七年级下册数学期中考试题
七年级数学下册期中考试题(及参考答案)
七年级数学下册期中考试题(及参考答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.估计7+1的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间2.下列图形中,不是轴对称图形的是( )A .B .C .D .3.如图,直线,a b 被,c d 所截,且//a b ,则下列结论中正确的是( )A .12∠=∠B .34∠=∠C .24180∠+∠=D .14180∠+∠=4.4的算术平方根是( )A .-2B .2C .2±D .25.一列数,按一定规律排列:-1,3,-9.27,-81,…,从中取出三个相邻的数,若三个数的和为a ,则这三个数中最大的数与最小的数的差为( )A .87aB .87|a|C .127|a|D .127a 6.如图,要把河中的水引到水池A 中,应在河岸B 处(AB ⊥CD )开始挖渠才能使水渠的长度最短,这样做依据的几何学原理是( )A .两点之间线段最短B .点到直线的距离C.两点确定一条直线D.垂线段最短7.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+187+1的值()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间9.已知x a=3,x b=4,则x3a-2b的值是()A.278B.2716C.11 D.1910.若x﹣m与x+3的乘积中不含x的一次项,则m的值为()A.3 B.1 C.0 D.﹣3二、填空题(本大题共6小题,每小题3分,共18分)1.8 的立方根是__________.2.袋中装有6个黑球和n个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为34”,则这个袋中白球大约有________个.3.如图,在△ABC中,∠A=60°,BD、CD分别平分∠ABC、∠ACB,M、N、Q分别在DB、DC、BC的延长线上,BE、CE分别平分∠MBC、∠BCN,BF、CF分别平分∠EBC、∠ECQ,则∠F=________.4.己知三角形三边长分别为6,6,23,则此三角形的最大边上的高等于________.5.若数轴上表示互为相反数的两点之间的距离是16,则这两个数是______.6.如图,在△ABC 中,∠BAC =33°,将△ABC 绕点A 按顺时针方向旋转50°,对应得到△AB ′C ′,则∠B ′AC 的度数为________.三、解答题(本大题共6小题,共72分)1.解方程:(1)()43203x x --= (2)23211510x x -+-=2.若关于x 、y 的二元一次方程组2133x y m x y -=+⎧⎨+=⎩的解满足x +y >0,求m 的取值范围.3.如图①,△ABC 中,AB =AC ,∠B 、∠C 的平分线交于O 点,过O 点作EF ∥BC 交AB 、AC 于E 、F .(1)图①中有几个等腰三角形?猜想:EF与BE、CF之间有怎样的关系.(2)如图②,若AB≠AC,其他条件不变,图中还有等腰三角形吗?如果有,分别指出它们.在第(1)问中EF与BE、CF间的关系还存在吗?(3)如图③,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O 点作OE∥BC交AB于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF 关系又如何?说明你的理由.4.如图,∠1=∠ACB,∠2=∠3,求证:∠BDC+∠DGF=180°.5.现有甲、乙、丙等多家食品公司在某市开设蛋糕店,该市蛋糕店数量的扇形统计图如图所示,其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店,请根据该统计图回答下列问题:(1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数;(2)甲公司为了扩大市场占有率,决定在该市增设蛋糕店数量达到全市的20%,求甲公司需要增设的蛋糕店数量.6.某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元.(1)符合公司要求的购买方案有几种?请说明理由;(2)如果每辆轿车的日租金为200元,每辆面包车的日租金为110元,假设新购买的这10辆车每日都可租出,要使这10辆车的日租金不低于1500元,那么应选择以上哪种购买方案?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、B4、B5、C6、D7、B8、C9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)1、-22、23、15°45、-8、86、17°三、解答题(本大题共6小题,共72分)1、(1)x=9;(2)x=8.52、m>﹣23、(1)△AEF、△OEB、△OFC、△OBC、△ABC共5个,EF=BE+FC;(2)有,△EOB、△FOC,存在;(3)有,EF=BE-FC.4、略5、(1)甲蛋糕店数量为100家,该市蛋糕店总数为600家;(2)甲公司需要增设25家蛋糕店.6、(1) 有三种购买方案,理由见解析;(2)为保证日租金不低于1500元,应选择方案三,即购买5辆轿车,5辆面包车。
七年级数学下册期中考试题【及答案】
七年级数学下册期中考试题【及答案】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.把多项式x 2+ax+b 分解因式,得(x+1)(x-3),则a 、b 的值分别是( ) A .a=2,b=3B .a=-2,b=-3C .a=-2,b=3D .a=2,b=-32.如图,点O 在直线AB 上,射线OC 平分∠DOB .若∠COB =35°,则∠AOD 等于( ).A .35°B .70°C .110°D .145°3.如图,直线,a b 被,c d 所截,且//a b ,则下列结论中正确的是( )A .12∠=∠B .34∠=∠C .24180∠+∠=D .14180∠+∠=4.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x °,∠2=y °,则可得到方程组为A .x y 50{x y 180=-+=B .x y 50{x y 180=++=C .x y 50{x y 90=++=D .x y 50{x y 90=-+=5.点A在数轴上,点A所对应的数用21a+表示,且点A到原点的距离等于3,则a的值为()A.2-或1 B.2-或2 C.2-D.16.在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是()A.(﹣1,1)B.(﹣1,﹣2) C.(﹣1,2)D.(1,2)7.已知关于x的不等式组320x ax->⎧⎨->⎩的整数解共有5个,则a的取值范围是()A.﹣4<a<﹣3 B.﹣4≤a<﹣3 C.a<﹣3 D.﹣4<a<3 28.2019-=()A.2019 B.-2019 C.12019D.12019-9.一副直角三角板如图放置,点C在FD的延长线上,AB//CF,∠F=∠ACB=90°,则∠DBC的度数为( )A.10°B.15°C.18°D.30°10.下列四个不等式组中,解集在数轴上表示如图所示的是()A.23xx≥⎧⎨>-⎩B.23xx≤⎧⎨<-⎩C.23xx≥⎧⎨<-⎩D.23xx≤⎧⎨>-⎩二、填空题(本大题共6小题,每小题3分,共18分)1.一个n边形的内角和为1080°,则n=________.2.如图所示,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB 开渠,能使所开的渠道最短,这样设计的依据是___________________.3.如图,将△AOB 绕点O 按逆时针方向旋转45°后得到△COD ,若∠AOB=15°,则∠AOD=________度.4.方程()()()()32521841x x x x +--+-=的解是_________.5.如图,在△ABC 和△DEF 中,点B 、F 、C 、E 在同一直线上,BF = CE ,AC ∥DF ,请添加一个条件,使△ABC ≌△DEF ,这个添加的条件可以是________.(只需写一个,不添加辅助线)6.如图,AB ∥CD ,∠1=50°,∠2=110°,则∠3=___________度.三、解答题(本大题共6小题,共72分)1.(1)解方程组:425x y x y -=⎧⎨+=⎩(2)解不等式:2132x x ->-2.解不等式组20{5121123x x x ->+-+≥①②,并把解集在数轴上表示出来.3.如图,AD平分∠BAC交BC于点D,点F在BA的延长线上,点E在线段CD 上,EF 与AC相交于点G,∠BDA+∠CEG=180°.(1)AD与EF平行吗?请说明理由;(2)若点H在FE的延长线上,且∠EDH=∠C,则∠F与∠H相等吗,请说明理由.4.如图,已知直线AB∥CD,直线EF分别与AB,CD相交于点O,M,射线OP在∠AOE的内部,且OP⊥EF,垂足为点O.若∠AOP=30°,求∠EMD的度数.5.学校开展“书香校园”活动以来,受到同学们的广泛关注,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.学生借阅图书的次数统计表借阅图书的次数0次1次2次3次4次及以上人数7 13 a 10 3 请你根据统计图表中的信息,解答下列问题:()1a=______,b=______.()2该调查统计数据的中位数是______,众数是______.()3请计算扇形统计图中“3次”所对应扇形的圆心角的度数;()4若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书“4次及以上”的人数.6.在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B4、C5、A6、A7、B8、A9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、82、垂线段最短.3、30°4、3x=.5、AC=DF(答案不唯一)6、60三、解答题(本大题共6小题,共72分)1、(1)31xy=⎧⎨=-⎩;(2)x>125.2、﹣1≤x<2.3、略4、60°5、()117、20;()22次、2次;()372;()4120人.6、(1)每台电脑0.5万元,每台电子白板1.5万元(2)见解析。
七年级数学下册期中试卷(加答案)
七年级数学下册期中试卷(加答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若()286m n a b a b =,那么22m n -的值是 ( ) A .10 B .52 C .20 D .322.如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是( )A .B .C .D .3.如图,∠1=68°,直线a 平移后得到直线b ,则∠2﹣∠3的度数为( )A .78°B .132°C .118°D .112°4.若a x =6,a y =4,则a 2x ﹣y 的值为( )A .8B .9C .32D .405.如图所示,点P 到直线l 的距离是( )A .线段PA 的长度B .线段PB 的长度C .线段PC 的长度D .线段PD 的长度6.如图,在△ABC 中,∠ABC ,∠ACB 的平分线BE ,CD 相交于点F ,∠ABC =42°,∠A =60°,则∠BFC 的度数为( )A .118°B .119°C .120°D .121°7.如图,下列各组角中,互为对顶角的是( )A .∠1和∠2B .∠1和∠3C .∠2和∠4D .∠2和∠58.满足方程组35223x y m x y m+=+⎧⎨+=⎩的x ,y 的值的和等于2,则m 的值为( ).A .2B .3C .4D .59.估计10+1的值应在( )A .3和4之间B .4和5之间C .5和6之间D .6和7之间10.如图,△ABC 中,AD 为△ABC 的角平分线,BE 为△ABC 的高,∠C=70°,∠ABC=48°,那么∠3是( )A .59°B .60°C .56°D .22°二、填空题(本大题共6小题,每小题3分,共18分)1.若0abc >,化简ac b abc a b c abc +++结果是________. 2.如图,点O 是直线AD 上一点,射线OC ,OE 分别平分∠AOB 、∠BOD .若∠AOC =28°,则∠BOE =________.3.如图,点E 是AD 延长线上一点,如果添加一个条件,使BC ∥AD ,则可添加的条件为__________.(任意添加一个符合题意的条件即可)4.27的立方根为________.5.如图,所有三角形都是直角三角形,所有四边形都是正方形,已知S 1=4,S 2=9,S 3=8,S 4=10,则S=________.6.已知一组从小到大排列的数据:2,5,x ,y ,2x ,11的平均数与中位数都是7,则这组数据的众数是________.三、解答题(本大题共6小题,共72分)1.解下列方程:(1)2(x +3)=5(x -3) 2123x -()=435x --x2.已知22(4)(2)80m x m x --++=是关于未知数x 的一元一次方程,求代数式199()(2)m x m x m -+-+的值.3.如图,四边形ABCD 中,AD ∥BC ,点E 在CD 上,EA ,EB 分别平分∠DAB 和∠CBA ,设AD =x ,BC =y 且(x ﹣3)2+|y ﹣4|=0.求AB 的长.4.如图,已知AB∥CD,AD∥BC,∠DCE=90°,点E在线段AB上,∠FCG=90°,点F在直线AD上,∠AHG=90°.(1)找出图中与∠D相等的角,并说明理由;(2)若∠ECF=25°,求∠BCD的度数;(3)在(2)的条件下,点C(点C不与B,H两点重合)从点B出发,沿射线BG的方向运动,其他条件不变,求∠BAF的度数.5.中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对七年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如下所示:(1)统计表中的a=________,b=___________,c=____________;(2)请将频数分布表直方图补充完整;(3)求所有被调查学生课外阅读的平均本数;(4)若该校七年级共有1200名学生,请你分析该校七年级学生课外阅读7本及以上的人数.6.某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3台A 型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.(1)求A型空调和B型空调每台各需多少元;(2)若学校计划采购A、B两种型号空调共30台,且A型空调的台数不少于B 型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、A3、D4、B5、B6、C7、A8、C9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)1、4或02、62°3、∠A+∠ABC=180°或∠C+∠ADC=180°或∠CBD=∠ADB或∠C=∠CDE4、35、316、5三、解答题(本大题共6小题,共72分)1、(1)x=7;(2)x=1 2.2、15943、74、(1)与∠D相等的角为∠DCG,∠ECF,∠B(2)155°(3)25°或155°5、(1)a=10,b=0.28,c=50;(2)补图见解析;(3)6.4本;(4)528人.6、(1)A型空调和B型空调每台各需9000元、6000元;(2)共有三种采购方案,方案一:采购A型空调10台,B型空调20台,方案二:采购A型空调11台,B型空调19台,案三:采购A型空调12台,B型空调18台;(3)采购A型空调10台,B型空调20台可使总费用最低,最低费用是210000元.。
七年级数学下册期中测试卷【及参考答案】
七年级数学下册期中测试卷【及参考答案】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.﹣2的绝对值是( )A .2B .12C .12-D .2-2.某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是( )A .100B .被抽取的100名学生家长C .被抽取的100名学生家长的意见D .全校学生家长的意见3.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为( )A .﹣3B .﹣5C .1或﹣3D .1或﹣54.已知5x =3,5y =2,则52x ﹣3y =( )A .34B .1C .23D .985.如图,△ABC 中,AB=5,AC=6,BC=4,边AB 的垂直平分线交AC 于点D ,则△BDC 的周长是( )A .8B .9C .10D .116.式子|x ﹣1|-3取最小值时,x 等于( )A .1B .2C .3D .47.如图,有一块直角三角形纸片,两直角边6cm AC =,8cm BC =.现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A .2cmB .3cmC .4cmD .5cm8.估计7+1的值( )A .在1和2之间B .在2和3之间C .在3和4之间D .在4和5之间 9.下列各组数值是二元一次方程x ﹣3y =4的解的是( )A .11x y =⎧⎨=-⎩B .21x y =⎧⎨=⎩C .12x y =-⎧⎨=-⎩D .41x y =⎧⎨=-⎩10.关于x 的不等式组12x x m⎧≤-⎪⎨⎪>⎩的所有整数解的积为2,则m 的取值范围为( )A .m >-3B .m <-2C .m -3≤<-2D .m -3<≤-2二、填空题(本大题共6小题,每小题3分,共18分)1.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是______.2.如图,将长方形纸片ABCD 的∠C 沿着GF 折叠(点F 在BC 上,不与B,C 重合),使点C 落在长方形内部的点E 处,若FH 平分∠BFE,则∠GFH 的度数是________.3.一般地,如果()40x a a =≥,则称x 为a 的四次方根,一个正数a 的四次方根有两个.它们互为相反数,记为4a 4410m =,则m =________.4.已知直线AB ∥x 轴,点A 的坐标为(1,2),并且线段AB =3,则点B 的坐标为________.5.如图,直线a,b与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠3=180°;⑤∠6=∠8,其中能判断a∥b的是________(填序号)6.如果a、b互为倒数,c、d互为相反数,且m1=-,则()22ab c d m-++=___________.三、解答题(本大题共6小题,共72分)1.(1)解方程组:(2)解方程组:2.若a、b互为相反数,c、d互为倒数,m的绝对值为2.(1)直接写出a+b,cd,m的值;(2)求a bm cdm+++的值.3.如图,AD平分∠BAC交BC于点D,点F在BA的延长线上,点E在线段CD 上,EF 与AC相交于点G,∠BDA+∠CEG=180°.(1)AD与EF平行吗?请说明理由;(2)若点H在FE的延长线上,且∠EDH=∠C,则∠F与∠H相等吗,请说明理由.4.已知:如图,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F,连接AF.求证:AF平分∠BAC.5.某商场服装部分为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组销售额的数据,绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)该商场服装营业员的人数为,图①中m的值为;(2)求统计的这组销售额数据的平均数、众数和中位数.6.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、A4、D5、C6、A7、B8、C9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、82、90°3、104、(4,2)或(﹣2,2).5、①③④⑤.6、3三、解答题(本大题共6小题,共72分)1、(1);(2).2、(1)a+b=0,cd=1,m=±2;(2)3或-13、略4、证明略.5、(1)25;28;(2)平均数:18.6;众数:21;中位数:18.6、略。
七年级下册数学期中试卷(含答案)完整
七年级下册数学期中试卷(含答案)完整一、选择题1.1.96的算术平方根是()A .0.14B .1.4C .0.14-D .±1.42.下列各组图形可以通过平移互相得到的是( )A .B .C .D .3.下列各点在第二象限的是( )A .()3,4B .()4,3-C .()4,3-D .()3,4-- 4.下列说法中,真命题的个数为( )①两条平行线被第三条直线所截,同位角相等;②在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行; ③过一点有且只有一条直线与这条直线平行;④点到直线的距离是这一点到直线的垂线段;A .1个B .2个C .3个D .4个5.如图,直线AB ,CD 被直线ED 所截,//AB CD ,1140∠=︒,则D ∠的度数为( ).A .40°B .60°C .45°D .70°6.如图,下列各数中,数轴上点A 表示的可能是( )A .4的算术平方根B .4的立方根C .8的算术平方根D .8的立方根 7.如图,ABC 中,AE 平分BAC ∠,BE AE ⊥于点E ,//ED AC ,34BAE ∠=︒,则BED ∠的度数为( )A .134°B .124°C .114°D .104°8.如图,已知A 1(1,0),A 2(1,1),A 3(﹣1,1),A 4(﹣1,﹣1),A 5(2,﹣1)……则点A 2021的坐标为( )A .(505,﹣504)B .(506,﹣505)C .(505,﹣505)D .(﹣506,506)二、填空题9.已知3x ++|3x +2y ﹣15|=0,则x y +=_____.10.平面直角坐标系中,点(3,1)--关于y 轴的对称点的坐标为________.11.如图,AE 是△ABC 的角平分线,AD ⊥BC 于点D ,若∠BAC =130°,∠C =30°,则∠DAE 的度数是__________.12.如图所示,直线AB ,BC ,AC 两两相交,交点分别为A ,B ,C ,点D 在直线AB 上,过点D 作DE ∥BC 交直线AC 于点E ,过点E 作EF ∥AB 交直线BC 于点F ,若∠ABC =50°,则∠DEF 的度数___.13.如图所示是一张长方形形状的纸条,1105∠=︒,则2∠的度数为__________.14.规定:[x]表示不大于x 的最大整数,(x )表示不小于x 的最小整数,[x )表示最接近x 的整数(x≠n+0.5,n 为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x <1时,化简[x]+(x )+[x )的结果是_____.15.在平面直角坐标系中,点P 的坐标为()22,1a ---,则点P 在第________象限.16.如图,一个点在第一象限及x 轴、y 轴上运动,且每秒移动一个单位,在第1秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动[即(0,0)→(0,1)→(1,1)→(1,0)→…],那么第42秒时质点所在位置的坐标是______.三、解答题17.计算:(1)利用平方根意义求x 值:()2136x -=(2)()235832-----18.已知:215a ab +=,210b ab +=,1a b -=,求下列各式的值:(1)a b +的值;(2)22a b +的值.19.如图,已知3A ∠=∠,DE BC ⊥,AB BC ⊥,求证:DE 平分CDB ∠.证明:DE BC ⊥,AB BC ⊥ (已知)90DEC ABC ∴∠=∠=︒(垂直的定义)//DE AB ∴( )23∴∠=∠( )1∠= (两直线平行,同位角相等)又3A ∠=∠(已知)∴ ( )DE ∴平分CDB ∠(角平分线的定义)20.如图,在平面直角坐标系中,已知P (a ,b )是△ABC 的边AC 上一点,△ABC 经平移后点P 的对应点为P 1(a +6,b +2).(1)请画出上述平移后的△A 1B 1C 1,并写出点A 1,C 1的坐标;(2)写出平移的过程;(3)求出以A ,C ,A 1,C 1为顶点的四边形的面积.21.例如∵479.<<即273<<,∴7的整数部分为2,小数部分为72-,仿照上例回答下列问题;(1)17介于连续的两个整数a 和b 之间,且a <b ,那么a = ,b = ; (2)x 是172+的小数部分,y 是171-的整数部分,求x = ,y = ; (3)求(17)y x -的平方根.22.学校要建一个面积是81平方米的草坪,草坪周围用铁栅栏围绕,现有两种方案:有人建议建成正方形,也有人建议建成圆形,如果从节省铁栅栏费用的角度考虑(栅栏周长越小,费用越少),你选择哪种方案?请说明理由.(π取3)23.已知直线AB //CD ,点P 、Q 分别在AB 、CD 上,如图所示,射线PB 按逆时针方向以每秒12°的速度旋转至PA 便立即回转,并不断往返旋转;射线QC 按逆时针方向每秒3°旋转至QD 停止,此时射线PB 也停止旋转.(1)若射线PB 、QC 同时开始旋转,当旋转时间10秒时,PB '与QC '的位置关系为 ; (2)若射线QC 先转15秒,射线PB 才开始转动,当射线PB 旋转的时间为多少秒时,PB ′//QC ′.24.如图所示,已知射线//,//,100CB OA AB OC C OAB ︒∠=∠=.点E 、F 在射线CB 上,且满足FOB AOB ∠=∠,OE 平分COF ∠(1)求EOB ∠的度数;(2)若平行移动AB ,那么:OBC OFC ∠∠的值是否随之发生变化?如果变化,找出变化规律.若不变,求出这个比值;(3)在平行移动AB 的过程中,是否存在某种情况,使OEC OBA ∠=∠?若存在,求出其度数.若不存在,请说明理由.【参考答案】一、选择题1.B解析:B【分析】根据算术平方根的定义:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根即可得出答案.【详解】解:∵21.4 1.96=,∴1.96的算术平方根是1.4,故选:B .【点睛】本题考查了算术平方根,掌握算术平方根的定义是解题的关键,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根.2.C【分析】根据平移不改变图形的形状和大小,平移变换中对应线段平行(或在同一直线上)且相等,从而得出答案.【详解】解:观察图形可知图案C 通过平移后可以得到.故选:C .【点睛】本题考查的是解析:C【分析】根据平移不改变图形的形状和大小,平移变换中对应线段平行(或在同一直线上)且相等,从而得出答案.【详解】解:观察图形可知图案C 通过平移后可以得到.故选:C .【点睛】本题考查的是平移变换及其基本性质,掌握以上知识是解题的关键.3.C【分析】根据各象限内点的坐标特征对各选项分析判断即可得解.【详解】解:A .()3,4在第一象限,故本选项不合题意;B .()4,3-在第四象限,故本选项不合题意;C .()4,3-在第二象限,故本选项符合题意.D .()3,4--在第三象限,故本选项不合题意;故选:C .【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).4.B【分析】根据平行线的性质与判定,点到直线的距离的定义逐项分析判断即可【详解】①两条平行线被第三条直线所截,同位角相等,故①是真命题;②在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行,故②是真命题;③在同一平面内,过直线外一点有且只有一条直线与这条直线平行,故③不是真命题, ④点到直线的距离是这一点到直线的垂线段的长度,故④不是真命题,故真命题是①②,故选B【点睛】本题考查了判断真假命题,平行线的性质与判定,点到直线的距离的定义,掌握相关性质定理是解题的关键.5.A【分析】根据平行线的性质得出∠2=∠D ,进而利用邻补角得出答案即可.【详解】解:如图,∵AB∥CD,∴∠2=∠D,∵∠1=140°,∴∠D=∠2=180°−∠1=180°−140°=40°,故选:A.【点睛】此题考查平行线的性质,关键是根据两直线平行,内错角相等解答.6.C【详解】解:由题意可知4的算术平方根是2,43434的算术平方根是22<22,8的立方根是2,故根据数轴可知,故选C7.B【分析】已知AE平分∠BAC,ED∥AC,根据两直线平行,同旁内角互补可知∠DEA的度数,再由周角为360°,求得∠BED的度数即可.【详解】解:∵AE平分∠BAC,∴∠BAE=∠CAE=34°,∵ED∥AC,∴∠CAE+∠AED=180°,∴∠DEA=180°-34°=146°,∵BE⊥AE,∴∠AEB=90°,∵∠AEB+∠BED+∠AED=360°,∴∠BED=360°-146°-90°=124°,故选:B.【点睛】本题考查了平行线的性质和周角的定义,熟记两直线平行,同旁内角互补是解题的关键.8.B【分析】求在平面直角坐标系中的位置,经观察分析所有点,除外,其他所有点按一定的规律分布在四个象限,且每个象限的点满足:角标÷4=循环次数+余数,余数0,1,2,3确定相应的象限,由此确定点在第解析:B【分析】求2021A 在平面直角坐标系中的位置,经观察分析所有点,除1A 外,其他所有点按一定的规律分布在四个象限,且每个象限的点满足:角标÷4=循环次数+余数,余数0,1,2,3确定相应的象限,由此确定点2021A 在第四象限,根据推导可得出结论;【详解】由题可知,第一象限的点:2A ,6A …角标除以4余数为2;第二象限的点:3A ,7A ,…角标除以4余数为3;第三象限的点:4A ,8A ,…角标除以4余数为0;第四象限的点:5A ,9A ,…角标除以4余数为1;由上规律可知:20214=5051÷,∴点2021A 在第四象限,又∵5(2,1)A -,9(3,2)A -,即横坐标为正数,数字为角标除以4的商加1;纵坐标为负数,数字为角标除以4的商, ∴2021(506,505)A -.故选:B .【点睛】本题主要考查了点的坐标规律,准确理解是解题的关键.二、填空题9.3【分析】直接利用非负数的性质得出x ,y 的值进而得出答案.【详解】∵+|3x+2y ﹣15|=0,∴x+3=0,3x+2y-15=0,∴x=-3,y=12,∴=.故答案是:3.【点睛解析:3【分析】直接利用非负数的性质得出x ,y 的值进而得出答案.【详解】∵+|3x+2y﹣15|=0,∴x+3=0,3x+2y-15=0,∴x=-3,y=12,∴3.故答案是:3.【点睛】考查了非负数的性质,正确得出x,y的值是解题关键.10.(3,-1)【分析】让纵坐标不变,横坐标互为相反数可得所求点的坐标.【详解】解:∵-3的相反数为3,∴所求点的横坐标为3,纵坐标为-1,故答案为(3,-1).【点睛】本题考查关于y轴解析:(3,-1)【分析】让纵坐标不变,横坐标互为相反数可得所求点的坐标.【详解】解:∵-3的相反数为3,∴所求点的横坐标为3,纵坐标为-1,故答案为(3,-1).【点睛】本题考查关于y轴对称的点特点;用到的知识点为:两点关于y轴对称,横坐标互为相反数,纵坐标不变.11.5°【分析】根据直角三角形两锐角互余求出∠CAD,再根据角平分线定义求出∠CAE,然后根据∠DAE=∠CAE-∠CAD,代入数据进行计算即可得解.【详解】∵AD⊥BC,∠C=30°,∴∠C解析:5°【分析】根据直角三角形两锐角互余求出∠CAD,再根据角平分线定义求出∠CAE,然后根据∠DAE=∠CAE-∠CAD,代入数据进行计算即可得解.【详解】∵AD⊥BC,∠C=30°,∴∠CAD=90°-30°=60°,∵AE是△ABC的角平分线,∠BAC=130°,∴∠CAE=12∠BAC=12×130°=65°,∴∠DAE=∠CAE-∠CAD=65°-60°=5°.故答案为:5°.【点睛】本题考查了三角形的内角和定理,三角形的角平分线,高线的定义,准确识图,找出各角度之间的关系并求出度数是解题的关键.12.130°.【分析】先求出∠ABC=∠ADE=50°,再求出∠DEF=180°﹣50°=130°即可.【详解】解:∵DE∥BC,∴∠ABC=∠ADE=50°(两直线平行,同位角相等),∵E解析:130°.【分析】先求出∠ABC=∠ADE=50°,再求出∠DEF=180°﹣50°=130°即可.【详解】解:∵DE∥BC,∴∠ABC=∠ADE=50°(两直线平行,同位角相等),∵EF∥AB,∴∠ADE+∠DEF=180°(两直线平行,同旁内角互补),∴∠DEF=180°﹣50°=130°.故答案为:130°.【点睛】本题考查了平行线线段的性质,熟练掌握平行线的性质定理是解题关键.13.5°【分析】根据平行线的性质可得∠3的度数,再根据邻补交的性质可得∠2=(180°-∠3)÷2进行计算即可.【详解】解:∵AB∥CD,∴∠1+∠3=180°,∵∠1=105°,解析:5°【分析】根据平行线的性质可得∠3的度数,再根据邻补交的性质可得∠2=(180°-∠3)÷2进行计算即可.【详解】解:∵AB∥CD,∴∠1+∠3=180°,∵∠1=105°,∴∠3=180°-105°=75°,∴∠2=(180°-75°)÷2=52.5°,故答案为:52.5°.【点睛】此题主要考查了平行线的性质,关键是找准折叠后哪些角是对应相等的.14.﹣2或﹣1或0或1或2.【分析】有三种情况:①当时,[x]=-1,(x)=0,[x)=-1或0,∴[x]+(x)+[x)=-2或-1;②当时,[x]=0,(x)=0,[x)=0,∴[x]解析:﹣2或﹣1或0或1或2.【分析】有三种情况:①当10x-<<时,[x]=-1,(x)=0,[x)=-1或0,∴[x]+(x)+[x)=-2或-1;x=时,[x]=0,(x)=0,[x)=0,②当0∴[x]+(x)+[x)=0;③当01<<时,[x]=0,(x)=1,[x)=0或1,x∴[x]+(x)+[x)=1或2;综上所述,化简[x]+(x)+[x)的结果是-2或﹣1或0或1或2.故答案为-2或﹣1或0或1或2.点睛:本题是一道阅读理解题.读懂题意并进行分类讨论是解题的关键.请在此输入详解!15.三【分析】先判断出点P的纵坐标的符号,再根据各象限内点的符号特征判断点P所在象限即可.【详解】解:∵a2为非负数,∴-a2-1为负数,∴点P的符号为(-,-)∴点P在第三象限.故答案解析:三【分析】先判断出点P的纵坐标的符号,再根据各象限内点的符号特征判断点P所在象限即可.【详解】解:∵a2为非负数,∴-a2-1为负数,∴点P的符号为(-,-)∴点P在第三象限.故答案为:三.【点睛】本题考查了点的坐标.解题的关键是掌握象限内的点的符号特点,注意a2加任意一个正数,结果恒为正数.牢记点在各象限内坐标的符号特征是正确解答此类题目的关键.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).16.(6,6)【分析】根据质点移动的各点的坐标与时间的关系,找出规律即可解答.【详解】由题意可知质点移动的速度是1个单位长度╱秒,到达(1,0)时用了3秒,到达(2,0)时用了4秒,从(2,解析:(6,6)【分析】根据质点移动的各点的坐标与时间的关系,找出规律即可解答.【详解】由题意可知质点移动的速度是1个单位长度╱秒,到达(1,0)时用了3秒,到达(2,0)时用了4秒,从(2,0)到(0,2)有四个单位长度,则到达(0,2)时用了4+4=8秒,到(0,3)时用了9秒, 从(0,3)到(3,0)有六个单位长度,则到(3,0)时用了9+6=15秒,以此类推到(4,0)用了16秒,到(0,4)用了16+8=24秒,到(0,5)用了25秒,到(5,0)用了25+10=35秒,故第42秒时质点到达的位置为(6,6),故答案为:(6,6).【点睛】本题主要考查了点的坐标的变化规律,得出运动变化的规律进而得出第42秒时质点所在位置的坐标是解题关键.三、解答题17.(1)或 (2)【分析】(1)由平方根的定义可得答案,(2)先化简二次根式,求解立方根与绝对值,再合并即可得到答案.【详解】解:(1) ,是的平方根,或(2)【点睛解析:(1)7x =或 5.x =- (2)5【分析】(1)由平方根的定义可得答案,(2)先化简二次根式,求解立方根与绝对值,再合并即可得到答案.【详解】解:(1) ()2136x -=, 1x ∴-是36的平方根,16,16,x x ∴-=-=-7x ∴=或 5.x =-(225(2)2=--522=+-5=【点睛】本题考查的是平方根的定义,实数的运算,求解算术平方根,立方根,绝对值的化简,掌握以上知识是解题的关键.18.(1)±5;(2)13【分析】(1)将已知两式相减,再利用完全平方公式得到,可得结果;(2)根据完全平方公式可得=,代入计算即可【详解】解:(1)∵①,②,①+②得:,即,∴;(2)解析:(1)±5;(2)13【分析】(1)将已知两式相减,再利用完全平方公式得到()225a b +=,可得结果;(2)根据完全平方公式可得22a b +=()()2212a b a b ⎡⎤++-⎣⎦,代入计算即可 【详解】解:(1)∵215a ab +=①,210b ab +=②,①+②得:22225a b ab ++=,即()225a b +=,∴5a b +=±;(2)∵1a b -=,∴22a b +=()()2212a b a b ⎡⎤++-⎣⎦=()221512⎡⎤±+⎣⎦=13. 【点睛】本题主要考查了完全平方公式的变式应用,熟练应用完全平方公式的变式进行计算是解决本题的关键.19.见解析【分析】应用平行线的判定与性质进行求解即可得出答案.【详解】解:证明:∵DE ⊥BC ,AB ⊥BC (已知),∴∠DEC=∠ABC=90°(垂直的定义).∴DE ∥AB (同位角相等,两直线解析:见解析【分析】应用平行线的判定与性质进行求解即可得出答案.【详解】解:证明:∵DE ⊥BC ,AB ⊥BC (已知),∴∠DEC =∠ABC =90°(垂直的定义).∴DE ∥AB (同位角相等,两直线平行).∴∠2=∠3(两直线平行,内错角相等),∠1=∠A (两直线平行,同位角相等).又∵∠A =∠3(已知),∴∠1=∠2(等量代换).∴DE 平分∠CDB (角平分线的定义).【点睛】本题主要考查了平行线的判定与性质,熟练应用平行线的判定与性质进行求解是解决本题的关键.20.(1)图见详解;;(2)平移过程为先向右平移6个单位长度,再向上平移2个单位长度;(3)以A ,C ,A1,C1为顶点的四边形的面积为14.【分析】(1)根据点P 的对应点P1(a+6,b+2)可分别解析:(1)图见详解;()()113,4,4,2A C ;(2)平移过程为先向右平移6个单位长度,再向上平移2个单位长度;(3)以A ,C ,A 1,C 1为顶点的四边形的面积为14.【分析】(1)根据点P 的对应点P 1(a +6,b +2)可分别得出A 、B 、C 的对应点A 1,B 1,C 1的坐标,然后连接即可得出图象;(2)由(1)可直接进行求解;(3)由(1)的图象可直接利用割补法进行求解面积.【详解】解:(1)由点P 的对应点P 1(a +6,b +2)可得如图所示图象:∴由图象可得()()113,4,4,2A C ;(2)由图象可得:平移过程为先向右平移6个单位长度,再向上平移2个单位长度; (3)连接11,,AA CC ,如图所示:∵点()()13,2,4,2A C -,∴点1,A C 在同一条直线上,且与x 轴平行, ∴1111272142AC C ACC A S S =⨯=⨯=四边形.【点睛】本题主要考查平移的性质及坐标与图形,熟练掌握坐标的平移是解题的关键. 21.(1),;(2);(3)【分析】(1)根据的范围确定出、的值;(2)求出,的范围,即可求出、的值,代入求出即可;(3)将代入中即可求出.【详解】解:(1),,,,故答案是:,;(解析:(1)4a =,5b =;(2)174,3x y =;(3)8±【分析】(117a 、b 的值;(2172171的范围,即可求出x 、y 的值,代入求出即可;(3)将174,3x y ==代入(17)y x 中即可求出.【详解】解:(1)161725<4175∴<<,4a ∴=,5b =,故答案是:4a =,5b =;(2)4175<,61727∴<,31714<<,2264-,1的整数部分为:3;故答案是:4,3x y =;(3)174,3x y ==,3)464y x ∴==,)y x ∴的平方根为:8=±.【点睛】本题考查了估算无理数的大小的应用、求平方根,解题的关键是读懂题意及求出45<.22.选择建成圆形草坪的方案,理由详见解析【分析】根据正方形的面积公式、算术平方根的概念求出正方形的边长,求出正方形的周长,根据圆的面积公式、算术平方根的概念求出圆的半径,求出圆的周长,比较大小得到答解析:选择建成圆形草坪的方案,理由详见解析【分析】根据正方形的面积公式、算术平方根的概念求出正方形的边长,求出正方形的周长,根据圆的面积公式、算术平方根的概念求出圆的半径,求出圆的周长,比较大小得到答案.【详解】解:选择建成圆形草坪的方案,理由如下:设建成正方形时的边长为x 米,由题意得:x 2=81,解得:x =±9,∵x >0,∴x =9,∴正方形的周长为4×9=36,设建成圆形时圆的半径为r 米,由题意得:πr 2=81.解得:=r ∵r >0.∴=r∴圆的周长=2π≈ ∵56<,∴3036<,∴建成圆形草坪时所花的费用较少,故选择建成圆形草坪的方案.【点睛】本题考查的是算术平方根的应用,掌握算术平方根概念是解题的关键.23.(1)PB′⊥QC′;(2)当射线PB旋转的时间为5秒或25秒或45秒时,PB′∥QC′【分析】(1)求出旋转10秒时,∠BPB′和∠CQC′的度数,设PB′与QC′交于O,过O作OE∥AB,根解析:(1)PB′⊥QC′;(2)当射线PB旋转的时间为5秒或25秒或45秒时,PB′∥QC′【分析】(1)求出旋转10秒时,∠BPB′和∠CQC′的度数,设PB′与QC′交于O,过O作OE∥AB,根据平行线的性质求得∠POE和∠QOE的度数,进而得结论;(2)分三种情况:①当0<t≤15时,②当15<t≤30时,③当30<t<45时,根据平行线的性质,得出角的关系,列出t的方程便可求得旋转时间.【详解】解:(1)如图1,当旋转时间30秒时,由已知得∠BPB′=10°×12=120°,∠CQC′=3°×10=30°,过O作OE∥AB,∵AB∥CD,∴AB∥OE∥CD,∴∠POE=180°﹣∠BPB′=60°,∠QOE=∠CQC′=30°,∴∠POQ=90°,∴PB′⊥QC′,故答案为:PB′⊥QC′;(2)①当0<t≤15时,如图,则∠BPB′=12t°,∠CQC′=45°+3t°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠PEC=∠CQC′,即12t=45+3t,解得,t=5;②当15<t≤30时,如图,则∠APB′=12t﹣180°,∠CQC'=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣180=45+3t,解得,t=25;③当30<t≤45时,如图,则∠BPB′=12t﹣360°,∠CQC′=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣360=45+3t,解得,t=45;综上,当射线PB旋转的时间为5秒或25秒或45秒时,PB′∥QC′.【点睛】本题主要考查了平行线的性质,第(1)题关键是作平行线,第(2)题关键是分情况讨论,运用方程思想解决几何问题.24.(1)40°;(2)的值不变,比值为;(3)∠OEC=∠OBA=60°.【分析】(1)根据OB 平分∠AOF ,OE 平分∠COF ,即可得出∠EOB=∠EOF+∠FOB=∠COA ,从而得出答案;(2解析:(1)40°;(2):OBC OFC ∠∠的值不变,比值为12;(3)∠OEC=∠OBA=60°.【分析】(1)根据OB 平分∠AOF ,OE 平分∠COF ,即可得出∠EOB=∠EOF+∠FOB=12∠COA ,从而得出答案;(2)根据平行线的性质,即可得出∠OBC=∠BOA ,∠OFC=∠FOA ,再根据∠FOA=∠FOB+∠AOB=2∠AOB ,即可得出∠OBC :∠OFC 的值为1:2.(3)设∠AOB=x ,根据两直线平行,内错角相等表示出∠CBO=∠AOB=x ,再根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠OEC ,然后利用三角形的内角和等于180°列式表示出∠OBA ,然后列出方程求解即可.【详解】(1)∵CB ∥OA∴∠C+∠COA=180°∵∠C=100°∴∠COA=180°-∠C=80°∵∠FOB=∠AOB ,OE 平分∠COF∴∠FOB+∠EOF=12(∠AOF+∠COF )=12∠COA=40°;∴∠EOB=40°;(2)∠OBC :∠OFC 的值不发生变化∵CB ∥OA∴∠OBC=∠BOA ,∠OFC=∠FOA∵∠FOB=∠AOB∴∠FOA=2∠BOA∴∠OFC=2∠OBC∴∠OBC :∠OFC=1:2(3)当平行移动AB 至∠OBA=60°时,∠OEC=∠OBA .设∠AOB=x ,∵CB ∥AO ,∴∠CBO=∠AOB=x ,∵CB ∥OA ,AB ∥OC ,∴∠OAB+∠ABC=180°,∠C+∠ABC=180°∴∠OAB=∠C=100°.∵∠OEC=∠CBO+∠EOB=x+40°,∠OBA=180°-∠OAB-∠AOB=180°-100°-x=80°-x,∴x+40°=80°-x,∴x=20°,∴∠OEC=∠OBA=80°-20°=60°.【点睛】本题主要考查了平行线、角平分线的性质以及三角形内角和定理,熟记各性质并准确识图理清图中各角度之间的关系是解题的关键.。
七年级数学下册期中考试卷【附答案】
七年级数学下册期中考试卷【附答案】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知243m -m-10m -m -m 2=+,则计算:的结果为( ).A .3B .-3C .5D .-52.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-3.下列说法正确的是( )A .一个数的绝对值一定比0大B .一个数的相反数一定比它本身小C .绝对值等于它本身的数一定是正数D .最小的正整数是14.长方形如图折叠,D 点折叠到的位置,已知∠FC =40°,则∠EFC =( )A .120°B .110°C .105°D .115°5.下列说法,正确的是( )A .若ac bc =,则a b =B .两点之间的所有连线中,线段最短C .相等的角是对顶角D .若AC BC =,则C 是线段AB 的中点6.下列说法中,错误的是( )A .不等式x <5的整数解有无数多个B .不等式x >-5的负整数解集有有限个C .不等式-2x <8的解集是x <-4D .-40是不等式2x <-8的一个解7.数轴上A 、B 、C 三点所代表的数分别是a 、1、c ,且11c a a c ---=-.若下列选项中,有一个表示A 、B 、C 三点在数轴上的位置关系,则此选项为何?( )A .B .C .D . 8.计算()22b a a -⨯的结果为( ) A .bB .b -C . abD .b a 9.一次函数满足,且随的增大而减小,则此函数的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限 10.若不论k 取什么实数,关于x 的方程2136kx a x bk +--=(a 、b 是常数)的解总是x=1,则a+b 的值是( )A .﹣0.5B .0.5C .﹣1.5D .1.5二、填空题(本大题共6小题,每小题3分,共18分)1.分解因式:x 2-2x+1=__________.2.如图,AB //CD BED 110BF ,,∠=平分ABE DF ∠,平分CDE ∠,则BFD ∠=________.3.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________4.如图,圆柱形玻璃杯高为14cm ,底面周长为32cm ,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为_____cm (杯壁厚度不计).525.36 5.036,253.6=15.906253600=__________.6.把5×5×5写成乘方的形式__________.三、解答题(本大题共6小题,共72分)1.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩2.在解方程组2628mx y x ny +=⎧⎨+=⎩时,由于粗心,小军看错了方程组中的n ,得解为7323x y ⎧=⎪⎪⎨⎪=⎪⎩,小红看错了方程组中的m ,得解为24x y =-⎧⎨=⎩ (1)则m ,n 的值分别是多少?(2)正确的解应该是怎样的?3.如图,A (4,3)是反比例函数y=k x在第一象限图象上一点,连接OA ,过A 作AB ∥x 轴,截取AB=OA (B 在A 右侧),连接OB ,交反比例函数y=k x的图象于点P .(1)求反比例函数y=k x的表达式;(2)求点B的坐标;(3)求△OAP的面积.4.如图,已知直线AB∥CD,直线EF分别与AB,CD相交于点O,M,射线OP在∠AOE的内部,且OP⊥EF,垂足为点O.若∠AOP=30°,求∠EMD的度数.5.某商场为了吸引顾客,设立了可以自由转动的转盘(如图,转盘被均匀分为20份),并规定:顾客每购买200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券30元.(1)求转动一次转盘获得购物券的概率;(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算?6.小明用的练习本可以到甲、乙两家商店购买,已知两商店的标价都是每本2元,甲商店的优惠条件是购买10本以上,从第11本开始按标价的70%出售;乙商店的优惠条件是,从第一本起按标价的80%出售.(1)设小明要购买x(x>10)本练习本,则当小明到甲商店购买时,须付款元,当到乙商店购买时,须付款元;(2)买多少本练习本时,两家商店付款相同?(3)小明准备买50本练习本,为了节约开支,应怎样选择哪家更划算?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、D4、B5、B6、C7、A8、A9、A10、A二、填空题(本大题共6小题,每小题3分,共18分)1、(x-1)2.2、1253、15°4、205、503.66、35三、解答题(本大题共6小题,共72分)1、1.52 xy=-⎧⎨=-⎩2、(1) m=2;n=3;(2)方程组正确的解为12. xy=⎧⎨=⎩3、(1)反比例函数解析式为y=12x;(2)点B的坐标为(9,3);(3)△OAP的面积=5.4、60°5、(1)P(转动一次转盘获得购物券)=12;(2)选择转转盘对顾客更合算.6、(1)10×2+(x-10)×2×0.7 ;2x×0.8(2)买30本时两家商店付款相同(3)甲商店更划算。
七年级数学下册期中测试卷(参考答案)
七年级数学下册期中测试卷(参考答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知243m -m-10m -m -m 2=+,则计算:的结果为( ).A .3B .-3C .5D .-52.下列说法中,正确..的是( ) A .一个有理数不是正数就是负数 B .一个有理数不是整数就是分数C .若|a |=|b |,则a 与b 互为相反数D .整数包括正整数和负整数3.如图,将△ABE 向右平移2cm 得到△DCF ,如果△ABE 的周长是16cm ,那么四边形ABFD 的周长是( )A .16cmB .18cmC .20cmD .21cm4.已知5x =3,5y =2,则52x ﹣3y =( )A .34B .1C .23D .985.如图,在方格纸中,以AB 为一边作△ABP ,使之与△ABC 全等,从P 1,P 2,P 3,P 4四个点中找出符合条件的点P ,则点P 有( )A .1个B .2个C .3个D .4个 62|1|0+-=a b ,那么()2017a b +的值为( )A .-1B .1C .20173D .20173-7.若关于x 的不等式组255332x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩只有5个整数解,则a 的取值范围( )A .1162a -<-B .116a 2-<<-C .1162a -<-D .1162a -- 8.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为( )A .零上3℃B .零下3℃C .零上7℃D .零下7℃9.下面四个图形中,∠1=∠2一定成立的是( )A .B .C .D .10.如果,长方形ABCD 中有6个形状、大小相同的小长方形,且3EF =,12CD =,则图中阴影部分的面积为( ).A .108B .72C .60D .48二、填空题(本大题共6小题,每小题3分,共18分)1.标价m 元的上衣,打八五折后,便宜了_____元钱.2.已知654a b c ==,且26a b c +-=,则a 的值为__________. 3.已知有理数a ,b 满足ab <0,a+b >0,7a+2b+1=﹣|b ﹣a|,则()123a b a b ⎛⎫++- ⎪⎝⎭ 的值为________.4.若()2320m n -++=,则m+2n 的值是________.5.64的立方根是___________.6.如果a 、b 互为倒数,c 、d 互为相反数,且m 1=-,则()22ab c d m -++=___________.三、解答题(本大题共6小题,共72分)1.解下列方程:(1)2(x +3)=5(x -3) 2123x -()=435x --x2.已知关于x 的方程()()122k x k x +=--中,求当k 取什么整数值时,方程的解是整数.3.如图,正比例函数y =2x 的图象与一次函数y =kx +b 的图象交于点A (m ,2),一次函数图象经过点B (﹣2,﹣1),与y 轴的交点为C ,与x 轴的交点为D .(1)求一次函数解析式;(2)求C 点的坐标;(3)求△AOD 的面积.4.已知:如图,直线AB 、CD 相交于点O ,EO ⊥CD 于O .(1)若∠AOC=36°,求∠BOE的度数;(2)若∠BOD:∠BOC=1:5,求∠AOE的度数;(3)在(2)的条件下,请你过点O画直线MN⊥AB,并在直线MN上取一点F (点F与O不重合),然后直接写出∠EOF的度数.5.某软件科技公司20人负责研发与维护游戏、网购、视频和送餐共4款软件.投入市场后,游戏软件的利润占这4款软件总利润的40%.如图是这4款软件研发与维护人数的扇形统计图和利润的条形统计图.根据以上信息,网答下列问题(1)直接写出图中a,m的值;(2)分别求网购与视频软件的人均利润;(3)在总人数和各款软件人均利润都保持不变的情况下,能否只调整网购与视频软件的研发与维护人数,使总利润增加60万元?如果能,写出调整方案;如果不能,请说明理由.6.在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、C4、D5、C6、A7、A8、B9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、0.15m.2、123、0.4、-15、26、3三、解答题(本大题共6小题,共72分)1、(1)x=7;(2)x=1 2.2、k=−3或−1或−4或0或−6或2.3、(1)y=x+1;(2)C(0,1);(3)14、(1)54°;(2)120°;(3)∠EOF的度数为30°或150°.5、(1)a=20,m=960;(2)网购软件的人均利润为160元/人,视频软件的人均利润为140元/人;(3)安排9人负责网购、安排1人负责视频可以使总利润增加60万元.6、(1)乙队单独完成需90天;(2)在不超过计划天数的前提下,由甲、乙合作完成最省钱.。
初中七年级数学下册期中试卷及答案
初中七年级数学下册期中试卷及答案一、选择题1. 下列选项中,既是轴对称图形又是中心对称图形的是()A. 矩形B. 等边三角形C. 菱形D. 圆{答案:D}2. 已知一组数据:2,4,6,8,10,12,14,16,其中众数是()A. 2B. 4C. 6D. 8{答案:D}3. 下列等式中,正确的是()A. \(a^2 = 2a\)B. \(a^2 = -2a\)C. \(2a = a^2\)D. \(a^2 = a\){答案:C}4. 某数的平方根是3,那么这个数是()A. 3B. -3C. 9D. -9{答案:C}5. 下列各数中,是无理数的是()A. \(\sqrt{2}\)B. \(2\sqrt{2}\)C. \(\sqrt[3]{2}\)D.\(2\sqrt[3]{2}\){答案:A}二、填空题1. 若 \(a\) 为有理数,且 \(a^2 = 14\),则 \(a\) 的值为______。
{答案:±\(\sqrt{14}\)}2. 已知一组数据:1,3,5,7,9,其中中位数______。
{答案:5}3. 若\(a\) 为实数,且\(a+2>0\),则\(a\) 的取值范围为______。
{答案:\(a>-2\)}4. 下列各数中,是等差数列的是______。
{答案:2,4,6,8,10}5. 若 \(a\) 为实数,且 \(a^2 - 3a + 2 = 0\),则 \(a\) 的值为______。
{答案:1 或 2}三、解答题1. 解方程:\(2x - 5 = 3x + 1\)。
{答案:\(x = -6\)}2. 计算:\(\frac{1}{3} + \frac{2}{5} - \frac{1}{6}\)。
{答案:\(\frac{19}{30}\)}3. 某商店进行打折活动,原价100元的商品打8折,求打折后的价格。
{答案:80元}4. 解不等式:\(3x - 7 > 2x + 3\)。
七年级数学下册期中考试题(完整)
七年级数学下册期中考试题(完整)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a,b满足方程组51234a ba b+=⎧⎨-=⎩则a+b的值为()A.﹣4 B.4 C.﹣2 D.22.下列说法中,正确..的是()A.一个有理数不是正数就是负数B.一个有理数不是整数就是分数C.若|a|=|b|,则a与b互为相反数D.整数包括正整数和负整数3.如图,直线a∥b,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为()A.30°B.32°C.42°D.58°4.下列说法正确的是()A.一个数前面加上“-”号,这个数就是负数B.零既是正数也是负数C.若a是正数,则a-不一定是负数D.零既不是正数也不是负数5.若关于x的不等式组()2213x x ax x<⎧-⎪⎨-≤⎪⎩恰有3个整数解,则a的取值范围是()A.12a≤<B.01a≤<C.12a-<≤D.10a-≤<6.如图,∠1=70°,直线a平移后得到直线b,则∠2-∠3()A.70°B.180°C.110°D.80°7.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A.8 B.6 C.4 D.28.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.20{3210x yx y+-=--=,B.210{3210x yx y--=--=,C.210{3250x yx y--=+-=,D.20{210x yx y+-=--=,9.若|abc|=-abc,且abc≠0,则||||ba ca b c++=()A.1或-3 B.-1或-3 C.±1或±3 D.无法判断10.一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店()A.不盈不亏B.盈利20元C.亏损10元D.亏损30元二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:3222x x y xy +=﹣__________. 2.已知a 是最大的负整数,b 是最小的正整数,c 是绝对值最小的数,则(a +c )÷b =___________.3.如图,在平面直角坐标系中,△AOB ≌△COD ,则点D 的坐标是________.4.如图所示,在四边形ABCD 中,AD ⊥AB ,∠C=110°,它的一个外角∠ADE=60°,则∠B 的大小是________.5.若方程组x y 73x 5y 3+=⎧⎨-=-⎩,则()()3x y 3x 5y +--的值是________. 6.在数轴上,点A 所表示的数为2,那么到点A 的距离等于3个单位长度的点所表示的数是________.三、解答题(本大题共6小题,共72分)1.解方程:3531132x x -+-=2.如果关于x ,y 的方程组437132x y k x y k -=⎧⎪⎨+-=-⎪⎩的解中,x 与y 互为相反数,求k 的值.3.如图是一个长为a,宽为b的矩形,两个阴影图形都是一对底边长为1,且底边在矩形对边上的平行四边形.(1)用含字母a,b的代数式表示矩形中空白部分的面积;(2)当a=3,b=2时,求矩形中空白部分的面积.4.如图,已知AB∥CD,CN是∠BCE的平分线.(1)若CM平分∠BCD,求∠MCN的度数;(2)若CM在∠BCD的内部,且CM⊥CN于C,求证:CM平分∠BCD;(3)在(2)的条件下,连结BM,BN,且BM⊥BN,∠MBN绕着B点旋转,∠BMC+∠BNC是否发生变化?若不变,求其值;若变化,求其变化范围.5.我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.6.去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、B4、D5、A6、C7、C8、D9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、()2 x x y-2、-13、(-2,0)4、40°5、24.6、-1或5三、解答题(本大题共6小题,共72分)1、3x=.2、x=1,y=-1,k=9.3、(1)S=ab﹣a﹣b+1;(2)矩形中空白部分的面积为2;4、(1)90°;(2)略;(3)∠BMC+∠BNC=180°不变,理由略5、(1)(2)初中部成绩好些(3)初中代表队选手成绩较为稳定6、(1)饮用水和蔬菜分别为200件和120件(2)设计方案分别为:①甲车2辆,乙车6辆;②甲车3辆,乙车5辆;③甲车4辆,乙车4辆(3)运输部门应选择甲车2辆,乙车6辆,可使运费最少,最少运费是2960元。
七年级数学下册期中考试卷(完美版)
七年级数学下册期中考试卷(完美版)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣2020的倒数是()A.﹣2020 B.﹣12020C.2020 D.120202.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°3.关于x的方程32211x mx x-=+++无解,则m的值为()A.﹣5 B.﹣8 C.﹣2 D.54.已知三角形三边长为a、b、c,且满足247a b-=,246b c-=-,2618c a-=-,则此三角形的形状是()A.等腰三角形B.等边三角形C.直角三角形D.无法确定5.如图,函数y1=﹣2x 与y2=ax+3 的图象相交于点A(m,2),则关于x 的不等式﹣2x>ax+3 的解集是()A.x>2 B.x<2 C.x>﹣1 D.x<﹣16.如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是()A .点MB .点NC .点PD .点Q7.已知点(224)P m m +,﹣在x 轴上,则点P 的坐标是( ) A .(40), B .(0)4, C .40)(-, D .(0,4)-8.下列说法:①a -一定是负数;②||a 一定是正数;③倒数等于它本身的数是±1;④绝对值等于它本身的数是l ;⑤平方等于它本身的数是1.其中正确的个数是( )A .1个B .2个C .3个D .4个9.一副直角三角板如图放置,点C 在FD 的延长线上,AB//CF ,∠F=∠ACB=90°,则∠DBC 的度数为( )A .10°B .15°C .18°D .30°10.如图是一个计算程序,若输入a 的值为﹣1,则输出的结果应为( )A .7B .﹣5C .1D .5二、填空题(本大题共6小题,每小题3分,共18分)1.已知2320x y --=,则23(10)(10)x y ÷=________.2.如图,AB ∥CD ,点P 为CD 上一点,∠EBA 、∠EPC 的角平分线于点F ,已知∠F =40°,则∠E =________度.3.若0a <,0b >,0c >,a b c >+,则a b c ++________0.4.若+x x -有意义,则+1x =___________.5.364 的平方根为________.6.如图,已知AE 是△ABC 的边BC 上的中线,若AB=8cm,△ACE 的周长比△AEB 的周长多2cm,则AC=________.三、解答题(本大题共6小题,共72分)1.解方程(1)3x -7(x -1)=3-2(x+3) (2) 12334x x x -+-=-2.先化简,再求值:(a ﹣2b )(a+2b )﹣(a ﹣2b )2+8b 2,其中a=﹣2,b=123.问题情境:如图1,AB ∥CD ,∠PAB=130°,∠PCD=120°.求∠APC 度数. 小明的思路是:如图2,过P 作PE ∥AB ,通过平行线性质,可得∠APC=50°+60°=110°.问题迁移:(1)如图3,AD ∥BC ,点P 在射线OM 上运动,当点P 在A 、B 两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD 、∠α、∠β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你直接写出∠CPD 、∠α、∠β间的数量关系.4.如图,在△ABC中,AB=AC,点D、E分别在AB、AC上,BD=CE,BE、CD相交于点0;∆≅∆求证:(1)DBC ECB=(2)OB OC5.为丰富学生的课余生活,陶冶学生的情趣,促进学生全面发展,其中七年级开展了学生社团活动.学校为了解学生参加情况,进行了抽样调查,制作如下的统计图:请根据上述统计图,完成以下问题:(1)这次共调查了______名学生;扇形统计图中,表示“书法类”所在扇形的圆心角是______度;(2)请把统计图1补充完整;(3)若七年级共有学生1100名,请估算有多少名学生参加文学类社团?6.某电脑经销商计划购进一批电脑机箱和液晶显示器,若购电脑机箱10台和液液晶显示器8台,共需要资金7000元;若购进电脑机箱2台和液示器5台,共需要资金4120元.(1)每台电脑机箱、液晶显示器的进价各是多少元?(2)该经销商购进这两种商品共50台,而可用于购买这两种商品的资金不超过22240元.根据市场行情,销售电脑机箱、液晶显示器一台分别可获利10元和160元.该经销商希望销售完这两种商品,所获利润不少于4100元.试问:该经销商有哪几种进货方案?哪种方案获利最大?最大利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、A4、A5、D6、C7、A8、A9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、1002、803、<4、15、±26、10cm三、解答题(本大题共6小题,共72分)1、(1)x=5(2)x=-22、4ab,﹣4.∠=∠+∠,理由见解析;3、(1)CPDαβ∠=∠-∠;(2)当点P在B、O两点之间时,CPDαβ∠=∠-∠.当点P在射线AM上时,CPDβα4、(1)略;(2)略.5、(1)50;72;(2)详见解析;(3)330.6、(1)每台电脑机箱、液晶显示器的进价各是60元,800元;(2)利润最大为4400元.。
七年级数学下册期中考试题【含答案】
七年级数学下册期中考试题【含答案】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.方程13153520052007x x x x ++++=⨯的解是x =( ) A .20062007 B .20072006 C .20071003D .10032007 2.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE ,且D 点落在对角线D ′处.若AB=3,AD=4,则ED 的长为A .32B .3C .1D .433.若整数x 满足5+19≤x ≤45+2,则x 的值是( )A .8B .9C .10D .114.若关于x 的方程230m mx m --+=是一元一次方程,则这个方程的解是( )A .0x =B .3x =C .3x =-D .2x =5.如图,四边形ABCD 内接于⊙O ,点I 是△ABC 的内心,∠AIC=124°,点E 在AD 的延长线上,则∠CDE 的度数为( )A .56°B .62°C .68°D .78°6.实数a ,b 在数轴上的对应点的位置如图所示,把﹣a ,﹣b ,0按照从小到大的顺序排列,正确的是( )A .﹣a <0<﹣bB .0<﹣a <﹣bC .﹣b <0<﹣aD .0<﹣b <﹣a7.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是( )A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+18.若0ab <且a b >,则函数y ax b =+的图象可能是( )A .B .C .D .9.设42-的整数部分为a ,小数部分为b ,则1a b-的值为( ) A .2- B .2 C .212+ D .212- 10.下列四个不等式组中,解集在数轴上表示如图所示的是( )A .23x x ≥⎧⎨>-⎩B .23x x ≤⎧⎨<-⎩C .23x x ≥⎧⎨<-⎩D .23x x ≤⎧⎨>-⎩二、填空题(本大题共6小题,每小题3分,共18分)1.已知直角三角形的两边长分别为3、4.则第三边长为________.2.如果22(1)4x m x +-+是一个完全平方式,则m =__________.3.如图所示,在等腰△ABC 中,AB=AC ,∠A=36°,将△ABC 中的∠A 沿DE 向下翻折,使点A 落在点C 处.若3BC 的长是________.4.若216x mx++是一个完全平方式,则m=________5.有三个互不相等的整数a,b,c,如果abc=4,那么a+b+c=__________ 6.如图是利用直尺和三角板过已知直线l外一点P作直线l的平行线的方法,其理由是__________.三、解答题(本大题共6小题,共72分)1.解方程:53211 64x x---=2.已知关于x、y的二元一次方程组352{2718 x y a x y a-=+=-(1)若x,y的值互为相反数,求a的值;(2)若2x+y+35=0,解这个方程组.3.如图,ABC中,点E在BC边上,AE AB=,将线段AC绕点A旋转到AF 的位置,使得CAF BAE∠=∠,连接EF,EF与AC交于点G(1)求证:EF BC=;(2)若65ABC∠=︒,28ACB∠=︒,求FGC∠的度数.4.如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC 边上,且BE=BD,连结AE、DE、DC①求证:△ABE≌△CBD;②若∠CAE=30°,求∠BDC的度数.5.为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.种类 A B C D E出行方式共享单车步行公交车的士私家车根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有人,其中选择B类的人数有人;(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.6.食品安全是老百姓关注的话题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A,B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A,B两种饮料共100瓶,问A,B两种饮料各生产了多少别瓶?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、A3、C4、A5、C6、C7、B8、A9、D10、D二、填空题(本大题共6小题,每小题3分,共18分)1、52、-1或334、±85、-1或-46、同位角相等,两直线平行.三、解答题(本大题共6小题,共72分)1、154x=.2、(1)a的值是8;(2)这个方程组的解是17 {1xy=-=-.3、(1)略;(2)78°.4、①略;②∠BDC=75°.5、(1)800,240;(2)补图见解析;(3)9.6万人.6、A饮料生产了30瓶,B饮料生产了70瓶.。
七年级数学下册期中考试卷(附答案)
七年级数学下册期中考试卷(附答案)班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1.已知|x|=5, |y|=2, 且|x+y|=﹣x﹣y, 则x﹣y的值为()A. ±3B. ±3或±7C. ﹣3或7D. ﹣3或﹣72.如图是甲、乙两车在某时段速度随时间变化的图象, 下列结论错误的是()A. 乙前4秒行驶的路程为48米B. 在0到8秒内甲的速度每秒增加4米/秒C. 两车到第3秒时行驶的路程相等D. 在4至8秒内甲的速度都大于乙的速度3.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题: “一条竿子一条索, 索比竿子长一托.折回索子却量竿, 却比竿子短一托“其大意为: 现有一根竿和一条绳索, 用绳索去量竿, 绳索比竿长5尺;如果将绳索对半折后再去量竿, 就比竿短5尺.设绳索长x尺, 竿长y尺, 则符合题意的方程组是()A. B. C. D.4.若ax=6, ay=4, 则a2x﹣y的值为()A. 8B. 9C. 32D. 405.如图, AB∥CD, ∠1=58°, FG平分∠EFD, 则∠FGB的度数等于()A. 122°B. 151°C. 116°D. 97°6. 下列运算正确的是()A. B. C. D.7.已知关于x的不等式组的整数解共有5个, 则a的取值范围是()A. ﹣4<a<﹣3 B. ﹣4≤a<﹣3 C. a<﹣3 D. ﹣4<a<8.如图,将一副三角尺按不同的位置摆放, 下列摆放方式中与互余的是()A. 图①B. 图②C. 图③D. 图④9.一副直角三角板如图放置, 点C在FD的延长线上, AB//CF, ∠F=∠ACB=90°, 则∠DBC的度数为( )A. 10°B. 15°C. 18°D. 30°10.已知关于x的方程2x-a=x-1的解是非负数, 则a的取值范围为()A. B. C. D.二、填空题(本大题共6小题, 每小题3分, 共18分)1. 若a、b为实数, 且b=+4, 则a+b=________.2.如图, 在△ABC中, BO、CO分别平分∠ABC、∠ACB.若∠BOC=110°, 则∠A=________.3. 已知点A(0, 1), B(0 , 2), 点C在x轴上, 且, 则点C的坐标________.4. 若x2+kx+25是一个完全平方式, 则k的值是__________.5.若关于x的方程有增根, 则m的值是________.6. 一个正多边形的一个外角为30°, 则它的内角和为________.三、解答题(本大题共6小题, 共72分)1. 解方程(1)- =1- (2)2. 已知关于x的方程m+ =4的解是关于x的方程的解的2倍, 求m的值.3. 如图,已知在△ABC中,EF⊥AB,CD⊥AB,G在AC边上,∠AGD=∠ACB, 求证:∠1=∠2.4. 尺规作图: 校园有两条路OA.OB, 在交叉路口附近有两块宣传牌C.D, 学校准备在这里安装一盏路灯, 要求灯柱的位置P离两块宣传牌一样远, 并且到两条路的距离也一样远, 请你帮助画出灯柱的位置P. (不写画图过程, 保留作图痕迹)5. 央视热播节目“朗读者”激发了学生的阅读兴趣. 某校为满足学生的阅读需求, 欲购进一批学生喜欢的图书, 学校组织学生会成员随机抽取部分学生进行问卷调查, 被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类, 根据调查结果绘制了统计图(未完成), 请根据图中信息, 解答下列问题:(1)此次共调查了名学生;(2)将条形统计图补充完整;(3)图2中“小说类”所在扇形的圆心角为度;(4)若该校共有学生2500人, 估计该校喜欢“社科类”书籍的学生人数.6. 如图, 阶梯图的每个台阶上都标着一个数, 从下到上的第1个至第4个台阶上依次标着﹣5, ﹣2, 1, 9, 且任意相邻四个台阶上数的和都相等.尝试(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x是多少?应用求从下到上前31个台阶上数的和.发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1、D2、C3、A4、B5、B6、C7、B8、A9、B10、A二、填空题(本大题共6小题, 每小题3分, 共18分)1.5或32.40°3.(4,0)或(﹣4,0)4、±10.5、0.6.1800°三、解答题(本大题共6小题, 共72分)1.(1);(2)2、m=0.3、略。
七年级数学下册期中考试试卷(附带答案)
七年级数学下册期中考试试卷(附带答案)(试卷满分:150分;考试时间:120分钟)学校:___________姓名:___________班级:___________考号:___________注意事项:本试题共6页,满分为150分.考试时间为120分钟.答卷前,请考生务必将自己的姓名、座号和准考证号填写在答题卡上,并同时将考点、姓名、准考证号和座号填写在试卷规定的位置上.答选择题时,必须使用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;答非选择题时,用0.5mm黑色签字笔在答题卡上题号所提示的答题区域作答,答案写在试卷上无效.第I卷(选择题共40分)一.选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列运算正确的是()A.a2·a4=a8B.a4+a4=a8C.(ab)3= a³b3D.(a2)4=a62.泉城广场鲜花盛放,数郁金香最为耀眼,某品种郁金香花粉直径约为0,000000032米,数据0.000000032用科学记数法表示为()A.0.32x10-7B.3.2x10-8C.3.2x10-7D.32x10-93.研究表明,雾霾的程度随城市中心区立体绿化面积的增大而减小,在这个问题中,自变量是()A.雾霾的程度B.城市中心C.雾霾D.城市中心区立体绿化面积4.在下列四组线段中,能组成三角形的是( )A.2,2,5B.3,7,10C.3,5,9D.4,5,75.如图AB ∥CD,若∠1=40°,则∠2=()A.100°B.120°C.140°D.150°(第5题图)(第6题图)(第9题图)(第10题图)6.如图,从人行横道线上的点P处过马路,沿线路PB行走距离最短,其依据的几何学原理是()A.垂线段最短B.两点之间线段最短C.两点确定一条直线D.在同一平面内,过一点有且只有一条直线与已知直线垂直7.下列各式中,可以用平方差公式计算的是( )A.(a-b)(a-b)B.(3a+2b)(3a-2b)C.(a+b)(2a-b)D.(2a+b)(-2a-b )8.已知x2+mx+25是一个完全平方式,则m的值为( )A.±5B.10C.﹣10D.±109.如图:OB=OD,添加下列条件后不能保证△AOB≌△COD的是()A.OA=OCB.AB=CDC.∠A=∠CD.∠B=∠D10.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息,已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分:②乙走完全程用了36分钟:③乙用16分钟追上甲:④乙到达终点时,甲离终点还有300米.其中正确的结论有()A.1个B.2个C.3个D.4个第II卷(非选择题共110分)二.填空题(本大题共6个小题,每小题4分,共24分)11.若一个角是38°,则这个角的余角为.12.4m2n÷(-2m)= .13.在△ABC中,∠A:∠B:∠C=5:6:7,则△ABC是(填入"锐鱼三角形"、"直角三角形"或"钝角三角形").14.农村"雨污分流"工程是"美丽乡村"战略的重要组成部分,我县某村要铺设一条全长为1000米的"雨污分流"管道,现在工程队铺设管道施工x天与铺设管道y米之间的关系用表格表示如下,则施工8天后,未铺设的管道长度为米.15.如图,AD是△ABC的中线,已知△ABD的周长为16cm,AB比AC长3cm,则△ACD的周长为。
七年级数学下册期中试卷(带答案)
七年级数学下册期中试卷(带答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若分式211xx-+的值为0,则x的值为()A.0B.1C.﹣1D.±12.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A. B.C. D.3.按如图所示的运算程序,能使输出y值为1的是()A.11m n==,B.10m n==,C.12m n==,D.21m n==,4.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为A.x y50{x y180=-+=B.x y50{x y180=++=C.x y50{x y90=++=D.x y50{x y90=-+=5.如图,AB∥CD,∠1=58°,FG平分∠EFD,则∠FGB的度数等于()A.122°B.151°C.116°D.97°6.如图,在△ABC中,∠ABC,∠ACB的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC的度数为()A.118°B.119°C.120°D.121°7.把1aa-根号外的因式移入根号内的结果是()A.a-B.a--C.a D.a-8.6的相反数为()A.-6 B.6 C.16-D.169.如图,在△ABC中,AB=AC,D是BC的中点,AC的垂直平分线交AC,AD,AB于点E,O,F,则图中全等三角形的对数是()A.1对B.2对C.3对D.4对10.下列判断正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,|a|≥0”是不可能事件二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:x3﹣4x=________.2.如图a是长方形纸带,∠DEF=25°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是__________°.3.已知AB//y轴,A点的坐标为(3,2),并且AB=5,则B的坐标为________.4.如果方程(m-1)x|m|+2=0是表示关于x的一元一次方程,那么m的取值是________.5.对于任意实数a、b,定义一种运算:a※b=ab﹣a+b﹣2.例如,2※5=2×5﹣2+5﹣2=ll.请根据上述的定义解决问题:若不等式3※x<2,则不等式的正整数解是________.5.若x的相反数是3,y=5,则x y+的值为_________.三、解答题(本大题共6小题,共72分)1.解方程组:(1)252x yx y-=⎧⎨--=⎩(2)3()2()7x y x yx y x y-=+⎧⎨-++=⎩2.已知:关于x的方程2132x m x+--=m的解为非正数,求m的取值范围.3.如图,AB⊥BC于点B,DC⊥BC于点C,DE平分∠ADC交BC于点E,点F为线段CD延长线上一点,∠BAF=∠EDF(1)求证:∠DAF=∠F;(2)在不添加任何辅助线的情况下,请直接写出所有与∠CED互余的角.4.如图①,在△ABC中,∠ABC与∠ACB的平分线相交于点P.(1)如果∠A=80°,求∠BPC的度数;(2)如图②,作△ABC外角∠MBC,∠NCB的角平分线交于点Q,试探索∠Q、∠A 之间的数量关系.(3)如图③,延长线段BP、QC交于点E,△BQE中,存在一个内角等于另一个内角的2倍,求∠A的度数.5.为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?6.某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校,如图所示是小明从家到学校这一过程中所走的路程s(米)与时间 t(分)之间的关系.(1)小明从家到学校的路程共米,从家出发到学校,小明共用了分钟;(2)小明修车用了多长时间?(3)小明修车以前和修车后的平均速度分别是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、D4、C5、B6、C7、B8、A9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、x(x+2)(x﹣2)2、105°3、(3,7)或(3,-3)4、-15、16、2或-8三、解答题(本大题共6小题,共72分)1、(1)=13xy⎧⎨=-⎩;(2)=21xy⎧⎨=-⎩2、34 m≥.3、(1)略;(2)与∠CED互余的角有∠ADE,∠CDE,∠F,∠FAD.4、(1)130°.(2)∠Q==90°﹣12∠A;(3)∠A的度数是90°或60°或120°.5、(1)本次调查共抽取了120名学生;(2)补图见解析;(3)估计该中学最喜爱国画的学生有320名.6、(1)2000米,20分钟;(2)5;(3) 100(m/min),200(m/min)。
七年级数学下册期中考试试题含复习资料
七年级第二学期期中测试卷(100分 90分钟)一、选择题:(每题3分,共33分) 1.如图,AB ∥ED,∠B+∠C+∠D=( )A.180°B.360°C.540°D.270°5.若点A(m,n)在第二象限,那么点B(-m,│n │)在( )A.第一象限B.第二象限;C.第三象限D.第四象限6.已知点P 在第三象限,且到x 轴的距离为3,到y 轴的距离为5,则点P 的坐标为( • ) A.(3,5) B.(-5,3) C.(3,-5) D.(-5,-3)20.如图,AD ∥EF ∥BC ,且EG ∥AC .那么图中与∠1相等的角(不包括∠1)的个数是( )(A )2 (B )4 (C )5 (D )616.如图,CD ⊥AB ,垂足为D ,AC ⊥BC ,垂足为C .图中线段的长能表示点到直线(或线段)距离的线段有…( )(A )1条 (B )3条 (C )5条 (D )7条5. 在实数范围内,下列判断正确的是 ( ) A 、若b a b a ==则, B 、若()b a b a ==则,2C 、若22,b a b a 〉〉则 D 、若b a b a ==则,33DA ECB二、填空题:(每题3分,共21分)12.如图,AB ∥CD,直线EF 分别交AB 、CD 于E 、F,EG 平分∠BEF,若∠1=72°,•则∠2=________度.15、若33x y =-,则x +y= ,2(310)-= ;17、若a =3, b =2,且0ab <,则a -b= ;12、16的平方根是 ,如果a 的平方根是±3,则a=10、如图,把长方形ABCD 沿EF 对折,若∠1=500,则∠AEF 的度数等于 .14.若A(a,b)在第二、四象限的角平分线上,a 与b 的关系是_________. 8.如图,O 是△ABC 内一点,OD ∥AB ,OE ∥BC ,OF ∥AC ,∠B =45°,∠C =75°,则∠DOE = ,∠EOF = ,∠FOD = .18.如图,甲、乙两岸之间要架一座桥梁,从甲岸测得桥梁的走向是北偏东50•°,如果甲、乙两岸同时开工.要使桥梁准确连接,那么在乙岸施工时,应按β 为_________度的方向动工. 三、解答题:(19-22每题9分,23题10分,共46分)19.如图,△ABC 中,AD ∥BC,AE 平分∠BAC,∠B=20°,∠C=30°,求∠DAE 的度数.21F EDCBA G北βα北乙甲BCDEF1E DCBA20.某个图形上各点的横坐标不变,纵坐标变为原来的相反数,•此时图形却未发生任何改变,你认为可能吗?举例说明若横、纵坐标都变为原来的相反数呢?21.平面直角坐标系中,顺次连结(-2,1),(-2,-1),(2,-2),(2,3)各点,你会得到一个什么图形?试求出该图形的面积.22.如图,AB ∥CD,分别探讨下面四个图形中∠APC 与∠PAB,∠PCD 的关系,请你从所得的关系中任意选取一个加以说明.(1)PDC BA (2)PD C BA(3)P C BA(4)PDC BA23.已知:如图,△ABC中,∠ABC=∠C,BD是∠ABC的平分线,且∠BDE=∠BED,•∠A=100°,求∠DEC的度数.EDCBA 29.已知:如图,AB∥CD,∠1=∠B,∠2=∠D.求证:BE⊥DE.24、(8分)如果A=323+-+ba ba为3a b+的算数平方根,B=1221---ba a为21a-的立方根,求A+B的平方根。
七年级数学下册期中测试卷(完整版)
七年级数学下册期中测试卷(完整版)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣3的绝对值是()A.﹣3 B.3 C.-13D.132.对某市某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有()A.20人B.40人C.60人D.80人3.关于x的方程32211x mx x-=+++无解,则m的值为()A.﹣5 B.﹣8 C.﹣2 D.54.如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A.20°B.35°C.40°D.70°5.已知点P(a+5,a-1)在第四象限,且到x轴的距离为2,则点P的坐标为()A.(4,-2) B.(-4,2) C.(-2,4) D.(2,-4)6.下列各组数中,两个数相等的是()A.-2与2(-2) B.-2与-12C.-2与3-8D.|-2|与-27.下列说法正确的是()A.如果一个数的立方根等于这个数本身,那么这个数一定是零B.一个数的立方根和这个数同号,零的立方根是零C.一个数的立方根不是正数就是负数D.负数没有立方根8.若x,y均为正整数,且2x+1·4y=128,则x+y的值为()A.3 B.5 C.4或5 D.3或4或59.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90°C.72°D.60°10.若x﹣m与x+3的乘积中不含x的一次项,则m的值为()A.3 B.1 C.0 D.﹣3二、填空题(本大题共6小题,每小题3分,共18分)1.把命题“等角的补角相等”改写成“如果…那么…”的形式是______.2.将“对顶角相等”改写为“如果...那么...”的形式,可写为__________.3.如图,AB∥CD,则∠1+∠3—∠2的度数等于 __________.4.已知,x y为实数,且22994y x x=---+,则x y-=________.5.如图,已知C为线段AB的中点,D在线段CB上.若DA=6,DB=4,则CD=_____.6.如图,已知AE是△ABC的边BC上的中线,若AB=8cm,△ACE的周长比△AEB的周长多2cm,则AC=________.三、解答题(本大题共6小题,共72分)1.解方程组:25342x y x y -=⎧⎨+=⎩2.解不等式组:315312x x x x -<+⎧⎪⎨-<-⎪⎩并写出它的整数解.3.如图,在四边形OBCA 中,OA ∥BC ,∠B=90°,OA=3,OB=4.(1)若S 四边形AOBC =18,求BC 的长;(2)如图1,设D 为边OB 上一个动点,当AD ⊥AC 时,过点A 的直线PF 与∠ODA 的角平分线交于点P ,∠APD=90°,问AF 平分∠CAE 吗?并说明理由;(3)如图2,当点D 在线段OB 上运动时,∠ADM=100°,M 在线段BC 上,∠DAO 和∠BMD 的平分线交于H 点,则点D 在运动过程中,∠H 的大小是否变化?若不变,求出其值;若变化,说明理由.4.如图,某市有一块长为()3a b +米,宽为()2a b +米的长方形地块,规划部门计划将阴影部分进行绿化,中间修建一座雕像,求绿化的面积是多少平方米?并求出当3,2a b ==时的绿化面积?5.某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.(1)请补全条形统计图;(2)若该校共有志愿者600人,则该校九年级大约有多少志愿者?6.一农民带上若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系,如图所示,结合图象回答下列问题.(1)农民自带的零钱是多少?(2) 由表达式你能求出降价前每千克的土豆价格是多少?试求降价前y与x之间的关系式(3) 降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、A4、B5、A6、C7、B8、C9、C10、A二、填空题(本大题共6小题,每小题3分,共18分)1、如果两个角是等角的补角,那么它们相等.2、如果两个角互为对顶角,那么这两个角相等3、180°4、1-或7-.5、16、10cm三、解答题(本大题共6小题,共72分)1、21 xy=⎧⎨=-⎩2、解集为﹣1<x<3,不等式组的整数解为0、1、2.3、(1)6;(2)略;(3)略.4、(5a2+3ab)平方米,63平方米5、(1)作图见解析;(2)120.6、(1) 5元(2) 0.5元/千克; y=12x+5(0≤x≤30);(3)他一共带了45千克土豆.。
七年级数学下册期中试卷及答案【A4打印版】
七年级数学下册期中试卷及答案【A4打印版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若分式211x x -+的值为0,则x 的值为( ) A .0 B .1 C .﹣1 D .±1 2.下列四个图形中,线段BE 是△ABC 的高的是( )A .B .C .D .3.下列倡导节约的图案中,是轴对称图形的是( )A .B .C .D .4.如图,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC ∆∆≌的是( )A .CB CD = B .BAC DAC ∠=∠C .BCA DCA ∠=∠D .90B D ∠=∠=︒5.一列数,按一定规律排列:-1,3,-9.27,-81,…,从中取出三个相邻的数,若三个数的和为a ,则这三个数中最大的数与最小的数的差为( )A .87aB .87|a|C .127|a| D .127a 6.2019-的倒数是( ) A .2019- B .12019- C .12019 D .20197.在平面直角坐标中,点M(-2,3)在( )A .第一象限B .第二象限C .第三象限D .第四象限8.如图,//DE BC ,BE 平分ABC ∠,若170∠=,则CBE ∠的度数为( )A .20B .35C .55D .70 9.已知23a b =(a ≠0,b ≠0),下列变形错误的是( ) A .23a b = B .2a=3b C .32b a = D .3a=2b 10.已知a m =3,a n =4,则a m+n 的值为( )A .7B .12C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.若△ABC 三条边长为a ,b ,c ,化简:|a -b -c |-|a +c -b |=__________.2.如图所示,把半径为2个单位长度的圆形纸片放在数轴上,圆形纸片上的A 点对应原点,将圆形纸片沿着数轴无滑动地逆时针滚动一周,点A 到达点A ′的位置,则点A ′表示的数是_______.3.实数8的立方根是________.4.如果一个数的平方根是a +6和2a ﹣15,则这个数为________.5.若不等式(a ﹣3)x >1的解集为13x a <-,则a 的取值范围是________.6.若实数a 、b 满足a 2b 40++-=,则2a b=_______. 三、解答题(本大题共6小题,共72分)1.解不等式组513(1)131722x x x x +>-⎧⎪⎨-≤-⎪⎩,并把它的解集在数轴上表示出来.2.马虎同学在解方程13123x m m ---=时,不小心把等式左边m 前面的“﹣”当做“+”进行求解,得到的结果为x=1,求代数式m 2﹣2m+1的值.3.已知:如图,∠C=∠1,∠2和∠D 互余,BE ⊥FD 于点G .试说明:AB ∥CD .4.在△ABC 中,AB=AC ,点D 是直线BC 上一点(不与B 、C 重合),以AD 为一边在AD 的右侧..作△ADE ,使AD=AE ,∠DAE =∠BAC ,连接CE . (1)如图1,当点D 在线段BC 上,如果∠BAC=90°,则∠BCE=________度;(2)设BAC α∠=,BCE β∠=.①如图2,当点在线段BC 上移动,则α,β之间有怎样的数量关系?请说明理由;②当点在直线BC 上移动,则α,β之间有怎样的数量关系?请直接写出你的结论.5.6月14日是“世界献血日”,某市采取自愿报名的方式组织市民义务献血.献血时要对献血者的血型进行检测,检测结果有“A型”、“B型”、“AB 型”、“O型”4种类型.在献血者人群中,随机抽取了部分献血者的血型结果进行统计,并根据这个统计结果制作了两幅不完整的图表:血型 A B AB O人数10 5(1)这次随机抽取的献血者人数为人,m= ;(2)补全上表中的数据;(3)若这次活动中该市有3000人义务献血,请你根据抽样结果回答:从献血者人群中任抽取一人,其血型是A型的概率是多少?并估计这3000人中大约有多少人是A型血?6.某自行车经销商计划投入7.1万元购进100辆A型和30辆B型自行车,其中B型车单价是A型车单价的6倍少60元.(1)求A、B两种型号的自行车单价分别是多少元?(2)后来由于该经销商资金紧张,投入购车的资金不超过5.86万元,但购进这批自行年的总数不变,那么至多能购进B型车多少辆?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、C4、C5、C6、B7、B8、B9、B10、B二、填空题(本大题共6小题,每小题3分,共18分) 1、2b-2a2、-4π3、2.4、815、3a <.6、1三、解答题(本大题共6小题,共72分)1、24x -<≤,数轴见解析.2、0.3、略4、(1)90;(2)①180αβ+=︒,理由略;②当点D 在射线BC.上时,a+β=180°,当点D 在射线BC 的反向延长线上时,a=β.5、(1)50,20;(2)12,23;见图;(3)大约有720人是A 型血.6、(1)A 型自行车的单价为260元/辆,B 型自行车的单价为1500元/辆;(2)至多能购进B 型车20辆.。
七年级数学下册期中考试卷(附答案)
七年级数学下册期中考试卷(附答案)一.选择题(共10小题,满分30分,每小题3分)1.下列方程中,属于一元一次方程的是()A.2x﹣1=0 B.1﹣x=y C.=4 D.1﹣x2=02.二元一次方程x+2y=5的非负整数解的个数是()A.4 B.3 C.2 D.13.若a>b,则下列不等式中成立的是()A.a﹣5>b﹣5 B.<C.>D.﹣a>﹣b4.小明用30元购买铅笔和签字笔,已知铅笔和签字笔的单价分别是2元和5元,他买了2支铅笔后,最多还能买几支签字笔?设小明还能买x支签字笔,则下列不等关系正确的是()A.5×2+2x≥30 B.5×2+2x≤30 C.2×2+2x≥30 D.2×2+5x≤305.若关于x的不等式组的整数解共有4个,则m的取值范围是()A.7<m<8 B.7≤m<8 C.7≤m≤8 D.7<m≤86.下列方程的变形正确的是()A.由3+x=5,得x=5+3 B.由x=0,得x=2C.由7x=﹣4,得x=﹣D.由3=x﹣2,得x=﹣2﹣37.如图,八块相同的小长方形地砖拼成一个大长方形,则每块小长方形地砖的宽等于()A.5cm B.10cm C.15cm D.45cm8.《孙子算经》是中国古代重要的数学著作,书中记载有这样一个问题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”译文:“现有一根木头,不知道它的长短.用一根绳子去量木头,绳子比木头长4.5尺;将绳子对折后去量,则绳子比木头短1尺.问木头的长度是多少尺?”设木长x尺、绳子长y尺,可列方程组为()A.B.C.D.9.不等式组的整数解是()A.15 B.16 C.17 D.15,1610.如图,正方形ABCD由四个相同的大长方形,四个相同的小长方形以及一个小正方形组成,其中四个大长方形的长和宽分别是小长方形长和宽的3倍,若中间小正方形的面积为1,则大正方形ABCD的面积是()A.25 B.36 C.49 D.81二.填空题(共5小题,满分15分,每小题3分)11.关于x的一元一次方程2mx﹣1=3﹣x有解,则m的值为.12.已知方程,用含y的代数式表示x,那么.13.若|x﹣2|+|y+1|=0,则x﹣2y的值为.14.如果4m、m、6﹣2m这三个数在数轴上所对应的点从左到右依次排列,那么m的取值范围是.15.某商品的进价为每件10元,若按标价打八折售出后,每件可获利2元,则该商品的标价为每件元.三.解答题(共8小题,满分75分)16.(16分)解方程与方程组:(1)=1;(2).17.(10分)解不等式和不等式组,并把解集在数轴上表示出来(1)3x﹣1<7﹣x(2)(3).18.(6分)规定新运算:x*y=ax+by,其中a、b是常数.已知2*1=4,﹣1*3=﹣9.(1)求a、b的值;(2)若,求m,n的值.(3)若3x*y=1﹣7t,(﹣2)x*(﹣3)y=4t﹣3,且3x+4y<6,求t的最小整数值.19.(7分)在关于x,y的二元一次方程组中;(1)若a=3,求方程组的解;(2)若S=a(3x+y),当a为何值时,S有最小值?是多少?20.(8分)已知关于x,y的方程组的解满足2x+3y>0,试求m的取值范围.21.(9分)已知关于x的方程2x﹣3=+x的解满足|x|﹣1=0,求m的值.22.(9分)某学校为了加强训练学生的篮球和足球运球技能,准备购买一批篮球和足球用于训练,已知购买1个篮球和2个足球共需316元;购买2个篮球和3个足球共需534元.(1)购买1个篮球和1个足球各需多少元?(2)学校准备购进篮球和足球共40个,并且总费用不超过4200元,则篮球最多可购买多少个?23.(10分)某公司要将一批物资一次性运往目的地.若用m辆载重量为5吨的汽车装运,则还剩余21吨物资,若用m辆载重量为8吨的汽车装运,则最后一辆汽车只要载2吨.(1)求m的值;(2)若同时使用载重为5吨和8吨的两种汽车运输,且每辆载重量5吨的汽车的运费为700元,每辆载重量8吨的汽车的运费为1000元,请你设计一种租车方案,每辆汽车都满载且租车的总费用最少.参考答案与解析一.选择题1.【答案】解:A、该方程符合一元一次方程的定义,故本选项符合题意.B、该方程中含有两个未知数,不是一元一次方程,故本选项不符合题意.C、该方程是分式方程不是一元一次方程,故本选项不符合题意.D、该方程的未知数的最高此时是2,不是一元一次方程,故本选项不符合题意.故选:A.2.【答案】解:由x+2y=5,得x=5﹣2y.∵x,y都是非负整数;∴y=0,1,2;相应的x=5,3,1.故选:B.3.【答案】解:A、∵a>b;∴a﹣5>b﹣5;故本选项符合题意;B、∵a>b;∴;故本选项不符合题意;C、a>b,当a=2,b=1时,可得;故C不符合题意;D、∵a>b;∴﹣a<﹣b;故本选项不符合题意;故选:A.4.【答案】解:设小明还能买x支签字笔;依题意得:2×2+5x≤30.故选:D.5.【答案】解:解不等式x﹣m<0,得:x<m;解不等式6﹣2x≤﹣2,得:x≥4;则不等式组的解集为4≤x<m;∵不等式组的整数解共有4个;∴不等式组的整数解为4、5、6、7;故选:D.6.【答案】解:(A)由3+x=5,得x=5﹣3,故A错误;(B)由x=0,得x=0,故B错误;(D)由3=x﹣2,得x=3+2,故D错误;故选:C.7.【答案】解:设每块小长方形地砖的长为xcm,宽为ycm;依题意得:;解得:;即每块小长方形地砖的宽等于15cm;故选:C.8.【答案】解:根据题意得:;故选:A.9.【答案】解:由①得x<由②得x>;所以不等式组的解集是<x<;则整数解是16.故选:B.10.【答案】解:设小长方形的长为x,宽为y,则大长方形的长为3x,宽为3y;根据题意得:;解得:;∴(3x+3y)2=(3×2+3×1)2=81.故选:D.二.填空题11.【答案】解:由2mx﹣1=3﹣x,可得(2m+1)x=4;∵关于x的一元一次方程2mx﹣1=3﹣x有解;解得:m≠﹣.故答案为:≠﹣.12.【答案】解:方程x﹣8=y;整理得:x﹣40=5y;解得:x=5y+40;故答案为:x=5y+4013.【答案】解:∵|x﹣2|+|y+1|=0;∴x﹣2=0,y+1=0;解得x=2,y=﹣1;∴x﹣2y=2﹣2×(﹣1)=2+2=4;故答案为:4.14.【答案】解:根据题意得:4m<m,m<6﹣2m,4m<6﹣2m;解得:m<0,m<2,m<1;∴m的取值范围是m<0.故答案为:m<0.15.【答案】解:设该商品的标价为每件x元;由题意得:80%x﹣10=2;解得:x=15.答:该商品的标价为每件15元.故答案为:15.三.解答题16.【答案】解:(1)去分母,得4(2x+1)﹣3(x﹣1)=12;去括号,得8x+4﹣3x+3=12;移项,得8x﹣3x=12﹣4﹣3;合并同类项,得5x=5;系数化为1,得x=1;(2);②﹣①,得3x=﹣9;解得:x=﹣3;把x=﹣3代入①,得﹣3+y=1;解得:y=4;所以方程组的解是.17.解:(1)3x﹣1<7﹣x;3x+x<7+1;4x<8;x<2;在数轴上表示为;(2)∵由①得:x≥;由②得:x>;∴不等式组的解集为:x>;在数轴上表示不等式组的解集为:;(3)∵由①得:x≤4;由②得:x>0;∴不等式组的解集为:0<x≤4;在数轴上表示不等式组的解集为:.18.【答案】解:(1)∵2*1=4,﹣1*3=﹣9,x*y=ax+by;∴;①+②×2,得7b=﹣14;解得:b=﹣2;把b=﹣2代入①,得2a﹣2=4;解得:a=3;(2)∵,a=3,b=﹣2,x*y=ax+by;∴;①×2﹣②,得﹣3n=﹣6;解得:n=2;把n=2代入②,得6m﹣2=4;解得:m=1;(3)∵3x*y=1﹣7t,(﹣2)x*(﹣3)y=4t﹣3,x*y=ax+by,a=3,b=﹣2;∴;①+②,得3x+4y=﹣2﹣3t;∵3x+4y<6;∴﹣2﹣3t<6;∴﹣3t<6+2;∴﹣3t<8;∴t>﹣;∴t的最小整数值是﹣2.19.【答案】解:(1)当a=3时,方程组为;①+②×2,得5x=5;∴x=1.把x=1代入②,得y=1.∴;(2);①+②,得3x+y=a+1;∴S=a(3x+y)=a(a+1)=a2+a=(a+)2﹣.当a=﹣时,S最小,最小值是﹣.20.【答案】解:;①+②×4,得6x+9y=9﹣m;∴2x+3y=>0;∴m<9.21.【答案】解:∵|x|﹣1=0,即|x|=1;解得x=﹣1或x=1;若x=﹣1,则2×(﹣1)﹣3=;解得m=﹣12;若x=1,则2×1﹣3=+1;解得m=﹣6;∴m=﹣12或m=﹣6.22.【答案】解:(1)设购买1个篮球需要x元,购买1个足球需要y元;依题意得:;解得:.答:购买1个篮球需要120元,购买1个足球需要98元.(2)设购买篮球m个,则购买足球(40﹣m)个;依题意得:120m+98(40﹣m)≤4200;解得:m≤12.又∵m为整数;∴m可以取的最大值为12.答:篮球最多可购买12个.23.【答案】解:(1)5m+21=8(m﹣1)+2解得m=9;(2)设使用载重为5吨的汽车x辆,使用载重为8吨的汽车y辆则5x+8y=66;x,y都是正整数或.使用载重为5吨的汽车2辆,使用载重为8吨的汽车7辆总费用最少为8400元。
七年级下册数学期中考试试卷【含答案】
七年级下册数学期中考试试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么第三边的长度可能是多少?A. 3厘米B. 10厘米C. 23厘米D. 17厘米3. 一个长方体的长、宽、高分别是2dm、3dm、4dm,那么它的体积是多少?A. 24立方分米B. 20立方分米C. 18立方分米D. 22立方分米4. 下列哪个分数是最简分数?A. 2/4B. 3/6C. 4/8D. 5/105. 如果一个等腰三角形的底边长是10厘米,腰长是13厘米,那么这个三角形的周长是多少?A. 32厘米B. 36厘米C. 26厘米D. 30厘米二、判断题(每题1分,共5分)1. 两个质数的和一定是偶数。
()2. 所有的等边三角形都是锐角三角形。
()3. 一个数的因数一定比这个数小。
()4. 两个长方形的面积相等,它们的长和宽也相等。
()5. 一个等腰直角三角形的两个腰长相等。
()三、填空题(每题1分,共5分)1. 一个正方形的边长是6厘米,那么它的面积是________平方厘米。
2. 如果一个数的因数有1、2、3、4、6,那么这个数是________。
3. 一个长方体的长、宽、高分别是2dm、3dm、4dm,那么它的体积是________立方分米。
4. 两个质数的积一定是________。
5. 如果一个等腰三角形的底边长是10厘米,腰长是13厘米,那么这个三角形的周长是________厘米。
四、简答题(每题2分,共10分)1. 请简述质数和合数的区别。
2. 请简述等边三角形的特点。
3. 请简述长方体的体积公式。
4. 请简述最简分数的定义。
5. 请简述等腰直角三角形的特点。
五、应用题(每题2分,共10分)1. 一个长方形的面积是36平方厘米,长是9厘米,那么宽是多少厘米?2. 一个等腰三角形的周长是26厘米,底边长是10厘米,那么腰长是多少厘米?3. 一个长方体的长、宽、高分别是2dm、3dm、4dm,那么它的体积是多少立方分米?4. 两个质数的积是56,那么这两个质数分别是多少?5. 一个等腰直角三角形的腰长是10厘米,那么它的面积是多少平方厘米?六、分析题(每题5分,共10分)1. 请分析并解答以下问题:一个长方形的面积是长和宽的乘积,那么如果一个长方形的面积是60平方厘米,长和宽可能是多少厘米?2. 请分析并解答以下问题:一个等腰三角形的周长是28厘米,底边长是8厘米,那么这个三角形的面积是多少平方厘米?七、实践操作题(每题5分,共10分)1. 请用硬纸板制作一个长方体,长、宽、高分别是2dm、3dm、4dm,并计算它的体积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题(每小题3分,共45分) 1、化简4)2(-的结果是( ) A 、-4
B 、4
C 、±4
D 、无意义
2、点P(x ,y)在第二象限,且到x 轴、y 轴的距离分别为
3、5,则点P 的坐标为( )
A 、(-3,5)
B 、(-5,-3)
C 、(3,5)
D 、(-5,3) 3、下列说法中错误的是( )
A 、在连结直线外一点与直线上所有点组成的线段中,垂线段最短
B 、内错角相等
C 、两条直线相交所成的四个角中,不相邻的两个角是对顶角
D 、如果两条直线都与第三条直线平行,那么这两条直线平行
4、414、226、15三个数的大小关系是( ) A 、414<15<226 B 、226<15<414 C 、414<226<15 D 、226<414<15
5、已知A ∠、B ∠互余,A ∠比B ∠大30.设A ∠、B ∠的度数分别为x 、y
,下列方程组中符合题意的是( )
A 、90,30x y x y +=⎧⎨=-⎩
B 、180,30x y x y +=⎧⎨=+⎩
C 、180,30x y x y +=⎧⎨=-⎩
D 、90,30x y x y +=⎧⎨=+⎩ 6、如图,已知∠1=∠B ,∠2=∠C ,则下列结论不成立的是( ) A 、AD ∥BC B 、∠B=∠C C 、∠2+∠B=180° D 、AB ∥CD
7、在6×5方格纸中将图甲中的图形 N 平移后的位置如图乙所示则平移中正确的是
( )
A 、先向下移动1格,再向左移动1格
B 、先向下移动1格,再向左移动2格
C 、先向下移动2格,再向左移动1格
D 、先向下移动2格,再向左移动2格 8、已知一个自然数的算术平方根是a ,则该自然数的下一个自然数的算术平方根是( )
A 、1a +
B 、1a +
C 、2
1a + D 、21a +
9、已知点A ()2,2-,如果点A 关于x 轴的对称点是B ,那么B 点的坐标是( ) A 、()2,2 B 、()2,2- C 、()1,1-- D 、()2,2-- 10、小亮解方程组2212.
x y x y +=⎧⎨
-=⎩●
的解为5x y =⎧⎨=⎩,★,由于不小心滴上了两滴墨水,刚好遮住了
两个数●和★,则这两个数分别为( )
.A 、4和-6 B 、-6和4 C 、-2和8 D 、8和-2
3
第6题图
11、如图,AB ∥CD ,那么∠A ,∠P ,∠C 的数量关系是( ) A 、∠A+∠P+∠C=90° B 、∠A+∠P+∠C=180°
C 、∠A+∠P+∠C=360°
D 、∠P+∠C=∠A 12、在平面直角坐标系中,点(-1, m 2+1)一定在( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限 13、已知232350,8
x y x y x y --+--=-则的值为( )
A 、2
B 、3
C 、4
D 、5
14、有下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数
没有立方根;④无理数包括正无理数、负无理数和零.其中正确的有( ) A 、0个 B 、1个 C 、2个 D 、3个 15、如右图,在下列条件中:①∠1=∠2;②∠BAD =∠BCD ;
③∠ABC =∠ADC 且∠3=∠4;④∠BAD +∠ABC =180°, 能判定AB ∥CD 的有( ). A 、3个 B 、2个 C 、1个 D 、0个
二、解答题(共75分) 16、(6分) (1)计算
3
1
27164+-
(2) 解方程90215
x y y x +=⎧⎨-=⎩
17、(6分) 如图,CD 平分∠ACB ,DE ∥BC ,∠AED =80°, 求∠EDC 的度数.
18、(7分) 已知a 是13的整数部分,b 是13的小数部分,计算2a b -的值.
D
A
P
C
B
第15题图
19、(7分) 已知AD ⊥BC ,FG ⊥BC ,垂足分别为D 、G ,且∠1=∠2,猜想∠BDE 与∠C 有怎样的大小关系?试说明理由.
20、(8分) 已知=2=1x y ⎧⎨⎩是二元一次方程组+=8
=1mx ny nx my ⎧⎨-⎩
的解,求2m n -的算术平方根.
21、(8分)有大小两种船,1艘大船与4艘小船一次可以载乘客46名,2艘大船与3艘小船
一次可以载乘客57人.宜昌市三峡风景区某船家有3艘大船与6艘小船,一次可以载游客多少人?
22、(10分)如图,ABC ∆各顶点的坐标分别为)41()35()11(,、,、,C B A --. ⑴请若将ABC ∆平移,使A 移动到(3)A a '-,,使B 移动到(,6)B b ',则 a =______,b =_______,点C 移动到C '的坐标为_______. ⑵求ABC ∆的面积ABC S ∆.
23、(11分)如图,∠ABC 和∠ACB 的平分线交于点O ,EF 经过点O 且平行于BC ,分别与AB ,AC 交于点E ,F .
(1)若∠ABC =50°,∠ACB =60°,求∠BOC 的度数;
(2)若∠ABC =α,∠ACB =β ,用α,β 的代数式表示∠BOC 的度数.
(3)在第(2)问的条件下,若∠ABC 和∠ACB 邻补角的平分线交于点O ,其他条件不变,请画出相应图形,并用α,β 的代数式表示∠BOC 的度数.
24、(12分)如图,在长方形ABCD 中,点A (-3,5),C (9,-1),把四边形ABCD 沿EF 翻
折,使得D ,C 分别落在M ,N ,ME 交BC 于G . (1)写出B ,D 两点的坐标;
(2)若∠EGF 比∠EFG 大6°,求∠AEG 的大小;
(3)若四边形ABGE 的面积比四边形MNFG 的面积大6,求四边形CDEF 的面积.
x y
N
M C
D
A
O
B E
F
G。