底座变形和温度变化有极好的隔离作用,有较髙的共 振频率和良好的线性。

图13. 18b 为环形剪切型,结构简单,能做成极小型、髙 共振频率的加速度计,环形质量块粘到装在中心支柱上的环形压电元件上。

由于 粘结剂会随温度增高而变软,因此最髙工作温度受到限制。

(a)中心安装压缩型(b)环形剪切型(c)三角剪切型 图13. 18压电式加速度计n j| li加速度计的使用上限频 率取决于幅频曲线中的 共振频率图(图13. 19)。

一般小阻尼(z<=0. 1)的 加速度计,上限频率若取 为共振频率的1/3,便可 1/5,则可保证幅值误差小于0. 5dB (即6%),相移小于3°。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

HEFEI UNIVERSITY OF TECHNOLOGY《传感器原理及应用》课程考核论文题目压电式加速度传感器班级机设七班学号 ********姓名孙国强成绩机械与汽车工程学院机械电子工程系二零一四年五月压电式加速度传感器摘要:现代工业和自动化生产过程中,非电物理量的测量和控制技术会涉及大量的动态测试问题。

所谓动态测试是指量的瞬时值以及它随时间而变化的值的确定,即被测量为变量的连续测量过程。

振动与冲击测量的核心是传感器,常用压电加速度传感器来获取冲击和振动信号。

压电式传感器是基于某些介质材料的压电效应,当材料受力作用而变形时,其表面会有电荷产生,从而实现非电量测量。

其中,压电式加速度传感器是以压电材料为转换元件,将加速度输入转化成与之成正比的电荷或电压输出的装置,具有结构简单、重量轻、体积小、耐高温、固有频率高、输出线性好、测量的动态范围大、安装简单的特点。

一、传感器物理效应及工作原理压电效应:某些材料在受力时所产生的电极化现象。

正压电效应:某些电介质在受到某一方向的机械力而变形时,在一定表面上产生电荷,若外力变向,电荷极性随之而变;当撤除外力后,又重新回到不带电状态。

逆压电效应:当在电介质的极化方向施加电场,电场力使其在一定方向上产生机械变形或机械应力;当撤除外加电场时,变形或应力随之消失,又称电致伸缩效应。

压电材料:石英晶体是目前广泛应用成本较低的人造石英晶体,有很大的机械强度和稳定的机械性能,温度稳定性好,但灵敏度低,介电常数小,因此逐渐被其他压电材料所代替,至今石英仍是最重要的也是用量最大的振荡器、谐振器和窄带滤波器等元件的压电材料。

除此之外,压电陶瓷有较高的压电系数和介电常数,灵敏度高,但机械强度不如石英晶体好。

压电式加速度传感器又称为压电加速度计,它是典型的有源传感器,利用某些物质如石英晶体、人造压电陶瓷的压电效应,在加速度计受振时,质量块加在压电元件上的力也随之变化。

压电敏感元件是力敏元件,在外力作用下,压电敏感元件的表面上产生电荷,从而实现非电量电测量的目的。

压电加速度传感器的原理框图如图1所示,原理如图2所示。

实际测量时,将图中的支座与待测物刚性地固定在一起。

当待测物运动时,支座与待测物以同一加速度运动,压电元件受到质量块与加速度相反方向的惯性力的作用,在晶体的两个表面上产生交变电荷(电压)。

当振动频率远低于传感器的固有频率时,传感器的输出电荷(电压)与作用力成正比。

电信号经前置放大器放大,即可由一般测量仪器测试出电荷(电压)大小,从而得出物体的加速度。

压电加速度传感器的压敏元件采用具有压电效应的压电材料,换能元件是以压电材料受力后在其表面产生电荷的压电效应为转换原理。

这些压电材料,当沿着一定方向对其施力而使它变形时,内部就产生极化现象,同时在它的两个相对的表面上便产生符号相反的电荷;当外力去掉后,又重新恢复不带电的状态;当作用力的方向改变时,电荷的极性也随着改变。

其中弹性体是传感器的核心,其结构决定着传感器的各种性能和测量精度,弹性体结构设计的优劣对加速度传感器性能的好坏至关重要。

二、传感器的构成压电式加速度传感器的敏感元件是具有压电效应的压电材料如石英晶体,转换元件是以压电材料受力后在其表面产生电荷的压电效应为转换原理。

这些压电材料,当沿着一定方向对其施力而使它变形时,内部就产生极化现象,同时在它的两个相对的表面上便产生符号相反的电荷;当外力去掉后,又重新恢复不带电的状态;当作用力的方向改变时,电荷的极性也随着改变。

压电传感器等效原理:压电晶体在受外力作用下,其电极表面产生正负极性的电荷,因此可以看成一个静电发生器,其类似一个以压电材料为电介质的电容器,如图所示。

当两极板间有异性电荷(q)时,极板之间的电压为Ua。

压电传感器的等效原理三、传感器的结构常用的压电式加速度计的结构形式如下图所示。

S是弹簧,M是质块,B是基座,P是压电元件,R是夹持环。

图a是中央安装压缩型,压电元件—质量块—弹簧系统装在圆形中心支柱上,支柱与基座连接。

这种结构有高的共振频率,然而基座B与测试对象连接时,如果基座B有变形则将直接影响拾振器输出。

此外,测试对象和环境温度变化将影响压电元件,并使预紧力发生变化,易引起温度漂移。

图c为三角剪切形,压电元件由夹持环将其夹牢在三角形中心柱上。

加速度计感受轴向振动时,压电元件承,受切应力。

这种结构对底座变形和温度变化有极好的隔离作用,有较高的共振频率和良好的线性。

图b为环形剪切型,结构简单,能做成极小型、高共振频率的加速度计,环形质量块粘到装在中心支柱上的环形压电元件上。

由于粘结剂会随温度增高而变软,因此最高工作温度受到限制。

压电式加速度传感器的幅频特性曲线:加速度计的使用上限频率取决于幅频曲线中的共振频率图,一般小阻尼(z<=0.1)的加速度计,上限频率若取为共振频率的1/3,便可保证幅值误差低于1dB(即12%);若取为共振频率的1/5,则可保证幅值误差小于0.5dB(即6%),相移小于30。

但共振频率与加速度计的固定状况有关,加速度计出厂时给出的幅频曲线是在刚性连接的固定情况下得到的。

实际使用的固定方法往往难于达到刚性连接,因而共振频率和使用上限频率都会有所下降。

压电式加速度传感器的固定方法:其中图1采用钢螺栓固定,是使共振频率能达到出厂共振频率的最好方法。

螺栓不得全部拧入基座螺孔,以免引起基座变形,影响加速度计的输出。

在安装面上涂一层硅脂可增加不平整安装表面的连接可靠性。

需要绝缘时可用绝缘螺栓和云母垫片来固定加速度计(图2),但垫圈应尽量簿。

用一层簿蜡把加速度计粘在试件平整表面上(图3),也可用于低温(40℃以下)的场合。

手持探针测振方法(图4)在多点测试时使用特别方便,但测量误差较大,重复性差,使用上限频率一般不高于1000Hz。

用专用永久磁铁固定加速度计(图5),使用方便,多在低频测量中使用。

此法也可使加速度计与试件绝缘。

用硬性粘接螺栓(图6)或粘接剂(图7)的固定方法也长使用。

某种典型的加速度计采用上述各种固定方法的共振频率分别约为:钢螺栓固定法31kHz ,云母垫片28kHz ,涂簿蜡层29kHz ,手持法2kHz ,永久磁铁固定法7kHz 。

四 、传感器的灵敏度压电式加速度计的灵敏度:压电加速度计属发电型传感器,可把它看成电压源或电荷源,故灵敏度有电压灵敏度和 电荷灵敏度两种表示方法。

前者是加速度计输出电压(mV )与所承受加速度之比;后者是加速度计输出电荷与所承受加速度之比。

加速度单位为m/s2,但在振动测量中往往用标准重力加速度g 作单位,1g= 9.80665m/s2。

这是一种已为大家所接受的表示方式,几乎所有 测振仪器都用g 作为加速度单位并在仪器的板面上和说明书中标出。

对给定的压电材料而言,灵敏度随质量块的增大或压电元件的增多而增大。

一般来说,加速度计尺寸越大 ,其固有频率越低。

因此选用加速度计时应当权衡灵敏度和结构尺寸、附加质量的影响和频率响应特性之间的利弊。

压电晶体加速度计的横向灵敏度表示它对横向(垂直于加速度计轴线)振动的敏感程度,横向灵敏度常以主灵敏度(即加速度计的电压灵敏度或电荷灵敏度)的百分比表示。

一般在壳体上用小红点标出最小横向灵敏度方向,一个优良的加速度计的横向灵敏度应小于主灵敏度的3%。

因此,压电式加速度计在测试时具有明显的方向性。

压电传感器中的压电元件材料一般有三类:一类是压电晶体,如石英晶体;另一类是经过极化处理的压电陶瓷;压电陶瓷是人工制造的多晶压电材料,它比石英晶体的压电灵敏度高得多,而制造成品较低,因此目前国内外生产的压电元件绝大多数都采用压电陶瓷。

常用的一代女陶瓷材料有锆钛酸铅系列压电陶瓷(PZT )及非铅系压电陶瓷(BaTiO3等)第三类是高分子压电材料。

典型的高分子压电材料有聚偏二乙烯(PVF2或PVDF )、聚氟乙烯(PVF )、改性聚氯乙烯(PVC )等。

它是一种柔软的压电材料,可根据需要支撑薄膜或电缆套管等形状。

它不易破碎,具有防水性,可以大量连续拉制,制成较大面积或较长的尺度,价格便宜,频率响应范围较宽,测量动态范围可达80dB 。

五 、传感器的测量电路由压电元件的工作原理可知,压电式传感器可看作一个电荷发生器。

同时,它也是一个电容器,晶体上聚集正负电荷的两表面相当于电容的两个极板,极板间物质等效于一种介质,则其电容量为:式中S 为晶片电极面面积;εr 为压电材料的相对介电常数;ε0为真空介电常数。

因此,压电传感器可以等效为一个与电容相串联的电荷源。

压电传感器本身的内阻抗很高,而输出能量较小,因此,它的测量电路通常需接入一个高输入阻抗的前置放大器,其作用如下:(1)把它的高输出阻抗变换为低输出阻抗。

(2)放大传感器输出的微弱信号。

本设计中前置放大器采用电荷放大器。

压电d S d S C r εεε0==传感器在实际使用时与测量仪器或测量电路相连接,因此还需考虑连接电缆的等效电容Cc、放大器的输入电阻Ri、输人电容Ci及压电传感器的泄漏电阻Ra,这样压电传感器在测量系统中的实际等效电路如图3所示。

图中,KA为运算放大器增益。

由于运算放大器的Ri极高,而Ra=109~1014欧姆,所以可认为Ri和Ra是开路的。

设运算放大器输人电压为Ui,输出电压为U0,根据运算放大器理论和电路理论得电荷量为Q=Ui(Ca+Cc+Ci)+(Ui-Uo)Cf式中Cf为反馈电容。

将Uo=-AkUi代入上式中得Uo=AkQ/(Cc+Ca+Ci+Cf+ACf)若放大器开环增益足够大,满足(1+AkCf)>>Ca+Cc+Ci时,上式可表示为:Uo=-Q/Cf由上可知,在一定情况下,电荷放大器的出电压与传感器的电荷量成正此,并且与电缆分布电容无关。

因此,采用电荷放大器时,即使联接电缆长度在百米以上,其灵敏度也无明显变化,这是电荷放大器的突出优点。

六、传感器的选择压电加速度传感器的敏感芯体一般由压电材料和附加质量块组成,当质量块受到加速度作用后便转换成一个与加速度成正比并加载到压电材料上的力,而压电材料受力后在其表面产生一个与加速度成正比的电荷信号。

压电材料的特性决定了作用力可以是受正应力也可以是剪应力,压电材料产生的电荷大小随作用力的方向以及电荷引出表面的位置而变。

根据压电材料不同的受力方法,常用传感器敏感芯体的结构一般有以下三种形式:1)压缩形式–压电材料受到压缩或拉伸力而产生电荷的结构形式。

压缩式敏感芯体是加速度传感器中最为传统的结构形式。

其特点是制造简单方便,能产生较高的自振谐振频率和较宽的频率测量范围。

而最大的缺点是不能有效地排除各种干扰对测量信号的影响。

2)剪切形式–通过对压电材料施加剪切力而产生电荷的结构形式。

从理论上分析在剪切力作用下压电材料产生的电荷信号受外界干扰的影响甚小,因此剪切结构形式成为最为广泛使用的加速度传感器敏感芯体。

相关文档
最新文档