运筹学基础及应用(第五版),(第一章)

合集下载

运筹学第五版第一章课后习题答案

运筹学第五版第一章课后习题答案
x1 1 x1 2 x1 2 x1 3 s .t . x1 3 x1 4 x1 4 x 2 3 x ij 0 ( i x1 3 x1 4 1 5 x1 4 x 2 1 x 2 2 x 2 3 1 0 x 22 x 23 x31 x32 2 0 x32 x 41 1 2 1, 2 , 3, 4 ; j 1, 2 , 3, 4 )
解得: Y
*
(
4 5
,
3 5
, 1, 0 )
即得对偶问题的最优解。
(0, 3 2 , 1, 0 , 0 )
T
X 2.6(a)最优解:
*
最优值: z=36 2.8 (a) λ1≥-1(c1 ≥ 1), λ2≤3 (c2 ≤2), λ3≤ 1 (c3 ≤2) (b) λ1 ≥ -6 (b1 ≥ 0) ,λ2 ≥ -10 (b2≥-6) (c) X=(10/3,0,8/3,0,22/3,0)T z=28/3
2.9(a)
1≤c1 ≤4; 3/2≤c2 ≤6 (b) 4≤b1 ≤7; 6≤b2≤12 b3≥-2; b4≥4/3 (c) 有非基变量检验数为0,有无穷 多最优解,最优解之一为: X=(3,4/3,0,0,5/3,0,1/3)T; z=13 (d) 最优解不变
2.10(d) 0≤λ≤10/3 , 10/3≤λ≤30/7 2.11 a11=0, a12 =1, a13 =2, a21 =3, a22 =-1, a23=1, c1=6, c2 =-2, c3 =10, b1 =5, b2=10 -6≤t1≤8, -5/3≤t2≤15
1.16 (a) X*仍为最优解 ,maxz=λ CX;
σ =λ
C-λ CBB-1A=λ (C-CBB-1A) ≤0 (b)除C为常数向量外,一般X*不再是问题的最优解。

运筹学基础及应用第五版 胡运权34015电子教案

运筹学基础及应用第五版 胡运权34015电子教案

例:要离最小的方案。
A
5 S
5 B
5
D
T
C
E
4
即求图中的最小部分树
2、求法
方法一: 避圈法 将图中所有的点分V为V两部分, V——最小部分树中的点的集合 V——非最小部分树中的点的集合
⑴ 任取一点vi,令vi∈V,其他点在V中 ⑵ 在V与V相连的边中取一条最短的边(vi,vj), 加粗(vi,vj),令vj∈V ,并在V中去掉vj ⑶ 重复⑵ ,至所有的点均在V之内。

ABCDE F






















解:构造一个六阶图如下: 点:表示运动项目。
边:若两个项目之间有同一名运动员报名参加, 则对应的两个点之间连一条边。
A
F
B
E
C
D
为满足题目要求,应 该选择不相邻的点来 安排比赛的顺序:
A—C—B—F—E—D
或D—E—F—B—C—A
§6.2 树图和图的最小部分树
e4
e5
e6 e7
v3
v4
例如:e6= [v2,v3]
特别的,若边e的两个端点重合,则称e为环。
若两个端点之间多于一条边,则称为多重边。 简单图:无环、无多重边的图。
e7 v4
e3
v1 e8
v5
e5
e6 e2
e1
v3
e4
v2
4、点v的次(或度,degree)
与点v关联的边的条数,记为dG(v)或d(v)。 • 悬挂点 次为1的点,如 v5

运筹学基础及应用课后习题答案(第一二章习题解答)

运筹学基础及应用课后习题答案(第一二章习题解答)

运筹学基础及应用课后习题答案(第一二章习题解答)第一章:线性规划一、选择题1. 线性规划问题中,目标函数可以是()A. 最大化B. 最小化C. A和B都对D. A和B都不对答案:C解析:线性规划问题中,目标函数可以是最大化也可以是最小化,关键在于问题的实际背景。

2. 在线性规划问题中,约束条件通常表示为()A. 等式B. 不等式C. A和B都对D. A和B都不对答案:C解析:线性规划问题中的约束条件通常包括等式和不等式两种形式。

二、填空题1. 线性规划问题的基本假设是______。

答案:线性性2. 线性规划问题中,若决策变量个数和约束条件个数相等,则该问题称为______。

答案:标准型线性规划问题三、计算题1. 求解以下线性规划问题:Maximize Z = 2x + 3ySubject to:x + 2y ≤ 83x + 4y ≤ 12x, y ≥ 0答案:最优解为 x = 4, y = 2,最大值为 Z = 14。

解析:画出约束条件的图形,找到可行域,再求目标函数的最大值。

具体步骤如下:1) 将约束条件化为等式,画出直线;2) 找到可行域的顶点;3) 将顶点代入目标函数,求解最大值。

第二章:非线性规划一、选择题1. 以下哪个方法适用于求解非线性规划问题()A. 单纯形法B. 拉格朗日乘数法C. 柯西-拉格朗日乘数法D. A和B都对答案:B解析:非线性规划问题通常采用拉格朗日乘数法求解,单纯形法适用于线性规划问题。

2. 非线性规划问题中,以下哪个条件不是K-T条件的必要条件()A. 梯度条件B. 正则性条件C. 互补松弛条件D. 目标函数为凸函数答案:D解析:K-T条件包括梯度条件、正则性条件和互补松弛条件,与目标函数是否为凸函数无关。

二、填空题1. 非线性规划问题中,若目标函数和约束条件都是凸函数,则该问题称为______。

答案:凸非线性规划问题2. 非线性规划问题中,K-T条件是求解______的必要条件。

(完整版)运筹学胡运权第五版课件(第1章)

(完整版)运筹学胡运权第五版课件(第1章)
四运筹学研究的基本特点?系统的整体优化?多学科的配合?模型方法的应用五五运筹学研究的基本步骤运筹学研究的基本步骤?分析与表述问题?建立数学模型?对问题求解?对模型和模型导出的解进行检验?建立对解的有效控制?方案的实施第一章线性规划及单纯形法linearprogrammingandsimplexmethodggp11一般线性规划问题的数学模型11问题的提出例1用一块边长为a的正方形铁皮做一个无盖长方体容器应如何裁剪可使做成的容器的容积最大
(3)L.P. 的顶点与基可行解一一对应。
§1.3 单纯形法(Simplex Method)原理
3-1 预备知识:凸集与顶点
(1)凸集:对于集合C中任意两点连线段上的点,若全在C内, 则称集合C为凸集。
直观特征:图形从内部向外部凸出。
凸集
非凸集
(2)顶点:凸集中不在任意两点的连线段内部的点。
X1
转化为
(2)若约束条件为不等式,
则依次引入松弛变量或剩余变量(统称为松弛变量),
转化为等式约束条件。
约束为≥不等式,减去松弛变量,化为等式约束条件;
多 退
约束为≤不等式,加上松弛变量,化为等式约束条件。
少 补
注意:松弛变量在目标函数中系数全为0。
例:max z=2 x1+3 x2
2 x1+2 x2 12
s.t.
4x1
16
5 x2 15
x10, x2 0
标准化
max z 2x1 3x2 0x3 0x4 0x5
2x1 2x2 x3
12
s.t.
4
x1
5 x2
x4 16 x5 15
x1, x2 , x3, x4 , x5 0
(3)若决策变量xj≤0,则令

运筹学(第五版) 习题答案

运筹学(第五版)  习题答案

运筹学习题答案第一章(39页)1.1用图解法求解下列线性规划问题,并指出问题是具有唯一最优解、无穷多最优解、无界解还是无可行解。

(1)max 12z x x =+ 51x +102x ≤501x +2x ≥1 2x ≤4 1x ,2x ≥0(2)min z=1x +1.52x1x +32x ≥3 1x +2x ≥2 1x ,2x ≥0(3)max z=21x +22x1x -2x ≥-1-0.51x +2x ≤21x ,2x ≥0(4)max z=1x +2x1x -2x ≥031x -2x ≤-31x ,2x ≥0解: (1)(图略)有唯一可行解,max z=14 (2)(图略)有唯一可行解,min z=9/4 (3)(图略)无界解 (4)(图略)无可行解1.2将下列线性规划问题变换成标准型,并列出初始单纯形表。

(1)min z=-31x +42x -23x +54x 41x -2x +23x -4x =-21x +2x +33x -4x ≤14-21x +32x -3x +24x ≥21x ,2x ,3x ≥0,4x 无约束(2)max kkz s p =11nmk ik ik i k z a x ===∑∑11(1,...,)mikk xi n =-=-=∑ik x ≥0 (i=1…n; k=1,…,m)(1)解:设z=-z ',4x =5x -6x , 5x ,6x ≥0 标准型:Max z '=31x -42x +23x -5(5x -6x )+07x +08x -M 9x -M 10x s. t .-41x +2x -23x +5x -6x +10x =21x +2x +33x -5x +6x +7x =14-21x +32x -3x +25x -26x -8x +9x =21x ,2x ,3x ,5x ,6x ,7x ,8x ,9x ,10x ≥0(2)解:加入人工变量1x ,2x ,3x ,…n x ,得: Max s=(1/k p )1ni =∑1mk =∑ik αik x -M 1x -M 2x -…..-M n xs.t.11mi ik k x x =+=∑ (i=1,2,3…,n)ik x ≥0, i x ≥0, (i=1,2,3…n; k=1,2….,m)M 是任意正整数1.3在下面的线性规划问题中找出满足约束条件的所有基解。

运筹学基础与应用课后习题答案(第一二章习题解答)

运筹学基础与应用课后习题答案(第一二章习题解答)

运筹学基础及应用习题解答习题一P461.1该问题有无穷多最优解1,即满足4X1 6X2 =6且0乞X2乞;2的所有X1,X2,此时目标函数值z =3。

(b)X2用图解法找不到满足所有约束条件的公共范围,所以该问题无可行解1.3(1)图解法最优解即为严1 +4x2 -9的解X =h,?丨最大值Zu35 0X1 +2X2 =8 I 2 丿 2 (2)单纯形法首先在各约束条件上添加松弛变量,将问题转化为标准形式max z =10x i 亠5x2 亠0x3 亠0x4丄3为+4X2 +刈=9st.』+2x2+x4=8则f,P4组成一个基。

令x i =x2 =0x = 0,0,9,8c c .「21 8 3■ -2 0, min ,-訂4 2丿2新的单纯形表为C j T10 5 0 0X1 X2 X3 X4C B基 b3 5 35 x 2 —0 12 2 14 1410 X1 1 1 21 07 75 25C j _Z j 0 014 143 * 35 ;「1,;「2 ::O 表明已找到冋题最优解X1 =1, X2 , X3 =0, X4 =0。

最大值z2 2(b)(1)图解法最优解即为6x1 2x2曲的解X = 7丄,最大值z上:X i +X2 =5 W2 丿 2(2)单纯形法首先在各约束条件上添加松弛变量,将问题转化为标准形式max z =2x1 x2 0x3 0x40疋st. 6x1 2x2 x4=24X i X2 X5 = 5则F3,F4,F5组成一个基。

令x i =X2 =0得基可行解x =[0,0,15,24,5 ,由此列出初始单纯形表Cj T 2 1 0 0 0\C B 基 b X1 X2 X3 X4 X5 \ \0 X 315 0 5 1 0 0X 4 24 ⑹ 2 0 1 00 X 55 1 1 0 0 1C j —Zj2 1 0 0 0日=min( 24 5^=4AO"2。

r 一-6 ‘1丿C j T210 0CB基bX 1X 2 X 3X 4X 5X 351151112X 4436■211X 51〔3」_6111C j 一Zj—33新的单纯形表为C j T21CB基b X 1X 2X 3X 4 X 515 015 15 0X 32 4 2711 2X 4 — 1—— 2 4 231 3 0X 51—■—— 24211 C j -Z j0 01 24二 min15訐,7 15二2 <0,表明已找到问题最优解X. =1 , X2 =2,冷巧,X“°, X. =0。

运筹学基础及应用第五版 胡运权

运筹学基础及应用第五版 胡运权
第八章 动态规划
8.1 多阶段决策问题 8.2 最优化原理与动态规划的数学模型 8.3 离散确定性动态规划模型的求解 8.4 离散随机性动态规划模型的求解
8.5 一般数学规划模型的动态规划 解法
1
学习要点:
理解动态规划基本概念、最优化 原理和基本方程,逆序法和顺序解法,学 习应用动态规划解决多阶段决策问题。
34
最优化原理Optimization Principl
作为整个过程的最优策略具有这样的性质: • 无论过去的状态和决策如何,对先前决策
所形成的状态而言,余下的诸决策必构成 最优策略。
B M A
若M是从A到B的最优路线上的一点,则从 M到B的路线也是最优的。
35
动态规划的基本方程
(最优化原理的应用)
重点 :掌握动态规划模型结构、 逆序法算法原理、资源分配、设备更新、 生产与存贮等问题。
2
第一节 多阶段的决策 问题
3
动态规划(Dynamic Programming)
R. Bellman50年代执教于普林斯顿和斯坦福大学, 后进入兰德(Rand)研究所。1957年发表“Dynamic Programming”一书,标识动态规划的正式诞生。
3
3
C3
3
f(C3)=6
f(D1)=3
D1
3
f(E)=0
E
D2 4
f(D2)=4
状态 最优决策 状态
决A策 (状态A,B3)
B3
最优决策
状态
最优决策
状态
最优
21
f(B1)=11
f(A)=11
A
B1 7 5 6
2 f(B2)=7 3
5
B2 2

胡运权运筹学第五版第一章习题讲解

胡运权运筹学第五版第一章习题讲解

1.3 答案:
●单纯形法:
Cj CB 0 0 基 x3 x4 Cj-Zj 0 x3
10
x1
Cj-Zj
8/5
1
0
2/5
1 1
0
0 5/14
1/5
-2 -3/14
5
x2
3/2
0
10
x1
Cj-Zj
1
1
0
0
0
-1/7
-5/14
2/7
-25/14
Return

课后题答案
z' -3x1 x 2 'x 2 ' '-2x 3 '0x 4 0x 5 - Mx6 - Mx7
台时 限制 6000 1000 0 4000 7000 4000
单位台 时费用 0.05 0.03 0.06 0.11 0.05
6 4 7 0.25 0.36 0.25 0.44 0.25 0.35
6 4 7 0.21 0.36 0.21 0.44 0.21 0.77
8
8 11
0.5 0.48
0.27 0.48

课后题答案
1.1(a)答案: 该问题有无穷多最优解。 取特殊值:(1.5,0) 计算目标函数最优值 得:min z=3。
1.1(a)
1.1(b)答案: 由图可知:该Lp问题没 有可行域,即可得出: 该问题无可行解
1.1(b)
Return

课后题答案
1.2(b)答案:
基解 基
x1 P2 P3 P4 P3 -4 2/5 -113 ) 10 x211 6000 7( x x x ) 9 x 12 x 121 122 123 221 322 10000 6( x111 x121 ) 8( x211 x221 ) 4000 s.t. 4( x112 x122 ) 11x322 7000 7( x113 x123 ) 4000 x111 , x112 , x113 , x121 , x122 , x123 , x211 , x221 , x322 0

运筹学基础及应用第五版 完整版

运筹学基础及应用第五版 完整版

f(B1)=11
B1 7 5
2 f(B2)=7
6 3
A5
B2 2
4
3
5
B3 1 5
f(C1)=4
C1
1
f(C2)=7 4
6
C2
3
3
C3
3
f(C3)=6
f (D1)=3
D1
f (E)=0
3
E
D2 4
f (D2)=4
18
考虑三个阶段的最优选择
f(B1)=11
B1 7 65
2 f(B2)=7 3
A5
B2 2
26
动态规划方法的基本思想:
(1)将多阶段决策过程划分阶段,恰当地选取状态变 量、决策变量及定义最优指标函数.从而把问题化成一 族同类型的子问题,然后逐个求解。
(2)求解时从边界条件开始,逆(或顺)过程行进方向, 逐段递推寻优。在每一个子问题求解时,都要使用它前 面已求出的子问题的最优结果,最后一个子问题的最优 解,就是整个问题的最优解。
23
f(B1)=11
f(A)=11
A
B1 7 5 6
2 f(B2)=7 3
5
B2 2
3
4
5
B3 1 5
f(B3)=8
f(C1)=4
C1
1
f(C2)=7 4
6
C2
3
3
C3
3
f(C3)=6
f(D1)=3
D1
f(E)=0
3
E
D2 4
f(D2)=4
状态 最优决策 状态 最优决策 状态 最优决策 状态 最优决策 状态
1、阶段:将所给问题的过程,按时间或空间特征分解 成若干互相联系的阶段,以便按次序去求每阶段的解,常 用字母k表示阶段变量。

(完整版)运筹学胡运权第五版课件(第1章)

(完整版)运筹学胡运权第五版课件(第1章)

s.t.
4x1
16
5 x2 15
x10, x2 0
标准化
max z 2x1 3x2 0x3 0x4 0x5
2x1 2x2 x3
12
s.t.
4
x1
5 x2
x4 16 x5 15
x1, x2 , x3, x4 , x5 0
(3)若决策变量xj≤0,则令
x
j
xj

x
j
0

am1x1+am2x2+…+amnxn≤(=,≥) bm
x1 , x2, …, xn≥0
(3)其他形式: 连加形式
1-3 线性规划问题的标准形式
1、标准形式

2、条件
目标函数求极大值 约束条件全是等式(线性方程组) 决策变量全非负 右端常数全非负
3、标准化方法
(1)若目标函数求极小值,即
则令 z z
即求目标函数在若干约束条件下的最值。
3、规划问题数学模型的三要素
(1)决策变量:决策者为实现规划目标采取的方案、措施, 是问题中要确定的未知量。用x1,x2,…,xn表示。
(2)目标函数:问题要达到的目标要求,表示为决策变量的 函数。用 z=f(x1,x2,…,xn)表示。 (3)约束条件:决策变量取值时受到的各种可用资源的限制, 表示为含决策变量的等式或不等式。
运筹学
( Operations Research )
绪论
一、古代朴素的运筹学思想
例如:田忌赛马
二、运筹学的起源
国外 英文原名 Operations Research 简称“O.R.” 直译为:运用研究或作业研究 正式出现于1938年7月英国一份关于防空作战 系统运行的研究报告中

运筹学(第5版)

运筹学(第5版)

变量或剩余变量构造。
迭代过程
02
通过不断更换基变量和非基变量,使目标函数值不断改善的过
程。
最优性检验
03
判断当前基可行解是否是最优解的方法,通常通过比较目标函
数值或检验数进行。
线性规划问题的应用
01
生产计划
确定各种产品的生产 数量,以最大化利润 或最小化成本。
02
资源分配
将有限的资源分配给 不同的项目或任务, 以最大化效益或最小 化浪费。
06
存储论
Chapter
存储论的基本概念
包括固定成本(如租金、设备折 旧等)和变动成本(如保管费、 保险费等)。
根据需求和成本等因素制定的存 储计划和管理方法。
存储 存储成本 缺货成本 存储策略
将物品或资源保存在某个地方, 以备将来使用或销售。
由于存储不足而导致的生产中断 、销售损失等费用。
确定型存储模型
其他领域
除了以上领域,运筹学还在医 疗、教育、环境等领域得到了 广泛应用。
02
线性规划
Chapter
线性规划问题的数学模型
01
02
03
目标函数
表示决策者希望达到的目 标,通常是最大化或最小 化某个线性函数。
约束条件
表示决策变量必须满足的 限制条件,通常是一组线 性不等式或等式。
决策变量
表示决策者可以控制的变 量,通常是连续的或离散 的。
线性规划问题的图解法
可行域
满足所有约束条件的决策 变量的集合,通常表示为 一个多边形区域。
目标函数等值线
表示目标函数值相等的点 的集合,通常是一组平行 线。
最优解
使目标函数达到最优值的 决策变量的取值,通常位 于可行域的某个顶点上。

动态规划运筹学基础及其应用胡运权第五版

动态规划运筹学基础及其应用胡运权第五版
k阶段状态变量sk的值,则该段的决策变量uk 一经确定,第k+1段的状态变量sk+1的值也就 完全确定,即有sk+1=Tk(sk ,uk)
3.动态规划方法的基本步骤
5.根据题意,正确地构造出目标与变量 的函数关系——目标函数,目标函数应满足 下列性质:
(1)可分性,即对于所有k后部子过程, 其目标函数仅取决于状态sk及其以后的决策 uk ,uk+1,┈,un,就是说它是定义在全过程和
3 万元
40 万吨 43 万吨 45 万吨
4 万元
51 万吨 55 万吨 58 万吨
求对三个项目的最优投资分配,使 总投资效益最大。
资源分配问题
1. 阶段k:每投资一个项目作为一个阶
段;
2. 状态变量xk:投资第k个项目前的资金
数;
3. 决策变量dk:第k个项目的投资; 4. 决策允许集合:0≤dk≤xk 5. 状态转移方程:xk+1=xk-dk 6. 阶段指标:vk(xk ,dk)见表中所示;
f2 (x2 )
d
2
min
D2 ( x2
){v2
(
x2
,
d
2
)
f3 (x3 )}
从 f3(x3)到 f2(x2)的递推过程用表格表
示如下:
求最短路径
x2 D2(x2)
B1C1 B1 B1C2
B1C3 B2C1 B2 B2C2 B2C3 B3C1 B3 B3C2 B3C3
x3 v2(x2,d2) v2(x2,d2)+f3(x3) f2(x2) 最优决策 d2*
A B2 C1 D1 E
23
资源分配问题
资源分配问题
例5.6: 有资金4万元,投资A、B、C三

运筹学基础及应用第五版 胡运权第一章

运筹学基础及应用第五版 胡运权第一章

产品Ⅰ 产品Ⅱ A B 2 1 2 2
计划期内 生产能力 12 8
C D
利润
4 0
2
0 4
3
16 12
MAX
需满足条件:
2 x1 2 x2 12 x 2x 8 1 2 16 4 x1 4 x2 12 x1 , x2 0
实现目的:
z 2 x1 3x2 max
标准形式:
max z c j x j
j 1 n
标准形式特点:
1. 2. 3. 4.
n ,m) aij x j bi (i 1, j 1 x 0 (j 1, ,n) j
目标函数为求极大值; 约束条件全为等式; 约束条件右端常数项全为非负值; 决策变量取值非负。
2
x
dv 0 dx
a
2(a 2 x ) x (2) (a 2 x )2 0
a x 6
§1.一般线性规划问题的数学模型
一、问题的提出
某企业计划生产Ⅰ、Ⅱ两种产品。这两种产 品都要分别在A、B、C、D四种不同设备上加工。 生产每件产品Ⅰ需占用各设备分别为2、1、4、 0h,生产每件产品Ⅱ,需占用各设备分别为2、2、 0、4h。已知各设备计划期内用于生产这两种产 品的能力分别为12、8、16、12h,又知每生产一 件产品Ⅰ企业能获得2元利润,每生产一件产品 Ⅱ企业能获得3元利润,问企业应安排生产两种 产品各多少件,使总的利润收入为最大。
(3)目标函数中松弛变量的系数 由于松弛变量和剩余变量分别表示未被充分利 用的资源以及超用的资源,都没有转化为价值和利 润,因此在目标函数中系数为零。
松弛变量和剩余变量统称为松弛变量
3. 取值无约束的变量

运筹学基础及应用第五版 完整版PPT文档共75页

运筹学基础及应用第五版 完整版PPT文档共75页
运筹学基础及应用第五版 完 整版
31、别人笑我太疯癫,我笑,抱怨者 的牢骚 ,这是 羊群中 的瘟疫 ,我不 能被它 传染。 我要尽 量避免 绝望, 辛勤耕 耘,忍 受苦楚 。我一 试再试 ,争取 每天的 成功, 避免以 失败收 常在别 人停滞 不前时 ,我继 续拼搏 。
Thank you
33、如果惧怕前面跌宕的山岩,生命 就永远 只能是 死水一 潭。 34、当你眼泪忍不住要流出来的时候 ,睁大 眼睛, 千万别 眨眼!你会看到 世界由 清晰变 模糊的 全过程 ,心会 在你泪 水落下 的那一 刻变得 清澈明 晰。盐 。注定 要融化 的,也 许是用 眼泪的 方式。
35、不要以为自己成功一次就可以了 ,也不 要以为 过去的 光荣可 以被永 远肯定 。
6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿

运筹学第五版习题答案

运筹学第五版习题答案

运筹学第五版习题答案运筹学是一门研究如何优化决策的学科,它涉及到数学、统计学和计算机科学等多个领域。

运筹学的应用范围非常广泛,包括生产调度、物流管理、供应链优化等等。

而《运筹学第五版》是一本经典的教材,它提供了大量的习题供学生练习和巩固所学知识。

本文将为大家提供《运筹学第五版》习题的答案,希望对学习者有所帮助。

第一章:引论1. 运筹学的定义是什么?运筹学是一门研究如何优化决策的学科,它利用数学和统计学的方法来解决实际问题。

2. 运筹学的应用领域有哪些?运筹学的应用领域包括生产调度、物流管理、供应链优化、金融风险管理等。

3. 运筹学方法的基本步骤是什么?运筹学方法的基本步骤包括问题建模、模型求解、解的验证和实施。

第二章:线性规划模型1. 什么是线性规划模型?线性规划模型是一种数学模型,它描述了一种目标函数和一组线性约束条件下的最优化问题。

2. 如何确定线性规划模型的最优解?线性规划模型的最优解可以通过线性规划算法来求解,如单纯形法、内点法等。

3. 什么是对偶问题?对偶问题是与原始线性规划模型相对应的另一个线性规划模型,它可以用来计算原始问题的下界。

第三章:网络优化模型1. 什么是网络优化模型?网络优化模型是一种描述网络结构的数学模型,它可以用来解决最短路径、最小生成树、最大流等问题。

2. 最短路径问题如何求解?最短路径问题可以通过迪杰斯特拉算法或弗洛伊德算法来求解。

3. 最大流问题如何求解?最大流问题可以通过Ford-Fulkerson算法或Edmonds-Karp算法来求解。

第四章:整数规划模型1. 什么是整数规划模型?整数规划模型是一种线性规划模型的扩展,它要求决策变量取整数值。

2. 整数规划问题如何求解?整数规划问题可以通过分支定界法或割平面法来求解。

3. 什么是混合整数规划模型?混合整数规划模型是一种整数规划模型的扩展,它要求部分决策变量取整数值,部分决策变量取连续值。

第五章:动态规划模型1. 什么是动态规划模型?动态规划模型是一种描述决策过程的数学模型,它将问题划分为一系列的阶段,并通过递推关系求解最优解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
其中:
C c1 , c2 ,, cn
X x1, x2 ,, xn
T
b b1, b2 ,, bm
2013-7-24
T
a11 a21 A a m1
a12 a22 am 2
a1n a2 n amn
解出基变量的唯一解,这组解与非基变量的0共同构成 基解。
基可行解:满足变量非负的基解称为基可行解 可行基:对应于基可行解的基称为可行基
2013-7-24 18
例:考察下述线性规划问题:
max z 2 x1 3x2 0 x3 0 x4 0 x5 12 2 x1 2 x2 x3 4 x x4 16 1 s.t. 5x 2 x5 15 xi 0, i 1,2,...5
x x x
其中:
x 0,x 0
4. 变量 xj≤0

2013-7-24
xj x j ,显然 xj 0
14
例. 将下述线性规划模型化为标准型
min z x1 2 x2 3 x3 2 x1 x2 x3 9 3 x x 2 x 4 1 2 3 3 x1 2 x2 3x3 6 x1 0, x2 0, x3取值无约束
(1) ) 必要性显然。
(2) ) 设 A 的秩为m。可行解 X 的前 k 个分量为正,且它们对应 的系数列向量 P , P ,...,P 线性无关,则 k m 。 1 2 k 当 k m 时, 1 , P ,...,P 恰好构成一组基,而 P 2 m
X ( x1, x2 ,...,xm ,0,...0)T
1.决策变量:是决策者为实现规划目标采取的 方案、措施,是问题中要确定的未知量。 2.目标函数:指问题要达到的目的要求,表 示为决策变量的函数。 3.约束条件:指决策变量取值时受到的各种可 用资源的限制,表示为含决策变量的等式或 不等式。
2013-7-24 6
一般线性规划问题的数学模型:
目标函数: (或 min)z c1x1 c2 x 2 cn x n max
2013-7-24
19
(1) 可行解,如
(0,0,12,16,15)
P P2 1
2 0 5

(3,3,0,4,0)
P4
0
满足约束条件,所以是可行解。 (2) 基
P3
1 0 0
P5
其中
2 系数矩阵A: A 4 0
0 1 0 0 1
1 0 0 2 2 0 B1 ( P3 , P4 , P5 ) 0 1 0 或 B2 ( P , P2 , P5 ) 4 0 0 1 0 0 1 0 5 1
2013-7-24 16
1.4 线性规划问题的解的概念
求解线性规划问题:
max z c j x j
j 1
n
n aij x j bi (i 1, ,m) j 1 x 0 (j 1, ,n) j
就是从满足约束方程组和约束不等式的决策变量取 值中,找出使得目标函数达到最大的值。
注意模型特点
2013-7-24 4
线性规划模型特点

决策变量:向量X=(x1… xn)T 决策人要考虑 和控制的因素,非负 约束条件:关于X的线性等式或不等式
目标函数:Z=ƒ(x1 … xn) 为关于X 的线性函数, 求Z极大或极小


2013-7-24
5
1.2 线性规划问题的数学模型
三个组成要素:
2
2 x1 2 x2 12
此时,线段 值点。
Q2Q3
Q4
3
4 x1 16
上所有点都是最优
Q3
Q2
5 x2 15
O
Q1 4
Z 2 x1 2 x2
x1
2013-7-24
目标函数等值线
25
解的几种情况:
(3) 无可行解:当可行域为空集时,无可行解。 (4) 无界解
若目标函数不变,将约束条件1和3去掉,则可行域及解的 x 情况见下图。
2
此时,目标函数等 值线可以向上无穷 远处平移,Z值无 界。
4 x1 16 Q4
3
Q3
Q2
O
Q1 4
Z 2 x1 2 x2
x1
2013-7-24
目标函数等值线
26
几点说明:
1、图解法只能用来求解含有两个决策变量的线性规划问 题。
2、若最优解存在,则必在可行域的某个顶点处取得。
3、线性规划问题的解可能是:唯一最优解、无穷多最优 解、无最优解、无界解。
10
一般线性规划问题如何化为标准型:
1. 目标函数求极小值:
min z c j x j
j 1
n
令: z ' z ,即化为:
max z max( z ) min z c j x j c j x j
n n j 1 j 1
2013-7-24 11
(或 , )b1 a11x1 a12 x 2 a1n x n (或 , )b 2 a 21x1 a 22 x 2 a 2 n x n 约束条件: a x a x a x m1 1 m2 2 mn n (或 , )b m x1 , x 2 , , x n 0
2013-7-24 22
画出线性规划问题的可行域:
x2
2 x1 2 x2 12 4 x1 16 Q4
3
Q3
Q2
5x2 15
O
Q1 4
Z 2 x1 3x2
x1
目标函数等值线
2013-7-24
2 z x2 x1 3 3
23
1、可行域:约束条件所围成的区域。
2、基可行解:对应可行域的顶点。
运筹学
OPERATIONS RESEARCH
2013-7-24
1
第一章 线性规划及单纯形法 (Linear Programming, LP)

线性规划模型 图解法 单纯形法原理 单纯形法计算步骤 单纯形法的进一步讨论 数据包络分析
2013-7-24
2
§1 一般线性规划问题的数学模型 1.1 引例
AX A[X 1 (1 ) X 2 ] AX1 (1 ) AX 2 b (1 )b b
所以
2013-7-24
X X1 (1 ) X 2 也是问题的可行解,即可行域是凸集。
29
引理: 线性规划问题的可行解 X为基可行解的充要条件是X的 正分量所对应的系数列向量线性无关。 证明:设 X ( x , x ,...,x )T 1 2 n
2013-7-24 17
可行解:满足约束条件的解称为可行解,可行解的集 合称为可行域。 最优解:使目标函数达到最大值的可行解。 基:约束方程组的一个满秩子矩阵称为规划问题的一
个基,基中的每一个列向量称为基向量,与基向量对应 的变量称为基变量,其他变量称为非基变量。
基解:在约束方程组中,令所有非基变量为0,可以
都构成基。而 ( P 1
2013-7-24
P 3
P4 ) 不构成基。
20
(3)基向量、基变量
P , P2 , P5 是对应于基 B2 的三个基向量,而 1 x1 , x2 , x5 是对应于这三个基向量的基变量。
(4)基解、基可行解、可行基
(0, 0, 12, 16 15) 是对应于基 B1 的一个基解、基可行解。 ( 4,2,0,0,5) 是对应于基 B2的一个基解、基可行解。 B1 , B2 均是可行基 。
x4 称为剩余变量。
2013-7-24 12
(3)目标函数中松弛变量的系数 由于松弛变量和剩余变量分别表示未被充分利 用的资源以及超用的资源,都没有转化为价值和利 润,因此在目标函数中系数为零。
松弛变量和剩余变量统称为松弛变量
2013-7-24
13
3. 取值无约束的变量
如果变量 x 代表某产品当年计划数与上 一年计划数之差,显然 x 的取值可能是正也 可能是负,这时可令:
2. 约束条件为不等式:
(1)当约束条件为“≤”时 如: 2 x1 2 x2 12 可令:2x1 2x2 x3 12 , 显然 x3 0
x3 称为松弛变量。
(2)当约束条件为“≥”时
10 如: x1 12x2 18 10 可令: x1 12x2 x4 18, 显然 x4 0
2013-7-24
27
§3.单纯形法原理
凸集:如果集合 C 中任意两个点 X 1 , X 2,其连线上的所有点
也都是集合C 中的点。
3.1 预备知识
上图中(1)(2)是凸集,(3)(4)不是凸集
顶点:如果对于凸集 C 中的点 X ,不存在C 中的任意其它两
个不同的点 X1、X 2 ,使得 X 在它们的连线上,这时称 X 为凸 集的顶点。
2 z 3、目标函数等值线: Z 2 x1 3x2 x2 3 x1 3
目标函数等值线有无数条,且平行。(观察规律)
4、目标函数最优值: 最大截距所对应的 Z 。
2013-7-24
24
解的几种情况:
(1) 唯一最优解 (2) 无穷多最优解 若目标函数改为: max z 2 x1 2 x2 约束条件不变,则: x
2013-7-24
15
解:令 z z,x1 x1,
得标准形式为:
x x3 x3 x3 , 3 0,x3 0
max z x1 2 x2 3 x3 3 x3 0 x4 0 x5 9 2 x1 x2 x3 x3 x4 3 x x 2 x 2 x x5 4 1 2 3 3 6 3 x1 2 x2 3 x3 3 x3 x1,x2,x3,x3,x4,x5 0
相关文档
最新文档