小升初奥数复习系列之定义新运算
小学低中高年级奥数练习知识点讲解之定义新运算
=9×10+10
检
=90+10
测
=100
=9 ⊙24 =9×24+24 =240
要 点
自衍题
先把题中条件补完整,再解答。
已知⊙是一种新的运算,
根
题
A ⊙ B=
那么:(1) 4⊙5的值是多少?
衍
变
(2) 6⊙(3 ⊙ 4)呢?
你也可以象例题 那样定义一个 新运算。
衍 变
(答案点这里)
检
测
• 注意:新定义的运算中,有括号的应该先算括号里的;一些交换律,结合律,
现在只要看分母就 行了,就是把840 写成4个连续自然 数的积。
要 点
例2 变题
把定义的新运算的规律藏在了条件中,让我们去发现吧?
(六年级)
根
题
1
1
如果: 3☆2=
5☆3=
3×4
5×6×7
衍 变
求值: (2)解方程: x☆4= 1
840
衍
变
解:(2) X( X +1)( X +2)( X +3)= 840
小学低中高年级奥数知识点讲解之二
⊙ ☆※
定义新运算
要 点
要点说明
根 题
根题
自衍题
知识总结
衍 变
变题1
自衍题
知识总结
衍
变
变题2
自衍题
知识总结
……
检
测
衍变检测
答案
要
定义新运算
点
除了常用的加减乘除四种运算外,用※ 、⊙或☆等人为的定
考点: 义的第五种运算方法。我们称之为定义新运算。重点检测学生
根 题
的代数思想。
小升初定义新运算
第一讲定义新运算【知识精讲】1、基本概念:定义新运算是指用一个符号和已知运算表达式表达一种新的运算,这个新的运算符号包含很多种基本运算。
1、基本类型:①直接运算型;②反解未知型;③观察规律型;④其他类型综合2、解题须知:①解决此类问题:关键是正确理解新定义的算式含义,严格按照新定义的计算顺序,讲数值带入算式,再把它化为一般的四则运算,最后进行计算。
②定义新运算是一种特别设计的算式形式,它使特殊的运算符号,与四则运算中的加、减、乘、除符号是不一样的。
如:☉、¤、※、△、▽、◇、☆等来表示的一种运算。
③定义新运算中,同一运算符号,应从左至右一次计算;若有括号,要先计算括号里面的。
【经典例题】例1(直接计算型)设 a、b 都表示两个不同的数,规定 a△b=3×a+2×b,表示 a 的 3 倍加上 b 的 2 倍的和.(1)求 4△3 的值。
(2)求 3△4 的值。
例2(直接计算型)设 m、n 都表示两个不同的数,规定 m▽n=(m+2n)÷2. (1)求 4▽8▽3 的值;(2)求 12▽(4▽6)的值。
例3(复合型)设a、b都表示两个不同的数,定义:a△b=ab-3b;a◇b=4a-b÷a。
(1)求4△5◇1的值(2)求(4△3)△(2◇6)例4(反解未知数)规定运算“*”及“&”如下:a*b=2ab,a&b=2a+b。
当2*(4&2)+5*x+3&x=57,求x的值例5(观察规律型)已知:2*3=7,5*3=13,4*5=13,7*9=23,……(1)求4*9的值(2)求7*11的值【课堂练习】1、对于任意的两个数p、q规定:q△p=(p+q)÷4。
例如:2△8=(2+8)÷4 。
已知x△(8△4) =6 ,求x的值?2、已知:3□2=3×4,4□5=4×5×6×7×8,4□3=4×5×6,按照此规律计算 6□4和3□5分别各是多少?3、设a、b都表示两个不同的数,规定:a▽b=a×b-(a+b)。
六年级小升初常考奥数题型 第1讲定义新运算(例题和答案、讲解)
第1讲 定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
二、精讲精练【例题1】假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
练习1:1、将新运算“*”定义为:a*b=(a+b)×(a-b).。
求27*9。
2、设a*b=a 2+2b ,那么求10*6和5*(2*8)。
3、设a*b=3a -b ×1/2,求(25*12)*(10*5)。
【答案】1.648 2.112、65 3.193.25【例题2】设p 、q 是两个数,规定:p △q=4×q-(p+q)÷2。
求3△(4△6)。
练习2:1、设p 、q 是两个数,规定p △q =4×q -(p+q )÷2,求5△(6△4)。
2、设p 、q 是两个数,规定p △q =p2+(p -q )×2。
求30△(5△3)。
3、设M 、N 是两个数,规定M*N =M/N+N/M ,求10*20-1/4。
【答案】1.36 2.902 3.412【例题3】如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么7*4=________;210*2=________。
练习3:1、如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,7*4=7+77+777+7777=8638210*2=210+210210=2104203*3=3+33+333,……那么4*4=________。
小升初数学课程:第三讲 定义新运算
第三讲定义新运算一、知识梳理定义新运算经常出现在小学四至六年级奥数学习中,有别于我们已熟悉的“+”、“-”、“×”、“÷”基础四则运算,不再只是简单传统的运算意义和计算法则,而是通过人为赋予数或式利用各种不同的运算符号创新运算定义和算理,更融入例如字母运算、方程,甚至是找规律思想在内的一种综合计算形式,系统学习这些知识,不仅可以开阔我们的视野,而且还能进一步拓展数学思维。
1、基础运算型定义新运算基础题型是指通过字母表示,依据四则运算组合和运用括号进行计算的一种简单运算方式。
2、复合运算型定义新运算复合运算题型是指反复利用字母表示及其结合四则运算,在符合运算定律基础上的一种混合运算方式。
3、方程思想引入型定义新运算方程思想引入题型是指在基础和复合运算基础上,把方程计算引入的一种高级运算方式。
4、找规律思想引入型定义新运算找规律思想引入题型是指在基础和复合运算基础上,把找规律计算引入的一种更高级运算方式。
5、综合运算型定义新运算综合运算题型是指在探索规律背景下,融合四则基础和复合运算内容,进一步拓展方程思想参与计算的一种最高级运算方式。
二、例题精讲例1:设a、b为两个数,规定a&b=a×5-b×3,试计算:4&2=?。
【解析】该题运算最重要的是抓住定义的本质,即a、b是怎样去运算,然后运用这样的定义进行运算。
这种新的运算方法还要很快的适应,并能很好的应用,以达到解题的目的。
本题规定的运算本质是:用“&”前面的数乘以5减去“&”后面的数乘以3进行计算。
∴4&2=4×5-2×3=14变式1:定义运算☆为A☆B=(A+B)÷3,试算:11☆7=?。
变式2:设a◎b=a×b-(a+b),试求:3◎4=?。
例2:设p、q是两个数,规定:p△q = 3×p-(p+q)÷2,试求7△(2△4)=?。
小学六年级奥数--第1讲 定义新运算
第1讲定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
二、精讲精练【例题1】假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
练习1:1、将新运算“*”定义为:a*b=(a+b)×(a-b).。
求27*9。
2、设a*b=a2+2b,那么求10*6和5*(2*8)。
【例题2】设p、q是两个数,规定:p△q=4×q-(p+q)÷2。
求3△(4△6)。
练习2:1、设p、q是两个数,规定p△q=4×q-(p+q)÷2,求5△(6△4)。
2、设p、q是两个数,规定p△q=p2+(p-q)×2。
求30△(5△3)。
【例题3】如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么7*4=________;210*2=________。
练习3:1、如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,……那么4*4=________。
2、规定,那么8*5=________。
【例题4】规定②=1×2×3,③=2×3×4 ,④=3×4×5,⑤=4×5×6,……如果1/⑥-1/⑦ =1/⑦×A,那么,A是几?练习4:1、规定:②=1×2×3,③=2×3×4,④=3×4×5,⑤=4×5×6,……如果1/⑧-1/⑨=1/⑨×A,那么A=________。
小学奥数:定义新运算.专项练习及答案解析
定义新运算这类题目是在考验我们的适应能力,我们大家都习惯四则运算,定义新运算就打破了运算规则,要求我们要严格按照题目的规定做题.新定义的运算符号,常见的如△、◎、※等等,这些特殊的运算符号,表示特定的意义,是人为设定的.解答这类题目的关键是理解新定义,严格按照新定义的式子代入数值,把定义的新运算转化成我们所熟悉的四则运算。
一 定义新运算 基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。
基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。
关键问题:正确理解定义的运算符号的意义。
注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。
②每个新定义的运算符号只能在本题中使用。
我们学过的常用运算有:+、-、×、÷等.如:2+3=5 2×3=6都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这一讲中,我们定义了一些新的运算形式,它们与我们常用的“+”,“-”,“×”,“÷”运算不相同. 二 定义新运算分类1.直接运算型2.反解未知数型3.观察规律型4.其他类型综合模块一、直接运算型 【例 1】 若*A B 表示()()3A B A B +⨯+,求5*7的值。
【考点】定义新运算之直接运算 【难度】2星 【题型】计算【解析】 A *B 是这样结果这样计算出来:先计算A +3B 的结果,再计算A +B 的结果,最后两个结果求乘积。
例题精讲知识点拨教学目标定义新运算由 A *B =(A +3B )×(A +B )可知: 5*7=(5+3×7)×(5+7) =(5+21)×12 = 26×12 = 312【答案】312【巩固】 定义新运算为a △b =(a +1)÷b ,求的值。
奥数新定义运算(精)
奥数定义新运算我们已经学习过加、减、乘、除运算,这些运算,即四则运算是数学中最基本的运算,它们的意义、符号及运算律已被同学们熟知。
除此之外,还会有什么别的运算吗?现在我们就来研究这个问题。
这些新的运算及其符号,在中、小学课本中没有统一的定义及运算符号,但学习讨论这些新运算,对于开拓思路及今后的学习都大有益处。
一、定义1、定义新运算是指运用某种特殊的符号表示的一种特定运算形式。
注意:(1)解决此类问题,关键是要正确理解新定义的算式含义,严格按照新定义的计算顺序,将数值代入算式中,再把它转化为一般的四则运算,然后进行计算。
(2)我们还要知道,这是一种人为的运算形式。
它是使用特殊的运算符号,如:*、▲、★、◎、、Δ、◆、■等来表示的一种运算。
(3)新定义的算式中,有括号的,要先算括号里面的。
2、一般的解题步骤是:一是认真审题,深刻理解新定义的内容;二是排除干扰,按新定义关系去掉新运算符号;三是化新为旧,转化成已有知识做旧运算。
二、初步例题诠释例1、对于任意数a,b,定义运算“*”:a*b=a×b-a-b。
求12*4的值。
分析与解:根据题目定义的运算要求,直接代入后用四则运算即可。
12*4=12×4-12-4=48-12-4=32例2、假设a ★ b = ( a + b ÷ b 。
求8 ★5 。
分析与解:该题的新运算被定义为: a ★ b等于两数之和除以后一个数的商。
这里要先算括号里面的和,再算后面的商。
这里a代表数字8,b代表数字5。
8 ★ 5 = (8 + 5)÷ 5 = 2.6例3、如果a◎b=a×b-(a+b。
求6◎(9◎2)。
分析与解:根据定义,要先算括号里面的。
这里的符号“◎”就是一种新的运算符号。
6◎(9◎2)=6◎[9×2-(9+2)]=6◎7=6×7-(6+7)=42-13=29例4、如果1Δ3=1+11+111;2Δ5=2+22+222+2222+22222;8Δ2=8+88。
小学奥数08定义新运算
1.6定义新运算定义新运算是指用一个符号和已知运算表达式表示一种新的运算。
如:设a△b=a+b+ab则3△2=3+2+6=11,5△5=5+5+25=35定义新运算通常是用某些特殊符号表示特定的运算意义。
新运算使用的符号应避免使用课本上明确定义或已经约定俗成的符号,如+,-,×,÷,<,>等,以防止发生混淆,而表示新运算的运算意义部分,应使用通常的四则运算符号。
如果定义的新运算是用四则混合运算表示,那么在符合四则混合运算的性质、法则的前提下,不妨先化简表示式。
这样,可以既减少运算量,又提高运算的准确度。
例1 已知a※b=(a+b)-(a-b),求9※2的值。
解:a※b=(a+b)-(a-b)=a+b-a+b=2b。
所以,9※2=2×2=4。
例2 定义运算:a⊙b=3a+5ab+kb,其中a,b为任意两个数,k为常数。
比如:2⊙7=3×2+5×2×7+7k。
(1)已知5⊙2=73。
问:8⊙5与5⊙8的值相等吗?(2)当k取什么值时,对于任何不同的数a,b,都有a⊙b=b⊙a,即新运算“⊙”符合交换律?解:(1)首先应当确定新运算中的常数k。
因为5⊙2=3×5+5×5×2+k×2=65+2k,所以由已知5⊙2=73,得65+2k=73,求得k=(73-65)÷2=4。
定义的新运算是:a⊙b=3a+5ab+4b。
8⊙5=3×8+5×8×5+4×5=244,5⊙8=3×5+5×5×8+4×8=247。
因为244≠247,所以8⊙5≠5⊙8。
(2)要使a⊙b=b⊙a,由新运算的定义,有3a+5ab+kb=3b+5ab+ka,3a+kb-3b-ka=0,3×(a-b)-k(a-b)=0,(3-k)(a-b)=0。
小学奥数模块教程第1章 定义新运算
第二章 定义新运算一、例题解析1.定义新运算“*”,对于任何数a 和b ,a*b=a b a +;当a=2,b=3时,2*3=232+=2.5 (1)计算1996*1998,1998*1996; (2)计算1997*7*1,1997*(7*1);2.定义一种运算“∧”,对于任何两个正数a 和b ,a ∧b=ba ab+;计算,2∧4∧8∧16∧16,计算,16∧2∧8∧16∧4。
3、有一个数学运算符号“”,使下列算式成立:2 4=8,53=13,35=11,9 7=25,求73=?4.规定a △b=a+(a+1)+(a+2)+…(a+b-1)(a 、b 均为自然数,b>a )如果x △10=65;那么x=?二、巩固练习1、a *b 表示a 的3倍减去b 的1/2 ,例如:1*2=1 ×3-2×21=2; 根据以上的规定,计算: ①10*6 ②7*(2*1)2、有一个数学运算符号“”,使下列算式成立:2132= 63,5497 =4511,6571=426。
求11354的值。
3、定义两种运算“ ”、 ,对于任意两个整数a 、b ,a b= a+b-1,a b=a×b-1。
①计算4[(68)(35)的值;②若x(x4)=30,求x 的值。
4、对于任意的整数x 、y ,定义新运算“△”,x △y =2ymx 6x y(其中m 是一个确定的整数),如果1△2=2,则2△9=?5、x 和y 表示两个数,规定新运算“*”及“△”如下:x*y=mx+ny ,x △y=kxy ,其中 m 、n 、k 均为自然数,已知 1*2=5,(2*3)△4=64,求(1△2)*3的值。
奥数新定义运算(精)
【例2】已知2*3=2+22+222=246,3*4=3+33+333+3333=3702.
求:(13*3;(24*5;(3若1*x=123,求x.
【分析与解】观察两个已知等式可以发现,“*”定义的是连加运算,第一个加数是“*”前边的数,且后一个加数都比前一个加数多一位,但数字相同,而“*”后边的数恰好是加数的个数。
以上运算的意思是羊与羊在一起还是羊,狼与狼在一起还是狼,但是狼与羊在一起便只剩下狼了,小朋友总是希望羊能战胜狼。所以我们规定另一种运算,用符号“☆”表示:羊☆羊=羊,羊☆狼=羊,狼☆羊=羊,狼☆狼=狼。
这个运算的意思是羊和羊在一起还是羊,狼和狼在一起还是狼,但由于羊能战胜狼,当狼和羊在一起时,它便被羊赶走而剩下羊了。
【理一理】
新定义运算注意的问题:
(1新定义运算一般不满足运算定律
如:a△b≠b△a a△(b△c≠(a△b△c
(a*b△c≠(a△c*(b△c
(2“+”“-”“×”“÷”仍然是通常的运算符号,完全符合四则运算顺序.
四、练一练
1、规定a*b=4a-3b,计算:(1.5*0.8)*0.5
2、设a,b都表示自然数,规定a☆b=3a+b÷2,计算:
=[20÷2] △29 =[5△9] △6
=10△29 =[(5+9÷2] △6
=(10+29÷2 =7△6
=39÷2 =(7+6÷2
=19.5 =6.5
【试一试】
1、A,B表示两个数,定义A*B=2×A-B.试求:
(1(8.5×6.9*5 (2(119.8-29.8*(13.65+12.35
三奥数定义新运算
拓展提高 习题2 如果2⊙4=8,5⊙3=13,3⊙5=11,9⊙7=25, 那么7⊙3和3⊙7等于多少? 先算: 7⊙3 = 7×2+3 = 14+3 = 17
再算: 3⊙7 = 3×2+7 = 6+7 = 13
对隐藏的计算规则要去寻找,这样才能解决 新的问题。
模仿训练 习题1 定义一种新的运算⊕,规定:a⊕b=3×a +2×b。求:4 ⊕ 5等于多少? 4⊕5 = 3×4+2×5 = 12+10 = 22
模仿训练 习题2 定义一种新的运算△,规定:a △ b=a×b +a+b。求:5△ 8等于多少? 5△ 8 = 5×8+5+8 = 40+5+8 = 53
• 这里“*”规定的方法是:用运算符号“*”前面的数的4倍减去 运算符号“*”后面的数的3倍。 5 * 4 = 4×5-3×4 = 20 -12 = 8 4 *5 = 4×4-3×5 = 16 - 15 = 1
例2
“⊙”表示一种新的运算符号。已知:2⊙3=9, 7⊙2=15,3⊙5=25。按此规则,5⊙8等于多少? • 这里2⊙3为什么等于9?7⊙2又怎样等于15的?3⊙5是怎样 算到25的?题中运算的方法不明显,要自己去寻找并发现 其中的真正含义。 • 经过分析,可以得2⊙3=2+3+4=9,7⊙2=7+8=15, 3⊙5=3+4+5+6+7=25。你发现了什么? • “⊙”表示几个连续自然数的和, “⊙”前面的数表示第 一个加数, “⊙”后面的数表示加数的个数。 5⊙8 = 5+6+7+8+9+10+11+12 = 68
先算: 6 ▽ 7 = (6+3)×(7-5) = 9 ×2 = 18
再算: 5 ▽18 = (5+3)×(18-5) = 8×13 = 104
拓展提高
习题1 对于数x、y,定义两种运算“*”及“△” 如下:x* y = 6×x+5×y, x △ y = 3×x×y。 求:(2 * 3)△ 4等于多少? 先算: 2 * 3 = 6×2+5×3 = 12+15 = 27 再算: 27△ 4 = 3× 27 × 4 = 81×4 = 324
小学奥数专题26-定义新运算
定义新运算定义新运算通常是用特殊的符号表示特定的运算意义。
它的符号不同于课本上明确定义或已经约定的符号,例如“+、-、×、÷、、>、<”等。
表示运算意义的表达式,通常是使用四则运算符号,例如a☆b=3a-3b,新运算使用的符号是☆,而等号右边表示新运算意义的则是四则运算符号。
正确解答定义新运算这类问题的关键是要确切理解新运算的意义,严格按照规定的法则进行运算。
如果没有给出用字母表示的规则,则应通过给出的具体的数字表达式,先求出表示定义规则的一般表达式,方可进行运算。
值得注意的是:定义新运算一般是不满足四则运算中的运算律和运算性质,所以,不能盲目地运用定律和运算性质解题。
一、例题与方法指导例1. 设ab都表示数,规定a△b表示a的4倍减去b的3倍,即a△b=4×a-3×b,试计算5△6,6△5。
解5△6-5×4-6×3=20-18=26△5=6×4-5×3=24-15=9说明例1定义的△没有交换律,计算中不得将△前后的数交换。
例2. 对于两个数a、b,规定a☆b表示3×a+2×b,试计算(5☆6)☆7,5☆(6☆7)。
思路导航:先做括号内的运算。
解(5☆6)☆7=(5×3+6×2)☆7=27☆7=27×3+7×2=955☆(6☆7)=5☆(6×3+7×2)=5☆32=5×3+32×2=79说明本题定义的运算不满足结合律。
这是与常规的运算有区别的。
例3. 已知2△3=2×3×4,4△2=4×5,一般地,对自然数a、b,a△b 表示a×(a+1)×…(a+b-1).计算(6△3)-(5△2)。
思路导航:原式=6×7--5×6=336-30规定:a△=a+(a+1)+(a+2)+…+(a+b-1),其中a,b表示自然数。
(小学奥数)定义新运算
定義新運算教學目標定義新運算這類題目是在考驗我們的適應能力,我們大家都習慣四則運算,定義新運算就打破了運算規則,要求我們要嚴格按照題目的規定做題.新定義的運算符號,常見的如△、◎、※等等,這些特殊的運算符號,表示特定的意義,是人為設定的.解答這類題目的關鍵是理解新定義,嚴格按照新定義的式子代入數值,把定義的新運算轉化成我們所熟悉的四則運算。
知識點撥一定義新運算基本概念:定義一種新的運算符號,這個新的運算符號包含有多種基本(混合)運算。
基本思路:嚴格按照新定義的運算規則,把已知的數代入,轉化為加減乘除的運算,然後按照基本運算過程、規律進行運算。
關鍵問題:正確理解定義的運算符號的意義。
注意事項:①新的運算不一定符合運算規律,特別注意運算順序。
②每個新定義的運算符號只能在本題中使用。
我們學過的常用運算有:+、-、×、÷等.如:2+3=5 2×3=6都是2和3,為什麼運算結果不同呢?主要是運算方式不同,實際是對應法則不同.可見一種運算實際就是兩個數與一個數的一種對應方法,對應法則不同就是不同的運算.當然,這個對應法則應該是對任意兩個數,通過這個法則都有一個唯一確定的數與它們對應.只要符合這個要求,不同的法則就是不同的運算.在這一講中,我們定義了一些新的運算形式,它們與我們常用的“+”,“-”,“×”,“÷”運算不相同.二 定義新運算分類1.直接運算型2.反解未知數型3.觀察規律型4.其他類型綜合模組一、直接運算型 【例 1】 若*A B 表示()()3A B A B +⨯+,求5*7的值。
【巩固】 定義新運算為a △b =(a +1)÷b ,求的值。
6△(3△4)【巩固】 設a △2b a a b =⨯-⨯,那麼,5△6=______,(5△2) △3=_____.例題精講【巩固】 P 、Q 表示數,*P Q 表示2P Q +,求3*(6*8)【巩固】 已知a ,b 是任意自然數,我們規定: a ⊕b = a +b -1,2a b ab ⊗=-,那麼[]4(68)(35)⊗⊕⊕⊗= .【巩固】 M N *表示()2,(20082010)2009M N +÷**____=【巩固】 規定運算“☆”為:若a >b ,則a ☆b =a +b ;若a =b ,則a ☆b =a -b+1;若a <b ,則a ☆b =a ×b 。
小升初数学复习重点大全 :定义新运算
小升初数学复习重点大全:定义新运算根本概念:定义一种新的运算符号 ,这个新的运算符号包含有多种根本〔混合〕运算。
根本思路:严格按照新定义的运算规那么 ,把的数代入 ,转化为加减乘除的运算 ,然后按照根本运算过程、规律进行运算。
关键问题:正确理解定义的运算符号的意义。
考前须知:①新的运算不一定符合运算规律 ,特别注意运算顺序。
②每个新定义的运算符号只能在此题中使用。
定义新运算是用某些特殊的符号 ,表示特定的意义 ,从而解答某些特殊算式的运算。
在定义新运算中的※ ,〇,△……与+、-、×、÷是有严格区别的。
解答定义新运算问题 ,必须先理解先定义的含义 ,遵循新定义的关系式把问题转化为一般的+、-、×、÷运算问题。
典型例题例【1】假设A*B表示〔A+3B〕×〔A+B〕 ,求5*7的值。
分析 A*B是这样结果这样计算出来:先计算A+3B的结果 ,再计算A+B 的结果 ,最后两个结果求乘积。
解由A*B=〔A+3B〕×〔A+B〕可知:5*7=〔5+3×7〕×〔5+7〕=〔5+21〕×12=26×12=312例【2】定义新运算为a△b=〔a+1〕÷b ,求的值。
6△〔3△4〕分析所求算式是两重运算 ,先计算括号 ,所得结果再计算。
解由a△b=〔a+1〕÷b得,3△4=〔3+1〕÷4=4÷4=1;6△〔3△4〕=6△1=〔6+1〕÷1=7例【3】对于数a、b、c、d ,规定 ,=2ab-c+d ,=7 ,求x的值。
分析根据新定义的算式 ,列出关于x的等式 ,解出x即可。
解将1、3、5、x代入新定义的运算得:2×1×3-5+x=1+x ,又根据=7 ,故1+x=7 ,x=6。
例【4】规定:符号“&〞为选择两数中较大数的运算,“◎〞为选择两数中较小数的运算。
奥数专题-定义新运算(带答案完美排版)
定义新运算我们学过的常用运算有:+、-、×、÷等.如:2+3=52×3=6都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这一讲中,我们定义了一些新的运算形式,它们与我们常用的“+”,“-”,“×”,“÷”运算不相同.我们先通过具体的运算来了解和熟悉“定义新运算”.例1、设a、b都表示数,规定a△b=3×a-2×b,①求3△2,2△3;②这个运算“△”有交换律吗?③求(17△6)△2,17△(6△2);④这个运算“△”有结合律吗?⑤如果已知4△b=2,求b.分析:解定义新运算这类题的关键是抓住定义的本质,本题规定的运算的本质是:用运算符号前面的数的3倍减去符号后面的数的2倍.解:① 3△2=3×3-2×2=9-4=52△3=3×2-2×3=6-6=0.②由①的例子可知“△”没有交换律.③要计算(17△6)△2,先计算括号内的数,有:17△6=3×17-2×6=39;再计算第二步39△2=3 ×39-2×2=113,所以(17△6)△2=113.对于17△(6△2),同样先计算括号内的数,6△2=3×6-2×2=14,其次17△14=3×17-2×14=23,所以17△(6△2)=23.④由③的例子可知“△”也没有结合律.⑤因为4△b=3×4-2×b=12-2b,那么12-2b=2,解出b=5.例2、定义运算※为a※b=a×b-(a+b),①求5※7,7※5;②求12※(3※4),(12※3)※4;③这个运算“※”有交换律、结合律吗?④如果3※(5※x)=3,求x.解:① 5※7=5×7-(5+7)=35-12=23,7※ 5=7×5-(7+5)=35-12=23.②要计算12※(3※4),先计算括号内的数,有:3※4=3×4-(3+4)=5,再计算第二步12※5=12×5-(12+5)=43,所以12※(3※4)=43.对于(12※3)※4,同样先计算括号内的数,12※3=12×3-(12+3)=21,其次21※4=21×4-(21+4)=59,所以(12※ 3)※4=59.③由于a※b=a×b-(a+b);b※a=b×a-(b+a)=a×b-(a+b)(普通加法、乘法交换律)所以有a※b=b※a,因此“※”有交换律.由②的例子可知,运算“※”没有结合律.④5※x=5x-(5+x)=4x-5;3※(5※x)=3※(4x-5)=3(4x-5)-(3+4x-5)=12x-15-(4x-2)=8x-13那么8x-13=3 解出x=2.例3、定义新的运算a ⊕b=a×b+a+b.①求6 ⊕2,2 ⊕6;②求(1 ⊕2)⊕3,1 ⊕(2 ⊕3);③这个运算有交换律和结合律吗?解:① 6 ⊕2=6×2+6+2=20,2 ⊕6=2×6+2+6=20.②(1 ⊕2)⊕3=(1×2+1+2)⊕3=5 ⊕3=5×3+5+3=231 ⊕(2 ⊕3)=1 ⊕(2×3+2+3)=1 ⊕11=1×11+1+11=23.③先看“⊕”是否满足交换律:a ⊕b=a×b+a+bb ⊕a=b×a+b+a=a×b+a+b(普通加法与乘法的交换律)所以a ⊕b=b ⊕a,因此“⊕”满足交换律.再看“⊕”是否满足结合律:(a ⊕b)⊕c=(a×b+a+b)⊕c=(a×b+a+b)×c+a×b+a+b+c=abc+ac+bc+ab+a+b+c.a ⊕(b ⊕c)=a ⊕(b×c+b+c)=a×(b×c+b+c)+a+b×c+b+c=abc+ab+ac+a+bc+b+c=abc+ac+bc+ab+a+b+c.(普通加法的交换律)所以(a ⊕b)⊕c=a ⊕(b ⊕c),因此“⊕”满足结合律.说明:“⊕”对于普通的加法不满足分配律,看反例:1 ⊕(2+3)=1 ⊕5=1×5+1+5=11;1 ⊕ 2+1 ⊕ 3=1×2+1+2+1×3+1+3=5+7=12;因此1 ⊕(2+3)≠ 1 ⊕ 2+1 ⊕ 3.例4、有一个数学运算符号“⊗”,使下列算式成立:2⊗4=8,5⊗3=13,3⊗5=11,9⊗7=25,求7⊗3=?解:通过对2⊗4=8,5⊗3=13,3⊗5=11,9⊗7=25这几个算式的观察,找到规律: a ⊗b =2a +b ,因此7⊗3=2×7+3=17.例5、x 、y 表示两个数,规定新运算“*”及“△”如下:x *y=mx+ny ,x △y=kxy ,其中 m 、 n 、k 均为自然数,已知 1*2=5,(2*3)△4=64,求(1△2)*3的值.分析:我们采用分析法,从要求的问题入手,题目要求1△2)*3的值,首先我们要计算1△2,根据“△”的定义:1△2=k ×1×2=2k ,由于k 的值不知道,所以首先要计算出k 的值,k 值求出后,l △2的值也就计算出来了.我们设1△2=a , (1△2)*3=a *3,按“*”的定义: a *3=ma+3n ,在只有求出m 、n 时,我们才能计算a *3的值.因此要计算(1△2)*3的值,我们就要先求出 k 、m 、n 的值.通过1*2 =5可以求出m 、n 的值,通过(2*3)△4=64求出 k 的值.解:因为1*2=m ×1+n ×2=m+2n ,所以有m+2n=5.又因为m 、n 均为自然数,所以解出:①当m=1,n=2时: (2*3)△4=(1×2+2×3)△4=8△4=k ×8×4=32k有32k=64,解出k=2.②当m=3,n=1时:(2*3)△4=(3×2+1×3)△4=9△4=k ×9×4=36k有36k=64,解出k=971,这与k 是自然数矛盾,因此m=3,n =1,k=971这组值应舍去.所以m=l ,n=2,k=2.(1△2)*3=(2×1×2)*3=4*3=1×4+2×3=10.在上面这一类定义新运算的问题中,关键的一条是:抓住定义这一点不放,在计算时,严格遵照规定的法则代入数值.还有一个值得注意的问题是:定义一个新运算,这个新运算常常不满足加法、乘法所满足的运算定律,因此在没有确定新运算是否具有这些性质之前,不能运用这些运算律来解题.课后习题m=1n =2 m=2 n =23(舍去)m=3 n =11.a *b 表示a 的3倍减去b 的21,例如:1*2=1×3-2×21=2,根据以上的规定,计算:①10*6; ②7*(2*1).2.定义新运算为 a ㊀b =b 1a +, ①求2㊀(3㊀4)的值; ② 若x ㊀4=1.35,则x =?3.有一个数学运算符号○,使下列算式成立:21○32=63,54○97=4511,65○71=426,求113○54的值. 4.定义两种运算“⊕”、“⊗”,对于任意两个整数a 、b ,a ⊕b =a +b +1, a ⊗b=a ×b -1,①计算4⊗[(6⊕8)⊕(3⊕5)]的值;②若x ⊕(x ⊗4)=30,求x 的值.5.对于任意的整数x 、y ,定义新运算“△”,x △y=y×2x ×m y ×x ×6+(其中m 是一个确定的整数), 如果1△2=2,则2△9=?6.对于数a 、b 规定运算“▽”为a ▽b=(a +1)×(1-b ),若等式(a ▽a )▽(a +1)=(a +1)▽(a ▽a )成立,求a 的值.7.“*”表示一种运算符号,它的含义是:x *y=xy 1+))((A y 1x 1++, 已知2*1=1×21+))((A 1121++=32,求1998*1999的值. 8.a ※b=b÷a b a +,在x ※(5※1)=6中,求x 的值. 9.规定 a △b=a +(a +1)+(a +2)+…+(a +b -1),(a 、b 均为自然数,b>a )如果 x △10=65,那么x=?10.我们规定:符号◇表示选择两数中较大数的运算,例如:5◇3=3◇5=5,符号△表示选择两数中较小数的运算,例如:5△3=3△5=3,计算:)25.2◇106237()9934△3.0()3323△625.0()2617◇6.0(++ =?课后习题解答1.2.3.所以有5x-2=30,解出x=6.4左边:8.解:由于9.解:按照规定的运算:x△10=x +(x+1)+(x+2)+…+(x+10-1)=10x +(1+2+3+⋯+9)=10x + 45 因此有10x + 45=65,解出x=2.定义新运算我们学过的常用运算有:+、-、×、÷等.如:2+3=52×3=6都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这一讲中,我们定义了一些新的运算形式,它们与我们常用的“+”,“-”,“×”,“÷”运算不相同.我们先通过具体的运算来了解和熟悉“定义新运算”.例1、设a、b都表示数,规定a△b=3×a-2×b,①求3△2,2△3;②这个运算“△”有交换律吗?③求(17△6)△2,17△(6△2);④这个运算“△”有结合律吗?⑤如果已知4△b=2,求b.例2、定义运算※为a※b=a×b-(a+b),①求5※7,7※5;②求12※(3※4),(12※3)※4;③这个运算“※”有交换律、结合律吗?④如果3※(5※x)=3,求x.例3、定义新的运算a ⊕b=a×b+a+b.①求6 ⊕2,2 ⊕6;②求(1 ⊕2)⊕3,1 ⊕(2 ⊕3);③这个运算有交换律和结合律吗?例4、有一个数学运算符号“⊗”,使下列算式成立:2⊗4=8,5⊗3=13,3⊗5=11,9⊗7=25,求7⊗3=?例5、x、y表示两个数,规定新运算“*”及“△”如下:x*y=mx+ny,x△y=kxy,其中m、n、k均为自然数,已知1*2=5,(2*3)△4=64,求(1△2)*3的值.课后习题1,例如:1.a*b表示a的3倍减去b的21*2=1×3-2×21=2,根据以上的规定,计算:①10*6; ②7*(2*1).2.定义新运算为 a ㊀b =b 1a +, ①求2㊀(3㊀4)的值; ② 若x ㊀4=1.35,则x =?3.有一个数学运算符号○,使下列算式成立:21○32=63,54○97=4511,65○71=426,求113○54的值.4.定义两种运算“⊕”、“⊗”,对于任意两个整数a 、b , a ⊕b =a +b +1, a ⊗b=a ×b -1,①计算4⊗[(6⊕8)⊕(3⊕5)]的值;②若x ⊕(x ⊗4)=30,求x 的值.5.对于任意的整数x 、y ,定义新运算“△”,x △y=y×2x ×m y ×x ×6+(其中m 是一个确定的整数), 如果1△2=2,则2△9=?6.对于数a 、b 规定运算“▽”为a ▽b=(a +1)×(1-b ),若等式(a ▽a )▽(a +1)=(a +1)▽(a ▽a )成立,求a 的值.7.“*”表示一种运算符号,它的含义是:x *y=xy 1+))((A y 1x 1++, 已知2*1=1×21+))((A 1121++=32,求1998*1999的值.8.a ※b=b÷a b a ,在x ※(5※1)=6中,求x 的值.9.规定 a △b=a +(a +1)+(a +2)+…+(a +b -1),(a 、b 均为自然数,b>a )如果 x △10=65,那么x=?10.我们规定:符号◇表示选择两数中较大数的运算,例如:5◇3=3◇5=5,符号△表示选择两数中较小数的运算,例如:5△3=3△5=3,计算:)25.2◇106237()9934△3.0()3323△625.0()2617◇6.0(++ =?。
奥数-24定义新运算+答案
定义新运算定义新运算是指用一个符号和已知运算表达式表示一种新的运算。
这个新的运算符号包含有多种基本(混合)运算。
定义新运算是一种特别设计的计算形式,它使用一些特殊的运算符号,这是与四则运算中的加减乘除符号是不一样的。
定义新运算要注意以下四点:1、照猫画虎:严格按照新定义的运算规则,把已知的数代入新定义的式子进行运算。
2、括号优先:新定义的算式中有括号的,要先算括号里的。
但它在没有转化前,是不适合于各种运算的。
3、运算律不轻易使用:新的运算不一定符合运算规律,不一定符合交换律,结合律和分配律,4、意义不确定:每个新定义的运算符号只能在本题中使用,同一符号在不同的题目中意义不同。
【例 1】假设a★b=(a+b)÷b。
求:8★5的值。
解析:该题的新运算被定义为:a ★b等于两数之和除以后一个数的商。
严格按新定义的要求,将数值代入新定义的式子进行运算。
这里a是8,b是5。
8★5=(8+5)÷5=2.6【例 2】规定n※b=3×n-b÷2。
求:10※6的值。
解析:该题的新运算被定义为: n ※b等于第一个数的3倍减后一个数的一半。
这里要先算积和商,再算他们的差。
这里n代表数字10,b代表数字6。
10※6=3×10-6÷2=27练习一1.设a、b都表示数,规定:a○b=6×a-b。
试计算3○4。
2.“★”表示一种新运算,规定A★B=5A+7B,求4★5。
3.规定a#b=(3+b)×a÷2,其中a、b都是自然数。
求:6#8的值。
4.对于任意的两个数a和b,规定a⊙b=3×a-b÷3。
求8⊙9的值5.将新运算“&”定义为:a&b=(a+b)÷(a-b)。
求27&9。
6.规定a△b=(a+b)×(b-a),其中a、b都是自然数,b>a,求5△8的值。
7.规定:m※n=4×n-(m+n)÷2。
小升初奥数定义新运算
小学奥数——定义新运算(一)1、设a,b都表示数,规定a△b=3×a-2×b。
①求4△3,3△4。
②求(17△6)△2,③如果已知5△b=5,求b。
2、定义运算※为a※b=a×b-(a+b),①求5※7,7※5;②求12※(3※4),③如果3※(5※x)=3,求x.3、如果4※2=14,5※3=22,3※5=4,7※18=31,求6※9的值。
4、设a ▽b=a ×b+a-b,求5▽8。
6、规定:a △b=a+(a+1)+(a+2)+……(a+b-1),其中a,b 表示自然数。
(1)求1△100的值;7、有一个数学运算符号“⊗”,使下列算式成立:4⊗8=16,10⊗6=26,6⊗10=22,18⊗14=50.求7⊗3=?8. 规定a ba b a b +⨯=.求2 (10 10)的值.小学奥数——定义新运算(二)1. 设b a ,表示两个不同的数,规定b a b a 43+=∆.求6)78(∆∆.2. 定义运算⊖为a ⊖b =5×)(b a b a +-⨯.求11⊖12.3. b a ,表示两个数,记为:a ※b =2×b b a 41-⨯.求8※(4※16).4. 设y x ,为两个不同的数,规定x □y4)(÷+=y x .求a □16=10中a 的值.5. Q P ,表示两个数,P ※Q =2QP +,如3※4=243+=3.5.求4※(6※8);如果x ※(6※8)=6,那么=x ?6. 定义新运算x ⊕yx y 1+=.求3⊕(2⊕4)的值.7. 有一个数学运算符号“⊗”,使下列算式成立:4⊗8=16,10⊗6=26,6⊗10=22,18⊗14=50.求7⊗3=?8. “▽”表示一种新运算,它表示:)8)(1(11+++=∇y x xy y x .求3▽5的值.9. b a b a b a ÷+=∆,在6)15(=∆∆x 中.求x 的值.10. 对于数b a ,规定运算“▽”为)5()3(-⨯+=∇b a b a .求)76(5∇∇的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
奥数专题训练之定义新运算
1 规定a*b=(b+a)×b,求(2*3)*5。
2 定义运算“△”如下:对于两个自然数a和b,它们的最大公约数与最小公倍数的和记为a△b。
例如:
4△6=(4,6)+[4,6]=2+12=14。
根据上面定义的运算,18△12等于几?
3 两个整数a和b,a除以b的余数记为a7 b。
例如,13 5=3。
根据这样定义的运算,(26 9) 4等于几?
4 规定:符号“△”为选择两数中较大的数的运算,“”为选择两数中较小的数的运算,例如,3△5=5,3 5=3。
请计算下式:
[(70 3)△5]×[ 5 (3△7)]。
5 对于数a,b,c,d,规定〈a,b,c,d〉=2ab-c+d。
已知〈1,3,5,x〉=7,求x的值。
6 规定:6* 2=6+66=72,
2*3=2+22+222=246,
1*4=1+11+111+1111=1234。
求7*5。
7 如果用φ(a)表示a的所有约数的个数,例如φ(4)=3,那么φ(φ(18))等于几?
8 如果a△b表示(a-2)×b,例如
3△4=(3-2)×4=4,
那么当( a△2)△3=12时,a等于几?
10 对于任意的两个自然数a和b,规定新运算“*”:
a*b=a(a+1)(a+2)…(a+b-1)。
如果(x*3)*2=3660,那么x等于几?
11 有A,B,C,D四种装置,将一个数输入一种装置后会输出另一个数。
装置A∶将输入的数加上5;装置B∶将输入的数除以2;装置C∶将输入的数减去4;装置D∶将输入的数乘以3。
这些装置可以连接,如装置A后面连接装置B就写成A•B,输入1后,经过A•B,输出3。
(1)输入9,经过A•B•C•D,输出几?
(2)经过B•D•A•C,输出的是100,输入的是几?
(3)输入7,输出的还是7,用尽量少的装置该怎样连接?。