2013华师大七年级数学下期期末测试题6套

合集下载

华师大版七年级下册数学期末试题试卷含答案

华师大版七年级下册数学期末试题试卷含答案

华师大版七年级下册数学期末考试试卷一、选择题(每小题3分,共30分)1.(3分)下列是二元一次方程的是()A.3x﹣6=x B.3x=2y C.x﹣y2=0 D.2x﹣3y=xy2.(3分)下列交通标志中,是轴对称图形但不是中心对称图形的是()A.B.C.D.3.(3分)若关于x的方程x﹣2+3k=的解是正数,则k的取值范围是()A.k>B.k≥C.k<D.k≤4.(3分)为了搞活经济,某商场将一种商品A按标价9折出售,仍获利润10%,若商品A标价为33元,那么商品进货价为()A.31元B.元C.元D.27元5.(3分)根据不等式的性质,下列变形正确的是()A.由a>b得ac2>bc2B.由ac2>bc2得a>bC.由﹣a>2得a<2 D.由2x+1>x得x>16.(3分)已知等腰三角形的两边长分別为a、b,且a、b满足+(2a+3b ﹣13)2=0,则此等腰三角形的周长为()A.7或8 B.6或10 C.6或7 D.7或107.(3分)我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A. B.C. D.8.(3分)已知三角形的三边长为3,8,x.若周长是奇数,则x的值有()A.6个B.5个C.4个D.3个9.(3分)选用下列某一种形状的瓷砖密铺地面,不能做到无缝隙,不重叠要求的()A.正方形B.任意三角形 C.正六边形D.正八边形10.(3分)关于x的不等式组的整数解共有5个,则a的取值范围()A.a=﹣3 B.﹣4<a<﹣3 C.﹣4≤a<﹣3 D.﹣4<a≤﹣3二、填空题(每小题3分,共15分)11.若关于x的方程(k﹣2)x|k﹣1|+5k+1=0 是一元一次方程,则k+x= .12.方程3x﹣y=4中,有一组解x与y互为相反数,则3x+y= .13.一个多边形的每一个外角都等于72°,则这个多边形是边形.14.一个三角形有两条边相等,周长为18cm,三角形的一边长为4cm,则其他两边长分别为cm,cm.15.书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书超过200元一律打七折.小丽在这次活动中,两次购书总共付款元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是元.三、解答题(本题共8小题,共75分)16.(8分)﹣=.17.(9分)解方程组:.18.(9分)解不等式组:把解集表示在数轴上并求出它的整数解的和.19.(9分)如图,已知△ABC≌△DEF,∠A=32°,∠B=48°,BF=3,求∠DFE 的度数和EC的长.20.(9分)如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(1)将△ABC向下平移5个单位得△A1B1C1,画出平移后的△A1B1C1.(2)画出△ABC关于点B成中心对称的图形.(3)在直线l上找一点P,使△ABP的周长最小.21.(10分)如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD折叠得到△AED,AE与BC交于点F.(1)填空:∠AFC= 度;(2)求∠EDF的度数.22.(10分)某中学计划购买A型和B型课桌凳共200套.经招标,购买一套A 型课桌凳比购买一套B型课桌凳少用40元,且购买4套A型和5套B型课桌凳共需1820元.(1)求购买一套A型课桌凳和一套B型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌凳的数量不能超过B型课桌凳数量的,求该校本次购买A型和B型课桌凳共有几种方案哪种方案的总费用最低23.(11分)如图,取一副三角板按图1拼接,固定三角板ADE(含30°),将三角板ABC(含45°)绕点A顺时针方向旋转一个大小为α的角(0°<α≤45°),试问:(1)当∠α=度时,能使图2中的AB∥DE;(2)当旋转到AB与AE重叠时(如图3),则∠α=度;(3)当△ADE的一边与△ABC的某一边平行(不共线)时,直接写出旋转角α的所有可能的度数;(4)当0°<α≤45°时,连接BD(如图4),探求∠DBC+∠CAE+∠BDE的值的大小变化情况,并说明理由.参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)(2017春•淅川县期末)下列是二元一次方程的是()A.3x﹣6=x B.3x=2y C.x﹣y2=0 D.2x﹣3y=xy【分析】二元一次方程就是含有两个未知数,并且未知数的项的最高次数是1的整式方程,依据定义即可判断.【解答】解:A、是一元一次方程,故错误;B、正确;C、未知数的项的最高次数是2,故错误;D、未知数的项的最高次数是2,故错误.故选B.【点评】此题考查了二元一次方程的条件:①只含有两个未知数;②未知数的项的次数都是1;③整式方程.2.(3分)(2016•云南)下列交通标志中,是轴对称图形但不是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,符合题意;B、不是轴对称图形,也不是中心对称图形,不符合题意;C、不是轴对称图形,也不是中心对称图形,不符合题意;D、是轴对称图形,也是中心对称图形,不符合题意.故选A.【点评】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.3.(3分)(2017春•淅川县期末)若关于x的方程x﹣2+3k=的解是正数,则k的取值范围是()A.k>B.k≥C.k<D.k≤【分析】解方程得出x=﹣4k+3,由解为正数得出﹣4k+3>0,解之可得答案.【解答】解:解方程x﹣2+3k=,得:x=﹣4k+3,∵方程得解为正数,∴﹣4k+3>0,解得:k<,故选:C.【点评】本题主要考查解方程和不等式的能力,根据题意列出关于k的不等式是解题的关键.4.(3分)(2006•恩施州)为了搞活经济,某商场将一种商品A按标价9折出售,仍获利润10%,若商品A标价为33元,那么商品进货价为()A.31元B.元C.元D.27元【分析】本题要注意关键语“按标价9折出售,仍获利润10%”.要求商品进货价,可先设出未知数,再依题意列出方程求解.【解答】解:设进货价为x元.那么根据题意可得出:(1+10%)x=33×90%,解得:x=27,故选:D.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.5.(3分)(2017春•淅川县期末)根据不等式的性质,下列变形正确的是()A.由a>b得ac2>bc2B.由ac2>bc2得a>bC.由﹣a>2得a<2 D.由2x+1>x得x>1【分析】根据不等式的性质,可得答案.【解答】解;A、a>b,c=0时,ac2=bc2,故A错误;B、不等式的两边都乘以或除以同一个正数,不等号的方向不变,故B正确;C、不等式的两边都乘以或除以同一个负数,不等号的方向改变,右边没诚乘以﹣2,故C错误;D、不等式的两边都加或都减同一个整式,不等号的方向不变,故D错误;故选:B.【点评】本题考查了不等式的性质,注意不等式的两边都乘以或除以同一个负数,不等号的方向改变.6.(3分)(2014•安顺)已知等腰三角形的两边长分別为a、b,且a、b满足+(2a+3b﹣13)2=0,则此等腰三角形的周长为()A.7或8 B.6或10 C.6或7 D.7或10【分析】先根据非负数的性质求出a,b的值,再分两种情况确定第三边的长,从而得出三角形的周长.【解答】解:∵+(2a+3b﹣13)2=0,∴,解得,当a为底时,三角形的三边长为2,3,3,则周长为8;当b为底时,三角形的三边长为2,2,3,则周长为7;综上所述此等腰三角形的周长为7或8.故选:A.【点评】本题考查了非负数的性质、等腰三角形的性质以及解二元一次方程组,是基础知识要熟练掌握.7.(3分)(2016•茂名)我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A.B.C.D.【分析】设有x匹大马,y匹小马,根据100匹马恰好拉了100片瓦,已知一匹大马能拉3片瓦,3匹小马能拉1片瓦,列方程组即可.【解答】解:设有x匹大马,y匹小马,根据题意得,故选C【点评】本题考查了二元一次方程组的应用,解题关键是弄清题意,合适的等量关系,列出方程组.8.(3分)(2017春•淅川县期末)已知三角形的三边长为3,8,x.若周长是奇数,则x的值有()A.6个B.5个C.4个D.3个【分析】根据三角形的三边关系定理可得8﹣3<x<8+3,解出x的取值范围,再根据周长为奇数确定x的值.【解答】解:根据三角形的三边关系可得:8﹣3<x<8+3,即:5<x<11,∵三角形的周长为奇数,∴x=6,8,10,共3个.故选D.【点评】此题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边;三角形的两边差小于第三边.9.(3分)(2017春•淅川县期末)选用下列某一种形状的瓷砖密铺地面,不能做到无缝隙,不重叠要求的()A.正方形B.任意三角形 C.正六边形D.正八边形【分析】根据密铺的条件能整除360度的能密铺地面,分别对每一项进行分析即可.【解答】解:A、正方形的每个内角是90°,能整除360°,能密铺;B、任意三角形的内角和是180°,能整除360°,能密铺;C、正六边形每个内角是120°,能整除360°,能密铺;D、正八边形每个内角是135°,不能整除360°,不能密铺;故选D.【点评】此题考查了平面镶嵌,用到的知识点是:一种正多边形的镶嵌应符合一个内角度数能整除360°.10.(3分)(2017春•淅川县期末)关于x的不等式组的整数解共有5个,则a的取值范围()A.a=﹣3 B.﹣4<a<﹣3 C.﹣4≤a<﹣3 D.﹣4<a≤﹣3【分析】首先解不等式组确定不等式组的解集,然后根据不等式的整数解有5个,即可得到一个关于a的不等式组,解不等式组即可求解.【解答】解:,解①得:x≥a,解②得:x<2,则不等式组的解集是:a≤x<2,不等式组有5个整数解,则﹣4<a≤﹣3,故选D.【点评】此题考查的是一元一次不等式的解法,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.二、填空题(每小题3分,共15分)11.(3分)(2017春•淅川县期末)若关于x的方程(k﹣2)x|k﹣1|+5k+1=0 是一元一次方程,则k+x= .【分析】根据一元一次方程的定义,最高项的次数是1,且一次项系数不等于0即可求的m的值,进而求得x的值,从而求解.【解答】解:根据题意得:k﹣2≠0且|k﹣1|=1,解得:k=0.把k=0代入方程得﹣2x+1=0,解得:x=,则k+x=.故答案是:.【点评】本题考查了一元一次方程的概念和解法.一元一次方程的未知数的指数为1,理解定义是关键.12.(3分)(2017春•淅川县期末)方程3x﹣y=4中,有一组解x与y互为相反数,则3x+y= 2 .【分析】两数互为相反数,则两数和为0,即x+y=0,x=﹣y.可将x=﹣y代入方程中解出x、y的值,再把x、y的值代入3x+y=2中.即可解出本题.【解答】解:依题意得:x=﹣y.∴3x﹣y=3x+x=4x=4,∴x=1,则y=﹣1.∴3x+y=2.故答案为:2【点评】本题考查的是二元一次方程的解法与相反数的性质的综合题目.注意:两数互为相反数,它们的和为0.13.(3分)(2014•金平区模拟)一个多边形的每一个外角都等于72°,则这个多边形是五边形.【分析】用多边形的外角和360°除以72°即可.【解答】解:边数n=360°÷72°=5.故答案为:五.【点评】本题考查了多边形的外角和等于360°,是基础题,比较简单.14.(3分)(2017春•淅川县期末)一个三角形有两条边相等,周长为18cm,三角形的一边长为4cm,则其他两边长分别为7 cm,7 cm.【分析】题目中只给出了周长为18cm,三角形的一边长为4cm,没有明确该边是底边还是腰,所以分两种情况进行讨论.【解答】解:(1)若4cm为底边,则另外两边均为(18﹣4)=7厘米;(2)若4cm为腰长,则另一腰为4厘米,底边为18﹣4×2=10厘米∵4+4<10,∴此时不能构成三角形,舍去.因此其他两边的长分别为7cm、7cm.故答案为:7,7.【点评】此题主要考查学生对等腰三角形的性质及三角形的三边关系的掌握;做题时注意分情况讨论,并注意是否能构成三角形.15.(3分)(2016•绍兴)书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书超过200元一律打七折.小丽在这次活动中,两次购书总共付款元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是248或296 元.【分析】设第一次购书的原价为x元,则第二次购书的原价为3x元.根据x的取值范围分段考虑,根据“付款金额=第一次付款金额+第二次付款金额”即可列出关于x的一元一次方程,解方程即可得出结论.【解答】解:设第一次购书的原价为x元,则第二次购书的原价为3x元,依题意得:①当0<x≤时,x+3x=,解得:x=(舍去);②当<x≤时,x+×3x=,解得:x=62,此时两次购书原价总和为:4x=4×62=248;③当<x≤100时,x+×3x=,解得:x=74,此时两次购书原价总和为:4x=4×74=296;④当100<x≤200时,x+×3x=,解得:x≈(舍去);⑤当x>200时,x+×3x=,解得:x≈(舍去).综上可知:小丽这两次购书原价的总和是248或296元.故答案为:248或296.【点评】本题考查了一元一次方程的应用,解题的关键是分段考虑,结合熟练关系找出每段x区间内的关于x的一元一次方程.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程(或方程组)是关键.三、解答题(本题共8小题,共75分)16.(8分)(2017春•淅川县期末)﹣=.【分析】首先对每个式子进行化简,然后去分母、去括号、移项、合并同类项、系数化为1即可求解.【解答】解:原式即﹣=,去分母,得5(10x﹣10)﹣3(10x+20)=18,去括号,得50x﹣50﹣30x﹣60=18,移项,得50x﹣30x=18+50+60,合并同类项,得20x=128,系数化为1得x=.【点评】本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.17.(9分)(2013•黄冈)解方程组:.【分析】把方程组整理成一般形式,然后利用代入消元法其求即可.【解答】解:方程组可化为,由②得,x=5y﹣3③,③代入①得,5(5y﹣3)﹣11y=﹣1,解得y=1,把y=1代入③得,x=5﹣3=2,所以,原方程组的解是.【点评】本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.18.(9分)(2017春•淅川县期末)解不等式组:把解集表示在数轴上并求出它的整数解的和.【分析】先求出每个不等式的解集,再求出不等式组的解集,求出不等式组的整数解,最后求解即可.【解答】解:∵解不等式①得:x<3,解不等式②得:x≥﹣4,∴不等式组的解集为﹣4≤x<3,在数轴上表示为:∴不等式组的最大整数解为﹣4、﹣3、﹣2、﹣1、0、1、2,∴这个不等式组的整数解得和为﹣4﹣3﹣2﹣1+0+1+2=﹣7.【点评】本题考查了解一元一次不等式组,不等式组的整数解,能根据不等式的解集求出不等式组的解集是解此题的关键.19.(9分)(2017春•淅川县期末)如图,已知△ABC≌△DEF,∠A=32°,∠B=48°,BF=3,求∠DFE的度数和EC的长.【分析】根据全等三角形的性质得出∠D=∠A=48°,∠E=∠B=32°,BC=EF,求出BF=EC,即可求出答案.【解答】解:∵△ABC≌△DEF,∠A=32°,∠B=48°,∴∠D=∠A=48°,∠E=∠B=32°,在△DEF中,∠D+∠E+∠DFE=180°,解得:∠DFE=100°,∵△ABC≌△DEF,∴BC=EF,∴BF+FC=EC+CF,∴BF=EC,∵BF=3,∴EC=3.【点评】本题考查了全等三角形的性质定理,能正确根据全等三角形的性质进行推理是解此题的关键,注意:全等三角形的对应角相等,对应边相等.20.(9分)(2017春•淅川县期末)如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(1)将△ABC向下平移5个单位得△A1B1C1,画出平移后的△A1B1C1.(2)画出△ABC关于点B成中心对称的图形.(3)在直线l上找一点P,使△ABP的周长最小.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用中心对称图形的性质得出对应点位置;(3)利用轴对称求最短路线的方法得出答案.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△DEF,即为所求;(3)如图所示:P点位置,使△ABP的周长最小.【点评】此题主要考查了旋转变换以及平移变换以及利用轴对称求最短路线,正确得出对应点位置是解题关键.21.(10分)(2017春•淅川县期末)如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD折叠得到△AED,AE与BC交于点F.(1)填空:∠AFC= 110 度;(2)求∠EDF的度数.【分析】(1)根据折叠的特点得出∠BAD=∠DAF,再根据三角形一个外角等于它不相邻两个内角之和,即可得出答案;(2)根据已知求出∠ADB的值,再根据△ABD沿AD折叠得到△AED,得出∠ADE=∠ADB,最后根据∠EDF=∠EDA+∠BDA﹣∠BDF,即可得出答案.【解答】解:(1)∵△ABD沿AD折叠得到△AED,∴∠BAD=∠DAF,∵∠B=50°∠BAD=30°,∴∠AFC=∠B+∠BAD+∠DAF=110°;故答案为110.(2)∵∠B=50°,∠BAD=30°,∴∠ADB=180°﹣50°﹣30°=100°,∵△ABD沿AD折叠得到△AED,∴∠ADE=∠ADB=100°,∴∠EDF=∠EDA+∠BDA﹣∠BDF=100°+100°﹣180°=20°.【点评】此题考查了三角形的内角和定理、三角形的外角的性质、翻折变换等问题,解答的关键是沟通外角和内角的关系.22.(10分)(2012•河南)某中学计划购买A型和B型课桌凳共200套.经招标,购买一套A型课桌凳比购买一套B型课桌凳少用40元,且购买4套A型和5套B型课桌凳共需1820元.(1)求购买一套A型课桌凳和一套B型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌凳的数量不能超过B型课桌凳数量的,求该校本次购买A型和B型课桌凳共有几种方案哪种方案的总费用最低【分析】(1)根据购买一套A型课桌凳比购买一套B型课桌凳少用40元,以及购买4套A型和5套B型课桌凳共需1820元,得出等式方程求出即可;(2)利用要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌凳的数量不能超过B型课桌凳数量的,得出不等式组,求出a的值即可,再利用一次函数的增减性得出答案即可.【解答】解:(1)设A型每套x元,则B型每套(x+40)元.由题意得:4x+5(x+40)=1820.解得:x=180,x+40=220.即购买一套A型课桌凳和一套B型课桌凳各需180元、220元;(2)设购买A型课桌凳a套,则购买B型课桌凳(200﹣a)套.由题意得:,解得:78≤a≤80.∵a为整数,∴a=78、79、80.∴共有3种方案,设购买课桌凳总费用为y元,则y=180a+220(200﹣a)=﹣40a+44000.∵﹣40<0,y随a的增大而减小,∴当a=80时,总费用最低,此时200﹣a=120,即总费用最低的方案是:购买A型80套,购买B型120套.【点评】此题主要考查了一元一次方程的应用和不等式组的应用以及一次函数的增减性,根据已知得出不等式组,求出a的值是解题关键.23.(11分)(2017春•淅川县期末)如图,取一副三角板按图1拼接,固定三角板ADE(含30°),将三角板ABC(含45°)绕点A顺时针方向旋转一个大小为α的角(0°<α≤45°),试问:(1)当∠α=15 度时,能使图2中的AB∥DE;(2)当旋转到AB与AE重叠时(如图3),则∠α=45 度;(3)当△ADE的一边与△ABC的某一边平行(不共线)时,直接写出旋转角α的所有可能的度数;(4)当0°<α≤45°时,连接BD(如图4),探求∠DBC+∠CAE+∠BDE的值的大小变化情况,并说明理由.【分析】(1)根据平行线的性质,可得∠BAE=∠E=30°,再根据∠BAC=45°,即可得出∠CAE=45°﹣30°=15°;(2)根据当旋转到AB与AE重叠时,∠α=∠BAC即可得到结果;(3)要分5种情况进行讨论:AD∥BC、DE∥AB、DE∥BC、DE∥AC、AE∥BC,分别画出图形,计算出度数即可;(4)先设BD分别交AC、AE于点M、N,在△AMN中,∠AMN+∠CAE+∠ANM=180,再根据∠ANM=∠E+∠BDE,∠AMN=∠C+∠DBC,得出∠E+∠BDE+∠CAE+∠C+∠DBC=180°,然后根据∠C=30°,∠E=45°,即可得出∠BDE+∠CAE+∠DBC的度数.【解答】解:(1)如图2,当AB∥DE时,∠BAE=∠E=30°,∵∠BAC=45°,∴∠CAE=45°﹣30°=15°,即∠α=15°,故答案为:15;(2)当旋转到AB与AE重叠时,∠α=∠BAC=45°,故答案为:45;(2)当△ADE的一边与△ABC的某一边平行(不共线)时,旋转角α的所有可能的度数为15°,45°,105°,135°,150°.如图a﹣e所示:①当AD∥BC时,α=15°;②当DE∥AB时,α=45°;③当DE∥BC时,α=105°;④当DE∥AC时,α=135°;⑤当AE∥BC时,α=150°.(4)如图4,当0°<α≤45°时,∠DBC+∠CAE+∠BDE=105°,保持不变;理由如下:设BD分别交AC、AE于点M、N,在△AMN中,∠AMN+∠CAE+∠ANM=180°,∵∠ANM=∠E+∠BDE,∠AMN=∠C+∠DBC,∴∠E+∠BDE+∠CAE+∠C+∠DBC=180°,∵∠C=30°,∠E=45°,∴∠DBC+∠CAE+∠BDE=180°﹣75°=105°.【点评】本题考查了平行线的性质,三角形内角和定理以及旋转的性质的运用.解题时注意:旋转变化前后,对应点到旋转中心的距离相等,每一对对应点与旋转中心连线所构成的旋转角相等.。

华师大版七年级下册数学期末考试试卷及答案

华师大版七年级下册数学期末考试试卷及答案

华师大版七年级下册数学期末考试试题一、单选题1.已知7x =是方程27x ax -=的解,则a =( )A .1B .2C .3D .72.在下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D . 3.不等式1122x +的解集是( ) A .1x B .2x C .12x D .12x - 4.三角形的两边长分别是4和7,则第三边长不可能是( )A .4B .6C .10D .125.下列说法错误的是( )A .若a b =,则ac bc =B .若1b =,则ab a =C .若a b c c=,则a b = D .若()()11a c b c -=-,则a b = 6.用正三角形和正六边形铺成一个平面,则在同一个顶点处,正三角形和正六边形的个数之比为( )A .4:1B .1:1C .1:4D .4:1或1:1 7.已知关于x ,y 的方程组7234mx ny mx ny +=⎧⎨-=⎩的解为12x y =⎧⎨=⎩,则m ,n 的值为( ) A .51m n =⎧⎨=⎩ B .15m n =⎧⎨=⎩C .32m n =⎧⎨=⎩D .23m n =⎧⎨=⎩ 8.如果关于x 的方程3212x a +=和方程()3423x x -=-的解相同,那么与a 互为倒数的是( )A .3B .9C .19D .529.如图,七边形ABCDEFG 中,AB ,ED 的延长线交于点O ,若∠1,∠2,∠3,∠4的外角和等于210°,则BOD ∠的度数为( )A .30°B .35°C .40°D .45°10.如图,两架天平保持平衡,且每块巧克力的质量相等,每个果冻的质量也相等,则一块巧克力的质量是也相等,则一块巧克力的质量是( )A .20gB .25gC .15gD .30g11.若关于x 的不等式()()131a xa --的解都能使不等式5x a -成立,则a 的取值范围是( )A .1a 或2a ≥B .2a ≤C .12a ≤D .2a =12.如图,在ABC ∆中,点D ,E ,F 分别在三边上,E 是AC 的中点,AD ,BE ,CF 交于一点G ,2BD DC =,8BGD S ∆=,3AGE S ∆=,则ABC ∆的面积是( )A .16B .19C .22D .30二、填空题 13.关于x 的方程()232523m a x x -++-=是一元一次方程,则a m +=__________ 14.若关于x ,y 的二元一次方程组23122x y k x y +=-⎧⎨+=-⎩的解满足1x y +=,则k 的值是______;15.如图,已知ABC ∆的面积为16,8BC =,现将ABC ∆沿直线BC 向右平移a 个单位到DEF ∆的位置,当ABC ∆所扫过的面积为32时,a 的值为____;16.如图,在ABC ∆中,A ABC CB =∠∠,AD 、BD 、CD 分别平分ABC ∆的外角EAC ∠,内角ABC ∠,外角ACF ∠,以下结论:①//AD BC ;②ACB ADB ∠=∠;③90ADC ABD ∠+∠=︒;④1452ADB CDB ∠=︒-∠,其中正确的结论有__.三、解答题17.(1)解方程:2532234x x +--=.(2)解不等式组:12025112x x x ⎧+≥⎪⎪⎨+⎪-<--⎪⎩,并将解集在数轴上表示.18.如图所示,每个小正方形的边长为1,ABC ∆,DEF ∆的顶点都在小正方形的顶点处.(1)将ABC ∆平移,使点A 平移到点F ,点B ,C 的对应点分别是点'B ,'C ,画出''FB C ∆; (2)画出DEF ∆关DF 于所在直线对称的'DE F ∆;(3)求四边形'''B C FE 的面积.19.已知y=kx+b .当x=1时,y=3;当x=-2时,y=9.(1)求出k ,b 的值;(2)当-3≤x ≤3时,求代数式x-y 的取值范围.20.如图,在ABC ∆中,AD 是高,10DAC ∠=︒,AE 是ABC ∆外角MAC ∠的平分线,交BC 的延长线于点E ,BF 平分ABC ∠交AE 于点F ,若46ABC ∠=︒,求AFB ∠的度数。

华师版初中数学七年级下册期末测试题及答案(3套)

华师版初中数学七年级下册期末测试题及答案(3套)

华师版初中数学七年级下册期末测试题(一)一、选择题:本大题共小题,在每小题给出的四个选项中,只有一项是符合题目要求的.下列方程中,解为x=的是()A x=B x﹣=C x﹣=D x-=不等式x£在数轴上表示正确的是()A B C D小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,瓷砖形状可以是()A正五边形B正六边形C正八边形D正十边形下列图形分别是等边三角形、正方形、正五边形、等腰直角三角形,其中既是轴对称又是中心对称图形的是()A. B.C D.一个三角形的两边长分别是和,则它的第三边长可能是()A B C D下列不等式组中,无解的是()Axx<ìí<-îBxx<ìí>-îCxx>ìí>-îDxx>ìí<-î若xy=-ìí=î是关于x,y的二元一次方程k=x y的一个解,则k的值()A B C D明代数学家程大位的《算法统宗》中有这样一个问题:“隔墙听得客分银,不知人数不知银,七两分之多四两,九两分之少半斤.”其大意为:有一群人分银子,如果每人分七两,则剩余四两,如果每人分九两,则还差半斤(注:明代时斤=两,故有“半斤八两”这个成语).设总共有x两银子,根据题意所列方程正确的是()A x﹣=x﹣B x x+-=C x=x Dx x-+=如右图,五边形A B C D E的一个内角∠A D,则∠∠∠∠等于A DB DCD D D若关于x,y的二元一次方程组a xb ya xb y+=-ìí-=î的解为xy=-ìí=î则方程组a xb ya xb y+=-ìí-=î的解为()Axy=-ìí=îBxy=-ìí=îCxyì=ïïíï=ïîDxyì=-ïïíï=ïî二、填空题:本大题共个小题已知a>b,则﹣a___﹣b(填“>”、“<”或“=”号).由x y=,得到用x表示y的式子为y=________.为建设书香校园,某中学的图书馆藏书量增加后达到万册,则该校图书馆原来图书有_____万册.如图,A B C E D C△≌△,∠C=D,点D在线段A C上,点E在线段C B延长线上,则∠∠E=_____D.如图,A B C沿着射线B C的方向平移到D E F的位置,若点E是B C的中点,B F=c m,则平移的距离为___c m.如图,在A B C中,点D在B C边上,∠B A C=D,∠A B C=D,射线D C绕点D逆时针旋转一定角度α,交A C于点E,∠A B C的平分线与∠A D E的平分线交于点P.下列结论:①∠C=D;②∠P=∠B A D;③α=∠P﹣∠B A D;④若∠A D E=∠A E D,则∠B A D=α.其中正确的是______.(写出所有正确结论的序号)三、解答题:本大题共个小题,解答应写出文字说明、证明过程或演算步骤.解方程组:x yx y+=ìí+=î.解不等式组:xx x->-ìï+-í-£ïî.若代数式x﹣与x﹣的值互为相反数,求x的值.作图:在如图所示的方格纸中,每个小方格都是边长为个单位的正方形.按要求画出下列图形:()将△A B C向右平移个单位得到△A′B′C′;()将△A′B′C′绕点A′顺时针旋转D得到△A′D E;()连结E C′,则△A′E C′是三角形.如图,在A B C中,∠A=D,∠A B C=D.()求∠C的度数;()若B D是A C边上的高,D E∥B C交A B于点E,求∠B D E的度数.如图,在四边形A B C D中,∠D=D,E是B C边上一点,E F⊥A E,交C D于点F.()若∠E A D=D,求∠D F E的度数;()若∠A E B=∠C E F,A E平分∠B A D,试说明:∠B=∠C.红星商场购进A,B两种型号空调,A型空调每台进价为m元,B型空调每台进价为n元,月份购进台A型空调和台B型空调共元;月份购进台A型空调和台B型空调共元.()求m,n的值;()月份该商场计划购进这两种型号空调共元,其中B型空调的数量不少于台,试问有哪几种进货方案?已知x,y同时满足x y=﹣a,x﹣y=a.()当a=时,求x﹣y的值;()试说明对于任意给定的数a,x y的值始终不变;()若y>﹣m,x﹣6m,且x只能取两个整数,求m的取值范围.阅读理解:如图,在A B C 中,D 是B C 边上一点,且B D m D C n=,试说明A B D A C D S m S n =△△.解:过点A 作B C 边上的高A H ,∵A B D S B D A H =×△,A C D S D C A H =×△,∴A B D A C D B D A HS B DS C D D C A H×==×△△,又∵B D m D C n=,∴A B D A C D Sm S n =△△.根据以上结论解决下列问题:如图,在A B C 中,D 是A B 边上一点,且C D ⊥A B ,将A C D 沿直线A C 翻折得到A C E ,点D 的对应点为E ,A E ,B C 的延长线交于点F ,A B =,A F =.()若C D =,求A C F 的面积;()设△A B F 的面积为m ,点P ,M 分别在线段A C ,A F 上.①求P F P M 的最小值(用含m 的代数式表示);②已知A M M F =,当P F P M 取得最小值时,求四边形P C F M 的面积(用含m 的代数式表示).参考答案一、选择题:C D B B C:D A D B D二、填空题<﹣x ①③④三、解答题x y x y +=ìí+=î①②,①﹣②,得y =,把y =代入②,得x =,解得x =﹣,故方程组的解为:x y =-ìí=î.xx x ->-ìïí+--£ïî①②,解不等式①,得x >﹣,解不等式②,得x 5,故不等式组的解集为:﹣<x 5.根据题意得:x ﹣x ﹣=,移项合并得:x =,解得:x =.()如图,将A 、B 、C 三点向右平移个单位,得到A ′、B ′、C ′,连接A ′、B ′、C ′,△A ′B ′C ′为所作;()如图,将△A′B′C′绕点A′顺时针旋转D得到△A′D E,△A′D E为所作;()连结E C′,如图,∵△A′B′C′绕点A′顺时针旋转D得到△A′D E,∴A′E=A′C′,∠E A′C′=D,∴△A′E C′是等腰直角三角形.故答案为:等腰直角()∵∠A∠A B C∠C=D,∴∠C=D﹣D﹣D=D.()∵B D⊥A C,∴∠B D C=D,∴∠D B C=D﹣∠C=D,∵D E∥B C,∴∠B D E=∠C B D=D.()解:∵E F⊥A E,∴∠A E F=°,四边形A E F D的内角和是°,∵∠D=°,∠E A D=°,∴∠D F E=°﹣∠D﹣∠E A D﹣∠A E F=°;()证明:∵四边形A E F D的内角和是°,∠A E F=°,∠D=°,∴∠E A D∠D F E=°,∵∠D F E∠C F E=°,∴∠E A D=∠C F E,∵A E平分∠B A D,∴∠B A E=∠E A D,∴∠B A E=∠C F E,∵∠B∠B A E∠A E B=°,∠C∠C F E∠C E F=°,∠A E B=∠C E F,∴∠B=∠C.()依题意得:m nm n+=ìí+=î,解得:mn=ìí=î.答:m的值为,n的值为.()设购进B型空调x台,则购进A型空调x-=(﹣x)台,依题意得:xx³ìïí->ïî,解得:5x<.又∵x,(﹣x)均为整数,∴x为的倍数,∴x可以取,,,∴该商场共有种进货方案,方案:购进A型空调台,B型空调台;方案:购进A型空调台,B型空调台;方案:购进A型空调台,B型空调台.()∵x,y同时满足x y=﹣a,x﹣y=a.∴两式相加得:x﹣y=+a,∴x﹣y=+a,当a=时,x﹣y的值为;()若x y=﹣a①,x﹣y=a②.则①’②得到:x y=,∴x y=,∴不论a取什么实数,x y的值始终不变.()∵x y=,∴y=﹣x,∵y>﹣m,x﹣6m,∴x mx m->-ìí->î整理得x mmx+ìï+í³ïî<,∵x只能取两个整数,故令整数的值为n,n,有:n﹣<m+5n,n<m5n.故n m nn m n-£ìí-£-î<<,∴n﹣<n﹣且n﹣<n,∴<n<,∴n=,∴mm£ìí£î<<,∴<m5.()∵C D⊥A B,∴∠A D C=D,由翻折得,C E=C D=,∠A E C=∠A D C=D,∴C E⊥A F,∵A F=,∴S△A C F=A F•C E=’’=.()①如图,作M N⊥A C于点O,交A B于点N,连接F N、P N ,,由翻折得,∠O A M=∠O A N,∵A O =A O ,∠A O M =∠A O N =D ,∴△A O M ≌△A O N (A S A ),∴O M =O N ,A M =A N ,∴A C 垂直平分M N ,∴P M =P N ,∴P F P M =P F P N 6F N ,∴当点P 落在F N 上且F N ⊥A B 时,P F P M 的值最小,为此时F N 的长;如图,F N ⊥A B 于点N ,交A C 于点P ,P M ⊥A F,由S △A B F =A B •F N =m ,得’F N =m ,解得,F N =m ,此时P F P M =F N =m ,∴P F P M 的最小值为m .②如图,当P F P M 取最小值时,F N ⊥A B 于点N ,交A C 于点P ,P M ⊥A F,设C D =C E =a ,P M =P N =x ,∵A B =,A F =,∴A B C A F Ca S Sa´==´,∴S △A F C =S △A B F =m ;∵A M M F =,∴A M =A F =’=,∴A N =A M =,∴B N ===,∴A F NB F NS S==,∴S △A F N =S △A B F =m ,由S △A P M =’x ,S △A P N =’x ,得S △A P M =S △A P N ,设S △A P M =S △A P N =n ,∵A P M F P MS A M SM F ==,∴S △F P M =n ,由S △A P N S △A P M S △F P M =S △A F N =m ,得n n n =m ,∴n =m ,∴S △A P M =n =m ,∴S 四边形P C F M =m m =m .华师版初中数学七年级下册期末测试题(二)一、选择题(每小题只有一个正确答案,请将你所选择的答案所对应的序号填入下面答题表内.本大题共个小题,每小题分,共分)下列方程中,是一元一次方程的是()A x +B a b +=C x x-=D x -=下列交通标志中,既是轴对称图形,又是中心对称图形的是()A B C D 若方程(a )x y 是二元一次方程,则a 必须满足()A a ¹B a ¹-C a =D a ¹语句“x 的与x 的和不超过”可以表示为()A xx +£B xx +³C x £+D xx +=已知三条线段长分别为c m 、c m 、a ,若这三条线段首尾顺次联结能围成一个三角形,那么a 的取值可以是()A c mB c mC c mD c m一份数学试卷共道选择题,每道题都给出了个答案,其中只有一个正确选项,每道题选对得分,不选或错选倒扣分,已知小丽得了分,设小丽做对了x 道题,则下列所列方程正确的是.()A x x --=B x x +-=C x x+-=D x x-+=已知x y x y +=ìí+=î,则x y +等于()AB C D 已知实数a ,b 满足a +>b +,则下列选项错误的为()A a >bB a +>b +C ﹣a <﹣bD a >b《九章算术》中有一道“盈不足术”问题,原文为:今有人共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文为:现有一些人共同购买一个物品,每人出元,还盈余元;每人出元,还差元,问共有多少人?这个物品的价格是多少?设共同购买物品的有x 人,该物品的价格为y 元,则根据题意,列出的方程组为()Ax yx y-=ìí-=-îBx yx y-=ìí-=îCy xy x-=ìí-=îDy xy x-=-ìí-=-î如图,已知△A B C≌△C D E,其中A B=C D,那么下列结论中,不正确的是()A A C=C E B∠B A C=∠EC DC∠A C B=∠E C D D∠B=∠D小明要从甲地到乙地,两地相距千米.已知他步行的平均速度为米分,跑步的平均速度为米分,若他要在不超过分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x分钟,则列出的不等式为()A x(﹣x)6B x(﹣x)5C x(﹣x)6D x(﹣x)5如图,∠A B C=∠A C B,B D、C D分别平分△A B C的内角∠A B C、外角∠A C P,B E平分外角∠M B C 交D C的延长线于点E.以下结论:①∠B D E=∠B A C;②D B⊥B E;③∠B D C+∠A B C=D;④∠B A C +∠B E C=D.其中正确的结论有()A个B个C个D个二、填空题(本大题共个小题,每小题分,共分)若单项式x m﹣y与单项式x y n是同类项,则m﹣n=___.已知xy=ìí=î是关于x,y的二元一次方程m x y+=-的一个解,则m的值为__________.内角和为°的多边形是__________边形.大桥钢架、索道支架、人字梁等为了坚固,都采用三角形结构,这是根据____.若一个正多边形的每个外角都等于D,则用这种多边形能铺满地面吗?(填“能”或“不能”)答:________.关于x的不等式组x b ax a b-ìí-î><的解集为﹣<x<,则a b=___.三、解答题(本大题共个小题,共分)解方程:x x---=-.解方程组:x y x y-=ìí+=î解不等式组:xx x-£ìï-íïî<,把它的解集在数轴上表示出来,并求出它的所有整数解的和.按下列要求在网格中作图:()将图①中的图形先向右平移格,再向上平移格,画出两次平移后的图形;()将图②中的图形绕点O旋转D,画出旋转后的图形;()画出图③关于直线A B的轴对称图形.列一元一次方程解应用题:随着天气寒冷,为预防新冠病毒卷土重来,某社区组织志愿者到各个街道进行“少出门,少聚集”的安全知识宣传.原计划在甲街道安排个志愿者,在乙街道安排个志愿者,但到现场后发现任务较重,决定增派名志愿者去支援两个街道,增派后甲街道的志愿者人数是乙街道志愿者人数的倍,请问新增派的志愿者中有多少名去支援甲街道?如图,A D为△A B C的中线,B E为△A B D的中线,过点E作E F⊥B C,垂足为点F.()∠A B C=D,∠E B D=D,∠B A D=D,求∠B E D的度数;()若△A B C的面积为,E F=,求C D.某商店需要购进甲、乙两种商品共件其进价和售价如表:(注:获利售价进价)()若商店计划销售完这批商品后能获利元,问甲、乙两种商品应分别购进多少件?()若商店计划投入资金少于元,且销售完这批商品后获利多于元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案已知A B∥C D,点E、F分别在直线A B、C D上,P F交A B于点G.()如图,直接写出∠P、∠P E B与∠P F D之间的数量关系:;()如图,E Q、F Q分别为∠P E B与∠P F D的平分线,且交于点Q,试说明∠P=∠Q;()如图,若∠Q E B=∠P E B,∠Q F D=∠P F D,()中的结论还成立吗?若成立,请说明理由;若不成立,请求出∠P与∠Q的数量关系;()在()的条件下,若∠C F P=D,当点E在A、B之间运动时,是否存在P E∥F Q?若存在,请求出∠Q的度数;若不存在,请说明理由.参考答案一、选择题:D D A A CA B D A CA D二、填空题七三角形具有稳定性不能三、解答题去分母,得:(x ﹣)﹣(x ﹣)﹣,去括号:x ﹣﹣x ﹣,移项、合并,得:﹣x ﹣,解得:x ,∴原方程的解为x .x y x y -=ìí+=î①②由①得:x y =+③把③代入②得:()y y ++=y \=-y \=-把y =-代入③得:x =所以方程组的解是:x y =ìí=-î.不等式组x x x -£ìïí-ïî①<②,解①得:x ≤,解②得:x >,∴不等式组的解集为<x ≤,解集表示在数轴上为:它的整数解为和,所有整数解的和为.()如图①即为两次平移后的图形;()如图②即为旋转后的图形;()如图③即为关于直线A B的轴对称图形.设新增派的志愿者中有x 名去支援甲街道,则有(x 名去支援乙街道.根据题意可列方程:x x+=´+-,解得:x =.故新增派的志愿者中有名去支援甲街道.()∵∠A B C =D ,∠B A D =D ,∠A B C ∠B A D ∠A D B =D ,∴∠A D B D ﹣D ﹣D D ,∵∠E B D ∠A D B ∠B E D °,∠E B D D ,∴∠B E D D ﹣D ﹣D D ;()∵A D 为△A B C 的中线,B E 为△A B D 的中线,△A B C 的面积为,∴A B DS=´=,B D ES =,B D C D ,∵E F ⊥B C ,E F ,∴B D E S B D =´×,解得:B D ,即C D .()设甲种商品应购进x 件,乙种商品应购进y 件根据题意得:x y x y +=ìí+=î,解得:x y=ìí=î答:甲种商品购进件,乙种商品购进件;()设甲种商品购进a 件,则乙种商品购进()a -件根据题意得:a a a a +-<ìí+->î解不等式组,得:a <<∵a 为非负整数,∴a 取,,∴a -相应取,,方案一:甲种商品购进件,乙种商品购进件方案二:甲种商品购进件,乙种商品购进件方案三:甲种商品购进件,乙种商品购进件答:有三种购货方案,其中获利最大的是方案一故答案为()甲种商品购进件,乙种商品购进件()有三种购货方案,见解析,其中获利最大的是方案一()如图,∵A B ∥C D ,∴∠P F D ∠A G F ,∵∠A G F ∠P ∠P E B ,∴∠P ∠P E B ∠P F D ;()如图,∵A B ∥C D ,∴∠Q F D ∠A K F ,∵∠A K F ∠Q ∠Q E B ,∴∠Q ∠Q E B ∠Q F D ,∵E Q 、F Q 分别为∠P E B 与∠P F D 的平分线,∴∠Q E B =∠P E B ,∠Q F D =∠P F D∴∠Q∠P E B∠P F D,即∠Q∠P E B∠P F D,由()知,∠P∠P E B∠P F D,∴∠P∠Q;()()中的结论不成立,∠P∠Q,理由为:由()中知,∠Q∠Q E B∠Q F D,∵∠Q E B=∠P E B,∠Q F D=∠P F D,∴∠Q∠P E B∠P F D,即∠Q∠P E B∠P F D,由()知∠P∠P E B∠P F D,∴∠P∠Q;()存在P E F Q,此时∠P∠P F Q,∵∠C F P D,∴∠P F D D﹣∠C F P D﹣D D,∵∠D F Q=∠P F D,∴∠D F Q’D D,∴∠P F Q∠P F D﹣∠D F Q D﹣D°,∴∠P D,由()知∠P∠Q,∴∠Q’D D.华师版初中数学七年级下册期末测试题(三)一、选择题(每小题分,共分)若x y =ìí=î是方程a x y -=的一个解,则a 的值是()A B C -D -我国已经进入G 时代,自动驾驶技术和远程外科手术技术得以进一步发展.下列通信公司标志中,是中心对称图形,但不是轴对称图形的是()A BC D 若a >b ,则下列不等式变形不正确的是()A ﹣a <﹣b B a m <b mC a ﹣>b ﹣D a >b 方程x y =有几组正整数解?()A 组B 组C 组D 组《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架,其中《磁不足》卷记载了一道有趣的数学问题:“今有共买物,人出八,赢三;人出七,不足四,问人数、物价各几何?”译文:“今有人合伙购物,每人出钱,会多出钱;每人出钱,又差钱,问人数,物价各多少?”设人数为x 人,物价为y 钱,根据题意,下面所列方程组正确的是()A.xy x y +=ìí-=î B.xy x y -=ìí+=î C.xy x y +=ìí+=î D.xy x y-=ìí-=î如图,将△A O B绕点O按逆时针方向旋转D后得到△C O D,若∠A O B=D,则∠A O D的度数是()A DB DCD D D若关于x的不等式x﹣a5只有个正整数解,则a的取值范围是()A<a<B5a<C5a5D<a5多边形的边数由增加到时,其外角和的度数()A增加B减少C不变D不能确定商店出售下列形状的地砖:①长方形;②正方形;③正五边形;④正六边形.若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有()A.种B.种C.种D.种如图,△A B C的面积为.第一次操作:分别延长A B,B C,C A至点A,B,C,使A B=A B,B C=B C,C A=C A,顺次连接A,B,C,得到△A B C.第二次操作:分别延长A B,B C,C A至点A,B,C;使A B=A B,B C=B C,C A=C A,顺次连接A,B,C,得到△A B C,…按此规律,要使得到的三角形的面积超过,最少经过()次操作.A. B. C. D.二、填空题(每小题分,共分)三角形三边长分别为,a,,则a的取值范围是_____.如果一个多边形的内角和等于它的外角和的倍,那么这个多边形是___边形.如图,将透明直尺叠放在正五边形之上,若正五边形有两个顶点在直尺的边上,且有一边与直尺的边垂直.则a Ð=_______°.规定一种新运算:a b =a ﹣b ,若[(﹣x )]=,则x 的值为_____.在一个三角形中,如果一个角是另一个角的倍,这样的三角形我们称之为“灵动三角形”.例如,三个内角分别为D ,D ,D 的三角形是“灵动三角形”.如图,∠M O N =D ,在射线O M 上找一点A ,过点A 作A B ⊥O M 交O N 于点B ,以A 为端点作射线A D ,交线段O B 于点C (规定D <∠O A C <D ).当△A B C 为“灵动三角形”时,则∠O A C的度数为____________.三、解答题(共个小题,满分分)解不等式组x x x x -£-ìí>-î①②,请按照下列步骤完成解答:()解不等式①,得;()解不等式②,得;()把不等式①和②的解集在数轴上表示出来;()原不等式组的解集为.如图,已知△A B C≌△D E F,∠A=D,∠B=D,B F=.求∠D F E的度数和E C的长.如图,在正方形网格中,△A B C是格点三角形.()画出△A B C,使得△A B C和△A B C关于直线l对称;()过点C画线段C D,使得C D A B,且C D=A B;()直接写出以A、B、C、D为顶点的四边形的面积为.整式m x n的值随x的取值不同而不同,下表是当x取不同值时对应的整式的值:x﹣﹣m x n﹣﹣﹣求关于x的方程﹣m x n=的解.已知关于x、y的二元一次方程组x y mx y m-=ìí+=-+î的解满足x y>﹣,求m的取值范围.如图,在A B C 中,A D 是角平分线,E 为边A B 上一点,连接D E ,E A D E D A Ð=Ð,过点E 作E F B C ^,垂足为F .()D E 与A C 平行吗?请说明理由;()若B A C Ð=°,B Ð=°,求D E F Ð的度数.为进一步提升摩托车、电动自行车骑乘人员和汽车驾乘人员安全防护水平,公安部交通管理局部署在全国开展“一盔一带”安全守护行动.某商店销售A ,B 两种头盔,批发价和零售价格如表所示,请解答下列问题.名称A 种头盔B 种头盔批发价(元个)零售价(元个)()第一次,该商店批发A ,B 两种头盔共个,用去元钱,求A ,B 两种头盔各批发了多少个?()第二次,该商店用元钱仍然批发这两种头盔(批发价和零售价不变),要想将第二次批发的两种头盔全部售完后,所获利润不低于元,则该超市第二次至少批发A 种头盔多少个?如图,将一副直角三角板放在同一条直线A B上,其中∠O N M=D,∠O C D=D()观察猜想将图中的三角尺O C D沿A B的方向平移至图②的位置,使得点O与点N重合,C D与M N相交于点E,则∠C E N=度.()操作探究将图中的三角尺O C D绕点O按顺时针方向旋转,使一边O D在∠M O N的内部,如图,且O D恰好平分∠M O N,C D与N M相交于点E,求∠C E N的度数;()深化拓展将图中的三角尺O C D绕点O按沿顺时针方向旋转一周,在旋转的过程中,若边C D恰好与边M N平行,请你求出此时旋转的角度.参考答案一、选择题:B C B B B:B B C C C二、填空题<a<六DD或D三、解答题-£-()解不等式①,x x-£-去括号:x x移项,合并同类项:x£得:x5;>-()解不等式②,x x移项,合并同类项得:x>﹣得:x>﹣;()把不等式①和②的解集在数轴上表示出来;()原不等式组的解集为﹣<x5.故答案为:x5,x>﹣,﹣<x5.∵∠A=D,∠B=D,∴∠A C B=D﹣∠A﹣∠B=D﹣D﹣D=D,∵△A B C≌△D E F,∴∠D F E=∠A C B=D,E F=B C,∴E F﹣C F=B C﹣C F,即E C=B F=.()如图,△A B C为所作;()如图,C D或C D′为所作;()以A、B、C、D为顶点的四边形的面积=´-´´-´´-´´-´´=.故答案为.由题意可得:当x=时,m x n=﹣,∴m’n=﹣,解得:n=﹣,当x=时,m x n=,∴m’﹣=,解得:m=,∴关于x的方程﹣m x n=为﹣x﹣=,解得:x=﹣.方程组x y mx y m-=ìí+=-+î①②,①②得:x=m,解得:x=m,把x=m代入①得:m﹣y=m,解得:y=﹣m,∴方程组的解为x my m=+ìí=-+î,代入x y>﹣得:﹣m>﹣,解得:m<.()D E A C,理由如下:A D 是B AC Ð的角平分线B A DC A D\Ð=ÐE A D E D AÐ=Ð E D A C A D\Ð=ÐD E A C \;(2) B A C Ð=°,B Ð=°C B A C B \Ð=°-Ð-Ð=°D E A CE DF C \Ð=Ð=°E F B C^ D E F E D F \Ð=°-Ð=°.()设第一次A 种头盔批发了x 个,B 种头盔批发了y 个.根据题意,得x y x y +ìí+î==,解得:x yìíî==,答:第一次A 种头盔批发了个,B 种头盔批发了个.()设第二次批发A 种头盔a 个,则批发B 种头盔a -个.由题意,得()()a a --+-´³,解得:a ³,答:第二次该商店至少批发个A 种头盔.()∵∠E C N =D ,∠E N C =D ,∴∠C E N =o o D .故答案为D .()∵O D 平分∠M O N ,∴∠D O N =∠M P N =’D =D ,∴∠D O N =∠D =D ,∴C D ∥A B ,∴∠C E N =D ﹣∠M N O =D ﹣D =D ;()如图,C D在A B上方时,设O M与C D相交于F,∵C D∥M N,∴∠O F D=∠M=D,在△O D F中,∠M O D=D﹣∠D﹣∠O F D,=D﹣D﹣D,=D,当C D在A B的下方时,设直线O M与C D相交于F,∵C D∥M N,∴∠D F O=∠M=D,在△D O F中,∠D O F=D﹣∠D﹣∠D F O=D﹣D﹣D=D,∴旋转角为D D=D,综上所述,旋转的角度为D或D时,边C D恰好与边M N平行.故答案为o或o.。

七年级下学期数学期末试卷华师大版

七年级下学期数学期末试卷华师大版

2013年七年级下学期数学期末试卷(华师大版)2013春七年级(下)数学期末考试卷(满分:150分;考试时间:120分钟)班级座号姓名成绩一、选择题(每小题3分,共24分)每小题有四个答案,其中有且只有一个答案是正确的.1、一元一次方程3=x-2的解是()A、x=5B、x=-5C、x=1D、x=-12、在数轴上表示不等式2x-4>0的解集,正确的是()3、如果是二元一次方程2x-y=3的解,则m=()A、0B、-1C、2D、34、已知一个多边形的内角和为540°那么这个多边形是()A、四边形B、五边形C、六边形D、七边形5、以下图形不是轴对称图形的是()6.下列各组图形,可以经过平移变换由一个图形得到另一个图形的是()7.下列各组图形中,全等的一组是()8、为确保信息安全,信息需要加密传输,发送方由明文→密文(解密)。

接收方由密文→明(解密)。

已知加密规则为:明文a,b,c对应的密文a+1,2b+4,3c+9,例如明文1,2,3对应的密文2,8,18。

如果接收方收到密文7,18,15,则解密得到的明文为()A、4,5,6B、6,7,2C、2,6,7D、7,2,6二、填空题(每小题4分,共40分)9、若2x=5-3x,则2x+=510、如图1,△ABC平移后得△DEF,已知∠A=50°,∠B=60°,则∠F=度11.若xa-3+yb+1=2013是关于x、y的二元一次方程,则a+b=12.等腰三角形的两边长分别为5cm和2cm,则它的周长是cm13、不等式组的解集是14.如右图,△ABC按顺时针方向旋转一个角度后成为△AED,且∠BAD=120°,则旋转中心为,旋转角度为15、一个n边形的每个外角都为36°,则n=16、如图,天秤中的物体a、b、c例天秤处于平衡状态,则质量最大的物体是17、能与正三角形铺满地面的正多边形有(请写出一个)18、工人师傅在安装木制门框时,为了防止变形常常像图中所示,钉上两条斜拉的木条,这样做的原理是根据三、解答题(19-23每题9分,24-26每题10分,27题11共86分)19、(9分)解方程:=120(9分)、解方程组:21.(9分)解不等式,22、(9分)解不等式组:并把解集在数轴画出来。

华师大版数学七年级下册期末考试试卷及答案

华师大版数学七年级下册期末考试试卷及答案

华师大版数学七年级下册期末考试试题第Ⅰ卷(选择题 共24分)一、选择题(本大题共8小题,每小题3分,共24分) 1.下列图形既是轴对称图形,又是中心对称图形的是( )A B C D2.若一个多边形的每个内角都为135°,则它的边数为( ) A .9 B .8 C .10 D .123.(邵阳中考)不等式组⎩⎨⎧x>-12x -3≤1的解集在数轴上表示正确的是( )4.如图,在10×6的网格中,每个小方格的边长都是1个单位,将△ABC 平移到△DEF 的位置,下面正确的平移步骤是( )A .先把△ABC 向左平移5个单位,再向下平移2个单位B .先把△ABC 向右平移5个单位,再向下平移2个单位 C .先把△ABC 向左平移5个单位,再向上平移2个单位D .先把△ABC 向右平移5个单位,再向上平移2个单位第4题图5.下列正多边形的组合中能够铺满地面不留缝隙的是( ) A .正八边形和正三角形 B .正五边形和正八边形 C .正方形和正三角形 D .正六边形和正五边形6.如图,△ABC 绕点A 按逆时针方向旋转一定的角度后成为△AB ′C ′.有下列结论:①BC =B ′C ′;②∠BAB ′=∠CAC ′;③∠ABC =∠AB ′C ′;④△ABB ′≌△ACC ′.其中正确的结论有( )第6题图A.1个 B.2个 C.3个 D.4个7.已知△ABC,①如图甲,若P点是∠ABC和∠ACB的平分线的交点,则∠P=90°+12∠A;②如图乙,若P点是∠ABC和外角∠ACE的平分线的交点,则∠P=90°-∠A;③如图丙,若P点是外角∠CBF和∠BCE的平分线的交点,则∠P=90°-12∠A.上述说法正确的有()A.0个 B.1个 C.2个 D.3个8.有一根长40 cm的金属棒,欲将其截成x根长7 cm的小段和y根长9 cm的小段,剩余部分作废料处理,若使废料最少,则正整数x,y应分别为()A.x=1,y=3 B.x=4,y=1C.x=3,y=2 D.x=2,y=3第Ⅱ卷(非选择题共96分)二、填空题(本大题共8小题,每小题3分,共24分)9.若2x3-2k+2=4是关于x的一元一次方程,则k=.10.若3x-2=2(x-3)与3(x+a)=a-5x有相同的解,那么a-1=.11.如图,△BDC≌△ABE,且∠BCD=90°,A,C,B在同一条直线上,AB=5 cm,AE=4 cm,BE=3 cm,则△ACD的面积为 cm2.第11题图12.在有理数范围内定义一种新运算“⊗”,其运算规则为a⊗b=-3a+2b,如-1⊗2=-3×(-1)+2×2=7,则不等式x⊗(-2)≥3的解集是.13.如图所示,已知∠AOB =30°,点P 在∠AOB 内部,点P 与点P 1关于OA 对称,与点P 2关于OB 对称,则∠P 1OP 2= .第13题图14.以长为13,14,x +5的三条线段为边可构成三角形,则x 的取值范围是 . 15.已知方程组⎩⎨⎧x -y =2k ,x +3y =1-5k 的解x 与y 的和为负数,则k 的取值范围是 .16.某种商品进价为800元,售价为1 200元,由于受市场供求关系的影响,现准备打折销售,但要求利润率不低于5%,则至多打 折. 三、解答题(本大题共8小题,共72分) 17.(10分)解方程(组): (1)3x -12 -2x +16=-1;(2)⎩⎪⎨⎪⎧x +13+y -14=32,x -32+y +25=12.18.(6分)解不等式组⎩⎨⎧3x +2≤2(x +3),2x -13>x2,并写出不等式组的整数解.19.(8分)如图,已知在△BCD中,BC=4,BD=5.(1)直接写出CD的取值范围是1<CD<9;(2)若AE∥BD,∠A=55°,∠BDE=125°,求∠C的度数.20.(8分)顶点在网格交点的多边形叫做格点多边形.如图,在一个9×9的正方形网格中有一个格点△ABC.设网格中小正方形的边长为1个单位长度.(1)在网格中画出△ABC向上平移4个单位长度后得到的△A1B1C1;(2)在网格中画出△ABC绕点A逆时针旋转90°后得到的△AB2C2;(3)在(1)中△ABC向上平移过程中,求边AC所扫过区域的面积.AB C21.(8分)(乐山中考)已知关于x ,y 的方程组⎩⎨⎧x -2y =m ,①2x +3y =2m +4,② 的解满足不等式组⎩⎨⎧3x +y ≤0,x +5y>0. 求满足条件的m 的整数值.22.(10分)如图,在△ABC 中,∠BAC =120°,以BC 为边向外作等边三角形BCD ,将△ABD 绕着点D 按顺时针方向旋转60°到△ECD 的位置,若AB =3,AC =2,求∠BAD 的度数和AD 的长.23.(10分)(哈尔滨中考)春平中学要为学校科技活动小组提供实验器材,计划购买A 型、B 型两种型号的放大镜.若购买8个A 型放大镜和5个B 型放大镜需用220元,购买4个A 型放大镜和6个B 型放大镜需用152元. (1)求每个A 型放大镜和B 型放大镜各多少元;(2)春平中学决定购买A 型放大镜和B 型放大镜共75个,总费用不超过1 180元,那么最多可以购买多少个A 型放大镜?24.(12分)(攀枝花中考)为了打造区域性中心城市,实现攀枝花跨越式发展,我市花城新区建设正按投资计划有序推进.花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540 m3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如表:种型号的挖掘机各需多少台?(2)如果每小时支付的租金不超过850元,又恰好完成每小时的挖掘量,那么共有几种不同的租用方案?参考答案第Ⅰ卷(选择题共24分)一、选择题(本大题共8小题,每小题3分,共24分)1.下列图形既是轴对称图形,又是中心对称图形的是 (D )A B C D2.若一个多边形的每个内角都为135°,则它的边数为 (B ) A .9 B .8 C .10 D .123.(邵阳中考)不等式组⎩⎨⎧x>-12x -3≤1的解集在数轴上表示正确的是(B )4.如图,在10×6的网格中,每个小方格的边长都是1个单位,将△ABC 平移到△DEF 的位置,下面正确的平移步骤是 (A ) A .先把△ABC 向左平移5个单位,再向下平移2个单位 B .先把△ABC 向右平移5个单位,再向下平移2个单位 C .先把△ABC 向左平移5个单位,再向上平移2个单位 D .先把△ABC 向右平移5个单位,再向上平移2个单位第4题图5.下列正多边形的组合中能够铺满地面不留缝隙的是 (C ) A .正八边形和正三角形 B .正五边形和正八边形 C .正方形和正三角形 D .正六边形和正五边形6.如图,△ABC 绕点A 按逆时针方向旋转一定的角度后成为△AB ′C ′.有下列结论:①BC =B ′C ′;②∠BAB ′=∠CAC ′;③∠ABC =∠AB ′C ′;④△ABB ′≌△ACC ′.其中正确的结论有 (C )第6题图A .1个B .2个C .3个D .4个7.已知△ABC,①如图甲,若P点是∠ABC和∠ACB的平分线的交点,则∠P=90°+12∠A;②如图乙,若P点是∠ABC和外角∠ACE的平分线的交点,则∠P=90°-∠A;③如图丙,若P点是外角∠CBF和∠BCE的平分线的交点,则∠P=90°-12∠A.上述说法正确的有(C)A.0个 B.1个 C.2个 D.3个8.有一根长40 cm的金属棒,欲将其截成x根长7 cm的小段和y根长9 cm的小段,剩余部分作废料处理,若使废料最少,则正整数x,y应分别为(C)A.x=1,y=3 B.x=4,y=1C.x=3,y=2 D.x=2,y=3第Ⅱ卷(非选择题共96分)二、填空题(本大题共8小题,每小题3分,共24分)9.若2x3-2k+2=4是关于x的一元一次方程,则k=1.10.若3x-2=2(x-3)与3(x+a)=a-5x有相同的解,那么a-1=15.11.如图,△BDC≌△ABE,且∠BCD=90°,A,C,B在同一条直线上,AB=5 cm,AE=4 cm,BE=3 cm,则△ACD的面积为32cm2.第11题图12.在有理数范围内定义一种新运算“⊗”,其运算规则为a⊗b=-3a+2b,如-1⊗2=-3×(-1)+2×2=7,则不等式x⊗(-2)≥3的解集是x≤-73.13.如图所示,已知∠AOB=30°,点P在∠AOB内部,点P与点P1关于OA对称,与点P2关于OB对称,则∠P1OP2=60°.第13题图14.以长为13,14,x +5的三条线段为边可构成三角形,则x 的取值范围是-4<x<22. 15.已知方程组⎩⎨⎧x -y =2k ,x +3y =1-5k 的解x 与y 的和为负数,则k 的取值范围是k>13 .16.某种商品进价为800元,售价为1 200元,由于受市场供求关系的影响,现准备打折销售,但要求利润率不低于5%,则至多打7折. 三、解答题(本大题共8小题,共72分) 17.(10分)解方程(组): (1)3x -12 -2x +16=-1; 解:3(3x -1)-(2x +1)=-6, 化简得7x =-2,所以x =-27 .(2)⎩⎪⎨⎪⎧x +13+y -14=32,x -32+y +25=12.解:原方程组可化为⎩⎨⎧4(x +1)+3(y -1)=18,5(x -3)+2(y +2)=5,整理得⎩⎨⎧4x +3y =17,5x +2y =16, 解得⎩⎨⎧x =2,y =3.18.(6分)解不等式组⎩⎨⎧3x +2≤2(x +3),2x -13>x2, 并写出不等式组的整数解.解:⎩⎨⎧3x +2≤2(x +3), ①2x -13>x2, ②解①,得x≤4,解②,得x>2,不等式组的解集为2<x≤4.则不等式组的整数解为3,4.19.(8分)如图,已知在△BCD中,BC=4,BD=5.(1)直接写出CD的取值范围是1<CD<9;(2)若AE∥BD,∠A=55°,∠BDE=125°,求∠C的度数.解:∵AE∥BD,∴∠CBD=∠A=55°.∵∠BDE为△BCD的一个外角,∴∠BDE=∠C+∠CBD.∴∠C=∠BDE-∠CBD=125°-55°=70°.20.(8分)顶点在网格交点的多边形叫做格点多边形.如图,在一个9×9的正方形网格中有一个格点△ABC.设网格中小正方形的边长为1个单位长度.(1)在网格中画出△ABC向上平移4个单位长度后得到的△A1B1C1;(2)在网格中画出△ABC绕点A逆时针旋转90°后得到的△AB2C2;(3)在(1)中△ABC向上平移过程中,求边AC所扫过区域的面积.AB C答案:略21.(8分)(乐山中考)已知关于x ,y 的方程组⎩⎨⎧x -2y =m ,①2x +3y =2m +4,② 的解满足不等式组⎩⎨⎧3x +y ≤0,x +5y>0. 求满足条件的m 的整数值. 解:①+②,得3x +y =3m +4,③②-①,得x +5y =m +4,∵⎩⎨⎧3x +y ≤0,x +5y>0, ∴⎩⎨⎧3m +4≤0,m +4>0,解得-4<m ≤-43 , ∴满足条件的m 的整数值为-3,-2.22.(10分)如图,在△ABC 中,∠BAC =120°,以BC 为边向外作等边三角形BCD ,将△ABD 绕着点D 按顺时针方向旋转60°到△ECD 的位置,若AB =3,AC =2,求∠BAD 的度数和AD 的长.解:由∠BAC =120°知∠ABC +∠ACB =60°,因为∠ABD =∠ABC +∠CBD =∠DCE ,∠CBD =60°,由此可知∠ACB +∠BCD +∠DCE =360°-120°-60°=180°,即点A ,C ,E 在一条直线上.又因为AD =ED ,由旋转特征知,∠ADE =60°,故△ADE 为等边三角形,所以∠BAD =∠E =60°,AD =AE =AC +CE =AC +AB =5.23.(10分)(哈尔滨中考)春平中学要为学校科技活动小组提供实验器材,计划购买A 型、B 型两种型号的放大镜.若购买8个A 型放大镜和5个B 型放大镜需用220元,购买4个A 型放大镜和6个B 型放大镜需用152元.(1)求每个A 型放大镜和B 型放大镜各多少元;(2)春平中学决定购买A 型放大镜和B 型放大镜共75个,总费用不超过1 180元,那么最多可以购买多少个A 型放大镜?解:(1)设每个A 型放大镜x 元,每个B 型放大镜y 元,根据题意,得⎩⎨⎧8x +5y =220,4x +6y =152, 解得⎩⎨⎧x =20,y =12. 答:每个A 型放大镜20元,每个B 型放大镜12元.(2)设购买a 个A 型放大镜,则购买(75-a)个B 型放大镜.根据题意,得20a +12(75-a)≤1 180,解得a ≤35.答:最多可以购买35个A 型放大镜.24.(12分)(攀枝花中考)为了打造区域性中心城市,实现攀枝花跨越式发展,我市花城新区建设正按投资计划有序推进.花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540 m 3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如表:种型号的挖掘机各需多少台?(2)如果每小时支付的租金不超过850元,又恰好完成每小时的挖掘量,那么共有几种不同的租用方案?解:(1)设甲、乙两种型号的挖掘机各需x 台,y 台.依题意得⎩⎨⎧x +y =8,60x +80y =540, 解得⎩⎨⎧x =5,y =3.答:甲、乙两种型号的挖掘机各需5台,3台.(2)设租用m 台甲型挖掘机,n 台乙型挖掘机.依题意,得60m +80n =540,化简,得3m +4n =27.∴m =9-43 n ,∴方程的解为⎩⎨⎧m =5,n =3, ⎩⎨⎧m =1,n =6. 当m =5,n =3时,支付租金为100×5+120×3=860元>850元,超出限额;当m =1,n =6时,支付租金为100×1+120×6=820元,符合要求.答:有一种租车方案,即租用1台甲型挖掘机和6台乙型挖掘。

华师大版七年级数学下册《期末测试卷》(含答案)

华师大版七年级数学下册《期末测试卷》(含答案)

一、选择题(共10小题,每小题3分,共30分)1.已知关于x的方程3x+m+4=0的解是x=﹣2,则m的值为()A.2 B.3 C.4 D.52.下列等式变形正确的是()A.若﹣3x=5,则x =﹣B .若,则2x+3(x﹣1)=1C.若5x﹣6=2x+8,则5x+2x=8+6D.若3(x+1)﹣2x=1,则3x+3﹣2x=13.不等式组的解集在数轴上应表示为()A .B .C .D .4.我国主要银行的商标设计基本上都融入了中国古代钱币的图案,下图所示是我国四大银行的行标图案,其中是轴对称图形而不是中心对称图形的是()A .B .C .D .5.如图,将△ABC沿DE,EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠DOF=142°,则∠C的度数为()学校姓名班级___________ 座位号……装…………订…………线…………内…………不…………要…………答…………题……A.38°B.39°C.42°D.48°6.如图,由矩形和三角形组合而成的广告牌紧贴在墙面上,重叠部分(阴影)的面积是4m2,广告牌所占的面积是30m2(厚度忽略不计),除重叠部分外,矩形剩余部分的面积比三角形剩余部分的面积多2m2,设矩形面积是xm2,三角形面积是ym2,则根据题意,可列出二元一次方程组为()A.B.C.D.7.如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,∠B=90°,AB=8,DH=3,平移距离为4,求阴影部分的面积为()A.20 B.24 C.25 D.268.如图,将一个含30°角的直角三角板ABC绕点A旋转,得点B,A,C′,在同一条直线上,则旋转角∠BAB′的度数是()A.60°B.90°C.120°D.150°9.用边长相等的两种正多边形进行密铺,其中一种是正八边形,则另一种正多边形可以是()A.正三角形B.正方形C.正五边形D.正六边形10.把一些书分给几名同学,若();若每人分11本,则不够.依题意,设有x名同学可列不等式7(x+9)<11x.A.每人分7本,则可多分9个人B.每人分7本,则剩余9本C.每人分9本,则剩余7本D.其中一个人分7本,则其他同学每人可分9本二、填空题(每小题3分,共15分)11.方程2x﹣5=3的解为.12.写出不等式5x+3<3(2+x)所有的非负整数解.13.如果将一副三角板按如图方式叠放,那么∠1=.14.如图,直线a、b垂直相交于点O,曲线C关于点O成中心对称,点A的对称点是点A',AB⊥a于点B,A'D⊥b于点D.若OB=3,OD=2,则阴影部分的面积之和为.15.如图,已知直角三角形ABC中,∠C=90°,将△ABC绕点A逆时针旋转至△AED,使点C的对应点D恰好落在边AB上,E为点B的对应点.设∠BAC=a,则∠BED=.(用含a 的代数式表示)三、解答题(本大题8个小题,满分75分)16.(8分)解方程组.17.(9分)解不等式组,并把它们的解集表示在数轴上.18.(9分)在如图所示的方格中,每个小正方形的边长为1,点A、B、C在方格纸中小正方形的顶点上.(1)按下列要求画图:①过点A画BC的平行线DF;②过点C画BC的垂线MN;③将△ABC绕A点顺时针旋转90°.(2)计算△ABC的面积.19.(9分)随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按x元/公里计算,耗时费按y元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与打车时间如表:时间(分钟)里程数(公里)车费(元)小明8 8 12小刚12 10 16 (1)求x,y的值;(2)如果小华也用该打车方式,打车行驶了11公里,用了14分钟,那么小华的打车总费用为多少?20.(9分)已知BD、CE是△ABC的两条高,直线BD、CE相交于点H.(1)如图,①在图中找出与∠DBA相等的角,并说明理由;②若∠BAC=100°,求∠DHE的度数;(2)若△ABC中,∠A=50°,直接写出∠DHE的度数是.21.(10分)浠水县商场某柜台销售每台进价分别为160元、120元的A、B两种型号的电风扇,下表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台4台1200元第二周5台6台1900元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若商场准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,商场销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.22.(10分)探究与发现:探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?已知:如图1,∠FDC与∠ECD分别为△ADC的两个外角,试探究∠A与∠FDC+∠ECD的数量关系.探究二:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?已知:如图2,在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系.探究三:若将△ADC改为任意四边形ABCD呢?已知:如图3,在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,试利用上述结论探究∠P与∠A+∠B的数量关系.23.(11分)如图1,将一副三角板的直角重合放置,其中∠A=30°,∠CDE=45°.(1)如图1,求∠EFB的度数;(2)若三角板ACB的位置保持不动,将三角板CDE绕其直角顶点C顺时针方向旋转.①当旋转至如图2所示位置时,恰好CD∥AB,则∠ECB的度数为°;②若将三角板CDE继续绕点C旋转,直至回到图1位置.在这一过程中,是否还会存在△CDE其中一边与AB平行?如果存在,请你画出示意图,并直接写出相应的∠ECB的大小;如果不存在,请说明理由.参考答案一、选择题1.A.2.D.3.C.4.D.5.A.6.A.7.D.8.D.9.B.10.A.二、填空题11.4.12.0,1.13.105°.14.6.15.α.三、解答题16.解:原方程组整理为一般式可得,①﹣②,得:y=10,将y=10代入①,得:3x﹣10=8,解得:x=6,所以方程组的解为.17.解:,解不等式①得,x<2,解不等式②得,x≥﹣1,在数轴上表示如下:所以不等式组的解集为:﹣1≤x<2.18.解:(1)如图,DF、MN、△AB′C′为所作;(2)△ABC的面积=×2×1=1.19.解:(1)根据题意得:,解得:.(2)11×1+14×=18(元).答:小华的打车总费用是18元.20.解:(1)①∠DBA=∠ECA证明:∵BD、CE是△ABC的两条高,∴∠BDA=∠AEC=90°,∴∠DBA+∠BAD=∠ECA+∠EAC=90°,又∵∠BAD=∠EAC,∴∠DBA=∠ECA;②∵BD、CE是△ABC的两条高,∴∠HDA=∠HEA=90°,在四边形ADHE中,∠DAE+∠HDA+∠DHE+∠HEA=360°,又∵∠HDA=∠HEA=90°,∠DAE=∠BAC=100°,∴∠DHE=360°﹣90°﹣90°﹣100°=80°;(2)当∠A=50°时,①△ABC是锐角三角形时,∠DHE=180°﹣50°=130°;②△ABC是钝角三角形时,∠DHE=∠A=50°;故答案为:50°或130°.21.【解答】(1)设A型电风扇单价为x元,B型单价y元,则,解得:,答:A型电风扇单价为200元,B型单价150元;(2)设A型电风扇采购a台,则160a+120(50﹣a)≤7500,解得:a≤,则最多能采购37台;(3)依题意,得:(200﹣160)a+(150﹣120)(50﹣a)>1850,解得:a>35,则35<a≤,∵a是正整数,∴a=36或37,方案一:采购A型36台B型14台;方案二:采购A型37台B型13台.22.解:探究一:∵∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,∴∠FDC+∠ECD=∠A+∠ACD+∠A+∠ADC=180°+∠A;探究二:∵DP、CP分别平分∠ADC和∠ACD,∴∠PDC=∠ADC,∠PCD=∠ACD,∴∠P=180°﹣∠PDC﹣∠PCD=180°﹣∠ADC﹣∠ACD=180°﹣(∠ADC+∠ACD)=180°﹣(180°﹣∠A)=90°+∠A;探究三:∵DP、CP分别平分∠ADC和∠BCD,∴∠PDC=∠ADC,∠PCD=∠BCD,∴∠P=180°﹣∠PDC﹣∠PCD=180°﹣∠ADC﹣∠BCD=180°﹣(∠ADC+∠BCD)=180°﹣(360°﹣∠A﹣∠B)=(∠A+∠B).23.解:(1)∵∠A=30°,∠CDE=45°,∴∠ABC=90°﹣30°=60°,∠E=90°﹣45°=45°,∴∠EFB=∠ABC﹣∠E=60°﹣45°=15°;(2)①∵CD∥AB,∴∠ACD=∠A=30°,∵∠ACD+∠ACE=∠DCE=90°,∠ECB+∠ACE=∠ACB=90°,∴∠ECB=∠ACD=30°;②如图1,CE∥AB,∠ACE=∠A=30°,∠ECB=∠ACB+∠ACE=90°+30°=120°;如图2,DE∥AB时,延长CD交AB于F,则∠BFC=∠D=45°,在△BCF中,∠BCF=180°﹣∠B﹣∠BFC,=180°﹣60°﹣45°=75°,∴ECB=∠BCF+∠ECF=75°+90°=165°;如图3,CD∥AB时,∠BCD=∠B=60°,∠ECB=∠BCD+∠EDC=60°+90°=150°;如图4,CE∥AB时,∠ECB=∠B=60°,如图5,DE∥AB时,∠ECB=60°﹣45°=15°.。

华师版七年级下册数学期末考试试卷

华师版七年级下册数学期末考试试卷

华师版七年级下册数学期末考试试卷(总5页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除一.选择题(单项选择,每小题3分,共21分) 1.方程22=x 的解是( )A .1=x ;B .1-=x ;C .2=x ;D .4=x . 2.下列图案是轴对称图形的是( ).3.已知2,1x y =⎧⎨=⎩是二元一次方程3kx y -=的一个解,那么k 的值是( )A .1;B .-1;C .2;D .-2.4.不等式组1,1.x x +⎧⎨-≥-⎩>0的解集在数轴上表示正确的是( )A. B. C. D. 5.下列几种形状的瓷砖中,只用一种不能..够铺满地面的是( ) A .正六边形; B .正五边形; C .正方形; D .正三角形. 6. 下列长度的各组线段能组成三角形的是( ) A .3cm 、8cm 、5cm ; B .12cm 、5cm 、6cm ; C .5cm 、5cm 、10cm ; D .15cm 、10cm 、7cm . 7.如图,将周长为6的△ABC 沿BC 方向向右平移1个 单位得到△DEF ,则四边形ABFD 的周长为( ) A .6; B .7; C .8; D .9. 二.填空题(每小题4分,共40分)8.不等式2>x 8的解集是 .9.若a >b ,用“<”号或“>”号填空:-2a -2b .10.根据“a 的3倍与2的差小于0”列出的不等式是: . 11.六边形的内角和是 °.12.三元一次方程组⎪⎩⎪⎨⎧=+=+=+895x z z y y x 的解是 .13.等腰三角形的两边长为3和6,则这个三角形 的周长为 .14.不等式x 2<5的正整数...解为 . 15.如图,△A ′B ′C ′是由△ABC 沿射线AC 方向平移得到,已知∠A=55°,∠B=60°,则∠C ′= °.16.如图,在三角形纸片ABC 中,AB=10,BC=7,AC=6, 沿过点B 的直线折叠这个三角形,使顶点C 落在AB 边 上的点E 处,折痕为BD ,则△AED 的周长等于 . 17.如图,用同样规格的黑白色正方形瓷砖铺设长方形地面.观察图形并回答下列问题.(1)在第4个图形中,共需 块瓷砖;(2)若所铺成的长方形地面中,白瓷砖共有20横行,共需 块黑瓷砖.三、解答题(共89分) 18.(12分)解方程(组): (1) 1323=-x(2) ⎩⎨⎧=+=21322y x y x19.(12分) 解下列不等式(组),并把它们的解集在数轴上表示出来: (1)3315+≤-x x第17题第15题1 0 1- 1 0 1- 1 0 1- 10 1-第7题C BA D 第16题(2)⎩⎨⎧-≥+<+6)2(214x x20.(8分) 如图,在△ABC 中,∠ABC =80°,∠ACB =50° (1)求∠A 的度数;(2)BP 平分∠ABC ,CP 平分∠ACB ,求∠BPC 的度数.21.(8分)如图,已知△ABC 和过点O 的直线L (1)画出△ABC 关于直线L 对称的△A ′B ′C ′;(2)画出△ABC 关于点O 成中心对称的△A ′′B ′′C ′′.22. (8分) 如图,在8×8的正方形网格中,每个小正方形的边长均为1个单位, △ABC 的三个顶点都在格点上.(1)在网格中画出△ABC 向下平移 3个单位得到的△A ′B ′C ′;(2)在网格中画出△ABC 绕点C 顺时 针旋转90°后的图形.23. (8分) 学校大扫除,某班原分成两个小组,第一组26人打扫教室,第二组22人打扫包干区.这次根据工作需要,要使第二组人数是第一组人数的2倍,那么应从 第一组调多少人到第二组?24. (8分) 如图,在矩形ABCD 和正方形BEFG 中,点G ,B ,C 都在直线L 上,点E 在AB 上,AB=5,AE=3 ,BC=10. (1)求正方形BEFG 的边长;(2)将正方形BEFG 以每秒1个单位的速度沿直线L 向右平移,设平移时间为t 秒,用含t 的代数式表示矩形ABCD 与正方形BEFG 重叠部分的面积S .25.(12分)某商店决定购进A 、B 两种纪念品.若购进A 种纪念品8件,B 种纪念品3件,需要95元;若购进A 种纪念品5件,B 种纪念品6件,需要80元. (1)求购进A 、B 两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购 买这100件纪念品的资金不少于750元,但不超过764元,那么该商店共有几种 进货方案?(3)已知商家出售一件A 种纪念品可获利a 元,出售一件B 种纪念品可获利(5-a ) 元,试问在(2)的条件下,商家采用哪种方案可获利最多( 商家出售的纪念BC D EF G L A LO CBAC BA品均不低于成本价)26.(13分)如图1,一副直角三角板△ABC 和△DEF ,已知BC=DF ,∠F=30°,EF=2ED(1)直接写出∠B ,∠C ,∠E 的度数;(2)将△ABC 和△DEF 放置像图2的位置,点B 、D 、C 、F 在同一直线上,点A 在DE 上.①△ABC 固定不动,将△DEF 绕点D 逆时针旋转至EF ∥CB (如图3),求△DEF 旋转 的度数,并通过计算判断点A 是否在EF 上.②在图3的位置上,△DEF 绕点D 继续逆时针旋转至DE 与BC 重合,在旋转过程中,两个三角形的边是否存在平行关系?若存在直接写出旋转的角度和平行关系,若不存在, 请说明理由.附加题(每小题5分,共10分)友情提示:请同学们做完上面考题后,再认真检查一遍.估计一下你的得分情况.如果你全卷得分低于60分(及格线),则本题的得分将计入全卷总分.但计入后全卷总分最多不超过60分;如果你全卷得分已经达到或超过60分.则本题的得分不计入全卷总分. 1.解方程: 31=+x2.如图,在△ABC 中,∠B=30°,∠C=70°, 求∠A 的度数.A B C B C DE F A 图1AFED CB图2B CDEFA图3( 草 稿 纸 )永春县2013年春季七年级期末考数学科参考答案 一.选择题(单项选择,每小题3分,共21分) ; ; ; ; ; ; .二.填空题(每小题4分,共40分)8. x >4 ; 9. <;a <;°; 12. ⎪⎩⎪⎨⎧===632z y x ; 13. 15;14. 1,2 ; ; 16. 9; ;86. 三、解答题(共89分)18.解方程(组)(每小题6分,共12分)(1) x =5 (2) ⎩⎨⎧==36y x19.解不等式(组),并把它们的解集在数轴上表示出来(每小题6分,共12分) (1) ≤x 2 4分 解集在数轴上表示出来 6分(2)⎩⎨⎧-≥-<53x x 2分 不等式组的解集为35-<≤-x 4分解集在数轴上表示出来 6分20.(1)∠A=50° 3分, ∵(2)BP 平分∠ABC ,∠PBC=40° 5分 CP 平分∠ACB ,∠PCB=25° 7分 ∠BPC =115° 8分21.正确画出一个图形 4分 共8分 22.正确画出一个图形 4分 共8分 23.设第一组调x 人到第二组, 1分依题意列方程,得)26(222x x -=+ 4分 解得 10=x 7分答:第一组应调10人到第二组. 8分 24.(1)2 3分(2)当20≤<t 时,S=2t , 5分当102≤<t 时,S=4, 6分当1210≤<t 时,S=2(12-t ), 7分 当12>t 时,S=0, 8分25.解:(1) 设A 、B 两种纪念品的价格分别为x 元和y 元,则⎩⎨⎧=+=+80659538y x y x 1分 解得⎩⎨⎧==510y x 2分 答:A 、B 两种纪念品的价格分别为10元和5元. 3分(2)设购买A 种纪念品t 件,则购买B 种纪念品(100-t )件,则 7645005750≤+≤t 4分解得 526450≤≤t5分t 为正整数,∴t =50,51,52, 6分 即有三种方案. 第一种方案:购A 种纪念品50件,B 种纪念品50件; 第二种方案:购A 种纪念品51件,B 种纪念品49件; 第三种方案:购A 种纪念品52件,B 种纪念品48件; 7分 (3)第一种方案商家可获利250元; 8分 第二种方案商家可获利(245+2a )元: 第三种方案商家可获利(240+4a )元: 9分 当a =时,三种方案获利相同 10分 当0≤a <时,方案一获利最多 11分 当<a ≤5时,方案三获利最多 12分 26.(1)∠B=∠C=45° ∠E=60° 3分 (2)①EF ∥BC∴∠FDC=∠F=30° 4分 旋转的角度为30° 5分在△ABC 中,过A 作AG ⊥BC,垂足为G∠B=∠C=∠GAC=∠GAB=45° AG=21BC 7分在△DEF 中,过D 作DH ⊥EF,垂足为HS △DEF =21ED ·DF=21EF ·DH DH=21DF 9分∵BC=DF ∴AG=DH∴点A 在EF 上. 10分②∠FDC=45° DE ∥AC 11分 AB ∥DF 12分∠FDC=75° EF∥AB 13分。

华师大版七年级数学下册《期末试卷》(附答案)

华师大版七年级数学下册《期末试卷》(附答案)

华师大版七年级数学下册《期末试卷》(附答案)学校姓名班级座位号一、选择题(每小题3分,共30分)1.方程3x-1=-x+1的解是(。

)。

A。

x=-2 B。

x=0 C。

x=1 D。

x=22.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()。

A。

B。

C。

D。

3.三角形的三边长分别是3,1-2a,8,则数a的取值范围是()。

A。

-5<a<-2 B。

-5<a<2 C。

5<a<11 D。

a<24.如果关于x的不等式(a+2)x>a+2的解集为x<1,那么a的取值范围是()。

A。

a>5 B。

a-2 D。

a<-55.不等式组的解集在数轴上表示为()。

A。

B。

C。

D。

6.将△XXX沿BC方向平移3个单位得△DEF。

若△ABC的周长等于8,则四边形ABFD的周长为()。

A。

14 B。

12 C。

10 D。

87.XXX所在城市的“阶梯水价”收费办法是:每户用水不超过5吨,每吨水费x元;超过5吨,超过部分每吨加收2元,XXX家今年5月份用水9吨,共交水费为44元,根据题意列出关于x的方程正确的是()。

A。

5x+4(x+2)=44 B。

5x+4(x-2)=44 C。

9(x+2)=44 D。

9(x+2)-4×2=448.CD相交于点F,如图,在△ABC中,∠ABC、∠XXX的平分线BE,且∠ABC=42°,∠A=60°,则∠XXX等于()。

A。

121° B。

120° C。

119° D。

118°9.把边长相等的正五边形ABCDE和正方形ABFG按照XXX所示的方式叠合在一起,则∠EAG的度数是()。

A。

18° B。

20° C。

28° D。

30°10.如图,△ABC≌△ADE且BC、DE交于点O,连结BD、CE,则下列四个结论:①BC=DE,②∠ABC=∠ADE,③∠BAD=∠CAE,④BD=CE,其中一定成立的有()。

华师大版七年级下册数学期末考试试题及答案

华师大版七年级下册数学期末考试试题及答案

华师大版七年级下册数学期末考试试卷一、单选题1.已知x =2是关于x 的一元一次方程mx+2=0的解,则m 的值为( )A .﹣1B .0C .1D .22.《侯马盟书》是山西博物馆藏得十大国宝之一,其中很多篆文具有较高的历史意义和研究价值,下面四个悬针篆文文字明显不是轴对称图形的是( )A .B .C .D .3.根据不等式的性质,下列变形正确的是( )A .由a >b 得ac 2>bc 2B .由ac 2>bc 2得a >bC .由-12a >2得a <2 D .由2x+1>x 得x >1 4.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是( )A .5152x y x y =+⎧⎪⎨=-⎪⎩B .5152x y x y =-⎧⎪⎨=+⎪⎩C .525x y x y =+⎧⎨=-⎩D .525x y x y =-⎧⎨=+⎩5.如图,用不等式表示数轴上所示的解集,正确的是( )A .x >﹣2B .x ≥﹣2C .x <﹣2D .x ≤﹣26.如图,在ABC 中,BC 边上的高为( )A .BDB .CFC .AED .BF7.已知等腰三角形两边a ,b ,满足|2a ﹣3b +5|+(2a +3b ﹣13)2=0,则此等腰三角形的周长为()A.7或8 B.6或10 C.6或7 D.7或108.将一副直角三角板如图放置,使含30°角的三角板的一条直角边和45°角的三角板的一条直角边重叠,则∠1的度数为()A.45°B.60°C.75°D.85°9.如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE 的中点,且△ABC的面积为4cm2,则△BEF的面积等于()A.2cm2B.1cm2C.0.5 cm2D.0.25 cm210.、如右图是某广场用地板铺设的部分图案,中央是一块正六边形的地板砖,周围是正三角形和正方形的地板砖.从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18 个正三角形,依此递推,第10层中含有正三角形个数是……()A.102个B.114个C.126个D.138个二、填空题11.已知方程2x﹣y=1,用含x的代数式表示y,得_____.12.在△ABC中,若∠A∶∠B∶∠C=1∶2∶3,则△ABC是三角形.13.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图①主视图、②左视图、③俯视图中,是中心对称图形的有_____14.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连结AA′,若∠1=20°,则∠B=_____度.15.书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠;②一次性购书超过100元但不超过200元,一律按原价打九折;③一次性购书超过200元,一律按原价打七折.小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是_________.三、解答题16.(1)解方程:y﹣12y-=2﹣26y+;(2)解方程组:3 2316 x yx y-=⎧⎨+=⎩.17.解不等式组:513(1)2151132x x x x -<+⎧⎪-+⎨-≤⎪⎩,并写出它所有的整数解.18.如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC 的三个顶点都在格点上.(1)在网格中画出△ABC 向下平移3个单位得到的△A 1B 1C 1;(2)在网格中画出△ABC 关于直线m 对称的△A 2B 2C 2;(3)在直线m 上画一点P ,使得12C P C P +的值最小.19.“五一”黄金周,小梦一家计划从家B 出发,到景点C 旅游,由于BC 之间是条湖,无法通过,如图所示只有B ﹣A ﹣C 和B ﹣P ﹣C 两条路线,哪一条比较近?为什么?(提示:延长BP 交AC 于点D )20.数学课上,老师出了一道题,如图,在△ABC 中,AD ⊥BC ,AE 平分∠BAC ,∠B =80°,∠C =40°(1)求∠DAE的度数;(2)小红解完第(1)小题说,我只要知道∠B﹣∠C=40°,即使不知道∠B、∠C的具体度数,也能推出∠DAE的度数小红的说法,对不对?如果你认为对,请推导出∠DAE的度数:如果你认为不对,请说明理由.21.科技改变世界.2017年底,快递分拣机器人从微博火到了朋友圈.据介绍,这些机器人不仅可以自动规划最优路线,将包裹准确地放入相应的路口,还会感应避让障碍物,自动归队取包裹,没电的时候还会自己找充电桩充电.某快递公司启用40台A种机器人、150台B种机器人分拣快递包裹,A、B两种机器人全部投入工作,1小时共可以分拣0.77万件包裹;若全部A种机器人工作1.5小时,全部B种机器人工作2小时,一共可以分拣1.38万件包裹.(1)求两种机器人每台每小时各分拣多少件包裹?(2)为进一步提高效率,快递公司计划再购进A、B两种机器人共100台.若要保证新购进的这批机器人每小时的总分拣量不少于5500件,求至少应购进A种机器人多少台?22.已知:如图,E点是正方形ABCD的边AB上一点,AB=4,DE=6,△DAE逆时针旋转后能够与△DCF重合.(1)旋转中心是.旋转角为度.(2)请你判断△DFE的形状,并说明理由.(3)求四边形DEBF的周长和面积.23.阅读材料,并回答下列问题如图1,以AB为轴,把△ABC翻折180°,可以变换到△ABD的位置;如图2,把△ABC沿射线AC平移,可以变换到△DEF的位置.像这样,其中的一个三角形是另一个三角形经翻折、平移等方法变换成的,这种只改变位置,不改变形状大小的图形变换,叫三角形的全等变换.班里学习小组针对三角形的全等变换进行了探究和讨论(1)请你写出一种全等变换的方法(除翻折、平移外),.(2)如图2,前进小组把△ABC沿射线AC平移到△DEF,若平移的距离为2,且AC=5,则DC=.(3)如图3,圆梦小组展开了探索活动,把△ABC纸片沿DE折叠,使点A落在四边形BCDE 内部点A′的位置,且得出一个结论:2∠A′=∠1+∠2.请你对这个结论给出证明.(4)如图4,奋进小组则提出,如果把△ABC纸片沿DE折叠,使点A落在四边形BCDE外部点A′的位置,此时∠A′与∠1、∠2之间结论还成立吗?若成立,请给出证明,若不成立,写出正确结论并证明.参考答案1.A【解析】把x=2代入方程得:2m+2=0,解得:m=−1,故选A.2.C【解析】【分析】由题意根据轴对称图形的定义即如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,据此进行分析即可.【详解】解:A、是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项不符合题意;C、不是轴对称图形,故本选项符合题意;D、是轴对称图形,故本选项不符合题意.故选:C.【点睛】本题主要考查轴对称图形,轴对称图形是针对一个图形而言的,是一种具有特殊性质图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合.3.B【解析】【详解】解:根据不等式的基本性质可知:A. 由a>b,当c=0时,ac2>bc2不成立,故此选项错误;B. 由ac2>bc2得a>b,正确;C. 由-12a>2得a<-4,故此选项错误;D. 由2x+1>x得x>-1,故此选项错误;选项A、C、D错误;故选B.【点睛】本题考查不等式的基本性质.4.A【解析】【分析】根据题意列出方程组,“现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺”表示为5x y=+;“如果将绳索对半折后再去量竿,就比竿短5尺”表示为152x y=-,即可选出符合的选项.【详解】设索长为x尺,竿子长为y尺,根据题意得:515 2x yx y=+⎧⎪⎨=-⎪⎩.故选:A.【点睛】本题考查了方程组的实际应用,掌握列方程组的方法是解题的关键.5.C【解析】【分析】把每个不等式的解集在数轴上表示时,>、≥向右画;<、≤向左画.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆表示.【详解】解:由题意得,x<﹣2.故选C.【点睛】本题考查了不等式解集的数轴表示法,明确“<”、“>”、“实心圆点”、“空心圆”的含义是解答本题的关键.6.C【解析】【分析】根据从三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高进行分析即可.【详解】在△ABC中,BC边上的高是过点A垂直于BC的线是AE.故选:C【点睛】此题主要考查了三角形的高,关键是掌握三角形的高的定义.7.A【解析】【分析】由非负数的性质可得a=2,b=3,同时分a为腰或底两种情况讨论可得等腰三角形的周长. 【详解】解:因为a、b满足|2a﹣3b+5|+(2a+3b﹣13)2=0, 所以2a-3b+5=0 {2a+3b-13=0,解得:a=2{b=3,则等腰三角形的两边长分别为2和3.当等腰三角形的腰为2时, 等腰三角形的周长为2+2+3=7; 当等腰三角形的腰为3时, 等腰三角形的周长为3+3+2=8,故本题正确答案为A.【点睛】本题主要考查二元一次方程组及其解法和等腰三角形.8.C【解析】∵∠2=90°-45°=45°(直角三角形两锐角互余),∴∠3=∠2=45°,∴∠1=∠3+30°=45°+30°=75°,故选C.!9.B【解析】【分析】依据三角形的面积公式及点D 、E 、F 分别为边BC ,AD ,CE 的中点,推出14BEF ABC SS ∆=从而求得△BEF 的面积.【详解】解:∵点D 、E 、F 分别为边BC ,AD ,CE 的中点, 1111,,,2222ABD ABC BDE ABD CDE ADC BEF BEC S S S S S S S S ∆∆∆∆∆∆∆∆∴==== 14BEF ABC S S ∆∆∴= ∵△ABC 的面积是4,∴S △BEF =1.故选:B【点睛】本题主要考查了与三角形的中线有关的三角形面积问题,关键是根据三角形的面积公式S= 12×底×高,得出等底同高的两个三角形的面积相等. 10.B【解析】根据题意分析可得:从里向外的第1层包括6个正三角形.第2层包括18个.此后,每层都比前一层多12个.依此递推,第10层中含有正三角形个数是6+12×9=114个.故选B .11.y =2x ﹣1【解析】【分析】根据题意要把方程2x ﹣y =1,用含x 的代数式表示y ,就要把方程中含有y 的项移到方程的左边,其它的项移到方程的右边,再进一步合并同类项、系数化为1即可.【详解】解:2x﹣y=1移项得﹣y=1﹣2x,系数化1得y=2x﹣1.故答案为:y=2x﹣1.【点睛】本题考查方程的灵活变形,熟练掌握移项、合并同类项、系数化为1的步骤是解题的关键.12.直角三角形【解析】试题分析:由∠A∶∠B∶∠C=1∶2∶3,可设∠A=x°,∠B=2x°,∠C=3x°,根据三角形的内角和为180°,即可得到关于x的方程,解出即得结果.设∠A=x°,∠B=2x°,∠C=3x°,∵∠A+∠B+∠C=180°,∴x+2x+3x=180解得x=30∴∠A=30°,∠B=60°,∠C=90°,∴△ABC是直角三角形.考点:本题考查的是三角形的内角和定理,直角三角形的判定点评:通过三角形的内角和180°及内角之间的关系得到关于角的度数的方程是判断三角形形状的关键.13.③俯视图【解析】【分析】由题意直接根据从上边看得到的图形是俯视图,可得答案.【详解】解:从上边看是一个十字,“十”字是中心对称图形,主视图是1,2,1,不是中心对称图形,左视图是1,2,1,不是中心对称图形,故答案为:③俯视图.【点睛】本题考查简单组合体的三视图,掌握从上边看得到的图形是俯视图,同时利用中心对称图形进行分析.14.65【解析】【分析】由题意先根据旋转的性质得到∠ACA′=90°,CA=CA′,∠B=∠CB′A′,则可判断△CAA′为等腰直角三角形,所以∠CAA′=45°,然后利用三角形外角性质计算出∠CB′A′,从而得到∠B 的度数.【详解】解:∵Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,∴∠ACA′=90°,CA=CA′,∠B=∠CB′A′,∴△CAA′为等腰直角三角形,∴∠CAA′=45°,∵∠CB′A′=∠B′AC+∠1=45°+20°=65°,∴∠B=65°.故答案为:65.【点睛】本题考查旋转的性质,注意掌握对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.15.248元或296元【解析】【分析】设小丽第一次购书的原价为x元,则第二次购书的原价为3x元,分x≤1003、1003<x≤2003、2003<x≤100及x>100四种情况,找出关于x的一元一次方程,解之即可得出结论.【详解】设小丽第一次购书的原价为x元,则第二次购书的原价为3x元,根据题意得:当3x≤100,即x≤1003时,x+3x=229.4,解得:x=57.35(舍去);当100<3x≤200,即1003<x≤2003时,x+0.9×3x=229.4,解得:x=62,∴x+3x=248;当3x>200且x≤100,即2003<x≤100时,x+0.7×3x=229.4,解得:x=74,∴x+3x=296;当x>100时,0.9x+0.7×3x=229.4,解得:x≈76.47(舍去).答:小丽这两次购书原价的总和是248元或296元.故填:248元或296元.【点睛】本题考查了一元一次方程的应用,分x≤1003、1003<x≤2003、2003<x≤100及x>100四种情况,列出关于x的一元一次方程是解题的关键.16.(1)y=74;(2)52xy=⎧⎨=⎩【解析】【分析】(1)根据题意对方程去分母,去括号,移项合并,把y系数化为1,即可求出解;(2)由题意对方程组利用加减消元法,进行计算求出解即可.【详解】解:(1)去分母得:12y﹣6y+6=24﹣2y﹣4,移项合并得:8y=14,解得:y=74;(2)32316x yx y-=⎧⎨+=⎩①②,①×3+②得:5x=25,解得:x=5,把x=5代入①得:y=2,则方程组的解为52 xy=⎧⎨=⎩.【点睛】此题考查解一元一次方程以及解二元一次方程组,熟练掌握相关运算法则是解本题的关键.17.﹣1≤x<2;﹣1,0,1【解析】【分析】根据题意先分别解两个不等式确定不等式组的解集,再找出其中的整数解即可.【详解】解:513(1)2151132x xx x-<+⎧⎪⎨-+-≤⎪⎩①②,解①得x<2,解②得x≥﹣1,故不等式组的解集为﹣1≤x<2,故不等式组的整数解为:﹣1,0,1.【点睛】本题考查解一元一次不等式组,根据题意分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集是解题的关键.18.见解析【解析】分析:(1)根据图形平移的性质画出△A1B1C1即可;(2)根据轴对称的性质画出△ABC关于直线m对称的△A2B2C2即可;(3)连接C1C2交直线m于点P,则点P即为所求点.详解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求;(3)连接连接C1C2交直线m于点P,则点P即为所求点.点睛:本题考查的是作图-轴对称变换,熟知轴对称的性质是解答此题的关键.19.B﹣P﹣C路线较近,见解析【解析】【分析】根据题意延长BP交AC于点D,并依据三角形两边之和大于第三边,进行分析即可得出结论.【详解】解:如图,延长BP交AC于点D.∵△ABD中,AB+AD>BD=BP+PD,△CDP中,PD+CD>CP,∴AB+AD+PD+CD>BP+PD+CP,即AB+AD+CD>BP+CP,∴AB+AC>BP+CP,∴B﹣P﹣C路线较近.【点睛】本题主要考查三角形三边关系,解决问题的关键是延长BP交AC于点D,利用三角形三边关系进行判断.20.(1)∠DAE=20°;(2)对,∠DAE=20°【解析】【分析】(1)根据角平分线的定义求出∠BAE,根据垂直定义求出∠ADB,根据三角形内角和定理求出∠BAC和∠BAD,即可求出答案;(2)由题意根据角平分线的定义和垂直定义以及三角形内角和定理,进行分析即可求解.【详解】解:(1)∵∠B=80°,∠C=40°,∴∠BAC=180°﹣∠B﹣∠C=60°,∵AE平分∠BAC,∴∠BAE=12∠BAC=30°,∵AD⊥BC,∴∠ADB=90°,∵∠B=80°,∴∠BAD=180°﹣∠B﹣∠ADB=180°﹣80°﹣90°=10°,∴∠DAE=∠BAE﹣∠BAD=30°﹣10°=20°;(2)对,理由是:∵∠BAC+∠B+∠C=180°,∴∠BAC=180°﹣∠B﹣∠C,∵AE平分∠BAC,∴∠BAE=12∠BAC=12(180°﹣∠B﹣∠C)=90°﹣12(∠B+∠C),∵AD⊥BC,∴∠ADB=90°,∴∠BAD=180°﹣∠B﹣∠ADB=180°﹣∠B﹣90°=90°﹣∠B,∴∠DAE=∠BAE﹣∠BAD=90°﹣12(∠B+∠C)﹣(90°﹣∠B)=12∠B﹣12∠C=12(∠B﹣∠C),∵∠B﹣∠C=40°,∴∠DAE=20°,所以小红的说法正确.【点睛】本题考查角平分线的定义,垂直的定义和三角形的内角和定理,能求出∠BAE和∠BAD的度数是解此题的关键.21.(1)A种机器人每台每小时分拣80件包裹,B种机器人每台每小时分拣30件包裹;(2)至少应购进A种机器人50台【解析】【分析】(1)由题意可知A种机器人每台每小时分拣x件包裹,B种机器人每台每小时分拣y件包裹,根据题意列方程组即可得到结论;(2)根据题意设应购进A种机器人a台,购进B种机器人(100﹣a)台,由题意得出不等式,进行求解即可得到结论.【详解】解:(1)A种机器人每台每小时拣x件包裹,B种机器人每台每小时分拣y件包裹,由题意得401500.77100001.5402150 1.3810000x yx y+=⨯⎧⎨⨯+⨯=⨯⎩,解得8030 xy=⎧⎨=⎩,答:A种机器人每台每小时分拣80件包裹,B种机器人每台每小时分拣30件包裹;(2)设应购进A种机器人a台,购进B种机器人(100﹣a)台,由题意得,80a+30(100﹣a)≥5500,解得:a≥50,答:至少应购进A种机器人50台.【点睛】本题考查的是二元一次方程组的应用和一元一次不等式的应用,解题的关键是抓住题目中的数量关系,并正确列出方程或不等式.22.(1)D,90;(2)△DFE的形状是等腰直角三角形,见解析;(3)20,16【解析】【分析】(1)由题意可知要确定旋转中心及旋转的角度,首先确定哪是对应点,即可确定旋转中心以及旋转角;(2)根据旋转的性质,可以得到旋转前后的两个图形全等,以及旋转角的定义即可作出判断;(3)由题意根据△DAE≌△DCF,可以得到:AE=CF,DE=DF,则四边形DEBF的周长就是正方形的三边的和与DE的和.【详解】解:(1)由题意可知旋转中心是点D,即为旋转角为90度.ADC(2)根据旋转的性质可得:△DAE≌△DCF,则DE=DF,∠EDF=∠ADC=90°,则△DFE的形状是等腰直角三角形.(3)四边形DEBF的周长是BE+BC+CF+DF+DE=AB+BC+DE+DF=4+4+6+6=20;由题意可知四边形DEBF的面积等于正方形ABCD的面积=16.【点睛】本题主要考查旋转的性质,注意掌握旋转不改变图形的形状与大小,只改变图形的位置,旋转前后两个图形全等.23.(1)旋转;(2)3;(3)见解析;(4)不成立,正确结论:∠2﹣∠1=2∠A',见解析【解析】【分析】(1)由题意根据三种全等变换翻折、平移、旋转的定义进行判断即可;(2)根据平移的距离的定义可知AD=2,则DC=AC﹣AD进行求解即可;(3)根据轴对称及三角形内角和定理进行分析即可得出结论;(4)由题意根据轴对称及三角形内角和定理,进行分析即可得出结论.【详解】解:(1)除翻折、平移外全等变换的方法还有旋转;故答案为:旋转.(2)∵AD=2,AC=5,∴DC=AC﹣AD=5﹣2=3;故答案为:3.(3)∵把△ADE沿DE翻折,得到△A'DE,∴△ADE≌△A'DE,∴∠ADE=∠A'DE,∠AED=∠A'ED,在△DEA'中,∠A'=180°﹣(∠A'DE+∠A'ED);由平角定义知,∠2=180°﹣∠A'DA=180°﹣2∠A'DE,∠1=180°﹣∠A'EA=180°﹣2∠A'ED,∴∠1+∠2=180°﹣2∠A'DE+180°﹣2∠A'ED=2(180°﹣∠A'ED﹣∠A'DE),∴2∠A′=∠1+∠2.(4)∠2﹣∠1=2∠A',理由如下:∵把△ADE沿DE翻折,得到△A'DE,∴△ADE≌△A'DE,∴∠ADE=∠A'DE,∠AED=∠A'ED,在△DEA'中,∠A'=180°﹣(∠A'DE+∠A'ED),由平角定义知,∠2=180°﹣∠A'DA=180°﹣2∠A'DE,∠1=2∠A'ED﹣180°,∴∠2﹣∠1=(180°﹣2∠A'DE)﹣(2∠A'ED﹣180°)=180°-(∠A'DE+∠A'ED),∴∠2﹣∠1=2∠A'.【点睛】本题是三角形综合题,综合考查平移的性质,折叠的性质,三角形内角和定理,全等三角形的性质等知识,灵活运用这些性质进行推理是解答本题的关键.。

华师大版七年级下册数学期末测试(含答案解析)

华师大版七年级下册数学期末测试(含答案解析)

华师大版七年级下册数学期末测试一、选择题(每小题给出的四个选项中,只有一个是符合题目要求的,请选出并在答题卡上将该选项涂黑.本大题共10个小题,每小题3分,共30分) 1.方程39x =-的解是( ) A .6x =-B .2x =-C .3x =-D .27x =-2.“瓦当”是中国古建筑中覆盖檐头筒瓦前端的遮挡,主要有防水、排水、保护木制飞檐和美化屋面轮廓的作用.瓦当上的图案设计优美,字体行云流水,极富变化,是中国特有的文化艺术遗产.下面“瓦当”图案中既是轴对称图形又是中心对称图形的是( )ABCD3.若解集在数轴上的表示如图所示,则这个不等式组可以是( )A .23x x -⎧⎨⎩<B .23x x -⎧⎨⎩C .23x x -⎧⎨⎩D .23x x -⎧⎨⎩>4.用一批完全相同的正多边形能镶嵌成一个平面图案的是( ) A .正五边形B .正六边形C .正七边形D .正八边形5.下列各式变形正确的是( ) A .如果221x y =+,那么1x y =+ B .如果253x =+,那么352x =- C .如果33x y -=-,那么x y =D .如果84x -=,那么2x =-6.将一张长方形纸条折成如图所示的形状,BC 为折痕,若80DBA ∠=︒,则ABC ∠等于( )A .40°B .50°C .60°D .70°7.如图,将ABE △向右平移2 cm 得到DCF △,如果ABE △的周长是16 cm ,那么四边形ABFD 的周长是( )A .16 cmB .18 cmC .20 cmD .21 cm8.已知三角形两边的长分别是4和6,则此三角形第三边的长可能是( ) A .2B .6C .11D .169.如图,在ABC △中,以C 为中心,将ABC △顺时针旋转35°得到DEC △,边ED ,AC 相交于点F ,若30A ∠=︒,则EFC ∠的度数为( )A .60°B .65°C .72.5°D .115°10.在方程组2122x y mx y +=-⎧⎨+=⎩中,若x 、y 满足0x y -<,则m 的取值范围是( )A .1m -<B .1m ->C .1m >D .1m <二、填空题(本大题共6个小题,每小题3分,共18分)11.如图所示,要使一个六边形木架在同一平面内不变形,至少还要再钉上_________根木条.12.如果2x =是关于x 的方程132x m +=的解,那么m 的值是_________. 13.如图,一环湖公路的AB 段为东西方向,经过四次拐弯后,又变成了东西方向的FE 段,则B C D E ∠+∠+∠+∠的度数是_________.14.如图,ABC ADE △≌△,如果 5 cm AB =,7 cm BC =, 6 cm AC =,那么DE 的长是_________.15.《九章算术》是中国古代非常重要的一部数学典籍,被视为“算经之首”.《九章算术》大约成书于公元前200年~公元前50年,是以应用问题解法集成的体例编纂成书的,全书按题目的应用范围与解题方法划分为“方田”、“粟米”、“衰分”等九章. 《九章算术》中有这样一个问题:今有共买金,人出四百,盈三千四百;人出三百,盈一百.问人数,金价各几何?其大意是:假设合伙买金,每人出400钱,还剩余3400钱;每人出300钱,还剩余100钱.问人数、金价各是多少?如果设有x 个人,那么可以列方程为_________.16.代数式kx b +中,当x 取值分别为1-,0,1,2时,对应代数式的值如下表:x… 1- 0 1 2 … kx b +…1-135…则k b +=_________.三、解答题(解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.本大题共8个题,共72分) 17.(10分)解方程或方程组. (1)解方程:()5127x x +=-;(2)解方程组:135x y x y +=⎧⎨+=⎩18.(6分)解不等式组:()23423x x x x ⎧--⎪⎨-⎪⎩<并求所有整数解.19.(8分)如图,方格纸中每个小正方形的边长都为1,在方格纸内将ABC △平移后得到A B C '''△,图中点B '为点B 的对应点.(1)画出ABC 的边AB 上的中线CD ; (2)画出ABC △的边BC 上的高AE ; (3)画出A B C '''△;(4)A B C '''△的面积为_________.20.(8分)一个多边形的内角和是外角和的3倍,求这个多边形的边数.21.(8分)如图,ABC △中,AD BC ⊥,垂足为D ,AE 平分BAC ∠,70C ∠=︒,15DAE ∠=︒,求B ∠的度数.22.(8分)甲、乙两人共同解方程组51642ax y x by +=⎧⎨-=-⎩①②由于甲看错了方程①中的a ,得到方程组的解为21x y =-⎧⎨=-⎩乙看错了方程②中的b ,得到方程组的解为32x y =-⎧⎨=⎩求出a 、b 的正确值.23.(12分)在“抗疫”期间,某药店销售A 、B 两种型号的口罩,已知销售800只A 型口罩和450只B 型口罩的利润为210元,销售400只A 型口罩和600只B 型口罩的利润为180元. (1)求每只A 型口罩和B 型口罩的销售利润;(2)该药店计划一次购进这两种型号的口罩共2000只,要想利润不低于380元,问B 型口罩进货量最少是多少只?24.(12分)探索三角形的内(外)角平分线形成的角的规律在三角形中,由三角形的内角平分线、外角平分线所形成的角存在一定的规律. 规律1:三角形的两个内角的平分线形成的钝角等于90°加上第三个内角度数的一半.规律2:三角形的两个外角的平分线形成的锐角等于90°减去与这两个外角不相邻的内角度数的一半. 如图(1),已知点P 是ABC △的内角平分线BP 与CP 的交点,点M 是ABC △的外角平分线BM 与CM 的交点,则1902P A ∠=︒+∠,1902M A ∠=︒-∠ 证明规律1:BP ∵、CP 是ABC △的角平分线,112ABC ∠=∠∴,122ACB ∠=∠,(1) ()180212A ∠=︒-∠+∠∴,(2) 112902A ∠+∠=︒-∠∴,()118012902P A ∠=︒-∠+∠=︒+∠∴.证明规律2:132()A ACB ∠=∠+∠∵,(4)12A ABC ∠=∠+∠,()1113490222A ACB ABC A A ∠+∠=∠+∠+∠+∠=︒+∠∴, ()118034902M A ∠=︒-∠+∠=︒-∠∴.请解决以下问题:(1)写出上述证明过程中步骤(2)的依据是:_________;(2)如图(2),已知点Q 是ABC △的内角平分线BQ 与ABC △的外角(ACD ∠)平分线CQ 的交点,请猜想Q ∠和A ∠的数量关系,并说明理由.答案解析一、 1.【答案】C【解析】解:方程39x =-, 解得:3x =-, 故选:C . 2.【答案】B【解析】解:A 、不是轴对称图形,也不是中心对称图形,选项错误; B 、既是轴对称图形又是对称图形,故选项正确; C 、是轴对称图形,不是中心对称图形,选项错误; D 、不是轴对称图形,是中心对称图形,选项错误. 故选:B . 3.【答案】A【解析】解:若解集在数轴上的表示如图所示,可得解集为23x -≤<, 则这个不等式组可以是23x x -⎧⎨⎩≥<.故选:A . 4.【答案】B【解析】解:根据密铺的条件可知3个正六边形能密铺. 故选:B . 5.【答案】C【解析】解:A 、由221x y =+,可知12x y =+,故A 错误; B 、由243x =+,可知325x =-,故B 错误; C 、由63x y -=-,可知x y =,故C 正确; D 、由84x -=,可知12x =-,故D 错误. 故选:C . 6.【答案】B【解析】解:根据题意得:2180ABC DBA ∠+∠=︒, 则()18080250ABC ∠=︒-︒÷=︒. 故选:B .7.【答案】C【解析】解:ABE ∵△向右平移2 cm 得到DCF △,2 cm EF AD ==∴,AE DF =, 16 cm AB BE AE ++=∴, AB BE AE EF AD =++++20 cm =.故选:C . 8.【答案】B【解析】解:设第三边长为x ,则由三角形三边关系定理得6464x -+<<,即210x <<. 因此,本题的第三边应满足510x <<,只有6符合不等式, 故选:B . 9.【答案】B【解析】解:由旋转的性质得:30D A ∠=∠=︒,35DCF ∠=︒,303565EFC A DCF ∠=∠+∠=︒+︒=︒∴;故选:B . 10.【答案】B【解析】解:将方程组中两个方程相减可得1x y m -=--,0x y -∵<,则1m ->, 故选:B . 二、 11.【答案】3【解析】解:根据三角形的稳定性,要使六边形木架不变形,至少再钉上3根木条; 故答案为:3. 12.【答案】2【解析】解:把2x =代入方程得13m +=, 解得:2m =. 故答案为:2. 13.【答案】540°【解析】解:如图,根据题意可知:AB EF ∥,分别过点C ,D 作AB 的平行线CG ,DH ,则180B BCG ∠+∠=︒,180HDE DEF ∠+∠=︒,540B BCD CDE E ∠+∠+∠+∠=︒∴.故答案为540°. 14.【答案】7 cm【解析】解:ABC ADE △≌△∵,7BC =()7cm DE BC ==∴,故答案为:7 cm .15.【答案】400 3 400300100x x -=- 【解析】解:设有x 个人,依题意,得:400 3 400300100x x -=-. 故答案为:400 3 400300100x x -=-. 16.【答案】3【解析】解:1x =∵时,代数式3kx b +=,3k b +=∴.故答案为:3. 三、17.【答案】解:(1)去括号,得5527x x +=-, 移项,得5775x x -=--, 系数化为1,得4x =-. (2)-②①,得26x =, 把2x =代入①,得1y =-.∴原方程组的解为.18.【答案】原不等式组的解集是12x -≤<,所有整数解是1-,0,1.【解析】解:2(3)423x x x x --⎧⎪⎨-⎪⎩<①≤②,由不等式①,得6x < 由不等式②,得1x -≥故原不等式组的解集是16x -≤<,∴该不等式组的所有整数解是1-,0,1.19.【答案】解:(1)如图所示:CD 即为所求; (2)如图所示:AE 即为所求; (3)如图所示;(4)A B C '''△的面积为:14482⨯⨯=. 故答案为:8.20.【答案】解:设这个多边形是n 边形,由题意得:()21803603n -⨯︒=︒⨯,答:这个多边形的边数是8. 21.【答案】解:AD BC ⊥∵,90ADC ∠=︒∴,180180907020CAD ADC C ∠=︒-∠-∠=︒-︒-︒=︒∴, 152035CAE DAE CAD ∠=∠+∠=︒+︒=︒∴, 270BAC EAC ∠=∠=︒∴,180180707040B BAC C ∠=︒-∠-∠=︒-︒-︒=︒∴.22.【答案】解:把21x y =-⎧⎨=-⎩代入②得:82b -+=-,解得6b =;把35x y =-⎧⎨=⎩代入①得:解得2a =-.23.【答案】解:(1)设每只A 型口罩销售利润为a 元,每只B 型口罩销售利润为b 元,根据题意得:800450210400600180a b a b +=⎧⎨+=⎩, 答:每只A 型口罩销售利润为0.15元,每只B 型口罩销售利润为0.2元; 则()0.1520007.2380m m ⨯-+≥,m ∴的最小整数值为1600,答:B 型口罩进货量最少是1600只.24.【答案】解:(1)证明过程中步骤(2)的依据是三角形内角和等于180°, 故答案为:三角形内角和等于180°; 理由如下:CQ ∵平分ACD ∠,BQ ∵平分ABC ∠,ACD A ABC ∠=∠+∠∵,12Q ∠=∠+∠∵,2A Q ∠=∠∴,即52Q A ∠∠=.。

华师大版七年级下册数学期末考试试题带答案

华师大版七年级下册数学期末考试试题带答案

华师大版七年级下册数学期末考试试卷一、选择题(每小题3分,共21分)1.(3分)下列方程中解为x=0的是()A.x+1=﹣1 B.2x=3x C.2x=2 D.2.(3分)不等式﹣2x>3的解集是()A.B.C.D.3.(3分)已知2x﹣3y=5,若用含y的代数式表示x,则正确的是()A.B.C.D.4.(3分)下列各图中,正确画出AC边上的高的是()A.B.C.D.5.(3分)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.6.(3分)把边长相等的正五边形ABCDE和正方形ABFG按照如图所示的方式叠合在一起,则∠EAG的度数是()A.18°B.20°C.28°D.30°7.(3分)如图是某月份的日历表,任意框出同一列上的三个数,则这三个数的和不可能是()A.39 B.43 C.57 D.66二、填空题(每小题4分,共40分)8.(4分)已知x=3是方程2x﹣a=1的解,则a=.9.(4分)若代数式5x﹣1的值与6互为相反数,则x=.10.(4分)若a>b,则a+b2b.(填“>”、“<”或“=”)11.(4分)方程组经“消元”后可得到一个关于x、y的二元一次方程组为.12.(4分)一个多边形的内角和是它的外角和的4倍,这个多边形是边形.13.(4分)已知围绕某一点的m个正三角形和n个正六边形恰好铺满地面,若n=1,则m 的值为.14.(4分)如图,在△ABC中,∠B=70°,∠BAC=45°,AD⊥BC于点D,则∠CAD的度数为.15.(4分)如图,在△ABC中,∠C=90°,AC=4,将△ABC沿射线CB方向平移得到△DEF,若平移的距离为2,则四边形ABED的面积等于.16.(4分)如图,点P是等边三角形ABC内的一点,连结PB、PC.将△PBC绕点B逆时针旋转到△P′BA的位置,则∠PBP′的度数是.17.(4分)如图,D是△ABC的边BC上任意一点,E、F分别是线段AD、CE的中点.若△ABC 的面积为m,则△BEF的面积为.三、解答题(共89分)18.(9分)解方程:2(x﹣7)=10+5x.19.(9分)解方程组:.20.(9分)解不等式组:,并把它的解集在数轴上表示出来.21.(9分)如图,已知△ABC.(1)若AB=4,AC=5,则BC边的取值范围是;(2)点D为BC延长线上一点,过点D作DE∥AC,交BA的延长线于点E,若∠E=55°,∠ACD=125°,求∠B的度数.22.(9分)如图,△ABC的三个顶点和点O都在正方形网格的格点上,每个小正方形的边长都为1.(1)将△ABC先向右平移4个单位,再向上平移2个单位得到△A1B1C1,请画出△A1B1C1;(2)请画出△A2B2C2,使△A2B2C2和△ABC关于点O成中心对称;(3)在(1)、(2)中所得到的△A1B1C1与△A2B2C2成轴对称吗?若成轴对称,请画出对称轴;若不成轴对称,请说明理由.23.(9分)儿童商店举办庆“六•一”大酬宾打折促销活动,某商品若按原价的七五折出售,要亏25元;若按原价的九折出售,可赚20元.设该商品的原价为x元.(1)若将该商品按原价的八折出售,则售价为元;(用含x的代数式表示)(2)求出x的值.24.(9分)已知关于x、y的二元一次方程组.(1)当k=1时,解这个方程组;(2)若﹣1<k≤1,设S=x﹣8y,求S的取值范围.25.(13分)某批发部有甲、乙两种产品.已知甲产品的批发单价比乙产品的批发单价少10元;8件甲产品的总价正好和7件乙产品的总价相等.(1)求甲、乙两产品的批发单价各是多少?(2)友谊商店计划从该批发部购进以上两种产品.①若所用资金为590元,且购进甲产品不超过5件,则该店购进乙产品至少多少件?②试探索:能否通过合理安排,使所用资金恰好为750元?若能,请给出进货方案;若不能,请说明理由.26.(13分)如图,已知△ABC≌△CDA,将△ABC沿AC所在的直线折叠至△AB′C的位置,点B的对应点为B′,连结BB′.(1)直接填空:B′B与AC的位置关系是;(2)点P、Q分别是线段AC、BC上的两个动点(不与点A、B、C重合),已知△BB′C的面积为36,BC=8,求PB+PQ的最小值;(3)试探索:△ABC的内角满足什么条件时,△AB′E是直角三角形?参考答案与试题解析一、选择题(每小题3分,共21分)1.(3分)(2016春•石狮市期末)下列方程中解为x=0的是()A.x+1=﹣1 B.2x=3x C.2x=2 D.【分析】看看x=0能使ABCD四个选项中哪一个方程的左右两边相等,就是哪个答案;也可以分别解这四个选项中的方程.【解答】解:A、由x+1=﹣1得,x=﹣2;B、由2x=3x得,x=0;C、由2x=2得,x=1;D、由+4=5x得,x=1.故选B.【点评】此题考查了方程的解,方程的解即为能使方程左右两边相等的未知数的值2.(3分)(2016春•石狮市期末)不等式﹣2x>3的解集是()A.B.C.D.【分析】直接把x的系数化为1即可.【解答】解:不等式的两边同时除以﹣2得,x<﹣.故选D.【点评】本题考查的是解一元一次不等式,熟知不等式的基本性质是解答此题的关键.3.(3分)(2016春•石狮市期末)已知2x﹣3y=5,若用含y的代数式表示x,则正确的是()A.B.C.D.【分析】把y看做已知数求出x即可.【解答】解:方程2x﹣3y=5,解得:x=,故选B【点评】此题考查了解二元一次方程,解题的关键是将y看做已知数求出x.4.(3分)(2016春•诸城市期末)下列各图中,正确画出AC边上的高的是()A.B.C.D.【分析】根据三角形高的定义,过点B与AC边垂直,且垂足在边AC上,然后结合各选项图形解答.【解答】解:根据三角形高线的定义,只有D选项中的BE是边AC上的高.故选:D.【点评】本题主要考查了三角形的高线的定义,熟记定义并准确识图是解题的关键.5.(3分)(2016春•石狮市期末)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】结合选项根据轴对称图形与中心对称图形的概念求解即可.【解答】解:A、不是轴对称图形,也不是中心对称图形;B、是轴对称图形,不是中心对称图形;C、是轴对称图形,也是中心对称图形;D、不是轴对称图形,是中心对称图形.故选C.【点评】本题考查了中心对称图形与轴对称图形的知识.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.(3分)(2016春•石狮市期末)把边长相等的正五边形ABCDE和正方形ABFG按照如图所示的方式叠合在一起,则∠EAG的度数是()A.18°B.20°C.28°D.30°【分析】∠EAG的度数是正五边形的内角与正方形的内角的度数的差,根据多边形的内角和定理求得角的度数,进而求解.【解答】解:正五边形的内角的度数是×(5﹣2)×180°=108°,正方形的内角是90°,则∠EAG=108°﹣90°=18°.故选A.【点评】本题考查了多边形的内角和定理,求得正五边形的内角的度数是关键.7.(3分)(2016春•石狮市期末)如图是某月份的日历表,任意框出同一列上的三个数,则这三个数的和不可能是()A.39 B.43 C.57 D.66【分析】可设中间的数为x,根据竖列上相邻的数相隔7可得其余2个数,相加等于各选项中数字求解即可.【解答】解:A、设中间的数为x,则最小的数为x﹣7,最大的数为x+7.x+(x﹣7)+(x+7)=39,解得:x=13,故此选项错误;B、设中间的数为x,则最小的数为x﹣7,最大的数为x+7.x+(x﹣7)+(x+7)=43,解得:x=,故此选项符合题意;C、设中间的数为x,则最小的数为x﹣7,最大的数为x+7.x+(x﹣7)+(x+7)=57,解得:x=19,故此选项错误;D、设中间的数为x,则最小的数为x﹣7,最大的数为x+7.x+(x﹣7)+(x+7)=66,解得:x=22,故此选项错误;故选:B.【点评】此题主要考查了一元一次方程的应用;得到日历中一竖列3个数之间的关系是解决本题的难点.二、填空题(每小题4分,共40分)8.(4分)(2016春•石狮市期末)已知x=3是方程2x﹣a=1的解,则a=5.【分析】把x=3代入方程计算即可求出a的值.【解答】解:把x=3代入方程得:6﹣a=1,解得:a=5,故答案为:5【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.9.(4分)(2016春•石狮市期末)若代数式5x﹣1的值与6互为相反数,则x=﹣1.【分析】利用互为相反数两数之和为0列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:5x﹣1+6=0,移项合并得:5x=﹣5,解得:x=﹣1,故答案为:﹣1【点评】此题考查了解一元一次方程,以及相反数,熟练掌握相反数的性质是解本题的关键.10.(4分)(2016春•石狮市期末)若a>b,则a+b>2b.(填“>”、“<”或“=”)【分析】根据不等式的两边都加(或减去)同一个整式,不等号的方向不变,可得答案.【解答】解:不等式的两边都加b,不等号的方向不变,得a+b>2b,故答案为:>.【点评】本题考查了不等式的性质,熟记不等式的性质是解题关键.11.(4分)(2016春•石狮市期末)方程组经“消元”后可得到一个关于x、y的二元一次方程组为..【分析】先把第1个方程和第3个方程相加消去z,然后把所得的新方程和第2个方程组成方程组即可.【解答】解:,①+③得x+3y=6④,由②④组成方程组得.故答案为.【点评】本题考查了解三元一次方程组:利用加减消元法或代入消元法把解三元一次方程组的问题转化为解二元一次方程组的问题.12.(4分)(2016春•石狮市期末)一个多边形的内角和是它的外角和的4倍,这个多边形是十边形.【分析】一个多边形的内角和是它的外角和的4倍,而外角和是360°,则内角和是4×360°.n 边形的内角和可以表示成(n﹣2)•180°,设这个多边形的边数是n,就得到方程,从而求出边数.【解答】解:设这个多边形有n条边.由题意得:(n﹣2)×180°=360°×4,解得n=10.则这个多边形是十边形.故答案为:十.【点评】本题考查了多边形内角与外角,已知多边形的内角和求边数,可以转化为方程的问题来解决.13.(4分)(2016春•石狮市期末)已知围绕某一点的m个正三角形和n个正六边形恰好铺满地面,若n=1,则m的值为4.【分析】根据正三角形的每个内角是60°,正六边形的每个内角是120°,结合镶嵌的条件即可求出答案.【解答】解:∵正三角形和正六边形的一个内角分别是60°,120°,而4×60°+120°=360°,∴m=4,n=1,故答案为:4.【点评】此题主要考查了平面镶嵌,几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.14.(4分)(2016春•石狮市期末)如图,在△ABC中,∠B=70°,∠BAC=45°,AD⊥BC于点D,则∠CAD的度数为25°.【分析】根据垂直定义可得∠ADB=90°,根据直角三角形两锐角互余可得∠BAD的度数,进而可得∠CAD的度数.【解答】解:∵AD⊥BC,∴∠ADB=90°,∵∠B=70°,∴∠BAD=20°,∵∠BAC=45°,∴∠DAC=45°﹣20°=25°,故答案为:25°.【点评】此题主要考查了三角形内角和定理,关键是掌握直角三角形两锐角互余.15.(4分)(2016春•石狮市期末)如图,在△ABC中,∠C=90°,AC=4,将△ABC沿射线CB方向平移得到△DEF,若平移的距离为2,则四边形ABED的面积等于8.【分析】根据平移的性质,经过平移,对应点所连的线段平行且相等,可得四边形ABED是平行四边形,再根据平行四边形的面积公式即可求解.【解答】解:∵将△ABC沿CB向右平移得到△DEF,平移距离为2,∴AD∥BE,AD=BE=2,∴四边形ABED是平行四边形,∴四边形ABED的面积=BE×AC=2×4=8.故答案为:8.【点评】本题主要考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.16.(4分)(2016春•石狮市期末)如图,点P是等边三角形ABC内的一点,连结PB、PC.将△PBC绕点B逆时针旋转到△P′BA的位置,则∠PBP′的度数是60°.【分析】首先根据等边三角形的性质可得∠ABC=60°,然后再根据旋转可得∠ABP′=∠CBP,进而可得∠PBP′的度数.【解答】解:∵△ABC是等边三角形,∴∠ABC=60°,∵△PBC绕点B逆时针旋转到△P′BA的位置,∴∠ABP′=∠CBP,∴∠PBP′=∠ABP′+∠ABP=∠PBC+∠ABP=60°,故答案为:60°.【点评】此题主要考查了等边三角形的性质和旋转的性质,关键是掌握旋转前、后的图形全等.17.(4分)(2016春•石狮市期末)如图,D是△ABC的边BC上任意一点,E、F分别是线段AD、CE的中点.若△ABC的面积为m,则△BEF的面积为m.【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答即可.【解答】解:∵点E是AD的中点,∴S△ABE=S△ABD,S△ACE=S△ADC,∴S△ABE+S△ACE=S△ABC=m,∴S△BCE=S△ABC=m,∵点F是CE的中点,∴S△BEF=S△BCE=×m=m.故答案为:m.【点评】本题考查了三角形的面积,主要利用了三角形的中线把三角形分成两个面积相等的三角形,原理为等底等高的三角形的面积相等.三、解答题(共89分)18.(9分)(2016春•石狮市期末)解方程:2(x﹣7)=10+5x.【分析】根据解一元一次方程的一般步骤:去括号、移项、合并同类项、系数化为1,可得答案.【解答】解:去括号,得:2x﹣14=10+5x,移项,得:2x﹣5x=10+14,合并同类项,得:﹣3x=24,系数化为1,得:x=﹣8.【点评】此题考查解一元一次方程,熟练掌握解题步骤是关键.19.(9分)(2016春•石狮市期末)解方程组:.【分析】将第一个方程直接代入第二个方程,然后利用代入消元法求解即可.【解答】解:,①代入②得,3x+10x=26,解得x=2,将x=2代入①得,y=2×2=4,所以,方程组的解是.【点评】本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.20.(9分)(2016春•石狮市期末)解不等式组:,并把它的解集在数轴上表示出来.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组组的解集.【解答】解:,解①得x<﹣2,解②得x≤1,则不等式组的解集是x<﹣2.【点评】本题考查了不等式组的解法,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.21.(9分)(2016春•石狮市期末)如图,已知△ABC.(1)若AB=4,AC=5,则BC边的取值范围是1<BC<9;(2)点D为BC延长线上一点,过点D作DE∥AC,交BA的延长线于点E,若∠E=55°,∠ACD=125°,求∠B的度数.【分析】(1)利用三角形的三边关系确定第三边的取值范围即可;(2)首先利用平行线的性质确定∠EDB的度数,然后利用三角形内角和定理确定∠B的度数即可.【解答】解:(1)∵AB=4,AC=5,∴5﹣4<BC<4+5,即1<BC<9,故答案为:1<BC<9;(2)∵∠ACD=125°,∴∠ACB=180°﹣∠ACD=55°,∵∠E=55°,∴∠B=180°﹣∠E﹣∠BDE=180°﹣55°﹣55°=70°.【点评】本题考查了三角形的三边关系及平行线的性质,解题的关键是能够了解三角形的三边关系及两直线平行同位角相等的知识,难度不大.22.(9分)(2016春•石狮市期末)如图,△ABC的三个顶点和点O都在正方形网格的格点上,每个小正方形的边长都为1.(1)将△ABC先向右平移4个单位,再向上平移2个单位得到△A1B1C1,请画出△A1B1C1;(2)请画出△A2B2C2,使△A2B2C2和△ABC关于点O成中心对称;(3)在(1)、(2)中所得到的△A1B1C1与△A2B2C2成轴对称吗?若成轴对称,请画出对称轴;若不成轴对称,请说明理由.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用关于点O对称点的性质得出对应点位置;(3)利用轴对称图形的定义得出答案.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求;(3)如图所示:△A1B1C1与△A2B2C2成轴对称,直线a,b即为所求.【点评】此题主要考查了旋转变换以及平移变换,得出对应点位置是解题关键.23.(9分)(2016春•石狮市期末)儿童商店举办庆“六•一”大酬宾打折促销活动,某商品若按原价的七五折出售,要亏25元;若按原价的九折出售,可赚20元.设该商品的原价为x 元.(1)若将该商品按原价的八折出售,则售价为80%x元;(用含x的代数式表示)(2)求出x的值.【分析】(1)将该商品按原价的八折出售,即按照原价的80%出售;(2)设这种商品的标价是x元.根据定价的七五折出售将亏25元和定价的九折出售将赚20元,分别表示出进价,从而列方程求解.【解答】解:(1)依题意得:80%x.故答案是:80%x;(2)根据题意,得0.75x+25=0.9x﹣20,解得x=300.【点评】考查了一元一次方程的应用,注意:七五折即标价的75%,九折即标价的90%.24.(9分)(2016春•石狮市期末)已知关于x、y的二元一次方程组.(1)当k=1时,解这个方程组;(2)若﹣1<k≤1,设S=x﹣8y,求S的取值范围.【分析】(1)写出k=1时的方程组,然后将第二个方程乘以2,再利用加减消元法求解即可;(2)两个方程相减表示出S,再根据k的取值范围求解即可.【解答】解:(1)k=1时,方程组为,②×2得,2x+6y=10③,③﹣①得,11y=11,解得y=1,将y=1代入②得,x+3=5,解得x=2,所以,方程组的解是;(2),①﹣②得,x﹣8y=﹣3k﹣3,∵﹣1<k≤1,∴﹣3≤﹣3k<3,﹣6≤﹣3k﹣3<0,∴S的取值范围是﹣6≤S<0.【点评】本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.25.(13分)(2016春•石狮市期末)某批发部有甲、乙两种产品.已知甲产品的批发单价比乙产品的批发单价少10元;8件甲产品的总价正好和7件乙产品的总价相等.(1)求甲、乙两产品的批发单价各是多少?(2)友谊商店计划从该批发部购进以上两种产品.①若所用资金为590元,且购进甲产品不超过5件,则该店购进乙产品至少多少件?②试探索:能否通过合理安排,使所用资金恰好为750元?若能,请给出进货方案;若不能,请说明理由.【分析】(1)设甲产品的批发单价为x元/件,乙产品的批发单价为(x+10)元/件,根据8件甲产品的总价正好和7件乙产品的总价相等即可得出关于x的一元一次方程,解方程即可得出结论;(2)①设该店购进乙产品至少m件,根据所用资金为590元,且购进甲产品不超过5件,即可得出关于m的一元一次方程,解方程即可得出结论;②假设能,购进甲产品a件,乙产品b件,结合甲、乙产品的单价以及用资金恰好为750元,即可得出70a+80b=750,令a分别等于1,2,3,…,验证b值是否为正整数,当a、b 均为正整数时,即是所求结论.【解答】解:(1)设甲产品的批发单价为x元/件,乙产品的批发单价为(x+10)元/件,由已知得:8x=7(x+10),解得:x=70,x+10=80.答:甲产品的批发单价为70元/件,乙产品的批发单价为80元/件.(2)①设该店购进乙产品至少m件,由已知得:5×70+80m=590,解得:m=3.答:该店购进乙产品至少3件.②假设能,购进甲产品a件,乙产品b件,由已知得:70a+80b=750,当a=1时,b=,不合适;当a=2时,b=,不合适;当a=3时,b=,不合适;当a=4时,b=,不合适;当a=5时,b=5,合适;当a=6时,b=,不合适;当a=7时,b=,不合适;当a=8时,b=,不合适;当a=9时,b=,不合适;当a=10时,b=,不合适.综上可知:当甲、乙产品各购进5件时,所用资金恰好为750元.【点评】本题考查了一元一次方程,解题的关键是:(1)根据数量关系列出关于x的一元一次方程;(2)①根据数量关系列出关于m的一元一次方程;②代入a值验证b值何时为整数.本题属于中档题,难度不大,解决该题型题目时,根据数量关系列出方程(或方程组)是关键.26.(13分)(2016春•石狮市期末)如图,已知△ABC≌△CDA,将△ABC沿AC所在的直线折叠至△AB′C的位置,点B的对应点为B′,连结BB′.(1)直接填空:B′B与AC的位置关系是垂直;(2)点P、Q分别是线段AC、BC上的两个动点(不与点A、B、C重合),已知△BB′C的面积为36,BC=8,求PB+PQ的最小值;(3)试探索:△ABC的内角满足什么条件时,△AB′E是直角三角形?【分析】(1)根据翻折变换的性质得到AB=AB′,∠BAC=∠B′AC,根据等腰三角形的性质得到结论;(2)根据三角形的面积公式求出△BB′C的BC边上的高,根据轴对称变换的性质解答;(3)分∠AB′E=90°和∠AEB′=90°两种情况,根据翻折变换的性质和平行线的性质解答.【解答】解:(1)由翻折变换的性质可知,AB=AB′,∠BAC=∠B′AC,∴B′B⊥AC,故答案为:垂直;(2)∵AB=AB′,∠BAC=∠B′AC,∴AC是B′B的垂直平分线,∴点B′与点B关于直线AC轴对称,连接B′Q,则B′Q是PB+PQ的最小值,∵△BB′C的面积为36,BC=8,∴△BB′C的BC边上的高为36×2÷8=9,当B′Q⊥BC时,B′Q最小,∴PB+PQ的最小值为9;(3)①如图1,当∠ACB=45°时,∠AEB′=90°.∵由翻折变换的性质可知,∠BCA=∠B′CA,∴∠BCB′=90°,∵△ABC≌△CDA,∴AB=CD,BC=AD,∴四边形ABCD的平行四边形,∴AD∥BC,∴∠AEB′=∠BCB′=90°;②如图2,由翻折变换的性质可知,当∠ABC=90°时,∠AB′E=90°.【点评】本题考查的是翻折变换的性质、轴对称﹣最短路径问题、等腰三角形的性质,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.。

华师大版七年级下册数学期末测试卷

华师大版七年级下册数学期末测试卷

华师大版七年级下册数学期末测试卷一、单选题(共15题,共计45分)1、如图,四边形ABCD是等腰梯形,∠ABC=60°,若其四边满足长度的众数为5,平均数为,上、下底之比为1:2,则BD的长是().A.5B.5C.3D.32、如图,一段抛物线,记为抛物线,它与轴交于点;将抛物线绕点旋转得抛物线,交轴于点;将抛物线绕点旋转得抛物线,交轴于点.···如此进行下去,得到一条“波浪线”,若点在此“波浪线”上,则的值为()A.-6B.6C.-8D.83、下列图形中是中心对称图形的为()A. B. C. D.4、下列图案中既是轴对称又是中心对称图形的是()A. B. C. D.5、已知是方程的解,则a的值为()A.4B.3C.2D.16、如图,四边形ABCD是等腰梯形,∠ABC=60°,若其四边满足长度的众数为5,平均数为,上、下底之比为1:2,则BD的长是().A.5B.5C.3D.37、如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上.顶点B 的坐标为(3,),点C的坐标为(1,0),且∠AOB=30°点P为斜边OB 上的一个动点,则PA+PC的最小值为()A. B. C. D.8、如图,半圆O是一个量角器,△AOB为一纸片,AB交半圆于点D,OB交半圆于点C,若点C、D、A在量角器上对应读数分别为45°,70°,160°,则∠B 的度数为()A.20°B.30°C.45°D.60°9、如图,已知BD是△ABC的中线,AB=5,BC=3,且△ABD的周长为11,则△BCD的周长是( )A.11B.9C.7D.不能确定10、已知四组线段的长分别如下,以各组线段为边,能组成三角形的是()A.1,2,3B.2,5,8C.3,4,5D.4,5,1011、下列图案中,既是轴对称图形又是中心对称图形的是()A. B. C. D.12、下列图形是中心对称图形,但不是轴对称图形的是()A. B. C. D.13、如图,正△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿的方向运动,到达点C时停止,设运动时间为x(秒),,则y关于x的函数的图像大致为()A. B. C. D.14、如图,在△ABC中,D是CA延长线上一点,∠B=40°,∠BAD=76°,则∠C 的度数为()A.36°B.116°C.26°D.104°15、下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.二、填空题(共10题,共计30分)16、如图,边长为3的等边△ABC与等边△DEF互相重合,将△ABC沿直线L向左平移m个单位长度,将△DEF向右也平移m个单位长度,如图,当C、E是线段BF的三等分点时m的值为________.17、如图,是的角平分线,于,的面积是15cm2, AB=9cm,BC=6cm,则________ .18、一项工作,甲先完成全部工作的,然后乙完成余下部分,两人共用天;若甲先完成全部工作的,然后乙完成余下部分,两人共用天,则甲单独完成此项工作需________天.19、如图,直线,且,则的度数是________.20、如图,把一张矩形纸片ABCD沿对角线BD折叠,使C点落在C′,且BC′与AD交于E点,若∠ABE=40°,则∠ADB=________.21、不等式组的解集是________.22、如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=________度.23、如图,BC是半径为5的圆的直径,点A是弧BC的中点,D,E在另外的半圆上,且弧DE=弧AB,连接AD,DE分别交直径BC于点M,N,若CN=2BM,则MN=________24、已知方程组的解满足方程x+2y=k,则k的值是________.25、小李在方程5a-x=13(x为未知数)小误将-x看做+x,得方程的解为x=2,则原方程的解为________.三、解答题(共5题,共计25分)26、解方程:3x﹣1=2(x﹣2)27、如图是4×4正方形网格,请在其中选取一个白色的单位正方形并涂黑,使图中黑色部分是一个中心对称图形.28、如图,已知,,,求的度数.29、已知:在梯形ABCD中,CD∥AB,AD=DC=BC=2,AB=4.点M从A开始,以每秒1个单位的速度向点B运动;点N从点C出发,沿C→D→A方向,以每秒1个单位的速度向点A运动,若M、N同时出发,其中一点到达终点时,另一个点也停止运动.运动时间为t秒,过点N作NQ⊥CD交AC于点Q.(1)设△AMQ的面积为S,求S与t的函数关系式,并写出t的取值范围.(2)在梯形ABCD的对称轴上是否存在点P,使△PAD为直角三角形?若存在,求点P到AB的距离;若不存在,说明理由.(3)在点M、N运动过程中,是否存在t值,使△AMQ为等腰三角形?若存在,求出t值;若不存在,说明理由.30、如图,圆柱形玻璃杯的高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到达内壁B处的最短距离为多少?参考答案一、单选题(共15题,共计45分)1、B2、D3、C4、B5、B6、B7、C8、A9、B10、C12、A13、C14、A15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、30、。

2013华师大版初中数学七年级下册期末测试题1

2013华师大版初中数学七年级下册期末测试题1

2010—2011学年度第二学期学习目标评价笔试检测七年级(下) 数学题号 一 二 三 总分人 总 分 得分一.选择题1.如果a 与1-互为倒数,则|a |等于( )A .2B .-2C .1D .-12.如果33a b -=-,那么代数式53a b -+的值是( )A .0B .2C .5D .83.如果0a b <<,则下列不等式中错误的是( )A .0ab >B .0a b +<C .1ab< D .0a b -< 4.已知2,1x y =⎧⎨=⎩是二元一次方程组8,1mx ny nx my +=⎧⎨-=⎩,则2m n -的算术平方根为( )A .4B .2CD .±25.不等式353x x -<+的正整数解有( )A .1个B .2个C .3个D .4个6.若当3x =时,代数式23510x ax -+的值为7,则a 的值是 ( ).A .2B .-2C .1D .-17.若23132a b a b +->+,则a b 、的大小关系为( )A .a b <B .a b >C .a b =D .不能确定8.“a是实数,||0a≥”这一事件是()A.必然事件B.不确定事件C.不可能事件D.随机事件9.在三角形的三个外角中,锐角最多只有()A.3个B.2个C.1个D.0个10.观察下列图形,从图案看不是轴对称图形的有()A.1个B.2个C.3个D.4个二.填空题11.已知23x=是方程333()542m x x m-+=的解,则m=.12.小玉买书用48元钱,付款时恰好用了1元和5元的纸币共12张.那么1元的纸币用了张.13.已知不等式组211x m nx m+>+⎧⎨-<-⎩的解集为12x-<<,则2011()m n+=.14.下列三组图形:①正八边形和正方形;②正五边形和正八边形;③正六边形和正三角形.能够铺满地面的有.15.等腰三角形的一个内角是040,则其余两个内角分别是.16. 下列说法(1)抛一枚质量分布均匀的硬币,是“正”是“反”无法预测,全凭运气。

2013七年级数学下学期期末试卷华东师大版及答案

2013七年级数学下学期期末试卷华东师大版及答案

七年级数学期末试卷 姓名: 分数: 一、选择题(每小题3分,共30分) 1.将方程0.50.2 1.550.90.20.5x x --+=变形正确的是( ) A.521550925x x --+= B.521550.925x x --+= C.52155925x x --+= D.520.93102x x -+=- 2.下列方程中,与方程组325431x y x y -=⎧⎨+=⎩,的解不同的方程组是( ) A.128201293x y x y -=⎧⎨+=⎩B.9615862x y x y -=⎧⎨+=⎩C.32554x y x y -=⎧⎨+=⎩D.76431x y x y +=⎧⎨+=⎩3.如图,下列图案中是轴对称图形的是( )A.①② B.①②③C.①③④ D.②③④4.下列推理错误的是( ) A.在ABC △中,A B C ==∠∠∠,ABC ∴△为等边三角形B.在ABC △中,AB AC =,且B C =∠∠,ABC ∴△为等边三角形C.在ABC △中,60A =∠,60B =∠,ABC ∴△为等边三角形D.在ABC △中,AB AC =,60B =∠,ABC ∴△为等边三角形5.三条线段a bc ,,分别满足下列条件,其中能构成三角形的是( ) A.4a b +=,9a b c ++= B.::1:2:3a b c =C.::2:3:4a b c = D.::2:2:4a b c =6.某工程甲单独完成要45天,乙单独完成要30天,若乙先单独干22天,剩下的由甲单独完成.问甲、乙一共用几天可以完成全部工作?若设甲、乙共有x 天完成,则符合题意的方程是( )A.222214530x -+= B.222213045x ++= C.222214530x ++= D.2213045x x -+=7.小刚投掷一枚硬币,结果前9次都是正面朝上,请问他第10次掷硬币出现正面朝上的机会是( ) A.14 B.910 C.1 D.12 8.下列说法:①0x =是210x -<的解;②13x =不是310x ->的解;③210x -+<的解集是2x >;④12x x >⎧⎨>⎩,的解集是1x >.其中正确的个数是( ) A.1个 B.2个 C.3个 D.4个9.某种商品因换季准备打折出售,如果按定价的七五折出售将赔25元,而按定价的九折出售将赚20元,问这种商品的定价是多少?设定价为x ,则下列方程中正确的是( )A.759202510010x x -=+ B.759202510010x x +=+ C.759252010010x x -=+ D.759252010010x x +=- 10.如图2,在直角三角形ABC 中,90BAC =∠,AB AC =,D 为BC 上一点,AB BD =,DE BC ⊥,交AC 于E ,则图中的等腰三角形的个数有( )A.3个 B.4个 C.5个 D.6个二、填空题(每小题3分,共30分)11.若关于x 的方程1(2)510k k x k --++=是一元一次方程,则k =_____,x =_____.12.已知方程456x y -=,用含x 的代数式表示y 得_____,用含y 的代数式表示x 得_____.13.方程37x -=的解为_____.14.若方程组23(3)34a b x c xy x y -+-+=⎧⎨-=⎩,是关于x y ,的二元一次方程组,则代数式a b c ++的值是_____.15.等腰三角形两腰上的高所夹的锐角为70,则等腰三角形的三个内角的度数分别为_____.16.已知:如图所示,在ABC △中,点D E F ,,分别为BC AD CE ,,的中点,且24cm ABC S =△,则阴影部分的面积为_____.17.不等式835x x ->-的最大整数解是:_____.18.四个图形分别是正三角形、等腰梯形、长方形、正五边形,它们全部是轴对称图形,其中对称轴的条数最少的图形是_____.19.为了解决我国北方严重缺水问题,水利部在长江上、中、下游启动了南水北调工程,但仍然鼓励市民节约用水.某市出台收费方法:用水不超过10吨,每吨0.8元;超过10吨的部分按每吨1.5元收费.王老师三月份平均水费为每吨1.0元,则王老师三月份用水_____吨,应交水费_____元.20.写出两个不同性质的确定事件:①_____,_____,一个不确定事件:_____.E D C B AE F B A三、解答题(共24分)21.(18分)解下列方程(组):(1)12 1.20.30.5x x -+-=; (2)2282810x y x y -=⎧⎨-=⎩,;(3)2313424575615x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,.22.(6分)若方程120ax +=的解是3x =,求不等式(2)6x x +<-的解集.四、应用题(每小题18分,共36分)23.七年级某班举行元旦化妆晚会,分别将男生脸上涂上蓝色油彩,女生脸上涂上红油彩.游戏时,每个男生都看见涂红色的人数是涂蓝色人的数的2倍,而每个女生都看见涂蓝色的人数是涂红色人数的35.问晚会上男、女生各有几个?24.某蔬菜公司收购蔬菜260吨,准备加工后上市销售.该公司的加工能力是:每天精加工8吨或粗加工20吨.现计划在22天内完成加工任务,且尽可能多的精加工,该公司应安排几天粗加工,几天粗加工,才能按期完成任务?如果每吨蔬菜粗加工后的利润是1500元,精加工后的利润为3000元,那么该公司出售这些加工后的蔬菜共可获利多少?参考答案24.解:设粗加工x 吨蔬菜,则精加工(260)x -吨蔬菜,有26022208x x -+=. 解得140x =.此时240120x -=. 故粗加工天数为140720=(天),精加工天数为22715-=(天). 公司可获利为15001403000120210000360000570000⨯+⨯=+=(元). 或:设安排粗加工x 天,精加工y 天,则22820260x y x y +=⎧⎨+=⎩,.解得157x y =⎧⎨=⎩,.此时精加工:158120⨯=(吨),粗加工:207140⨯=(吨),再计算利润也可以.。

华师大版 七年级下册期末数学试卷(含答案)

华师大版 七年级下册期末数学试卷(含答案)

七年级下册期末数学试卷一、选择题(每小题4分,共40分)1.下列方程中,属于一元一次方程的是()A.x+2y=5B.3x+2=0C.2x>3D.4x2=12.下列方程的根是x=1的是()A.B.C.﹣5x=5D.2(x+1)=03.若a>b,则下列不等式中,错误的是()A.a﹣3>b﹣3B.a+3>b+3C.﹣3a>﹣3b D.>4.已知,则a﹣b等于()A.8B.C.2D.15.有些汉字的字形结构具有和谐稳定、均衡对称的美感.下列不属于轴对称图形的是()A.磊B.品C.晶D.畾6.下列正多边形的地板瓷砖中,单独使用一种不能铺满地面的是()A.正三角形B.正方形C.正六边形D.正八边形7.人字梯中间一般会设计一“拉杆”,这样做的道理是()A.两点之间,线段最短B.垂线段最短C.三角形具有稳定性D.两直线平行,内错角相等8.解方程时,去分母正确的是()A.18x+2(2x﹣1)=18﹣3(x+1)B.3x+2(2x﹣1)=3﹣3(x+1)C.9x+(2x﹣1)=6﹣(x+1)D.3x+(2x﹣1)=3﹣(x+1)9.△ABC的三条边分别为5、x、7,则x的取值范围为()A.5<x<7B.2<x<12C.5≤x≤7D.2≤x≤1210.如图,∠CAB=25°,CA、CB是等腰△ABC的两腰,将△ABC绕点A顺时针进行旋转,得到△ADE.当点B恰好在DE的延长线时,则∠EAB的度数为()A.155°B.130°C.105°D.75°二、填空题(每题4分,共24分)11.方程2x=﹣6的解是.12.将方程5x+y=2写成用含x的代数式表示y,则y=.13.“x的2倍与3的和大于35”用不等式表示.14.已知△ABC≌△DEF,∠B=120°,∠F=35°.则∠D=度.15.四边形的外角和是°.16.如图,将△ABC沿着AB方向,向右平移得到△DEF.若AE=8,DB=2.则CF=.三、解答题(共86分)17.(8分)解方程:2+5x=8+3x18.(8分)解不等式5x<2(x﹣8)+10,并将解集在数轴上表示出来.19.(8分)已知n边形的内角和等于900°,试求出n边形的边数.20.(8分)我国古代数学著作《九章算术》有如下问题:“今有三人共车,二车空;二人共车,九人步,问人与车各几何?”意思是:今有3人坐一辆车,有2辆车是空的;2人坐一辆车,有9个人需要步行.问人与车各多少?试用列方程(组)解应用题的方法求出问题的解.21.(8分)如图,在正方形网格中,△ABC的三个顶点分别在正方形网格的格点上,△A′B′C′和△ABC关于直线l成轴对称,其中A′点的对应为A点.(1)请画出△A′B′C′,并标出相应的字母;(2)若网格中最小正方形的边长为1,求△A′B′C′的面积.22.(10分)如图,为了美化校园,在长为60米,宽为32米的长方形空地中,沿着平行于长方形各边的方向,分割出三个全等的正方形和两个全等的长方形作为花圃.设小正方形的边长为a米,小长方形的长和宽分别为b米、c米.(1)请用含有a、b、c的代数式表示AB、AD长度;(2)若小正方形的边长恰好是小长方形的宽的2倍,试求出花圃的总面积S.23.(10分)把长方形ABCD沿着EF对折,EF为折痕.对折后,P、C、F三点恰好在同一条直线上,∠DCF=22°.(1)请运用符号“≌”写出图中全等的多边形;(2)试求出∠OEC的度数.24.(13分)已知关于x、y的方程组.(1)当m=2时,请解关于x、y的方程组;(2)若关于x、y的方程组中,x为非负数、y为负数,①试求m的取值范围;②当m取何整数时,不等式3mx+2x>3m+2的解为x<1.25.(13分)如图,将一副三角板的直角顶点重叠在C点.(1)如图①,ED、AB相交于点P,试求∠EPA、∠APD的度数;(2)如图②,Rt△ABC保持不动,将Rt△ECD绕着点C顺时针进行旋转旋转过程中,直线ED 与直线AB的交点设为点P.①设旋转角为x(0<x<90°),试求∠APD的度数(请用含有x的式子表示);②当Rt△ABC与Rt△ECD有一组边互相平行(不含AB∥ED)时,求∠APD的度数.参考答案一、选择题1.B.2.A.3.C.4.C.5.A.6.D.7.C.8.A.9.B.10.C.二、填空题11.x=﹣3.12.2﹣5x.13.2x+3>35.14.25.15.360.16.3三、解答题17.解:2+5x=8+3x,5x﹣3x=8﹣2,2x=6,x=3.18.解:5x<2x﹣16+105x﹣2x<﹣16+103x<﹣6x<﹣2,解集在数轴上表示为:19.解:由题意得(n﹣2)•180°=900°,解得n=7.答:n边形的边数是7.20.解:设车有x辆,则人有3(x﹣2)人,依题意,得:3(x﹣2)=2x+9,解得:x=15,∴3(x﹣2)=39.答:有39人,15辆车.21.解:(1)如图所示:△A′B′C′,即为所求;(2)△A′B′C′的面积为:×2×4=4.22.解:(1)根据题意得:AB=3a+2c,AD=3a+2b.(2)根据题意得:,解得:,∴S=3a2+2bc=3×82+2×18×4=336.答:花圃的总面积S为336平方米.23.解:(1)由翻折可知:四边形ABEF≌四边形POEF.(2)∵四边形ABCD是矩形,∴∠DCB=90°,∵∠DCF=22°,∴∠FCE=68°.∵OE∥CF,∴∠OEC=∠FCE=68°.24.解:(1)把m=2代入方程组中得:,①+②得:2x=10,x=5,①﹣②得:﹣2y=8,y=﹣4,∴方程组的解为:;(2)①,①+②得:2x=18﹣4m,x=9﹣2m,①﹣②得:﹣2y=4+2m,y=﹣2﹣m,∵x为非负数、y为负数,∴,解得:﹣2<m≤;②3mx+2x>3m+2,(3m+2)x>3m+2,∵不等式3mx+2x>3m+2的解为x<1,∴3m+2<0,∴m<﹣,由①得:﹣2<m≤,∴﹣2<m<﹣,∵m整数,∴m=﹣1;即当m=﹣1时,不等式3mx+2x>3m+2的解为x<1.25.解:(1)∵∠BAC=60°,∠E=45°,∴∠EPA=∠BAC﹣∠E=60°﹣45°=15°∴∠APD=180°﹣∠EPA=180°﹣15°=165°;(2)①如图②,在四边形PACD中,∵∠A=60°,∠ACE=x,∠ECD=90°,∠D=45°∴∠APD=360°﹣90°﹣60°﹣45°﹣x=165°﹣x;②分6种情况:1,当AB∥CD时,如图③,∴∠APD+∠D=180°,∵∠D=45°,∴∠APD=135°,2,当ED∥AC时,如图④,∴∠APD+∠A=180°∵∠A=60°∴∠APD=120°3,当AB∥EC时,如图,∴∠APD=∠CED=45°4,当AB∥CD时,如图⑤∴∠APD=∠CDE=45°5,当AC∥DE时,如图⑥∴∠APD=∠BAC=606,当AB∥CE时,如图⑦,此时P与A重合,∠APD=0°综上所述,当Rt△ABC与Rt△ECD有一组边互相平行(不含AB∥ED)时,∠APD的度数为135°或120°或45°或60°或0°.。

华师大版七年级数学下册《期末测试卷》(含答案)

华师大版七年级数学下册《期末测试卷》(含答案)

一、选择题(共10小题,每小题3分,共30分)1.已知关于x的方程3x+m+4=0的解是x=﹣2,则m的值为()A.2 B.3 C.4 D.52.下列等式变形正确的是()A.若﹣3x=5,则x =﹣B .若,则2x+3(x﹣1)=1C.若5x﹣6=2x+8,则5x+2x=8+6D.若3(x+1)﹣2x=1,则3x+3﹣2x=13.不等式组的解集在数轴上应表示为()A .B .C .D .4.我国主要银行的商标设计基本上都融入了中国古代钱币的图案,下图所示是我国四大银行的行标图案,其中是轴对称图形而不是中心对称图形的是()A .B .C .D .5.如图,将△ABC沿DE,EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠DOF=142°,则∠C的度数为()学校姓名班级___________ 座位号……装…………订…………线…………内…………不…………要…………答…………题……A.38°B.39°C.42°D.48°6.如图,由矩形和三角形组合而成的广告牌紧贴在墙面上,重叠部分(阴影)的面积是4m2,广告牌所占的面积是30m2(厚度忽略不计),除重叠部分外,矩形剩余部分的面积比三角形剩余部分的面积多2m2,设矩形面积是xm2,三角形面积是ym2,则根据题意,可列出二元一次方程组为()A.B.C.D.7.如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,∠B=90°,AB=8,DH=3,平移距离为4,求阴影部分的面积为()A.20 B.24 C.25 D.268.如图,将一个含30°角的直角三角板ABC绕点A旋转,得点B,A,C′,在同一条直线上,则旋转角∠BAB′的度数是()A.60°B.90°C.120°D.150°9.用边长相等的两种正多边形进行密铺,其中一种是正八边形,则另一种正多边形可以是()A.正三角形B.正方形C.正五边形D.正六边形10.把一些书分给几名同学,若();若每人分11本,则不够.依题意,设有x名同学可列不等式7(x+9)<11x.A.每人分7本,则可多分9个人B.每人分7本,则剩余9本C.每人分9本,则剩余7本D.其中一个人分7本,则其他同学每人可分9本二、填空题(每小题3分,共15分)11.方程2x﹣5=3的解为.12.写出不等式5x+3<3(2+x)所有的非负整数解.13.如果将一副三角板按如图方式叠放,那么∠1=.14.如图,直线a、b垂直相交于点O,曲线C关于点O成中心对称,点A的对称点是点A',AB⊥a于点B,A'D⊥b于点D.若OB=3,OD=2,则阴影部分的面积之和为.15.如图,已知直角三角形ABC中,∠C=90°,将△ABC绕点A逆时针旋转至△AED,使点C的对应点D恰好落在边AB上,E为点B的对应点.设∠BAC=a,则∠BED=.(用含a 的代数式表示)三、解答题(本大题8个小题,满分75分)16.(8分)解方程组.17.(9分)解不等式组,并把它们的解集表示在数轴上.18.(9分)在如图所示的方格中,每个小正方形的边长为1,点A、B、C在方格纸中小正方形的顶点上.(1)按下列要求画图:①过点A画BC的平行线DF;②过点C画BC的垂线MN;③将△ABC绕A点顺时针旋转90°.(2)计算△ABC的面积.19.(9分)随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按x元/公里计算,耗时费按y元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与打车时间如表:时间(分钟)里程数(公里)车费(元)小明8 8 12小刚12 10 16 (1)求x,y的值;(2)如果小华也用该打车方式,打车行驶了11公里,用了14分钟,那么小华的打车总费用为多少?20.(9分)已知BD、CE是△ABC的两条高,直线BD、CE相交于点H.(1)如图,①在图中找出与∠DBA相等的角,并说明理由;②若∠BAC=100°,求∠DHE的度数;(2)若△ABC中,∠A=50°,直接写出∠DHE的度数是.21.(10分)浠水县商场某柜台销售每台进价分别为160元、120元的A、B两种型号的电风扇,下表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台4台1200元第二周5台6台1900元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若商场准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,商场销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.22.(10分)探究与发现:探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?已知:如图1,∠FDC与∠ECD分别为△ADC的两个外角,试探究∠A与∠FDC+∠ECD的数量关系.探究二:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?已知:如图2,在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系.探究三:若将△ADC改为任意四边形ABCD呢?已知:如图3,在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,试利用上述结论探究∠P与∠A+∠B的数量关系.23.(11分)如图1,将一副三角板的直角重合放置,其中∠A=30°,∠CDE=45°.(1)如图1,求∠EFB的度数;(2)若三角板ACB的位置保持不动,将三角板CDE绕其直角顶点C顺时针方向旋转.①当旋转至如图2所示位置时,恰好CD∥AB,则∠ECB的度数为°;②若将三角板CDE继续绕点C旋转,直至回到图1位置.在这一过程中,是否还会存在△CDE其中一边与AB平行?如果存在,请你画出示意图,并直接写出相应的∠ECB的大小;如果不存在,请说明理由.参考答案一、选择题1.A.2.D.3.C.4.D.5.A.6.A.7.D.8.D.9.B.10.A.二、填空题11.4.12.0,1.13.105°.14.6.15.α.三、解答题16.解:原方程组整理为一般式可得,①﹣②,得:y=10,将y=10代入①,得:3x﹣10=8,解得:x=6,所以方程组的解为.17.解:,解不等式①得,x<2,解不等式②得,x≥﹣1,在数轴上表示如下:所以不等式组的解集为:﹣1≤x<2.18.解:(1)如图,DF、MN、△AB′C′为所作;(2)△ABC的面积=×2×1=1.19.解:(1)根据题意得:,解得:.(2)11×1+14×=18(元).答:小华的打车总费用是18元.20.解:(1)①∠DBA=∠ECA证明:∵BD、CE是△ABC的两条高,∴∠BDA=∠AEC=90°,∴∠DBA+∠BAD=∠ECA+∠EAC=90°,又∵∠BAD=∠EAC,∴∠DBA=∠ECA;②∵BD、CE是△ABC的两条高,∴∠HDA=∠HEA=90°,在四边形ADHE中,∠DAE+∠HDA+∠DHE+∠HEA=360°,又∵∠HDA=∠HEA=90°,∠DAE=∠BAC=100°,∴∠DHE=360°﹣90°﹣90°﹣100°=80°;(2)当∠A=50°时,①△ABC是锐角三角形时,∠DHE=180°﹣50°=130°;②△ABC是钝角三角形时,∠DHE=∠A=50°;故答案为:50°或130°.21.【解答】(1)设A型电风扇单价为x元,B型单价y元,则,解得:,答:A型电风扇单价为200元,B型单价150元;(2)设A型电风扇采购a台,则160a+120(50﹣a)≤7500,解得:a≤,则最多能采购37台;(3)依题意,得:(200﹣160)a+(150﹣120)(50﹣a)>1850,解得:a>35,则35<a≤,∵a是正整数,∴a=36或37,方案一:采购A型36台B型14台;方案二:采购A型37台B型13台.22.解:探究一:∵∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,∴∠FDC+∠ECD=∠A+∠ACD+∠A+∠ADC=180°+∠A;探究二:∵DP、CP分别平分∠ADC和∠ACD,∴∠PDC=∠ADC,∠PCD=∠ACD,∴∠P=180°﹣∠PDC﹣∠PCD=180°﹣∠ADC﹣∠ACD=180°﹣(∠ADC+∠ACD)=180°﹣(180°﹣∠A)=90°+∠A;探究三:∵DP、CP分别平分∠ADC和∠BCD,∴∠PDC=∠ADC,∠PCD=∠BCD,∴∠P=180°﹣∠PDC﹣∠PCD=180°﹣∠ADC﹣∠BCD=180°﹣(∠ADC+∠BCD)=180°﹣(360°﹣∠A﹣∠B)=(∠A+∠B).23.解:(1)∵∠A=30°,∠CDE=45°,∴∠ABC=90°﹣30°=60°,∠E=90°﹣45°=45°,∴∠EFB=∠ABC﹣∠E=60°﹣45°=15°;(2)①∵CD∥AB,∴∠ACD=∠A=30°,∵∠ACD+∠ACE=∠DCE=90°,∠ECB+∠ACE=∠ACB=90°,∴∠ECB=∠ACD=30°;②如图1,CE∥AB,∠ACE=∠A=30°,∠ECB=∠ACB+∠ACE=90°+30°=120°;如图2,DE∥AB时,延长CD交AB于F,则∠BFC=∠D=45°,在△BCF中,∠BCF=180°﹣∠B﹣∠BFC,=180°﹣60°﹣45°=75°,∴ECB=∠BCF+∠ECF=75°+90°=165°;如图3,CD∥AB时,∠BCD=∠B=60°,∠ECB=∠BCD+∠EDC=60°+90°=150°;如图4,CE∥AB时,∠ECB=∠B=60°,如图5,DE∥AB时,∠ECB=60°﹣45°=15°.考试注意事项1、准备充分,忙中有序考试前的准备是否充分对临场的情绪状态和水平的发挥有重要的影响。

2013华师大七年级数学下期期末测试题6套

2013华师大七年级数学下期期末测试题6套

七年级数学期末测试题(1)一.选择题 (每小题3分,共30分)。

1.方程|2x —1|=2的解是( )A .x=23B 。

x=—23C 。

x=23或x=-21D 。

x=212.若代数式5m+41与5(m-41)的值互为相反数,则m 的值是( )A.0B.203 C 。

201 D.1013。

方程2x+y=9在正整数范围内有( )组解。

A.1 B 。

2 C 。

3 D.4 4.已知a <b,则在下列四个不等式中,不正确的是( ).A 。

2a <2bB 。

—2a <-2b C.a+2<b+2 D 。

a-2<b-2 5.已知三角形的三边长为3,8,x 。

若周长是奇数,则x 的值有( )。

A.6个 B.5个 C.4个 D 。

3个 6.选用下列某一种形状的瓷砖密铺地面,不能做到无缝隙,不重叠要求的( )。

A 。

正方形 B.正三角形 C.正六边形 D 。

正八边形 7.如图(3)所示,在△ABC 中,∠ABC 的平分线和∠ACB 的外角平分线交于D,已知∠A=80°,则∠D=( )。

A .40° B.160° C.120° D.100° 8.下列说法中:(1)角平分线上的点到角两边的距离相等;(2)有两个内角是70°和40°的三角形是等腰三角形;(3)等边三角形是轴对称图形且有3条对称轴;(4)有一个外角是100°的等腰三角形的顶角是80°;(5)线段垂直平分线上的点到线段两端点的距离相等。

其中正确的有( )。

A 。

2个B 。

3个 C.4个 D.5个 9.如图(4),三角形纸片ABC 中,∠A=65°,∠B=75°,将纸片的一角折叠,使点C 落在△ABC 内,若∠1=20°,则∠2=( ).A .65° B.75° C 。

60° D 。

70°10.若关于x 的方程x —2+3k=3kx 的解是正数,则k 的取值范围是( ).A .k >43B 。

华师版七年级数学下册期末测试卷附答案

华师版七年级数学下册期末测试卷附答案

七年级数学下册第二学期期末测试卷一、选择题(每题3分,共30分)1.下列既是轴对称图形又是中心对称图形的是( )2.下列四对数值中是方程2x -y =1的解的是( )A.⎩⎨⎧x =2,y =0 B.⎩⎨⎧x =-1,y =-1 C.⎩⎨⎧x =0,y =-1 D.⎩⎨⎧x =-1,y =13.已知a >b ,且c 为非零有理数,那么下列结论一定正确的是( )A .ac <bcB .ac 2<bc 2C .ac >bcD .ac 2>bc 24.下列方程的变形中,正确的是( )A .将方程3x -5=x +1移项,得3x -x =1-5B .将方程-15x =5两边同时除以-15,得x =-3C .将方程2(x -1)+4=x 去括号,得2x -2+4=xD .将方程x 3+y4=1去分母,得4x +3y =15.已知△ABC 中,AB =7,BC =4,那么边AC 的长不可能是( )A .11B .9C .7D .46.如图,将正方形纸片对折两次,并剪出一个四边形小洞后平铺,得到的图形是( )A B C D(第6题) (第8题)7.对有理数x ,y 定义新运算:x ⊗y =ax +by +1,其中a ,b 是常数.若2⊗(-1)=-3,3⊗3=4,则a ,b 的值分别为( )A .a =1,b =2B .a =-1,b =2C .a =-1,b =-2D .a =1,b =-28.已知一个由50个偶数排成的数阵,用如图所示的框去框住四个数,并求出这四个数的和.在下列给出的数值中,有可能是这四个数的和的是( )A .80B .148C .172D .2209.如图为互相垂直的两直线将四边形ABCD 分成四个区域的情形,若∠B =∠D=85°,∠C =90°,则判断∠1,∠2,∠3的大小关系正确的是( )A .∠1=∠2>∠3B .∠1=∠3>∠2C .∠2>∠1=∠3D .∠3>∠1=∠2(第9题) (第11题) (第15题)10.若关于x 的不等式组⎩⎪⎨⎪⎧x -12≥2k ,x -k ≤4k +6有解,且关于x 的方程kx =2(x -2)-(3x +2)有非负整数解,则符合条件的所有整数k 的和为( )A .-5B .-9C .-12D .-16二、填空题(每题3分,共15分)11.如图,直线AB 左边是计算器上的数字5,若以直线AB 为对称轴,那么它的对称图形是数字________.12.已知三角形的三边长分别是3,x ,9,则|x -5|+|x -13|=________.13.已知关于x 的不等式组⎩⎨⎧x -a >0,3-x >0的整数解共有4个,则a 的取值范围是________.14.某校为七年级学生安排宿舍,若每间宿舍住5人,则有4人住不下;若每间宿舍住6人,则有一间只住4人,且空两间宿舍.那么该校七年级学生有________人,学校安排给七年级学生的宿舍有________间.15.一副三角尺按如图所示的位置摆放(顶点C与顶点F重合,边CA与边FE 重合,顶点B,C,D在一条直线上).将三角尺DEF绕着点F按顺时针方向旋转n°(0<n<360 )后,如果EF∥AB,那么n的值是________.三、解答题(16~17题每题6分,18~22题每题10分,23题13分,共75分)16.解方程:x-12-5x+26=1.17.如图,在边长为1个单位长度的小正方形网格中,△ABC的顶点都在格点上.(1)画出△ABC先向左平移4个单位长度,再向下平移2个单位长度后得到的△A1B1C1;(2)画出△ABC关于点A成中心对称的△AB2C2;(3)试判断(1)(2)中所画的△A1B1C1与△AB2C2是否关于某一点成中心对称?若是,请找出它们的对称中心O;若不是,请说明理由.(第17题)18.如图,在△ABC 中,AD 平分∠BAC ,P 为线段AD 上的一个动点,PE ⊥AD交直线BC 于点E ,若∠B =35°,∠ACB =85°.(1)求∠DAC 的度数;(2)求∠E 的度数.(第18题)19.解不等式组⎩⎪⎨⎪⎧4x -7<5(x -1),x 3≤3-x -2 2,把它的解集在如图所示的数轴上表示出来,并写出这个不等式组的正整数解.(第19题)20.已知关于x ,y 的方程组⎩⎨⎧x -y =a +3,2x +y =5a ,a 为常数. (1)求方程组的解(用含a 的式子表示);(2)若方程组的解满足x >y >0,求a 的取值范围.21.如图,在△ABC中,∠B=10°,∠ACB=20°,AB=4 cm,△ABC按逆时针方向旋转一定角度后与△ADE重合,且C恰好成为AD的中点.(1)指出旋转中心,并求出旋转的度数;(2)求出∠BAE的度数和AE的长.(第21题)22.某校九年级10个班师生举行毕业文艺汇演,每班2个节目,有歌唱与舞蹈两类节目,年级统计后发现歌唱类节目数比舞蹈类节目数的2倍少4.(1)九年级师生表演的歌唱类与舞蹈类节目各有多少个?(2)该校七、八年级师生有小品类节目参与,在歌唱、舞蹈、小品三类节目中,每个节目的演出平均用时分别是5分钟、6分钟、8分钟,预计所有演出节目交接用时共花15分钟.若从20:00开始,22:30之前演出结束,问参与的小品类节目最多能有多少个?23.问题1:我们将如图①所示的凹四边形称为“镖形”.在“镖形”中,∠AOC与∠A、∠C、∠P之间的数量关系为________________.(第23题)问题2:如图②,已知AP平分∠BAD,CP平分∠BCD,∠B=28°,∠D=48°,求∠P的大小.小明认为可以利用“镖形”的结论解决上述问题:解:由问题1结论得∠AOC=∠P AO+∠PCO+∠APC,∴2∠AOC=2∠P AO+2∠PCO+2∠APC,即2∠AOC=∠BAO+∠DCO+2∠APC,由“________________”得∠AOC=∠BAO+∠B,∠AOC=∠DCO+∠D,∴2∠AOC=∠BAO+∠DCO+∠B+∠D,∴2∠APC=________,∴∠APC=________°.请帮助小明完善上述解答过程,并尝试解决下列问题(问题1、问题2中得到的结论可以直接使用,不需说明理由);问题3:如图③,已知AP平分△AOB的外角,CP平分△COD的外角,猜想∠P与∠B,∠D之间的数量关系,并说明理由;问题4:如图④,已知AP平分∠BAO,CP平分△COD的外角,则∠P与∠B,∠D之间的数量关系为________________________.答案一、1.B 2.C 3.D 4.C 5.A 6.C 7.B 8.C9.D 点拨:∵(180°-∠1)+∠2=360°-90°-90°=180°,∴∠1=∠2.∵(180°-∠2)+∠3=360°-85°-90°=185°,∴∠3-∠2=5°,∴∠3>∠2,∴∠3>∠1=∠2.10.B 点拨:⎩⎪⎨⎪⎧x -12≥2k ,①x -k ≤4k +6,②解①得x ≥1+4k ,解②得x ≤6+5k ,∴不等式组的解集为1+4k ≤x ≤6+5k ,∵关于x 的不等式组⎩⎪⎨⎪⎧x -12≥2k ,x -k ≤4k +6有解, ∴1+4k ≤6+5k ,∴k ≥-5.解关于x 的方程kx =2(x -2)-(3x +2),得x =-6k +1. ∵关于x 的方程kx =2(x -2)-(3x +2)有非负整数解,∴当k =-5时,x =32,不合题意,当k =-4时,x =2,当k =-3时,x =3,当k =-2时,x =6,∴-4-3-2=-9.二、11.2 12.8 13.-2≤a <-1 14.94;1815.45或225 点拨:①如图①,当EF ∥AB 时,∠ACE =∠A =45°, ∴此时n =45.②如图②,当EF ∥AB 时,∠ACE +∠A =180°,∴∠ACE =135°.∴n =360-135=225.综上所述,n 的值为45或225.(第15题)三、16.解:去分母,得3(x -1)-(5x +2)=6.去括号,得3x -3-5x -2=6.移项、合并同类项,得-2x =11.两边都除以(-2),得x =-5.5.17.解:(1)如图,△A 1B 1C 1即为所求作的三角形.(2)如图,△AB 2C 2即为所求作的三角形.(3)如图,连结AA 1,B 1B 2,C 1C 2,AA 1,B 1B 2,C 1C 2交于点O ,所以△A 1B 1C 1与△AB 2C 2关于点O 成中心对称,点O 为对称中心.(第17题)18.解:(1)∵∠B =35°,∠ACB =85°,∴∠BAC =60°.∵AD 平分∠BAC ,∴∠DAC =12∠BAC =30°.(2)∵AD 平分∠BAC ,∴∠BAD =12∠BAC =30°,∴∠ADC =∠B +∠BAD =35°+30°=65°.∵PE ⊥AD ,∴∠EPD =90°,∴∠E =90°-65°=25°.19.解:⎩⎪⎨⎪⎧4x -7<5(x -1),①x 3≤3-x -22,②解不等式①,得x >-2,解不等式②,得x ≤245,所以原不等式组的解集是-2<x ≤245,在数轴上表示如图所示:(第19题)不等式组的正整数解是1,2,3,4.20.解:(1)方程组中两式相加,得3x =6a +3,解得x =2a +1,把x =2a +1代入2x +y =5a ,解得y =a -2,∴方程组的解为⎩⎨⎧x =2a +1,y =a -2. (2)由题意,得2a +1>a -2>0,解得a >2.21.解:(1)∵△ABC 逆时针旋转一定角度后与△ADE 重合,A 为顶点,∴旋转中心是点A .根据旋转的特征可知∠CAE =∠BAD =180°-∠B -∠ACB =150°, ∴旋转的度数是150°.(2)由(1)可知∠BAE =360°-150°×2=60°,易知△ABC ≌△ADE ,∴AB =AD ,AC =AE ,又∵C 为AD 的中点,∴AE =AC =12AD =12AB =12×4=2(cm).22.解:(1)设九年级师生表演的歌唱类节目有x 个,舞蹈类节目有y 个,根据题意,得⎩⎨⎧x +y =10×2,x =2y -4,解得⎩⎨⎧x =12,y =8.答:九年级师生表演的歌唱类节目有12个,舞蹈类节目有8个.(2)设参与的小品类节目有a 个,根据题意,得12×5+8×6+8a +15<150,解得a <278,∵a 为整数,∴a 的最大值为3.答:参与的小品类节目最多能有3个.23.解:问题1:∠AOC =∠A +∠C +∠P问题2:三角形外角的性质; ∠B +∠D ;38问题3:∠P =180°-12(∠B +∠D ).理由:如图,分别作∠BAD 、∠BCD 的平分线AM 、CM ,交于点M ,则∠5=∠6.∵AP 平分△AOB 的外角,CP 平分△COD 的外角,∴∠1=∠2,∠3=∠4.∵∠1+∠2+∠5+∠6=180°,∴∠2+∠6=90°,即∠P AM=90°,同理∠PCM=90°,∴在四边形APCM中,∠P+∠M=360°-90°-90°=180°,由问题2,得∠M=12(∠B+∠D),∴∠P=180°-12(∠B+∠D).问题4:∠P=90°+12(∠B+∠D)(第23题)。

华师大-七年级下册数学期末试卷及答案

华师大-七年级下册数学期末试卷及答案

1欢迎下载精品文档人教版第二学期七年级期末测试 一•你一定能选对!(本题共有12小题,每小题3分,共 下列各题均附有四个备选答案,其中有且只有一个是正确的 题卡中对应的题号内 1、点 A( — 2, 1)在 (A )第一象限 36分),请将正确答案的代号填在上面答总面积/该小区人口总数,单位:怦/人).根据以上信息,则下列说法:①该小区2006〜2008年这三年中,2008年住房总面积最大;②该2 _小区2007年住房总面积达到 1.728 X106 m :③该小区2008年人均住房面积的增长率为 4%.其中正确的有(B )第二象限 (C )第三象限(D )第四象限臬小区毎年人口总数统计图某小区每年人均住房面积统计BH2、不等式组 2x的解集在数轴上表示为 —3(A J (C)3、已知x = 2, y= — 3是二兀, 次方程 -3 2 (C) 5x + my + 2= 0的解, 则m 的值为(A ) 4(B )— 4 4、 如图,下列条件中不能判定 (A )Z 3=Z 4(C )Z 1 + Z 4= 180 ° 5、 已知三角形的两边长分别为 (A ) 13cm ( B ) 6cm(C ) 3 (D )— 3 AB// CD 的是 (B )Z 1 = / 5 (D )Z 3 =Z 54cm 和9cm,则下列长度的四条线段中能作为第三边的是 (C ) 5cm ( D ) 4cm (A )①②③12、如图,AB / GEL AC 于点 E , 于H.下列说法: ①AGL CG ②/(B )①②CD Z BAC 与Z DCA 的平分线相交于点 GF 为AC 上的一点,且 FA = FG= FC, GH L CD ④若/ EGH :Z ECH= 2 : 7, 其中正 (A)①②③④(B)二、你能填得又快又准吗? BA(=Z CGE ③ S A AF(= S A CFG 则/ EGF= 50° . ②③④(C)①③④(本题共有4题,每小题 ①②④(D)3分,共12分)6、 要反映武汉市一周内每天的最高气温的变化情况,宜采用 (A )条形统计图(B )扇形统计图 (C )折线统计图 (D 频数分布直方图7、 如果a >b ,那么下列结论一定正确的是 (A ) a — 3 v b —3 ( B ) 3 — a v 3— b&如图,直角 A ADB 中,Z D = 90° 为(5x — 10)°,则x 的值可能是 (A ) 10 ( B ) 20 (C ) 30 9、一副三角扳按如图方式摆放,且Z 则可得到方程组为 (C ) ac2>bc2 ( D ) a2> b2 C 为AD 上一点,且/ ACB 的度数 13、 将方程2x 3y 5变形为用x 的代数式表示y的形式是 (D ) 40 1的度数比/ 2的度数大 50°,若设/ 1 = x°Z 2= y°, (k) z = JF +J SO=1£0 (C> (IO 11、近年来市政府每年出资新建一批廉租房,使城镇住房困难的居民住房状况得到改善 .下面是某小区2006〜2008年每年人口总数和人均住房面积的统计的折线图(人均住房面积=该小区住房14、 用不等式表示“ a 与5的差不是正数” :15、 如图,将 A ABC 沿 CB 边向右平移得到 ADFE DE 交AB 于点G. 已知/ A : Z C :/ ABC = 1 : 2 : 3, AB = 9cm,B F = 5cm, AG= 5cm, 则图中阴影部分的面积为cm2.三、解下列各题(本题共9题,共72分)22、(本题 8 分)如图,AD 平分Z BAC Z EAD=Z EDA. (1) Z EAC 与Z B 相等吗?为什么?(2) 若Z B= 50° , Z CAD :Z E = 1 : 3,求Z E 的度数.23、(本题10分)某校师生积极为汶川地震灾区捐款捐物,在得知灾区急需帐篷后,立刻到当 地的一家帐篷厂采购,帐篷有两种规格,可供3人居住的小帐篷,价格每顶160元;可供10人居住的大帐篷,价格每顶 400元.学校花去捐款 96000元采购这两种帐篷,正好可供 2300人居住•学校准备租用甲、乙两种型号的卡车共20辆将所购帐篷紧急运往灾区,已知甲型卡车每辆可同时装运4顶小帐篷和11顶大帐篷,乙型卡车每辆可同时装运 12顶小帐篷和7顶大帐篷.(1) 求该校采购了多少顶 3人小帐篷,多少顶10人住的大帐篷;(2) 学校应如何安排甲、乙两种型号的卡车可一次性将这批帐篷运往灾区?有几种方案?19、(本题7分)为响应国家要求中小学生每天锻炼 1小时的号召,某校开展了形式多样的“阳光体育运动”活动,小明对某班同学参加锻炼的情况进行了统计,并绘制了下面的图 1和图2.(1 )该班共有多少名学生?若全年级共有 1200名学生,估计全年级参加乒乓球活动的学生有多少名?(2)请在图1中将“乒乓球”部分的图形补充完整,并求出扇形统计图中,表示 足球”的扇形圆心角的度数.24、(本题10分)已知:在厶ABC^D ^ XYZ 中,Z A = 40 ° , Z Y +Z Z = 95 ° ,将厶XYZ 如图摆放, 使得Z X 的两条边分别经过点 B 和点C.(1)当将△ XYZ 如图1摆放时,则Z ABX+Z ACX=度;(2) 当将△ XYZ 如图2摆放时,请求出Z ABX^Z ACX 的度数,并说明理由;(3)能否将△ XYZ 摆放到某个位置时,使得 BX CX 同时平分Z ABC 和Z ACB ?请直接写出你的 结论:18、(本题6分)如图,四边形中,点E 在BC 上,/ A +Z ADE= 180°,/ B = 78°,/ C = 60°,求/ EDC 的度数.2欢迎下载3欢迎下载人教版第二学期七年级期末测试 数学评分标准 •二、你能填得又快又准吗?(本题共有4题,每小题3分,共12分)2x —5 65 213、y= 3 . 14、a — 5< 0. 15、 2 . 16、( 11, 16), (12, — 3 )(对 1 空得 1 分) 20、 解:(1) 20 十 40%= 50 (人) ..... 1分50 — 20 — 10— 15 = 5 (人)_550 X 1200= 120 (人)……3 分 答: 该班共有50名学生,估计全年级参加乒乓球活动的学生有 120名.……4分 (2)(图略), ..... 5分1063050=72° ..... 6分答:表示 足球”的扇形圆心角的度数为 72° .……7分21、( 1) A(2 , 1) ……2 分 (2) 0' (-2 , 2)、A (0 , 3)……5 分把③代入②得33y8y 14y 1把y1代人③得 x 2x 2 •••原方程组的解为y 12分 4分5分..... 6分18、解:1+2x > 3x — 3 2x — 3x >— 3 — 1—x >— 4..... 1分 ..... 2分 ..... 3分4分19、证明:•••/ A +Z ADB 180 ° ••• AB// DE•••Z CED=Z B = 78°又Z C = 60°• Z EDC= 180° —Z CED-Z C=180° —78°— 60°..... 6分2分 4分、解下列各题(本题共9题,共72分) 17、解:由①得 x 3 y ③x v 4(3) 略……7分22、解:(1)相等•理由如下:……1分• AD平分/ BAC•••Z BAD=Z CAD……2 分又/ EAD=Z EDA•••Z EAG=Z EAD-Z CAD=Z ED/V Z BAD=Z B ..... 4分(2)设/ CAD=x°,则/ E=3x , ……5 分由(1)有:/ EAC=Z B=50°•••Z EAD=Z ED2 (x+50) °在AEAD中,Z E+/EA叶/ 180°•••3x +2 (x+50) = 180……6 分解得:x= 16 ..... 7分•••Z E=48°……8 分(用二元一次方程组的参照此标准给分)根23、解:(1)设该校采购了x顶小帐篷,y顶大帐篷程组得5欢迎下载精品文档..... 4分答:该校采购了100顶3人小帐篷,200顶10人住的大帐篷. ……5分(2)设甲型卡车安排了a辆,则乙型卡车安排了( 20-a )辆根据题意得…7分解这个不等式组得15<a< 17.5 ……8分•••车辆数为正整数••- a=15或16或17•••20-a =5或4或3 ……9分答:学校可安排甲型卡车15辆,乙型卡车5辆或安排甲型卡车16辆,乙型卡车4辆或安排甲型卡车17辆,乙型卡车3辆,可一次性将这批帐篷运往灾区•有3种方案.4欢迎下载精品文档10分24、解:(1) 235°;……3 分(2)/ AB净/ AC045° .理由如下:……4分•••/ Y+Z Z= 95°•••/ X= 180°— (Z Y+Z Z)= 85°……5 分•••Z ABX+Z ACX= 180°—Z A—Z XBC—Z XCB=180° —40° — ( 180°—85°)……7 分=45°……8分1=2 Z BAC ……10分Z BGC=Z BG—Z BGC1 1(3)不能. ……10分x 2y 5 025、解:(1)解方程组:2x y 0X 1得:y 2……3分• A (—1, 0), B ( 0, 2) ……4 分(2)不发生变化. ……5分Z P= 180°—Z PAB-Z PBA丄=180°—2 (Z EAB+Z FBA) ……6 分丄=180°—2 (Z AB390°+Z BAOF 90°) ……7 分=90°—2 Z ABC—( 90°—2 Z ACF)=2 (Z ACF-Z ABC)1=2 Z BAC 11分• Z AGH=Z BGC 12分注:不同于此标答的解法请比照此标答给分丄=180° —2 (180 °+ 180°—90°)=180°—135°=45°……8分(3)作GM L BF于点M..... 9分1由已知有:Z AGH= 90° —2Z EAC1=90°—2(180°—Z BAQ5欢迎下载。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学期末测试题(1)一.选择题 (每小题3分,共30分)。

1.方程|2x-1|=2的解是( )A .x=23 B.x=-23 C.x=23或x=-21 D.x=212.若代数式5m+41与5(m-41)的值互为相反数,则m 的值是( )A.0B.203C.201D.1013.方程2x+y=9在正整数范围内有( )组解。

A.1B.2C.3D.4 4.已知a <b ,则在下列四个不等式中,不正确的是( )。

A.2a <2b B.-2a <-2b C.a+2<b+2 D.a-2<b-25.已知三角形的三边长为3,8,x 。

若周长是奇数,则x 的值有( )。

A.6个 B.5个 C.4个 D.3个 6.选用下列某一种形状的瓷砖密铺地面,不能做到无缝隙,不重叠要求的( ). A.正方形 B.正三角形 C.正六边形 D.正八边形7.如图(3)所示,在△ABC 中,∠ABC 的平分线和∠ACB 的外角平分线交于D ,已知∠A=80°,则∠D=( )。

A .40° B.160° C.120° D.100° 8.下列说法中:(1)角平分线上的点到角两边的距离相等;(2)有两个内角是70°和40°的三角形是等腰三角形;(3)等边三角形是轴对称图形且有3条对称轴;(4)有一个外角是100°的等腰三角形的顶角是80°;(5)线段垂直平分线上的点到线段两端点的距离相等。

其中正确的有( )。

A.2个 B.3个 C.4个 D.5个9.如图(4),三角形纸片ABC 中,∠A=65°,∠B=75°,将纸片的一角折叠,使点C 落在△ABC 内,若∠1=20°,则∠2=( )。

A .65° B.75° C.60° D.70°10.若关于x 的方程x-2+3k=3kx 的解是正数,则k 的取值范围是( )。

A .k >43 B.k ≥43 C.k <43 D.k ≤43图(3) 图(4) 二.填空题(每小题4分,共40分)。

1.当m= 时,观音x 的方程mx+3=2x 的解是2。

2.若|x-y+1|+(2-x )2=0,则x= ,y= 。

3.等腰三角形两边长分别为4cm 和5cm ,则这个三角形的周长是_________。

4.一个多辺形的内角和是它的外角和的3倍,则这个多边形是 辺形。

5.如果三角形的两边分别为1和2,第三边为整数,那么第三边的长为 。

6.如图(1)ABCDE 是封闭折线,则∠A+∠B+∠C+∠D+∠E= 。

7.一次买10斤鸡蛋打八折比九折少花2元钱,则这10斤鸡蛋的原价是 。

8.等腰三角形的周长为20,一边长为7,则其他两边长分别为 。

9.如图(2)△ABC 中,DC=31BC ,AD ⊥BC, E 是AB 中点,若△ADC 的面积5cm ²,那么△AED 的面积等于 。

10.一个长方形的周长是26,若它的长减少1,宽增加2,就可以成为一个正方形,设它的长为x ,则可列出方程为 .(列一元一次方程)图(1) 图(2) 三.解方程组 (每小题5分,共10分)。

3x+1=y x+5≥2x+2( 1) ( 2)2(x+1)-y=6 2+32x >34四.应用题 (每小题10分,共20分)。

(1).如图(5),一个大长方形ABCD 是由7个大小完全相同的小长方形组成的,大长方形的周长为34cm ,求小长方形的长于宽。

(2).一项工程,甲队独做10小时完成,乙队独做15小时完成,丙队独做20小时完成,开始时三队合作,中途甲队另有任务,由乙,丙两队完成,从开始到工程完成共用了6小时,问甲队实际做了几个小时?五.解答题 (共20分) (1)(12分)如图(6),在等边△ABC 中,BO,CO 分别平分∠ABC, ∠ACB ,OE ∥AB ,OF ∥AC ,试证明BE=EF=FC.图(6) (2)(6分)以C 为对称轴,画出图(7)的另一半。

(3)(6分)作图,一个牧童在A 处牧马,牧童的家在B 处,天黑前牧童需将马牵到河边水后再赶回家,问牧童要将马牵到河边的什么地方,才能使他从A 、B到它的距离之和最短,请找出这个地方.(4)(10分)如图(7),OC 平分∠AOB ,CD ⊥OA 于D ,CE ⊥OB 于E ,连接DE ,猜想DE 与OC 的位置关系?并说明理由。

六.(16分)百信超市经销甲,乙 两种商品,甲种商品每件进价15元,售价20元;乙种商品每件进价35元,售价45元。

(1).若该超市同时购进甲,乙 两种商品共100件恰好用去2700元,求能购进甲乙两种商品各多少件?(2)该超市为使甲,乙两种商品共100件的总利润不少于750元,且不超过760元,请你帮助该超市设计相应的进货方案。

2015年七年级下期期末测试题(2)一、填空题(每小题3分,共24分)1、五边形中,前四个角的比为1∶2∶3∶4,第五个角比最小角多100°,则五边形的五个内角分别为_____________________.2、如图1,在△ABC ,∠A=36°,D 为AC 边上的一点,AD=BD=BC ,则图中的等腰三角形共有_______个.3、已知△ABC 的边长a 、b 、c 满足(1)()2240a b -+-=,(2)c为偶数,则c 的值为________.4、已知不等式523x a <+的解集是32x <,则a 的值是________.5、方程34x y -=中,有一组解x 与y 互为相反数,则3________x y +=.6、一个三角形有两条边相等,周长为18cm ,三角形的一边长为4cm ,则其他两边长分别为________.7、将一筐橘子分给若干个小朋友,如果每人分4个橘子,剩下9个;如果每人分6个橘子,则最后一个小朋友分得的橘子将少于3个,由以上可知共有________个小朋友分________个橘子.8、根据x 的2倍与5的和比x 的12小10,可列方程为________________.二、选择题(每小题3分,共30分) 11、正五边形的对称轴共有( )A .2条B .4C .5条D .10条12、有一个两位数,它的十位数字与个位数字之和为5,则符合条件的数有( )个 A .4 B .5 C .6 D .无数13、为了搞活经济,某商场将一种商品A 按标价9折出售,仍获利润10%,若商品A 标价为33元,那么商品进货价为( )A .31元B .30.2元C .29.7元D .27元 14、已知15 5-2x m y m =+=,若3m >-,则x 与y 的关系为( ) A .x y =B .x y <C .x y >D .不能确定15、一个多边形除了一个内角外,其余内角之和为257°,则这一内角等于( ) A .90° B .105° C .130° D .120°16、如图2,已知:在△ABC 中,AB=AC ,D 是BC 边上任意一点,DF ⊥AC 于点F ,E 在AB 边上,ED ⊥BC 于D ,∠AED=155°,则∠EDF 等于( )A .50°B .65°C .70°D .75° 17、有一种足球是由32块黑白相间的牛皮缝制而成的(如图3),A BCD图1A BCFED图2黑皮可看作正五边形,白皮可看作正六边形,设白皮有x 块,则黑皮有()32x -块,每块白皮有六条边,共6x 边,因每块白皮有三条边和黑皮连在一起,故黑皮有3x 条边.要求出白皮、黑皮的块数,列出的方程正确的是( ) A .332x x =- B .()3532x x =-C .()5332x x =-D .632x x =-18、如图4,将正方形ABCD 的一角折叠,折痕为AE , ∠B ′AD 比∠B ′AE 大48°,设∠B ′AE 和∠B ′AD 的度数分别为x 、y ,那么x 、y 所适合的一个方程组是( )A .4890y x y x -=⎧⎨+=⎩B .482y x y x -=⎧⎨=⎩C .48290y x y x -=⎧⎨+=⎩D .48290x y y x -=⎧⎨+=⎩19、一个两位数的十位数字与个位数字之和是7,如果把这个两位数加上45,那么恰好成为个位数字与十位数字对调后的两位数,则这个两位数是( ) A .16 B .25 C .38 D .4920、等腰三角形的腰长是4cm ,则它的底边长不可能是( ) A .1cm B .3cm C .6cm D .9cm 三、解答题 21(8分)、如图5,在△ABC 中,BO 平分∠ABC ,CO 平分∠ACB ,DE 过O 且平行于BC ,已知△ADE 的周长为10cm ,BC 的长为5cm ,求△ABC 的周长.22(10分)、儿童公园的门票价格规定如下表:较多,经估算,如果两班都以班为单位分别购票,则一共应付1240元,问:(1)两班名有多少学生?(2)如果两联合起来,作为一个团体购票,可以省多少钱?E 图4A BCE D O 图523(8分)、已知31x y =⎧⎨=-⎩是方程组3108x ky mx y +=⎧⎨+=⎩的解,求k 和m 的值.24、(8分)已知一个等腰三角形的三边长分别为x 、2x 、5x-3,求这个三角形的周长. 26、(12分)某商场准备进一批两种不同型号的衣服,已知购进A 种型号衣服9件,B 种型号衣服10件,则共需1810元;若购进A 种型号衣服12件,B 种型号衣服8件,共需1880元;已知销售一件A 型号衣服可获利18元,销售一件B 型号衣服可获利30元,要使在这次销售中获利不少于699元,且A 型号衣服不多于28件. (1) (6分)求A 、B 型号衣服进价各是多少元?(2) (6分)若已知购进A 型号衣服是B 型号衣服的2倍还多4件,则商店在这次进货中可有几种方案?并简述购货方案.七年级(下)期末考试数学试卷(3)一、选择题:(本大题12个小题,每小题3分,共36分,选对得3分,) 1.下列方程中,是一元一次方程的是( ) A .112x -= B .210x -= C .23x y -= D .132x -= 2.等边三角形的对称轴有( )A.1条B.2条C.3条D.4条 3.下列不等式中,解集是1x >的不等式是( )A .33x >-B .43x +>C .235x +>D .235x -+> 4.一个三角形的一个角等于其他两个角的差,则这个三角形一定是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.等边三角形 5.如右图所示,数轴上所表示的不等式组的解集是( )A .12x -<≤B .12x -≤≤C .1x >-D .2x ≤6.某商场将一种商品A 按标价的9折出售,仍可获利润10%, 若商品A 标价为33元,那么商品进货价为( )A .31元B .30.2元C .29.7元D .27元7.已知长江比黄河长836千米,黄河长度的6倍比长江长度的5倍多1284千米.设长江、黄河的长分别是x 千米,y 千米,则下列方程组中正确的是( )FED CB AD CBAA .836651284x y y x -=⎧⎨-=⎩ B .836651284y x y x -=⎧⎨-=⎩C .836561284x y x y -=⎧⎨-=⎩ D .836561284y x x y -=⎧⎨-=⎩8.下列事件中,必然发生的事件是( )A .期末考试数学得满分B .若两个角是对顶角,则这两个角相等C .今天刮风了,明天会下雨D .如果a b =,则a b = 9.如右图,∠A =32°,∠B =45°,∠C =38°,则∠DFB 等于( ) A .105° B .110° C .115° D .120°10.已知2a x =+,1b x =-,且3a b >>,则x 的取值范围是( )A .1x >B .4x <C .1x >或4x <D .14x <<11.在一张挂历上,任意圈出一个竖列上相邻3个数的和不可能是( ) A .60 B .39 C .40 D .5712.下列说法正确的个数是:①若αβ∠=∠,∠α和∠β是一对对顶角;②若∠α与∠β 互为补角,则180αβ∠+∠=︒;③一个角的补角比这个角的余角大90°;④同旁内角相等,两直线平行A .1B .2C .3D .4二、填空题(共8小题,每小题3分,共24分) 1.用正三角形和_____________能铺满地面;2.当x =________时,代数式23x +与35x -的值互为相反数;3.x 与3的和不小于6-,用不等式表示为_____________;4.已知一个多边形的内角和是2340°,这个多边形是_______边形;5.等腰三角形两边长分别为4cm 和5cm ,则这个三角形的周长 是_________________;6.如图,在△ABC 中,AB =AC ,BD 是∠ABC 的平分线, 若∠ADB =93°,则∠A =______;7.若不等式组8x x m <⎧⎨>⎩无解,则m 的取值范围是____________; 8.在一个袋子中装有10个红球,2个黄球,每个球除颜色外都相同,搅匀后,摸到_____色的球可能性大.三、解方程(组)或不等式组,并将不等式组的解集在数轴上表示出来(每小题5分,共20分)1. 827x x =-2. 4239x y x y +=⎧⎨+=⎩DCB A E DCBA3. 求不等式组255256715x xx x -<-⎧⎨-≥-⎩的解集,并将不等式组的解集在数轴上表示出来.4. 已知42x y =⎧⎨=-⎩与25x y =-⎧⎨=-⎩都是方程y kx b =+的解,求k ,b 的值。

相关文档
最新文档