《一元一次不等式》初中数学总复习基础测试(答案)
苏科版七年级下册数学第11章《一元一次不等式》单元测试卷 附答案
苏科版七年级数学下册第11章《一元一次不等式》单元测试卷(满分120分)班级__________姓名__________学号__________成绩__________一.选择题(共10小题,满分30分,每小题3分)1.下列式子:(1)4>0;(2)2x+3y<0;(3)x=3;(4)x≠y;(5)x+y;(6)x+3≤7中,不等式的个数有()A.2个B.3个C.4个D.5个2.下列各式中,是一元一次不等式的是()A.5+4>8B.2x﹣1C.2x≤5D.﹣3x≥03.不等式组的解集在数轴上表示正确的是()A.B.C.D.4.数a、b在数轴上的位置如图所示,则下列不等式成立的是()A.a>b B.ab>0C.a+b>0D.a+b<05.下列不等式组是一元一次不等式组的是()A.B.C.D.6.以下说法中正确的是()A.若a>|b|,则a2>b2B.若a>b,则<C.若a>b,则ac2>bc2D.若a>b,c>d,则a﹣c>b﹣d7.有一本书共有300页,小明要在10天内(包括第10天)把它读完,他前5天共读了100页,从第6天起的后5天中每天要至少读多少页?设从第6天起每天要读x页,根据题意得不等式为()A.5×100+5x>300B.5×100+5x≥300C.100+5x>300D.100+5x≥3008.把一些书分给几名同学,若每人分11本,则有剩余,若(),依题意,设有x名同学,可列不等式7(x+4)>11x.A.每人分7本,则剩余4本B.每人分7本,则剩余的书可多分给4个人C.每人分4本,则剩余7本D.其中一个人分7本,则其他同学每人可分4本9.在方程组中,若未知数x,y满足x+y>0,则m的取值范围在数轴上的表示应是如图所示的()A.B.C.D.10.某企业决定购买A,B两种型号的污水处理设备共8台,具体情况如下表:A型B型价格(万元/台)1210月污水处理能力(吨/月)200160经预算,企业最多支出89万元购买设备,且要求月处理污水能力不低1380吨,该企业有哪些购买方案呢?为解决这个问题,设购买A型污水处理设备x台,所列不等式组正确的是()A.B.C.D.二.填空题(共6小题,满分24分,每小题4分)11.一种药品的说明书上写着:“每日用量60~120mg,分4次服用”,一次服用这种药量x (mg)范围为mg.12.若(m﹣2)x2m+1﹣1>5是关于x的一元一次不等式,则该不等式的解集为.13.一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原计划至少提前两天完成任务,请列出以后几天平均每天至少要完成的土方数x应满足的不等式为.14.有甲、乙、丙三个同学在一起讨论一个一元一次不等式组,他们各说出该不等式组的一个性质:甲:它的所有的解为非负数;乙:其中一个不等式的解集为x≤8;丙:其中一个不等式在解的过程中需要改变不等号的方向.请试着写出符合上述条件的一个不等式组.15.若关于x的不等式组有2个整数解,则a的取值范围是.16.如图所示的是一个运算程序:若需要经过两次运算才能输出结果,则输入的x的取值范围是.三.解答题(共7小题,满分66分)17.(8分)解不等式方程组:.18.(9分)已知不等式组(1)用在数轴上画图的方式说明这个不等式组无解;(2)在不等式组的括号里填一个数,使不等式组有解,直接写出它的解集和整数解.19.(9分)已知关于x的不等式组(1)若a=2,求这个不等式组的解集;(2)若这个不等式组的整数解有3个,求a的取值范围.20.(8分)阅读下列材料:解答“已知x﹣y=2,且x>1,y<0,试确定x+y的取值范围”有如下解法:解∵x﹣y=2,∴x=y+2.又∵x>1,∴y+2>1.即y>﹣1.又∵y<0,∴﹣1<y<0.…①同理得:1<x<2.…②由①+②得﹣1+1<y+x<0+2∴x+y的取值范围是0<x+y<2请按照上述方法,完成下列问题:已知x﹣y=3,且x>2,y<1,则x+y的取值范围.21.(10分)某工厂现有甲种原料3600kg,乙种原料2410kg,计划利用这两种原料生产A,B两种产品共500件,产品每月均能全部售出.已知生产一件A产品需要甲原料9kg和乙原料3kg;生产一件B种产品需甲种原料4kg和乙种原料8kg.(1)设生产x件A种产品,写出x应满足的不等式组.(2)问一共有几种符合要求的生产方案?并列举出来.(3)若有两种销售定价方案,第一种定价方案可使A产品每件获得利润1.15万元,B 产品每件获得利润1.25万元;第二种定价方案可使A和B产品每件都获得利润1.2万元;在上述生产方案中哪种定价方案盈利最多?(请用数据说明)22.(10分)定义:对于任何数a,符号[a]表示不大于a的最大整数.例如:[5.7]=5,[5]=5,[﹣1.5]=﹣2.(1)[﹣]=;(2)如果[a]=3,那么a的取值范围是;(3)如果[]=﹣3,求满足条件的所有整数x.23.(12分)某手机经销商计划同时购进一批甲、乙两种型号的手机,若购进2部甲型号手机和1部乙型号手机,共需要资金2800元;若购进3部甲型号手机和2部乙型号手机,共需要资金4600元.(1)求甲、乙型号手机每部进价为多少元?(2)该店计划购进甲、乙两种型号的手机销售,预计用不多于1.8万元且不少于1.74万元的资金购进这两部手机共20台,请问有几种进货方案?请写出进货方案;(3)售出一部甲种型号手机,利润率为40%,乙型号手机的售价为1280元.为了促销,公司决定每售出一台乙型号手机,返还顾客现金m元,而甲型号手机售价不变,要使(2)中所有方案获利相同,求m的值.参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:根据不等式的定义,只要有不等符号的式子就是不等式,所以(1),(2),(4),(6)为不等式,共有4个.故选:C.2.解:A、不含有未知数,错误;B、不是不等式,错误;C、符合一元一次不等式的定义,正确;D、分母含有未知数,是分式,错误.故选:C.3.解:不等式组的解集在数轴上表示为:,故选:D.4.解:如图可知,A、a<0,b>0,∴b>a,错误;B、a<0,b>0,∴ab<0,错误;C、a<﹣1,0<b<1,∴a+b<0,错误;D、正确.故选:D.5.解:A、不是一元一次不等式组,故本选项不符合题意;B、是一元一次不等式组,故本选项符合题意;C、不是一元一次不等式组,故本选项不符合题意;D、不是一元一次不等式组,故本选项不符合题意;故选:B.6.解:A、若a>|b|,则a2>b2,正确;B、若a>b,当a=1,b=﹣2,时则>,错误;C、若a>b,当c2=0时则ac2=bc2,错误;D、若a>b,c>d,如果a=1,b=﹣1,c=﹣2,d=﹣4,则a﹣c=b﹣d,错误;故选:A.7.解:依题意有100+5x≥300.故选:D.8.解:由不等式7(x+4)>11x,可得,把一些书分给几名同学,若每人分7本,则可多分4个人;若每人分11本,则有剩余;故选:B.9.解:,①+②得,3(x+y)=3﹣m,解得x+y=1﹣,∵x+y>0,∴1﹣>0,解得m<3,在数轴上表示为:.故选:B.10.解:设购买污水处理设备A型号x台,则购买B型号(8﹣x)台,根据题意,得,故选:A.二.填空题(共6小题,满分24分,每小题4分)11.解:∵每日用量60~120mg,分4次服用,∴60÷4=15(mg/次),120÷4=30(mg/次),故答案是:15mg≤x≤30.12.解:根据不等式是一元一次不等式可得:2m+1=1且m﹣2≠0,∴m=0∴原不等式化为:﹣2x﹣1>5解得x<﹣3.故答案为:x<﹣3.13.解:由题意,列出不等关系x(6﹣1﹣2)+60≥300,化简得3x≥300﹣60.14.解:∵一元一次不等式组的解集为非负数,∴其中一个不等式的解集必为x≥0,∵一个不等式在解的过程中需要改变不等号的方向,∴其中一个不等式中x的系数为负数,∴符合条件的一元一次不等式组可以为:(答案不唯一).故答案为:(答案不唯一).15.解:解不等式得:x≤2,解不等式得:x>a,∵不等式组有2个整数解,∴不等式组的解集为:a<x≤2,且两个整数解为:2,1,∴0≤a<1,即a的取值范围为:0≤a<1.故答案为:0≤a<1.16.解:根据题意得:,解得:1≤x<7.故答案为1≤x<7.三.解答题(共7小题,满分66分)17.解:由①得2x+x<3+6,3x<9x<3;由②得14x﹣5x≤﹣89x≤﹣8x≤﹣.由以上可得x≤﹣.18.解:(1)∵解不等式①得:x≥2,解不等式②得:x<﹣1,在数轴上表示不等式的解集为:从数轴可以看出:两不等式的解集没有公共部分,∴不等式组无解;(2)不等式组为:,不等式组的解集为2≤x≤4,不等式组的整数解为2,3,4.19.解:(1)解不等式①,得x≤6﹣a,解不等式②,得x>﹣2,当a=2时,不等式组的解集是﹣2<x≤4.(2)因为该不等式组的整数解有3个,所以这三个整数解应是﹣1,0,1,所以1≤6﹣a<2,所以a的取值范围是4<a≤5.20.解:∵x﹣y=3,∴x=y+3.又∵x>2,∴y+3>2.即y>﹣1.又∵y<1,∴﹣1<y<1.…①同理得:2<x<4.…②由①+②得﹣1+2<y+x<1+4∴x+y的取值范围是1<x+y<5.21.解:(1)由题意.(2)解第一个不等式得:x≤320,解第二个不等式得:x≥318,∴318≤x≤320,∵x为正整数,∴x=318、319、320,500﹣318=182,500﹣319=181,500﹣320=180,∴符合的生产方案为①生产A产品318件,B产品182件;②生产A产品319件,B产品181件;③生产A产品320件,B产品180件;(3)第一种定价方案下:①的利润为318×1.15+182×1.25=593.2(万元),②的利润为:319×1.15+181×1.25=593.1(万元)③的利润为320×1.15+180×1.25=593(万元)第二种定价方案下:①②③的利润均为500×1.2=600(万元),综上所述,第二种定价方案的利润比较多.22.解:(1)[﹣]=﹣4,故答案为:﹣4;(2)如果[a]=3,那么a的取值范围是3≤x<4,故答案为:3≤x<4;(3)由题意得﹣3≤<﹣2,解得:﹣3≤x<﹣,∴满足条件的所有整数x的值为﹣3、﹣2.23.解:(1)设甲种型号手机每部进价为x元,乙种型号手机每部进价为y元,解得,答:甲型号手机每部进价为1000元,乙型号手机每部进价为800元;(2)设购进甲种型号手机a部,则购进乙种型号手机(20﹣a)部,17400≤1000a+800(20﹣a)≤18000,解得7≤a≤10,共有四种方案,方案一:购进甲手机7部、乙手机13部;方案二:购进甲手机8部、乙手机12部;方案三:购进甲手机9部、乙手机11部;方案四:购进甲手机10部、乙手机10部.(3)甲种型号手机每部利润为1000×40%=400,w=400a+(1280﹣800﹣m)(20﹣a)=(m﹣80)a+9600﹣20m 当m=80时,w始终等于8000,取值与a无关.1、读书破万卷,下笔如有神。
教辅:中考数学复习-一元一次不等式基础训练卷(含答案)
第三章《一元一次不等式》基础训练卷一、选择题(每题3分,共30分)1. 下列各式中,是一元一次不等式的是( ) A 、5+4>8 B 、12-x C 、x 2≤5D 、x x31-≥0 2.不等式02≤-x 的解集在数轴上表示正确的是( ) B .C .D . 3. 如果,下列各式中不正确的是( )A.B.22ba -<-C. D.4.不等式组⎩⎨⎧->+<-25062x x 的解集是 ( )A .37<<-x B. 7->x C. 3<x D. 37>-<x x 或 5. 不等式2+x <6的正整数解有( )A 、1个B 、2个C 、3 个D 、4个6.现用甲、乙两种运输车将46t 搞旱物资运往灾区,甲种运输车载重5t ,乙种运输车载重4t ,安排车辆不超过10辆,则甲种运输车至少应安排( ) A .4辆B .5辆C .6辆D .7辆7.若方程x x m x m 5)3(1)1(3--=++的解是负数,则m 的取值范围是( ) A.45->m B.45-<m C. 45>m D. 45<m 8.不等式组()⎪⎩⎪⎨⎧<-+<+043321413x x 的最大整数解是( ) A 、0 B 、-1 C 、-2 D 、12-1-2-1-0 12 39.不等式m m x ->-2)(31的解集为2>x ,则m 的值为( ) A.4 B. 2 C.23 D.21 10、如果不等式组⎩⎨⎧>-<+nx x x 737的解集是x >7,则n 的取值范围是( )A 、n≥7B 、n≤7C 、n=7D 、n <7 二、填空题(每题4分,共24分) 11.用代数式表示:的2倍不大于的31:_________;、两数的和的5倍是非负数:_________. 12.不等号填空:若a<b<0 ,则5a - 5b -;a1b 1;12-a 12-b13.小亮准备用36元钱买笔和练习本,已知每去笔3.5元,每本练习本1.8元.他买了8本练习本,最多还可以买_________去笔. 14.当x ________时,代数式61523--+x x 的值是非负数 15.关于x 的方程4132x m x -+=-的解是负数,则m 的取值范围 16.若不等式组⎩⎨⎧>-<-3212b x a x 的解集为-1<x <1,那么)1)(1(-+b a 的值等于三、简答题(共66分) 17、(本题6分)解不等式(1)5(1)33x x x +->+ (2) 5723x x --≥1- 354x -18、(本题8分)解不等式组(1) ⎩⎨⎧-<++≥-148112x x x x (2)3(2)41214x x x x --⎧⎪⎨-<-⎪⎩≤19、(本题8分)解不等式组:把解集在数轴上表示出来,并将解集中的整数解写出来.20、(本题10分)某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少要答对多少道题?21.(本题10分)定义新运算:对于任意实数a ,b 都有a △b =ab ﹣a ﹣b +1,等式右边是通常的加法、减法及乘法运算,例如:2△4=2×4﹣2﹣4+1=8﹣6+1=3,请根据上述知识解决问题:若3△x 的值大于5而小于9,求x 的取值范围.22、(本题12分)若不等式组⎩⎨⎧>-+<+-053202b a x b a x ,的解集为,求的值.23、(本题12分)某公园出售的一次性使用门票,每张10元,为了吸引更多游客,新近推出购买“个人年票”的售票活动(从购买日起,可供持票者使用一年).年票分A 、B 两类:A 类年票每张100元,持票者每次进入公园无需再购买门票;B 类年票每张50元,持票者进入公园时需再购买每次2元的门票。
人教版七年级数学下册第九章第三节一元一次不等式组复习练习题(含答案) (44)
人教版七年级数学下册第九章第三节一元一次不等式组复习练习题(含答案)(1)计算题:0011 -330(2017)()3π-+-+ (2)计算题: 124(2)22x x x x ---÷++ (3)解不等式组:3(2)41123x x x x --≤⎧⎪-+⎨<⎪⎩ 【答案】(1)4(2)答案见解析(3)答案见解析【解析】试题分析:(1)根据绝对值、特殊角的三角函数值、零指数幂、负整数指数幂可以解答本题;(2)根据分式的减法和除法可以解答本题;(3)根据解一元一次不等式组的方法可以解答本题.试题解析:解:(1)原式﹣2﹣1+3 =3+1﹣2﹣1+3=4;(2)原式=2212224x x x x x-+-+⋅+-()() =44224x x x x x ()()+-+⋅+- =﹣(x +4)=﹣x ﹣4;(3)324{1123x x x x --≤-+()①<②,解不等式①,得:x ≥1,解不等式②,得:x <5,∴原不等式组的解集是1≤x <5.32.(1)化简:(31a +﹣a+1)÷2441a a a -++. (2)解不等式组:1422123x x x x ->+⎧⎪+⎨>⎪⎩ 【答案】(1)22a a +-- ,(2)x <﹣1 【解析】【分析】(1)括号内先进行通分,然后进行分式的加减法运算,最后再进行分式的乘除法运算即可;(2)分别求出每一个不等式的解集,然后再确定出解集的公式部分即可得不等式组的解集.【详解】(1)原式=()()()23111·12a a a a a --+++- =()()()2221·12a a a a a +-++- =22a a+-; (2)1422123x x x x ->+⎧⎪⎨+>⎪⎩①②, 由①得:x <﹣1,由②得:x <14, 所以原不等式组的解集为:x <﹣1.33.“中华紫薇园”景区今年“五一”期间开始营业,为方便游客在园区内游玩休息,决定向一家园艺公司采购一批户外休闲椅,经了解,公司出售两种型号休闲椅,如下表:景区采购这批休闲椅共用去56000元,购得的椅子正好可让1300名游客同时使用.(1)求景区采购了多少条长条椅,多少条弧形椅?(2)景区现计划租用A、B两种型号的卡车共20辆将这批椅子运回景区,已知A型卡车每辆可同时装运4条长条椅和11条弧形椅,B型卡车每辆可同时装运12条长条椅和7条弧形椅.如何安排A、B两种卡车可一次性将这批休闲椅运回来?(3)又知A型卡车每辆的运费为1200元,B型卡车每辆的运费为1050元,在(2)的条件下,若要使此次运费最少,应采取哪种方案?并求出最少的运费为多少元.【答案】(1)采购了100条长条椅,200条弧型椅;(2)有三种方案,见解析;(3)最省钱的租车方案是租用A型卡车15辆、B型卡车5辆,最低运费为23250元.【解析】试题分析:(1)设景区采购长条椅x条,弧型椅y条,然后根据游客人数和花费钱数两个等量关系列出方程组求解即可;(2)设租用A型卡车m辆,则租用B种卡车(20﹣m)辆,根据两种型号卡车装运的休闲椅的数量不小于两种休闲椅的数量列出不等式组,求解即可,再根据车辆数是正整数写出设计方案;(3)设租车总费用为W元,列出W的表达式,再根据一次函数的增减性求出最少费用.试题解析:解:(1)设景区采购长条椅x 条,弧型椅y 条,由题意得: 35130016020056000x y x y +=⎧⎨+=⎩,解得:100200x y =⎧⎨=⎩. 答:采购了100条长条椅,200条弧型椅;(2)设租用A 型卡车m 辆,则租用B 种卡车(20﹣m )辆,由题意得:4122010011720200m m m m +-≥⎧⎨+-≥⎩()(),解得:15≤m ≤17.5,由题意可知,m 为正整数,所以,m 只能取15、16、17,故有三种租车方案可一次性将这批休闲椅运回来,可这样安排:方案一:A 型卡车15辆,B 型卡车5辆,方案二:A 型卡车16辆,B 型卡车4辆,方案三:A 型卡车17辆,B 型卡车3辆;(3)设租车总费用为W 元,则W =1200m +1050(20﹣m )=150m +21000.∵150>0,∴W 随m 的增大而增大.又∵15≤m ≤17.5,∴当m =15时,W 有最小值,W 最小=150×15+21000=23250,∴最省钱的租车方案是租用A 型卡车15辆、B 型卡车5辆,最低运费为23250元.点睛:本题考查了一次函数的应用,二元一次方程组的应用,一元一次不等式组的应用,读懂题目信息,理解数量关系并确定出等量关系和不等量关系是解题的关键,(3)利用一次函数的增减性和自变量的取值范围求最值是常用的方法.34.解不等式组:2132x x x +≥⎧⎨+>⎩,并在所给的数轴上表示解集.【答案】-1≤x<3【解析】分析:根据不等式的解法,先分别求解两个不等式的解集,再根据不等式组的解集的确定方法求出不等式的解集,并表示在数轴上即可.详解:解不等式①,得:1x ≥-解不等式②,得:3x <在数轴上表示解集为:点睛:此题主要考查了不等式组的解法,关键是明确不等式组的解集的确定方法:都大取大,都小取小,大小小大取中间,大大小小无解.35.(1)计算:(﹣12)﹣1﹣°+(π﹣4)0 (2)解不等式组3(2)64113x x x x --≥⎧⎪-⎨+>⎪⎩.并写出它的整数解. 【答案】(1)0;(2)整数解为2 , 3【解析】分析:(1)先分别计算有理数的负指数幂、绝对值、特殊角的三角函数值以及零次幂,最后再计算加减即可求得答案;(2)分别求出每个不等式的解集,然后再取它们的公共部分,进而求出整数解即可本题解析:(1)(﹣)﹣1﹣|1﹣|+2sin60°+(π﹣4)0=-2﹣+1+2×+1=-2﹣+1++1=0.(2)解:由①得2x ≥由②得4x <∴此不等式组的解集为24x ≤<整数解为2, 336.求不等式组231320x x -≤⎧⎨+>⎩的解集. 【答案】223x -<≤. 【解析】分析:分别解不等式,找出解集的公共部分即可.详解:231,320x x -≤⎧⎨+>⎩①②解不等式①,得 2x ≤;解不等式②,得2 3x >-; 原不等式组的解集为223x -<≤. 点睛:考查解一元一次不等式组,比较容易,分别解不等式,找出解集的公共部分即可.37.解不等式组2(1)31132x x x x +≤-⎧⎪+⎨<⎪⎩【答案】x ≥3.【解析】分析:首先分别求出每一个不等式的解,从而得出不等式组的解集. 详解:解不等式①:2x+2≤3x-1 即x ≥3; 解不等式②:2x<3(x+1) 即x>-3;∴该不等式组的解集为x ≥3.点睛:本题主要考查的是不等式组的解法,属于基础题型.理解不等式的性质是解题的关键.38.(1)解不等式组:22(1)43x x x x --⎧⎪⎨≤-⎪⎩< (2)解方程:3323x x x x --=- 【答案】(1)0<x ≤3(2)x=32或x=-32 【解析】试题分析:()1分别解不等式找出解集的公共部分即可.()2设3x y x -=,方程变形为:32y y ,-=解方程求出y 的值,再代入3x y x -=,求出x ,注意检验.试题解析:(1)()2214,3x x x x <①②⎧--⎪⎨≤-⎪⎩由①得:0x >,由②得:3x ≤,则不等式组的解集为03x <≤;(2)设3x y x-=,方程变形为:32y y ,-= 去分母得:2230y y --=,解得:1y =-或3y ,= 可得31x x -=-或33x x-=, 解得:32x =或32x =-, 经检验32x =与32x =-都是分式方程的解. 39.解不等式组12655x x x ->⎧⎨≤+⎩①② 请结合题意填空,完成本题的解答. (Ⅰ)解不等式Ⅰ,得 ;(Ⅰ)解不等式Ⅰ,得 ;(Ⅰ)把不等式Ⅰ和Ⅰ的解集在数轴上表示出来.(Ⅰ)原不等式组的解集为 .【答案】(Ⅰ)x >3;(Ⅰ)x ≤5;(Ⅰ)见解析;(Ⅰ)3<x ≤5.【解析】【分析】【详解】解:(Ⅰ)解不等式Ⅰ,得:x >3;(Ⅰ)解不等式Ⅰ,得:x ≤5;(Ⅰ)把不等式Ⅰ和Ⅰ的解集在数轴上表示出来.(Ⅰ)原不等式组的解集为3<x ≤5.40.解不等式(组),并把它的解集在数轴上表示出来: (1)0.10.81120.63x x x ++-<-; (2)13(1)8321232x x x x --<-⎧⎪--⎨≤-⎪⎩ 【答案】(1) x <3 ;(2) -2<x ≤2【解析】分析:(1)根据一元一次不等式的解法思路有移项、化简(同乘除)可求得;(2)根据求一元一次不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)可求得.详解:(1)x 0.1x 0.8x 1120.63++-<-, 化简得:2x −x 86+<1−x 13+, 去分母得:3x −(x+8)<6−2(x+1),去括号得:3x −x −8<6−2x −2,移项合并得:4x<12,化系数为1得:x<3.在数轴上表示得:(2)()1318x 3x 21232x x ⎧--<-⎪⎨--≤-⎪⎩①②,由①得:x>−2,由②得:x⩽2,∴原不等式组的解集为:−2<x⩽2;在数轴上表示为:点睛:本题考查不等式组解集的表示方法.把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.。
初中数学一元一次不等式单元测试及参考答案
初中数学一元一次不等式单元测试及参考答案一、 选择题:(每小题3分,共36分)1、不等式13≥-x 的解集是 ( )A 3-≥xB 3-≤xC 31-≥xD 31-≤x 2、下列各式中,一元一次不等式是 ( )A .x ≥5xB .2x>1-x 2C .x+2y<1D .2x+1≤3x 3、不等式组⎩⎨⎧->+<-25062x x 的解集是 ( )A 37<<-xB 7->xC 3<xD 37>-<x x 或4、如果x x 2121-=-,则的取值范围是 ( )A 21>xB 21≥xC 21≤xD 21<x 5、在数轴上表示不等式≥-2的解集,正确的是( )A B C D6、不等式7215>-x 的正整数解的个数为( )A 、3个B 、4个C 、5个D 、6个7、不等式组()⎪⎩⎪⎨⎧<-+<+043321413x x 的最大整数解是( ) A 、0 B 、-1 C 、-2 D 、18、不等式组⎩⎨⎧><m x x 8有解,的取值范围是( ) A 、8>m B 、≥8 C 、8<m D 、≤8 9、满足不等式-1<312-x ≤2的非负整数解的个数是( ) A .5 B .4 C .3 D .无数个10、不等式组⎩⎨⎧>+≤0312x x 的解集在数轴上可表示为 ( )11、如果不等式组⎩⎨⎧>-<+n x x x 737的解集是x >7,则n 的取值范围是( ) A 、n ≥7 B 、n ≤7 C 、n=7 D 、n <712、关于的方程x m x --=-425的解在2与10之间,则的取值范围是( )A 、8>mB 、32<mC 、328<<mD 、8<m 或32>m二、填空题(每小题3分,共30分)1、不等式64-x ≥157-x 的解是 。
初中数学一元一次不等式训练题(含答案解析)
一元一次不等式的解法1.解不等式:552(2)x x-<+.2.解下列不等式:(1)726x->;(2)415x x-<+.3.解下列不等式:(1)51541x x+>-;(2)325 23x x--.4.解不等式523(1)x x+-,并把它的解集在数轴上表示出来.5.解不等式:2613x x +>-,并在数轴上表示解集.6.解不等式4113x x --<,并在数轴上表示解集.7.解不等式5124xx ++,并把它的解集在数轴上表示出来.8.解不等式11123x x +-<+,并把它的解集在数轴上表示出来.9.解不等式组:34612553x x x x ++⎧⎪-+⎨<⎪⎩.10.解不等式组:3(1)2122x x x x +<⎧⎪⎨-+>⎪⎩.11.解不等式组541.2x x ⎨+->⎪⎩12.解不等式2(1)4x x -<-,并在数轴上表示出它的解集.13.解不等式组213122x x x +-⎧⎨+>-⎩,并把它的解集在数轴上表示出来.14.解不等式组2361422x x x x -<-⎧⎨--⎩,并在数轴上表示解集.15.解不等式组:1076,713x x x x >+⎧⎪+⎨-<⎪⎩16.解不等式组1139x x -+⎨⎪⎩,并将它的解集在数轴上表示出来.17.解不等式组4521,5118x x x x +-⎧⎪⎨+-⋅⎪⎩①② 请结合题意填空,完成本题的解答.()I 解不等式①,得 ;()II 解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来: ()IV 原不等式组的解集为 .18.解不等式组3152113x x x ->⎧⎪+⎨+⎪⎩,把解集在数轴上表示出来,并写出不等式组的所有整数解.19.解不等式组.(1)11213x x +>-⎧⎨+<⎩;(2)3(2)41213x x x x ---⎧⎪+⎨>-⎪⎩.20.解不等式组,并求出整数解33213(1)8x x x x-⎧+⎪⎨⎪--<-⎩.21.解不等式组2(3)535146x x x x --⎧⎪-⎨<+⎪⎩,并把解集表示在下面的数轴上.22.解不等式组2341213x xxx++⎧⎪+⎨>-⎪⎩,并写出它的所有正整数解.23.解不等式组:4537422133x xx x+<+⎧⎪⎨+-⎪⎩,并写出它的整数解.24.解不等式组2(1)12323x xx x-+⎧⎪++⎨⎪⎩,并求出不等式组的整数解之和.参考答案与试题解析1.解不等式:552(2)x x -<+.【解答】解:552(2)x x -<+,5542x x -<+5245x x -<+,39x <,3x <.2.解下列不等式:(1)726x ->;(2)415x x -<+.【解答】解:(1)移项,得:267x >+, 合并同类项得:33x >;(2)移项,得:451x x -<+,合并同类项得:36x <,系数化成1得:2x <.3.解下列不等式:(1)51541x x +>-;(2)32523x x --. 【解答】解:(1)51541x x +>-; 移项,得:54115x x ->--,合并同类项得:16x >-;(2)32523x x --. 去分母,得:3(3)2(25)x x --, 去括号,得:39410x x --,移项,得:34109x x --+,合并同类项,得:1x --,系数化成1得:1x .4.解不等式523(1)x x +-,并把它的解集在数轴上表示出来.【解答】解:去括号,得:5233x x +-, 移项,得:5332x x ---,合并同类项,得:25x -,系数化为1,得: 2.5x -,将不等式的解集表示在数轴上如下:5.解不等式:2613x x +>-,并在数轴上表示解集. 【解答】解:移项,得:2163x x +>-, 合并同类项,得:553x >-, 系数化为1,得:3x >-,将不等式的解集表示在数轴上如下:6.解不等式4113x x --<,并在数轴上表示解集.【解答】解:去分母得:4133x x --<, 移项合并同类项得:4x <,在数轴上表示为:.7.解不等式5124xx ++,并把它的解集在数轴上表示出来.【解答】解:去分母,得:425x x ++, 移项,得:254x x --,合并,得:1x ,将不等式的解集表示在数轴上如下:8.解不等式11123x x +-<+,并把它的解集在数轴上表示出来.【解答】解:去分母得:3(1)2(1)6x x +<-+, 去括号得:33226x x +<-+, 移项合并得:1x <.9.解不等式组:34612553x x x x ++⎧⎪-+⎨<⎪⎩. 【解答】解:34612553x x x x ++⎧⎪⎨-+<⎪⎩①②,解不等式①得:1x ,解不等式②得:4x >-,不等式组的解集为:41x -<.10.解不等式组:3(1)2122x x x x +<⎧⎪⎨-+>⎪⎩. 【解答】解:()312122x x x x +<⎧⎪⎨-+>⎪⎩①②, 解不等式①得:3x <-,解不等式②得:5x >-,则不等式组的解集为53x -<<-.11.解不等式组280,541.2x x x -⎧⎪⎨+->⎪⎩ 【解答】解:2805412x x x -⎧⎪⎨+->⎪⎩①②, 解不等式①,得4x ,解不等式②,得2x <-, ∴原不等式组的解集为2x <-.12.解不等式2(1)4x x -<-,并在数轴上表示出它的解集.【解答】解:去括号,得224x x -<-, 移项,得242x x +<+, 合并同类项,得36x <, 系数化为1,得2x <. 解集在数轴上表示如图:13.解不等式组213122x x x +-⎧⎨+>-⎩,并把它的解集在数轴上表示出来.【解答】解:213122x x x +-⎧⎨+>-⎩①②, 由①得:2x -,由②得:3x <,不等式组的解集为:23x -<, 在数轴上表示:.14.解不等式组2361422x x x x -<-⎧⎨--⎩,并在数轴上表示解集. 【解答】解:2361422x x x x -<-⎧⎨--⎩①②, 解不等式①得:3x <, 解不等式②得:12x , 不等式组的解集为:132x <,在数轴上表示为:.15.解不等式组:1076,713x x x x >+⎧⎪+⎨-<⎪⎩【解答】解:1076713x x x x >+⎧⎪⎨+-<⎪⎩①②, 解不等式①得2x >,解不等式②得5x <.故原不等式组的解集是25x <<.16.解不等式组121139x x x x ->⎧⎪-+⎨⎪⎩,并将它的解集在数轴上表示出来. 【解答】解:解不等式12x x ->,得:1x <-, 解不等式1139x x -+,得:2x , 将解集表示在数轴上如下:∴不等式组的解集为1x <-.17.解不等式组4521,5118x x x x +-⎧⎪⎨+-⋅⎪⎩①② 请结合题意填空,完成本题的解答.()I 解不等式①,得 3x - ;()II 解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来: ()IV 原不等式组的解集为 .【解答】解:()I 解不等式①,得3x -; ()II 解不等式②,得:3x ;(Ⅲ)把不等式①和②的解集在数轴上表示出来:()IV 原不等式组的解集为33x -.故答案为:3x -,3x ,33x -.18.解不等式组3152113x x x ->⎧⎪+⎨+⎪⎩,把解集在数轴上表示出来,并写出不等式组的所有整数解. 【解答】解:3152113x x x ->⎧⎪⎨++⎪⎩①②, 解不等式①得:2x >,解不等式②得:4x ,∴不等式组的解集是24x <, 在数轴上表示不等式组的解集为:,所以不等式组的所有整数解是3,4.19.解不等式组.(1)11213x x +>-⎧⎨+<⎩; (2)3(2)41213x x x x ---⎧⎪+⎨>-⎪⎩. 【解答】解:(1)11213x x +>-⎧⎨+<⎩①②, 解不等式①得:2x >-,解不等式②得:1x <,则不等式组的解集为21x -<<;(2)()3241213x x x x ⎧---⎪⎨+>-⎪⎩①②, 解不等式①得:1x ,解不等式②得:4x <,∴不等式组的解集为1x .20.解不等式组,并求出整数解 33213(1)8x x x x-⎧+⎪⎨⎪--<-⎩. 【解答】解()3321318x x x x -⎧+⎪⎨⎪--<-⎩①② 解不等式①得:3x ,解不等式②得:2x >-,则不等式组的解集为23x -<, 所以不等式组的整数解为1-,0,1,2,3.21.解不等式组2(3)535146x x x x --⎧⎪-⎨<+⎪⎩,并把解集表示在下面的数轴上.【解答】解:解不等式2(3)5x x --,得:1x , 解不等式35146x x -<+,得:3x >-, 则不等式组的解集为31x -<,将不等式组的解集表示在数轴上如下:22.解不等式组2341213x x x x ++⎧⎪+⎨>-⎪⎩,并写出它的所有正整数解. 【解答】解:2341213x x x x ++⎧⎪⎨+>-⎪⎩①②解①得:1x,解②得:4x<,不等式组的解集为:14x <,则它的所有正整数解为3,2,1.23.解不等式组:4537422133x xx x+<+⎧⎪⎨+-⎪⎩,并写出它的整数解.【解答】解:4537422133x xx x+<+⎧⎪⎨+-⎪⎩①②,解①得2x<,解②得12x-,故不等式组的解集为122x-<,则其整数解为0,1.24.解不等式组2(1)12323x xx x-+⎧⎪++⎨⎪⎩,并求出不等式组的整数解之和.【解答】解:解不等式2(1)1x x-+,得:3x,解不等式2323x x++,得:0x,则不等式组的解集为03x,所以不等式组的整数解之和为01236+++=.。
(完整版)初一数学一元一次不等式练习题汇总复习用含答案.docx
3
x
>
x
3
0
2、不等式组
1 0
.不等式组
.
x
的解集为
x
>
0
的解集为
>
5
0
5
>
1
x
1
3、不等式组
2x 0
的解集为
.
不等式组
2
的解集为
.
5
>
x 0
6
2x
0
4、当x
时,3x-2的值为正数;x为
时,不等式
1
8的值不小于
7;
x
3
5、已知不等式组
2x
1
4x
5
x
m
无解,则m的取值范围是
三、解不等式(组),并在数轴上表示它的解集(每题
⑴a是正数;⑵b不是 数;⑶c是非 数;⑷x的平方是非 数;⑸x的一半小
于-1;⑹y与4的和不小于3.
2、用不等式表示:
⑴a与1的和是正数;⑵
x的2倍与y的3倍的差是非负数;⑶
x的2倍与1的和大于—
1;
⑷a的一半与4的差的绝对值不小于
a.
3、学校组织学生观看电影,某电影院票价每张
12元,50人以上(含
一 元 一 次 不 等 式 和 一 元 一 次 不 等 式 组 培 优 训 练
一、 填空题
1.比较大小:-3________-π,-0.22______(-0.2)2;
2.若2-x<0,x________2;
y
3.若
x
>0,则xy_________0;
4.
代数式
6
3x的值不大于零,则x__________;
6分,共
(完整版)一元一次不等式单元测试卷(含答案)
一元一次不等式章节测试卷命题人:朱玉涛 审阅人:陈华 使用时间:2015。
03.09一、相信你的选择:(每小题3分,共24分) 1.若b a <,则下列各式中一定成立的是( )A .11-<-b aB .33ba >C . b a -<-D . bc ac < 2.据佛山日报报道,2009年6月1日佛山市最高气温是33℃,最低气温是24℃,则当天佛山市气温t (℃)的变化范围是( )A .33t >B .24t ≤C .2433t <<D .2433t ≤≤ 3.实数a ,b 在数轴上的对应点如图1所示,则下列不等式中错误..的是( ) A .0ab > B .0a b +< C .1ab <D .0a b -< 4. 若01x <<,则21x x x,,的大小关系是( ) A .21x x x << B .21x x x << C .21x x x << D .21x x x <<5.一个不等式的解集为12x -<≤,那么在数轴上表示正确的是( )6.不等式53-x <x +3的正整数解有( )A. 1个 B 。
2个 C.3个 D. 4个7.已知三角形的一边长是(x+3)cm ,该边上的高是5 cm,它的面积不大于20 cm 2,则 ( )A .x 〉5B .-3〈x ≤5C .x ≥-3D .x ≤58.小刚准备用自己节省的零花钱购买一台MP4来学习英语,他已存有50元,并计划从本月起每月节省30元,直到他至少..有280元.设x 个月后小刚至少有280元,则可列计算月数的不等式为( )A .3050280x +> B .3050280x -≥ C .3050280x -≤ D .3050280x +≥ 二、试试你的身手:(每小题4分,共32分)1.如果x -y <0,那么x 与y 的大小关系是x y .(填<或>符号)2。
中考数学《一元一次不等式》复习练习及答案中考数学考点分类汇
年级数学中考复习专题一元一次不等式一、选择题:1、若a、b是有理数,则下列说法正确的是()A、若,则B、若,则C、若,则D、若,则2、不等式5x﹣1>2x+5的解集在数轴上表示正确的是( )A. B.C. D.3、已知关于x的不等式(1﹣a)x>2的解集为x<,则a的取值范围是()A.a>0B.a>1C.a<0D.a<14、要使+有意义,则x应满足()A.≤x≤3 B.x≤3且x≠ C.<x<3 D.<x≤35、若不等式组无解,则有()A、B、 C、D、≤6、已知点P(2a+4,3a-6)在第四象限,那么a的取值范围是()A.-2<a<3B.a<-2C.a>3D.-2<a<27、不等式组有3个整数解,则a的取值范围是()A. B. C. D.8、若方程组的解x,y满足0<x+y<1,则k的取值范围是( )A.﹣4<k<0B.﹣1<k<0C.0<k<8D.k>﹣49、阅读理解:我们把称作二阶行列式,规定它的运算法则为,例如,如果,则的取值范围是()(A)(B)(C)(D)10、使不等式x-1≥2与3x-7<8同时成立的x的整数值是( )A.3,4B.4,5C.3,4,5D.不存在11、关于x的不等式组的解集为x<3,那么m的取值范围为()A.m=3 B.m>3 C.m<3 D.m≥312、某种商品的进价为800元,标价为1200元,由于该商品积压,商店准备打折销售,但要保证利润率不低于20%,则最低可打()A.8折B.8.5折C.7折D.6折学二、填空题:13、不等式的解集是.14、已知b<a<0,则ab,a²,b²的大小为。
15、不等式2+9≥3(+2)的正整数解是。
16、如图,已知直线与直线相交于点(2,-2),由图象可得不等式的解集是.17、已知点P(2a﹣8,2﹣a)是第三象限的整点(横、纵坐标均为整数),则P点的坐标是.18、关于x的不等式的解为,则不等式的解为。
19、从-3,-2,-1,0,4这五个数中随机抽取一个数记为a,a的值既是不等式组的解,又在函数的自变量取值范围内的概率是.20、某商品的售价是528元,商家出售一件这样的商品可获利润是进价的10%~20%.设进价为x元,则x的取值范围是___________.21、若不等式组的解集是﹣3<x<2,则a+b= .22、某种商品的进价为800元,出售标价为1 200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则最多可打__________折.23、有10名菜农,每人种茄子3亩或辣椒2亩,已知茄子每亩可收入0.5万元,辣椒每亩可收入0.8万元,要使总收入不低于15.6万元,则最多只能安排人种茄子。
初中数学方程与不等式之一元一次方程基础测试题附答案(1)
初中数学方程与不等式之一元一次方程基础测试题附答案(1)一、选择题1.下列方程的变形中正确的是( )A .由567x x +=-得675x x -=-B .由2(1)3x --=得223x --=C .由310.7x -=得1030107x -= D .由139322x x +=--得212x =- 【答案】D【解析】【分析】根据解一元一次方程的一般步骤对各选项进行逐一分析即可.【详解】A .由567x x +=-得675x x -=--,故错误;B .由2(1)3x --=得223x -+=,故错误;C .由310.7x -=得103017x -=,故错误; D .正确.故选:D .【点睛】 本题考查的是解一元一次方程,熟知解一元一次方程的一般步骤是解答此题的关键.2.甲、乙两人环湖竞走,环湖一周为400米,乙的速度是80米/分,甲的速度是乙的54倍,且甲在乙前100米处,多少分钟后,两人第一次相遇?设经过x 分钟两人第一次相遇,所列方程为( )A .580100804x x +=⨯ B .580300804x x +=⨯ C .580100804x x -=⨯ D .580300804x x -=⨯ 【答案】B【解析】【分析】根据题意表示出甲的速度为80×54米/分,然后根据题意可得等量关系:甲x 分钟的路程-乙x 分钟的路程=400-100,根据等量关系列出方程即可.【详解】解:设经过x 分钟两人第一次相遇,由题意得:80×54x-80x=400-100, 变形得:80x+300=54×80x , 故选:B .【点睛】本题主要考查由实际问题抽象出一元一次方程,解题的关键是正确理解题意,找出题目中等量关系,列出方程.3.一船由甲地开往乙地,顺水航行要4小时,逆水航行比顺水航行多用40分钟,已知船在静水中的速度为16千米/时,求水流速度. 解题时,若设水流速度为x 千米/时,那么下列方程中正确的是( )A .()()24164163x x ⎛⎫+=+- ⎪⎝⎭ B .()24164163x ⎛⎫⨯=+- ⎪⎝⎭C .()()()41640.416x x +=+-D .()24164163x ⎛⎫+=+⨯ ⎪⎝⎭ 【答案】A【解析】【分析】 由已知条件得到顺水航行的速度为(16+x )千米/时,逆水航行的速度为(16-x )千米/时,根据时间关系列方程即可.【详解】由题意得到:顺水航行的速度为(16+x )千米/时,逆水航行的速度为(16-x )千米/时,∴()()24164163x x ⎛⎫+=+- ⎪⎝⎭, 故选:A.【点睛】此题考查一元一次方程的实际应用,正确理解顺水航行和逆水航行的速度是解题的关键.4.在解分式方程31x -+21x x+-=2时,去分母后变形正确的是( ) A .()()3221x x -+=- B .()3221x x -+=-C .()322x -+=D .()()3221x x ++=- 【答案】A【解析】【分析】本题考查对一个分式确定最简公分母,去分母得能力.观察式子x-1和1-x 互为相反数,可得1-x=-(x-1),所以可得最简公分母为x-1,因为去分母时式子不能漏乘,所以方程中式子每一项都要乘最简公分母.【详解】方程两边都乘以x-1,得:3-(x+2)=2(x-1).故答案选A .【点睛】本题考查了解分式方程,解题的关键是方程两边都乘以最简公分母.5.甲、乙两运动员在长为100m 的直道AB (A ,B 为直道两端点)上进行匀速往返跑训练,两人同时从A 点起跑,到达B 点后,立即转身跑向A 点,到达A 点后,又立即转身跑向B 点…若甲跑步的速度为5m/s ,乙跑步的速度为4m/s ,则起跑后100s 内,两人相遇的次数为( )A .5B .4C .3D .2 【答案】B【解析】分析:可设两人相遇的次数为x ,根据每次相遇的时间100254⨯+,总共时间为100s ,列出方程求解即可.详解:设两人相遇的次数为x ,依题意有 100254⨯+x=100, 解得x=4.5,∵x 为整数,∴x 取4.故选B .点睛:考查了一元一次方程的应用,利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x ,然后用含x 的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.6.某商品打七折后价格为a 元,则原价为( )A .a 元B .107a 元C .30%a 元D .710a 元 【答案】B【解析】【分析】直接利用打折的意义表示出价格即可得出答案.【详解】设该商品原价为x 元,∵某商品打七折后价格为a元,∴原价为:0.7x=a,则x=107a(元),故选B.【点睛】本题考查了一元一次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.7.已知△ABC的三边长分别为3,5,7,△DEF的三边长分别为3,3x﹣2,2x﹣1,若这两个三角形全等,则x为()A.B.4 C.3 D.不能确定【答案】C【解析】试题分析:根据三角形全等可得:3x-2=5且2x-1=7或3x-2=7且2x-1=5;第一个无解,第二个解得:x=3.考点:三角形全等的性质8.如图所示是边长分别为60cm和80cm的两种正方形地砖,这两种地砖每平方厘米的造价相同,若边长为60cm的地砖的造价为90元,则边长为80cm的正方形地砖的造价为()A.120元B.160元C.180元D.270元【答案】B【解析】【分析】设边长为80cm的正方形地砖的造价为x,根据每平方厘米的造价相同列方程求出x的值即可得答案.【详解】设边长为80cm的正方形地砖的造价为x元,∵两种地砖每平方厘米的造价相同,∴9060608080x=⨯⨯,解得:x=160,故选:B.【点睛】本题考查一元一次方程的应用,正确得出等量关系列出方程是解题关键.9.下列方程中,是一元一次方程的是( )A .x 2﹣4x =3B .x =0C .x +2y =1D .x ﹣1=1x【答案】B【解析】【分析】一元一次方程的一般式为ax+b=0(a≠0),根据该定义进行判断即可.【详解】解:x 2﹣4x =3,未知数x 的最高次数为2,故A 不是一元一次方程;x =0,符合一元一次方程的定义,故B 是一元一次方程;x +2y =1,方程含有两个未知数,故C 不是一元一次方程; x ﹣1=1x,分母上含有未知数,故D 不是一元一次方程. 故选择B.【点睛】本题考查了一元一次方程的定义.10.对于方程5112232x x -+-=,去分母后,得到方程正确的是( ) A .51212x x --=+ B .()51312x x -=+C .()()2516312x x --=+D .()()25112312x x --=+ 【答案】D【解析】【分析】方程的两边同时乘以各分母的最小公倍数.【详解】解:方程的两边同时乘以6,得2(5x-1)-12=3(1+2x).故选D .【点睛】本题考查了解一元一次方程.去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.11.小明和小亮两人在长为50m 的直道AB(A 、B 为直道两端点)上进行匀速往返跑训练,两人同时从A 点起跑,到达B 点后,立即转身跑向A 点,到达A 点后,又立即转身跑向B点……若小明跑步速度为5m/s ,小亮跑步速度为4m/s ,则起跑后60s 内,两人相遇的次数为( )A .3B .4C .5D .6 【答案】C【解析】【分析】设在60s 内两人相遇x 次,根据每次相遇的时间50254⨯+,一共是60s ,列出方程求解即可. 【详解】设两人起跑后60s 内相遇x 次,依题意得:5026054x ⨯=+, 解得x=5.4,∵x 为整数,∴x 取5,故选:C.【点睛】 此题考查一元一次方程的实际应用,解题的关键一是求出两人每一次相遇间隔的实际,二是找到隐含的等量关系:每一次相遇时间乘以次数等于总时间,由此构建一元一次方程.12.若关于x 的不等式组12246x k x k k -⎧≥⎪⎨⎪-≤+⎩有解,且关于x 的方程()()2232kx x x =--+有非负整数....解,则符合条件的所有整数k 的和为( ) A .-5 B .-9 C .-12D .-16【答案】B【解析】【分析】先根据不等式组有解得k 的取值,利用方程有非负整数解,将k 的取值代入,找出符合条件的k 值,并相加.【详解】 12246x k x k k -⎧≥⎪⎨⎪-≤+⎩①②, 解①得:x≥1+4k ,解②得:x≤6+5k ,∴不等式组的解集为:1+4k≤x≤6+5k ,1+4k≤6+5k ,k≥-5,解关于x的方程kx=2(x-2)-(3x+2)得,x=-61k,因为关于x的方程kx=2(x-2)-(3x+2)有非负整数解,当k=-4时,x=2,当k=-3时,x=3,当k=-2时,x=6,∴-4-3-2=-9;故选B.【点睛】本题考查了解一元一次不等式组、方程的解,有难度,熟练掌握不等式组的解法是解题的关键.13.如图,平行四边形ABCD中,AB=8cm,AD=12cm,点P在AD 边上以每秒1cm的速度从点A向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在运动以后,以P、D、Q、B四点组成平行四边形的次数有()A.4次B.3次C.2次D.1次【答案】B【解析】【分析】【详解】试题解析:∵四边形ABCD 是平行四边形,∴BC=AD=12,AD∥BC,∵四边形PDQB是平行四边形,∴PD=BQ,∵P的速度是1cm/秒,∴两点运动的时间为12÷1=12s,∴Q运动的路程为12×4=48cm,∴在BC上运动的次数为48÷12=4次,第一次PD=QB时,12-t=12-4t,解得t=0,不合题意,舍去;第二次PD=QB时,Q从B到C的过程中,12-t=4t-12,解得t=4.8;第三次PD=QB时,Q运动一个来回后从C到B,12-t=36-4t,解得t=8;第四次PD=QB时,Q在BC上运动3次后从B到C,12-t=4t-36,解得t=9.6.∴在运动以后,以P、D、Q、B四点组成平行四边形的次数有3次,故选:B.考点:平行四边形的判定与性质14.商家出售的一种自行车的标价比进价高45%,实际销售这种自行车时按标价八折优惠,每辆获利80元,设这种自行车的进价是每辆x元,下列方程正确的是()A.45%(1+80%)x﹣x=80 B.x+45%﹣80%=80C.80%(1+45%)x﹣x=80 D.(1+80%)(1+45%)x﹣x=80【答案】C【解析】【分析】设这种自行车的进价是每辆x元,根据利润=卖价-进价,列方程即可.【详解】设这种自行车的进价是每辆x元,由题意得,80%(1+45%)x-x=80.故选:C.【点睛】本题考查了一元一次方程的应用-销售问题,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.15.足球比赛的记分办法为:胜一场得3分,平一场得1分,负一场得0分.一个队打了14场比赛,负5场,共得19分,那么这个队胜了A.3场B.4场C.5场D.6场【答案】C【解析】【分析】设共胜了x场,本题的等量关系为:胜的场数×3+平的场数×1+负的场数×0=总得分,解方程即可得出答案.【详解】设共胜了x场,则平了(14-5-x)场,由题意得:3x+(14-5-x)=19,解得:x=5,即这个队胜了5场.故选C.【点睛】此题考查了一元一次方程的应用,属于基础题,解答本题的关键是要掌握胜的场数×3+平的场数×1+负的场数×0=总得分,难度一般.16.在如图的2016年6月份的日历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是()A.27 B.51 C.69 D.72【答案】D【解析】设第一个数为x,则第二个数为x+7,第三个数为x+14.列出三个数的和的方程,再根据选项解出x,看是否存在.解:设第一个数为x,则第二个数为x+7,第三个数为x+14故三个数的和为x+x+7+x+14=3x+21当x=16时,3x+21=69;当x=10时,3x+21=51;当x=2时,3x+21=27.故任意圈出一竖列上相邻的三个数的和不可能是72.故选D.“点睛“此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.17.如图,长方形ABCD中,AB=6,第一次平移长方形ABCD沿AB的方向向右平移5个单位长度,得到长方形A1B1C1D1,第2次平移长方形A1B1C1D1沿A1B1的方向向右平移5个单位长度,得到长方形A2B2C2D2,…,第n次平移长方形A n-1B n-1C n-1D n-1沿A n-1B n-1的方向向右平移5个单位长度,得到长方形A n B n C n D n(n>2),若AB n的长度为2 026,则n的值为().A.407 B.406 C.405 D.404【答案】D【解析】【分析】根据平移的性质得出AA1=5,A1A2=5,A2B1=A1B1-A1A2=6-5=1,进而求出AB1和AB2的长,由此得出ABn=5(n+1)×5+1,将2026代入求出n即可.【详解】∵AB=6,第1次平移将矩形ABCD沿AB的方向向右平移5个单位,得到矩形A1B1C1D1,第2次平移将矩形A1B1C1D1沿A1B1的方向向右平移5个单位,得到矩形A2B2C2D2…,∴AA1=5,A1A2=5,A2B1=A1B1-A1A2=6-5=1,∴AB1=AA1+A1A2+A2B1=5+5+1==2×5+1=11,∴AB2的长为:5+5+6=3×5+1=16,……∴ABn=5(n+1)+15(n+1)+1=2026,解得:n=404,故选D.【点睛】本题主要考查了平移的性质以及一元一次方程的应用,根据平移的性质得出AA1=5,A1A2=5是解题关键.18.若方程组5133x y ax y a-=+⎧⎨+=-⎩的解x与y的差为3,则a的值为()A.0B.7C.7-D.8【答案】B【解析】【分析】先利用加减消元法解方程组得到37838axay-⎧=⎪⎪⎨+⎪=-⎪⎩,再根据已知条件列出关于参数a的方程,然后解一元一次方程即可得解.【详解】解:∵51 33 x y ax y a-=+⎧⎨+=-⎩①②②-①×3得,38ay+ =-①+②×5得,378ax-=∴方程组的解为:37838axay-⎧=⎪⎪⎨+⎪=-⎪⎩∵方程组5133x y ax y a-=+⎧⎨+=-⎩的解x与y的差为3,即3x y-=∴373388a a -+⎛⎫--= ⎪⎝⎭∴7a =.故选:B【点睛】本题考查了解含参数的二元一次方程组、列一元一次方程并解一元一次方程,能得到关于参数a 的方程是解决问题的关键.19.某商店经销一种商品,由于进价降低了5%,出售价不变,使得利润由n %提高到(n +6)%,则n 的值为( ).A .10B .12C .14D .17【答案】C【解析】【分析】设原进价为x ,根据等量关系:原进价+原来利润=进价降低后的进价+降价后的利润列方程求解即可.【详解】解:设原进价为x ,则:x+n%•x=95%•x+95%•x•(n+6)%,∴1+n%=95%+95%(n+6)%,∴100+n=95+0.95(n+6),∴0.05n=0.7解得:n=14.故选C .【点睛】本题考查了一元一次方程的应用,此类题常用到得数量关系是:售价=进价+利润,进价×利润率=利润.20.下列等式变形正确的是( )A .如果0.58x =,那么x=4B .如果x y =,那么-2-2x y =C .如果a b =,那么a b c c= D .如果x y =,那么x y = 【答案】B【解析】【分析】等式两边同时加上或减去同一个数,等式依然成立;等式两边同时除以一个不为0的数,等式依然成立;两个数的绝对值相等,其本身不一定相等,据此逐一判断即可.【详解】A :如果0.58x =,那么16x =,故选项错误;B :如果x y =,那么22x y -=-,故选项正确;C :如果a b =,当0c ≠时,那么a b c c=,故选项错误; D :如果x y =,那么x y =±,故选项错误;故选:B.【点睛】本题主要考查了等式的性质,熟练掌握相关概念是解题关键.。
《3.4一元一次不等式组》基础训练(含答案)
3.4 一元一次不等式组1.下列不等式组是一元一次不等式组的是(C )A.⎩⎪⎨⎪⎧x 2+1≥3x ,7x -8<4 B.⎩⎪⎨⎪⎧x +y >2,x <3C.⎩⎪⎨⎪⎧3x +5<4,-2x +6≥10,12(x +3)+2≥-1 D.⎩⎪⎨⎪⎧x -1x +3<0,x -2>32.不等式组⎩⎪⎨⎪⎧x ≥-1,x <2的解在数轴上表示正确的是(A )3.在下列不等式组中,解为-1≤x <5的是(C )A.⎩⎪⎨⎪⎧x ≥-1,x >5 B.⎩⎪⎨⎪⎧x -5>0,x +1≤0 C.⎩⎪⎨⎪⎧x -5<0,x +1≥0 D.⎩⎪⎨⎪⎧x +5<0,x +1≤0 4.不等式组⎩⎪⎨⎪⎧x +1>0,x -3>0的解是(B )A. x >-1B. x >3C. -1<x <3D. x <35.已知三角形的三边长分别是3,5,x ,则x 的取值范围是2<x <8.6.不等式组⎩⎪⎨⎪⎧x +6≥3x +4,5x +5>4x -2的解是-7<x ≤1.7.解不等式组: (1)⎩⎪⎨⎪⎧2x +5>3(x -1),4x >x +72.【解】 解不等式2x +5>3(x -1),得x <8.解不等式4x >x +72,得x >1.∴不等式组的解为1<x <8. (2)⎩⎪⎨⎪⎧x -3(x -2)≥4,1+2x 3>x -1.【解】 解不等式x -3(x -2)≥4,得x ≤1. 解不等式1+2x 3>x -1,得x <4.∴不等式组的解为x ≤1.8.解不等式组,并把解在数轴上表示出来.(1)⎩⎪⎨⎪⎧2x +5≥3,3(x -2)<2x -4. 【解】 解2x +5≥3,得x ≥-1. 解3()x -2<2x -4,得x <2. ∴不等式组的解为-1≤x <2. 在数轴上表示如下:(第8题解①)(2)⎩⎪⎨⎪⎧x -1≤0,1+12x >0.【解】 解x -1≤0,得x ≤1. 解1+12x >0,得x >-2.∴不等式组的解为-2<x ≤1. 在数轴上表示如下:,(第8题解②))(3)⎩⎪⎨⎪⎧4x +6>1-x ,3(x -1)≤x +5. 【解】 解4x +6>1-x ,得x >-1. 解3(x -1)≤x +5,得x ≤4.∴不等式组的解为-1<x ≤4. 在数轴上表示如下:(第8题解③)9.解不等式组⎩⎪⎨⎪⎧3x +1≤2(x +1),-x <5x +12,并写出它的整数解.【解】 ⎩⎪⎨⎪⎧3x +1≤2(x +1),①-x <5x +12.②解不等式①,得x ≤1. 解不等式②,得x >-2.∴不等式组的解为-2<x ≤1,它的整数解为-1,0,1.10.(1)关于x 的不等式组⎩⎪⎨⎪⎧3x -1>4(x -1),x <m 的解为x <3,则m 的取值范围是(D )A. m =3B. m >3C. m <3D. m ≥3【解】 不等式组可变形为⎩⎪⎨⎪⎧x <3,x <m .∵不等式组的解为x <3, ∴m 的取值范围是m ≥3.(2)若不等式组⎩⎪⎨⎪⎧x <1,x >m -1恰有两个整数解,则m 的取值范围是(A )A. -1≤m <0B. -1<m ≤0C. -1≤m ≤0D. -1<m <0【解】 ∵不等式组⎩⎪⎨⎪⎧x <1,x >m -1的解为m -1<x <1,又∵不等式组⎩⎪⎨⎪⎧x <1,x >m -1恰有两个整数解,∴-2≤m -1<-1,解得-1≤m <0.11.已知关于x ,y 的方程组⎩⎪⎨⎪⎧x +y =2a +7,x -2y =4a -3的解是正数,且x 的值小于y 的值.(1)求a 的范围.(2)化简:|8a +11|-|10a +1|.【解】 (1)解方程组⎩⎪⎨⎪⎧x +y =2a +7,x -2y =4a -3,得⎩⎨⎧x =8a +113,y =10-2a 3.根据题意,得⎩⎪⎨⎪⎧8a +113>0,①10-2a3>0,②8a +113<10-2a 3,③解不等式①,得a >-118.解不等式②,得a <5. 解不等式③,得a <-110.∴不等式组的解是-118<a <-110.(2)∵-118<a <-110,∴8a +11>0,10a +1<0.∴|8a +11|-|10a +1|=8a +11-[-(10a +1)]=8a +11+10a +1=18a +12. 12.已知a ,b ,c 为三个非负数,且满足3a +2b +c =5,2a +b -3c =1. (1)求c 的取值范围.(2)设S =3a +b -7c ,求S 的最大值和最小值.【解】 (1)根据题意,得⎩⎪⎨⎪⎧3a +2b +c =5,2a +b -3c =1,解得⎩⎪⎨⎪⎧a =7c -3,b =7-11c .∵a ≥0,b ≥0,c ≥0,∴⎩⎪⎨⎪⎧7c -3≥0,7-11c ≥0,∴37≤c ≤711.(2)S =3a +b -7c =3(7c -3)+(7-11c )-7c =3c -2. ∵37≤c ≤711,∴97≤3c ≤2111, ∴-57≤3c -2≤-111,∴S 的最大值为-111,最小值为-57.13.某玩具商计划生产A ,B 两种型号的玩具投入市场,初期计划生产100件,生产投入资金不少于22400元,但不超过22500元,且资金要全部投入到生产这两种型号的玩具.假设生产的这两种型号的玩具能全部售出,这两种玩具的生产成本和售价如下表:(2)求该玩具商所能获得的最大利润.【解】 (1)设该厂生产A 型玩具x 个,则生产B 型玩具(100-x )个. 由题意,得22400≤200x +240(100-x )≤22500, 解得37.5≤x ≤40.∵x 为整数,∴x 的取值为38或39或40. 故有三种生产方案:方案一,生产A 型玩具38个,B 型玩具62个; 方案二,生产A 型玩具39个,B 型玩具61个; 方案三:生产A 型玩具40个,B 型玩具60个. (2)由题意知,生产B 型玩具越多获利越大,故生产A 型玩具38个,B 型玩具62个才能获得最大利润,此时最大利润为38×50+62×60=5620(元).答:该玩具商所能获得的最大利润为5620元.14.已知a ,b 为实数,则解可以为-2<x <2的不等式组是(D )A. ⎩⎪⎨⎪⎧ax >1,bx >1B. ⎩⎪⎨⎪⎧ax >1,bx <1C. ⎩⎪⎨⎪⎧ax <1,bx >1D. ⎩⎪⎨⎪⎧ax <1,bx <1【解】 从解出发,逆向分析.-2<x <2,即⎩⎪⎨⎪⎧x <2,x >-2.观察选项知,所给不等式组的右边均为1, ∴x <2的两边都除以2,得12x <1,x >-2的两边都除以-2,得-12x <1,即⎩⎨⎧12x <1,-12x <1的解为-2<x <2.∴当a =-12,b =12或a =12,b =-12时,D 选项中的不等式的解为-2<x <2.。
2022-2023学年浙教版八年级数学上册《第3章一元一次不等式》期末综合复习题(附答案)
2022-2023学年浙教版八年级数学上册《第3章一元一次不等式》期末综合复习题(附答案)一.选择题(共8小题,满分40分)1.下列式子:(1)4>0;(2)2x+3y<0;(3)x=3;(4)x≠y;(5)x+y;(6)x+3≤7中,不等式的个数有()A.2个B.3个C.4个D.5个2.据气象台预报,2019年某日武侯区最高气温33℃,最低气温24℃,则当天气温(℃:)的变化范围是()A.t>33B.t≤24C.24<t<33D.24≤t≤333.下列说法中,正确的是()A.x=1是不等式2x<1的解B.x=3是不等式﹣x<1的解集C.x>﹣1是不等式﹣2x<1的解集D.不等式﹣x<1的解集是x>﹣14.不等式组的解集是()A.x<3B.x>5或x<3C.x>5D.无解5.若a+b=﹣2,且a≥2b,则()A.有最小值B.有最大值1C.有最大值2D.有最小值6.一个正数m的平方根是a﹣3与1﹣2a,则关于x的不等式ax+>2x的解集为()A.x>B.x<C.x>D.x<7.若关于x,y的方程组的解满足x﹣y>﹣,则m的最小整数解为()A.﹣3B.﹣2C.﹣1D.08.若关于x的一元一次不等式组的解集是x≤k,且关于y的方程2y=3+k有正整数解,则符合条件的所有整数k的和为()A.5B.8C.9D.15二.填空题(共8小题,满分40分)9.若2x﹣y=1,且0<y<1,则x的取值范围为.10.已知关于x的不等式(2a﹣b)x>a﹣2b的解集是,则关于x的不等式ax+b<0的解集为.11.如果关于x的不等式3x﹣a≤0只有3个正整数解,则a的取值范围.12.不等式的负整数解的积是.13.符号表示运算ac﹣bd,对于整数a,b,c,d,已知1<<3,则b+d的值是.14.不等式组的解集是.15.不等式组无解,则m的取值范围为.16.若关于x的不等式组有3个整数解,则m的取值范围是.三.解答题(共6小题,满分40分)17.已知a+1>0,2a﹣2<0.(1)求a的取值范围;(2)若a﹣b=3,求a+b的取值范围.18.已知x=1满足不等式组,求a的取值范围.19.(1)解不等式:x+2﹣3(x+1)>1;(2)解不等式组.20.求不等式组的整数解.21.先阅读理解下面例题,再按要求解答下列问题:例:解不等式x2﹣9<0.解:∵x2﹣9=(x+3)(x﹣3),∴原不等式可化为(x+3)(x﹣3)<0.由有理数乘法法则:两数相乘,异号得负,得:①,或②.解不等式组①得﹣3<x<3,解不等式组②无解,∴原不等式x2﹣9<0的解集为﹣3<x<3.请你模仿例题的解法,解决下列问题:(1)不等式x2﹣4>0解集为;(2)不等式x2+3x≤0解集为;(3)拓展延伸:解不等式.22.某学校计划购进一批电脑和电子白板,购买1台电脑和2台电子白板需要3.5万元;购进2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有哪几种购买方案?(3)请你求出学校在(2)的购买活动中最多需要多少资金?参考答案一.选择题(共8小题,满分40分)1.解:根据不等式的定义,只要有不等符号的式子就是不等式,所以(1),(2),(4),(6)为不等式,共有4个.故选:C.2.解:由题意知:武侯区的最高气温是33℃,最低气温24℃,所以当天武侯区的气温(t℃)的变化范围为:24≤t≤33.故选:D.3.解:A、解不等式得到解集是x,则x=1不是不等式2x<1的解,故不符合题意.B、不等式﹣x<1的解集是x>﹣1,∴x=3是它的一个解,而不是解集,故不符合题意.C、不等式﹣2x<1的解集是x>﹣,∴x>﹣1不是它的解集,故不符合题意.D、不等式﹣x<1的解集是x>﹣1,故符合题意.故选:D.4.解:∵比大的大比小的小无解,故选D.5.解:∵a+b=﹣2,∴a=﹣b﹣2,b=﹣2﹣a,又∵a≥2b,∴﹣b﹣2≥2b,a≥﹣4﹣2a,移项,得﹣3b≥2,3a≥﹣4,解得,b≤﹣<0(不等式的两边同时除以﹣3,不等号的方向发生改变),a≥﹣;由a≥2b,得≤2 (不等式的两边同时除以负数b,不等号的方向发生改变);A、当a>0时,<0,即的最小值不是,故本选项错误;B、当﹣≤a<0时,≥,有最小值是,无最大值;故本选项错误;C、有最大值2;故本选项正确;D、无最小值;故本选项错误.故选:C.6.解:根据题意得a﹣3+1﹣2a=0∴a=﹣2,∴a﹣3=﹣5,∴m=25,∴不等式为﹣2x+>2x,解得x<,故选:B.7.解:,①﹣②得:x﹣y=3m+2,∵关于x,y的方程组的解满足x﹣y>﹣,∴3m+2>﹣,解得:m>﹣,∴m的最小整数解为﹣1,故选:C.8.解:,解不等式①得x≤k,解不等式②得x<7,由题意得k<7,解关于y的方程2y=3+k得,y=,由题意得,>0,解得k>﹣3,∴k的取值范围为:﹣3<k<7,且k为整数,∴k的取值为﹣2,﹣1,0,1,2,3,4,5,6,当k=﹣2时,y==,当k=﹣1时,y==1,当k=0时,y==,当k=1时,y==2,当k=2时,y==,当k=3时,y==3,当k=4时,y==,当k=5时,y==4,当k=6时,y==,∵为整数,且k为整数,∴符合条件的整数k为﹣1,1,3,5,∵﹣1+1+3+5=8,∴符合条件的所有整数k的和为8.故选:B.二.填空题(共8小题,满分40分)9.解:∵2x﹣y=1,∴y=2x﹣1,∵0<y<1,∴0<2x﹣1<1,解得<x<1.故答案为:.10.解:∵关于x的不等式(2a﹣b)x>a﹣2b的解集是,∴2a﹣b>0,x>∴2a>b,=∴2a﹣4b=10a﹣5b∴8a=b∴2a>8a∴a<0∵ax+b<0∴ax<﹣b∴x>﹣∵8a=b∴x>﹣8故答案为:x>﹣8.11.解:3x﹣a≤0的解集为x≤;其正整数解为1,2,3,则3≤<4,所以a的取值范围9≤a<12.12.解:不等式的解集是x>﹣,因而负整数解是:﹣1,﹣2,则其积是2.13.解:根据题意得:,解得:1<bd<3,∵b、d是整数,∴bd=2,则b、d的值是1和2,或﹣1,﹣2.则b+d=3或﹣3.故答案是:±3.14.解:,解不等式①得:x>﹣1,解不等式②得:x<4,∴不等式组的解集为﹣1<x<4,故答案为:﹣1<x<4.15.解:,解不等式①,得x≥3,∵不等式组无解,∴m<3,故答案为:m<3.16.解:解不等式2x﹣3>5,得:x>4,解不等式x﹣m<1,得:x<m+1,不等式租的解集为4<x<m+1,∵不等式组仅有3个整数解,∴7<m+1≤8,∴6<m≤7,故答案为:6<m≤7.三.解答题(共6小题,满分40分)17.解:(1)根据题意得,解①得a>﹣1,解②得a<1,则a的范围是﹣1<a<1;(2)∵a﹣b=3,∴b=a﹣3,∴a+b=2a﹣3,∵﹣1<a<1,∴﹣2<2a<2,∴﹣5<2a﹣3<﹣1,即﹣5<a+b<﹣1.18.解:将x=1代入3x﹣5≤2x﹣4a,得4a≤4,解得a≤1;将x=1代入3(x﹣a)<4(x+2)﹣5,得a>﹣.不等式组解集是﹣<a≤1,a的取值范围是﹣<a≤1.19.解:(1)x+2﹣3(x+1)>1,x+2﹣3x﹣3>1,x﹣3x>1﹣2+3,﹣2x>2,x<﹣1;(2)解不等式5x﹣1≤3(x+1),得:x≤2,解不等式≥x﹣1,得:x≤4,则不等式组的解集为x≤2.20.解:由①得,由②得x≤1,所以这个不等式组的的解集是,∴不等式组的整数解是﹣1,0,1.21.解:(1)∵x2﹣4>0,∴(x+2)(x﹣2)>0,则①,②,解不等式组①,得:x>2,解不等式组②,得:x<﹣2,∴不等式x2﹣4>0解集为x>2或x<﹣2,故答案为:x>2或x<﹣2;(2)∵x2+3x≤0,∴x(x+3)≤0,则①,②,解不等式组①,得:不等式组无解;解不等式组②,得:﹣3≤x≤0,故答案为:﹣3≤x≤0;(3)∵≤0,∴①,②,解不等式组①,得:﹣3≤x≤5,解不等式组②,得:不等式组无解;所以原不等式的解集为﹣3≤x≤5.22.解:(1)设每台电脑x万元,每台电子白板y万元,根据题意得:,解得,,答:每台电脑0.5万元,每台电子白板1.5万元;(2)设需购进电脑m台,则购进电子白板(30﹣m)台,根据题意得:,解得:15≤m≤17,又∵m为正整数,∴m可以为15,16,17,∴共有3种购买方案:方案1:购进电脑15台,电子白板15台;方案2:购进电脑16台,电子白板14台;方案3:购进电脑17台,电子白板13台.(3)选择方案1所需费用为0.5×15+1.5×15=30(万元);选择方案2所需费用为0.5×16+1.5×14=29(万元);选择方案3所需费用为0.5×17+1.5×13=28(万元).∵30万元>29万元>28万元,∴学校在(2)的购买活动中最多需要30万元.。
一元一次不等式练习题及答案
一元一次不等式练习题及答案1.下列不等式中,是一元一次不等式的有()个。
答案:A。
1 (只有x>-3是一元一次不等式)2.不等式3(x-2)≤x+4的非负整数解有()个。
答案:C。
6 (将不等式化简得到2x ≤ 10,解得x ≤ 5,因此非负整数解有6个,分别为0,1,2,3,4,5)3.不等式4x-111<x的最大的整数解为()。
答案:B。
0 (将不等式化简得到3x < 111,解得x < 37,因此最大的整数解为0)4.与2x<6不同解的不等式是()答案:A。
2x+1<7 (将2x<6化简得到x<3,因此2x+1<7的解为x<3,与2x<6不同解)5.不等式ax+b>0(a<0)的解集是()答案:B。
x -b/a,因为a<0,所以解集为x<-b/a)6.如果不等式(m-2)x>2-m的解集是x<-1,则有()答案:A。
m>2 (将不等式化简得到x。
(2-m)/(m-2),因为解集为x 2)7.若关于x的方程3x+2m=2的解是正数,则m的取值范围是()答案:A。
m>1 (将方程化简得到x = (2-2m)/3,因为解是正数,所以有2-2m。
0,解得m 1)二、填空题9.当x________时,代数式x35x1的值是非负数.26答案:x ≤ 5/710.当代数式x/2-3x的值大于10时,x的取值范围是________.答案:x < -2011.若代数式3(2k+5)/2的值不大于代数式5k-1的值,则k的取值范围是________.答案:k ≤ -5/312.若不等式3x-m≤0的正整数解是1,2,3,则m的取值范围是________.答案:m ≥ 913.关于x的方程kx12x的解为正实数,则k的取值范围是________.答案:k。
2三、解答题14.解不等式:1)2-5x≥8-2x2)x+53x+2122答案:1)将不等式化简得到-3x ≥ 6,解得x ≤ -2,因此解集为x ≤ -2.2)将不等式化简得到x。
经典试卷】人教版七年级数学下册 一元一次不等式 单元测试题(含答案)
经典试卷】人教版七年级数学下册一元一次不等式单元测试题(含答案)一、选择题:1.B2.C3.数轴上应为大于号,正确选项为:2x>6,解集为x>3,故选项D正确。
4.C5.C6.B7.C8.C9.B10.5元11.712.113.314.x>215.-2≤m<216.改写为:如果甲骑车在半小时内赶上乙,比甲先出发2小时,乙以每小时5千米的速度步行,那么甲的速度应该是多少?若[x]+3=1,则x的取值范围为x≤-2;21.解不等式组为{x≤-1,y≥2};22.解不等式组为{x≤-2,y≤-1};23.关于x的方程5x+4=16k-x的根大于2且小于10的条件是4k≤x<5k,所以k为1、2、3、4、5、6、7;24.共有7辆汽车运货;25.(1)甲、乙两种君子兰每株成本分别为200元和500元;(2)最多购进甲种君子兰10株;26.该储运站需配置A型货厢20节,B型货厢30节。
21.删除该段22.假设一辆汽车可以装载x吨货物,则四辆汽车可以装载4x吨货物。
加上20吨散货,总共装载了4x+20吨货物。
根据题意,每辆汽车装满8吨货物时,有一辆汽车不装满,因此有方程 (x-1)*8=4x+20.解得x=6.所以共有6辆汽车运货。
23.略24.设有x节A货厢,则乙货厢有50-x节。
根据题意,35x+25(50-x)>=1530,15x+35(50-x)>=1150.解得30>=x>=28.因此,该储运站有三种配置方法:A货厢为30时,B货厢为20;A货厢为29时,B货厢为21;A货厢为28时,B货厢为22.。
初中数学一元一次不等式(组)单元综合基础过关测试题(附答案)
初中数学一元一次不等式(组)单元综合基础过关测试题(附答案)1.若2a+6的值是正数,则a 的取值范围是( )A .a >0B .a >3C .a >-3D .a <-32.如果不等式(a -1)x >a -1的解集是x <1,那么a 的取值范围是( )A .a ≤1B .a ≥1C .a <1D .a <03.若a >b ,则下列不等式中成立的是( )A .a +2<b +2B .a ﹣2<b ﹣2C .2a <2bD .﹣2a <﹣2b 4.不等式4(1-x)>2-3x 的非负整数解的个数是( )A .3个B .2个C .1个D .0个5.若不等式组213x x a -<⎧⎨<⎩的解集是x <2,则a 的取值范围是( ) A .a <2 B .a ≤2 C .a ≥2 D .无法确定 6.如果a b >,下列各式中错误的是( )A .22a b +<+B .22a b ->-C .33a b -<-D .22a b -<- 7.一个不等式组中的两个不等式的解集如图所示,则这个不等式组的解集为( )A .x >2B .x≤4C .2≤x <4D .2<x≤48.下列判断正确的是( ).A .a >3aB .a 2>aC .a >-aD .a 2≥09.不等式24x -≤<在数轴上表示为( )A .B .C .D .10.用不等式表示“a 的一半不小于-7”,正确的是( )A .172a -≥B .172a -≤C .172a ->D .172a <- 11.甲乙两商场以同样价格出售同样的商品.在甲商场累计购物超过100元后,超出100元的部分按八折收费;在乙商场累积购物超过50元后,超过50元的部分按九折收费.李红累计购物超过100元,当李红的累计购物金额超过_____元时,在甲商场购物花费少.12.不等式组20210x x +>⎧⎨-≤⎩的解集是_____.13.若点P(x-2,3+x)在第二象限,则x的取值范围是__________.14.东方旅行社,某天有空客房10间,当天接待了一个旅游团,当每个房间住3人时,只有一个房间不空也不满,试问旅游团共有__________人.15.不等式x﹣2<2x的解集是_____.16.如果不等式组2{223xax b+≥-<的解集是01x≤<,那么+a b的值为.17.在一次射击比赛中,某运动员前6次射击共中53环,如果他要打破89环(10次射击)的记录,那么第7次射击他至少要打出______环的成绩.18.不等式-6x-4<3x+5的最小整数解是____________.19.若不等式组25122x ax x+≥⎧⎨->-⎩无解,则a的取值范围是____.20.不等式组23182xx x>-⎧⎨-≤-⎩的最小整数解是__________.21.某网商经销一种畅销玩具,每件进价为18元,每月销量y(件)与销售单价x(元)之间的函数关系如图中线段AB所示.(1)当销售单价为多少元时,该网商每月经销这种玩具能够获得最大销售利润?最大销售利润是多少?(销售利润=售价﹣进价)(2)如果该网商要获得每月不低于3500元的销售利润.那么至少要准备多少资金进货这种玩具?22.解不等式组:2(21)4, 132x xxx--≤-⎧⎪⎨+>⎪⎩。
初中数学一元一次不等式(组)单元综合基础过关训练题3(附答案)
初中数学一元一次不等式(组)单元综合基础过关训练题3(附答案)1.若 m >n ,则下列不等式中一定成立的是( )A .m +a <n +aB .ma <naC .a -m <a -nD .ma 2>na 22.若m n <,则下列各式正确的是( )A .55m n ->-B .2233m n >C .44m n ->-D .2525m n ->- 3.定义a bc d =ad ﹣bc ,例如:1234-=1×4﹣(﹣3)×2=10,若121x xx x -++≥7,则非负整数x 的值有( )A .5个B .4个C .3个D .0个 4.不等式的解集在数轴上表示正确的是( ) A .B .C .D .5.不等式组2220x x >⎧⎨-⎩的解在数轴上表示为( ) A .B .C .D .6.不等式组123x x -<⎧⎨-<⎩的解集是( ) A .x >﹣1B .x <5C .﹣1<x <5D .x <﹣1或x <5 7.不等式组2342x x x >⎧⎨+>⎩的整数解是( ) A .0 B .1- C .2- D .18.小明和爸爸、妈妈三人玩跷跷板.三人的体重一共为150千克,爸爸坐在跷跷板的一端,体重只有妈妈一半的小明和妈妈一同坐在跷跷板的另一端.这时爸爸那端仍然着地,那么小明的体重应小于( )A .49千克B .50千克C .24千克D .25千克9.不等式组213(1)14x x +>⎧⎨--≥⎩的最小整数解为( )A .x 0=B .x 1=-C .x 1=D .x 2=10.已知关于的不等式组的解集中任意一个的值均不在...的范围内,则的取值范围是( )A . 或B .C .D . 或 11.在下列所表示的不等式的解集中,不包括–5的是( )A .x ≤–4B .x ≥–5C .x ≤–6D .x ≥–7 12.若不等式组5512x x x m ++⎧⎨-⎩<>的解集是x >1,则m 的取值范围是___________ 13.若数a 使关于x 的不等式组x 11x 235x 2x a-+⎧<⎪⎨⎪-≥+⎩有且只有四个整数解,且使关于y 的方程y a 2a 2y 11y++=--的解为非负数,则符合条件的正整数a 的值为______. 14.关于x 的不等式2x ﹣a ≤﹣1的解集如图所示,则a 的取值范围是___.15.小宏准备用50元钱购买甲、乙两种饮料共10瓶.已知甲饮料每瓶7元,乙饮料每瓶4元,求小宏最多能买几瓶甲饮料.如果设小宏能买x 瓶甲饮料,那么根据题意所列的不等式应为_____.16.不等式2x+5≤12的正整数解是___________17.已知:y 1=2-3x ,y 2=x-6,当_________时,y 1≥y 2;18.已知0, 0a b <<,且a b <,那么ab ________b 2(填“>”“<”“=”). 19.若关于x 的分式方程3133x m x -=-的解为正数,则m 的取值范围是_____. 20.当m >-2时,关于x 的不等式(m +2)x >m +2的解集为______.21.式子1-22x -的值不大于1+33x 的值,那么x 的取值范围是___. 22.12?34x x ⎧+≥⎪⎨⎪<⎩的最大整数解是______.23.定义:对于实数a ,符号[]a 表示不大于a 的最大整数.例如:[]5.75=,[]55=,[]4π-=-.如果132x +⎡⎤=⎢⎥⎣⎦,则满足条件的所有正整数x 的值是______. 24.如图,长青农产品加工厂与 A ,B 两地有公路、铁路相连.这家工厂从 A 地购买一批原料甲运回工厂,经过加工后制成产品乙运到 B 地,其中原料甲和产品乙的重量都是正整数.已知铁路运价为 2 元/(吨·千米),公路运价为 8 元/(吨·千米).(1)若由 A 到 B 的两次运输中,原料甲比产品乙多 9 吨,工厂计划支出铁路运费超 过 5700 元,公路运费不超过 9680 元.问购买原料甲有哪几种方案,分别是多少吨? (2)由于国家出台惠农政策,对运输农产品的车辆免收高速通行费,并给予一定的 财政补贴,综合惠农政策后公路运输价格下降 m ( 0 < m < 4 且 m 为整数)元, 若由 A 到 B 的两次运输中,铁路运费为 5760 元,公路运费为 5100 元,求 m 的 值.25.对于给定的两个“函数,任取自变量x 的一个值,当x<1时,它们对应的函数值互为相反数;当x≥1时,它们对应的函数值相等,我们称这样的两个函数互为相关函数.例如:一次函数y=x-4,它的相关函数为()()4141x x y x x ⎧-+⎪=⎨-≥⎪⎩<. (1)一次函数y = -x +5的相关函数为______________.(2)已知点A(b-1,4),点B 坐标(b +3,4),函数y =3x-2的相关函数与线段AB 有且只有一个交点,求b 的取值范围.(3)当b +1≤x ≤b +2时,函数y=-3x+b-2的相关函数的最小值为3,求b 的值.26.解不等式组,并在数轴上表示它们的解集.26321054x x x x -<⎧⎪+-⎨-≥⎪⎩ 27.某工厂计划生产A ,B 两种产品共10件,其中A 种产品的生产成本为每件3万元,B 种产品的生产成本为每件5万元;并且销售一件A 种产品的利润为1万元,销售一件B 种产品的利润为2万元。
一元一次不等式基础练习卷含答案
一、细心填一填—— 要认真考虑.1.不等式的解集在数轴上表示如图所示,则该不等式可能是_____________.2.不等式-5x≥-13的解集中,最大的整数解是__________.3.不等式10(x -4)+x≥-84的非正整数解是____________.4.若51)2(12>--+m x m 是关于x 的一元一次不等式,则该不等式的解集为 .5.当k 时,代数式23(k-1)的值不小于代数式1-516k -的值. 二、认真选一选—— 要相信自己.6.-3x≤6的解集是 ( ).-1-2 0-1-2 012 012A . B . C . D .7.下列不等式中,属于一元一次不等式的是 ( ). A .4>1 B .3x -24<4 C .12x < D .4x -3<2y -7 8.与不等式321132x x -+<-有相同解集的是 ( ). A .3x -3<(4x +1)-1 B .3(x-3)<2(4x +1)-1C .2(x-3)<3(2x +1)-6D .3x -9<4x -49.小颖准备用21元钱买笔和笔记本.已知每支笔3元,每个笔记本2元,她买了4个笔记本,则她最多还可以买 支笔. ( ).A .1B .2C .3D .4三、精心做一做—— 要注意审题.10.下面解不等式的过程是否正确,如不正确,请找出,并改正.解不等式:4375135x x ---< 解:去分母,得543153(75)x x --<-() ① 去括号,得2015152115x x --<- ②移项,合并,得 5<21 ③因为x 不存在,所以原不等式无解. ④11.已知x 的12与3的差小于x 的-12与-6的和,根据这个条件列出不等式.你能估计出它的解集吗?12.解下列不等式,并把解集在数轴上表示出来:(1)3(1)4(2)3x x +<-- (2)215132x x -+-≤1(3)0.4150.52x x ---≤0.030.020.03x - (4)12534x x -+->-213.已知不等式84x x m +>+(m 是常数)的解集是3x <,求m .14.小华准备将平时的零用钱节约一些储存起来,他已存有62元,从现在起每个月存12元;小华的同学小丽以前没有存过零用钱,听到小华在存零用钱,表示从现在起每个月存20元,争取超过小华.(1)试写出小华的存款总数1y 与从现在开始的月数x 之间的函数关系式以及小丽存款数2y 与月数x 之间的函数关系式;(2)从第几个月开始小丽的存款数可以超过小华?答案1.答案不唯一,如x -1≤0,2x≤2等; 2.x =2; 3.x =0,-1,-2,-3,-4;4.x <-3; 5.x≥119; 6.A ; 7.B ; 8.C ; 9.D ; 点拨:设她最多还可以买x 支笔,得不等式3821x +≤,解得133x ≤,于是符合条件的最大整数解为x=4.故选D .10.第④步错误,应该改成无论x 取何值,该不等式总是成立的,所以x 取一切数. 11.113622x x -<--,解集:3x <-12.(1)14x >(2)x≥-1(3)x≤16559(4)x <5213.解:不等式变形整理得38x m <-,两边同除以3,得83mx -<,因为不等式的解集是3x <,所以833m-=,解得1m =-.14.(1)由题意,16212y x =+,220y x =.(2)由206212x x >+得7.75x >,所以从第8个月开始小丽的存款数可以超过小华.。
七年级数学 一元一次不等式(基础篇)含答案
一元一次不等式(基础篇)学校:___________姓名:___________班级:___________考号:___________一、选择题1>x-1的非负数解的个数是( ) A .1 B .2 C .3 D .无数个2.一个不等式组的解集在数轴上表示出来如图所示,则下列符合条件的不等式组为( )A .21x x >⎧⎨≤-⎩B .21x x <⎧⎨>-⎩C .21x x <⎧⎨≥-⎩D .21x x <⎧⎨≤-⎩3.若a >b,则下列不等关系一定成立的是 A.ac bc > B. C.c a c b -<- D.a c b c -<- 4.一元一次不等式组20015x x -⎩≤+⎧⎨>的解集中,整数解的个数是( )A .4B .5C .6D .75.若不等式组⎩⎨⎧<-->-+01202b x a x 的解集为0<x <1,则a 、b 的值分别为( ) A .a =2,b =1 B .a =2,b =3 C .a =-2,b =3 D .a =-2,b =1二、填空题6的解集是_____ _____. 7x >1,则m 的值为 .三、解答题89.解不等式(或不等式组):(1(210.解不等式组:()()()26352141x x x x -+--≤+⎧⎪⎨⎪⎩> .11.已知三元一次方程组5123 x yx zy z+=⎧⎪+=-⎨⎪+=-⎩(1)求该方程组的解;(2)若该方程组的解使ax+2y+z<0成立,求整数a的最大值.12.关于x则实数a的取值范围为 .13.解不等式组5(1)421x xx x+⎧⎨-<+⎩≥2+8(),并将不等式组的解集在数轴上表示.14.(7分)(1)解关于m-1;(2)若(1)中分式方程的解m满足不等式mx+3>0,求出此不等式的解集.参考答案1.B .【解析】试题分析:移项得:<1, 解得:xx-1的非负整数解为1,0,共2个. 故选B .考点:一元一次不等式的整数解.2.C【解析】试题分析:由图示可看出,从-1出发向右画出的折线且表示-1的点是实心圆,表示x≥-1;从2出发向左画出的折线且表示2的点是空心圆,表示x <2,所以这个不等式组的解集为-1≤x<2,从而得出正确选项.考点:不等式的解集3.C.【解析】试题分析:根据不等式的性质可以判断选项A 、B 、D 错误.故选C.考点:不等式的性质.4.C.【解析】试题分析:∵解不等式2x+1>0得:x >﹣,解不等式x ﹣5≤0得:x ≤5,∴不等式组的解集是﹣<x ≤5,整数解为0,1,2,3,4,5,共6个,故选C .考点:一元一次不等式组的整数解.5.A .【解析】试题分析:20210x a x b +->⎧⎨--<⎩①②,由①得,x>2﹣a ,由②得,x故不等式组的解集为;2﹣a <x ∵原不等式组的解集为0<x <1,∴2﹣a=0,解得a=2,b=1. 故选A .考点:解一元一次不等式组.6.x <6.【解析】试题分析:去分母得:2x﹣2﹣3x﹣4>﹣12,移项得:﹣x>﹣6,系数化为1得:x<6.故答案为:x<6.故答案是x<6.考点:解一元一次不等式.7.4.【解析】试题分析:先解出不等式的解集再确定m的值即可.x-m)>3-m∴x-m>9-3m解得:x>9-2mx-m)>3-m的解集为x>1,∴9-2m=1解得:m=4.考点:解一元一次不等式.8.-1,0.【解析】试题分析:先分别解不等式,然后根据“口诀”确定不等式组的解,然后找出整数解即可.试题解析:解不等式5+2x≥3,得:x≥-1.x<1所以不等式组的解为:-1≤x<1所以整数解为:-1,0.考点:一元一次不等式组的解法;不等式整数解.9.(1) x(2)-4<x≤3.【解析】试题分析:(1)按照解一元一次不等式的步骤进行求解即可.(2)先分别求出不等式组中每一个不等式的解集,再取它们解集的公共部分即可求出不等式组的解集.试题解析:(1∴2x+2<9x解得:x(2解不等式①得:x≤3;解不等式②得:x>-4∴该不等式组的解集为:-4<x≤3.考点:解一元一次不等式组.10.x<-4.【解析】试题分析:分别求出各不等式的解集,再求出其公共解集即可.试题解析:()() ()26352141x xx x-+--⎧≤+⎪⎨⎪⎩>①②,由①得,x<-4,由②得,x≤15,故不等式组的解集为:x<-4.考点:解一元一次不等式组.11.(1)233xyz=⎧⎪=⎨⎪=-⎩;(2)-2.【解析】试题分析:(1)利用消法先把三元一次方程组转化成二元一次方程组,再把二元一次方程组转化成一元一次方程组求解即可.(2)把方程组的解代入不等式,求出a的取值范围,再确定a的最大值即可.试题解析:(1)5123 x yx zy z+=⎧⎪+=-⎨⎪+=-⎩①②③①-②得:y-z=6 ④③与④联立得:623 y zy z-=⎧⎨+=-⎩解得:33 yz=⎧⎨=-⎩把y=3代入①得:x=2∴方程组的解为:233 xyz=⎧⎪=⎨⎪=-⎩;(2)又∵该方程组的解使ax+2y+z<0成立,∴2a+6-3<0∴a∴整数a的最大值为-2.考点:1.解三元一次方程组;(2)解一元一次不等式.12a≤1.【解析】试题分析:先求出每个不等式的解集,再求出不等式组的解集,根据已知得出关于a的不等式组,求出即可.由①得:x>由②得:x<2a,所以不等式组的解集是x<2a,∵x∴1<2a≤2,a≤1.考点:一元一次不等式组的整数解.13.1≤x≤3,数轴上表示见解析.【解析】试题分析:先把每个不等式的解集求出来,取它们的公共部分即为不等式组的解集,然后在数轴上表示出来即可.试题解析:5(1)421x xx x+⎧⎨-<+⎩≥2+8(②)①解不等式①得:x≥1;解不等式②得:x≤3,所以,不等式组的解集为:1≤x≤3在数轴上表示为:考点:1.解一元一次不等式组;2.在数轴上表示不等式组的解集.14.(1)m=﹣2;(2)x<1.5.【解析】试题分析:(1)去分母将分式方程转化为整式方程,求出m的值,检验即可;(2)将m的值代入不等式,即可求出解集.试题解析:(1)去分母得:﹣m+3=5,解得:m=﹣2,经检验m=﹣2是分式方程的解;(2)将m=﹣2代入不等式得:﹣2x+3>0,解得:x<1.5.考点:1.解分式方程2.解一元一次不等式.。
苏教版七年级数学下册第11章一元一次不等式单元测试卷(含答案)
第七章一元一次不等式单元测试卷满分:100分时间:60分钟得分:__________ 一、选择题(每题3分,共24分)1.下列式子:①2x-7≥-3;②12x->;③7<9;④x2+3x>1;⑤()2112aa-+≤;⑥m-n>3,其中是一元一次不等式的有( )A.1个B.2个C.3个D.4个2.下列不等式一定成立的是( )A.5a>4a B.x+2<x+3 C.-a>-2a D.42 a a >3.不等式组2130xx≤⎧⎨+≥⎩,的解集在数轴上可以表示为( )4.关于x的方程5x-2m=-4-x的解满足2<x<10,则m的取值范围是( ) A.m>8 B.m<32 C.8<m<32 D.m<8或m>32 5.已知三角形的一边长是(x+3)cm,该边上的高是5 cm,它的面积不大于20 cm2,则( ) A.x>5 B.-3<x≤5 C.x≥-3 D.x≤56.要使函数y= (2m-3)x+(3n+1)的图象经过x、y轴的正半轴,则m与n的取值范围应为( )A.32m>,13n>-B.m>3,n>-3C.32m<,13n<-D.32m<,13n>-7.八年级某班的部分同学去植树,若每人平均植树7棵,则还剩9棵;若每人平均植树9棵,则有1名同学植树的棵数不到8棵.若设同学人数为x人,则下列能准确求出同学人数与植树总棵数的是( ) A.7x+9-9(x-1)>0 B.7x+9-9(x-1)<8C.()()7991079918x xx x+-->⎧⎪⎨+--<⎪⎩,D.()()7991079918x xx x+--≥⎧⎪⎨+--≤⎪⎩,8.关于x的不等式组210x ax<-⎧⎨+>⎩,只有4个整数解,则a的取值范围是( )A .5≤a ≤6B .5≤a<6C .5<a ≤6D .5<a<6 二、填空题(每题3分,共18分)9.不等式3(x+2)≥4+2x 的负整数解为__________10.若点P(x -2,3+x)在第二象限,则x 的取值范围是__________.11.弟弟上午八点钟出发步行去郊游,速度为每小时4千米;哥哥上午十点钟 从同一地点骑自行车去追弟弟.如果哥哥要在上午十点四十分之前追上 弟弟,那么哥哥的速度至少是__________.12.函数y=kx+b 的图象如图所示,则方程kx+b=0的解为________,不等式 kx+b>0的解集为_________,不等式kx+b -3>0的解集为________. 13.若不等式(m -2)x>2的解集是22x m <-,则m 的取值范围是________. 14.如果关于x 的不等式组5191x x x m +>+⎧⎨>+⎩,的解集是x>2,那么m 的取值范围是________.三、解答题(共58分)15.(每题6分,共12分)解下面的不等式(组),并把解集在数轴上表示出来:(1)2152146x x -+-≥-; (2)()33514622.33x x x x +>-⎧⎪⎨--≥⎪⎩,16.(8分)若不等式组()231132x x x +<⎧⎪⎨>-⎪⎩,的整数解是关于x 的方程2x -4=ax 的根,求a 的值.17.(10分)已知关于x 、y 的二元一次方程组225234x y m x y m +=-⎧⎨-=-⎩,的解x 为正数,y 为负数,求m 的取值范围.18.(8分)一群猴子结伴去偷桃,在分桃时;如果每只猴子分3个,那么还剩59个;如果每只猴子分5个,那么有一只猴子分得的桃不足5个,你能求出有多少只猴子,多少个桃吗?19.(10分)如图是一艘轮船和一艘快艇沿相同路线从甲港出发行驶到乙港的过程中路程y随时间x变化的图象.根据图象解答下列问题:(1)在轮船和快艇中,哪一艘的速度较快?(2)当时间x在什么范围内时,快艇在轮船的后面?当时间x在什么范围内时,快艇在轮船的前面?(3)快艇出发多长时间后赶上轮船?20.(10分)某批发商计划将一批海产品由A地运往B地.汽车货运公司和铁路货运公司均开办海产品运输业务.已知运输路程为120千米,汽车和火车的速度分别为60千米运输工具运输费单价/(元/吨·千米)冷藏费单价/(元/吨·小时)过路费/元装卸及管理费/元汽车 2 5 200 0火车 1.8 5 0 1600注:“元/吨·千米”表示每吨货物每千米的运费;“元/吨·小时”表示每吨货物每小时的冷藏费.(1)设该批发商待运的海产品有x(吨),汽车货运公司和铁路货运公司所要收取的费用分别为y1(元)和y2(元),试求y1、y2与x之间的函数关系式.(2)若该批发商待运的海产品不少于30吨,为节省运费,他应选择哪个货运公司承担运输业务?参考答案一、1.B 2.B 3.C 4.C 5.B 6.D 7.C 8.C二、9.x=-2,-1 10.-3<x<2 11.16千米/时12.x=1 x<1 x<0 13.m<2 14.m<1三、15.(1)54x 数轴略(2)2≤x<4 数轴略16.a=4 17.m<-1 18.30只猴,149个桃;31只猴,152个桃19.(1)快艇(2)4小时内轮船在前;4小时后快艇在前(3)2小时20.(1)y1=250x+200、y2=222x+1 600 (2)50吨以下选汽车,50吨以上选火车,50吨时费用相同。
《一元一次不等式》初中数学总复习基础测试(答案)
《一元一次不等式》1.已知 a <b <0,用不等号连接以下各题中的两式:( 1)a - 5_____b - 5; 3 a_____-3 (3)b - a_____0;(2)-b ;(6)11 . 22( 4)|a|_____|b|;( 5) a 3_____b3;_____3与 5 的差不小于-ab2.x 的4 的相反数,用不等式表示为_____. 3.若 x <a < 0,则把 x 2 ,a 2 , ax 从小到大摆列是 _______.2x < n;当 m____时,不等式的解集是x > n.4.已知不等式 mx -n > 0,当 m____时,不等式的解集是2x 3 m 3 5xm的值是非负数.5.当 x____时,代数式4 的值是负数;当 x_____时,代数式 76.不等式 4 x - 3≤7 的正整数解是 _______.7.不等式组2 x 5 1的整数解的和是 _______,积是 _______.x 33 28.不等式- 1<3x1≤ 4 的解集是 _______2(D )a 2>- a 29.以下各式中必定建立的是( )( A ) a >- a (B )- 4a <- a (C ) a -3<a + 310.由 m >n ,得 am ≤an 的条件是( )(A )a >0 (B ) a <0 ( C )a ≥0 (D ) a ≤ 011.若 |2 x -5|=5-2 x ,则 x 的取值是(5555)(A )x >( B )x ≥(C ) x <( D ) x ≤222212.若方程 5 x - 2a = 8 的解是非负数,则 a 的取值是( )(A )a >- 4 ( B )a <- 4(C ) a ≥- 4( D ) a ≤- 413.若 a <b ,则不等式组x a )( A )解集是 x <a(B )解集是 x > b( C )解集是 b <x < a ( D )无解x (b14.使不等式 x +1>4 x + 5 建立的最大整数是()(A )1( B )0(C )- 1 (D )- 23x 10 015.不等式组16 10的最小整数解( )(A )- 4(B )-3(C )- 2(D )7x 4x316.若不等式组 1 x2 有解,则 k 的取值范围是()( A ) k <2 ( B )k ≥ 2 ( C )k <1( D ) 1≤k < 2xk解以下不等式或不等式组17.5-x≥ 3 1 -2x 118.3y 1-1<7y3 + 2( y 2) .1( x 2) 2 x 119. 332435 15x 1 1 2x2.37x 3 4x 2x 3 423 451 ( x 2)320.21.5 x 5(4 x) 2( 4 x). 1 4x2x 1.322.当2(k-3)<10k时,求对于x的不等式k ( x 5)>x-k的解集.3423.求知足 31- 4 y 1≤5-y283且小于- 7 的整数 y.24.已知知足不等式3(x- 2)+ 5< 4(x- 1)+ 6 的最小整数是方程 2 x-ax= 3 的解,求代数式4a-14的值.a。
中考数学总复习之:一元一次不等式(含答案)
中考数学总复习之:一元一次不等式知识点:1.等式的基本性质:(1)等式两边加上或减去,所得结果仍是等式;(如果a=b,那么;)(2)等式两边都乘或除以,所得结果仍是等式.(如果a=b,且c≠0,那么.)2.不等式的性质:性质1:不等式的两边都加上(或减去),不等号的方向.(如果a>b,那么,.)性质2:不等式的两边都乘(或除以),不等号的方向;(如果a>b,且c>0,那么;)不等式的两边都乘(或除以),不等号的方向.(如果a>b,且c<0,那么.)3.把不等式化为“x>a”或“x<a”的形式的步骤:(1)利用不等式的基本性质1,通常将含未知数的项放到一边(左边);常数项放到另一边(右边);(2)不等式的两边分别合并同类项;(3)利用不等式的基本性质2,将未知数的系数化为“1”.4.一元一次不等式:只含有一个未知数,并且未知数的次数都是,系数不等于,这样的不等式叫做一元一次不等式.5.解一元一次不等式的步骤:(1)去分母、去括号、移项、合并同类项、化系数为1.(2)去分母时,要每一项都乘以各分母的;去括号时,要根据律不要漏乘;移项时,要;合并同类项时,要正确运用有理数的法则;化系数为1时,要注意不等号的.一、选择题1. 不等式5−2x>0的解集是A. x<52B. x>52C. x<25D. x<−522. 下列不等式的解集中,不包括−4的是A. x≤−4B. x≥−4C. x≤−5D. x≥−53. 下列数量关系中,不能用不等式表示的是( )A. x+1是负数B. x2+1正数C. x+y等于1D. ∣x∣−1不等于04. 下列式子:①−3<0;②4x+5>0;③x=3;④x2+x;⑤x≠−4;⑥x+2>x+1.其中是不等式的有( )A. 2个B. 3个C. 4个D. 5个5. 若关于x的不等式组的解表示在数轴上如图所示,则这个不等式组的解集A. x≤2B. x>1C. 1≤x<2D. 1<x≤26. 若m是非负数,则用不等式表示正确的是( )A. m<0B. m>0C. m≤0D. m≥07. 不等式x≤2的解集在数轴上表示为A. B.C. D.8. 2010 年 6 月 8 日我县最高气温是29∘C,最低气温是19∘C,则当天我县气温t(∘C)的变化范围是( )A. 19≤t≤29B. t<19C. t≤19D. t≥299. 若a>b,则下列不等式变形正确的是A. a+5<b+5B. a3<b3C. −4a>−4bD. 3a−2>3b−210. 下列说法正确的是A. x=3是2x>1的解B. x=3是2x>1的唯一解C. x=3不是2x>1的解D. x=3是2x>1的解集11. 已知不等式①、②、③的解集在数轴上的表示如图所示,则它们的公共部分的解集是A. −1≤x<3B. 1≤x<3C. −1≤x<1D. 无解12. 下列各式中一定成立的是( )A. a>−aB. −4a<−aC. a−3<a+3D. a2>−a213. 下列不等式一定成立的是( )A. 5a>4aB. x+2<x+3C. −a>−2aD. 4a >2a14. 甲种蔬菜保鲜适宜的温度是1∘C∼5∘C,乙种蔬菜保鲜适宜的温度是3∘C∼8∘C,将这两种蔬菜放在一起同时保鲜,适宜的温度是A. 1∘C∼3∘CB. 3∘C∼5∘CC. 5∘C∼8∘CD. 1∘C∼8∘C15. 把一些笔记本分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本.则共有学生A. 4人B. 5人C. 6人D. 5人或6人二、填空题1. 不等式组{x<0,−x≤−1,的解集是.2. 用不等式表示:a的2倍不大于b的13:;a,b两数的和的5倍是非负数:.3. 不等式组{x−2>12x+1>0的解是.4. 若a<b,则−5a−5b(填“>”“<”或“=”).5. 下列式子中,是不等式的是.①3x=5;②a>2;③3m−1≤4;④5x+6y;⑤a+2≠a−2;⑥−1>2.6. 若关于x的不等式3m−2x<5的解集是x>2,则实数m的值为.7. 若不等式组 {x >a,4−2x >0的解集是 −1<x <2,则 a = .8. 用不等式表示下列数量关系:(1)a 是非负数: ;(2)3x 与 2y 的差是负数: ;(3)y 不小于 2: ;(4)x 与 5 的差的绝对值大于 4: ;(5)a 的 3 倍与 y 的和大于 2: ;(6)3a −2b 不小于 5: .9. 不等式组 {x −1>1x <3的解集为 .10. 不等式 2x −4<0 的解集是 .11. 李强在第一次数学考试中得了 72 分,在第二次数学考试中得了 86 分,在第三次数学考试中,至少得 分,才能使三次数学考试的平均成绩不少于 80 分.12. 如图,数轴上表示的一个不等式组的解集,这个不等式组的整数解是 .三、解答题1. 利用不等式的性质,将下列不等式化成“x >a ”或“x <a ”的形式.(1)x +5>−2; (2)4x >36; (3)−14x >3; (4)x +12<0.2. 用不等式表示下列数量关系.(1)m 与 n 的和是正数.(2)x 的 2 倍与 y 的一半的差是负数. (3)m 与 2 的差是非负数. (4)3 与 a 的和的一半不小于 −1.3. 说明下列不等式是怎样变形的;(1)若 3<x +2,则 x >1; (2)若 12x <−1,则 x <−2; (3)若 −32x >−6,则 x <4; (4)若 −3x >2,则 x <−23;(5)若2x+3>−7,则x>−5;(6)若−2x+3<x+1,则x>23.4. 当x取下列数值时,哪些是不等式x+2>3的解?哪些不是?你能根据这些解的特点得出这个不等式的解集吗?并在数轴上表示它的解集.−2,−1,0,0.9,1,1.1,2,3,45. 解不等式:6(x−1)≥3+4x.6. (1)写出不等式x<4的所有正整数解;(2)写出不等式x≥−3的所有负整数解;(3)写出不等式x≤3的所有非负整数解.7. 某水果店购进1t水果,进价每千克6元,售价每千克11元,销售过程中有2%的水果被损坏而不能出售,售出进货总量的一半后,为尽快售完,余下的水果准备打折出售.(1)若余下的水果打六折出售,则这笔水果生意的利润为多少元?(2)为使总利润不低于3400元,在余下的水果的销售中,最多能打几折(取整数折,如5折、6折等)?8. 解不等式2x+13≥x−32+1.9. 解不等式3−2(x−1)>4x+23.10. 解不等式组:{4x>2x−6,x−13≤x+19,并把解集在数轴上表示出来.答案第一部分1. A2. C3. C4. C5. D6. D7. B8. A9. D 10. A11. B 12. C 13. B 14. B 【解析】设适宜的温度为x∘C,则有{1≤x≤5,3≤x≤8.该不等式组的解集为3≤x≤5.15. C【解析】设有学生x人,则有笔记本(3x+8)本,根据题意,得, 0≤(3x+8)−5(x−1)<3.解得,5<x≤612.第二部分1. 无解2. 2a≤13b,5(a+b)≥0 3. x>3 4. > 5. ②③⑤⑥ 6. 3(填m=3也可以)7. −18. (1)a≥0,(2)3x−2y<0,(3)y≥2,(4)∣x−5∣>4,(5)3a+y>2,(6)3a−2b≥59. 2<x<310. x<211. 82【解析】设第三次数学考试为x分,则72+86+x3≥80.解得x≥82. 12. −1,0第三部分1. (1)x>−7(2)x>9(3)x<−12(4)x<−122. (1)m+n>0.(2)2x−12y<0.(3)m−2≥0.(4)12(3+a)≥−1.3. (1)3<x+2,两边减去2,变形得x>1;(2)12x<−1,两边乘2,得x<−2;(3)−32x>−6,两边除以−32,得x<4;(4)−3x>2,两边除以−3,得x<−23;(5)2x+3>−7,两边减去3,再除以2,得x>−5;(6)−2x+3<x+1,两边减去x+3,再除以−3,得x>23.4. 当x=−2时,x+2=−2+2=0,而0<3,所以−2不是不等式x+2>3的解;当x=3时,x+2=3+2=5,而5>3,所以3是不等式x+2>3的解.类似地,我们可以得到:1.1,2,4也是不等式的解;而−1,0,0.9,1不是不等式的解.故−2,−1,0,0.9,1不是不等式的解,1.1,2,3,4是不等式的解.根据不等式解的特点可以看出这个不等式的解都是大于1的数,因此这个不等式的解集是x>1.这个不等式的解集在数轴上的表示如图所示.5. 去括号得:6x−6≥3+4x.移项得:6x−4x≥3+6.合并同类项得:2x≥9.系数化为1得:x≥92.6. (1)1,2,3.(2)−3,−2,−1.(3)0,1,2,3.7. (1)500×11+(500−1000×2%)×0.6×11−1000×6=2668(元).(2)设打x折,由题意得,500×11+(500−1000×2%)×0.1x×11−1000×6≥3400.所以x≥975132≈7.386.所以最多能打8折.8. 去分母,得,2(2x+1)≥3(x−3)+6.去括号,得,4x+2≥3x−9+6.移项,得,4x−3x≥−9+6−2.合并同类项,得,x≥−5.所以不等式解集为x≥−5.9. 去括号,得,3−2x+2>4x+23.移项,得,−2x−4x>23−2−3.合并同类项,得,−6x>18.系数化为1,得,x<−3.10. {4x>2x−6,①x−13≤x+19②,由①得x>−3,由②得x≤2,∴解集为−3<x≤2.在数轴上画出解集,如下图所示:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《一元一次不等式》
1.已知a <b <0,用不等号连结下列各题中的两式:(1)a -5_____b -5; (2)-
2
3
a _____-
2
3b ; (3)b -a _____0;
(4)|a |_____|b |; (5)a 3_____b 3; (6)a
1
_____
b
1.
2.x 的
2
3与5的差不小于-4的相反数,用不等式表示为_____.3.若x <a <0,则把x 2 ,a 2 ,ax 从小到大排列是_______.
4.已知不等式mx -n >0,当m ____时,不等式的解集是x <m
n ;当m ____时,不等式的解集是x >
m
n .
5.当x ____时,代数式
432-x 的值是负数;当x _____时,代数式7
53x
-的值是非负数. 6.不等式4 x -3≤7的正整数解是_______.7.不等式组⎪⎩⎪⎨⎧<->+2
331
52x x 的整数解的和是_______,积是_______.
8.不等式-1<
2
1
3-x ≤4的解集是_______ 9.下列各式中一定成立的是( )(A )a >-a (B )-4a <-a (C )a -3<a +3 (D )a 2>-a 2 10.由m >n ,得am ≤an 的条件是( )(A )a >0 (B )a <0 (C )a ≥0 (D )a ≤0 11.若|2 x -5|=5-2 x ,则x 的取值是( )(A )x >2
5 (B )x ≥
2
5 (C )x <
2
5 (D )x ≤
2
5
12.若方程5 x -2a =8的解是非负数,则a 的取值是( )(A )a >-4 (B )a <-4 (C )a ≥-4 (D )a ≤-4
13.若a <b ,则不等式组⎩
⎨⎧><b x a x ( )(A )解集是x <a
(B )解集是x >b (C )解集是b <x <a (D )无解
14.使不等式x +1>4 x +5成立的最大整数是( )(A )1 (B )0 (C )-1 (D )-2
15.不等式组⎪⎩⎪
⎨⎧<->+x x x 4103
160
103的最小整数解( )(A )-4 (B )-3 (C )-2 (D )7
16.若不等式组⎩⎨⎧>≤<k
x x 2
1有解,则k 的取值范围是( )(A )k <2 (B )k ≥2 (C )k <1 (D )1≤k <2
解下列不等式或不等式组
17.5-3x ≥321-412+x 18.313+y -1<537-y +15)2(2-y . 19.⎪⎪⎩⎪⎪⎨⎧-<-+<-.3212
112)2(3
1
x x x x
20.⎪⎪⎩⎪⎪⎨⎧-≥-+-+≤--).
4(2)4(53
545
43327x x x x x 21.⎪⎩⎪⎨⎧-<-<--<-.12413)2(1432x x x x
22.当2(k -3)<3
10k -时,求关于x 的不等式
4
)
5(-x k >x -k 的解集.
23.求满足32
1-
814+y ≤5-3
y
且小于-7的整数y .
24.已知满足不等式3(x -2)+5<4(x -1)+6的最小整数是方程2 x -ax =3的解,求代数式4a -a
14
的值.。