浙江省【针对演练】2018年中考数学复习一数学思想方法类型四转化思想含答案
2018年浙江中考数学复习方法技巧专题一:数形结合思想训练(含答案)
方法技巧专题一 数形结合思想训练数形结合思想是指从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方法(以形助数),或利用数量关系来研究几何图形的性质解决几何问题(以数助形)的一种数学思想.一、选择题1.我们学习了一次函数、二次函数和反比例函数,回顾学习过程,都是按照列表、描点、连线得到函数的图象,然后根据函数的图象研究函数的性质,这种研究方法主要体现的数学思想是( )A .演绎B .数形结合C .抽象D .公理化2.若实数a ,b ,c 在数轴上对应的点如图F 1-1所示,则下列式子中正确的是( )图F 1-1A .ac >bcB .|a -b |=a -bC .-a <-b <-cD .-a -c >-b -c3.[2017·怀化] 一次函数y =-2x +m 的图象经过点P (-2,3),且与x 轴、y 轴分别交于点A 、B ,则△AOB 的面积是( )A .12 B.14C .4D .8 4.[2017·聊城] 端午节前夕,在东昌湖举行的第七届全民健身运动会龙舟比赛中,甲、乙两队500米的赛道上,所划行的路程y (m )与时间x (min)之间的函数关系式如图F 1-2所示,下列说法错误的是( )图F 1-2A .乙队比甲队提前0.25 min 到达终点B .当乙队划行110 m 时,落后甲队15 mC .0.5 min 后,乙队比甲队每分钟快40 mD .自1.5 min 开始,甲队若要与乙队同时到达终点,甲队的速度需提高到255 m /min5.[2016·天津] 已知二次函数y =(x -h )2+1(h 为常数),在自变量x 的值满足1≤x ≤3的情况下,与其对应的函数值y 的最小值为5,则h 的值为( )A .1或-5B .-1或5C .1或-3D .1或36.[2017·鄂州 ] 如图F 1-3,抛物线y =ax 2+bx +c 的图象交x 轴于A (-2,0)和点B ,交y 轴负半轴于点C ,且OB =O C.下列结论:①2b -c =2;②a =12;③ac =b -1;④a +bc>0.其中正确的个数有( )图F 1-3A .1个B .2个C .3个D .4个 二、填空题7.如图F 1-4是由四张全等的矩形纸片拼成的图形,请利用图中空白部分面积的不同表示方法,写出一个关于a ,b 的恒等式:________.图F 1-48.[2017·十堰] 如图F 1-5,直线y =kx 和y =ax +4交于A (1,k ),则不等式kx -6<ax +4<kx 的解集为________.图F 1-59.《庄子·天下篇》中写道:“一尺之棰,日取其半,万世不竭”意思是:一根一尺的木棍,如果每天截取它的一半,永远也取不完,如图F 1-6所示.由图易得:12+122+123+…+12n =________.图F 1-610.当x =m 或x =n (m ≠n )时,代数式x 2-2x +3的值相等,则x =m +n 时,代数式x 2-2x +3的值为________. 11.已知实数a 、b 满足:a 2+1=1a ,b 2+1=1b ,则2018|a -b |=________.12.[2017·荆州] 观察下列图形:图F 1-7它们是按一定规律排列的,依照此规律,第9个图形中共有________个点. 13.(1)观察下列图形与等式的关系,并填空:图F 1-8(2)观察图F 1-9,根据(1)中结论,计算图中黑球的个数,用含有n 的代数式填空:图F 1-91+3+5+…+(2n -1)+(________)+(2n -1)+…+5+3+1=__________. 三、解答题14.[2016·菏泽] 如图F 1-10,在平面直角坐标系xOy 中,抛物线y =ax 2+bx +2过B (-2,6),C (2,2)两点. (1)试求抛物线的解析式;(2)记抛物线顶点为D ,求△BCD 的面积;(3)若直线y =-12x 向上平移b 个单位所得的直线与抛物线段BDC (包括端点B 、C )部分有两个交点,求b 的取值范围.图F 1-10参考答案1.B 2.D 3.B 4.D5.B [解析] (1)如图①,当x =3,y 取得最小值时,⎩⎪⎨⎪⎧h >3,(3-h )2+1=5,解得h =5(h =1舍去);(2)如图②,当x =1,y 取得最小值时,⎩⎪⎨⎪⎧h <1,(1-h )2+1=5,解得h =-1(h =3舍去). 6.C [解析] 在y =ax 2+bx +c 中,当x =0时,y =c ,∴C (0,c ),∴OC =-c .∵OB =OC ,∴B (-c ,0).∵A (-2,0),∴-c 、-2是一元二次方程ax 2+bx +c =0的两个不相等的实数根,∴-c ·(-2)=c a ,∵c ≠0,∴a =12,②正确;∵a =12,-c 、-2是一元二次方程12x 2+bx +c =0的两个不相等的实数根,∴-c +(-2)=-b12,即2b -c =2,①正确;把B (-c ,0)代入y =ax 2+bx +c ,得0=a (-c )2+b ·(-c )+c ,即ac 2-bc +c =0.∵c ≠0,∴ac -b +1=0,∴ac =b -1,③正确;∵抛物线开口向上,∴a >0.∵抛物线的对称轴在y 轴左侧,∴-b2a <0,∴b >0.∴a +b >0.∵抛物线与y 轴负半轴交于点C ,∴c <0.∴a +bc<0,④不正确. 7.(a -b )2=(a +b )2-4ab8.1<x <52 [解析] 将A (1,k )代入y =ax +4得a +4=k ,将a +4=k 代入不等式kx -6<ax +4<kx 中得(a +4)x -6<ax +4<(a +4)x ,解不等式(a +4)x -6<ax +4得x <52,解不等式ax +4<(a +4)x 得x >1,所以不等式的解集是1<x <52.9.1-12n (或2n-12n )10.3 11.112.135 [解析] 第1个图形有3=3×1=3个点; 第2个图形有3+6=3×(1+2)=9个点; 第3个图形有3+6+9=3×(1+2+3)=18个点; …第n 个图形有3+6+9+…+3n =3×(1+2+3+…+n )=3n (n +1)2个点.当n =9时, =135个点. 13.解:(1)1+3+5+7=16=42.观察,发现规律,第一个图形:1+3=22,第二个图形:1+3+5=32,第三个图形:1+3+5+7=42,…, 第(n -1)个图形:1+3+5+…+(2n -1)=n 2. 故答案为:42;n 2. (2)观察图形发现:图中黑球可分三部分,1到n 行,第(n +1)行,(n +2)行到(2n +1)行, 即1+3+5+…+(2n -1)+[2(n +1)-1]+(2n -1)+…+5+3+1 =[1+3+5+…+(2n -1)]+(2n +1)+[(2n -1)+…+5+3+1] =n 2+2n +1+n 2 =2n 2+2n +1.故答案为:2n +1;2n 2+2n +1.14.解:(1)由题意,得⎩⎪⎨⎪⎧4a -2b +2=6,4a +2b +2=2,解得⎩⎪⎨⎪⎧a =12,b =-1.∴抛物线的解析式为y =12x 2-x +2.(2)如图,∵y =12x 2-x +2=12(x -1)2+32,∴抛物线的顶点坐标是(1,32).由B (-2,6)和C (2,2)求得直线BC 的解析式为y =-x +4. ∴对称轴与直线BC 的交点是H (1,3). ∴DH =32.∴S △BDC =S △BDH +S △CDH =12×32×3+12×32×1=3.(3)如图.①由⎩⎪⎨⎪⎧y =-12x +b ,y =12x 2-x +2消去y ,得x 2-x +4-2b =0.当Δ=0时,直线与抛物线只有一个公共点,∴(-1)2-4(4-2b )=0,解得b =158.②当直线y =-12x +b 经过点C 时,b =3.③当直线y =-12x +b 经过点B 时,b =5.综上,可知158<b ≤3.。
中考数学复习专题 转化思想(含答案)
转化思想一. 选择题:(本题10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得4分;共40分)1、用换元法解方程xx x x +=++2221时,若设x 2+x=y, 则原方程可化为( )A 、y 2+y+2=0B 、y 2-y -2=0C 、y 2-y+2=0D 、y 2+y -2=0 2、如图,已知ABC ∆外有一点,P 满足PC PB PA ==,则( ) A 、2231∠=∠ B 、21∠=∠ C 、221∠=∠ D 、2,1∠∠的大小无法确定3、小敏在今年的校运动会跳远比赛中跳出了满意一跳,函数23.54.9h t t =-(t 的单位:s ,h 的单位:m )可以描述他跳跃时重心高度的变化,则他起跳后到重心最高时所用的时间是( )A 、0.71sB 、 0.70sC 、0.63sD 、0.36s 4、已知如图:ΔABC 中,∠C=90°,BC=AC ,以AC 为直径的圆交AB 于D ,若AD=8cm ,则阴影部分的面积为( ) A 、64πcm 2B 、64 cm 2C 、32 cm 2D 、48 πcm 25、已知实数x 满足01122=+++x x xx ,那么x x 1+的值为( ) A 、1或-2 B 、-1或2 C 、1 D 、-26、如图,在半圆的直径上作4个正三角形,如这半圆周长为1C ,这4个正三角形的周长和为2C ,则1C 和2C 的大小关系是( )第2题 第3题第4题第6题A 、1C >2CB 、1C <2C C 、1C =2CD 、不能确定 7.如图,点A 、D 、G 、M 在半圆O 上,四边形ABOC 、DEOF 、HMNO 均为矩形,设BC=aEF=b ,NH=c ,则下列各式中正确的是 A 、a >b >c B 、a=b=c C 、c >a >bD 、b >c >a8. 如图,梯形ABCD 中,AB//DC ,AB =a ,BD =b ,CD =c ,且a 、b 、c 使方程ax bx c 220-+=有两个相等实数根,则∠DBC 和∠A 的关系是( ) A. ∠=∠DBC A B. ∠≠∠DBC AC. ∠>∠DBC AD. ∠<∠DBC A9. 如图,圆锥的母线长是3,底面半径是1,A 是底面圆周 上从点A 出发绕侧面一周,再回到点A 的最短的路线长是( ) (A) 36 (B)233 (C) 33 (D) 3 10. 已知a 、b 、c 是∆ABC 三边的长,b>a =c ,且方程ax bx c 220-+=两根的差的绝对值等于2,则∆ABC 中最大角的度数是( ) A. 90︒B. 120︒C. 150︒D. 60︒二、填空题:(本大题共4小题,每小题5分,共20分,)11、一位美术老师在课堂上进行立体模型素描教学时,把14个棱长为1分米的正方体摆在课桌上成如图形式,然后他把露出的表面都涂上不同的颜色,则被他涂上颜色部分的面积为__________12、某同学在电脑中打出如下排列的若干个圆(图中●表示实心圆,○表示空心圆):● ○●●○●●●○●●●●○●●●●●○●●●●●●○若将上面一组圆依此规律复制得到一系列圆,那么前2007个圆中有 个空心圆; 13、二次函数y=ax 2+bx+c (a ≠0)的部分对应值如下表,则不等式ax 2+bx+c>0的解集为 .HN O F CA DGMcab E B第7题第8题 D C12 A B 第9题第11题y(元)12x-3-2-101234y60-4-6-6-4065第13题038x(公里)第14题14.我市某出租车公司收费标准如图所示,如果小明只有19元钱,那么他乘此出租车最远能到达公里处.三、解答题:(共6小题,第15题10分、第16题10分、第17题10分、第18题9分、第19题10分、第20题11分)15、某数学兴趣小组,利用树影测量树高.已测出树AB的影长AC为9米,并测出此时太阳光线与地面成30°夹角.(1)求出树高AB;(2)因水土流失,此时树AB沿太阳光线方向倒下,在倾倒过程中,树影长度发生了变化,假设太阳光线与地面夹角保持不变,试求树影的最大长度.(计算结果精确到0.1米,参考数据:2≈1.414,3≈1.732)B太阳光线30°A C第15题16.一天上行6点钟,汪老师从学校出发,乘车上市里开会,8点准时到会场,中午12点钟回到学校,他这一段时间内的行程S (km )(即离开学校的距离)与时间(h )的关系可用图4中的折线表示,根据图4提供的有关信息,解答下列问题: (1)开会地点离学校多远?(2)求出汪老师在返校途中路程S (km )与时间t (h )的函数关系式;(3)请你用一段简短的话,对汪老师从上午6点到中午12点的活动情况进行描述.17、已知正方形ABCD 的边长AB=k (k 是正整数),正△PAE 的顶点P 在正方形内,顶点E在边AB 上,且AE=1. 将△PAE 在正方形内按图1中所示的方式,沿着正方形的边AB 、BC 、CD 、DA 、AB 、……连续地翻转n 次,使顶点..P .第一次回到原来的起始位置. (1)如果我们把正方形ABCD 的边展开在一直线上,那么这一翻转过程可以看作是△PAE 在直线上作连续的翻转运动. 图2是k =1时,△PAE 沿正方形的边连续翻转过程的展开示意图. 请你探索:若k =1,则△PAE 沿正方形的边连续翻转的次数n = 时,顶点..P .第一次回到原来的起始位置.(2)若k =2,则n = 时,顶点..P .第一次回到原来的起始位置;若k =3,则 n = 时,顶点..P .第一次回到原来的起始位置. (3)请你猜测:使顶点..P .第一次回到原来的起始位置的n 值与k 之间的关系(请用含k 的代数式表示n ).A B CDP E 图1 A B C D P (E)C D A B C D A B C D A B A BC D 图2 1 2 3 4 5 6 7 8 9 10 11 12 0 2040 60 t (h ) s (km ) 图418、如图,∆ABC 中,BC =4,AC ACB =∠=︒2360,,P 为BC 上一点,过点P 作PD//AB ,交AC 于D 。
浙江省2018年中考数学复习 第二部分 题型研究 题型一 数学思想方法 类型三 方程与函数思想针对演练
第二部分题型研究题型一数学思想方法类型三方程与函数思想针对演练1. 甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600 kg,甲搬运5000 kg 所用的时间与乙搬运8000 kg所用的时间相等,求甲、乙两人每小时分别搬运多少kg货物.设甲每小时搬运x kg货物,则可列方程为( )A.5000x-600=8000xB.5000x=8000x+600C.5000x+600=8000xD.5000x=8000x-6002. 如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH.若BE∶EC=2∶1,则线段CH的长是( )A. 3B. 4C. 5D. 6第2题图3. 如图,在△ABC中,AB=AC,∠BAC=120°,AD⊥BC于点D,AE⊥AB交BC于点E.若S△ABC=m2+9n2,S△ADE=mn,则m与n之间的数量关系是( )第3题图A. m=3nB. m=6nC. n=3mD. n=6m4. 已知:M ,N 两点关于y 轴对称,且点M 在双曲线y =12x上,点N 在直线y =x +3上,设点M 的坐标为(a ,b ),则二次函数y =-abx 2+(a +b )x ( )A .有最大值,最大值为-92B .有最大值,最大值为92C .有最小值,最小值为92D .有最小值,最小值为-925. 如图,矩形ABCD 中,AB =3,BC =4,动点P 从A 点出发,按A →B →C 的方向在AB 和BC 上移动,记PA =x ,点D 到直线PA 的距离为y ,则y 关于x 的函数图象大致是( )6. 若3x 2m y m 与x 4-n y n -1是同类项,则m +n =________.7. 教练对小明推铅球的录像进行技术分析,发现铅球行进高度y (m)与水平距离x (m)之间的关系为y =-112(x -4)2+3,由此可知铅球推出的距离是________m.8. 设直线y =kx +k -1和直线y =()k +1x +k (k 是正整数)与x 轴围成的三角形面积为S k ,则S 1+S 2+S 3+…+S 2018的值是________.9. 某宾馆有50个房间供游客居住,当每个房间每天的定价为180元时,房间会全部住满;当每个房间每天的定价每增加10元时,就会有一个房间空闲.如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.(1)若每个房间定价增加40元,则这个宾馆这一天的利润为多少元?(2)房价定为多少时,宾馆的利润最大?答案1. B 【解析】甲每小时搬运x kg 货物,则乙每小时搬运(x +600)kg 货物,根据题意得5000x =8000x +600,故选B. 2. B 【解析】由题意设CH =x ,则DH =EH =(9-x ),∵BE ∶EC =2∶1,∴CE =13BC =3,∴在Rt △E C H 中,EH 2=EC 2+CH 2,即(9-x )2=32+x 2,解得x =4,即CH =4.3. A 【解析】∵AB =AC ,∠BAC =120°,∴∠B =∠C =30°,∵AD ⊥BC ,AE ⊥AB ,∴∠BEA =∠BAD =60°,∠EAC =∠C =30°,设DE =a ,则AE =CE =2a ,∴BC =6a ,∴S △ABC =6S △ADE ,即m 2+9n 2=6mn ,∴()m -3n 2=0,∴m =3n . 4. B 【解析】∵M ,N 两点关于y 轴对称,点M 的坐标为(a ,b),∴N 点的坐标为(-a ,b ).又∵点M 在反比例函数y =12x的图象上,点N 在一次函数y =x +3的图象上,∴⎩⎪⎨⎪⎧b =12a b =-a +3,即⎩⎪⎨⎪⎧ab =12a +b =3,∴二次函数y =-abx 2+(a +b )x =-12x 2+3x =-12(x -3)2+92.∵二次项系数为-12<0,∴函数有最大值,最大值为92. 5. B 【解析】根据题意可知,需分两种情况讨论:①当P 在AB 上时,x 的取值范围是0<x ≤3,此时点D 到PA 的距离等于AD 的长度4,∴y 关于x 的函数图象是一条平行于x 轴的直线;②当P 在BC 上时,x 的取值范围是3<x ≤5,∵∠BAP +∠DAE =∠BAP +∠APB ,∴∠DAE =∠APB ,又∵∠B =∠DEA =90°,∴△ABP ∽△DEA ,∴DE AB =AD AP ,∴y 3=4x ,∴y =12x ,∴y 关于x 的函数图象是双曲线的一部分,由k =12可得函数在第一象限,且y 随x 的增大而减小.综合①②可知B 选项正确.第5题解图6. 3 【解析】根据同类项的概念得,⎩⎪⎨⎪⎧2m +n =4m -n =-1,解得m =1,n =2,∴m +n =3. 7. 10 【解析】在函数表达式y =-112(x -4)2+3中令y =0,得-112(x -4)2+3=0,解得x 1=10,x 2=-2(舍去),∴铅球推出的距离是10 m.8. 20184038 【解析】∵方程组⎩⎨⎧y =kx +k -1y =()k +1x +k 的解为⎩⎪⎨⎪⎧x =-1y =-1,∴两条直线的交点为()-1,-1,两直线与x 轴的交点分别为⎝ ⎛⎭⎪⎫1-k k ,0,⎝ ⎛⎭⎪⎫-k k +1,0,∴S k =12×1×⎝ ⎛⎭⎪⎫1-k k--k k +1=12⎝ ⎛⎭⎪⎫1k -1k +1,则S 1+S 2+S 3+…+S 2018=12×(1-12+12-13+13-14+…+12017-12018+12018-12019)=12×⎝ ⎛⎭⎪⎫1-12019=20184038. 9. 解: (1)若每个房间定价增加40元,则这个宾馆这一天的利润为(180+40-20)×(50-4010)=9200(元);(2)设房价增加x元时,利润为w,则w=(180-20+x)(50-x10)=-110x2+34x+8000=-110(x-170)2+10890,当x=170时,房价为170+180=350(元),w最大为10890. 即当房价定为350元时,宾馆的利润最大.。
浙江省2018中考数学真题(含答案)(Word精校版)
2018年杭州市初中毕业升学文化考试数学一、选择题:本大题有10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项最符合题目要求的。
1.=()A. 3B. -3C.D.2.数据1800000用科学计数法表示为()A. 1.86B. 1.8×106C. 18×105D. 18×1063.下列计算正确的是()A. B. C. D.4.测试五位学生“一分钟跳绳”成绩,得到五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了。
计算结果不受影响的是()A. 方差B. 标准差C. 中位数D. 平均数5.若线段AM,AN分别是△ABC边上的高线和中线,则()A. B. C. D.6.某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-2分,不答的题得0分。
已知圆圆这次竞赛得了60分,设圆圆答对了道题,答错了道题,则()A. B. C. D.7.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别有数字1—6)朝上一面的数字。
任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于()A. B. C. D.8.如图,已知点P矩形ABCD内一点(不含边界),设,,,,若,,则()(第8题)A. B.C. D.9.四位同学在研究函数(b,c是常数)时,甲发现当时,函数有最小值;乙发现是方程的一个根;丙发现函数的最小值为3;丁发现当时,.已知这四位同学中只有一位发现的结论是错误的,则该同学是()A. 甲B. 乙C. 丙D. 丁10.如图,在△ABC中,点D在AB边上,DE∥BC,与边AC交于点E,连结BE,记△ADE,△BCE的面积分别为S1,S2,()(第10题)A. 若,则B. 若,则C. 若,则D. 若,则二、填空题:本大题有6个小题,每小题4分,共24分。
11.计算:a-3a=________。
12.如图,直线a∥b,直线c与直线a,b分别交于A,B,若∠1=45°,则∠2=________。
中考数学复习《转化思想解析》
中考数学复习转化思想训练转化思想是解决数学问题的根本思想,解数学题的过程其实就是逐渐转化的过程.常见的转化方法有:未知向已知转化,数与形的相互转化,多元向一元转化,高次向低次转化,分散向集中转化,不规则向规则转化,生活问题向数学问题转化等等.转化思想要求我们居高临下地抓住问题的实质,在遇到较复杂的问题时,能够辩证地分析问题,通过一定的策略和手段,使复杂的问题简单化,陌生的问题熟悉化,抽象的问题具体化。
具体地说,比如把隐含的数量关系转化为明显的数量关系;把从这一个角度提供的信息转化为从另一个角度提供的信息。
转化的内涵非常丰富,已知与未知、数量与图形、概念与概念之间、图形与图形之间都可以通过转化,来获得解决问题的转机..。
一、由未知转化为已知:【例题】(2017深圳)阅读理解:引入新数i,新数i满足分配律,结合律,交换律,已知i2=﹣1,那么(1+i)•(1﹣i)= 2 .【考点】4F:平方差公式;2C:实数的运算.【分析】根据定义即可求出答案.【解答】解:由题意可知:原式=1﹣i2=1﹣(﹣1)=2故答案为:2【同步训练】(2017浙江湖州)对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a﹣b.例如:5⊗2=2×5﹣2=8,(﹣3)⊗4=2×(﹣3)﹣4=﹣10.(1)若3⊗x=﹣2011,求x的值;(2)若x⊗3<5,求x的取值范围.【考点】C6:解一元一次不等式;2C:实数的运算;86:解一元一次方程.【分析】(1)根据新定义列出关于x的方程,解之可得;(2)根据新定义列出关于x的一元一次不等式,解之可得.【解答】解:(1)根据题意,得:2×3﹣x=﹣2011,解得:x=2017;(2)根据题意,得:2x﹣3<5,解得:x<4.二、部分到整体转化【例题】2017.江苏宿迁)若a﹣b=2,则代数式5+2a﹣2b的值是9 .【考点】33:代数式求值.【分析】原式后两项提取2变形后,将已知等式代入计算即可求出值.【解答】解:∵a﹣b=2,∴原式=5+2(a﹣b)=5+4=9,故答案为:9【同步训练】(2017湖北江汉)已知2a﹣3b=7,则8+6b﹣4a= ﹣6 .【考点】33:代数式求值.【分析】先变形,再整体代入求出即可.【解答】解:∵2a﹣3b=7,∴8+6b﹣4a=8﹣2(2a﹣3b)=8﹣2×7=﹣6,故答案为:﹣6.三、复杂问题转化为简单问题【例题】(2017广西百色)观察以下一列数的特点:0,1,﹣4,9,﹣16,25,…,则第11个数是()A.﹣121 B.﹣100 C.100 D.121【考点】37:规律型:数字的变化类.【分析】根据已知数据得出规律,再求出即可.【解答】解:0=﹣(1﹣1)2,1=(2﹣1)2,﹣4=﹣(3﹣1)2,9=(4﹣1)2,﹣16=﹣(5﹣1)2,∴第11个数是﹣(11﹣1)2=﹣100,故选B.【同步训练】(2017贵州)我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b)20的展开式中第三项的系数为()A.2017 B.2016 C.191 D.190【考点】4C:完全平方公式.【分析】根据图形中的规律即可求出(a+b)20的展开式中第三项的系数;【解答】解:找规律发现(a+b)3的第三项系数为3=1+2;(a+b)4的第三项系数为6=1+2+3;(a+b)5的第三项系数为10=1+2+3+4;不难发现(a+b)n的第三项系数为1+2+3+…+(n﹣2)+(n﹣1),∴(a+b)20第三项系数为1+2+3+…+20=190,故选 D.四、高次转化为低次【例题】把一元二次方程(x+1)(1﹣x)=2x化成二次项系数大于零的一般式为x2+2x﹣1=0 ,其中二次项系数是 1 ,一次项系数是 2 ,常数项是﹣1 .一元二次方程x2=2x的解为:x1=0,x2=2 .【考点】解一元二次方程-因式分解法;一元二次方程的一般形式.【专题】计算题.【分析】先利用平方差公式把方程(x+1)(1﹣x)=2x左边展开,再移项得到 x2+2x﹣1=0,然后写出二次项系数、一次项系数、常数项;利用因式分解法解方程x2=2x.【解答】解:一元二次方程(x+1)(1﹣x)=2x化成二次项系数大于零的一般式为 x2+2x﹣1=0,其中二次项系数是1,一次项系数是2,常数项是﹣1.x2﹣2x=0,x(x﹣2)=0,x=0或x﹣2=0,所以x1=0,x2=2.故答案为 x2+2x﹣1=0,1,2,﹣1,x1=0,x2=2.【点评】本题考查了解一元二次方程﹣因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).【同步训练】解下列方程:(1)x2﹣9=0(2)(x﹣1)(x+2)=6.【考点】解一元二次方程-公式法;解一元二次方程-直接开平方法.【分析】(1)根据直接开平方法求解即可;(2)先去括号,再用公式法求解即可.【解答】解:(1)x2=9,x=±3,∴x1=3,x2=﹣3;(2)x2+x﹣8=0,a=1,b=1,c=﹣8,△=b2﹣4ac=1+32=33>0,∴方程有两个不相等的实数根,∴x==,∴x1=,x2=.【点评】本题考查了解一元二次方程,解一元二次方程的方法有直接开平方法、配方法、公式法以及因式分解法.五、实际问题转化为数学问题【例题】(2017山东聊城)在推进城乡义务教育均衡发展工作中,我市某区政府通过公开招标的方式为辖区内全部乡镇中学采购了某型号的学生用电脑和教师用笔记本电脑,其中,A乡镇中学更新学生用电脑110台和教师用笔记本电脑32台,共花费30.5万元;B乡镇中学更新学生电脑55台和教师用笔记本电脑24台,共花费17.65万元.(1)求该型号的学生用电脑和教师用笔记本电脑单价分别是多少万元?(2)经统计,全部乡镇中学需要购进的教师用笔记本电脑台数比购进的学生用电脑台数的少90台,在两种电脑的总费用不超过预算438万元的情况下,至多能购进的学生用电脑和教师用笔记本电脑各多少台?【考点】C9:一元一次不等式的应用;9A:二元一次方程组的应用.【分析】(1)设该型号的学生用电脑的单价为x万元,教师用笔记本电脑的单价为y万元,根据题意列出方程组,求出方程组的解得到x与y的值,即可得到结果;(2)设能购进的学生用电脑m台,则能购进的教师用笔记本电脑为(m﹣90)台,根据“两种电脑的总费用不超过预算438万元”列出不等式,求出不等式的解集.【解答】解:(1)设该型号的学生用电脑的单价为x万元,教师用笔记本电脑的单价为y万元,依题意得:,解得,经检验,方程组的解符合题意.答:该型号的学生用电脑的单价为0.19万元,教师用笔记本电脑的单价为0.3万元;(2)设能购进的学生用电脑m台,则能购进的教师用笔记本电脑为(m﹣90)台,依题意得:0.19m+0.3×(m﹣90)≤438,解得m≤1860.所以m﹣90=×1860﹣90=282(台).答:能购进的学生用电脑1860台,则能购进的教师用笔记本电脑为282台.【同步训练】(2017四川南充)学校准备租用一批汽车,现有甲、乙两种大客车,甲种客车每辆载客量45人,乙种客车每辆载客量30人,已知1辆甲种客车和3辆乙种客车共需租金1240元,3辆甲种客车和2辆乙种客车共需租金1760元.(1)求1辆甲种客车和1辆乙种客车的租金分别是多少元?(2)学校计划租用甲、乙两种客车共8辆,送330名师生集体外出活动,最节省的租车费用是多少?【考点】C9:一元一次不等式的应用;9A:二元一次方程组的应用.【分析】(1)可设1辆甲种客车的租金是x元,1辆乙种客车的租金是y元,根据等量关系:①1辆甲种客车和3辆乙种客车共需租金1240元,②3辆甲种客车和2辆乙种客车共需租金1760元,列出方程组求解即可;(2)由于求最节省的租车费用,可知租用甲种客车6辆,租用乙客车2辆,进而求解即可.【解答】解:(1)设1辆甲种客车的租金是x元,1辆乙种客车的租金是y元,依题意有,解得.故1辆甲种客车的租金是400元,1辆乙种客车的租金是280元;(2)租用甲种客车6辆,租用乙客车2辆是最节省的租车费用,400×6+280×2=2400+560=2960(元).答:最节省的租车费用是2960元.六、一般转化为特殊【例题】(2017齐齐哈尔)如图,在等腰三角形纸片ABC中,AB=AC=10,BC=12,沿底边BC上的高AD剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是10cm,2cm,4cm .【考点】PC:图形的剪拼.【分析】利用等腰三角形的性质,进而重新组合得出平行四边形,进而利用勾股定理求出对角线的长.【解答】解:如图:,过点A作AD⊥BC于点D,∵△ABC边AB=AC=10cm,BC=12cm,∴BD=DC=6cm,∴AD=8cm,如图①所示:可得四边形ACBD是矩形,则其对角线长为:10cm,如图②所示:AD=8cm,连接BC,过点C作CE⊥BD于点E,则EC=8cm,BE=2BD=12cm,则BC=4cm,如图③所示:BD=6cm,由题意可得:AE=6cm,EC=2BE=16cm,故AC==2cm,故答案为:10cm,2cm,4cm.【同步训练】(2017浙江湖州)如图,已知在Rt△ABC中,∠C=90°,AC=BC,AB=6,点P是Rt△ABC的重心,则点P到AB所在直线的距离等于()A.1 B.C.D.2【考点】K5:三角形的重心;KW:等腰直角三角形.【分析】连接CP并延长,交AB于D,根据重心的性质得到CD是△ABC的中线,PD=CD,根据直角三角形的性质求出CD,计算即可.【解答】解:连接CP并延长,交AB于D,∵P是Rt△ABC的重心,∴CD是△ABC的中线,PD=CD,∵∠C=90°,∴CD=AB=3,∵AC=BC,CD是△ABC的中线,∴CD⊥AB,∴PD=1,即点P到AB所在直线的距离等于1,故选:A.七、数与形的转化【例题】(2017湖北咸宁)小慧根据学习函数的经验,对函数y=|x﹣1|的图象与性质进行了探究.下面是小慧的探究过程,请补充完整:(1)函数y=|x﹣1|的自变量x的取值范围是任意实数;(2)列表,找出y与x的几组对应值.x …﹣1 0 1 2 3 …y … b 1 0 1 2 …其中,b= 2 ;(3)在平面直角坐标系xOy中,描出以上表中对对应值为坐标的点,并画出该函数的图象;(4)写出该函数的一条性质:函数的最小值为0(答案不唯一).【考点】F5:一次函数的性质;F3:一次函数的图象.【分析】(1)根据一次函数的性质即可得出结论;(2)把x=﹣1代入函数解析式,求出y的值即可;(3)在坐标系内描出各点,再顺次连接即可;(4)根据函数图象即可得出结论.【解答】解:(1)∵x无论为何值,函数均有意义,∴x为任意实数.故答案为:任意实数;(2)∵当x=﹣1时,y=|﹣1﹣1|=2,∴b=2.故答案为:2;(3)如图所示;(4)由函数图象可知,函数的最小值为0.故答案为:函数的最小值为0(答案不唯一).【同步训练】(2017•新疆)某周日上午8:00小宇从家出发,乘车1小时到达某活动中心参加实践活动.11:00时他在活动中心接到爸爸的电话,因急事要求他在12:00前回到家,他即刻按照来活动中心时的路线,以5千米/小时的平均速度快步返回.同时,爸爸从家沿同一路线开车接他,在距家20千米处接上了小宇,立即保持原来的车速原路返回.设小宇离家x(小时)后,到达离家y(千米)的地方,图中折线OABCD表示y与x之间的函数关系.(1)活动中心与小宇家相距22 千米,小宇在活动中心活动时间为 2 小时,他从活动中心返家时,步行用了0.4 小时;(2)求线段BC所表示的y(千米)与x(小时)之间的函数关系式(不必写出x所表示的范围);(3)根据上述情况(不考虑其他因素),请判断小宇是否能在12:00前回到家,并说明理由.【考点】FH:一次函数的应用.【分析】(1)根据点A、B坐标结合时间=路程÷速度,即可得出结论;(2)根据离家距离=22﹣速度×时间,即可得出y与x之间的函数关系式;(3)由小宇步行的时间等于爸爸开车接到小宇的时间结合往返时间相同,即可求出小宇从活动中心返家所用时间,将其与1比较后即可得出结论.【解答】解:(1)∵点A的坐标为(1,22),点B的坐标为(3,22),∴活动中心与小宇家相距22千米,小宇在活动中心活动时间为3﹣1=2小时.(22﹣20)÷5=0.4(小时).故答案为:22;2;0.4.(2)根据题意得:y=22﹣5(x﹣3)=﹣5x+37.(3)小宇从活动中心返家所用时间为:0.4+0.4=0.8(小时),∵0.8<1,∴所用小宇12:00前能到家.【点评】本题考查了一次函数的应用,解题的关键是:(1)根据数量关系列式计算;(2)根据离家距离=22﹣速度×时间,找出y与x之间的函数关系式;(3)由爸爸开车的速度不变,求出小宇从活动中心返家所用时间.【达标检测】1.已知x2+x﹣1=0,则3x2+3x﹣9= ﹣6 .【考点】代数式求值.【专题】计算题.【分析】已知等式变形求出x2+x的值,原式变形后把x2+x的值代入计算即可求出值.【解答】解:由x2+x﹣1=0,得到x2+x=1,则原式=3(x2+x)﹣9=3﹣9=﹣6.故答案为:﹣6.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.2.若矩形ABCD的两邻边长分别为一元二次方程x2﹣7x+12=0的两个实数根,则矩形ABCD的对角线长为 5 .【考点】矩形的性质;解一元二次方程-因式分解法;勾股定理.【专题】压轴题.【分析】首先解方程求得方程的两个根,即可求得矩形的两边长,然后利用勾股定理即可求得对角线长.【解答】解:方程x2﹣7x+12=0,即(x﹣3)(x﹣4)=0,则x﹣3=0,x﹣4=0,解得:x1=3,x2=4.则矩形ABCD的对角线长是: =5.故答案是:5.【点评】本题考查了一元二次方程的解法以及矩形的性质,正确解方程求得矩形的边长是关键.解一元二次方程的基本思想是降次.3.解方程:x2﹣1=2(x+1).【考点】解一元二次方程-因式分解法.【分析】首先把x2﹣1化为(x+1)(x﹣1),然后提取公因式(x+1),进而求出方程的解.【解答】解:∵x2﹣1=2(x+1),∴(x+1)(x﹣1)=2(x+1),∴(x+1)(x﹣3)=0,∴x1=﹣1,x2=3.【点评】本题主要考查了因式分解法解一元二次方程的知识,解答本题的关键是提取公因式(x+1),此题难度不大.4.(2017山东泰安)某水果商从批发市场用8000元购进了大樱桃和小樱桃各200千克,大樱桃的进价比小樱桃的进价每千克多20元,大樱桃售价为每千克40元,小樱桃售价为每千克16元.(1)大樱桃和小樱桃的进价分别是每千克多少元?销售完后,该水果商共赚了多少元钱?(2)该水果商第二次仍用8000元钱从批发市场购进了大樱桃和小樱桃各200千克,进价不变,但在运输过程中小樱桃损耗了20%.若小樱桃的售价不变,要想让第二次赚的钱不少于第一次所赚钱的90%,大樱桃的售价最少应为多少?【考点】C9:一元一次不等式的应用;9A:二元一次方程组的应用.【分析】(1)根据用8000元购进了大樱桃和小樱桃各200千克,以及大樱桃的进价比小樱桃的进价每千克多20元,分别得出等式求出答案;(2)根据要想让第二次赚的钱不少于第一次所赚钱的90%,得出不等式求出答案.【解答】解:(1)设小樱桃的进价为每千克x元,大樱桃的进价为每千克y元,根据题意可得:,解得:,小樱桃的进价为每千克10元,大樱桃的进价为每千克30元,200×[(40﹣30)+(16﹣10)]=3200(元),∴销售完后,该水果商共赚了3200元;(2)设大樱桃的售价为a元/千克,(1﹣20%)×200×16+200a﹣8000≥3200×90%,解得:a≥41.6,答:大樱桃的售价最少应为41.6元/千克.5.(2017•益阳)在平面直角坐标系中,将一点(横坐标与纵坐标不相等)的横坐标与纵坐标互换后得到的点叫这一点的“互换点”,如(﹣3,5)与(5,﹣3)是一对“互换点”.(1)任意一对“互换点”能否都在一个反比例函数的图象上?为什么?(2)M、N是一对“互换点”,若点M的坐标为(m,n),求直线MN的表达式(用含m、n的代数式表示);(3)在抛物线y=x2+bx+c的图象上有一对“互换点”A、B,其中点A在反比例函数y=﹣的图象上,直线AB经过点P(,),求此抛物线的表达式.【考点】G6:反比例函数图象上点的坐标特征;FA:待定系数法求一次函数解析式;H8:待定系数法求二次函数解析式.【分析】(1)设这一对“互换点”的坐标为(a,b)和(b,a).①当ab=0时,它们不可能在反比例函数的图象上,②当ab≠0时,由可得,于是得到结论;(2)把M(m,n),N(n,m)代入y=cx+d,即可得到结论;(3)设点A(p,q),则,由直线AB经过点P(,),得到p+q=1,得到q=﹣1或q=2,将这一对“互换点”代入y=x2+bx+c得,于是得到结论.【解答】解:(1)不一定,设这一对“互换点”的坐标为(a,b)和(b,a).①当ab=0时,它们不可能在反比例函数的图象上,②当ab≠0时,由可得,即(a,b)和(b,a)都在反比例函数(k≠0)的图象上;(2)由M(m,n)得N(n,m),设直线MN的表达式为y=cx+d(c≠0).则有解得,∴直线MN的表达式为y=﹣x+m+n;(3)设点A(p,q),则,∵直线AB经过点P(,),由(2)得,∴p+q=1,∴,解并检验得:p=2或p=﹣1,∴q=﹣1或q=2,∴这一对“互换点”是(2,﹣1)和(﹣1,2),将这一对“互换点”代入y=x2+bx+c得,∴解得,∴此抛物线的表达式为y=x2﹣2x﹣1.【点评】本题考查了反比例函数图象上点的坐标特征,待定系数法求函数的解析式,正确的理解题意是解题的关键.6.(2017甘肃天水)天水某公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两行环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元,(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该条线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1220万元,且确保这10辆公交车在该线路的年均载客量总和不少于650万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?【考点】CE:一元一次不等式组的应用;9A:二元一次方程组的应用.【分析】(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,根据“A型公交车1辆,B型公交车2辆,共需400万元;A型公交车2辆,B型公交车1辆,共需350万元”列出方程组解决问题;(2)设购买A型公交车a辆,则B型公交车(10﹣a)辆,由“购买A型和B型公交车的总费用不超过1220万元”和“10辆公交车在该线路的年均载客总和不少于650万人次”列出不等式组探讨得出答案即可.【解答】解:(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,由题意得,解得,答:购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)设购买A型公交车a辆,则B型公交车(10﹣a)辆,由题意得,解得:≤a≤,因为a是整数,所以a=6,7,8;则(10﹣a)=4,3,2;三种方案:①购买A型公交车6辆,则B型公交车4辆:100×6+150×4=1200万元;②购买A型公交车7辆,则B型公交车3辆:100×7+150×3=1150万元;③购买A型公交车8辆,则B型公交车2辆:100×8+150×2=1100万元;购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.7.(2017四川南充)如图,等边△OAB的边长为2,则点B的坐标为()A.(1,1)B.(,1)C.(,) D.(1,)【考点】KK:等边三角形的性质;D5:坐标与图形性质;KQ:勾股定理.【分析】先过B作BC⊥AO于C,则根据等边三角形的性质,即可得到OC以及BC的长,进而得出点B的坐标.【解答】解:如图所示,过B作BC⊥AO于C,则∵△AOB是等边三角形,∴OC=AO=1,∴Rt△BOC中,BC==,∴B(1,),故选:D.8.(2017山东烟台)数学兴趣小组研究某型号冷柜温度的变化情况,发现该冷柜的工作过程是:当温度达到设定温度﹣20℃时,制冷停止,此后冷柜中的温度开始逐渐上升,当上升到﹣4℃时,制冷开始,温度开始逐渐下降,当冷柜自动制冷至﹣20℃时,制冷再次停止,…,按照以上方式循环进行.同学们记录了44min内15个时间点冷柜中的温度y(℃)随时间x(min)的变化情况,制成下表:时间x/min… 4 8 10 16 20 21 22 23 24 28 30 36 40 42 44 …温度y/℃…﹣20﹣10﹣8﹣5﹣4﹣8﹣12﹣16﹣20﹣10﹣8﹣5﹣4a ﹣20…(1)通过分析发现,冷柜中的温度y是时间x的函数.①当4≤x<20时,写出一个符合表中数据的函数解析式y=﹣;②当20≤x<24时,写出一个符合表中数据的函数解析式y=﹣4x+76 ;(2)a的值为﹣12 ;(3)如图,在直角坐标系中,已描出了上表中部分数据对应的点,请描出剩余数据对应的点,并画出当4≤x≤44时温度y随时间x变化的函数图象.【考点】FH:一次函数的应用.【分析】(1)①由x•y=﹣80,即可得出当4≤x<20时,y关于x的函数解析式;②根据点(20,﹣4)、(21,﹣8),利用待定系数法求出y关于x的函数解析式,再代入其它点的坐标验证即可;(2)根据表格数据,找出冷柜的工作周期为20分钟,由此即可得出a值;(3)描点、连线,画出函数图象即可.【解答】解:(1)①∵4×(﹣20)=﹣80,8×(﹣10)=﹣80,10×(﹣8)=﹣80,16×(﹣5)=﹣80,20×(﹣4)=﹣80,∴当4≤x<20时,y=﹣.故答案为:y=﹣.②当20≤x<24时,设y关于x的函数解析式为y=kx+b,将(20,﹣4)、(21,﹣8)代入y=kx+b中,,解得:,∴此时y=﹣4x+76.当x=22时,y=﹣4x+76=﹣12,当x=23时,y=﹣4x+76=﹣16,当x=24时,y=﹣4x+76=﹣20.∴当20≤x<24时,y=﹣4x+76.故答案为:y=﹣4x+76.(2)观察表格,可知该冷柜的工作周期为20分钟,∴当x=42时,与x=22时,y值相同,∴a=﹣12.故答案为:﹣12.(3)描点、连线,画出函数图象,如图所示.。
【浙教版】2018年中考数学方法技巧:专题五-转化思想训练(含答案)
方法技巧专题五转化思想训练转化思想是解决数学问题的根本思想,解数学题的过程其实就是逐渐转化的过程.常见的转化方法有:未知向已知转化,数与形的相互转化,多元向一元转化,高次向低次转化,分散向集中转化,不规则向规则转化,生活问题向数学问题转化等等.一、选择题1.[2015·山西] 我们解一元二次方程3x2-6x=0时,可以运用因式分解法,将此方程化为3x(x-2)=0,从而得到两个一元一次方程:3x=0或x-2=0,进而得到原方程的解为x1=0,x2=2.这种解法体现的数学思想是( ) A.转化思想 B.函数思想C.数形结合思想 D.公理化思想2.[2016·扬州] 已知M=29a-1,N=a2-79a(a为任意实数),则M、N的大小关系为( )A.M<N B.M=NC.M>N D.不能确定3.[2016·十堰] 如图F5-1所示,小华从A点出发,沿直线前进10 m后左转24°,再沿直线前进10 m,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是( )A.140 m B.150 mC.160 m D.240 m图F5-14.[2016·徐州] 图F5-2是由三个边长分别为6,9,x的正方形所组成的图形,若直线AB将它分成面积相等的两部分,则x的值是( )图F5-2A.1或9 B.3或5C.4或6 D.3或6二、填空题5.[2017·烟台] 运行程序如图F5-3所示,从“输入实数x”到“结果是否<18”为一次程序操作,若输入x 后程序操作仅进行了一次就停止,则x的取值范围是________.图F5-36.[2016·达州] 如图F5-4,P是等边三角形ABC内一点,将线段AP绕点A顺时针旋转60°得到线段AQ,连结BQ.若PA=6,PB=8,PC=10,则四边形APBQ的面积为________.图F5-47.[2016·宿迁] 如图F5-5,在矩形ABCD中,AD=4,点P是直线AD上一动点,若满足△PBC是等腰三角形的点P有且只有3个,则AB的长为________.图F5-5三、解答题8.如图F5-6①,点O是正方形ABCD两条对角线的交点.分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连结AG,DE.(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图②.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果,不必说明理由.图F5-6参考答案1.A2.A [解析] ∵N-M=a2-79a-(29a-1)=a2-a+1=(a-12)2+34>0,∴M<N.故选A.注:此题把比较两个式子的大小转化为比较两个代数式的差的正负.3.B [解析] ∵多边形的外角和为360°,这里每一个外角都为24°,∴多边形的边数为360°÷24°=15.∴小华一共走的路程=15×10=150(m ).故选B . 注:把问题转化为正多边形的周长.4.D [解析] 如图,把原图形扩充成矩形,则图中两个阴影部分的面积相等,于是可列方程x (9-x )=6×(9-6).整理,得x 2-9x +18=0,解得x 1=3,x 2=6.故选D .注:此题体现了转化思想(把不规则图形转化为规则图形)和方程思想. 5.x <8 [解析] 由题意,得3x -6<18,解得x <8.6.24+9 3 [解析] 如图,连结PQ ,则△APQ 为等边三角形.∴PQ =AP =6.易知△APC ≌△AQB ,∴QB =PC =10.由勾股定理的逆定理,可知∠BPQ =90°. ∴S 四边形APBQ =S △BPQ +S △APQ =12×6×8+34×62=24+9 3.故答案为24+9 3.注:此题体现了分散向集中转化,即通过旋转把PA ,PB ,PC 集中到△PBQ 中.7.4或2 3 [解析] 设AD 的中点为P 1,无论AB 多长,△P 1BC 都是等腰三角形,即点P 1始终是符合条件的一个点.(1)如图①,当以点B (或点C )为圆心,以BC 为半径的圆与直线AD 相切时,符合条件的点有3个, 此时AB =BC =4;(2)如图②,分别以点B (或点C )为圆心,以BC 为半径的圆经过点P 1时,符合条件的点也有3个.此时BP 1=BC =4,AB =2 3.综上所述,BA 的长为4或2 3.注:将等腰三角形的个数转化为直线与圆的交点个数. 8.解:(1)证明:如图,延长ED 交AG 于点H .∵O 为正方形ABCD 对角线的交点, ∴OA =OD ,∠AOG =∠DOE =90°, ∵四边形OEFG 为正方形,∴OG =OE ,∴△AOG ≌△DOE , ∴∠AGO =∠DEO . ∵∠AGO +∠GAO =90°, ∴∠DEO +∠GAO =90°. ∴∠AHE =90°,即DE ⊥AG .(2)①在旋转过程中,∠OAG ′成为直角有以下两种情况:(i )α由0°增大到90°的过程中,当∠OAG ′为直角时,∵OA =OD =12OG =12OG ′,∴在Rt △OAG ′中,sin ∠AG ′O =OA OG′=12, ∴∠AG ′O =30°, ∵OA ⊥OD ,OA ⊥AG ′, ∴OD ∥AG ′.∴∠DOG ′=∠AG ′O =30°,即α=30°.(ii )α由90°增大到180°的过程中,当∠OAG ′为直角时,同理可求得∠BOG ′=30°, 所以α=180°-30°=150°.综上,当∠OAG ′为直角时,α=30°或150°. ②AF ′长的最大值是2+22,此时α=315°. 理由:当AF ′的长最大时,点F ′在直线AC 上,如图所示.∵AB =BC =CD =AD =1, ∴AC =BD =2,AO =OD =22. ∴OE ′=E ′F ′=2OD = 2. ∴OF ′=(2)2+(2)2=2. ∴AF ′=AO +OF ′=22+2. ∵∠DOG ′=45°,∴旋转角α=360°-45°=315°.。
2018年浙江高考数学二轮复习教师用书:技法强化训练4
技法强化训练(四) 转化与化归思想(对应学生用书第162页)题组1 正与反的相互转化1.若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( ) A.15B.35 C.710D.910D [甲或乙被录用的对立面是甲、乙均不被录用,故所求事件的概率为1-110=910.]2.若二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1在区间[-1,1]内至少存在一个值c ,使得f (c )>0,则实数p 的取值范围为________. 【导学号:68334023】⎝ ⎛⎭⎪⎫-3,32 [如果在[-1,1]内没有值满足f (c )>0,则⎩⎪⎨⎪⎧f -,f ⇒⎩⎪⎨⎪⎧p ≤-12或p ≥1,p ≤-3或p ≥32⇒p ≤-3或p ≥32,取补集为-3<p <32,即为满足条件的p 的取值范围.故实数p 的取值范围为⎝⎛⎭⎪⎫-3,32.]3.若椭圆x 22+y 2=a 2(a >0)与连接两点A (1,2),B (3,4)的线段没有公共点,则实数a 的取值范围为________.⎝ ⎛⎭⎪⎫0,322∪⎝ ⎛⎭⎪⎫822,+∞ [易知线段AB 的方程为y =x +1,x ∈[1,3],由⎩⎪⎨⎪⎧y =x +1,x 22+y 2=a 2,得a 2=32x 2+2x +1,x ∈[1,3],∴92≤a 2≤412.又a >0, ∴322≤a ≤822. 故当椭圆与线段AB 没有公共点时,实数a 的取值范围为⎝ ⎛⎭⎪⎫0,322∪⎝ ⎛⎭⎪⎫822,+∞.]4.已知点A (1,1)是椭圆x 2a 2+y 2b2=1(a >b >0)上一点,F 1,F 2是椭圆的两焦点,且满足|AF 1|+|AF 2|=4.(1)求椭圆的两焦点坐标;(2)设点B 是椭圆上任意一点,当|AB |最大时,求证:A ,B 两点关于原点O 不对称.[解] (1)由椭圆定义,知2a =4,所以a =2.所以x 24+y 2b2=1.2分 把A (1,1)代入,得14+1b 2=1,得b 2=43,所以椭圆方程为x 24+y 243=1.4分所以c 2=a 2-b 2=4-43=83,即c =263.故两焦点坐标为⎝ ⎛⎭⎪⎫-263,0,⎝ ⎛⎭⎪⎫263,0. 6分(2)反证法:假设A ,B 两点关于原点O 对称,则B 点坐标为(-1,-1),7分此时|AB |=22,而当点B 取椭圆上一点M (-2,0)时,则|AM |=10,所以|AM |>|AB |. 从而知|AB |不是最大,这与|AB |最大矛盾,所以命题成立. 15分题组2 主与次的相互转化5.设f (x )是定义在R 上的单调递增函数,若f (1-ax -x 2)≤f (2-a )对任意a ∈[-1,1]恒成立,则x 的取值范围为________. 【导学号:68334024】 (-∞,-1]∪[0,+∞) [∵f (x )是R 上的增函数, ∴1-ax -x 2≤2-a ,a ∈[-1,1].①①式可化为(x -1)a +x 2+1≥0,对a ∈[-1,1]恒成立. 令g (a )=(x -1)a +x 2+1,则⎩⎪⎨⎪⎧g -=x 2-x +2≥0,g=x 2+x ≥0,解得x ≥0或x ≤-1.即实数x 的取值范围是(-∞,-1]∪[0,+∞).]6.已知函数f (x )=x 3+3ax -1,g (x )=f ′(x )-ax -5,其中f ′(x )是f (x )的导函数.对满足-1≤a ≤1的一切a 的值,都有g (x )<0,则实数x 的取值范围为________.⎝ ⎛⎭⎪⎫-23,1 [由题意,知g (x )=3x 2-ax +3a -5, 令φ(a )=(3-x )a +3x 2-5,-1≤a ≤1. 对-1≤a ≤1,恒有g (x )<0,即φ(a )<0,∴⎩⎪⎨⎪⎧φ<0,φ-<0,即⎩⎪⎨⎪⎧3x 2-x -2<0,3x 2+x -8<0,解得-23<x <1.故当x ∈⎝ ⎛⎭⎪⎫-23,1时,对满足-1≤a ≤1的一切a 的值,都有g (x )<0.] 7.对于满足0≤p ≤4的所有实数p ,使不等式x 2+px >4x +p -3成立的x 的取值范围是________. (-∞,-1)∪(3,+∞) [设f (p )=(x -1)p +x 2-4x +3, 则当x =1时,f (p )=0,所以x ≠1.f (p )在0≤p ≤4上恒正,等价于⎩⎪⎨⎪⎧f >0,f >0,即⎩⎪⎨⎪⎧x -x ->0,x 2-1>0,解得x >3或x <-1.]8.已知函数f (x )=13x 3+⎝ ⎛⎭⎪⎫a 2-43x 2+⎝ ⎛⎭⎪⎫43-23a x (0<a <1,x ∈R ).若对于任意的三个实数x 1,x 2,x 3∈[1,2],都有f (x 1)+f (x 2)>f (x 3)恒成立,求实数a 的取值范围.【导学号:68334025】[解] 因为f ′(x )=x 2+⎝ ⎛⎭⎪⎫a -83x +⎝ ⎛⎭⎪⎫43-23a =⎝ ⎛⎭⎪⎫x -23(x +a -2),2分 所以令f ′(x )=0,解得x 1=23,x 2=2-a .3分由0<a <1,知1<2-a <2.所以令f ′(x )>0,得x <23或x >2-a ; 4分令f ′(x )<0,得23<x <2-a ,所以函数f (x )在(1,2-a )上单调递减,在(2-a,2)上单调递增.5分所以函数f (x )在[1,2]上的最小值为f (2-a )=a6(2-a )2,最大值为max{f (1),f (2)}=max ⎩⎨⎧⎭⎬⎫13-a 6,23a . 6分 因为当0<a ≤25时,13-a 6≥23a ;7分 当25<a <1时,23a >13-a6,8分由对任意x 1,x 2,x 3∈[1,2],都有f (x 1)+f (x 2)>f (x 3)恒成立,得2f (x )min >f (x )max (x ∈[1,2]).所以当0<a ≤25时,必有2×a 6(2-a )2>13-a 6,12分结合0<a ≤25可解得1-22<a ≤25;当25<a <1时,必有2×a 6(2-a )2>23a ,结合25<a <1可解得25<a <2- 2.综上,知所求实数a 的取值范围是1-22<a <2- 2. 15分。
浙江省2018届数学中考复习第二部分题型研究题型一数学思想方法类型四转化思想针对演练_
第二部分 题型研究题型一 数学思想方法 类型四 转化思想针对演练1. 我们解一元二次方程3x 2-6x =0时,可以运用因式分解法,将此方程化为 3x (x -2)=0,从而得到两个一元一次方程:3x =0或x -2=0,进而得到原方程的解为x 1=0,x 2=2.这种解法体现的数学思想是( )A. 转化思想B. 函数思想C. 数形结合思想D. 公理化思想2. 已知a 2-b 2=-16,a -b =12,则a +b a -b 的值为( )A. -12B. 13C. -23D. -323. (2017温州)我们知道方程x 2+2x -3=0的解是x 1=1,x 2=-3.现给出另一个方程(2x +3)2+2(2x +3)-3=0.它的解是( )A. x 1=1,x 2=3B. x 1=1,x 2=-3C. x 1=-1,x 2=3D. x 1=-1,x 2=-34. 如图,点E 在正方形ABCD 的对角线AC 上,且EC =2AE ,直角三角形FEG 的两直角边EF 、EG 分别交BC 、DC 于点M 、N .若正方形ABCD 的边长为a ,则重叠部分四边形EMCN 的面积为( )A. 23a 2B. 14a 2C. 59a 2D. 49a 2第4题图5. 如图,在大长方形ABCD 中,放入六个相同的小长方形,则图中阴影部分面积(单位:cm 2)为( )第5题图A. 16B. 44C. 96D. 1406. 设m 2+m -1=0,则代数式m 3+2m 2+2017的值为( ) A. 2016 B. 2017 C. 2018 D. 20207. 如图, △ABC 经过平移得到△A ′B ′C ′, 若四边形ACDA ′的面积为6 cm 2,则阴影部分的面积为________cm 2.第7题图8. 如图是一个三级台阶,它的每一级的长、宽、高分别为55寸、10寸和6寸,A 和B 是这个台阶的两个相对端点,A 点上有一只蚂蚁想到B 点去吃可口的食物,则它所走的最短路线长度是_________寸.第8题图9. 三个同学对问题“若方程组⎩⎪⎨⎪⎧a 1x +b 1y =c 1a 2x +b 2y =c 2的解是⎩⎪⎨⎪⎧x =3y =4,求方程组⎩⎪⎨⎪⎧3a 1x +2b 1y =5c 13a 2x +2b 2y =5c 2的解.”提出各自的想法.甲说:“这个题目好像条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决”.参考他们的讨论,你认为这个题目的解应该是________.10. 如图,△ABC 中,∠BAC =90°,AB =AC ,点M ,N 在边BC 上,且∠MAN =45°.若BM =1,CN =3,求MN 的长.第10题图 答案1. A2. C 【解析】∵()a +b ()a -b =-16,a -b =12,∴a +b =-13,∴a +b a -b =-23.3.D 【解析】令y =2x +3,则原方程变形为y 2+2y -3=0,解得y 1=1,y 2=-3,所以2x +3=1或2x +3=-3,解得x 1=-1,x 2=-3.4. D 【解析】如解图,过E 作BC 和CD 的垂线,垂足分别为G ,H ,则△EGM ≌△EHN ,∴重叠部分四边形EMCN 的面积等于正方形EGCH 的面积,∵EC =2AE ,∴CE =23AC ,EG =23AB=23a ,∴正方形EGCH 的面积为49a 2.第4题解图5. B 【解析】设小长方形的长和宽分别为x ,y ,则由图形得⎩⎪⎨⎪⎧y +3x =14y +x -2x =6,解得⎩⎪⎨⎪⎧x =2y =8,则阴影部分面积为14×10-6×2×8=140-96=44.6. C 【解析】∵m 2+m -1=0,∴m 2+m =1,则m 3+2m 2+2017=m (m 2+m )+m 2+2017=m 2+m +2017=1+2017=2018.7. 6 【解析】∵由平移性质得,△ABC 的面积等于△A′B′C ′的面积, ∴阴影部分的面积等于四边形ACDA ′的面积等于6 cm 2.第7题解图8. 73 【解析】立体图形转化为平面图形,展开后变为长方形,根据题意得,∠C =90°,BC =3×()10+6=48,∴AB =AC 2+BC 2=552+482=73.第8题解图9. ⎩⎪⎨⎪⎧x =5y =10 【解析】将方程组⎩⎪⎨⎪⎧3a 1x +2b 1y =5c 13a 2x +2b 2y =5c 2变为 ⎩⎪⎨⎪⎧35a 1x +25b 1y =c 135a 2x +25b 2y =c 2,设35x =m ,25y =n ,则原方程组转化为⎩⎪⎨⎪⎧a 1m +b 1n =c 1a 2m +b 2n =c 2,再根据方程组⎩⎪⎨⎪⎧a 1x +b 1y =c 1a 2x +b 2y =c 2的解是⎩⎪⎨⎪⎧x =3y =4,所以得出⎩⎪⎨⎪⎧m =3n =4,即⎩⎪⎨⎪⎧35x =325y =4,解得,⎩⎪⎨⎪⎧x =5y =10. 10. 解:把△ABM 绕点A 逆时针旋转90°得到的△ACG ,连接NG ,如解图,第10题解图∴∠BAM =∠GAC ,AM =AG , ∴△ABM ≌△ACG .∵∠MAN =45°, ∠BAC =90°, ∴∠GAN =∠MAN =45°, ∴△MAN ≌△GAN . ∴MN =NG ,∴∠BCA +∠ACG =90°.在Rt △GCN 中,NG =CN 2+CG 2=10, ∴ MN =NG =10.。
初中数学专题复习转化思想专题训练(含解答)
转化思想转化思想是解决数学问题的一种最基本的数学思想,在研究数学问题时,我们通常是将未知问题转化为已知的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为具体的问题,将实际问题转化为数学问题,我们也常常在不同的数学问题之间互相转化,可以说在解决数学问题时转化思想几乎是无处不在的。
例题分析例1 解方程组分析:从表面上看此题属于二元三次方程组的求解问题,超过我们所掌握的知识范围,但仔细分析可将方程组变形为,再利用换元法,问题就迎刃而解了。
解:设原方程组可化为解之,得即解之,得例2若m、n、p同时满足下面二式:,求的取值范围。
分析:直接利用已知条件中的两个等式得到的取值范围不好下手,如果换个角度考虑可变形为,令,,,则已知条件可转化为方程组,进而找到a、b与c的关系,可以确定所求式子的取值范围。
解:设,则由(1)、(2)可得(3)(4)此时, (5)由(3)得,由(4)得由(5)得例3 如图,中,BC=4,,P为BC上一点,过点P作PD//AB,交AC于D。
连结AP,问点P在BC上何处时,面积最大?A分析:本题从已知条件上看是一个几何问题,而求最大值又是一个代数问题,因此把几何问题转化为代数中的函数问题是解题的关键,为了完成这种转化,需要把位置关系转化为数量关系,得出函数解析式。
解:设BP=x,的面积为y作于H则化简得配方得即P为BC中点时,的面积最大这时的面积最大值为例4已知二次函数过点O(0,0),A(),B()和C()四点。
(1)确定这个函数的解析式及m的值;(2)判断的形状;(3)若有一动圆⊙M,点M在x轴上,与AC相切于T点,⊙M和OA、OC分别交于点R、S,求证弧长为定值。
分析:(1)由于二次函数过三个定点,因此可以利用待定系数法确定函数的解析式,进而求出m的值。
(2)分别计算出OA、OC、AC的长即可判定的形状。
(3)这一问综合性较强,需要根据条件列出点的坐标,再利用方程和距离公式求解。
2019专题复习(一)(2018中考真题卷)数学思想方法篇
专题复习(一) 数学思想方法类型1 整体思想解题策略:整体思想是一种解题思想,它主要渗透在解题步骤当中.常见的有:1.求代数式的值时,不是求出代数式中每个字母的值,而是求代数式中整体某一个部分的值. 2.求零散图形的面积时,利用它们的结构特点或全等变换进行整体求出. 这种思想可以应用到各种类型的题之中. 例1.(2018•云南)已知x +=6,则x 2+=( )A .38B .36C .34D .32例2.(2018•衡阳)如图,▱ABCD 的对角线相交于点O ,且AD ≠CD ,过点O 作OM ⊥AC ,交AD 于点M .如果△CDM 的周长为8,那么▱ABCD 的周长是 .例3.(2016·菏泽)如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO =∠ADB =90°,反比例函数y =6x 在第一象限的图象经过点B ,则△OAC 与△BAD 的面积之差S △OAC -S △BAD 为(D )A .36B .12C .6D .3提示:设B(a ,b),则有ab =6,∴S △OAC -S △BAD =12OC 2-12BD 2=12(OC +BD)(OC -BD)=12(OC +BD)(AC -AD)=12ab =12×6=3.故选D .一.选择题(共4小题)1.(2018•沙坪坝区)已知m 2﹣2m =1,则代教式3m 2﹣4m +3的值为( ) A .1B .2C .4D .52.(2018秋•綦江区期末)若a ﹣b =﹣2,ab =3,则代数式3a +2ab ﹣3b 的值为( ) A .12B .0C .﹣12D .﹣83.(2018•沙坪坝区)若2y ﹣3x =7,则代数式5﹣2y +3x 的值为( ) A .﹣12B .﹣2C .2D .124.(2018•沙坪坝区)若3a 2﹣a ﹣2=0,则5+2a ﹣6a 2的结果为( ) A .10B .﹣2C .3D .15.(2018•渝中区)如图,在△ABC中,直线ED垂直平分线段BC,分别交BC、AB于点D点E,若BD=3,△AEC 的周长为20,则△ABC的周长为()A.23B.26C.28D.306.(2018•青海)小桐把一副直角三角尺按如图所示的方式摆放在一起,其中∠E=90°,∠C=90°,∠A=45°,∠D=30°,则∠1+∠2等于()A.150°B.180°C.210°D.270°7.(2018•泸州)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为()A.9B.6C.4D.38.(2018•广西)如图,分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为()A.B.C.2D.2二.填空题(共2小题)9(2017•镇江)已知实数m满足m2﹣3m+1=0,则代数式m2+的值等于.10.(2016•凉山州)若实数x满足x2﹣x﹣1=0,则=.11.(2019•沙坪坝区)如图,Rt△ABC,∠B=90°,∠C=30°,O为AC上一点,OA=2,以O为圆心,以OA为半径的圆与CB相切于点E,与AB相交于点F,连接OE、OF,则图中阴影部分的面积是.参考答案一.选择题(共4小题)1.D;2.B;3.B;4.D;5.B;6.C;7.D;8.D;二.填空题(共2小题)9.9;10.10;11.﹣π;题型2 分类讨论思想常见的六种类型:1.方程:若含有字母系数的方程有实数根,要考虑二次项系数是否等于0,进行分类讨论.2.等腰三角形:如果等腰三角形给出两条边求第三条边或给出一角求另外两角时,要考虑所给的边是腰还是底边,所给出的角是顶角还是底角进行分类解决.3.直角三角形:在直角三角形中给出两边的长度,确定第三边时,若没有指明直角边和斜边,要注意分情况进行讨论(分类讨论),然后利用勾股定理即可求解.4.相似三角形:若题目中出现两个三角形相似,则需要讨论各边的对应关系;若出现位似,则考虑两个图形在位似中心的同旁或两旁两种情况讨论.5.一次函数:已知一次函数与坐标轴围成的三角形的面积,求k的值,常分直线交坐标轴于正半轴和负半轴两种情况讨论;确定反比例函数与一次函数交点个数,常分第一、三象限或第二、四象限两种情况讨论.6.圆:圆的一条弦(直径除外)对两条弧,常分优弧和劣弧两种情况讨论;求圆中两条平行弦的距离,常分两弦在圆心的同旁和两旁两种情况讨论.(2017·孝感)已知半径为2的⊙O中,弦AC=2,弦AD=22,则∠COD的度数为30°或150°.【思路点拨】先根据等边三角形的性质与判定、勾股定理的逆定理分别求出∠OAC和∠OAD的度数,再根据点D位置的不确定性进行分类讨论,求出∠COD的度数.1.(2017·济宁)如图,A,B是半径为1的⊙O上两点,且OA⊥O B.点P从A出发,在⊙O上以每秒1个单位长度的速度匀速运动,回到点A运动结束.设运动时间为x,弦BP的长度为y,那么下面图象中可能表示y与x的函数关系的是(D)A .①B .④C .②或④D .①或③ 2.(2017·滨州)在平面直角坐标系内,直线AB 垂直于x 轴于点C(点C 在原点的右侧),并分别与直线y =x 和双曲线y =1x相交于点A ,B ,且AC +BC =4,则△OAB 的面积为(A )A .23+3或23-3B .2+1或2-1C .23-3D .2-13.(2017·潍坊)点A ,C 为半径是3的圆周上两点,点B 为AC ︵的中点,以线段BA ,BC 为邻边作菱形ABCD ,顶点D 恰在该圆直径的三等分点上,则该菱形的边长为(D )A .5或2 2B .5或2 3C .6或2 2D .6或2 34.(2017·鹤岗)△ABC 中,AB =12,AC =39,∠B =30°,则△ABC5.(2017·随州)在△ABC 中,AB =6,AC =5,点D 在边AB 上,且AD =2,点E 在边AC 上,当AE =53或125时,以A ,D ,E 为顶点的三角形与△ABC 相似. 6.(2017·兰州)如图,在平面直角坐标系xOy 中,▱ABCO 的顶点A ,B 的坐标分别是A(3,0),B(0,2),动点P 在直线y =32x 上运动,以点P 为圆心,PB 长为半径的⊙P 随点P 运动,当⊙P 与▱ABCO 的边相切时,P 点的坐标为32类型3 化归思想解题策略:化归的思想是指在解决问题的过程中,对问题进行转化,将“未知”转化为“已知”,将“陌生”转化为“熟悉”,将“复杂”转化为“简单”的解题方法.化归思想常见的六种类型:1.在解方程和方程组中的应用:通过消元将二元一次方程组转化为一元一次方程;通过降次把一元二次方程转化为一元一次方程;通过去分母把分式方程转化为整式方程.2.多边形化为三角形:解决平行四边形、正多边形的问题通过添加辅助线转化为全等三角形、等腰三角形、直角三角形去解决.3.立体图形转化为平面图形:立体图形的展开与折叠、立体图形的三视图体现了立体图形与平面图形之间的相互转化.4.一般三角形转化为直角三角形:通过作已知三角形的高,将问题转化为直角三角形问题.5.化不规则图形为规则图形:根据图形的特点进行平移、旋转、割补等方法将不规则图形的面积转化为规则图形(如三角形、矩形、扇形等)面积的和或差进行求解.6.转化和化归在圆中的应用:圆中圆心角与圆周角、等弧与等弦、等弧与等弧所对的圆周角都是可以相互转化的.(2017·贵港)如图,在扇形OAB 中,C 是OA 的中点,CD ⊥OA ,CD 与AB ︵交于点D ,以O 为圆心,OC 的长为半径作CE ︵交OB 于点E ,若OA =4,∠AOB =120°,3(结果保留π)【思路点拨】连接OD,根据点C为OA的中点可得∠CDO=30°,继而可得∠DOC=60°,求出扇形AOD 的面积,最后用S阴影=S扇形AOB-S扇形COE-(S扇形AOD-S△COD)即可求出阴影部分的面积.1.(2017·山西)如图是某商品标志的图案,AC与BD是⊙O的两条直径,首尾顺次连接点A,B,C,D,得到四边形ABCD.若AC=10 cm,∠BAC=36°,则图中阴影部分的面积为(B)A.5πcm2B.10πcm2C.15πcm2D.20πcm2第1题图第2题图2.(2017·福建)两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB 等于108度.3.(2017·赤峰)王浩同学用木板制作一个带有卡槽的三角形手机架,如图所示.已知AC=20 cm,BC=18 cm,∠ACB=50°,王浩的手机长度为17 cm,宽为8 cm,王浩同学能否将手机放入卡槽AB内?请说明你的理由.(参考数据:sin50°≈0.8,cos50°≈0.6,tan50°≈1.2)解:王浩同学能将手机放入卡槽AB内.理由:如图,作AD⊥BC于点D,∵∠C=50°,AC=20 cm,∴AD=AC·sin50°=20×0.8=16(cm),CD=AC·cos50°=20×0.6=12(cm).∵BC=18 cm,∴DB=BC-CD=18-12=6(cm).∴AB=AD2+BD2=162+62=292.∵17=289<292,∴王浩同学能将手机放入卡槽AB内.类型4数形结合思想解题策略:数形结合思想常见的四种类型:1.实数与数轴:实数与数轴上的点具有一一对应关系,因此借助数轴观察数的特点,直观明了.2.在解方程(组)或不等式(组)中的应用:利用函数图象解决方程问题时,常把方程根的问题看作两个函数图象的交点问题来解决;利用数轴或函数图象解有关不等式(组)的问题更直观、形象,易于找出不等式(组)解的公共部分或判断不等式组有无公共解.3.在函数中的应用:借助于图象研究函数的性质是一种常用的方法,函数图象的几何特征与数量特征紧密结合,体现了数形结合的特征与方法.4.在几何中的应用:对于几何问题,我们常通过图形找出边、角的数量关系,通过边、角的数量关系,得出图形的性质等.例 1. (2017•黄石)已知关于x 的不等式组恰好有两个整数解,求实数a 的取(2017·十堰)如图,直线y =3x -6分别交x 轴,y 轴于A ,B ,M 是反比例函数y =kx (x>0)的图象上位于直线上方的一点,MC ∥x 轴交AB 于C ,MD ⊥MC 交AB 于D ,AC ·BD =43,则k 的值为(A )A .-3B .-4C .-5D .-6【思路点拨】 分别过点C ,D 作CE ⊥x 轴于点E ,DF ⊥y 轴于点F.由已知条件可求出点A ,点B 的坐标,再由tan ∠OBA =OAOB 即可求出∠OBA 的度数.设M(x ,y),在Rt △BDF 和Rt △CEA 中,分别用含x ,y 的代数式表示出BD ,CA 的长,再由AC·BD =43,可求出xy 的值 ,则k 值即可求出.1.(2017·孝感)如图,在△ABC 中,点O 是△ABC 的内心,连接OB ,OC ,过点O 作EF ∥BC 分别交AB ,AC 于点E ,F ,已知△ABC 的周长为8,BC =x ,△AEF 的周长为y ,则表示y 与x 的函数图象大致是(B )2.(2017·白银)如图1,在边长为4的正方形ABCD 中,点P 以每秒2 cm 的速度从点A 出发,沿AB →BC 的路径运动,到点C 停止.过点P 作PQ ∥BD ,PQ 与边AD(或边CD)交于点Q ,PQ 的长度y(cm )与点P 的运动时间x(秒)的函数图象如图2所示.当点P 运动2.5秒时,PQ 的长是(B )A .2 2 cmB .3 2 cmC .4 2 cmD .5 2 cm 3.(2017·河北)在一条不完整的数轴上从左到右有点A ,B ,C ,其中AB =2,BC =1,如图所示.设点A ,B ,C 所对应数的和是p.(1)若以B 为原点,写出点A ,C 所对应的数,并计算p 的值;若以C 为原点,p 又是多少? (2)若原点O 在图中数轴上点C 的右边,且CO =28,求p. 解:(1)以B 为原点,点A ,C 分别对应的数为-2,1, p =-2+0+1=-1;以C 为原点,点A ,C 分别对应的数为-3,-1, p =0+(-1)+(-3)=-4.(2)p =(-28-1-2)+(-28-1)+(-28)=-88.类型5 方程、函数思想解题策略:方程与函数思想是一种重要的数学思想:(1)在某些图形的折叠问题中,求线段长时,通常利用勾股定理建立方程模型来解决问题;(2)在运动中求最大值或最小值时,通常可以考虑将问题转化为函数的最值讨论问题,利用二次函数的顶点坐标或函数取值范围解决.(2017·宿迁)如图,在Rt △ABC 中,∠C =90°,AC =6 cm ,BC =2 cm .点P 在边AC 上,从点A向点C 移动,点Q 在边CB 上,从点C 向点B 移动,若点P ,Q 均以1 cm /s 的速度同时出发,且当一点移动到终点时,另一点也随之停止,连接PQ ,则线段PQ 的最小值是(C )A .20 cmB .18 cmC .2 5 cmD .3 2 cm【思路点拨】 根据P ,Q 两点的运动方向和运动速度用含t 的式子表示出PC ,CQ 的长度,进而用勾股定理表示出PQ 2,根据二次函数的性质在0≤t ≤2的范围内求出PQ 2的最小值,则PQ 的最小值即可求出.1.(2017·衢州)如图,矩形纸片ABCD 中,AB =4,BC =6,将△ABC 沿AC 折叠,使点B 落在点E 处,CE 交AD 于点F ,则DF 的长等于(B )A .35B .53C .73D .54第1题图 第2题图2.(2017·泰安)如图,在△ABC 中,∠C =90°,AB =10 cm ,BC =8 cm ,点P 从点A 沿AC 向点C 以1 cm /s 的速度运动,同时点Q 从点C 沿CB 向点B 以2 cm /s 的速度运动(点Q 运动到点B 停止),在运动过程中,四边形PABQ 的面积最小值为(C )A .19 cm 2B .16 cm 2C .15 cm 2D .12 cm 2。
浙江省2018年中考数学复习第二部分题型研究题型一数学思想方法类型五整体思想针对演练
第二部分 题型研究题型一 数学思想方法 类型五 整体思想针对演练1. 已知:a -b =35,b -c =35,a 2+b 2+c 2=1,则ab +bc +ca 的值等于________.2. 如图,已知△ABC 的周长为20,一半径为1的圆紧贴三角形外侧旋转一周所经过的路程为________.第2题图3. 已知五个半径为1的圆的位置如图所示,各圆心的连线构成一个五边形,则阴影部分的面积为________.第3题图4. 角α、β、γ中有两个锐角和一个钝角,其数值已给出,在计算115(α+β+γ)的值时,全班得出23.5°、24.5°、25.5°这样三种不同结果,其中确定有正确的答案,那么α+β+γ=________.5. 已知方程组⎩⎪⎨⎪⎧4x +5y =55x +4y =7,求代数式x +y 的值等于________.6. 已知1x +1y =2,则2x -3xy +2yx +xy +y的值为________.7. 计算(1-12-13-14-15)(12+13+14+15+16)-(1-12-13-14-15-16)(12+13+14+15)的结果是________.8. 如图,已知Rt △ABC 的周长为2+6,其中AB =2,则这个三角形的面积是________.第8题图9. 如图,△ABC 中,AC =8,BC =5,AB 的垂直平分线DE 交AB 于点D ,交边AC 于点E ,则△BCE 的周长为________.第9题图10. 分解因式:(x 2-3x +2)(x 2-3x -4)-72.11. 有甲、乙、丙三种货物,若购甲3件,乙7件,丙1件,共需3.15元;若购甲4件,乙10件,丙1件,共需4.20元.现在计划购甲、乙、丙各1件,共需多少元?12. 如图,矩形ABCD 中,AB =6,AD =8,P 是BC 上一点,PE ⊥BD 于E ,PF ⊥AC 于F ,求PE +PF 的长.第12题图 答案1. -225【解析】可将ab +bc +ca 当作整体去求解,不用分别求出a 、b 、c 的值.∵a-b =35,b -c =35,∴a -c =65,则有(a -b )2+(b -c )2+(c -a )2=5425,即a 2+b 2+c 2-ab-bc -ac =2725,又∵a 2+b 2+c 2=1,∴ab +bc +ac =-225.2. 20+2π 【解析】⊙O 在△ABC 的三个顶点处所转过的圆心角度数和为360°×3-90°×2×3-180°=360°.所以总长度为L =20+2π.3. 3π2 【解析】将五个扇形的圆心角度和作为整体,∵五个扇形的圆心角的和=(5-2)×180°=540°,r =1,∴S 阴影部分=540×π×12360=3π2.4. 352.5° 【解析】将a +β+r 看作整体.设0°<α<90°,0°<β<90°,90°<γ<180°,∴90°<α+β+γ<360°,∴6°<115(α+β+γ)<24°.∵23.5°、24.5°、25.5°中有正确答案,∴115(α+β+γ)=23.5°,∴α+β+γ=352.5°.5. 43【解析】将(x +y )作为整体,方程组中的两个方程相加得:9x +9y =12,∴9(x +y )=12,即x +y =43.6. 13 【解析】∵1x +1y =2,∴x +y =2xy ,∴2x -3xy +2y x +xy +y =2(x +y )-3xy (x +y )+xy =xy 3xy=13. 7. 16 【解析】设12+13+14+15=a ,则原式=(1-a )·(a +16)-(1-a -16)a =16+56a -a 2-56a +a 2=16.8. 12【解析】在Rt △ABC 中,根据勾股定理,得a 2+b 2=22,即(a +b )2-2ab =4,又∵a +b =6,∴(6)2-2ab =4,∴ab =1,∴S =12ab =12.9. 13 【解析】∵DE 是AB 的垂直平分线,∴EA =EB ,则△BCE 的周长=BC +EC +EB =BC +EC +EA =BC +AC =13.10. 解:设x 2-3x =a , 则原式=(a +2)(a -4)-72 =a 2-2a -80 =(a -10)(a +8)=(x 2-3x -10)(x 2-3x +8) =(x -5)(x +2)(x 2-3x +8).11.解:设甲、乙、丙三种货物的单价各为x 、y 、z 元,由题意可得:3x+7y+z=3.15 ①,4x+10y+z=4.20 ②,三个未知数,2个方程,故考虑将x+y+z当作整体来解答.②-①得x+3y=1.05 ③,③×3得3x+9y=3.15 ④,②-④得x+y+z=1.05,答:购甲、乙、丙各1件,共需1.05元.12. 解:由已知条件并不能求得PE、PF的长,我们把PE+PF的值看成一个整体.由题设条件可知:△BPE∽△BDC,∴PEDC=BPBD,∵△CPF∽△CAB,∴PFAB=CPCA,又∵四边形ABCD为矩形,∴AB=DC=6,AC=BD=AB2+AD2=62+82=10,∴PE+PFAB=BP+CPAC=810,∴PE+PF=4.8.。
中考数学复习专题讲座(精编含详细参考答案)数学思想方法()
2018年中考数学复习专题讲座:数学思想方法<2)一、中考专题诠释数学思想方法是指对数学知识和方法形成的规律性的理性认识,是解决数学问题的根本策略。
数学思想方法揭示概念、原理、规律的本质,是沟通基础知识与能力的桥梁,是数学知识的重要组成部分。
数学思想方法是数学知识在更高层次上的抽象和概括,它蕴含于数学知识的发生、发展和应用的过程中。
抓住数学思想方法,善于迅速调用数学思想方法,更是提高解题能力根本之所在.因此,在复习时要注意体会教材例题、习题以及中考试卷中所体现的数学思想和方法,培养用数学思想方法解决问题的意识.二、解题策略和解法精讲数学思想方法是数学的精髓,是读书由厚到薄的升华,在复习中一定要注重培养在解题中提炼数学思想的习惯,中考常用到的数学思想方法有:整体思想、转化思想、函数与方程思想、数形结合思想、分类讨论思想等.在中考复习备考阶段,教师应指导学生系统总结这些数学思想与方法,掌握了它的实质,就可以把所学的知识融会贯通,解题时可以举一反三。
三、中考考点精讲考点四:方程思想从分析问题的数量关系入手,适当设定未知数,把所研究的数学问题中已知量和未知量之间的数量关系,转化为方程或方程组的数学模型,从而使问题得到解决的思维方法,这就是方程思想。
用方程思想解题的关键是利用已知条件或公式、定理中的已知结论构造方程(组>。
这种思想在代数、几何及生活实际中有着广泛的应用。
例1 <2018•广东)据媒体报道,我国2009年公民出境旅游总人数约5000万人次,2018年公民出境旅游总人数约7200万人次,若2018年、2018年公民出境旅游总人数逐年递增,请解答下列问题:<1)求这两年我国公民出境旅游总人数的年平均增长率;<2)如果2018年仍保持相同的年平均增长率,请你预测2018年我国公民出境旅游总人数约多少万人次?考点:一元二次方程的应用。
专题:增长率问题。
分析:<1)设年平均增长率为x.根据题意2018年公民出境旅游总人数为5000<1+x)万人次,2018年公民出境旅游总人数 5000<1+x)2 万人次.根据题意得方程求解;<2)2018年我国公民出境旅游总人数约7200<1+x)万人次.解答:解:<1)设这两年我国公民出境旅游总人数的年平均增长率为x.根据题意得5000<1+x)2 =7200.解得 x1 =0.2=20%,x2 =﹣2.2 <不合题意,舍去).答:这两年我国公民出境旅游总人数的年平均增长率为20%.<2)如果2018年仍保持相同的年平均增长率,则2018年我国公民出境旅游总人数为 7200<1+x)=7200×120%=8640万人次.答:预测2018年我国公民出境旅游总人数约8640万人次.点评:方程是解决应用题、实际问题和许多方面的数学问题的重要基础知识,应用范围非常广泛。
浙江省中考数学复习题方法技巧专题(五)转化思想训练(新版)浙教版
方法技巧专题(五) 转化思想训练【方法解读】转化思想是解决数学问题的根本思想,解数学题的过程其实就是逐渐转化的过程.常见的转化方法有:未知向已知转化,数与形的相互转化,多元向一元转化,高次向低次转化,分散向集中转化,不规则向规则转化,生活问题向数学问题转化等等.1.[2018·铜仁] 计算+++++…+的值为()A.B.C.D.2.[2018·嘉兴] 欧几里得的《原本》记载形如x2+ax=b2的方程的图解法:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD=,则该方程的一个正根是()图F5-1A.AC的长B.AD的长C.BC的长D.CD的长3.[2018·东营] 如图F5-2,圆柱的高AB=3,底面直径BC=3,现在有一只蚂蚁想从A处沿圆柱表面爬到对角C处捕食,则它爬行的最短距离是()图F5-2A.3B.3C.D.34.[2018·白银] 如图F5-3是一个运算程序的示意图,若开始输入的x的值为625,则第2018次输出的结果为.图F5-35.[2018·广东] 如图F5-4,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC相切于点E,连结BD,则阴影部分的面积为.(结果保留π)图F5-46.[2018·淄博] 如图F5-5,P为等边三角形ABC内的一点,且点P到三个顶点A,B,C的距离分别为3,4,5,则△ABC的面积为.图F5-57.如图F5-6①,点O是正方形ABCD两条对角线的交点.分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG,OE 为邻边作正方形OEFG,连结AG,DE.(1)求证:DE⊥AG.(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE'F'G',如图②.①在旋转过程中,当∠OAG'是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF'长的最大值和此时α的度数,直接写出结果,不必说明理由.图F5-6参考答案1.B[解析] ∵==1-,==-,==-,==-,==-,…,==-,∴+++++…+=1-+-+-+-+-+…+-=1-=.故选B.2.B[解析] 利用配方法解方程x2+ax=b2,得到x+2=b2+,解得x=-或x=--(舍去).根据勾股定理得AB=,由题意知BD=.根据图形知道AD=AB-BD,即AD的长是方程的一个正根.故选B.3.C[解析] 将圆柱沿AB侧面展开,得到矩形,如图,则有AB=3,BC=.在Rt△ABC中,由勾股定理,得AC===.故选C.4.1[解析] 当x=625时,代入x得x=×625=125,输出125;当x=125时,代入x得x=×125=25,输出25;当x=25时,代入x得x=×25=5,输出5;当x=5时,代入x得x=×5=1,输出1;当x=1时,代入x+4得x+4=5,输出5;当x=5时,代入x得x=×5=1,输出1;…观察发现从第4次以后奇数次就输出5,偶数次就输出1.因此,第2018次输出的应是1.5.π[解析] 连结OE,易证四边形ABEO为正方形,则扇形OED的圆心角为90°,半径为2,因此可求扇形OED的面积,阴影面积看成正方形ABEO的面积+扇形OED的面积-△ABD的面积,正方形ABEO、扇形OED和△ABD的面积均可求,即可求得阴影部分的面积.6.9+[解析] 如图,将△APB绕点A逆时针旋转60°得到△AHC,连结PH,作AI⊥CH交CH的延长线于点I,易知△APH 为等边三角形,HA=HP=PA=3,HC=PB=4.PC=5,∴PC2=PH2+CH2,∴∠PHC=90°,∴∠AHI=30°,∴AI=,HI=,∴CI=+4,∴AC2=2++42=25+12,∴S△ABC=AC2=(25+12)=9+.7.解:(1)证明:如图,延长ED交AG于点H.∵点O为正方形ABCD对角线的交点,∴OA=OD,∠AOG=∠DOE=90°.∵四边形OEFG为正方形,∴OG=OE,∴△AOG≌△DOE,∴∠AGO=∠DEO.∵∠AGO+∠GAO=90°,∴∠DEO+∠GAO=90°.∴∠AHE=90°,即DE⊥AG.(2)①在旋转过程中,∠OAG'成为直角有以下两种情况:(i)α由0°增大到90°的过程中,当∠OAG'为直角时,∵OA=OD=OG=OG', ∴在Rt△OAG'中,sin∠AG'O==,∴∠AG'O=30°.∵OA⊥OD,OA⊥AG',∴OD∥AG'.∴∠DOG'=∠AG'O=30°,即α=30°.(ii)α由90°增大到180°的过程中,当∠OAG'为直角时,同理可求得∠BOG'=30°,所以α=180°-30°=150°.综上,当∠OAG'为直角时,α=30°或150°.②AF'长的最大值是2+,此时α=315°.理由:当AF'的长最大时,点F'在直线AC上,如图所示.∵AB=BC=CD=AD=1,∴AC=BD=,AO=OD=.∴OE'=E'F'=2OD=.∴OF'==2.∴AF'=AO+OF'=+2.∵∠DOG'=45°,∴旋转角α=360°-45°=315°.。
数学思想方法(一) (整体思想、转化思想、分类讨论思想)(无答案)
数学思想方法(一)(整体思想、转化思想、分类讨论思想)考点一:整体思想整体思想是指把研究对象的某一部分(或全部)看成一个整体,通过观察与分析,找出整体与局部的联系,从而在客观上寻求解决问题的新途径。
转化的内涵非常丰富,已知与未知、数量与图形、图形与图形之间都可以通过转化来获得解决问题的转机。
例2 如图,圆柱形容器中,高为1.2m,底面周长为1m,在容器内壁离容器底部0.3m的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿0.3m与蚊子相对的点A处,则壁虎捕捉蚊子的最短距离为m2如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,点P是AB上的任意一点,作PD⊥AC 于点D,PE⊥CB于点E,连结DE,则DE的最小值为.考点三:分类讨论思想。
分类的原则:(1)分类中的每一部分是相互独立的;(2)一次分类按一个标准;(3)分类讨论应逐级进行.正确的分类必须是周全的,既不重复、也不遗漏.例3 某校实行学案式教学,需印制若干份数学学案,印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要.两种印刷方式的费用y(元)与印刷份数x(份)之间的关系如图所示:(1)填空:甲种收费的函数关系式是.乙种收费的函数关系式是.(2)该校某年级每次需印制100~450(含100和450)份学案,选择哪种印刷方式较合算?对应训练3.某农场的一个家电商场为了响应国家家电下乡的号召,准备用不超过105700元购进40台电脑,其中A型电脑每台进价2500元,B型电脑每台进价2800元,A型每台售价3000元,B型每台售价3200元,预计销售额不低于123200元.设A型电脑购进x台、商场的总利润为y(元).(1)请你设计出进货方案;(2)求出总利润y(元)与购进A型电脑x(台)的函数关系式,并利用关系式说明哪种方案的利润最大,最大利润是多少元?(3)商场准备拿出(2)中的最大利润的一部分再次购进A型和B型电脑至少各两台,另一部分为地震灾区购买单价为500元的帐篷若干顶.在钱用尽三样都购买的前提下请直接写出购买A型电脑、B型电脑和帐篷的方案.四、中考真题演练一、选择题1.若a+b=3,a-b=7,则ab=()A.-10 B.-40 C.10 D.402.已知一个圆柱的侧面展开图为如图所示的矩形,则其底面圆的面积为()A.πB.4πC.π或4πD.2π或4π3.如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,点D在BC上,以AC为对角线的所有▱ADCE中,DE最小的值是()A.2 B.3 C.4 D.54.CD是⊙O的一条弦,作直径AB,使AB⊥CD,垂足为E,若AB=10,CD=8,则BE的长是()A.8 B.2 C.2或8 D.3或7 5.已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC的长为()A.2cm B.4C.2cm或4D.2cm或二、填空题6.若a2−b2=16,a−b=13,则a+b的值为.7如图,在Rt△AOB中,,⊙O的半径为1,点P是AB边上的动点,过12.已知菱形ABCD的两条对角线分别为6和8,M、N分别是边BC、CD的中点,P是对角线BD上一点,则PM+PN的最小值= .13.(2013•三明)如图①,AB是半圆O的直径,以OA为直径作半圆C,P是半圆C上的一个动点(P与点A,O不重合),AP的延长线交半圆O于点D,其中OA=4.(1)判断线段AP与PD的大小关系,并说明理由;(2)连接OD,当OD与半圆C相切时,求»AP的长;(3)过点D作DE⊥AB,垂足为E(如图②),设AP=x,OE=y,求y与x之间的函数关系式,并写出x的取值范围.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二部分题型研究
题型一数学思想方法
类型四转化思想
针对演练
1. 我们解一元二次方程3x2-6x=0时,可以运用因式分解法,将此方程化为 3x(x-2)=0,从而得到两个一元一次方程:3x=0或x-2=0,进而得到原方程的解为x1=0,x2=
2.这种解法体现的数学思想是( )
A. 转化思想
B. 函数思想
C. 数形结合思想
D. 公理化思想
2. 已知a2-b2=-1
6
,a-b=
1
2
,则
a+b
a-b
的值为( )
A. -1
2
B.
1
3
C. -
2
3
D. -
3
2
3. (2017温州)我们知道方程x2+2x-3=0的解是x1=1,x2=-3.现给出另一个方程(2x+3)2+2(2x+3)-3=0.它的解是( )
A. x1=1,x2=3
B. x1=1,x2=-3
C. x1=-1,x2=3
D. x1=-1,x2=-3
4. 如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG 的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为( )
A. 2
3
a2 B.
1
4
a2
C. 5
9
a2 D.
4
9
a2
第4题图
5. 如图,在大长方形ABCD中,放入六个相同的小长方形,则图中阴影部分面积(单位:cm2)为( )
第5题图
A. 16
B. 44
C. 96
D. 140
6. 设m2+m-1=0,则代数式m3+2m2+2017的值为( )
A. 2016
B. 2017
C. 2018
D. 2020
7. 如图,△ABC经过平移得到△A′B′C′,若四边形ACDA′的面积为6 cm2, 则阴影部分的面积为________cm2.
第7题图
8. 如图是一个三级台阶,它的每一级的长、宽、高分别为55寸、10寸和
6寸,A 和B 是这个台阶的两个相对端点,A 点上有一只蚂蚁想到B 点去吃可口的食物,则它所走的最短路线长度是_________寸.
第8题图
9. 三个同学对问题“若方程组⎩⎨⎧a 1x +b 1y =c 1a 2x +b 2y =c 2的解是⎩⎨⎧x =3
y =4,求方程组
⎩⎨⎧3a 1x +2b 1y =5c 1
3a 2x +2b 2y =5c 2
的解.”提出各自的想法.甲说:“这个题目好像条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决”.参考他们的讨论,你认为这个题目的解应该是________.
10. 如图,△ABC 中,∠BAC =90°,AB =AC ,点M ,N 在边BC 上,且∠MAN =45°.若BM =1,CN =3,求MN 的长.
第10题图 答案
1. A
2. C 【解析】∵()a +b ()a -b =-16,a -b =12,∴a +b =-13,∴
a +b
a -b
=-23
.
3.D 【解析】令y =2x +3,则原方程变形为y 2+2y -3=0,解得y 1=1,
y 2=-3,所以2x +3=1或2x +3=-3,解得x 1=-1,x 2=-3.
4. D 【解析】如解图,过E 作BC 和CD 的垂线,垂足分别为G ,H ,则△
EGM ≌△EHN ,∴重叠部分四边形EMCN 的面积等于正方形EGCH 的面积,∵EC =
2AE ,∴CE =23
AC ,EG =23
AB =23
a ,∴正方形EGCH 的面积为49
a 2.
第4题解图
5. B 【解析】设小长方形的长和宽分别为x ,y ,则由图形得⎩⎨⎧y +3x =14
y +x -2x =6,
解得⎩⎨⎧x =2
y =8
,则阴影部分面积为14×10-6×2×8=140-96=44.
6. C 【解析】∵m 2+m -1=0,∴m 2+m =1,则m 3+2m 2+2017=m (m 2+m )+m 2+2017=m 2+m +2017=1+2017=2018.
7. 6 【解析】∵由平移性质得,△ABC 的面积等于△A ′B ′C ′的面积, ∴阴影部分的面积等于四边形ACDA ′的面积等于6 cm 2.
第7题解图
8. 73 【解析】立体图形转化为平面图形,展开后变为长方形,根据题意得,∠C =90°,BC =3×()10+6=48,
∴AB =AC 2+BC 2=552+482=
73.
第8题解图
9. ⎩⎨⎧x =5y =10 【解析】将方程组⎩⎨⎧3a 1x +2b 1y =5c 1
3a 2x +2b 2y =5c 2
变为 ⎩⎪⎨⎪⎧35a 1
x +25b 1
y =c 1
35a 2
x +25b 2
y =c
2
,设35x =m ,2
5y =n ,则原方程组转化为⎩⎨⎧a 1m +b 1n =c 1a 2
m +b 2
n =c
2
,再根据方程组⎩⎨⎧a 1x +b 1y =c 1a 2
x +b 2
y =c 2
的解是⎩⎨⎧x =3y =4,所以得出⎩
⎨⎧m =3
n =4,即⎩⎪⎨⎪⎧3
5x =325y =4
,解得,
⎩⎨⎧x =5
y =10
. 10. 解:把△ABM 绕点A 逆时针旋转90°得到的△ACG ,连接NG ,如解图,
第10题解图
∴∠BAM =∠GAC ,AM =AG ,
∴△ABM≌△ACG.
∵∠MAN=45°,∠BAC=90°,
∴∠GAN=∠MAN=45°,
∴△MAN≌△GAN.
∴MN=NG,
∴∠BCA+∠ACG=90°.
在Rt△GCN中,NG=CN2+CG2=10,∴MN=NG=10.。