25.5一次函数的应用(四)最值问题(B4版)
第四章一次函数之一次函数的应用专题练习北师大版2024—2025学年八年级上册
第四章一次函数之一次函数的应用专题练习北师大版2024—2025学年八年级上册一、利用一次函数模型解决实际问题例1.实验表明,在某地,温度在15℃至25℃的范围内,一种蟋蟀1min的平均鸣叫次数y可近似看成该地当时温度x(℃)的一次函数.已知这种蟋蟀在温度为16℃时,1min平均鸣叫92次;在温度为23℃时,1min平均鸣叫155次.(1)求y与x之间的函数表达式;(2)当这种蟋蟀1min平均鸣叫128次时,该地当时的温度约是多少?变式1.如图是1个碗和4个整齐叠放成一摞的碗的示意图,碗的规格都是相同的.小亮尝试结合学习函数的经验,探究整齐叠放成一摞的这种规格的碗的总高度y(单位:cm)随着碗的数量x(单位:个)的变化规律.下表是小亮经过测量得到的y与x之间的对应数据:x/个1234y/cm68.410.813.2(1)依据小亮测量的数据,写出y与x之间的函数表达式,并说明理由;(2)若整齐叠放成一摞的这种规格的碗的总高度不超过28.8cm,求此时碗的数量最多为多少个?变式2.某地区山峰的高度每增加1百米,气温大约降低0.6℃,气温T(℃)和高度h(百米)的函数关系如图所示.请根据图象解决下列问题:(1)求高度为5百米时的气温;(2)求T关于h的函数表达式;(3)测得山顶的气温为6℃,求该山峰的高度.二、利用一次函数解决行程问题例2.小军到某景区游玩,他从景区入口处步行到达小憩屋,休息片刻后继续前行,此时观光车从景区入口处出发的沿相同路线先后到达观景点,如图,l1,l2分别表示小军与观光车所行的路程y(m)与时间x(min)之间的关系.根据图象解决下列问题:(1)观光车出发分钟追上小军;(2)求l2所在直线对应的函数表达式;(3)观光车比小军早几分钟到达观景点?请说明理由.变式1.在一条笔直的道路上依次有A,B,C三地,男男从A地跑步到C地,同时乐乐从B地跑步到A地,休息1分钟后接到通知,要求乐乐比男男早1分钟到达C地,两人均匀速运动,如图是男男跑步时间t(分钟)与两人距A 地路程s(米)之间的函数图象.(1)a=,乐乐去A地的速度为;(2)结合图象,求出乐乐从A地到C地的函数解析式(写出自变量的取值范围);(3)请直接写出两人距B地的距离相等的时间.变式2.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶,两车在途中相遇时,快车恰巧出现故障,慢车继续驶往甲地,快车维修好后按原速继续行驶乙地,两车到达各地终点后停止,两车之间的距离s (km)与慢车行驶的时间t(h)之间的关系如图:(1)快车的速度为km/h,C点的坐标为.(2)慢车出发多少小时后,两车相距200km.变式3.某物流公司的一辆货车A从乙地出发运送货物至甲地,1小时后,这家公司的一辆货车B从甲地出发送货至乙地.货车A、货车B距甲地的距离y(km)与时间x(h)之间的关系如图所示.(1)求货车B距甲地的距离y与时间x的关系式;(2)求货车B到乙地后,货车A还需多长时间到达甲地.三、利用一次函数解决最低费用和最高利润问题例3.某校开设棋类社团,购买了五子棋和象棋.五子棋比象棋的单价少8元,用1000元购买的五子棋数量和用1200元购买的象棋数量相等.(1)两种棋的单价分别是多少?(2)学校准备再次购买五子棋和象棋共30副,根据学生报名情况,购买五子棋数量不超过象棋数量的3倍.问购买两种棋各多少副时费用最低?最低费用是多少?变式1.眉山是“三苏”故里,文化底蕴深厚.近年来眉山市旅游产业蓬勃发展,促进了文创产品的销售,某商店用960元购进的A款文创产品和用780元购进的B款文创产品数量相同.每件A款文创产品进价比B款文创产品进价多15元.(1)求A,B两款文创产品每件的进价各是多少元?(2)已知A款文创产品每件售价为100元,B款文创产品每件售价为80元,根据市场需求,商店计划再用不超过7400元的总费用购进这两款文创产品共100件进行销售,问:怎样进货才能使销售完后获得的利润最大,最大利润是多少元?变式 2.近年来,中国传统服饰备受大家的青睐,走上国际时装周舞台,大放异彩.某服装店直接从工厂购进长、短两款传统服饰进行销售,进货价和销售价如表:价格/类别短款长款进货价(元/件)8090销售价(元/件)100120(1)该服装店第一次用4300元购进长、短两款服装共50件,求两款服装分别购进的件数;(2)第一次购进的两款服装售完后,该服装店计划再次购进长、短两款服装共200件(进货价和销售价都不变),且第二次进货总价不高于16800元.服装店这次应如何设计进货方案,才能获得最大销售利润,最大销售利润是多少?变式3.某小区物管中心计划采购A,B两种花卉用于美化环境.已知购买2株A 种花卉和3株B种花卉共需要21元;购买4株A种花卉和5株B种花卉共需要37元.(1)求A,B两种花卉的单价.(2)该物管中心计划采购A,B两种花卉共计10000株,其中采购A种花卉的株数不超过B种花卉株数的4倍,当A,B两种花卉分别采购多少株时,总费用最少?并求出最少总费用.变式4.A、B两种型号的吉祥物具有吉祥如意、平安幸福的美好寓意,深受大家喜欢.某超市销售A、B两种型号的吉祥物,有关信息见如表:成本(单位:元/个)销售价格(单位:元/个)A型号35aB型号42b若顾客在该超市购买8个A种型号吉祥物和7个B种型号吉祥物,则一共需要670元;购买4个A种型号吉祥物和5个B种型号吉祥物,则一共需要410元.(1)求a、b的值;(2)若某公司计划从该超市购买A、B两种型号的吉祥物共90个,且购买A 种型号吉祥物的数量x(单位:个)不少于B种型号吉祥物数量的,又不超过B种型号吉祥物数量的2倍.设该超市销售这90个吉祥物获得的总利润为y元,求y的最大值.变式5.成都某知名小吃店计划购买A,B两种食材制作小吃.已知购买1千克A 种食材和1千克B种食材共需68元,购买5千克A种食材和3千克B种食材共需280元.(1)求A,B两种食材的单价;(2)该小吃店计划购买两种食材共36千克,其中购买A种食材千克数不少于B种食材千克数的2倍,当A,B两种食材分别购买多少千克时,总费用最少?并求出最少总费用.变式6.某县著名传统土特产品“豆笋”、“豆干”以“浓郁豆香,绿色健康”享誉全国,深受广大消费者喜爱.已知2件豆笋和3件豆干进货价为240元,3件豆笋和4件豆干进货价为340元.(1)分别求出每件豆笋、豆干的进价;(2)某特产店计划用不超过10440元购进豆笋、豆干共200件,且豆笋的数量不低于豆干数量的,该特产店有哪几种进货方案?(3)若该特产店每件豆笋售价为80元,每件豆干售价为55元,在(2)的条件下,怎样进货可使该特产店获得利润最大,最大利润为多少元?变式7.近年来,市民交通安全意识逐步增强,头盔需求量增大.某商店购进甲、乙两种头盔,已知购买甲种头盔20只,乙种头盔30只,共花费2920元,甲种头盔的单价比乙种头盔的单价高11元.(1)甲、乙两种头盔的单价各是多少元?(2)商店决定再次购进甲、乙两种头盔共40只,正好赶上厂家进行促销活动,促销方式如下:甲种头盔按单价的八折出售,乙种头盔每只降价6元出售.如果此次购买甲种头盔的数量不低于乙种头盔数量的一半,那么应购买多少只甲种头盔,使此次购买头盔的总费用最小?最小费用是多少元?四、利用一次函数解决含参数的最高利润问题例4.在襄阳市创建“经济品牌特色品牌”政策的影响下.每到傍晚,市内某网红烧烤店就食客如云,这家烧烤店的海鲜串和肉串非常畅销,店主从食品加工厂批发以上两种产品进行加工销售,其中海鲜串的成本为m元/支,肉串的成本为n元/支;两次购进并加工海鲜串和肉串的数量与成本如下表所示(成本包括进价和其他费用):次数数量(支)总成本(元)海鲜串肉串第一次3000400017000第二次4000300018000针对团以消费,店主决定每次消费海鲜串不超过200支时,每支售价5元;超过200支时、不超过200支的部分按原价,超过200支的部分打八折.每支肉串的售价为3.5元.(1)求m、n的值;(2)五一当天,一个旅游团去此店吃烧烤,一次性消费海鲜串和肉串共1000支,且海鲜串不超过400支.在本次消费中,设该旅游团消费海鲜串x支,店主获得海鲜串的总利润为y元,求y与x的函数关系式,并写出自变量x的取值范围;(3)在(2)的条件下,该旅游团消费的海鲜串超过了200支,店主决定给该旅游团更多优惠,对每支肉串降价a(0<a<1)元,但要确保本次消费获得肉串的总利润始终不低于海鲜串的总利润,求a的最大值.变式1.为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:甲乙运动鞋价格进价(元/双)m m﹣20售价(元/双)240160已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?变式2.为了振兴乡村经济,我市某镇鼓励广大农户种植山药,并精加工成甲、乙两种产品、某经销商购进甲、乙两种产品,甲种产品进价为8元/kg;乙种产品的进货总金额y(单位:元)与乙种产品进货量x(单位:kg)之间的关系如图所示.已知甲、乙两种产品的售价分别为12元/kg和18元/kg.(1)求出0≤x≤2000和x>2000时,y与x之间的函数关系式;(2)若该经销商购进甲、乙两种产品共6000kg,并能全部售出.其中乙种产品的进货量不低于1600kg,且不高于4000kg,设销售完甲、乙两种产品所获总利润为w元(利润=销售额﹣成本),请求出w(单位:元)与乙种产品进货量x(单位:kg)之间的函数关系式,并为该经销商设计出获得最大利润的进货方案;(3)为回馈广大客户,该经销商决定对两种产品进行让利销售.在(2)中获得最大利润的进货方案下,甲、乙两种产品售价分别降低a元/kg和2a元/kg,全部售出后所获总利润不低于15000元,求a的最大值.变式3.为迎接“五一”小长假购物高潮,某品牌专卖店准备购进甲、乙两种衬衫,其中甲、乙两种衬衫的进价和售价如下表:衬衫价格甲乙m m﹣10进价(元/件)260180售价(元/件)若用3000元购进甲种衬衫的数量与用2700元购进乙种衬衫的数量相同.(1)求甲、乙两种衬衫每件的进价;(2)要使购进的甲、乙两种衬衫共300件的总利润不少于34000元,且不超过34700元,问该专卖店有几种进货方案;(3)在(2)的条件下,专卖店准备对甲种衬衫进行优惠促销活动,决定对甲种衬衫每件优惠a元(60<a<80)出售,乙种衬衫售价不变,那么该专卖店要获得最大利润应如何进货?五、利用一次函数解决方案问题例5.暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.设某学生暑期健身x(次),按照方案一所需费用为y1(元),且y1=k1x+b;按照方案二所需费用为y2(元),且y2=k2x.其函数图象如图所示.(1)求k1和b的值,并说明它们的实际意义;(2)求打折前的每次健身费用和k2的值;(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.变式1.某水果店购进甲、乙两种苹果的进价分别为8元/kg、12元/kg,这两种苹果的销售额y(单位:元)与销售量x(单位:kg)之间的关系如图所示.(1)写出图中点B表示的实际意义;(2)分别求甲、乙两种苹果销售额y(单位:元)与销售量x(单位:kg)之间的函数解析式,并写出x的取值范围;(3)若不计损耗等因素,当甲、乙两种苹果的销售量均为a kg时,它们的利润和为1500元,求a的值.。
最全的一次函数最值问题归纳
最全的一次函数最值问题归纳
最值问题一直是初中的经典题型,也是重难点题型,更是中考必考题型,他的重要性可见一斑。
本文归纳了一次函数中的最值问题的基本题型,供大家参考。
例一:直线L与x轴交与点A,与y轴交于B,已知直线L的解析式为y-x+4。
D为OB中点,p是线段AB上一动点,求使OP+PD值最小的点P的坐标。
例二:已知点A(1,5),B(3,-1),点M在x轴上,当AM-BM最大时,求M的坐标。
例三:在平面直角坐标系中,点P的坐标为(m,-m+4),则点P到原点的最短距离是________.
例四:已知实数a,b满足2a+b=2,则在平面直角坐标系中,求动点p(a,b)到坐标原点O距离的最小值。
例五:无论a取什么实数,动点P(2a,-4a+4)总在直线L上运动,点A的坐标为(-3,0),求线段AP的最小值。
例六:在平面直角坐标系中,已知O为坐标原点,点A(3,0),B(0,4),以点A为旋转中心,把△AB O顺时针旋转到△ACD,C恰好落在x轴正半轴上。
已知边OB上的一点P旋转后的对应点为P′,当DP+AP′取得最小值是,求P的坐标。
综上,我们解决一次函数最值问题常用解法包括:“将军饮马”,数形结合法,配方法求最值,三角形的三边关系等方法。
一次函数的最值及其求解方法
一次函数的最值及其求解方法一次函数是数学中最基本的函数之一,用于描述线性关系。
在解决一些实际问题中,我们常常需要确定一次函数的最值,即函数在某个特定区间内的最大值或最小值。
本文将介绍一次函数的最值概念以及常用的求解方法,旨在帮助读者更好地理解和应用一次函数。
一、一次函数的定义一次函数,也称为线性函数,是指具有形式为f(x) = ax + b的函数,其中a和b是常数,且a不等于0。
一次函数表示一个直线在坐标平面上的图像,它的斜率为a,常数项为b。
二、一次函数的最值定义一次函数的最值是指在特定区间内,函数取得的最大值或最小值。
最大值对应函数图像的顶点,是曲线上的最高点;最小值对应函数图像的谷点,是曲线上的最低点。
三、一次函数最值的求解方法1. 根据斜率来判断最值:根据一次函数的斜率来判断函数的增减性,从而确定最值所在的位置。
当a大于0时,函数呈正向增长,最小值在区间的左端点;当a小于0时,函数呈负向增长,最大值在区间的左端点。
2. 求导法求解最值:采用导数的方法,通过计算一次函数的导数来求解最值。
对一次函数f(x) = ax + b求导,得到导函数f'(x) = a。
一次函数的导数为常数,因此导数不存在零点。
所以,一次函数在整个定义域内,要么单调递增,要么单调递减,不存在最值。
3. 极值点法求解最值:通过求一次函数极值点来确定最值。
一次函数的极值点即为函数图像的顶点或谷点,可以通过求函数的一阶导数为0的点来得到。
设f'(x) = a,当a大于0时,函数呈正向增长,最小值对应的x值为无穷小;当a小于0时,函数呈负向增长,最大值对应的x值为无穷小。
四、案例分析为了更好地理解一次函数的最值及其求解方法,我们通过一个实际问题进行案例分析。
假设某商店每天固定销售量为300件,每件产品的售价为20元。
商店的总收入可用一次函数R(x) = 20x + b来表示,其中x代表每天销售的产品件数,b为固定销售费用(设为常数)。
一次函数的应用
一次函数的应用一次函数的应用一、学习目标:1. 巩固一次函数的知识,灵活运用变量关系解决相关实际问题.2. 熟练掌握一次函数与方程,不等式的关系,有机地把各种数学模型通过函数统一起来使用,提高解决实际问题的能力.二、重点、难点:运用一次函数与正比例函数的图象和性质解决实际问题。
各种数学思想的渗透和应用。
三、考点分析:利用函数解决实际问题,并求最值,这是近三年中考应用题的新特点。
一次函数的概念、图象和性质是中考的必考内容,一次函数的应用是中考的热点内容。
中考对这部分内容的要求是结合具体情境体会一次函数的意义,根据已知条件确定一次函数的表达式;会画一次函数的图象,根据图象与表达式探索并理解其性质;根据一次函数的图象求二元一次方程组的近似解;利用一次函数解决实际问题。
利用一次函数解决实际问题的题型多样,填空、选择、解答、综合题都有,主要考查学生应用函数知识分析、解决问题的能力.典型例题此前我们学习了有关一次函数的一些知识,认识了变量间的变化情况,并系统学习了一次函数的有关概念及应用,且用函数观点重新认识了方程及不等式,利用函数观点把方程(组)、不等式有机地统一起来,使我们解决相关实际问题时更方便了.例1. 乘坐某种出租汽车,当行驶路程小于2千米时,乘车费用都是4元(即起步价4元);当行驶路程大于或等于2千米时,超过2千米的部分每千米收费1.5元.(1)请你求出x≥2时乘车费用y(元)与行驶路程x(千米)之间的函数关系式;(2)按常规,乘车付费时按计费器上显示的金额进行“四舍五入”后取整(如计费器上的数字显示范围大于或等于9.5而小于10.5时,应付车费10元),小红一次乘车后付了车费8元,请你确定小红这次乘车路程x的范围。
思路分析:1)题意分析:本题考查一次函数与不等式的综合运用。
2)解题思路:注意审题。
注意考虑函数的取值范围,能灵活应用所学知识解决问题。
解答过程:(1)根据题意可知:y=4+1.5(x-2),∴y=1.5x+1(x≥2)(2)依题意得:7.5≤1.5x+1<8.5∴≤x<5解题后的思考:一次函数的性质:当k>0,时y随x的增大而增大,当k<0时,y随x的增大而减小。
北师大版数学八年级上册4《一次函数的应用》说课稿3
北师大版数学八年级上册4《一次函数的应用》说课稿3一. 教材分析《一次函数的应用》是北师大版数学八年级上册第4节的内容。
本节主要让学生了解一次函数在实际生活中的应用,学会用一次函数解决实际问题。
教材通过实例引导学生认识一次函数的图像和性质,以及如何用一次函数解决实际问题。
二. 学情分析八年级的学生已经学习了初中数学的前置知识,对函数的概念和性质有了一定的了解。
但学生在解决实际问题时,往往不知道如何将数学知识与实际问题相结合。
因此,在教学过程中,教师需要引导学生将数学知识运用到实际问题中,提高学生的应用能力。
三. 说教学目标1.让学生了解一次函数在实际生活中的应用,体会数学与生活的紧密联系。
2.培养学生用数学的眼光观察生活,提高学生的数学应用能力。
3.帮助学生掌握一次函数的图像和性质,为后续学习打下基础。
四. 说教学重难点1.教学重点:一次函数在实际生活中的应用,一次函数的图像和性质。
2.教学难点:如何将一次函数与实际问题相结合,解决实际问题。
五. 说教学方法与手段1.采用问题驱动的教学方法,引导学生从实际问题中发现数学规律。
2.利用多媒体课件,展示一次函数的图像,帮助学生直观理解一次函数的性质。
3.创设生活情境,让学生在实践中感受一次函数的应用。
4.分组讨论与合作,培养学生团队合作精神,提高学生的解决问题能力。
六. 说教学过程1.导入:通过展示实际问题,引导学生思考如何用数学知识解决问题。
2.新课导入:介绍一次函数的定义和性质,让学生了解一次函数的基本概念。
3.实例讲解:通过生活实例,讲解一次函数在实际中的应用,让学生体会数学与生活的联系。
4.课堂练习:让学生独立解决实际问题,巩固一次函数的应用。
5.分组讨论:让学生围绕实际问题展开讨论,探讨如何用一次函数解决问题。
6.总结提升:总结一次函数的图像和性质,强化学生对一次函数的认识。
7.课后作业:布置相关练习题,巩固课堂所学知识。
七. 说板书设计板书设计应突出一次函数的图像和性质,以及一次函数在实际中的应用。
一次函数的最值问题. 共19页
分析:“求最大值“——与函数有关,应建立函数关系式。
如何由实际问题得出函数关系式:
1、审题,确定函数与自变量,并用合适的字母表示。
2、找出与两个变量相关的等量关系式,列出二元一次方程(或其他方程。)
3、写成函数的形式。(如:
y
kx
b,
y
k x
k
0,
y
ax2
bx
ca
0)
析例:
解:设该队胜 x 场,平 y 场,则负(12-x-y)场。∴ 3x y 19, y 19 3x 。
则胜:x 场,平:(19 3x)场,负: 2x 7场。
x 0
且: 129x37x00解得:72
x
19 3
∴不等式组的整数解为: x 4;5;6 设奖金与出场费的和为 P,则 P 1500 x 700 19 3x 500 12 。
分类讨论
一般地,有下面的结论:
(3)如果 x m ,那么 y kx b 有最大值或最小值(如图 3)当
k 0 时, y最大 km b ;当 k 0 , y最小 km b 。
图3
析例:
请分析下列函数的最值情况:
1、 y 2x 5(x 3)
2、 y 0.5x 0.8(x 6)
分析:1、 y 2x 5(1 x 3) 中,k=2>0,∴y 随 x 增大而增大。则:要 y 最大,x 取值最大。
要 y 最小,x 取最小。 解:当 x=1 时,函数最小值为: y 21 5 7 。 当 x=3 时,函数最大值为: y 23 5 11。
分析:2、 y 0.5x 0.8(2 x 6) 中,k= -0.5<0,∴y 随 x 增大而减小。则:要 y 最大,x
初中数学微课 一次函数的应用——最值问题
一次函数的应用——最值问题1.某校团委为鼓励学生开展读书活动,计划购买A、B两类图书共500本,其中A类图书每本10元,B类图书每本20元.设购买A类图书的数量为x(本),购买A、B两类图书的总费用为y(元).(1)求y与x之间的函数关系式.(2)若购买A类图书的数量不超过B类图书的数量且购买A类图书不少于100本,请设计出一种购买两类图书总费用最少的方案,并求出该方案所需的费用.2.小明家新房装修时选定了某种品牌同一花色的壁纸,这种壁纸有大卷和小卷两种型号,已知购买1卷大卷壁纸和2卷小卷壁纸共花费900元,购买2卷大卷壁纸和3卷小卷壁纸共花费1550元.其中一大卷壁纸可贴10平方米的墙壁,一小卷壁纸可贴5平方米的墙纸.(1)求大卷和小卷壁纸的单价;(2)小明的爸爸共购买了40卷壁纸.若设购买大卷壁纸x卷.①设购买壁纸总费用为y元,写出y与x的函数关系式;②小明的爸爸决定,买壁纸的预算不能超过15000元,求可贴墙壁的最大面积.3.双十一期间,合肥百大电器公司新进了一批空调机和电冰箱共100台,电冰箱是空调机数量的2倍多10台.计划调配给下属的甲、乙两个连锁店销售,其中60台给甲连锁店,40台给乙连锁店,两个连锁店销售这两种电器每台的利润(元)如下表:空调机电冰箱甲连锁店200170乙连锁店160150设公司调配给甲连锁店x台空调机,公司卖出这100台电器的总利润为y(元).(1)求新进空调机和电冰箱各多少台?(2)求y关于x的函数关系式,并求出x的取值范围;(3)为了促销,公司决定仅对甲连锁店的空调机每台让利m元(m>0)销售,其他的销售利润不变,并且让利后每台空调机的利润仍然高于甲连锁店销售的每台电冰箱的利润,问该公司应该如何设计调配方案,使总利润达到最大?。
第25章《一次函数》好题集(10):25.5+一次函数的应用
第25章《一次函数》好题集(10):25.5 一次函数的应用选择题1.(2008•莆田)如图表示一艘轮船和一艘快艇沿相同路线从甲港出发到乙港行驶过程随时间变化的图象,根据图象下列结论错误的是()2.(2002•南宁)以下是2002年3月12日《南国早报》刊登的南宁市自来水价格调整表:.C D.3.(2009•相城区模拟)若等腰△ABC的周长是50cm,底边长为xcm,一腰长为ycm,则y与x的函数关系式及自y=(4.(2009•黄冈)小高从家门口骑车去单位上班,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是()5.(2008•潍坊)某蓄水池的横断面示意图如图所示,分深水区和浅水区,如果这个注满水的蓄水池以固定的流量把水全部放出,下面的图象能大致表示水的深度h和放水时间t之间的关系的是().C D.6.(2005•荆门)参加保险公司的医疗保险,住院治疗的病人享受分段报销,保险公司制定的报销细则如下表.某)7.(2004•潍坊)2004年6月3日中央新闻报道,为鼓励居民节约用水,北京市将出台新的居民用水收费标准:①若每月每户居民用水不超过4立方米,则按每立方米2元计算;②若每月每户居民用水超过4立方米,则超过部分按每立方米4.5元计算(不超过部分仍按每立方米2元计算).现假设该市某户居民某月用水x立方米,水费为y.C D.8.(2004•十堰)在西部大开发中,为了改善生态环境,鄂西政府决定绿化荒地,计划第1年先植树1.5万亩,以后每年比上一年增加1万亩,结果植树总数是时间(年)的一次函数,则这个一次函数的图象是().CD .9.(2003•青海)如图,拖拉机开始工作时,油箱中有油40升,如果每小时耗油5升,那么工作时,油箱中的余油. . . .10.(2002•娄底)小明用20元零花钱购买水果慰问老人,已知水果单价是每千克4元,设买水果x 千克用去的钱. C D .11.(2002•武汉)某校举行趣味运动会,甲、乙两名学生同时从A 地到B 地,甲先骑自行车到B 地后跑步回A 地,乙则是先跑步到B 地后骑自行车回A 地(骑自行车的速度快于跑步的速度),最后两人恰好同时回到A 地.已知甲骑自行车比乙骑自行车的速度快.若学生离A 地的距离s 与所用时间t 的函数关系用图象表示如下(实线表示甲的.CD .12.绍兴黄酒是中国名酒之一.某黄酒厂的瓶酒车间先将散装黄酒灌装成瓶装黄酒,再将瓶装黄酒装箱出车间,该车间有灌装,装箱生产线共26条,每条灌装,装箱生产线的生产流量分别如图1,2所示.某日8:00~11:00,车间内的生产线全部投入生产,图3表示该时段内未装箱的瓶装黄酒存量变化情况,则灌装生产线的条数是( )填空题13.(2010•宁德)用m根火柴可以拼成如图1所示的x个正方形,还可以拼成如图2所示的2y个正方形,那么用含x的代数式表示y,得_________.14.(2008•天门)某公园门票价格如下表,有27名中学生游公园,则最少应付费_________元.(游客只能在公园售票处购票)15.(2004•青岛)生物学家研究表明,某种蛇的长度ycm是其尾长xcm的一次函数,当蛇的尾长为6cm时,蛇长45.5cm;当尾长为14cm时,蛇长为105.5cm.当一条蛇的尾长为10cm时,这条蛇的长度是_________cm.16.某图书馆开展两种方式的租书业务:一种是使用会员卡,另一种是使用租书卡,使用这两种卡租书,租书金额y(元)与租书时间x(天)之间的关系如图所示,当租书时间为120天时,应使用_________比较合算.17.某市电脑上网每月向用户收取费用y(元)与上网时间x(时)的函数关系如下图,当客户每月上网121时,需付费_________元.18.如图所示,AB、OB表示某工厂甲、乙两车间生产的产量y(t)与所用时间x(天)之间的函数图象,根据图象回答:(1)乙车间开始生产时,甲车间已生产了_________t;(2)甲车间每天生产_________t,乙车间每天生产_________t;(3)从乙车间开始生产的第_________天结束时,两车间生产的总产量相同;(4)甲、乙两车间的产量y(t)与所用时间x(天)的函数关系式分别为y甲=_________,y乙=_________;(5)第30天结束时,甲、乙两车间的总产量分别是_________t和_________t.19.(2006•辽宁)如图,有一种动画程序,屏幕上正方形ABCD是黑色区域(含正方形边界),其中A(1,1),B (2,1),C(2,2),D(1,2),用信号枪沿直线y=﹣2x+b发射信号,当信号遇到黑色区域时,区域便由黑变白,则能够使黑色区域变白的b的取值范围为_________.20.直线y=x﹣2与坐标轴交于A、B两点,点C在坐标轴上,△ABC为等腰三角形,则满足条件的点C最多有_________个.21.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置,点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=kx+b(k>0)和x轴上,已知点C1(1,0),C2(3,0),则B4的坐标是_________.22.(2009•宝山区一模)已知一次函数y=kx+b的图象与x轴交于点A(﹣1,0),且经过点B(3,3),O为坐标原点,则sin∠BAO的值是_________.23.过点P(2,3)作直线,使它与两坐标轴围成的三角形面积为12,这样的直线可以作_________条.第25章《一次函数》好题集(10):25.5 一次函数的应用参考答案与试题解析选择题1.(2008•莆田)如图表示一艘轮船和一艘快艇沿相同路线从甲港出发到乙港行驶过程随时间变化的图象,根据图象下列结论错误的是()2.(2002•南宁)以下是2002年3月12日《南国早报》刊登的南宁市自来水价格调整表:.C D.3.(2009•相城区模拟)若等腰△ABC的周长是50cm,底边长为xcm,一腰长为ycm,则y与x的函数关系式及自y=(×,及底边长(×4.(2009•黄冈)小高从家门口骑车去单位上班,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是()解:先算出平路、上坡路和下坡路的速度分别为、(千米5.(2008•潍坊)某蓄水池的横断面示意图如图所示,分深水区和浅水区,如果这个注满水的蓄水池以固定的流量把水全部放出,下面的图象能大致表示水的深度h和放水时间t之间的关系的是().C D.6.(2005•荆门)参加保险公司的医疗保险,住院治疗的病人享受分段报销,保险公司制定的报销细则如下表.某)7.(2004•潍坊)2004年6月3日中央新闻报道,为鼓励居民节约用水,北京市将出台新的居民用水收费标准:①若每月每户居民用水不超过4立方米,则按每立方米2元计算;②若每月每户居民用水超过4立方米,则超过部分按每立方米4.5元计算(不超过部分仍按每立方米2元计算).现假设该市某户居民某月用水x立方米,水费为y 元,则y与x的函数关系用图象表示正确的是().C D.y=8.(2004•十堰)在西部大开发中,为了改善生态环境,鄂西政府决定绿化荒地,计划第1年先植树1.5万亩,以后.C D.9.(2003•青海)如图,拖拉机开始工作时,油箱中有油40升,如果每小时耗油5升,那么工作时,油箱中的余油....10.(2002•娄底)小明用20元零花钱购买水果慰问老人,已知水果单价是每千克4元,设买水果x千克用去的钱.C D.11.(2002•武汉)某校举行趣味运动会,甲、乙两名学生同时从A地到B地,甲先骑自行车到B地后跑步回A地,乙则是先跑步到B地后骑自行车回A地(骑自行车的速度快于跑步的速度),最后两人恰好同时回到A地.已知甲骑自行车比乙骑自行车的速度快.若学生离A地的距离s与所用时间t的函数关系用图象表示如下(实线表示甲的.C D.12.绍兴黄酒是中国名酒之一.某黄酒厂的瓶酒车间先将散装黄酒灌装成瓶装黄酒,再将瓶装黄酒装箱出车间,该车间有灌装,装箱生产线共26条,每条灌装,装箱生产线的生产流量分别如图1,2所示.某日8:00~11:00,车间内的生产线全部投入生产,图3表示该时段内未装箱的瓶装黄酒存量变化情况,则灌装生产线的条数是()填空题13.(2010•宁德)用m根火柴可以拼成如图1所示的x个正方形,还可以拼成如图2所示的2y个正方形,那么用含x的代数式表示y,得y=x﹣.14.(2008•天门)某公园门票价格如下表,有27名中学生游公园,则最少应付费240元.(游客只能在公园售票处购票)15.(2004•青岛)生物学家研究表明,某种蛇的长度ycm是其尾长xcm的一次函数,当蛇的尾长为6cm时,蛇长45.5cm;当尾长为14cm时,蛇长为105.5cm.当一条蛇的尾长为10cm时,这条蛇的长度是75.5cm.,..16.某图书馆开展两种方式的租书业务:一种是使用会员卡,另一种是使用租书卡,使用这两种卡租书,租书金额y(元)与租书时间x(天)之间的关系如图所示,当租书时间为120天时,应使用会员卡比较合算.17.某市电脑上网每月向用户收取费用y(元)与上网时间x(时)的函数关系如下图,当客户每月上网121时,需付费99元.)得,解之得y=18.如图所示,AB、OB表示某工厂甲、乙两车间生产的产量y(t)与所用时间x(天)之间的函数图象,根据图象回答:(1)乙车间开始生产时,甲车间已生产了400t;(2)甲车间每天生产10t,乙车间每天生产20t;(3)从乙车间开始生产的第20天结束时,两车间生产的总产量相同;(4)甲、乙两车间的产量y(t)与所用时间x(天)的函数关系式分别为y甲=10x+400,y乙=20x+200;(5)第30天结束时,甲、乙两车间的总产量分别是700t和800t.,.19.(2006•辽宁)如图,有一种动画程序,屏幕上正方形ABCD是黑色区域(含正方形边界),其中A(1,1),B (2,1),C(2,2),D(1,2),用信号枪沿直线y=﹣2x+b发射信号,当信号遇到黑色区域时,区域便由黑变白,则能够使黑色区域变白的b的取值范围为3≤b≤6.20.直线y=x﹣2与坐标轴交于A、B两点,点C在坐标轴上,△ABC为等腰三角形,则满足条件的点C最多有7个.21.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置,点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=kx+b(k>0)和x轴上,已知点C1(1,0),C2(3,0),则B4的坐标是(15,8).22.(2009•宝山区一模)已知一次函数y=kx+b的图象与x轴交于点A(﹣1,0),且经过点B(3,3),O为坐标原点,则sin∠BAO的值是.BAO=.BAO=BAO= 23.过点P(2,3)作直线,使它与两坐标轴围成的三角形面积为12,这样的直线可以作3条..根据直线与两坐标轴围成的三角形面积为||。
一次函数应用问题的求解方法与技巧
一次函数应用问题的求解方法与技巧一次函数是整个初中数学知识中比较困难的一部分,一次函数的定义和性质又是制约这部分知识学习的瓶颈,对于一次函数的性质在授课时重点强调了与图形的结合,让学生紧紧结合图形理解和记忆性质。
一次函数的应用对于学生来说更是一次函数中的重中之重,老师们对于这部分知识的教学也感到非常困难,我在平时教学中注意将这部分知识归类总结受到了较好的效果,现举几例与大家共享,不当之处,敬请各位批评指正。
一、读图及一次函数性质的应用例:拖拉机开始工作时,油箱中有油24L,那么油箱中剩余原油量y (L)与工作时间x(h)之间的函数关系式和图象是( )A. y=4x-24(0≤x ≤ 6)B. y=24-4xC. y=24-4x (0≤x ≤ 6 )D. y=-24+4x二、一次函数与方程例:已知两条直线y1=2x-3和y2=5-x.(1)在同一坐标系内作出它们的图象;(2)求出它们的交点A的坐标;略解:(1)如图:(2)因为A点同时在两条直线上,所以A点坐标同时满足这两个函数的解析式,即A点坐标就是方程组三、一次函数与几何还是上一个问题:求出这两条直线与x轴围成的三角形ABC的面积.略解:点,则C(5,0).四、一次函数与不等式例1:用画函数图像的方法解不等式5x+4<2x+10解(略)例2:已知A市和B市各存机床12台和6台,现运往C市10台、D 市8台.若从A市运一台到C市、D市各需4万元和8万元,若从B 市运一台到C市、D市各需3万元和5万元.(1)设B市运往C市x台,求总费用y关于x的函数关系式.(2)若总费用不超过95万元,问共有几种调运方法?(3)求总费用最低的调运方法,最低费用是多少万元?解:(1)由题意,得B市运往D市(6-x)台,A市运往C市(10-x)台,A市运往D市[12-(10-x)]台,于是y=3x+(6-x)×5+(10-x)×4+(2+x)×8,即:y=2x+86(0≤x≤6).(2)根据题意,得2x+86≤95.解得:x≤4.5,由实际意义,应取x≤4.结合原函数的x取值范围,得0≤x≤4.所以x可取0,1,2,3,4这五个数,即总费用不超过95万元的调运方法共有五种.(3)由一次函数y=2x+86的性质知,y随x的增大而增大,而0≤x≤4,所以x=0时,y取最小值86.即最低费用是86万元,调运方法是B市运往D市6台,A市运往C 市10台、运往D市2台.总之,一次函数的应用问题需我们认真掌握一次函数的性质,结合图形,认真分析,逐步学会一次函数应用问题的处理方法。
北师大版八年级数学上册《一次函数的应用》第3课时示范课教学设计
第四章一次函数4 一次函数的应用第3课时一、教学目标1.进一步培养学生的识图能力,能通过函数图象获取信息,解决简单的实际问题.2.在函数图象信息获取过程中,进一步培养学生的数形结合意识,发展形象思维.3.在解决实际问题的过程中,进一步发展学生的分析问题、解决问题的能力和数学应用意识.4.在现实问题的解决中,使学生初步认识数学与人类生活的密切联系,从而培养学生学习数学的兴趣.二、教学重难点重点:训练学生的识图能力,能通过函数图象获取信息.难点:通过函数图象发展学生的分析问题、解决问题的能力.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计【复习回顾】问题;解答实际问题,如何分析函数的图象信息?预设:(1)理解横、纵坐标分别表示的的实际意义;(2)分析已知,通过作x轴或y轴的垂线,在图象上找到对应的点,由点的横坐标或者纵坐标的值读出要求的值;(3)利用数形结合的思想:【做一做】某医药研究所开发了一种新药,在实际验药时发现,如果成人按规定剂量服用,那么每毫升血液中含药量y(毫克)随时间x(时)的变化情况如图所示:问题1:(1)服药后______时,血液中含药量最高,达到每毫升_______毫克,接着逐步衰弱.预设答案:2;6问题2:(2)服药后5时,血液中含药量为每毫升____毫克.预设答案:3问题3:(3)当x≤2时,y与x之间的函数解析式是___________.提示:当x≤2时图象过原点,表达式设为y=kx,求解k的值只需再找一个点的坐标即可.预设答案:解:当x≤2时,设y与x的解析式为y=kx,由图可知,图象过点(2,6),代入得6=2k,解得k=3,所以解析式为y=3x.问题4:(4)如果每毫升血液中含药量3 mg或3 mg以上时,治疗疾病最有效,那么吃药后_____小时能发挥最佳药效.教师活动:当y=3,且x≤2时,求出x的值即可.预设答案:解:当x≤2时,y与x的解析式为y=3x,把y=3代入,得3=3x,解得x=1.所以答案是1.量的关系,l2反映了该公司产品销售成本与销售量的关系,根据图象填空:(1)当销售量为2 t时,销售收入=______元,销售成本=_____元;(2)当销售量为6 t时,销售收入=_________元,销售成本=________元;预设答案:(1)2000;3000 (2)6000;5000(3)当销售量为______时,销售收入等于销售成本;(4)当销售量时,该公司赢利(收入大于成本);当销售量时,该公司亏损(收入小于成本);预设答案:(3)4吨(4)大于4 t 小于4 t(5)l1对应的函数表达式是,l2对应的函数表达式是.教师活动:l1的图象过原点,表达式设为y=kx,解这个方程只需再找一个点的坐标即可.解:设l1的表达式为y=k1x,由图可知,图象过(4,4000),代入得4000=4k1,解得k1=1000,所以表达式为y=1000x.教师活动:l2表达式设为y=k2x+b2,解这个方程需要两个点的坐标,从图上可知所需坐标点.解:设l2的表达式为y=k2x+b2,由图可知,图象过【典型例题】教师提出问题,学生先独立思考,然后再小组交流探讨.教师板书一道例题书写过程,其余题目可由学生代表板书完成,最终教师展示答题过程.【例1】我边防局接到情报,近海处有一可疑船只A正向公海方向行驶,边防局迅速派出快艇B追赶(如图).图中l1,l2分别表示两船相对于海岸的距离s(n mile)与追赶时间t(min)之间的关系.根据图象回答下列问题:(1)哪条线表示B到海岸的距离与追赶时间之间的关系?(2)A,B哪个速度快?(3)15 min内B能否追上A?(4)如果一直追下去,那么B能否追上A?(5)当A逃到离海岸12 n mile的公海时,B将无法对其进行检查.照此速度,B能否在A逃入公海前将其拦截?(6)l1与l2对应的两个一次函数s=k1t+b1与s=k2t+b2中,k1,k2的实际意义各是什么?可疑船只A与快艇B的速度各是多少?解:(1)当t=0时,B距海岸0 n mile,即s=0,故l1表示B到海岸的距离与追赶时间之间的关系.(2)t从0增加到10时,l2的纵坐标增加了2,而l1的纵坐标增加了5,即10 min内,A行驶了2 n mile,B行驶了5 n mile,所以B的速度快.(3)如图,延长l1,l2,可以看出,当t=15时,l1上的对应点在l2上对应点的下方,这表明,15 min时B 尚未追上A.(4)如图,延长l1,l2相交于点P.因此,如果一直追下去,那么B一定能追上A.(5)从图中可以看出,l1与l2交点P的纵坐标小于l2,这说明在A逃入公海前,B能够追上A.(6)k1表示快艇B的速度,k2表示可疑船只A的速度.可疑船只A的速度是0.2n mile/min,快艇B的速度是0.5n mile/min.【想一想】你能用其他方法解决例3(1)~(5)吗?预设答案:解:(1)由图可知,l1表示的速度=5÷10=0.5(n mile/min),l2表示的速度=(7-5)÷10=0.2(n mile/min),故l1表示B到海岸的距离与追赶时间之间的关系.(2)因为0.5>0.2,所以B的速度快.(3)教师活动:利用待定系数法求出图象的解析式,代入t=15,求出s值即可得出.解:设直线l1的解析式为s1=k1t,l2的解析式为s2=k2t+b.是()A.①②B.②③④C.②③D.①②③预设答案:D2.小敏从A地出发向B地行走,同时小聪从B地出发向A地行走,如图所示,相交于点P的两条线段l1、l2分别表示小敏、小聪离B地的距离y(km)与已用时间x(h)之间的关系,则小敏、小聪行走的速度分别是( )A.3 km/h 和4 km/hB.3 km/h 和3 km/hC.4 km/h 和4 km/hD.4 km/h 和3 km/h分析:可先根据图象上的点分别写出函数关系式,再分别求出两人的速度.预设答案:D3.甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点距离是( )米. A.150 B.175 C.180 D.225分析:根据图象即可求出甲、乙的速度,再求出乙到达终点时所用的时间,然后求出乙到达终点时甲所走的路程,最后用总路程-甲所走的路程即可得出答案.预设答案:B4.两人分别骑自行车和摩托车沿相同路线由甲地到乙地,他们的行驶路程与行驶时间之间的关系如图所示.已知甲、乙两地的距离是120 km,请根据图象回答下列问题:(1)谁先出发的?早多少时间?(2)两人在途中行驶的速度分别是多少?(3)骑自行车者出发后经过几个小时后,两人相遇?(4)在什么时间范围内,骑自行车者在骑摩托车者前面?在什么时间范围内,骑摩托车者在自行车者前面?预设答案:解:(1)观察图象可以看出骑自行车者出发早,早3小时.(2)由图象知,自行车行120 km耗时8小时,所以速度是120÷8=15(km/h)摩托车行驶120 km耗时(5-3)=2小时;所以速度是120÷2=60(km/h)(3)因为两图象交点的横坐标为4,所以4小时后两人相遇.(4)由图象知,当时间在0~4小时内,骑自行车者在骑摩托车者前面;当时间在4~8小时内,骑摩托车者在骑自行车者前面.思维导图的形式呈现本节课的主要内容:。
一次函数的实际应用专题(四个常考模型)【精品】
解:(1)y甲=477x,y乙= 530x(0≤x≤3) 424x+318(x>3)
(2)当477x=424x+318时,解得x=6. 即当x=6时,到甲、乙两个商店购买所需费用相同; 当477x<424x+318时,解得x<6, 又x≥4,于是,当4≤x<6时,到甲商店购买合算; 当477x>424x+318时,解得x>6, 又x≤10,于是,当6<x≤10时,到乙商店购买合算.
(3)如果购进两种饮料的总费用不超过2 100元,那么该商场如何进货才能获利最多? 并求出最大利润.
果汁饮料 碳酸饮料
进价/(元/箱)
40
25
售价/(元/箱)
52
32
解:(1)y与x的函数解析式为y=60-x. (2)总利润w关于x的函数解析式为 w=(52-40)x+(32-25)(60-x)=5x+420. (3)由题意,得40x+25(60-x)≤2 100,解得x≤40. ∵w=5x+420,w随x的增大而增大, ∴当x=40时,w最大=5×40+420=620,
此时购进碳酸饮料60-40=20(箱). ∴该商场购进两种饮料分别为40箱和20箱时,能获得最大利润620元.
2.有A,B两个发电厂,每焚烧一吨垃圾,A发电厂比B发电厂多发40度电, A焚烧20吨垃圾比B焚烧30吨垃圾少发1800度电. (1)求焚烧1吨垃圾,A和B各发电多少度? (2)A,B两个发电厂共焚烧90吨的垃圾,A焚烧的垃圾不多于B焚烧的垃圾 的两倍,求A厂和B厂总发电量的最大值.
解:(1)设焚烧1吨垃圾,A发电厂发电a度,B发电厂发电b度,根据题意,得 30b-20a=1800, a-b=40,
解得 a=300 b=260
答:焚烧1吨垃圾,A发电厂发电300度,B发电厂发电260度. (2)设A发电厂焚烧x吨垃圾,B发电厂焚烧(90-x)吨垃圾,总发电量为y度,则 y=300x+260(90-x)=40x+23400, ∵x≤2(90-x), ∴x≤60. ∵y随x的增大而增大, ∴当x=60时,y有最大值,此时y=40×60+23400=25800. 答:A厂和B厂总发电量的最大值是25800度.
《一次函数的应用》一次函数课件(第1课时)
1 若直线l与直线y=2x-3关于x轴对称,则直线l
的表达式为( B )
A. y=-12x-3
2
C. y= x+3
B. y=-2x+1 3
2
D. y=- x-3
知2-练
2 如图,把直线l向上平移2个单位得到直线l′,则l′ 的表达式为( D )
A. y= 1 x+1
2
B. y= 1x-1 C. y=-2 x-1 D. y=- 12x+1
知1-练
1 已知正比例函数y=kx(k≠0)的图象经过点(1,-2), 则这个正比例函数的表达式为( B )
A. y=2x
B. y=-2x
C. y= 1 x
2
D. y=- 1x
2
知1-练
2 已知正比例函数y=kx(k≠0)的图象如图所示,则 在下列选项中k值可能是( B ) A. 1 B. 2 C. 3 D. 4
知4-讲
知识点 4 由数量关系求一次函数的表达式
例5 为了提高身体素质,有些人选择到专业的健身中心锻炼身体,
某健身中心的消费方式如下: 普通消费: 35元/次;白金卡消费: 购卡280元/张,凭卡免费消费10次再送2次;钻石卡消费: 购 卡560元/张,凭卡每次消费不再收费.以上消费卡使用年限 均为一年,每位顾客只能购买一张卡,且只限本人使用.
与t之间是一次函数关系,可用描点法在直角坐标系内 画出其图象,但要注意t≥0;(2)是要求方程12-6t=0 和12-6t=-9的解,观察(1)中所画的图象即可求出.
知2-讲
解: (知1)依识题点意,得T与t之间的函数关系式为T=12-6t(t≥0),用描
点法画出图象,如图所示.
(2)观察图象发现,方程12-6t=0的解是T=12-6t(t≥0)的图象
八年级数学上册4.4一次函数的应用教案(新版)北师大版
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一次函数相关的实际问题,如速度、时间和路程关系。
3.培养学生运用数学知识解决实际问题的能力,加强数学与现实生活的联系,提升学生的应用意识。
4.培养学生的团队协作能力,通过小组讨论、合作探究,提高沟通交流及合作解决问题的核心素养。
5.引导学生形成批判性思维,敢于对问题进行质疑、探究,培养创新意识和辩证思考的核心素养。
三、教学难点与重点
1.教学重点
(1)掌握一次函数的定义及表达式y=kx+b的含义,理解其中k、b的几何意义。
五、教学反思
在今天的课堂中,我发现学生们对一次函数的应用表现出很大的兴趣,这是非常令人欣慰的。通过引入日常生活中的实际问题,如速度、时间和路程的关系,学生们能够更直观地感受到数学与生活的紧密联系。在讲授过程中,我注意到有几个地方值得我们共同反思。
首先,一次函数的表达式y=kx+b对于部分学生来说,理解起来还是有一定难度的。在讲解这个概念时,我尽量用浅显易懂的语言和生动的例子来解释,但仍有部分学生显得有些迷茫。我想在今后的教学中,可以尝试运用更多的图像和实物模型来辅助教学,让学生更好地理解一次函数的内涵。
其次,在实践活动和小组讨论环节,学生们表现出了很高的积极性。他们能够主动参与到讨论中,提出自己的观点,这有助于培养他们的团队协作和沟通能力。但同时我也发现,有些学生在讨论过程中容易偏离主题,需要我适时引导他们回到正题。因此,在今后的教学中,我需要加强对学生讨论过程的监督和引导,确保讨论的有效性。
湘教版数学八年级下册4.5《一次函数的应用》说课稿1
湘教版数学八年级下册4.5《一次函数的应用》说课稿1一. 教材分析湘教版数学八年级下册 4.5《一次函数的应用》是本册教材中的一个重要内容。
本节课主要让学生了解一次函数在实际生活中的应用,通过实际问题引导学生运用一次函数的知识解决问题。
教材通过丰富的实例,使学生感受到一次函数与生活的紧密联系,培养学生的数学应用意识。
二. 学情分析八年级的学生已经学习了平面直角坐标系、函数的概念和性质等基础知识,对一次函数有一定的了解。
但学生在实际应用一次函数解决生活中的问题时,还缺乏必要的操作能力和思维能力。
因此,在教学过程中,教师需要关注学生的认知水平,引导学生将理论知识与实际问题相结合,提高学生的应用能力。
三. 说教学目标1.知识与技能:让学生掌握一次函数在实际生活中的应用,能运用一次函数解决简单的生活问题。
2.过程与方法:通过实例分析,培养学生从实际问题中提出数学模型的能力,提高学生的数学思维能力。
3.情感态度与价值观:让学生感受数学与生活的紧密联系,增强学生学习数学的兴趣,培养学生的数学应用意识。
四. 说教学重难点1.教学重点:一次函数在实际生活中的应用。
2.教学难点:如何将实际问题转化为一次函数模型,以及运用一次函数解决实际问题。
五. 说教学方法与手段1.教学方法:采用启发式教学法、案例教学法和小组合作学习法。
2.教学手段:利用多媒体课件、实物模型和教学卡片等辅助教学。
六. 说教学过程1.导入新课:通过展示生活中的一些实例,引导学生发现一次函数的应用,激发学生的学习兴趣。
2.知识讲解:讲解一次函数在实际生活中的应用,引导学生理解一次函数模型的建立过程。
3.实例分析:分析具体的生活问题,引导学生运用一次函数模型解决问题。
4.小组讨论:让学生分组讨论,分享各自在生活中发现的一次函数应用实例,互相学习,提高认识。
5.总结提升:总结一次函数在实际生活中的应用,强调数学与生活的紧密联系。
6.课堂练习:布置一些实际问题,让学生运用一次函数模型解决,巩固所学知识。
一次函数的最值问题
一次函数的“最值”问题一次函数y=kx+b中,x、y均可取一切实数.如果缩小x的取值范围,则其函数值就会出现最大值或最小值.一次函数的“最值”由一次函数的性质决定,与其k值、自变量的取值范围密切相关:⑴k>0时,y随x增大而增大.因此,x取最小值时,y有最小值;x取最大值时,y有最大值.⑵k<0时,y随x增大而减小.因此,x取最小值时,y有最大值;x取最大值时,y有最小值.k值、自变量的取值范围与函数最大值、最小值的对应情况如下表:求一次函数的最大、最小值,一般都是采用“极端值法”.即用自变量的端点值,根据函数增减性,对应求出函数的端点值(最值).请看以下实例.例1.已知一次函数y=kx+b中自变量x的取值范围是-2≤x≤6,相应的函数取值范围是-11≤y≤9.求此函数的解析式.解析:x的取值范围与函数y的取值范围的对应情况,由k值的符号确定.故应分类讨论.⑴k>0时,y随x增大而增大.x=-2时,y=-11;x=6时,y=9.∴解得∴y=x-1⑵k<0时, y随x增大而减小.x=-2时,y=9;x=6时,y=-11.∴解得∴y=-x+14例2.康乐公司在A、B两地分别有同型号的机器17台和15台,现在运往甲地18台、乙地14台.从A、B两地运往甲、乙两地的费用如下表;⑴如果从A地运往甲地x台,求完成以上调运所需总费用y(元)关于x(台)的函数解析式;⑵若康乐公司请你设计一种最佳调运方案,使总的费用最少,则该公司完成以上调运方案至少需要多少费用?为什么?解析:⑴y=600x+500(17-x)+400(18-x)+800(x-3)=500x+13300⑵由①x≥0;②17-x≥0;③18-x≥0;④x-3≥0 ∴3≤x≤17∵k=500>0,∴y随x增大而增大,x取最小值时,y有最小值.∴x=3时,y 最小值=500×3+13300=14800(元)故该公司完成以上调运方案至少需14800元运费.调运方案为:由A地运往甲地3台,运往乙地14台;由B地运往甲地15台.。
一次函数的应用课件五四制
对于二次函数y=ax^2+bx+c(a,b,c是常数,a≠0),当a>0时 ,函数存在最小值;当a<0时,函数存在最大值。这个极值 点与一次函数的单调性有密切关系。
一次函数与线性规划的联系
线性规划的基本概念
线性规划是数学规划的一个重要分支,它研究如何在线性约束条件下,使线性 目标函数取得最大值或最小值。
用一次函数解决线性规划问题
在解决线性规划问题时,通常需要使用到不等式和等式约束条件,这些约束条 件可以转化为线性方程或线性不等式组,再利用一次函数的性质进行求解。
一次函数在其他数学问题中的应用
方程的解法
在一些简单的方程求解问题中,可以通过构造一次函数来解决问题。例如,对于形如f(x)=0的方程,可以构造一 个一次函数F(x)=f(x)+c,然后利用一次函数的零点来求解方程。
一次函数方程的解法
解一次函数方程可以利用代数方法,将已知条件代入方程中,求 出未知数的值。
一次函数方程的应用
一次函数方程广泛应用于实际问题中,如行程问题、价格问题等 。
一次函数的不等式
1 2
一次函数不等式的概念
一次函数不等式是指形如y > kx ห้องสมุดไป่ตู้ b (或y < kx + b) 的不等式,其中k、b的意义同上。
数列的求和
在一些数列求和问题中,可以通过构造一个一次函数来找到数列的通项公式,从而简化求和过程。例如,对于等 差数列{an},其通项公式可以写为a_n=a_1+(n-1)d,其中d是公差。
05
课堂练习与思考
练习题一:解题思路&问题建模
总结词
培养解题思维,理解数学建模过 程
题目:一次函数的最值和区间练习题(绝对经典全面)
题目:一次函数的最值和区间练习题(绝对经典全面)一次函数是高中数学中的重要概念之一,掌握一次函数的最值和区间对于解题非常有帮助。
本文将提供一些绝对经典且全面的一次函数最值和区间练题,帮助读者巩固这一知识点。
最值问题一次函数的最值问题,主要考虑函数在定义域内的最大值和最小值。
下面是几个相关的练题:1. 已知函数 $f(x) = 2x + 3$,求函数 $f(x)$ 在定义域内的最大值和最小值。
2. 已知函数 $g(x) = -3x + 5$,求函数 $g(x)$ 在定义域内的最大值和最小值。
3. 对于函数 $h(x) = ax + b$,当 $a>0$ 时,函数的最大值和最小值分别出现在函数图像的哪个位置?4. 对于函数 $k(x) = cx + d$,当 $c<0$ 时,函数的最大值和最小值分别出现在函数图像的哪个位置?区间问题一次函数的区间问题,涉及函数在某个区间上的取值范围。
以下是几个相关的练题:1. 已知函数 $f(x) = 2x - 4$,求函数 $f(x)$ 在 $[-3, 5]$ 区间上的取值范围。
2. 已知函数 $g(x) = -3x + 2$,求函数 $g(x)$ 在 $[0, 5]$ 区间上的取值范围。
3. 已知函数 $h(x) = 2x + 1$,求函数 $h(x)$ 在 $(-\infty, 3]$ 区间上的取值范围。
4. 对于函数 $k(x) = -x + 5$,求函数 $k(x)$ 在 $[1, \infty)$ 区间上的取值范围。
以上是一些一次函数最值和区间的练习题,希望能对读者的学习有所帮助。
通过练习这些经典题目,读者可以更好地理解和掌握一次函数的最值和区间的概念。
一次函数中的最值问题
学校北师大三附中教师习富云时间课题一次函数中的最值问题教学目标知识与技能由实际问题中的最值问题建立数学模型引入,然后利用图形变换和一次函数在直角坐标系中确定最值点,巩固一次函数的知识并进一步体会数形结合思想.过程与方法体会图形变换在解决问题中的转化作用,利用一次函数的解析式求直线的交点,增强数学的应用意识.情感价值观在解决问题的过程中,帮助学生认识数学,体验探索的快乐与成功的喜悦.教学重点图形变换和一次函数的应用.教学难点如何通过图形变换进行转化,确定对称点坐标然后求解析式进而求得最值点教学过程活动内容师生活动设计意图一、问题探究1.提出问题问题1 如图,要在燃气管道l上修建一个泵站,分别向A,B两城镇供气.泵站修在什么地方,可使所用的输气管线最短?2.实际问题数学化如图,已知点A、B在直线l的同侧.在l上找点P,使PA+PB最小.提问:1).线段和的最小值的理论依据是什么2).如何将两条线段的和转化到一条线段上3.几何问题代数化学生独立思考,教师巡视.观察学生是否作数学化,同时对转化正确的同学给予肯定,并指出实际问题转化为数学问题是解决实际问题的第一步...学生会回答:利用两点之间线段最短;利用图形变换实现问题的转化选用“西气东输”作为背景,引导学生了解数学来源于生活.让学生明确用数学方法解决实际问题,BAl教学过程提问:“如图,已知点A(4,3),点B(0,1)。
若点C是x轴上一动点,当BCAC的值最小时,求C点坐标.提问:如何在直角坐标系中确定两条直线的交点4.画图找点解:做B点关于x轴的对称点'B(0,-1)连接B'B交x轴与点 C设'AB所在直线的解析式为y=kx+b,将',BA两点坐标代入341bkb求得,k=1∴'AB所在直线的解析式为y=x-1∴点C坐标为(1,0)5.思考提出问题: 如图,已知点A(4,3),点B(0,-1)。
若点C是x轴上一动点,当BCAC的值最大时,求C点坐标.提出问题:轴对称变换在解决问题中起了什么作用?学生想到通过求直线的解析式再求其与x轴的交点.学生思考,讨论交流.利用轴对称变换和一次函数解决问题.学生独立思考并回得将实际问题数学化.回忆轴对称变换的知识.让学生复习一次函数的有关知识由辅助问题的铺垫,利用轴对BBCB'二、拓展问题2 如图,已知点A(4,3)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学 25.5一次函数的应用(四)学案设计教师:赵树宁授课日期:2010年6月18日学生
学习目标
1、通过小组自学、探究、讨论交流,能从实际问题中获取信息
...........,将简单的实.
际问题转化为数学问题
..........,从而利用一次函数解决
........“最值”的实际问题
.........;
2、在探究“最值
..”问题的过程中,进一步体会一次函数的性质
.........在解决实际数学应用中的重要作用。
学习重点:
能从实际问题中获取信息,利用一次函数解决“最值”的实际问题。
学习方法:
探究——讨论交流——练习
一、探究一
某工程要招聘甲、乙两种工种的工人共150人,甲种工每月的工资为600元,乙种工每月工资1000元,要求乙种工的人数不少于甲种工的2倍,问甲乙两种工种的工人各招聘多少名时,每月所付的工资总额最少?
自学指导:如果设招聘甲种工人x人,那么招聘乙种工人为人,那么设每月所付的总工资额为y,那么y= .条件“乙种工的人数不少于甲种工的2倍”能求什么呢?。
表达式中的k能帮的出什么结论呢?结合上述分析,你会了吗?请同学们在下面写出完整而简洁的过程:小结:遇到“最值”类型的题目,先。
再。
最后解决相关的其它问答。
二、探究二
电视台为某个广告公司特约播放甲、乙两部连续剧.经调查,播放甲连续剧平均每集有收视观众20万人次,播放乙连续剧平均每集有收视观众15万人次,公司要求电视台每周共播放7集.
(1)设一周内甲连续剧播x集,甲、乙两部连续剧的收视观众的人次的总和为y万人次,求y关于x的函数关系式.(2)已知电视台每周只能为该公司提供不超过300分钟的播放时间,并且播放甲连续剧每集需50分钟,播放乙连续剧每集需35分钟,请你用所学知识求电视台每周应播放甲、乙两部连续剧各多少集,才能使得每周收看甲、乙连续剧的观众的人次总和最大,并求出这个最大值.自学指导:(1)设一周内甲连续剧播x集,那么播放乙连续剧集。
则甲连续剧的收视观众的人次为人次,乙连续剧的收视观众的人次为
人次,则可得y= 。
(2)一周内甲、乙连续剧播放时间总和为,根据“不超过300分钟的播放时间”则可求出自变量x 的取值范围
为。
结合函数表达式可求出“各播多少集,能使得人次总和最大,并求出这个最大值.”了吧!
根据老师的指点,同学们(讨论)试试吧!
三、课堂小结
同学们,你学会了什么?总结一下吧!
四、课堂检测(试试吧,你一定行的!)
某家庭装饰厨房需用480块某品牌的同一种规格的瓷砖,装饰材料商场出售的这种瓷砖有大、小两种包装,大包装每包50片,价格为30元;小包装每包30片,价格为20元,若大、小包装均不拆开零售,那么怎样制定购买方案才能使所付费用最少?
五、课后作业
一报刊销售亭从报社订购某晚报的价格是每份0.7元,销售价是每价1元,卖不掉的报纸还可以以0.20元的价格返回报社,在一个月内(以30天计算),有20天每天可卖出100份,其余10天,每天可卖出60份,但每天报亭从报社订购的份数必须相同,若以报亭每天从报社订购报纸的份数为x,每月所获得的利润为y。
(1)写出y与x之间的函数关系式,并指出自变量x的取值范围;(2)报亭应该每天从报社订购多少份报纸,才能使每月获得的利润最大?最大利润是多少?六、拓展提高
A B C型3款手机购买60部,每款至少购买8部且正好用购机款61000元,设购A机x,B机y 售价如下:
(1)用含x、y的式子表示购进C机的数量
(2)求y与x的函数关系式
(3)另外支付费用1500元
①:求利润P与x之间的函数关系
②:求利润最大值,并且写出此时购进三款手机的数量
七、课堂总结
同学们,你今天学习了这节课以后,你有哪些收获呢?还有老师要帮忙的吗?。