精品苏教版高中数学必修一模块学习评价试卷及答案
数学·必修1(苏教版)模块综合检测卷 Word版含解析
模块综合检测卷
(时间:分钟满分:分)
一、选择题(本大题共小题,每小题分,共分.在每小题给出的四个选项中,只
有一项是符合题意的).已知全集={,,,},={,},={,},则∁(∪)=( )
.{}
.{}
.{,,}
.{,}
解析:因为={,},={,},
所以∪={,,}.
所以∁(∪)={}.
答案:.当>时,在同一平面直角坐标系中,函数=-与=的图象是(
)
答案:
.已知集合={=},={=+},则∩=( )
.[-,]
.∅
.[,+∞)
.[-,+∞)
解析:={=}={≥-},={=+}={≥}.
所以∩=[,+∞).
答案:.设()是上的偶函数,且在(,+∞)上是减函数,若<,+>,
则( )
.(-)>(-)
.(-)=(-)
.(-)<(-)
.(-)与(-)大小不确定
解析:由<,+>得>->,
又()是上的偶函数,且在(,+∞)上是减函数,
所以(-)=()<(-).
答案:.已知函数()的单调递增区间是(-,),则=(+)的单调递增区
间是( )
.(-,-)
.(,)
.(-,)
.(,)
解析:因为()的单调递增区间是(-,),则(+)的单调递增区间满
足-<+<,即-<<-.
答案:
.若∈[,],则函数=-的值域是( )
.[,]
.[-,-]
.[,-]
.[-,]
解析:该函数为增函数,自变量最小时,函数值最小;自变量最
大时,函数值最大.故=-,=.
答案:
.下列不等式正确的是( )。
高中数学(苏教版必修一)配套单元检测:第一章 集 合 模块综合检测b 含答案
模块综合检测(B)(时间:120分钟 满分:160分)一、填空题(本大题共14小题,每小题5分,共70分)1.集合A ={0,2,a},B ={1,a 2},若A ∪B ={0,1,2,4,16},则a 的值为________________.2.设函数f(x)=⎩⎪⎨⎪⎧ 1-2x 2 (x ≤1)x 2+3x -2 (x>1),则f(1f (3))的值为________. 3.若函数y =f(x)的定义域是[0,2],则函数g(x)=f (2x )x -1的定义域是________.4.三个数a =0.32,b =log 20.3,c =20.3之间的大小关系是________.5.若函数f(x)唯一的一个零点同时在区间(0,16)、(0,8)、(0,4)、(0,2)内,那么下列命题中正确的是________.(填序号)①函数f(x)在区间(0,1)内有零点;②函数f(x)在区间(0,1)或(1,2)内有零点;③函数f(x)在区间[2,16)内无零点;④函数f(x)在区间(1,16)内无零点.6.已知0<a<1,则方程a |x|=|log a x|的实根个数是________.7.函数f(x)=x 2-2ax +1有两个零点,且分别在(0,1)与(1,2)内,则实数a 的取值范围是________.8.一批设备价值a 万元,由于使用磨损,每年比上一年价值降低b%,则n 年后这批设备的价值为________万元.9.下列4个函数中:①y =2 008x -1;②y =log a 2 009-x 2 009+x(a>0且a ≠1); ③y =x 2 009+x 2 008x +1; ④y =x(1a -x -1+12)(a>0且a ≠1). 其中既不是奇函数,又不是偶函数的是________.(填序号)10.设函数的集合P ={f(x)=log 2(x +a)+b|a =-12,0,12,1;b =-1,0,1},平面上点的集合Q ={(x ,y)|x =-12,0,12,1;y =-1,0,1},则在同一直角坐标系中,P 中函数f(x)的图象恰好..经过Q 中两个点的函数的个数是________. 11.计算:0.25×(-12)-4+lg 8+3lg 5=________. 12.若规定⎪⎪⎪⎪⎪⎪⎪⎪a b c d =|ad -bc|,则不等式log 2⎪⎪⎪⎪⎪⎪⎪⎪1 11 x <0的解集是________.13.已知关于x 的函数y =log a (2-ax)在[0,1]上是减函数,则a 的取值范围是________.14.已知函数f(x)是定义在R 上的奇函数,当x>0时,f(x)=1-2-x ,则不等式f(x)<-12的解集是________. 二、解答题(本大题共6小题,共90分)15.(14分)已知函数f(x)A ,函数g(x)=223m x x---1的值域为集合B,且A∪B=B,求实数m的取值范围.16.(14分)已知f(x)=x+ax2+bx+1是定义在[-1,1]上的奇函数,试判断它的单调性,并证明你的结论.17.(14分)若非零函数f(x)对任意实数a,b均有f(a+b)=f(a)·f(b),且当x<0时,f(x)>1;(1)求证:f(x)>0;(2)求证:f(x)为减函数;(3)当f(4)=116时,解不等式f(x2+x-3)·f(5-x2)≤14.18.(16分)我市有甲,乙两家乒乓球俱乐部,两家设备和服务都很好,但收费方式不同.甲家每张球台每小时5元;乙家按月计费,一个月中30小时以内(含30小时)每张球台90元,超过30小时的部分每张球台每小时2元.某公司准备下个月从这两家中的一家租一张球台开展活动,其活动时间不少于15小时,也不超过40小时.。
新教材高中数学模块测评含解析苏教版选择性必修第一册
模块综合测评(满分:150分 时间:120分钟)一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在等比数列{a n }中,若a 2=4,a 5=-32,则公比q 应为( ) A .±12 B .±2 C .12 D .-2D 〖因为a 5a 2=q 3=-8,故q =-2.〗2.已知直线l 的方程为y =-x +1,则直线l 的倾斜角为( ) A .30° B .45° C .60° D .135°D 〖由题意可知,直线l 的斜率为-1,故由tan 135°=-1,可知直线l 的倾斜角为135°.〗 3.若方程x 2+y 2-4x +2y +5k =0表示圆,则实数k 的取值范围是( ) A .RB .(-∞,1)C .(-∞,1〗D .〖1,+∞)B 〖由方程x 2+y 2-4x +2y +5k =0可得(x -2)2+(y +1)2=5-5k ,此方程表示圆,则5-5k >0,解得k <1.故实数k 的取值范围是(-∞,1).故选B .〗4.若椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,则双曲线x 2a 2-y 2b 2=1的离心率为( )A .54B .52C .32D .54B 〖由题意,1-b 2a 2=⎝⎛⎭⎫322=34,∴b 2a 2=14,而双曲线的离心率e 2=1+b 2a 2=1+14=54,∴e=52.〗 5.设函数f (x )=x 3+(a -1)x 2+ax .若f (x )为奇函数,则曲线y =f (x )在点(0,0)处的切线方程为( )A .y =-2xB .y =-xC .y =2xD .y =xD 〖因为函数f (x )是奇函数,所以a -1=0,解得a =1,所以f (x )=x 3+x ,f ′(x )=3x 2+1,所以f ′(0)=1,f (0)=0,所以曲线y =f (x )在点(0,0)处的切线方程为y -f (0)=f ′(0)x ,化简可得y =x ,故选D .〗6.以F ⎝⎛⎭⎫0,p2(p >0)为焦点的抛物线C 的准线与双曲线x 2-y 2=2相交于M ,N 两点,若△MNF 为正三角形,则抛物线C 的标准方程为( )A .y 2=26xB .y 2=46xC .x 2=46yD .x 2=26yC 〖由题意,以F ⎝⎛⎭⎫0,p 2(p >0)为焦点的抛物线C 的准线y =-p2代入双曲线x 2-y 2=2,可得x =±2+p 24,∵△MNF 为正三角形,∴p =32×22+p 24,∵p >0,∴p =26,∴抛物线C 的方程为x 2=46y .〗7.若函数f (x )=e x (sin x +a )在区间⎝⎛⎭⎫-π2,π2上单调递增,则实数a 的取值范围是( ) A .〖2,+∞) B .〖1,+∞) C .(1,+∞)D .(-2,+∞)B 〖由题意得:f ′(x )=e x (sin x +a )+e x cos x =e x ⎣⎡⎦⎤2sin ⎝⎛⎭⎫x +π4+a . ∵f (x )在⎝⎛⎭⎫-π2,π2上单调递增, ∴f ′(x )≥0在⎝⎛⎭⎫-π2,π2上恒成立. 又e x >0,∴2sin ⎝⎛⎭⎫x +π4+a ≥0在⎝⎛⎭⎫-π2,π2上恒成立. 当x ∈⎝⎛⎭⎫-π2,π2时,x +π4∈⎝⎛⎭⎫-π4,3π4, ∴sin ⎝⎛⎭⎫x +π4∈⎝⎛⎦⎤-22,1. ∴2sin ⎝⎛⎭⎫x +π4+a ∈(-1+a ,2+a 〗,∴-1+a ≥0,解得a ∈〖1,+∞).故选B .〗 8.已知双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的右顶点为A ,抛物线C :y 2=8ax 的焦点为F .若在E 的渐近线上存在点P ,使得AP →⊥FP →,则E 的离心率的取值范围是( )A .(1,2)B .⎝⎛⎦⎤1,324C .⎣⎡⎭⎫324,+∞ D .(2,+∞)B 〖由题意得,A (a ,0),F (2a ,0),设P ⎝⎛⎭⎫x 0,b a x 0,由AP →⊥FP →,得AP →·PF →=0⇒c 2a 2x 20-3ax 0+2a 2=0,因为在E 的渐近线上存在点P ,则Δ≥0,即9a 2-4×2a 2×c 2a 2≥0⇒9a 2≥8c 2⇒e 2≤98⇒e ≤324,又因为E 为双曲线,则1<e ≤324,故选B .〗二、选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.对于定点P (1,1)和圆C :x 2+y 2=4,下列说法正确的是( ) A .点P 在圆内部 B .过点P 有两条圆的切线C .过点P 被圆截得的弦长最大时的直线方程为x -y =0D .过点P 被圆截得的弦长最小值为22ACD 〖由12+12<4知,点(1,1)在圆内,∴A 对;且过P 不能作出圆的切线,∴B 错;过点P 的最大弦长为直径,所以方程应为y =x ,即x -y =0,∴C 对;D 中,过点P 且弦长最小的方程应是y -1=-(x -1),即x +y -2=0,∴弦长为24-⎝⎛⎭⎫222=22, ∴D 对,故应选ACD .〗10.若S n 为数列{a n }的前n 项和,且S n =2a n +1(n ∈N *),则下列说法正确的是( ) A .a 5=-16 B .S 5=-63C .数列{}a n 是等比数列D .数列{}S n +1是等比数列AC 〖因为S n 为数列{}a n 的前n 项和,且S n =2a n +1(n ∈N *), 所以S 1=2a 1+1,因此a 1=-1,当n ≥2时,a n =S n -S n -1=2a n -2a n -1,即a n =2a n -1,所以数列{}a n 是以-1为首项,以2为公比的等比数列,故C 正确; 因此a 5=-1×24=-16,故A 正确;又S n =2a n +1=-2n +1,所以S 5=-25+1=-31,故B 错误;因为S 1+1=0,所以数列{}S n +1不是等比数列,故D 错误.故选AC .〗11.定义在区间⎣⎡⎦⎤-12,4上的函数f (x )的导函数f ′(x )图象如图所示,则下列结论正确的是( )A .函数f (x )在区间(0,4)单调递增B .函数f (x )在区间⎝⎛⎭⎫-12,0单调递减 C .函数f (x )在x =1处取得极大值 D .函数f (x )在x =0处取得极小值ABD 〖根据导函数图象可知,f (x )在区间⎝⎛⎭⎫-12,0上,f ′(x )<0,f (x )单调递减,在区间(0,4)上,f ′(x )>0,f (x )单调递增,所以f (x )在x =0处取得极小值,没有极大值,所以A 、B 、D 选项正确,C 选项错误.故选ABD .〗12.下列说法正确的是( )A .椭圆x 2a 2+y 2b 2=1上任意一点(非左右顶点)与左右顶点连线的斜率乘积为-b 2a 2B .过双曲线x 2a 2-y 2b 2=1焦点的弦中垂直于实轴的弦长为2b 2aC .抛物线y 2=2px上两点A (x 1,y 1),B (x 2,y 2),若弦AB 经过抛物线焦点,则x 1x 2=p 24D .若直线与圆锥曲线有一个公共点,则该直线和圆锥曲线相切 ABC 〖对于A 中,椭圆的左右顶点的分别为A (-a ,0),B (a ,0), 设椭圆上除左右顶点以外的任意一点P (m ,n ),则 k P A ·k PB =n m +a ·n m -a =n 2m 2-a 2,又因为点P (m ,n )在椭圆上,可得m 2a 2+n 2b 2=1,解得n 2=⎝⎛⎭⎫1-m 2a 2b 2,所以k P A ·k PB =-b 2a 2,所以A 项是正确的;对于B 中,设双曲线x 2a 2-y 2b 2=1右焦点F (c ,0),则AB =2bc 2a 2-1=2b 2a,故B 正确. 对于C 中,当AB 斜率不存在时,x A =x B =p 2,∴有x 1x 2=p 24;当AB 斜率存在时,可设AB 方程为y =k ⎝⎛⎭⎫x -p2. 代入y 2=2px 得k 2⎝⎛⎭⎫x -p 22=2px ,即k 2x 2-k 2px -2px +k 2p 24=0,所以x 1x 2=p 24,故C 正确;对于D 中,当直线和抛物线的对称轴平行时,满足只有一个交点,但此时直线抛物线是相交的,所以直线与圆锥曲线有一个公共点,该直线和圆锥曲线相切是错误,即D 项是不正确的.〗三、填空题(本题共4小题,每小题5分,共20分.把答案填在题中的横线上) 13.在等比数列{a n }中,已知a 7a 12=5,则a 8a 9a 10a 11的值为________.25 〖因为a 7a 12=a 8a 11=a 9a 10=5,所以a 8a 9a 10a 11=25.〗14.若直线3x -4y +5=0与圆x 2+y 2=r 2(r >0)相交于A ,B 两点,且∠AOB =120°(O 为坐标原点),则|AB |+r =________.2+23 〖如图,过O 点作OD ⊥AB 于D 点,在Rt △DOB 中,∠DOB =60°,∴∠DBO =30°,又|OD |=|3×0-4×0+5|5=1,∴r =2|OD |=2,|AB |=2r 2-OD 2=23.∴|AB |+r =23+2.〗15.设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=2S n S n +1,则a 2=________,S n =________.(本题第一空2分,第二空3分)23 11-2n 〖S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=2S n S n +1,令n =1,则a 2=2a 1(a 1+a 2),∴a 2=-2(-1+a 2),解得a 2=23.又S n +1-S n =2S n S n +1,整理得1S n -1S n +1=2(常数),即1S n +1-1S n =-2(常数), 故数列⎩⎨⎧⎭⎬⎫1S n 是以1S 1=1a 1=-1为首项,-2为公差的等差数列.所以1S n =-1-2(n -1)=1-2n , 故S n =11-2n.〗16.设f ′(x )是函数f (x )的导函数,且f ′(x )>f (x )(x ∈R ),f (2)=e 2(e 为自然对数的底数),则不等式f (x )<e x 的解集为________.(-∞,2) 〖构造f (x )=f (x )e x ∴F ′(x )=f ′(x )e x -e x f (x )e 2x =f ′(x )-f (x )e x .由于f ′(x )>f (x ),故F ′(x )>0 ,即f (x )在R 上单调递增.又f (2)=e 2,故f (2)=f (2)e 2=1,f (x )<e x ,即f (x )=f (x )ex <1=f (2),即x <2.〗四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)求经过两点A (-1,4),B (3,2)且圆心在y 轴上的圆的方程.〖解〗 线段AB 的中点为(1,3),k AB =2-43-(-1)=-12,∴弦AB 的垂直平分线方程为y -3=2(x -1), 即y =2x +1.由⎩⎪⎨⎪⎧y =2x +1,x =0,得(0,1)为所求圆的圆心. 由两点间距离公式得圆半径r 为(0+1)2+(1-4)2=10,∴所求圆的方程为x 2+(y -1)2=10.18.(本小题满分12分)设{a n }是公比为正数的等比数列,a 1=2,a 3=a 2+4. (1)求{a n }的通项公式;(2)设{b n }是首项为1,公差为2的等差数列,求数列{a n +b n }的前n 项和S n .〖解〗 (1)设q (q >0)为等比数列{a n }的公比,则由a 1=2,a 3=a 2+4得2q 2=2q +4,即q 2-q -2=0,解得q =2或q =-1(舍去),因此q =2.所以{a n }的通项公式为a n =2·2n -1=2n .(2)S n =2(1-2n )1-2+n ×1+n (n -1)2×2=2n +1+n 2-2.19.(本小题满分12分)已知函数f (x )=ln x +x 2. (1)求h (x )=f (x )-3x 的极值;(2)若函数g (x )=f (x )-ax 在定义域内为增函数,求实数a 的取值范围. 〖解〗 (1)由已知可得h (x )=f (x )-3x =ln x +x 2-3x , h ′(x )=2x 2-3x +1x(x >0),令h ′(x )=2x 2-3x +1x =0,可得x =12或x =1,则当x ∈⎝⎛⎭⎫0,12∪(1,+∞)时,h ′(x )>0, 当x ∈⎝⎛⎭⎫12,1时,h ′(x )<0,∴h (x )在⎝⎛⎭⎫0,12,(1,+∞)上为增函数,在⎝⎛⎭⎫12,1上为减函数, 则h (x )极小值=h (1)=-2,h (x )极大值=h ⎝⎛⎭⎫12=-54-ln 2. (2)g (x )=f (x )-ax =ln x +x 2-ax , g ′(x )=1x+2x -a (x >0),由题意可知g ′(x )≥0(x >0)恒成立, 即a ≤⎝⎛⎭⎫2x +1x min , ∵x >0时,2x +1x ≥22,当且仅当x =22时等号成立,∴⎝⎛⎭⎫2x +1x min =22, ∴a ≤22,即实数a 的取值范围为(-∞,22〗.20.(本小题满分12分)已知在正项数列{a n }中,a 1=1,点(a n ,a n +1)(n ∈N +)在函数y =x 2+1的图象上,数列{b n }的前n 项和S n =2-b n .(1)求数列{a n }和{b n }的通项公式;(2)设c n =-1a n +1log 2b n +1,求{c n }的前n 项和T n .〖解〗 (1)∵点()a n ,a n +1(n ∈N +)在函数y =x 2+1的图象上,∴a n +1=a n +1,∴数列{a n }是公差为1的等差数列. ∵a 1=1,∴a n =1+(n -1)=n .∵S n =2-b n ,∴S n +1=2-b n +1,两式相减得:b n +1=-b n +1+b n ,即b n +1b n =12,由S 1=2-b 1,即b 1=2-b 1,得b 1=1. ∴数列{b n }是首项为1,公比为12的等比数列,∴b n =⎝⎛⎭⎫12n -1.(2)log 2b n +1=log 2⎝⎛⎭⎫12n=-n ,∴c n =1n (n +1)=1n -1n +1,∴T n =c 1+c 2+…+c n =⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=n n +1. 21.(本小题满分12分)已知函数f (x )=a ln x +12x 2-(1+a )x ,a ∈R .(1)当a =1时,求函数y =f (x )的图象在x =1处的切线方程; (2)讨论函数f (x )的单调性;(3)若对任意的x ∈(e ,+∞)都有f (x )>0成立,求a 的取值范围. 〖解〗 (1)当a =1时,f (x )=ln x +12x 2-2x ,x >0,f ′(x )=x 2-2x +1x ,f ′(1)=0,f (1)=-32,所以所求切线方程为y =-32.(2)f ′(x )=x 2-(a +1)x +a x =(x -1)(x -a )x .当a =1时,f (x )在(0,+∞)递增;当a ≤0时,f (x )在(0,1)递减,(1,+∞)递增;当0<a <1时,f (x )在(0,a )递增,(a ,1)递减,(1,+∞)递增; 当a >1时,f (x )在(0,1)递增,(1,a )递减,(a ,+∞)递增. (3)由f (x )>0得(x -ln x )a <12x 2-x .注意到y =x -ln x ,y ′=x -1x,于是y =x -ln x 在(0,1)递减,(1,+∞)递增,最小值为1,所以∀x ∈(e ,+∞),x -ln x >0.于是只要考虑∀x ∈(e ,+∞),a <12x 2-x x -ln x .设g (x )=12x 2-x x -ln x ,g ′(x )=12(x -1)(x +2-2ln x )(x -ln x )2,注意到h (x )=x +2-2ln x ,h ′(x )=x -2x,于是h (x )=x +2-2ln x 在(e ,+∞)递增,h (x )>h (e)=e >0,所以g (x )在(e ,+∞)递增,于是a ≤g (e)=e 2-2e2(e -1).22.(本小题满分12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且过点A (2,1).(1)求C 的方程;(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.〖解〗 (1)由题设得4a 2+1b 2=1,a 2-b 2a 2=12,解得a 2=6,b 2=3.所以C 的方程为x 26+y 23=1.(2)设M (x 1,y 1),N (x 2,y 2).若直线MN 与x 轴不垂直,设直线MN 的方程为y =kx +m ,代入x 26+y 23=1得(1+2k 2)x 2+4kmx +2m 2-6=0.于是x 1+x 2=-4km1+2k 2,x 1x 2=2m 2-61+2k 2. ①由AM ⊥AN 知AM →·AN →=0,故(x 1-2)(x 2-2)+(y 1-1)(y 2-1)=0,可得(k 2+1)x 1x 2+(km -k -2)(x 1+x 2)+(m -1)2+4=0.将①代入上式可得(k 2+1)2m 2-61+2k 2-(km -k -2)4km 1+2k 2+(m -1)2+4=0. 整理得(2k +3m +1)(2k +m -1)=0. 因为A (2,1)不在直线MN 上,所以2k +m -1≠0,故2k +3m +1=0,k ≠1,m =-23k -13.于是MN 的方程为y =k ⎝⎛⎭⎫x -23-13(k ≠1). 所以直线MN 过点P ⎝⎛⎭⎫23,-13. 若直线MN 与x 轴垂直,可得N (x 1,-y 1). 由AM →·AN →=0得(x 1-2)(x 1-2)+(y 1-1)(-y 1-1)=0.又x 216+y 213=1,可得3x 21-8x 1+4=0.解得x 1=2(舍去),x 1=23. 此时直线MN 过点P ⎝⎛⎭⎫23,-13. 令Q 为AP 的中点,即Q ⎝⎛⎭⎫43,13.若D 与P 不重合,则由题设知AP 是Rt △ADP 的斜边, 故|DQ |=12|AP |=223.若D 与P 重合, 则|DQ |=12|AP |.综上,存在点Q ⎝⎛⎭⎫43,13,使得|DQ |为定值.。
2020_2021学年新教材高中数学模块综合测评含解析苏教版必修一
模块综合测评(教师独具)(时间120分钟,满分150分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若集合A ={x |x 2+x -2≤0,x ∈Z },B ={x |x <-1或x >3},则A ∩B =( ) A .{x |-2<x <-1} B .{x |-2<x <3} C .{-2}D .{-2,-1}C [A ={x |x 2+x -2≤0,x ∈Z }={-2,-1,0,1},所以A ∩B ={-2} .故选C .] 2.已知角α的终边经过点P (3,-4),则tan α=( ) A .35 B .-45 C .-43 D .43C [由正切的三角函数定义可知tan α=y x =-43,故选C .]3.已知命题p :A ∩(∁U B )=∅,命题q :A B ,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件B [因为A ∩(∁U B )=∅⇔A ⊆B ,则q ⇒p, pq .故p 是q 的必要不充分条件.]4.函数f (x )=ln 3x-14+3x -x 2的定义域为( ) A .{x |-1<x <4} B .{x |0<x <4} C .{x |x >4}D .{x |x <-1}B [函数f (x )=ln 3x-14+3x -x 2的定义域满足:⎩⎪⎨⎪⎧3x-1>0,4+3x -x 2>0,解得0<x <4.故选B .]5.若a <b <0,则下列不等式不能成立的是( ) A .1a -b >1aB .1a >1bC .|a |>|b |D .a 2>b 2A [取a =-2,b =-1,则1a -b >1a不成立.] 6.若α=-4,则下列结论不成立的是( ) A .sin α>0 B .cos α<0 C .tan α<0D .sin α<0D [α=-4=-2π+(2π-4),π2<2π-4<π,故角α的终边在第二象限.sin α>0,cos α<0,tan α<0,故选D .]7.已知x >0,y >0,且x +2y =2,则xy ( ) A .有最大值为1 B .有最小值为1 C .有最大值为12D .有最小值为12C [因为x >0,y >0,x +2y =2,所以x +2y ≥2x ·2y ,即2≥22xy ,xy ≤12,当且仅当x =2y ,即x =1,y =12时,等号成立.所以xy 有最大值,且最大值为12.]8.已知函数f (x )=sin ()ωx +φ⎝ ⎛⎭⎪⎫ω>0,|φ|≤π2的图象关于点M ⎝ ⎛⎭⎪⎫-π6,0及直线l :x =π3对称,且f (x )在⎝ ⎛⎭⎪⎫π2,π不存在最值,则φ的值为( )A . -π3B .-π6C .π6D .π3C [函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|≤π2的图象关于点M ⎝⎛⎭⎪⎫-π6,0及直线l :x=π3对称. 则T 4+kT 2=π3+π6=π2,∴T =2π1+2k,k ∈N . f (x )在⎝ ⎛⎭⎪⎫π2,π不存在最值,则T ≥π,故k =0时满足条件,T =2π,ω=1.f ⎝ ⎛⎭⎪⎫-π6=sin ⎝⎛⎭⎪⎫-π6+φ=0,则-π6+φ=m π,∴φ=m π+π6,m ∈Z . 当m =0时满足条件,故φ=π6.故选C .]二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.下列说法正确的是( )A .若幂函数的图象经过点⎝ ⎛⎭⎪⎫18,2,则解析式为y =x -3B .若函数f (x )=x -45,则f (x )在区间(-∞,0)上单调递减 C .幂函数y =x α(α>0)始终经过点(0,0)和(1,1) D .若函数f (x )=x ,则对于任意的x 1,x 2∈[0,+∞)有f x 1+f x 22≤f ⎝⎛⎭⎪⎫x 1+x 22CD [若幂函数的图象经过点⎝ ⎛⎭⎪⎫18,2,则解析式为y =x -13,故A 错误; 函数f (x )=x -45是偶函数且在()0,+∞上单调递减,故在()-∞,0单调递增,B 错误;幂函数y =x α(α>0)始终经过点(0,0)和(1,1),C 正确; 任意的x 1,x 2∈[0,+∞),要证f x 1+f x 22≤f ⎝⎛⎭⎪⎫x 1+x 22,即x 1+x 22≤x 1+x 22,即x 1+x 2+2x 1x 24≤x 1+x 22,即(x 1-x 2)2≥0,易知成立,故D 正确;故选CD .]10.关于函数y =f (x ),y =g (x ),下述结论正确的是( ) A .若y =f (x )是奇函数,则f (0)=0B .若y =f (x )是偶函数,则y =|f (x )|也为偶函数C .若y =f (x )(x ∈R )满足f (1)<f (2),则f (x )是区间[1,2]上的增函数D .若y =f (x ),y =g (x )均为R 上的增函数,则y =f (x )+g (x )也是R 上的增函数 BD [对于A . 若y =f (x )是奇函数,则f (0)=0,当定义域不包含0时不成立,故A 错误;对于B .若y =f (x )是偶函数,f (x )=f (-x ) ,故|f (x )|=|f (-x )|,y =|f (x )|也为偶函数,B 正确;对于C .举反例:f (x )=⎝ ⎛⎭⎪⎫x -432满足f (1)<f (2),在[1,2]上不是增函数,故C 错误;对于D .若y =f (x ),y =g (x )均为R 上的增函数,则y =f (x )+g (x )也是R 上的增函数. 设x 1<x 2,则[f (x 2)+g (x 2)]-[f (x 1)+g (x 1)]=[f (x 2)-f (x 1)]+[g (x 2)-g (x 1)]>0, 故y =f (x )+g (x )单调递增,故D 正确.故选BD .] 11.已知函数f (x )=1+m3x+1(m ∈R )为奇函数,则下列叙述正确的有( ) A .m =-2B .函数f (x )在定义域上是单调增函数C .f (x )∈(-1,1)D .函数F (x )=f (x )-sin x 所有零点之和大于零 ABC [因为函数f (x )=1+m 3x+1(m ∈R )为奇函数,所以f (0)=1+m 30+1=1+m2=0,解得m =-2,故A 正确;因此f (x )=1-23x+1.又因为y =3x+1在定义域上是单调增函数,所以y =23x+1为单调减函数,即f (x )=1-23x +1在定义域上是单调增函数,故B 正确;令t =3x+1,t ∈(1,+∞),所以f (t )=1-2t在t ∈(1,+∞)上的值域为(-1,1),故C 正确;函数F (x )=f (x )-sin x所有零点可以转化为f (x )=sin x 的两个函数的交点的横坐标,因为f (x )和y =sin x 都为奇函数,所以若有交点必然关于原点对称,那么其和应等于零,如图,故选项D 错误.故选ABC .]12.出生在美索不达米亚的天文学家阿尔·巴塔尼大约公元920左右给出了一个关于垂直高度为h 的日晷及其投影长度s 的公式:s =h sin 90°-φsin φ,即等价于现在的s =h cot φ,我们称y =cot x 为余切函数,则下列关于余切函数的说法中正确的是( )A .函数y =cot x 的最小正周期为2πB .函数y =cot x 关于(π,0)对称C .函数y =cot x 在区间(0,π)上单调递减D .函数y =tan x 的图象与函数y =cot x 的图象关于直线x =π2对称BC [y =cot x =cos x sin x =1tan x,画出函数图象,如图所示:故函数的最小正周期为π,关于(π,0)对称,区间(0,π)上单调递减.且函数y =tan x 的图象与函数y =cot x 的图象不关于直线x =π2对称.故选BC .]三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.函数y =sin x -tan x 在[-2π,2π]上零点的个数为________. 5 [由y =sin x -tan x =0得sin x =tan x, 即sin x ⎝ ⎛⎭⎪⎫1-1cos x =0. ∴sin x =0或1-1cos x =0,即x =k π(k ∈Z ),又-2π≤x ≤2π,∴x =-2π,-π,0,π,2π, 从而图象的交点个数为5.]14.已知A ,B 均为集合U ={1,3,5,7,9}的子集,且A ∩B ={3},∁U B ∩A ={9},则A =________.{3,9} [由题意画出Venn 图,如图所示.由图可知,A ={3,9}.]15.已知sin ⎝ ⎛⎭⎪⎫x -π6=14,则2sin ⎝ ⎛⎭⎪⎫7π6-x +cos ⎝⎛⎭⎪⎫x +4π3=________.34 [2sin ⎝ ⎛⎭⎪⎫7π6-x +cos ⎝ ⎛⎭⎪⎫x +4π3=2sin ⎝ ⎛⎭⎪⎫x -π6+sin ⎝ ⎛⎭⎪⎫x -π6=3sin ⎝ ⎛⎭⎪⎫x -π6=34.]16.已知函数f (x )=12x -22x +1,则g (x )=f (x )+1是________函数(从“奇”“偶”“非奇非偶”及“既是奇函数又是偶”中选择一个填空),不等式f (x 2-x )+f (4x -10)≤-2的解集为________.(本题第一空2分,第二空3分)(1)奇 (2)[-5,2] [函数y =12x ,y =-22x +1单调递增,故f (x )=12x -22x +1单调递增;g (x )=f (x )+1=12x -22x +1+1=12x +2x-12x +1,函数单调递增;g (-x )=12(-x )+2-x-12-x +1=-12x -2x-12x +1=-g (x ),故g (x )是奇函数;f (x 2-x )+f (4x -10)≤-2,即g (x 2-x )≤-g (4x -10)=g (10-4x ).故x 2-x ≤10-4x ,解得-5≤x ≤2.]三、解答题(本大题共6小题,共70分. 解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知p :A ={x |x 2-2x -3≤0,x ∈R },q :B ={x |x 2-2mx +m 2-9≤0,x ∈R ,m ∈R }.(1)若A ∩B =[1,3],求实数m 的值;(2)若q 是p 的必要条件,求实数m 的取值范围. [解] (1)A ={x |-1≤x ≤3,x ∈R },B ={x |m -3≤x ≤m +3,x ∈R ,m ∈R },∵A ∩B =[1,3],∴m =4.(2)∵q 是p 的必要条件 ∴p 是q 的充分条件, ∴A ⊆∁R B ,∴m >6或m <-4.18.(本小题满分12分)已知函数f (x )=2a sin ⎝ ⎛⎭⎪⎫2x +π6+2(其中a 为非零常数). (1)求f (x )的单调增区间;(2)若a >0,x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )的最小值为1,求a 的值.[解] (1)当 a >0时,由-π2+2k π≤2x +π6≤π2+2k π,k ∈Z ,解得-π3+k π≤x ≤π6+k π,k ∈Z ,∴当a >0时,函数f (x )的单调增区间为⎣⎢⎡⎦⎥⎤-π3+k π,π6+k π(k ∈Z ),当a <0时,由π2+2k π≤2x +π6≤3π2+2k π,k ∈Z ,解得π6+k π≤x ≤2π3+k π,k ∈Z ,∴当a <0时,函数f (x )的单调增区间为⎣⎢⎡⎦⎥⎤π6+k π,2π3+k π(k ∈Z ).(2)∵0≤x ≤π2,∴π6≤2x +π6≤7π6,∴-12≤sin ⎝⎛⎭⎪⎫2x +π6≤1,∴当a >0时,f (x )的最小值为-a +2=1,∴a =1.19.(本小题满分12分)已知函数f (x )=lg(2+x )+lg(2-x ). (1)判断f (x )的奇偶性,并证明;(2)用定义证明函数f (x )在(0,2)上单调递减; (3)若f (x -2)<f (x ),求x 的取值范围.[解] (1)因为f (x )=lg(2+x )+lg(2-x )=lg(4-x 2),所以函数f (x )的定义域为(-2,2),因为f (-x )=lg(4-(-x )2)=f (x ),所以f (x )是偶函数. (2)任取x 1,x 2∈(0,2)且x 1<x 2,则f (x 1)-f (x 2)=lg(4-x 21)-lg(4-x 22)=lg ⎝ ⎛⎭⎪⎫4-x 214-x 22,因为x 1,x 2∈(0,2)且x 1<x 2,所以4-x 21>4-x 22>0,所以4-x 214-x 22>1,lg ⎝ ⎛⎭⎪⎫4-x 214-x 22>0, 即f (x 1)>f (x 2),所以f (x )在区间(0,2)上单调递减. (3)因为f (x )是偶函数,所以f (x )=f (||x ),又因为f (x )定义域为(-2,2),且在区间(0,2)上单调递减,f (x -2)<f (x ),所以⎩⎨⎧|x -2|>|x |,-2<x -2<2,-2<x <2,解之得0<x <1,所以x 的取值范围是(0,1).20.(本小题满分12分)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3. (1)求f (x )的最大值及取得最大值时x 的值;(2)若方程f (x )=23在(0,π)上的解为x 1,x 2,求cos (x 1-x 2)的值.[解] (1)f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3. 当2x -π3=π2+2k π(k ∈Z ),即x =512π+k π(k ∈Z )时,函数f (x )取最大值,且最大值为1.(2)由(1)知,函数f (x )图象的对称轴为x =512π+k π(k ∈Z ),所以当x ∈(0,π)时,对称轴为x =512π.又方程f (x )=23在(0,π)上的解为x 1,x 2,所以x 1+x 2=56π,则x 1=56π-x 2,所以cos (x 1-x 2)=cos ⎝ ⎛⎭⎪⎫56π-2x 2=sin ⎝ ⎛⎭⎪⎫2x 2-π3,又f (x 2)=sin ⎝ ⎛⎭⎪⎫2x 2-π3=23,故cos (x 1-x 2)=23.21.(本小题满分12分)如图,天津之眼,全称天津永乐桥摩天轮,是世界上唯一一个桥上瞰景摩天轮,是天津的地标之一 .永乐桥分上下两层,上层桥面预留了一个长方形开口,供摩天轮轮盘穿过,摩天轮的直径为110米,外挂装48个透明座舱,在电力的驱动下逆时针匀速旋转,转一圈大约需要30分钟.现将某一个透明座舱视为摩天轮上的一个点P ,当点P 到达最高点时,距离下层桥面的高度为113米,点P 在最低点处开始计时.(1)试确定在时刻t (单位:分钟)时点P 距离下层桥面的高度H (单位:米);(2)若转动一周内某一个摩天轮透明座舱在上下两层桥面之间的运行时间大约为5分钟,问上层桥面距离下层桥面的高度约为多少米?[解] (1)如图,建立平面直角坐标系.由题可知OP 在t 分钟内所转过的角为2π30×t =π15t ,因为点P 在最低点处开始计时,所以以Ox 为始边,OP 为终边的角为π15t -π2,所以点P 的纵坐标为55sin ⎝ ⎛⎭⎪⎫π15t -π2,则H =55sin ⎝ ⎛⎭⎪⎫π15t -π2+58=58-55cos π15t (t ≥0),答:在t 分钟时点P 距离下层桥面的高度H 为58-55cos π15t (米).(2)根据对称性,上层桥面距离下层桥面的高度为点P 在t =52分钟时距离下层桥面的高度.当t =52时,H =58-55cos π15t =58-55cos ⎝ ⎛⎭⎪⎫π15×52=58-5532. 答:上层桥面距离下层桥面的高度约为58-5532米.22.(本小题满分12分) 对于函数f (x ),若存在定义域中的实数a ,b 满足b >a >0且f (a )=f (b )=2f ⎝⎛⎭⎪⎫a +b 2≠0,则称函数f (x )为“M 类” 函数.(1)试判断f (x )=sin x ,x ∈R 是否是“M 类” 函数,并说明理由;(2)若函数f (x )=|log 2x -1|,x ∈(0,n ),n ∈N *为“M 类” 函数,求n 的最小值. [解] (1)不是.假设f (x )为M 类函数,则存在b >a >0,使得sin a =sin b , 则b =a +2k π,k ∈Z 或者b +a =π+2k π,k ∈Z , 由sin a =2sina +b2,当b =a +2k π,k ∈Z 时,有sin a =2sin(a +k π),k ∈Z , 所以sin a =±2sin a ,可得sin a =0,不成立;当b +a =π+2k π,k ∈Z 时,有sin a =2sin ⎝ ⎛⎭⎪⎫π2+k π,k ∈Z , 所以sin a =±2,不成立, 所以f (x )不是M 类函数.(2)f (x )=⎩⎪⎨⎪⎧1-log 2x ,0<x ≤2log 2x -1,x >2 ,则f (x )在(0,2)单调递减,在(2,+∞)单调递增,又因为f (x )是M 类函数,所以存在0<a <2<b ,满足1-log 2a =log 2b -1=2|log 2a +b 2-1|, 由等式可得:log 2(ab )=2,则ab =4, 所以a +b 2-2=12(a +4a -4)=a -222a>0, 则log 2a +b 2-1>0,所以得log 2b -1=2⎝ ⎛⎭⎪⎫log 2a +b 2-1, 从而有log 2b +1=log 2⎝⎛⎭⎪⎫a +b 22,则有2b =a +b 24,即⎝ ⎛⎭⎪⎫4b +b 2=8b , 所以b 4-8b 3+8b 2+16=0,则(b -2)(b 3-6b 2-4b -8)=0,由b >2,则b 3-6b 2-4b -8=0,令g (x )=x 3-6x 2-4x -8,当2<x <6时,g (x )=(x -6)x 2-4x -8<0,且g (6)=-32<0,g (7)=13>0,且g (x )连续不断,由零点存在性定理可得存在b ∈(6,7),使得g (b )=0,此时a ∈(0,2),因此n 的最小值为7.。
高中数学(苏教版必修一)模块综合测评 Word版含解析
模块综合测评(时间分钟,满分分)一、填空题(本大题共小题,每小题分,共分,请把答案填在题中横线上).已知集合=,=,则∩=.【解析】==,∩=.【答案】.如果集合={>-},那么下列结论成立的是.(填序号)()⊆;(){}∈;()∅∈;(){}⊆.【解析】元素与集合之间的关系是从属关系,用符号∈或∉表示,故()()()不对,又∈,所以{}⊆.【答案】().设集合={,,…,},={,,…,},定义集合⊕={(,)=++…+,=++…+},已知={},={},则⊕的子集为.【解析】因为根据新定义可知,++=++=,故⊕的子集为∅,{()}.【答案】∅,{()}.若函数()=的定义域为,()=(-()的定义域为,则∁(∪)=.【解析】由题意知,(\\(->,->))⇒<<.∴=().(\\(->,(-(≥))⇒≤.∴=(-∞,],∪=(-∞,]∪(),∴∁(∪)=(]∪[,+∞).【答案】(]∪[,+∞).若方程-+=在区间(,)(,∈,且-=)上有一根,则+的值为.【解析】设()=-+,则(-)=-<,(-)=>,所以=-,=-,则+=-.【答案】-.已知函数=()与=互为反函数,()=(-)+,则()的图象恒过定点.【解析】由题知()=,∴()=-+,由-=,得=,故函数()=-+(>,≠)的图象恒过定点.【答案】.已知函数()=(-)++为偶函数,则()在(-,-)上是.(填序号)①增函数;②减函数;③非单调函数;④可能是增函数,也可能是减函数.【解析】∵()为偶函数,∴=,即()=-+在(-,-)上是增函数.【答案】①.已知函数()=+(>且≠)在[]上的最大值与最小值之和为+,则=.【解析】依题意,函数()=+(>且≠)在[]上具有单调性,因此++=+,解得=.【答案】.已知()=(\\(+,≤,,>,))若()=,则=.【解析】当≤时,令+=,解得=-或=(舍去);当>时,令=,解得=.综上,=-或=.【答案】-或.若=()是奇函数,当>时,()=+,则错误!=.【解析】∵()是奇函数,∴错误!=(-)=-( ).又>,且>时,()=+,∴错误!=-.【答案】-.定义在上的函数()满足()=(\\((-(,≤, (-(- (-(,>,))则()的值为.【解析】∵>,且>时,()=(-)-(-),∴()=()-(),又()=()-(),所以()=-(),又∵≤时,()=(-),∴()=-()=-(-)=-.【答案】-.函数=()的图象如图所示,则函数=()的图象大致是.(填序号)。
2019-2020年高中数学模块综合检测卷(一)苏教版必修
2019-2020年高中数学模块综合检测卷(一)苏教版必修一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.直线x -3=0的倾斜角是( )A .45°B .60°C .90°D .不存在 答案:C2.已知点A (x ,1,2)和点B (2,3,4),且|AB |=26,则实数x 的值是( ) A .-3或4 B .-6或2 C .3或-4 D .6或-2答案:D3.一个球的内接正方体的表面积为54,则球的表面积为( ) A .27π B .18π C .9π D .54π 解析:设正方体的棱长为a ,球的半径为r , 则6a 2=54,所以a =3. 又因为2r =3a , 所以r =32a =332, 所以S 表=4πr 2=4π·274=27π.答案:A4.在同一个平面直角坐标系中,表示直线y =ax 与y =x +a 正确的是( )答案:C5.某几何体的三视图如图所示,则该几何体的体积为( )A .12B .18C .24D .30解析:因为三个视图中直角较多,所以可以在长方体中对几何体进行分析还原,在长方体中计算其体积.由俯视图可以判断该几何体的底面为直角三角形,由正视图和左视图可以判断该几何体是由直三棱柱(侧棱与底面垂直的棱柱)截取得到的.在长方体中分析还原,如图①所示,故该几何体的直观图如图②所示.在图①中,V 棱柱ABC -A 1B 1C 1=S △ABC ·AA 1=12×4×3×5=30,V 棱锥P -A 1B 1C 1=13S △A 1B 1C 1·PB 1=13×12×4×3×3=6.故几何体ABC -PA 1C 1的体积为30-6=24.故选C.答案:C6.已知圆C 1:(x -2)2+(y -3)2=1,圆C 2:(x -3)2+(y -4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM |+|PN |的最小值为( )A .52-4 B.17-1 C .6-2 2D.17解析:先求出圆心坐标和半径,再结合对称性求解最小值,设P (x ,0),C 1(2,3)关于x 轴的对称点为C 1′(2,-3),那么|PC 1|+|PC 2|=|PC 1′|+|PC 2|≥|C ′1C 2|=(2-3)2+(-3-4)2=5 2. 而|PM |=|PC 1|-1,|PN |=|PC 2|-3, 所以|PM |+|PN |=|PC 1|+|PC 2|-4≥52-4. 答案:A7.直线y =kx +3与圆(x -2)2+(y -3)2=4相交于M 、N 两点,若|MN |≥23,则k 的取值范围是( )A.⎣⎢⎡⎦⎥⎤-34,0 B.⎣⎢⎡⎦⎥⎤-33,33 C.[]-3,3D.⎣⎢⎡⎦⎥⎤-23,0 解析:法一:可联立方程组利用弦长公式求|MN |,再结合|MN |≥23可得答案. 法二:利用圆的性质知,圆心到直线的距离的平方加上弦长一半的平方等于半径的平方,求出|MN|,再结合|MN|≥23可得答案.答案:B8.若空间中四条两两不同的直线l1,l2,l3,l4满足l1⊥l2,l2⊥l3,l3⊥l4,则下列结论一定正确的是( )A.l1⊥l4B.l1∥l4C.l1与l4既不垂直也不平行D.l1与l4的位置关系不确定解析:如图所示,在长方体ABCD-A1B1C1D1中,记l1=DD1,l2=DC,l3=DA,若l4=AA1,满足l1⊥l2,l2⊥l3,l3⊥l4,此时l1∥l4,可以排除选项A和C.若l4=DC1,也满足条件,可以排除选项B.故选D.答案:D9.如图所示,在四面体ABCD中,E,F分别是AC与BD的中点,若CD=2AB=4,EF⊥BA,则EF与CD所成的角为( )A.90°B.45°C.60°D.30°解析:如图所示,取BC的中点H,连接EH,FH,则∠EFH为所求,可证△EFH为直角三角形,EH⊥EF,FH=2,EH=1,从而可得∠EFH=30°.答案:D10.若直线y =kx +1与圆x 2+y 2+kx -y =0的两个交点恰好关于y 轴对称,则k 等于( )A .0B .1C .2D .3解析:由⎩⎪⎨⎪⎧y =kx +1,x 2+y 2+kx -y =0, 得(1+k 2)·x 2+2kx =0. 因为两点恰好关于y 轴对称, 所以x 1+x 2=-2k1+k2=0, 所以k =0. 答案:A11.已知直线l 1:ax +4y -2=0与直线l 2:2x -5y +b =0互相垂直,垂足为(1,c ),则a +b +c 的值为( )A .-4B .20C .0D .24解析:垂足(1,c )是两直线的交点,且l 1⊥l 2,故-a 4·25=-1,所以a =10.l :10x +4y -2=0. 将(1,c )代入,得c =-2; 将(1,-2)代入l 2,得b =-12. 则a +b +c =10+(-12)+(-2)=-4. 答案:A12.过点A ⎝ ⎛⎭⎪⎫0,73与B (7,0)的直线l 1与过点(2,1),(3,k +1)的直线l 2和两坐标轴围成的四边形内接于一个圆,则实数k 等于( )A .-3B .3C .-6D .6 解析:由题意知l 1⊥l 2,所以kl 1·kl 2=-1,即-13k =-1,k =3.答案:B二、填空题(本大题共4小题,每小题5分,共20分.将正确答案填在题中的横线上) 13.设点A (-1,0),B (1,0),直线2x +y -b =0与线段AB 相交,则b 的取值范围是________.解析:b 为直线y =-2x +b 在y 轴上的截距,如图所示,当直线y =-2x +b 过点A (-1,0)和点B (1,0)时b 分别取得最小值和最大值.所以b 的取值范围是[-2,2]. 答案:[-2,2]14.已知直线ax +y -2=0与圆心为C 的圆(x -1)2-(y -a )2=4相交于A ,B 两点,且△ABC 为等边三角形,则实数a =________.解析:根据“半径、弦长AB 的一半、圆心到直线的距离”满足勾股定理可建立关于a 的方程,解方程求a .圆心C (1,a )到直线ax +y -2=0的距离为|a +a -2|a 2+1.因为△ABC 为等边三角形,所以|AB |=|BC |=2.所以⎝⎛⎭⎪⎫|a +a -2|a 2+12+12=22.解得a =4±15.答案:4±1515.如图所示,将边长为1的正方形ABCD 沿对角线AC 折起,使得平面ADC ⊥平面ABC ,在折起后形成的三棱锥D -ABC 中,给出下列三种说法:①△DBC 是等边三角形;②AC⊥BD ;③三棱锥D -ABC 的体积是26. 其中正确的序号是________(写出所有正确说法的序号).解析:取AC 的中点E ,连接DE ,BE , 则DE ⊥AC ,BE ⊥AC ,且DE ⊥BE . 又DE =EC =BE ,所以DC =DB =BC , 故△DBC 是等边三角形. 又AC ⊥平面BDE , 故AC ⊥BD .又V D -ABC =13S △ABC ·DE =13×12×1×1×22=212,故③错误.答案:①②16.已知直线l 经过点P (-4,-3),且被圆(x +1)2+(y +2)2=25截得的弦长为8,则直线l 的方程是_________________________.解析:因为(-4+1)2+(-3+2)2=10<25,所以点P 在圆内.当l 的斜率不存在时,l 的方程为x =-4,将x =-4代入圆的方程,得y =2或y =-6,此时弦长为8.当l 的斜率存在时,设l 的方程为y +3=k (x +4),即kx -y +4k -3=0, 当弦长为8时,圆心到直线的距离为 25-42=3,则|-k +2+4k -3|k 2+1=3,解得k =-43.则直线l 的方程为y +3=-43(x +4),即4x +3y +25=0.答案:4x +3y +25=0或x =-4三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程及演算步骤)17.(本小题满分10分)求经过两直线2x -3y -3=0和x +y +2=0的交点且与直线3x +y -1=0平行的直线方程.解:法一:由方程组⎩⎪⎨⎪⎧2x -3y -3=0,x +y +2=0,得⎩⎪⎨⎪⎧x =-35,y =-75.因为直线l 和直线3x +y -1=0平行, 所以直线l 的斜率k =-3.所以根据点斜式有y -⎝ ⎛⎭⎪⎫-75=-3⎣⎢⎡⎦⎥⎤x -⎝ ⎛⎭⎪⎫-35,故所求直线方程为15x +5y +16=0.法二:因为直线l 过两直线2x -3y -3=0和x +y +2=0的交点, 所以设直线l 的方程为2x -3y -3+λ(x +y +2)=0, 即(λ+2)x +(λ-3)y +2λ-3=0. 因为直线l 与直线3x +y -1=0平行, 所以λ+23=λ-31≠2λ-3-1,解得λ=112.从而所求直线方程为 15x +5y +16=0.18.(本小题满分12分)如图所示,在正三棱柱ABC -A 1B 1C 1中,AA 1=6,异面直线BC 1与AA 1所成角的大小为30°,求该三棱柱的体积.解:因为CC 1∥AA 1,所以∠BC 1C 为异面直线BC 1与AA 1所成的角, 即∠BC 1C =30°.在Rt △BC 1C 中,BC =CC 1·tan ∠BC 1C =6×33=23, 从而S △ABC =34BC 2=33, 因此该三棱柱的体积为V =S △ABC ·AA 1=33×6=18 3.19.(本小题满分12分)如图所示,在正方体ABCD -A 1B 1C 1D 1中,E ,F ,P ,Q ,M ,N 分别是棱AB ,AD ,DD 1,BB 1,A 1B 1,A 1D 1的中点.求证:(1)直线BC 1∥平面EFPQ ; (2)直线AC 1⊥平面PQMN .证明:(1)连接AD 1,由ABCD -A 1B 1C 1D 1是正方体, 知AD 1∥BC 1.因为F ,P 分别是AD ,DD 1的中点,所以FP ∥AD 1. 从而BC 1∥FP .而FP ⊂平面EFPQ ,且BC 1⊄平面EFPQ , 故直线BC 1∥平面EFPQ .(2)如图所示,连接AC ,BD ,则AC ⊥BD .由CC 1⊥平面ABCD ,BD ⊂平面ABCD ,可得CC 1⊥BD . 又AC ∩CC 1=C ,所以BD ⊥平面ACC 1. 而AC 1⊂平面ACC 1, 所以BD ⊥AC 1.因为M ,N 分别是A 1B 1,A 1D 1的中点, 所以MN ∥BD ,从而MN ⊥AC 1. 同理可证PN ⊥AC 1.又PN ∩MN =N ,所以直线AC 1⊥平面PQMN .20.(本小题满分12分)右图是某几何体的三视图,请你指出这个几何体的结构特征,并求出它的表面积与体积.解:此几何体是一个组合体,下半部是长方体,上半部是半圆柱,其轴截面的大小与长方体的上底面大小一致.表面积为S ,则S =32+96+48+4π+16π=176+20π.体积为V ,则V =8×4×6+12×22×8π=192+16π.所以几何体的表面积为(176+20π)cm 2,体积为(192+16π)cm 3.21.(本小题满分12分)已知点M (x 0,y 0)在圆x 2+y 2=4上运动,N (4,0),点P (x ,y )为线段MN 的中点.(1)求点P (x ,y )的轨迹方程;(2)求点P (x ,y )到直线3x +4y -86=0的距离的最大值和最小值. 解:(1)因为点P (x ,y )是MN 的中点,所以⎩⎪⎨⎪⎧x =x 0+42,y =y 02,故⎩⎪⎨⎪⎧x 0=2x -4,y 0=2y .将用x ,y 表示的x 0,y 0代入到x 20+y 20=4中得(x -2)2+y 2=1.此式即为所求轨迹方程. (2)由(1)知点P 的轨迹是以Q (2,0)为圆心,以1为半径的圆.点Q 到直线3x +4y -86=0的距离d =|6-86|32+42=16.故点P 到直线3x +4y -86=0的距离的最大值为16+1=17,最小值为16-1=15.22.(本小题满分12分)如图所示,在平面直角坐标系xOy 中,点A (0,3),直线l :y =2x -4,设圆C 的半径为1,圆心在l 上.(1)若圆心C 也在直线y =x -1上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使|MA |=2|MO |,求圆心C 的横坐标a 的取值范围.解:(1)由题设,圆心C 是直线y =2x -4和y =x -1的交点,解得点C (3,2),于是切线的斜率必存在,设过A (0,3)的圆C 的切线方程为y =kx +3.由题意,得|3k +1|k 2+1=1,解得k =0或k =-34,故所求切线方程为y =3或3x +4y -12=0. (2)因为圆心在直线y =2x -4上, 设圆心C (a ,2(a -2)),所以圆C 的方程为(x -a )2+[y -2(a -2)]2=1. 设点M (x ,y ),因为MA =2MO ,所以x 2+(y -3)2=2x 2+y 2,化简得x 2+y 2+2y -3=0,即x 2+(y +1)2=4.所以点M 在以D (0,-1)为圆心,2为半径的圆上.由题意,点M (x ,y )在圆C 上,所以圆C 与圆D 有公共点, 则|2-1|≤CD ≤2+1, 即1≤a 2+(2a -3)2≤3. 整理,得-8≤5a 2-12a ≤0. 由5a 2-12a +8≥0,得a ∈R; 由5a 2-12a ≤0,得0≤a ≤125. 所以点C 的横坐标a 的取值范围为⎣⎢⎡⎦⎥⎤0,125.。
苏教版高中数学必修一模块综合测评.docx
高中数学学习材料马鸣风萧萧*整理制作模块综合测评(时间120分钟,满分160分)一、填空题(本大题共14小题,每小题5分,共70分,请把答案填在题中横线上)1.已知集合A ={}0,1,2,3,4,B ={}x ||x |<2,则A ∩B =________. 【解析】 B ={}x ||x |<2={}x |-2<x <2,A ∩B ={}0,1. 【答案】{}0,12.如果集合P ={x |x >-1},那么下列结论成立的是________.(填序号) (1)0⊆P ;(2){0}∈P ;(3)∅∈P ;(4){0}⊆P .【解析】 元素与集合之间的关系是从属关系,用符号∈或∉表示,故(1)(2)(3)不对,又0∈P ,所以{0}⊆P .【答案】 (4)3.设集合B ={a 1,a 2,…,a n },J ={b 1,b 2,…,b m },定义集合B ⊕J ={(a ,b )|a =a 1+a 2+…+a n ,b =b 1+b 2+…+b m },已知B ={0,1,2},J ={2,5,8},则B ⊕J 的子集为________.【解析】 因为根据新定义可知,0+1+2=3,2+5+8=15,故B ⊕J 的子集为∅,{(3,15)}.【答案】 ∅,{(3,15)}4.若函数f (x )=log 2 (x -1)2-x 的定义域为A ,g (x )=ln (1-x )的定义域为B ,则∁R (A ∪B )=________.【解析】 由题意知,⎩⎨⎧x -1>0,2-x >0⇒1<x <2.∴A =(1,2).⎩⎨⎧1-x >0,ln (1-x )≥0⇒x ≤0. ∴B =(-∞,0], A ∪B =(-∞,0]∪(1,2), ∴∁R (A ∪B )=(0,1]∪[2,+∞). 【答案】 (0,1]∪[2,+∞)5.若方程x 3-x +1=0在区间(a ,b )(a ,b ∈Z ,且b -a =1)上有一根,则a +b 的值为________.【解析】 设f (x )=x 3-x +1,则f (-2)=-5<0,f (-1)=1>0,所以a =-2,b =-1,则a +b =-3.【答案】 -36.已知函数y =g (x )与y =log a x 互为反函数,f (x )=g (3x -2)+2,则f (x )的图象恒过定点________.【解析】 由题知g (x )=a x ,∴f (x )=a 3x -2+2,由3x -2=0,得x =23,故函数f (x )=a 3x -2+2(a >0,a ≠1)的图象恒过定点⎝ ⎛⎭⎪⎫23,3. 【答案】 ⎝ ⎛⎭⎪⎫23,37.已知函数f (x )=(m -1)x 2+2mx +3为偶函数,则f (x )在(-5,-2)上是________.(填序号)①增函数;②减函数;③非单调函数;④可能是增函数,也可能是减函数. 【解析】 ∵f (x )为偶函数,∴m =0,即f (x )=-x 2+3在(-5,-2)上是增函数.【答案】 ①8.已知函数f (x )=a x +log a x (a >0且a ≠1)在[1,2]上的最大值与最小值之和为log a 2+6,则a =________.【解析】 依题意,函数f (x )=a x +log a x (a >0且a ≠1)在[1,2]上具有单调性,因此a +a 2+log a 2=log a 2+6,解得a =2.【答案】 29.已知f (x )=⎩⎨⎧x 2+1,x ≤0,2x ,x >0,若f (x )=10,则x =________.【解析】 当x ≤0时,令x 2+1=10,解得x =-3或x =3(舍去); 当x >0时,令2x =10, 解得x =5.综上,x =-3或x =5. 【答案】 -3或510.若y =f (x )是奇函数,当x >0时,f (x )=2x +1,则f ⎝ ⎛⎭⎪⎫log 2 13=________.【解析】 ∵f (x )是奇函数, ∴f ⎝ ⎛⎭⎪⎫log 2 13=f (-log 2 3) =-f (log 2 3).又log 2 3>0,且x >0时,f (x )=2x +1,∴f ⎝ ⎛⎭⎪⎫log 2 13=-4.【答案】 -411.定义在R 上的函数f (x )满足f (x )=⎩⎨⎧log 2(4-x ),x ≤0,f (x -1)-f (x -2),x >0,则f (3)的值为________.【解析】 ∵3>0,且x >0时,f (x )=f (x -1)-f (x -2),∴f (3)=f (2)-f (1),又f (2)=f (1)-f (0),所以f (3)=-f (0),又∵x ≤0时,f (x )=log 2 (4-x ),∴f (3)=-f (0)=-log 2 (4-0)=-2.【答案】 -212.函数y =f (x )的图象如图1所示,则函数y =log 12f (x )的图象大致是________.(填序号)图1【解析】 设y =log 12u ,u =f (x ),所以根据外层函数是单调减函数,所以看函数u =f (x )的单调性,在(0,1)上u =f (x )为减函数,所以整体是增函数,u >1,所以函数值小于0,在(1,2)上u =f (x )为增函数,所以整体是减函数,u >1,所以函数值小于0,所以选③.【答案】 ③13.若函数y =⎝ ⎛⎭⎪⎫12|1-x |+m 的图象与x 轴有公共点,则m 的取值范围是________.【解析】 ∵y =⎝ ⎛⎭⎪⎫12|1-x |=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x -1(x ≥1),2x -1(x <1),∴画图象可知-1≤m <0. 【答案】 [-1,0)14.已知f (x )=x 2-2ax +2(a ≤-1),若当x ∈[-1,+∞)时,f (x )≥a 恒成立,则实数a 的取值范围是________.【解析】 函数f (x )的对称轴为直线x =a , 当a ≤-1,x ∈[-1,+∞)时, f (x )min =f (-1)=3+2a .又f (x )≥a 恒成立,所以f (x )min ≥a , 即3+2a ≥a ,解得a ≥-3.所以-3≤a ≤-1. 【答案】 [-3,-1]二、解答题(本大题共6小题,共90分.解答时应写出必要的文字说明、证明过程或演算步骤)(2)原式=⎝ ⎛⎭⎪⎫log 2 3+23log 2 3⎝ ⎛⎭⎪⎫2log 3 2+32log 3 2+log 3 2+(lg 2)2+(1+lg 2)lg 5=53log 2 3·92log 3 2+(lg 2)2+lg 2·lg 5+lg 5=152+lg 2(lg 5+lg 2)+lg 5=152+lg 2+lg 5=152+1=172.16.(本小题满分14分)已知集合A ={x |3≤3x ≤27},B ={x |log 2 x >1}. (1)分别求A ∩B ,(∁R B )∪A ;(2)已知集合C ={x |1<x <a },若C ⊆A ,求实数a 的取值范围. 【解】 (1)A ={x |3≤3x ≤27}={x |1≤x ≤3},B ={x |log 2 x >1}={x |x >2},A ∩B ={x |2<x ≤3},(∁R B )∪A ={x |x ≤2}∪{x |1≤x ≤3}={x |x ≤3}.(2)①当a ≤1时,C =∅,此时C ⊆A ; ②当a >1时,C ⊆A ,则1<a ≤3.综合①②,可得a 的取值范围是(-∞,3].17.(本小题满分14分)某企业拟共用10万元投资甲、乙两种商品.已知各投入x 万元时,甲、乙两种商品可分别获得y 1,y 2万元的利润,利润曲线P 1:y 1=ax n ,P 2:y 2=bx +c 如图2所示.图2(1)求函数y 1,y 2的解析式;(2)为使投资获得最大利润,应怎样分配投资? 【解】 由题图知P 1:y 1=ax n 过点⎝ ⎛⎭⎪⎫1,54,⎝ ⎛⎭⎪⎫4,52,∴⎩⎪⎨⎪⎧ 54=a ·1n,52=a ·4n ,∴⎩⎪⎨⎪⎧a =54,n =12,∴y 1=54x ,x ∈[0,+∞).P 2:y 2=bx +c 过点(0,0),(4,1),∴⎩⎨⎧0=0+c ,1=4b +c ,∴⎩⎪⎨⎪⎧c =0,b =14,∴y 2=14x ,x ∈[0,+∞). (2)设用x 万元投资甲商品,那么投资乙商品为(10-x )万元,则y =54x +14(10-x )=-14x +54 x +52=-14⎝ ⎛⎭⎪⎫x -522+6516(0≤x ≤10),当且仅当x =52即x =254=6.25时,y max =6516, 此时投资乙商品为10-x =10-6.25=3.75万元,故用6.25万元投资甲商品,3.75万元投资乙商品,才能获得最大利润. 18.(本小题满分16分)已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=a x -1.其中a >0且a ≠1.(1)求f (2)+f (-2)的值; (2)求f (x )的解析式;(3)解关于x 的不等式-1<f (x -1)<4,结果用集合或区间表示. 【解】 (1)∵f (x )是奇函数, ∴f (-2)=-f (2), 即f (2)+f (-2)=0. (2)当x <0时,-x >0,∴f (-x )=a -x -1.由f (x )是奇函数,有f (-x )=-f (x ), 即f (x )=-a -x +1(x <0). ∴所求的解析式为f (x )=⎩⎨⎧a x-1(x ≥0),-a -x+1(x <0).(3)不等式等价于 ⎩⎨⎧ x -1<0,-1<-a-x +1+1<4, 或⎩⎨⎧x -1≥0,-1<a x -1-1<4,即⎩⎨⎧ x -1<0,-3<a -x +1<2或⎩⎨⎧x -1≥0,0<a x -1<5. 当a >1时,有⎩⎨⎧x <1,x >1-log a 2或⎩⎨⎧x ≥1,x <1+log a 5,注意此时log a 2>0,log a 5>0,可得此时不等式的解集为(1-log a 2,1+log a 5). 同理可得,当0<a <1时,不等式的解集为R . 综上所述,当a >1时,不等式的解集为(1-log a 2,1+log a 5); 当0<a <1时,不等式的解集为R .19.(本小题满分16分)已知函数f (x )=log a (a x -1)(a >0,a ≠1), (1)求函数f (x )的定义域; (2)判断函数f (x )的单调性.【解】 (1)函数f (x )有意义,则a x -1>0, 当a >1时,由a x -1>0,解得x >0; 当0<a <1时,由a x -1>0,解得x <0. ∴当a >1时,函数的定义域为(0,+∞);当0<a <1时,函数的定义域为(-∞,0).由函数单调性定义知:当0<a <1时,f (x )在(-∞,0)上是单调递增的. 20.(本小题满分16分)设函数y =f (x )是定义域为R ,并且满足f (x +y )=f (x )+f (y ),f ⎝ ⎛⎭⎪⎫13=1,且当x >0时,f (x )>0.(1)求f (0)的值; (2)判断函数的奇偶性;(3)如果f (x )+f (2+x )<2,求x 的取值范围. 【解】 (1)令x =y =0, 则f (0)=f (0)+f (0),∴f (0)=0. (2)令y =-x ,得f (0)=f (x )+f (-x )=0,∴f (-x )=-f (x ).故函数f (x )是R 上的奇函数. (3)任取x 1,x 2∈R ,x 1<x 2, 则x 2-x 1>0, ∴f (x 2)-f (x 1) =f (x 2-x 1+x 1)-f (x 1) =f (x 2-x 1)+f (x 1)-f (x 1) =f (x 2-x 1)>0.∴f (x 1)<f (x 2).故f (x )是R 上的增函数. ∵f ⎝ ⎛⎭⎪⎫13=1,∴f ⎝ ⎛⎭⎪⎫23=f ⎝ ⎛⎭⎪⎫13+13=f ⎝ ⎛⎭⎪⎫13+f ⎝ ⎛⎭⎪⎫13=2.∴f (x )+f (2+x )=f [x +(2+x )] =f (2x +2)<f ⎝ ⎛⎭⎪⎫23,又由y =f (x )是定义在R 上的增函数, 得2x +2<23,解得x <-23. 故x ∈⎝ ⎛⎭⎪⎫-∞,-23.。
2019—2020年苏教版高中数学必修一模块综合检测A及解析.docx
(新课标)2018-2019学年度苏教版高中数学必修一模块综合检测(A)(时间:120分钟 满分:160分)一、填空题(本大题共14小题,每小题5分,共70分)1.已知集合{2x ,x +y}={7,4},则整数x =______,y =________.2.已知f(12x -1)=2x +3,f(m)=6,则m =_______________________. 3.函数y =x -1+lg(2-x)的定义域是________.4.函数f(x)=x 3+x 的图象关于________对称.5.下列四类函数中,具有性质“对任意的x>0,y>0,函数f(x)满足f(x +y)=f(x)f(y)”的是______.(填序号)①幂函数;②对数函数;③指数函数;④一次函数.6.若0<m<n ,则下列结论不正确的是________.(填序号)①2m >2n ;②(12)m <(12)n ;③log 2m>log 2n ;④12log m>12log n. 7.已知a =0.3,b =20.3,c =0.30.2,则a ,b ,c 三者的大小关系是________.8.用列举法表示集合:M ={m|10m +1∈Z ,m ∈Z}=________. 9.已知函数f(x)=a x +log a x(a>0且a ≠1)在[1,2]上的最大值与最小值之和为log a 2+6,则a 的值为________.10.函数y =|lg(x +1)|的图象是________.(填序号)11.若函数f(x)=lg(10x +1)+ax 是偶函数,g(x)=4x -b 2x是奇函数,则a +b =________. 12.已知f(x 5)=lg x ,则f(2)=________.13.函数y =f(x)是定义域为R 的奇函数,当x<0时,f(x)=x 3+2x -1,则x>0时函数的解析式f(x)=________.14.幂函数f(x)的图象过点(3,427),则f(x)的解析式是________.二、解答题(本大题共6小题,共90分)15.(14分)(1)计算:12729⎛⎫ ⎪⎝⎭+(lg 5)0+132764-⎛⎫ ⎪⎝⎭; (2)解方程:log 3(6x -9)=3.16.(14分)某商品进货单价为40元,若销售价为50元,可卖出50个,如果销售价每涨1元,销售量就减少1个,为了获得最大利润,求此商品的最佳售价应为多少?17.(14分)已知函数f(x)=-3x2+2x-m+1.(1)当m为何值时,函数有两个零点、一个零点、无零点;(2)若函数恰有一个零点在原点处,求m的值.18.(16分)已知集合M 是满足下列性质的函数f(x)的全体:在定义域D 内存在x 0,使得f(x 0+1)=f(x 0)+f(1)成立.(1)函数f(x)=1x是否属于集合M ?说明理由; (2)若函数f(x)=kx +b 属于集合M ,试求实数k 和b 满足的约束条件.19.(16分)已知奇函数f(x)是定义域[-2,2]上的减函数,若f(2a +1)+f(4a -3)>0,求实数a 的取值范围.20.(16分)已知函数f(x)=⎩⎪⎨⎪⎧ x -2x (x>12)x 2+2x +a -1 (x ≤12).(1)若a =1,求函数f(x)的零点;(2)若函数f(x)在[-1,+∞)上为增函数,求a 的取值范围.模块综合检测(A)1.2 5解析 由集合相等的定义知,⎩⎪⎨⎪⎧ 2x =7x +y =4或⎩⎪⎨⎪⎧2x =4x +y =7, 解得⎩⎪⎨⎪⎧ x =72y =12或⎩⎪⎨⎪⎧x =2y =5,又x ,y 是整数,所以x =2,y =5. 2.-14 解析 令12x -1=t ,则x =2t +2, 所以f(t)=2×(2t +2)+3=4t +7.令4m +7=6,得m =-14. 3.[1,2)解析 由题意得:⎩⎪⎨⎪⎧x -1≥02-x>0,解得1≤x<2.4.原点解析 ∵f(x)=x 3+x 是奇函数,∴图象关于坐标原点对称.5.③解析 本题考查幂的运算性质.f(x)f(y)=a x a y =a x +y =f(x +y).6.①②③解析 由指数函数与对数函数的单调性知只有④正确.7.b>c>a解析 因为a =0.3=0.30.5<0.30.2=c<0.30=1,而b =20.3>20=1,所以b>c>a.8.{-11,-6,-3,-2,0,1,4,9}解析 由10m +1∈Z ,且m ∈Z ,知m +1是10的约数,故|m +1|=1,2,5,10,从而m 的值为-11,-6,-3,-2,0,1,4,9.9.2解析 依题意,函数f(x)=a x +log a x(a>0且a ≠1)在[1,2]上具有单调性,因此a +a 2+log a 2=log a 2+6,解得a =2.10.①解析 将y =lg x 的图象向左平移一个单位,然后把x 轴下方的部分关于x 轴对称到上方,就得到y =|lg(x +1)|的图象.11.12解析 ∵f(x)是偶函数,∴f(-x)=f(x),即lg(10-x +1)-ax =lg 1+10x10x -ax =lg(10x +1)-(a +1)x =lg(10x +1)+ax ,∴a =-(a +1),∴a =-12,又g(x)是奇函数, ∴g(-x)=-g(x),即2-x -b 2-x =-2x +b 2x ,∴b =1,∴a +b =12. 12.15lg 2 解析 令x 5=t ,则x =15t .∴f(t)=15lg t ,∴f(2)=15lg 2. 13.x 3-2-x +1解析 ∵f(x)是R 上的奇函数,∴当x>0时,f(x)=-f(-x)=-[(-x)3+2-x -1]=x 3-2-x +1.14.f(x)=34x解析 设f(x)=x n ,则有3n =427,即3n =343,∴n =34, 即f(x)=34x .15.解 (1)原式=12259⎛⎫ ⎪⎝⎭+(lg 5)0+13334-⎡⎤⎛⎫⎢⎥ ⎪⎝⎭⎢⎥⎣⎦=53+1+43=4. (2)由方程log 3(6x -9)=3得6x -9=33=27,∴6x =36=62,∴x =2.经检验,x =2是原方程的解. 16.解 设最佳售价为(50+x)元,最大利润为y 元,y =(50+x)(50-x)-(50-x)×40=-x 2+40x +500.当x =20时,y 取得最大值,所以应定价为70元.故此商品的最佳售价应为70元.17.解 (1)函数有两个零点,则对应方程-3x 2+2x -m +1=0有两个根,易知Δ>0,即Δ=4+12(1-m)>0,可解得m<43;Δ=0,可解得m =43;Δ<0,可解得m>43. 故m<43时,函数有两个零点;m =43时,函数有一个零点; m>43时,函数无零点. (2)因为0是对应方程的根,有1-m =0,∴m =1.18.解 (1)D =(-∞,0)∪(0,+∞),若f(x)=1x ∈M ,则存在非零实数x 0,使得1x 0+1=1x 0+1,即x 20+x 0+1=0,因为此方程无实数解,所以函数f(x)=1x∉M. (2)D =R ,由f(x)=kx +b ∈M ,存在实数x 0,使得k(x 0+1)+b =kx 0+b +k +b ,解得b =0,所以,实数k 和b 的约束条件是k ∈R ,b =0.19.解 由f(2a +1)+f(4a -3)>0得f(2a +1)>-f(4a -3), 又f(x)为奇函数,得-f(4a -3)=f(3-4a),∴f(2a +1)>f(3-4a),又f(x)是定义域[-2,2]上的减函数,∴2≥3-4a>2a +1≥-2,即⎩⎪⎨⎪⎧ 2≥3-4a 3-4a>2a +12a +1≥-2,∴⎩⎪⎨⎪⎧ a ≥14a<13a ≥-32,∴实数a 的取值范围为[14,13). 20.解 (1)当a =1时,由x -2x=0,x 2+2x =0, 得零点为2,0,-2.(2)显然,函数g(x)=x -2x 在[12,+∞)上递增, 且g(12)=-72; 函数h(x)=x 2+2x +a -1在[-1,12]上也递增, 且h(12)=a +14. 故若函数f(x)在[-1,+∞)上为增函数,则a +14≤-72,∴a ≤-154. 故a 的取值范围为(-∞,-154].。
高中数学 模块学习评价 苏教版必修1
模块学习评价(时间120分钟,满分160分)一、填空题(本大题共14小题,每小题5分,共70分,请把答案填在题中横线上)1.(2013·冀州高一检测)已知集合P={y|y=-x2+2},Q={x|y=x2-2x-3},那么P∩Q等于________.【解析】P={y|y=-x2+2}={y|y≤2},Q={x|y=x2-2x-3}=R,故P∩Q=(-∞,2].【答案】(-∞,2]2.若集合A={x|log12x≤12},则∁R A=________.【解析】由log12x≤12得,x≥(12)12=22,∴A=[22,+∞),∴∁R A=(-∞,22 ).【答案】(-∞,22)3.(2013·嘉兴高一检测)如果幂函数f(x)=xα的图象经过点(2,22),则f(4)的值等于________.【解析】将点(2,22)代入f(x)=xα中,得2α=22,即2α=2-12,∴α=-12.∴f(x)=x-12,∴f(4)=4-12=12.【答案】1 24.已知集合A=[1,4),B=(-∞,a),若A⊆B,则实数a的取值范围是________.【解析】∵A=[1,4),B=(-∞,a),且A⊆B,由数轴可知a≥4.【答案】 [4,+∞). 5.函数f (x )=a3x -2+2(a >0,a ≠1)的图象恒过定点________.【解析】 由3x -2=0,得x =23,故函数f (x )=a 3x -2+2(a >0,a ≠1)的图象恒过定点(23,3). 【答案】 (23,3)6.(2012·山东高考改编)函数f (x )=1lnx +1+4-x 2的定义域为________. 【解析】 x 满足⎩⎪⎨⎪⎧x +1>0,x +1≠1,4-x 2≥0,即⎩⎪⎨⎪⎧x >-1,x ≠0,-2≤x ≤2.解得-1<x <0或0<x ≤2.【答案】 (-1,0)∪(0,2]7.已知函数f (x )=⎩⎪⎨⎪⎧log 2x x >03xx ≤0,则f (f (14))的值是________.【解析】 ∵f (14)=log 214=-2,∴f (f (14))=f (-2)=3-2=19.【答案】 198.若函数f (x )=ax -b 有一个零点是3,那么函数g (x )=bx 2+3ax 的零点是________. 【解析】 由条件可得3a -b =0,即b =3a , ∴g (x )=bx 2+3ax =3ax 2+3ax ,令g (x )=0,得x =-1,0. 【答案】 -1,09.(2013·鄂州高一检测)(169)-12+100(12lg 9-lg 2)+ln 4e3+log 98·log 433=________.【解析】 原式=[(43)2]-12+102×(12lg 9-lg 2)+ln e 34+32log 32·13×2log 23=(43)-1+94+34+32×16=4. 【答案】 410.(2013·广州高一检测)根据下表,能够判断f (x )=g (x )在四个区间:①(-1,0);②(0,1);③(1,2);④(2,3)中有实数解的是________(填序号).x -1 0 1 2 3 f (x ) -0.677 3.011 5.432 5.980 7.651 g (x )-0.5303.4514.8905.2416.892,F (2)>0,F (3)>0,结合零点存在的判断条件可知F (x )在区间(0,1)内存在零点,∴f (x )=g (x )在区间(0,1)内有实数解.【答案】 ②11.设f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且满足:f (x )+2g (x )=x 3+x 2,则f (-2)=________.【解析】 由题意知⎩⎪⎨⎪⎧f x +2g x =x 3+x 2f -x +2g -x =-x 3+x2,即⎩⎪⎨⎪⎧fx +2g x =x 3+x 2f x -2g x =-x 3+x 2,所以f (x )=x 2, 从而f (-2)=4. 【答案】 412.(2013·常熟高一检测)已知x +x -1=3,则x 2+x -2=________;x 12+x -12=________.【解析】 x 2+x -2=(x +x -1)2-2=7.【答案】 7513.(2013·镇江高一检测)若函数f (x )=lg(10x+1)+ax 是偶函数,g (x )=4x-b2x 是奇函数,则a +b 的值是________.【解析】 ∵f (x )是偶函数, ∴f (-x )=f (x ), 即lg(10-x+1)-ax =lg(10x+1)-(a +1)x =lg(10x+1)+ax , ∴a =-(a +1),a =-12.又g (x )是奇函数, ∴g (-x )=-g (x ), 即2-x-b2-x =-2x+b2x ,∴b =1,∴a +b =12.【答案】 1214.函数y =log 2x +log 2(1-x )的最大值是________.【解析】 要使函数有意义,只要⎩⎪⎨⎪⎧x >0,1-x >0,解得0<x <1.又y =log 2[x (1-x )]=log 2[-(x -12)2+14],当x ∈(0,1)时,0<-(x -12)2+14≤14,∴y ≤log 214=-2,∴y max =-2. 【答案】 -2二、解答题(本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤)15.(本小题满分14分)计算:(1)[(549)0.5+(0.008)-23÷(0.2)-1]÷0.06250.25;(2)[(1-log 63)2+log 62·log 618]÷log 64.【解】 (1)原式=[(73)2×0.5+(0.2)3×(-23)÷(0.2)-1]÷(0.5)4×14=(73+25÷5)÷0.5=223÷12=443. (2)[(1-log 63)2+log 62·log 618]÷log 64=[(log 66-log 63)2+log 62·(log 63+log 66)]÷log 64 =[log 62(log 62+log 63+1)]÷2log 62=1.16.(本小题满分14分)(2013·荆州高一检测)已知集合A ={x |18≤2x +1≤16},B ={x |m+1≤x ≤3m -1}.(1)求集合A ;(2)若B ⊆A ,求实数m 的取值范围.【解】 (1)A ={x |18≤2x +1≤16},有2-3≤2x +1≤24,于是-3≤x +1≤4,-4≤x ≤3, 则A ={x |-4≤x ≤3}.(2)若B =∅,即m +1>3m -1,即m <1时,满足题意, 若B ≠∅,即m +1≤3m -1,即m ≥1时,⎩⎪⎨⎪⎧m +1≥-43m -1≤3得-5≤m ≤43,即1≤m ≤43,综上,实数m 的取值范围为(-∞,43].17.(本小题满分16分)已知函数f (x )=ax 2+23x +b 是奇函数,且f (2)=53.(1)求实数a ,b 的值;(2)判断函数f (x )在(-∞,-1]上的单调性,并加以证明. 【解】 (1)∵f (x )是奇函数, ∴f (-x )=-f (x ).∴ax 2+2-3x +b =-ax 2+23x +b =ax 2+2-3x -b. 因此b =-b ,即b =0.又f (2)=53,∴4a +26=53,∴a =2. (2)由(1)知f (x )=2x 2+23x =2x 3+23x,f (x )在(-∞,-1]上为单调增函数.证明:设x 1<x 2≤-1,则x 2-x 1>0,f (x 2)-f (x 1)=23(x 2-x 1)(1-1x 1x 2)=23(x 2-x 1)·x 1x 2-1x 1x 2 ∵x 1< x 2≤-1, ∴x 2-x 1>0,x 1x 2>1,f (x 2)>f (x 1).∴f (x )在(-∞,-1]上为单调增函数.18.(本小题满分16分)是否存在这样的实数a ,使函数f (x )=x 2+(3a -2)x +a -1在区间[-1,3]上与x 轴恒有一个交点,且只有一个交点,若存在,求出实数a 的取值范围;若不存在,说明理由.【解】 (1)若函数f (x )在(-1,3)上有一个零点,则只需有f (-1)·f (3)<0,即(1-3a +2+a -1)( 9+9a -6+a -1)=4(1-a )(5a +1)<0,∴a <-15或a >1.(2)若f (-1)=0,则a =1,此时f (x )=x 2+x . 令f (x )=0,即x 2+x =0,得x =0或x =-1.方程在[-1,3]上有两根,不合题意, 故a ≠1. (3)若f (3)=0,则a =-15,此时f (x )=x 2-135x -65.令f (x )=0,即x 2-135x -65=0,解得x =-25或x =3,方程在[-1,3]上有两根,不合题意,故a ≠-15.综上所述,a <-15或a >1.19.(本小题满分16分)(2013·湖南师大附中高一检测)经市场调查,某门市部的一种小商品在过去的20天内的日销售量(件)与价格(元)均为时间t (天)的函数,且日销售量近似满足函数g (t )=80-2t (件),而日销售价格近似满足于f (t )=⎩⎪⎨⎪⎧15+12t 0≤t ≤1025-12t10<t ≤20(元).(1)试写出该种商品的日销售额y 与时间t (0≤t ≤20)的函数表达式; (2)求该种商品的日销售额y 的最大值与最小值. 【解】 (1)由已知得:y =⎩⎪⎨⎪⎧15+12t80-2t ,0≤t ≤1025-12t80-2t ,10<t ≤20=⎩⎪⎨⎪⎧-t 2+10t +1 200,0≤t ≤10t 2-90t +2 000,10<t ≤20(2)由(1)知①当0≤t ≤10时,y =-t 2+10t +1 200=-(t -5)2+1 225, 该函数在t ∈[0,5]递增,在t ∈(5,10]递减.∴y max =1 225(当t =5时取得),y min =1 200(当t =0或10时取得) ②当10<t ≤20时,y =t 2-90t +2 000=(t -45)2-25 该函数在t ∈(10,20]递减,y min =600(当t =20时取得)由①②知:y max =1 225(当t =5时取得),y min =600(当t =20时取得).20.(本小题满分16分)(2013·杭州高一检测)已知函数f (x )定义域为 [-1,1],若对于任意的x ,y ∈[-1,1],都有f (x +y )=f (x )+f (y ),且x >0时,有f (x )>0.(1)证明:f (x )为奇函数;(2)证明:f (x )在[-1,1]上为单调递增函数;(3)设f (1)=1,若f (x )<m 2-2am +1,对所有x ,y ∈[-1,1],a ∈[-1,1]恒成立,求实数m 的取值范围.【解】 (1)令x =y =0,f (0)=0,令y =-x ,f (0)=f (x -x )=f (x )+f (-x )=0, ∴f (-x )=-f (x ),f (x )为奇函数. (2)∵f (x )是定义在[-1,1]上的奇函数,令-1≤x 1≤x 2≤1,则f (x 2)-f (x 1)=f (x 2)+f (-x 1)=f (x 2-x 1)>0, ∴f (x )在[-1,1]上为单调递增函数.(3)f (x )在[-1,1]上为单调递增函数,f (x )max =f (1)=1,使f (x )<m 2-2am +1对所有x ∈[-1,1],a ∈[-1,1]恒成立,只要m 2-2am +1>1,即m 2-2am >0.令g (a )=m 2-2am =-2am +m 2, 要使g (a )>0恒成立,则⎩⎪⎨⎪⎧g -1>0g1>0,∴m ∈(-∞,-2)∪(2,+∞).。
苏教版数学高一 必修1模块综合测评
模块综合测评(时间120分钟,满分160分)一、填空题(本大题共14小题,每小题5分,共70分,请把答案填在题中横线上)1.已知集合A ={}0,1,2,3,4,B ={}x ||x |<2,则A ∩B =________. 【解析】 B ={}x ||x |<2={}x |-2<x <2,A ∩B ={}0,1. 【答案】{}0,12.如果集合P ={x |x >-1},那么下列结论成立的是________.(填序号) (1)0⊆P ;(2){0}∈P ;(3)∅∈P ;(4){0}⊆P .【解析】 元素与集合之间的关系是从属关系,用符号∈或∉表示,故(1)(2)(3)不对,又0∈P ,所以{0}⊆P .【答案】 (4)3.设集合B ={a 1,a 2,…,a n },J ={b 1,b 2,…,b m },定义集合B ⊕J ={(a ,b )|a =a 1+a 2+…+a n ,b =b 1+b 2+…+b m },已知B ={0,1,2},J ={2,5,8},则B ⊕J 的子集为________.【解析】 因为根据新定义可知,0+1+2=3,2+5+8=15,故B ⊕J 的子集为∅,{(3,15)}.【答案】 ∅,{(3,15)} 4.若函数f (x )=log 2 (x -1)2-x的定义域为A ,g (x )=ln (1-x )的定义域为B ,则∁R (A ∪B )=________.【解析】 由题意知,⎩⎪⎨⎪⎧x -1>0,2-x >0⇒1<x <2.∴A =(1,2).⎩⎪⎨⎪⎧1-x >0,ln (1-x )≥0⇒x ≤0.∴B =(-∞,0], A ∪B =(-∞,0]∪(1,2), ∴∁R (A ∪B )=(0,1]∪2,+∞). 【答案】 (0,1]∪2,+∞)5.若方程x 3-x +1=0在区间(a ,b )(a ,b ∈Z ,且b -a =1)上有一根,则a +b 的值为________.【解析】 设f (x )=x 3-x +1,则f (-2)=-5<0,f (-1)=1>0,所以a =-2,b =-1,则a +b =-3.【答案】 -36.已知函数y =g (x )与y =log a x 互为反函数,f (x )=g (3x -2)+2,则f (x )的图象恒过定点________.【解析】 由题知g (x )=a x ,∴f (x )=a 3x -2+2,由3x -2=0,得x =23,故函数f (x )=a 3x -2+2(a >0,a ≠1)的图象恒过定点⎝ ⎛⎭⎪⎫23,3. 【答案】 ⎝ ⎛⎭⎪⎫23,37.已知函数f (x )=(m -1)x 2+2mx +3为偶函数,则f (x )在(-5,-2)上是________.(填序号)①增函数;②减函数;③非单调函数;④可能是增函数,也可能是减函数. 【解析】 ∵f (x )为偶函数,∴m =0,即f (x )=-x 2+3在(-5,-2)上是增函数.【答案】 ①8.已知函数f (x )=a x +log a x (a >0且a ≠1)在1,2]上的最大值与最小值之和为log a 2+6,则a =________.【解析】 依题意,函数f (x )=a x +log a x (a >0且a ≠1)在1,2]上具有单调性,因此a +a 2+log a 2=log a 2+6,解得a =2.【答案】 29.已知f (x )=⎩⎨⎧x 2+1,x ≤0,2x ,x >0,若f (x )=10,则x =________. 【导学号:37590093】【解析】 当x ≤0时,令x 2+1=10,解得x =-3或x =3(舍去); 当x >0时,令2x =10, 解得x =5.综上,x =-3或x =5. 【答案】 -3或510.若y =f (x )是奇函数,当x >0时,f (x )=2x +1,则f ⎝ ⎛⎭⎪⎫log 2 13=________.【解析】 ∵f (x )是奇函数, ∴f ⎝ ⎛⎭⎪⎫log 2 13=f (-log 2 3) =-f (log 2 3).又log 2 3>0,且x >0时,f (x )=2x +1, 故f (log 2 3)=2log 2 3+1=3+1=4, ∴f ⎝ ⎛⎭⎪⎫log 2 13=-4. 【答案】 -411.定义在R 上的函数f (x )满足f (x )=⎩⎨⎧log 2(4-x ),x ≤0,f (x -1)-f (x -2),x >0,则f (3)的值为________.【解析】 ∵3>0,且x >0时,f (x )=f (x -1)-f (x -2),∴f (3)=f (2)-f (1),又f (2)=f (1)-f (0),所以f (3)=-f (0),又∵x ≤0时,f (x )=log 2 (4-x ),∴f (3)=-f (0)=-log 2 (4-0)=-2.【答案】 -212.函数y =f (x )的图象如图1所示,则函数y =log 12f (x )的图象大致是________.(填序号)图1【解析】 设y =log 12u ,u =f (x ),所以根据外层函数是单调减函数,所以看函数u =f (x )的单调性,在(0,1)上u =f (x )为减函数,所以整体是增函数,u >1,所以函数值小于0,在(1,2)上u =f (x )为增函数,所以整体是减函数,u >1,所以函数值小于0,所以选③.【答案】 ③13.若函数y =⎝ ⎛⎭⎪⎫12|1-x |+m 的图象与x 轴有公共点,则m 的取值范围是________. 【导学号:37590094】【解析】∵y =⎝ ⎛⎭⎪⎫12|1-x |=⎩⎨⎧⎝ ⎛⎭⎪⎫12x -1(x ≥1),2x -1(x <1),∴画图象可知-1≤m <0. 【答案】 -1,0)14.已知f (x )=x 2-2ax +2(a ≤-1),若当x ∈-1,+∞)时,f (x )≥a 恒成立,则实数a 的取值范围是________.【解析】 函数f (x )的对称轴为直线x =a ,当a ≤-1,x ∈-1,+∞)时, f (x )min =f (-1)=3+2a .又f (x )≥a 恒成立,所以f (x )min ≥a , 即3+2a ≥a ,解得a ≥-3. 所以-3≤a ≤-1. 【答案】 -3,-1]二、解答题(本大题共6小题,共90分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分14分) 的值;(2)求(log 2 3+log 8 9)(log 3 4+log 9 8+log 3 2)+(lg 2)2+lg 20×lg 5的值.【解】(2)原式=⎝ ⎛⎭⎪⎫log 2 3+23log 2 3⎝ ⎛⎭⎪⎫2log 3 2+32log 3 2+log 3 2+(lg 2)2+(1+lg 2)lg 5=53log 2 3·92log 3 2+(lg 2)2+lg 2·lg 5+lg 5=152+lg 2(lg 5+lg 2)+lg 5=152+lg 2+lg 5=152+1=172.16.(本小题满分14分)已知集合A ={x |3≤3x ≤27},B ={x |log 2 x >1}. (1)分别求A ∩B ,(∁R B )∪A ;(2)已知集合C ={x |1<x <a },若C ⊆A ,求实数a 的取值范围. 【解】 (1)A ={x |3≤3x ≤27}={x |1≤x ≤3},B ={x |log 2 x >1}={x |x >2},A ∩B ={x |2<x ≤3},(∁R B )∪A ={x |x ≤2}∪{x |1≤x ≤3}={x |x ≤3}.(2)①当a ≤1时,C =∅,此时C ⊆A ; ②当a >1时,C ⊆A ,则1<a ≤3.综合①②,可得a 的取值范围是(-∞,3].17.(本小题满分14分)某企业拟共用10万元投资甲、乙两种商品.已知各投入x 万元时,甲、乙两种商品可分别获得y 1,y 2万元的利润,利润曲线P 1:y 1=ax n ,P 2:y 2=bx +c 如图2所示.图2(1)求函数y 1,y 2的解析式;(2)为使投资获得最大利润,应怎样分配投资? 【解】 由题图知P 1:y 1=ax n 过点⎝ ⎛⎭⎪⎫1,54,⎝ ⎛⎭⎪⎫4,52,x ∈0,+∞).P 2:y 2=bx +c 过点(0,0),(4,1), ∴⎩⎪⎨⎪⎧0=0+c ,1=4b +c ,∴⎩⎨⎧c =0,b =14,∴y 2=14x ,x ∈0,+∞).(2)设用x 万元投资甲商品,那么投资乙商品为(10-x )万元,则y =54x +14(10-x )=-14x +54 x +52=-14⎝ ⎛⎭⎪⎫x -522+6516(0≤x ≤10),当且仅当x =52即x =254=6.25时,y max =6516, 此时投资乙商品为10-x =10-6.25=3.75万元,故用6.25万元投资甲商品,3.75万元投资乙商品,才能获得最大利润. 18.(本小题满分16分)已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=a x -1.其中a >0且a ≠1.(1)求f (2)+f (-2)的值; (2)求f (x )的解析式;(3)解关于x 的不等式-1<f (x -1)<4,结果用集合或区间表示. 【解】 (1)∵f (x )是奇函数, ∴f (-2)=-f (2), 即f (2)+f (-2)=0. (2)当x <0时,-x >0, ∴f (-x )=a -x -1.由f (x )是奇函数,有f (-x )=-f (x ), 即f (x )=-a -x +1(x <0). ∴所求的解析式为f (x )=⎩⎪⎨⎪⎧a x -1(x ≥0),-a -x +1(x <0).(3)不等式等价于⎩⎪⎨⎪⎧ x -1<0,-1<-a-x +1+1<4,或⎩⎪⎨⎪⎧x -1≥0,-1<a x -1-1<4,即⎩⎪⎨⎪⎧ x -1<0,-3<a -x +1<2或⎩⎪⎨⎪⎧x -1≥0,0<a x -1<5.当a >1时,有⎩⎪⎨⎪⎧x <1,x >1-log a 2或⎩⎪⎨⎪⎧x ≥1,x <1+log a 5,注意此时log a 2>0,log a 5>0,可得此时不等式的解集为(1-log a 2,1+log a 5). 同理可得,当0<a <1时,不等式的解集为R . 综上所述,当a >1时,不等式的解集为(1-log a 2,1+log a 5); 当0<a <1时,不等式的解集为R .19.(本小题满分16分)已知函数f (x )=log a (a x -1)(a >0,a ≠1), (1)求函数f (x )的定义域; (2)判断函数f (x )的单调性.【解】 (1)函数f (x )有意义,则a x -1>0, 当a >1时,由a x -1>0,解得x >0; 当0<a <1时,由a x -1>0,解得x <0. 所以当a >1时,函数的定义域为(0,+∞); 当0<a <1时,函数的定义域为(-∞,0).(2)当a >1时,任取x 1,x 2∈(0,+∞),且x 1>x 2,则即f (x 1)>f (x 2).由函数单调性定义知:当0<a <1时,f (x )在(-∞,0)上是单调递增的. 20.(本小题满分16分)设函数y =f (x )是定义域为R ,并且满足f (x +y )=f (x )+f (y ),f ⎝ ⎛⎭⎪⎫13=1,且当x >0时,f (x )>0.(1)求f (0)的值;(2)判断函数的奇偶性; 【导学号:37590095】 (3)如果f (x )+f (2+x )<2,求x 的取值范围. 【解】 (1)令x =y =0, 则f (0)=f (0)+f (0), ∴f (0)=0. (2)令y =-x ,得f (0)=f (x )+f (-x )=0,∴f (-x )=-f (x ).故函数f (x )是R 上的奇函数.(3)任取x 1,x 2∈R ,x 1<x 2, 则x 2-x 1>0, ∴f (x 2)-f (x 1) =f (x 2-x 1+x 1)-f (x 1) =f (x 2-x 1)+f (x 1)-f (x 1) =f (x 2-x 1)>0.∴f (x 1)<f (x 2).故f (x )是R 上的增函数. ∵f ⎝ ⎛⎭⎪⎫13=1, ∴f ⎝ ⎛⎭⎪⎫23=f ⎝ ⎛⎭⎪⎫13+13 =f ⎝ ⎛⎭⎪⎫13+f ⎝ ⎛⎭⎪⎫13=2.∴f (x )+f (2+x )=f x +(2+x )] =f (2x +2)<f ⎝ ⎛⎭⎪⎫23,又由y =f (x )是定义在R 上的增函数, 得2x +2<23,解得x <-23. 故x ∈⎝ ⎛⎭⎪⎫-∞,-23.。
高中数学(苏教版必修一)配套单元检测:第一章 集 合 模块综合检测C -含答案
模块综合检测(C)(时间:120分钟 满分:160分)一、填空题(本大题共14小题,每小题5分,共70分)1.设全集U 是实数集R ,M ={x |x 2>4},N ={x |2x -1≥1},则右图中阴影部分所表示的集合是______________.2.设2a =5b =m ,且1a +1b=2,则m =________.3.设函数f (x )满足:①y =f (x +1)是偶函数;②在[1,+∞)上为增函数,则f (-1)与f (2)的大小关系是________.4.某企业去年销售收入1 000万元,年成本为生产成本500万元与年广告成本200万元两部分.若年利润必须按p %纳税,且年广告费超出年销售收入2%的部分也按p %纳税,其他不纳税.已知该企业去年共纳税120万元,则p =________.5.设f (x )=⎩⎪⎨⎪⎧2e x -1, x <2,log 3(x 2-1),x ≥2.则f (f (2))的值为________. 6.定义运算:如1*2=1,则函数f(x)的值域为________.7.若2lg(x -2y )=lg x +lg y ,则log 2xy=________.8.设函数f (x )=⎩⎪⎨⎪⎧4x -4, x ≤1x 2-4x +3,x >1,g (x )=log 2x ,则函数h (x )=f (x )-g (x )的零点个数是________.9.在下列四图中,二次函数y =ax 2+bx 与指数函数y =(ba)x 的图象只可为________.10.已知下表中的对数值有且只有一个是错误的.11.已知log a 12>0,若224x x a +-≤1a,则实数x 的取值范围为______________.12.直线y =1与曲线y =x 2-||x +a 有四个交点,则a 的取值范围为________________. 13.设函数f (x )定义在实数集上,f (2-x )=f (x ),且当x ≥1时,f (x )=ln x ,则f (13)、f (2)、f (12)的大小关系为________. 14.已知f (x )=a x -2,g (x )=log a |x |(a >0且a ≠1),若f (4)g (-4)<0,则y =f (x ),y =g (x )在同一坐标系内的大致图象是________.三、解答题(本大题共6小题,共90分) 15.(14分)已知函数f (x )=12log [(12)x -1],(1)求f (x )的定义域; (2)讨论函数f (x )的增减性.16.(14分)已知集合A ={x ∈R |ax 2-3x +2=0,a ∈R }. (1)若A 是空集,求a 的取值范围;(2)若A 中只有一个元素,求a 的值,并把这个元素写出来; (3)若A 中至多只有一个元素,求a 的取值范围.17.(14分)设函数f (x )=ax -1x +1,其中a ∈R .(1)若a =1,f (x )的定义域为区间[0,3],求f (x )的最大值和最小值;(2)若f (x )的定义域为区间(0,+∞),求a 的取值范围,使f (x )在定义域内是单调减函数.18.(16分)关于x 的二次方程x 2+(m -1)x +1=0在区间[0,2]上有解,求实数m 的取值范围.19.(16分)据气象中心观察和预测:发生于M地的沙尘暴一直向正南方向移动,其移动速度v(km/h)与时间t(h)的函数图象如图所示,过线段OC上一点T(t,0)作横轴的垂线l,梯形OABC在直线l左侧部分的面积即为t(h)内沙尘暴所经过的路程s(km).(1)当t=4时,求s的值;(2)将s随t变化的规律用数学关系式表示出来;(3)若N城位于M地正南方向,且距M地650 km,试判断这场沙尘暴是否会侵袭到N城,如果会,在沙尘暴发生后多长时间它将侵袭到N城?如果不会,请说明理由.20.(16分)已知函数f(x)的定义域是{x|x≠0},对定义域内的任意x1,x2都有f(x1·x2)=f(x1)+f(x2),且当x>1时,f(x)>0,f(2)=1.(1)证明:f(x)是偶函数;(2)证明:f(x)在(0,+∞)上是增函数;(3)解不等式f(2x2-1)<2.模块综合检测(C)1.{x|1<x≤2}解析题图中阴影部分可表示为(∁U M)∩N,集合M={x|x>2或x<-2},集合N={x|1<x≤3},由集合的运算,知(∁U M)∩N={x|1<x≤2}.2.10解析由2a=5b=m得a=log2m,b=log5m,∴1a+1b=log m2+log m5=log m10.∵1a+1b=2,∴log m10=2,∴m2=10,m=10.3.f(-1)>f(2)解析由y=f(x+1)是偶函数,得到y=f(x)的图象关于直线x=1对称,∴f(-1)=f(3).又f(x)在[1,+∞)上为单调增函数,∴f(3)>f(2),即f(-1)>f(2).4.25解析利润300万元,纳税300·p%万元,年广告费超出年销售收入2%的部分为200-1 000×2%=180(万元),纳税180·p%万元,共纳税300·p%+180·p%=120(万元),∴p%=25%.5.2解析 ∵f (2)=log 3(22-1)=log 33=1, ∴f (f (2))=f (1)=2e 1-1=2.6.(0,1]解析 由题意可知f (x )=⎩⎪⎨⎪⎧2x x ≤0,2-x ,x >0.作出f (x )的图象(实线部分)如右图所示;由图可知f (x )的值域为(0,1]. 7.2解析 方法一 排除法. 由题意可知x >0,y >0,x -2y >0, ∴x >2y ,x y >2,∴log 2xy >1.方法二 直接法.依题意,(x -2y )2=xy ,∴x 2-5xy +4y 2=0, ∴(x -y )(x -4y )=0,∴x =y 或x =4y , ∵x -2y >0,x >0,y >0,∴x >2y , ∴x =y (舍去),∴x y =4,∴log 2xy =2.8.3解析 当x ≤1时,函数f (x )=4x -4与g (x )=log 2x 的图象有两个交点,可得h (x )有两个零点,当x >1时,函数f (x )=x 2-4x +3与g (x )=log 2x 的图象有1个交点,可得函数h (x )有1个零点,∴函数h (x )共有3个零点. 9.③解析 ∵ba >0,∴a ,b 同号.若a ,b 为正,则从①、②中选.又由y =ax 2+bx 知对称轴x =-b2a <0,∴②错,但又∵y =ax 2+bx 过原点,∴①、④错. 若a ,b 为负,则③正确. 10.lg 1.5解析 ∵lg 9=2lg 3,适合,故二者不可能错误,同理:lg 8=3lg 2=3(1-lg 5),∴lg 8,lg 5正确.lg 6=lg 2+lg 3=(1-lg 5)+lg 3=1-(a +c )+(2a -b )=1+a -b -c ,故lg 6也正确. 11.(-∞,-3]∪[1,+∞) 解析 由log a 12>0得0<a <1.由224x x a+-≤1a得224x x a +-≤a -1, ∴x 2+2x -4≥-1,解得x ≤-3或x ≥1. 12.1<a <54解析 y =⎩⎪⎨⎪⎧x 2-x +a ,x ≥0,x 2+x +a ,x <0,作出图象,如图所示.此曲线与y 轴交于(0,a )点,最小值为a -14,要使y =1与其有四个交点,只需a -14<1<a , ∴1<a <54.13.f (12)<f (13)<f (2)解析 由f (2-x )=f (x )知f (x )的图象关于直线x =2-x +x 2=1对称,又当x ≥1时,f (x )=lnx ,所以离对称轴x =1距离大的x 的函数值大, ∵|2-1|>|13-1|>|12-1|,∴f (12)<f (13)<f (2).14.②解析 据题意由f (4)g (-4)=a 2×log a 4<0,得0<a <1,因此指数函数y =a x (0<a <1)是减函数,函数f (x )=a x-2的图象是把y =a x 的图象向右平移2个单位得到的,而y =log a |x |(0<a <1)是偶函数,当x >0时,y =log a |x |=log a x 是减函数.15.解 (1)(12)x -1>0,即x <0,所以函数f (x )定义域为{x |x <0}.(2)∵y =(12)x -1是减函数,f (x )=12log x 是减函数,∴f (x )=12log [(12)x -1]在(-∞,0)上是增函数.16.解 (1)要使A 为空集,方程应无实根,应满足⎩⎪⎨⎪⎧a ≠0Δ<0,解得a >98.(2)当a =0时,方程为一次方程,有一解x =23;当a ≠0,方程为一元二次方程,使集合A 只有一个元素的条件是Δ=0,解得a =98,x =43. ∴a =0时,A ={23};a =98时,A ={43}.(3)问题(3)包含了问题(1)、(2)的两种情况, ∴a =0或a ≥98.17.解 f (x )=ax -1x +1=a (x +1)-a -1x +1=a -a +1x +1,设x 1,x 2∈R ,则f (x 1)-f (x 2)=a +1x 2+1-a +1x 1+1=(a +1)(x 1-x 2)(x 1+1)(x 2+1).(1)当a =1时,f (x )=1-2x +1,设0≤x 1<x 2≤3,则f (x 1)-f (x 2)=2(x 1-x 2)(x 1+1)(x 2+1),又x 1-x 2<0,x 1+1>0,x 2+1>0, ∴f (x 1)-f (x 2)<0,∴f (x 1)<f (x 2). ∴f (x )在[0,3]上是增函数, ∴f (x )max =f (3)=1-24=12,f (x )min =f (0)=1-21=-1.(2)设x 1>x 2>0,则x 1-x 2>0,x 1+1>0,x 2+1>0. 若使f (x )在(0,+∞)上是减函数, 只要f (x 1)-f (x 2)<0, 而f (x 1)-f (x 2)=(a +1)(x 1-x 2)(x 1+1)(x 2+1),∴当a +1<0,即a <-1时,有f (x 1)-f (x 2)<0, ∴f (x 1)<f (x 2).∴当a <-1时,f (x )在定义域(0,+∞)内是单调减函数. 18.解 设f (x )=x 2+(m -1)x +1,x ∈[0,2]. f (0)=1>0,(1)当2是方程x 2+(m -1)x +1=0的解时, 则4+2(m -1)+1=0,∴m =-32.(2)当2不是方程x 2+(m -1)x +1=0的解时, ①方程f (x )=0在(0,2)上有一个解时,则f (2)<0, ∴4+2(m -1)+1<0.∴m <-32.②方程f (x )=0在(0,2)上有两个解时,则⎩⎪⎨⎪⎧Δ=(m -1)2-4≥0,0<-m -12<2,f (2)=4+2(m -1)+1>0,∴⎩⎪⎨⎪⎧m ≥3或m ≤-1,-3<m <1,m >-32.∴-32<m ≤-1.综合(1)(2),得m ≤-1.∴实数m 的取值范围是(-∞,-1].19.解 (1)由图象可知:当t =4时,v =3×4=12, ∴s =12×4×12=24.(2)当0≤t ≤10时,s =12·t ·3t =32t 2,当10<t ≤20时,s =12×10×30+30(t -10)=30t -150;当20<t ≤35时,s =12×10×30+10×30+(t -20)×30-12×(t -20)×2(t -20)=-t 2+70t-550.综上可知s =⎩⎪⎨⎪⎧32t 2, t ∈[0,10],30t -150,t ∈(10,20],-t 2+70t -550,t ∈(20,35].(3)∵t ∈[0,10]时,s max =32×102=150<650.t ∈(10,20]时,s max =30×20-150=450<650. ∴当t ∈(20,35]时,令-t 2+70t -550=650. 解得t 1=30,t 2=40,∵20<t ≤35,∴t =30, 所以沙尘暴发生30 h 后将侵袭到N 城. 20.(1)证明 令x 1=x 2=1,得f (1)=2f (1), ∴f (1)=0.令x 1=x 2=-1,得f (-1)=0, ∴f (-x )=f (-1·x )=f (-1)+f (x )=f (x ). ∴f (x )是偶函数. (2)证明 设x 2>x 1>0, 则f (x 2)-f (x 1)=f (x 1·x 2x 1)-f (x 1)=f (x 1)+f (x 2x 1)-f (x 1)=f (x 2x 1),∵x 2>x 1>0,∴x 2x 1>1.∴f (x 2x 1)>0,即f (x 2)-f (x 1)>0.∴f (x 2)>f (x 1).∴f (x )在(0,+∞)上是增函数. (3)解 ∵f (2)=1,∴f (4)=f (2)+f (2)=2. 又∵f (x )是偶函数,∴不等式f (2x 2-1)<2可化为f (|2x 2-1|)<f (4). 又∵函数f (x )在(0,+∞)上是增函数,∴|2x 2-1|<4. 解得-102<x <102, 即不等式的解集为(-102,102).。
苏教版数学高一- 数学苏教必修一练习模块检测
模块检测(时间:100分钟满分:160分)一、填空题(本大题共14小题,每小题5分,共70分)1.若集合A={x|x≥3},B={x|x<m}满足A∪B=R,A∩B=∅,则实数m =________.解析结合数轴知,当且仅当m=3时满足A∪B=R,A∩B=∅.答案 3答案 43.已知x-1+x=22,且x>1,则x-x-1的值为________.解析由x-1+x=22平方得x-2+2+x2=8,则x-2-2+x2=4,∴(x-1-x)2=4,又∵x>1,∴x-x-1=2.答案 24.函数y=log x(3-x)的定义域为________.解析由⎩⎪⎨⎪⎧3-x>0x>0x≠1得(0,1)∪(1,3).答案(0,1)∪(1,3)5.函数f(x)=x3+x+1(x∈R),若f(a)=2,则f(-a)的值为________.解析f(x)-1=x3+x为奇函数,又f(a)=2,∴f(a)-1=1,故f(-a)-1=-1,即f(-a)=0.答案06.设P和Q是两个集合,定义集合P-Q={x|x∈P,且x∉Q},若P={1,2,3,4},Q ={x |x +12<2,x ∈R },则P -Q =________.解析 由定义P -Q ={x |x ∈P ,且x ∉Q },求P -Q 可检验P ={1,2,3,4}中的元素在不在Q ={x |x +12<2,x ∈R }中,所有在P 中不在Q 中的元素即为P -Q 中的元素,故P -Q ={4}.答案 {4}7.若函数y =12x 2-x +32的定义域和值域都为[1,b ],则b 的值为________.解析 由二次函数图象知:12b 2-b +32=b ,得b =1或b =3,又因为b >1,所以b =3.答案 38.为了保证信息安全传输必须使用加密方式,有一种方式其加密、解密原理如下:明文――→加密密文――→发送密文―→明文已知加密为y =a x -2(x 为明文、y 为密文),如果明文“3”通过加密后得到密文为“6”,再发送,接受方通过解密得到明文“3”,若接受方接到密文为“14”,则原发的明文是________.解析 由已知,当x =3时y =6,所以a 3-2=6,解得a =2;∴y =2x -2;当y =14时,有2x -2=14,解得x =4.答案 “4”9.方程2-x +x 2=3的实数解的个数为________.解析 画出函数y =2-x 与y =3-x 2的图象,它们有两个交点,故方程2-x +x 2=3的实数解的个数为2个.答案 2答案 a >1或-1<a <011.若函数y =x 2-2x +3在闭区间[0,m ]上有最大值3,最小值2;则m 的取值集合为________.解析 由y =x 2-2x +3即y =(x -1)2+2,结合图象分析知m 的取值范围为[1,2]时,能使得函数取到最大值3和最小值2.答案 [1,2]12.y =f (x )在(0,2)上是增函数,y =f (x +2)是偶函数,则f (1),f (52),f (72)的大小关系是________.解析 结合图象分析知:y =f (x )的图象是由y =f (x +2)的图象向右平移两个单位而得到的;而y =f (x +2)是偶函数,即y =f (x +2)的图象关于y 轴对称,所以y =f (x )的图象关于x =2对称,画出图象可以得到f (72)<f (1)<f (52).答案 f (72)<f (1)<f (52)13.如果函数f (x )满足f (n 2)=f (n )+2,n ≥2,且f (2)=1,那么f (256)=________. 解析 f (256)=f (162)=f (16)+2=f (42)+2=f (4)+4=f (22)+4=f (2)+6=1+6=7.答案 714.已知定义在R 上的奇函数f (x )和偶函数g (x )满足f (x )+g (x )=a x -a -x +2(a >0且a ≠1),若g (2)=a ,则f (2)=________.解析 由条件f (2)+g (2)=a 2-a -2+2,f (-2)+g (-2)=a -2-a 2+2,即-f (2)+g (2)=a -2-a 2+2,由此解得g (2)=2,f (2)=a 2-a -2,所以a =2,f (2)=22-2-2=154.答案 154二、解答题(本大题共6小题,共90分)15.(本小题满分14分)设集合A ={x |x 2-3x +2=0},B ={x |x 2+2(a +1)x +(a 2-5)=0}.(1)若A ∩B ={2},求实数a 的值;(2)若B ⊆A ,求实数a 的取值范围.解 由x 2-3x +2=0得x =1或x =2,故集合A ={1,2}.(1)∵A ∩B ={2},∴2∈B ,代入B 中方程得a 2+4a +3=0,∴a =-1或a =-3.当a =-1时,B ={x |x 2-4=0}={-2,2},满足条件;当a =-3时,B ={x |x 2-4x +4=0}={2},满足条件.综上可知,a 的值为-1或-3.(2)对于集合B ,Δ=4(a +1)2-4(a 2-5)=8(a +3).∵B ⊆A ,①当Δ<0,即a <-3时,B =∅,符合题意;②当Δ=0,即a =-3时,B ={2},符合题意;③当Δ>0,即a >-3时,B =A ={1,2},由根与系数的关系得⎩⎨⎧ 1+2=-2(a +1),1×2=a 2-5.即⎩⎪⎨⎪⎧ a =-52,a 2=7,∴a ∈∅.综上可知,a 的取值范围是a ≤-3.16.(本小题满分14分)试讨论关于x 的方程|3x -1|=k 的解的个数.解 设f (x )=|3x -1|,则关于x 的方程|3x -1|=k 的解的个数可转化为观察函数f (x )的图象与直线y =k 的交点个数;而函数f (x )=|3x -1|=⎩⎨⎧3x -1,(x ≥0)1-3x ,(x <0),由函数y =3x 的图象通过图象变换易作出函数f (x )的图象,如下图所示:直线y =k 是与x 轴平行或重合的直线,观察上图知:当k <0时,直线y =k 与f (x )的图象没有交点,故方程|3x -1|=k 的解的个数为0个;当k =0时,直线y =k 与f (x )的图象有1个交点,故方程|3x -1|=k 的解的个数为1个;当0<k <1时,y =k 与f (x )的图象有2个交点,故方程|3x -1|=k 的解的个数为2个;当k ≥1时,直线y =k 与f (x )的图象有1个交点,故方程|3x -1|=k 的解的个数为1个.17.(本小题满分14分)若奇函数f (x )在定义域(-1,1)上是减函数,(1)求满足f (1-a )+f (-a )<0的a 的取值集合M ;(2)对于(1)中的a ,求函数F (x )=log a [1-(1a )2-x ]的定义域.解 (1)不等式f (1-a )+f (-a )<0可化为f (1-a )<-f (-a ),而f (x )为奇函数,∴f (1-a )<f (a ),又f (x )在定义域(-1,1)上是减函数,∴⎩⎨⎧ -1<1-a <1,-1<-a <1,1-a >a ,解得0<a <12,∴M ={a |0<a <12}.(2)为使F (x )=log a [1-(1a )2-x ]有意义,必须1-(1a )2-x >0,即(1a )2-x <1.由0<a<12得1a >2,∴2-x <0,∴x >2.∴函数的定义域为{x |x >2}.18.(本小题满分16分)经市场调查,某超市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t (天)的函数,且销售量近似满足g (t )=80-2t (件),价格近似满足f (t )=20-12|t -10|(元).(1)试写出该种商品的日销售额y 与时间t (0≤t ≤20)的函数表达式;(2)求该种商品的日销售额y 的最大值与最小值.解 (1)y =g (t )·f (t )=(80-2t )·(20-12|t -10|)=(40-t )(40-|t -10|)=⎩⎨⎧ (30+t )(40-t ),(0≤t <10),(40-t )(50-t ),(10≤t ≤20).(2)当0≤t <10时,y 的取值范围是[1 200,1 225],在t =5时,y 取得最大值为1 225;当10≤t ≤20时,y 的取值范围是[600,1 200],在t =20时,y 取得最小值为600.∴第5天,日销售额y 取得最大,为1 225元;第20天,日销售额y 取得最小,为600元.答:日销售额y 最大为1225元;最小为600元.19.(本小题满分16分)已知函数f (x )=x 2-2ax +5(a >1).(1)若f (x )的定义域和值域均是[1,a ],求实数a 的值;(2)若f (x )在区间(-∞,2]上是减函数,试求x ∈[1,a +1]时函数f (x )的最值. 解 (1)∵f (x )=(x -a )2+5-a 2(a >1),∴f (x )在[1,a ]上是减函数,又定义域和值域均为[1,a ],∴⎩⎨⎧ f (1)=a ,f (a )=1,即⎩⎨⎧1-2a +5=a a 2-2a 2+5=1,解得a =2. (2)∵f (x )在区间(-∞,2]上是减函数,∴a ≥2,∴(a +1)-a ≤a -1;又x =a ∈[1,a +1],且(a +1)-a ≤a -1,∴结合函数f (x )的图象得x ∈[1,a +1]时,函数f (x )的最值为:f (x )max =f (1)=6-2a ,f (x )min =f (a )=5-a 2.20.(本小题满分16分)已知函数f (x )的定义域是(0,+∞),当x >1时,f (x )<0,且f (x ·y )=f (x )+f (y ).(1)证明:f (x )在定义域上是减函数;(2)如果f (33)=1,求满足不等式f (x )-f (x -2)≥-2的x 的取值范围.(1)证明 任取x 1,x 2∈(0,+∞),且x 1<x 2,则x 2x 1>1, ∴f (x 2x 1)<0. 又f (x ·y )=f (x )+f (y ),∴f (x 1)+f (x 2x 1)=f (x 2), ∴f (x 2)-f (x 1)=f (x 2x 1)<0,∴f (x 2)<f (x 1), ∴f (x )在定义域内是减函数.(2)解 由已知f (x ·y )=f (x )+f (y ),得2f (33)=f (33)+f (33)=f (13)=2.∴f (x )-f (x -2)≥-2即为f (x )+2=f (x )+f (13)=f (x 3)≥f (x -2),∵f (x )在定义域内是减函数,∴⎩⎪⎨⎪⎧ x 3≤x -2,x >0,x -2>0,∴x ≥3.∴满足题意的x 的取值范围是[3,+∞).。
苏教版数学高一 必修1学业测评1.3 交集、并集
学业分层测评(建议用时:45分钟)学业达标]一、填空题1.集合A={-1,0,2},B={x||x|<1},则A∩B=________.【解析】A∩B={-1,0,2}∩{x|-1<x<1}={0}.【答案】{0}2.设集合A={x|x2-x=0},B={x|x2+x=0},则集合A∪B=________.【解析】A={0,1},B={-1,0},∴A∪B={0,1,-1}.【答案】{0,1,-1}3.已知集合A,B满足A∩B=A,那么下列各式中一定成立的是________.(1)A B;(2)B A;(3)A∪B=B;(4)A∪B=A.【解析】∵A∩B=A,∴A⊆B,∴A∪B=B,故(3)正确,(1)中A不一定为B的真子集.【答案】(3)4.已知U=R,A={x|x>0},B={x|x≤-1},则(A∩∁U B)∪(B∩∁U A)=________.【解析】因为U=R,A={x|x>0},B={x|x≤-1},所以∁U A={x|x≤0},∁U B={x|x>-1},(A∩∁U B)∪(B∩∁U A)={x|x>0或x≤-1}.【答案】{x|x>0或x≤-1}5.已知集合A={x|x≥2},B={x|x≥m},且A∪B=A,则实数m的取值范围是________.【解析】∵A∪B=A,即B⊆A,∴实数m的取值范围为2,+∞).【答案】2,+∞)6.如图1-3-3,I是全集,M,P,S是I的3个子集,则阴影部分所表示的集合是________.图1-3-3【解析】阴影部分表示的是在M和P的公共部分中去除S中的元素,故可表示为:{x|x∈M,x∈P且x∉S}={x|x∈M,x∈P且x∈∁I S}=M∩P∩(∁I S).【答案】M∩P∩(∁I S)7.若集合A={x||x|>1,x∈R},B={y|y=x2,x∈R},则(∁R A)∩B=________.【解析】集合A表示不等式|x|>1的解集,由不等式|x|>1解得x<-1或x>1,则A={x|x<-1或x>1},所以∁R A={x|-1≤x≤1}.集合B是函数y=x2的值域,x∈R时,y=x2≥0,所以B={y|y≥0},则(∁R A)∩B={x|-1≤x≤1}∩{y|y≥0}={x|0≤x≤1}.【答案】{x|0≤x≤1}8.已知集合A={x|x<a},B={x|1<x<2},且A∪(∁R B)=R,则实数a的取值范围是________.【解析】∁R B={x|x≤1或x≥2},如图,要使A∪(∁R B)=R,则B⊆A,故a≥2.【答案】a≥2二、解答题9.已知全集U={x∈N|0<x≤6},集合A={x∈N|1<x<5},集合B={x∈N|2<x<6}.求:(1)(∁U A)∪B;(2)(∁U A)∩(∁U B).【解】(1)∵U={1,2,3,4,5,6},A={2,3,4},∴∁U A={1,5,6}.又∵B={3,4,5},∴(∁U A)∪B={1,3,4,5,6}.(2)∵∁U A ={1,5,6},∁U B ={1,2,6},∴(∁U A )∩(∁U B )={1,6}.10.已知全集U =R ,集合M ={x |x ≤a -2或x ≥a +3},N ={x |-1≤x ≤2}.(1)若a =0,求(∁U M )∩(∁U N );(2)若M ∩N =∅,求实数a 的取值范围.【解】 (1)当a =0时,M ={x |x ≤-2或x ≥3},所以∁U M ={x |-2<x <3},∁U N ={x |x <-1或x >2},所以(∁U M )∩(∁U N )={x |-2<x <-1或2<x <3}.(2)若M ∩N =∅,则⎩⎪⎨⎪⎧ a -2<-1,a +3>2,解得-1<a <1. 故当M ∩N =∅时,实数a 的取值范围是{a |-1<a <1}.能力提升]1.已知方程2x 2-px +q =0的解集为A ,方程6x 2+(p +2)x +5+q =0的解集为B ,若A ∩B =⎩⎨⎧⎭⎬⎫12,则A ∪B =________.【解析】 因为A ∩B =⎩⎨⎧⎭⎬⎫12,所以12∈A ,12∈B ,故12-12p +q =0,32+12(p +2)+5+q =0,则联立方程,解方程组得p =-7,q =-4,则2x 2+7x -4=0,6x 2-5x +1=0,故A =⎩⎨⎧⎭⎬⎫-4,12,B =⎩⎨⎧⎭⎬⎫12,13,则A ∪B =⎩⎨⎧⎭⎬⎫-4,12,13. 【答案】 ⎩⎨⎧⎭⎬⎫-4,12,13 2.设集合A ={x |-1≤x ≤2},B ={x |-1<x ≤4},C ={x |-3<x <2},且集合A ∩(B ∪C )={x |a ≤x ≤b },则a =________,b =________.【解析】 B ∪C ={x |-3<x ≤4},A ∩(B ∪C )={x |-1≤x ≤2}={x |a ≤x ≤b },∴a =-1,b =2.【答案】 -1 23.已知集合A ={x |-4≤x ≤9},B ={x |m +1<x <2m -1},且B ≠∅,若A ∪B =A ,则m 的取值范围为________.【导学号:37590014】【解析】 ∵A ∪B =A ,∴B ⊆A ,又∵B ≠∅,∴⎩⎪⎨⎪⎧ m +1<2m -1,2m -1≤9,m +1≥-4⇒2<m ≤5.【答案】 2<m ≤54.若集合A 1,A 2满足A 1∪A 2=A ,则称(A 1,A 2)为集合A 的一种分拆,并规定当且仅当A 1=A 2时,(A 1,A 2)与(A 2,A 1)为集合A 的同一种分拆,则集合{1,2,3}的不同分拆种数是________.【解析】若A 1=∅,则A 2={1,2,3};若A 1={1},则A 2={2,3}或{1,2,3};若A 1={2},则A 2={1,3}或{1,2,3};若A 1={3},则A 2={1,2}或{1,2,3};若A 1={1,2},则A 2={3}或{1,3}或{2,3}或{1,2,3};若A 1={2,3},则A 2={1}或{1,2}或{1,3}或{1,2,3};若A 1={1,3},则A 2={2}或{1,2}或{2,3}或{1,2,3};若A 1={1,2,3},则A 2=∅或{1}或{2}或{3}或{1,2}或{2,3}或{1,3}或{1,2,3},共有27种不同的分拆方法.【答案】 275.设集合A ={x |x 2-4x =0},B ={x |ax 2-2x +8=0},A ∩B =B ,求a 的取值范围.【解】 A ={0,4}.∵A ∩B =B ,∴B ⊆A .(1)a =0时,B ={4},满足题意.(2)a≠0时,分B=∅和B≠∅两种情况:B=∅时,即方程ax2-2x+8=0无解,∴Δ=4-32a<0,∴a>18.B≠∅时,B={0},{4},{0,4},经检验a均无解.或a=0.综上,a>18。
2022_2022学年新教材高中数学模块素养评价一含解析苏教版选择性必修第一册
模块素养评价(一)(120分钟 150分)一、单项选择题(此题共8小题,每题5分,共40分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的)1.(2021·泰州高二检测)过两直线l 1:x -3y +1=0,l 2:x +2y +6=0的交点且与3x +y -1=0平行的直线方程为( )A .x -3y +1=0B .3x +y +7=0C .x -3y -11=0D .3x +y +13=0【解析】选D.由题意列方程组⎩⎪⎨⎪⎧x -3y +1=0,x +2y +6=0解得⎩⎪⎨⎪⎧x =-4y =-1,即两直线l 1:x -3y +1=0,l 2:x +2y +6=0的交点为()-4,-1 ;设与3x +y -1=0平行的直线方程为3x +y +m =0,那么3×(-4)+(-1)+m =0,解得m =13, 故所求的直线方程为3x +y +13=0.2.(2021·遵义高二检测)双曲线x 23 -y 2=1的焦点到渐近线的距离是( ) A .1 B . 2 C . 3 D .2【解析】选A.双曲线x 23 -y 2=1的渐近线为y =±33 x , a 2=3,b 2=1,c 2=a 2+b 2=3+1=4,即c =2, 那么一个焦点F(2,0),渐近线方程为33 x +y =0,那么焦点F 到其渐近线的距离d =⎪⎪⎪⎪⎪⎪33×21+⎝ ⎛⎭⎪⎫332 =233233 =1. 3.(2021·绍兴高二检测)数列{}a n 是等差数列,假设a 9+3a 11<0,a 10·a 11<0,且数列{}a n 的前n 项和S n 有最大值,那么S n 取得最小正值时n 等于( )A .20B .17C .19D .21【解析】选C.因为a 9+3a 11=(a 9+a 11)+2a 11=2a 10+2a 11=2(a 10+a 11)<0. 所以a 10+a 11<0,又a 10·a 11<0且S n 有最大值,得公差为负,可得a 10>0,a 11<0, 又可得:S 19=19a 10>0,而S 20=10(a 10+a 11)<0,进而可得S n 取得最小正值时n =19. 4.(2021·靖远高二检测)函数f(x)=(1-x)e x 有( ) A .最大值为1 B .最小值为1 C .最大值为e D .最小值为e【解析】选A.f′(x)=-e x +(1-x)e x =-xe x ,当x<0时,f′(x)>0,当x>0时,f′(x)<0, 所以f(x)在(-∞,0)上单调递增,在(0,+∞)上单调递减,所以f(x)有最大值为f(0)=1. 5.(2021·宜宾高二检测)圆心在y 轴上的圆C 与直线x =3切于点M ()3,2 .假设直线3x +4y +m =0与圆C 相切,那么m 的值为( ) A .9B .7C .-21或9D .-23或7【解析】选D.圆心在y 轴上的圆C 与直线x =3切于点M ()3,2 . 可得圆C 的半径为3,圆心为()0,2 . 因为直线3x +4y +m =0与圆C 相切,所以由切线性质及点到直线的距离公式可得||8+m 32+42=3,解得m =-23或7.6.正项数列{}a n 的前n 项和为S n ,且a 1=1,a 2n +1 =2S n +n +1()n ∈N * ,设数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n a n +1 的前n 项和为T n ,那么T n 的取值范围为( )A .⎝⎛⎦⎤0,12B .(0,1)C .⎝⎛⎭⎫12,1D .⎣⎡⎭⎫12,1【解析】选D.因为a 2n +1 =2S n +n +1, 所以a 2n =2S n -1+n ()n≥2 ,因此a 2n +1 -a 2n =2()S n -S n -1 +1=2a n +1,即a 2n +1 =()a n +1 2,又{}a n 为正项数列,所以a n +1=a n +1(n≥2),a 22 =2+1+1=4,a 2=2满足, 故数列{}a n 是以1为首项,1为公差的等差数列,所以a n =n ()n ∈N * , 因此1a n a n +1 =1n ()n +1 =1n -1n +1,所以T n =⎝⎛⎭⎫1-12 +⎝⎛⎭⎫12-13 +…+⎝ ⎛⎭⎪⎫1n -1n +1 =1-1n +1 , 因为n ∈N *, 所以12 ≤T n <1.7.(2021·合肥高二检测)抛物线C :y 2=2px(p>0)的焦点为F ,准线与x 轴交于点K ,过点K 作圆⎝⎛⎭⎫x -p 2 2+y 2=p 24 的切线,切点分别为点A ,B.假设AB = 3 ,那么p 的值为( )A .1B . 3C .2D .3 【解析】选C.如图,连接FA ,因为F 就是圆⎝⎛⎭⎫x -p 2 2+y 2=p 24 的圆心, 所以FA ⊥KA ,且FA =p2 . 又KF =p ,所以∠AKF =30°,那么∠AKB =60°, 所以△AKB 是等边三角形, 所以AB =AK =32 p. 又AB =3 ,所以p =2.8.定义域为R 的奇函数y =f ()x 的导函数为y =f′()x ,当x>0时, xf′()x -f ()x <0,假设a=f ()e e ,b =f ()ln 2ln 2 ,c =f ()-3-3 ,那么a ,b ,c 的大小关系正确的选项是( )A .a<b<cB .b<c<aC .a<c<bD .c<a<b【解析】选D.构造函数g(x)=f ()x x , 所以g′(x)=xf ′()x -f ()x x 2 , 因为xf′(x)-f(x)<0,所以g′(x)<0,所以函数g(x)在(0,+∞)上单调递减. 因为函数f(x)为奇函数,所以g(x)=f ()x x 是偶函数, 所以c =f ()-3-3=g(-3)=g(3),因为a =f ()e e =g(e),b =f ()ln 2ln 2 =g(l n 2), 所以g(3)<g(e)<g(l n 2),所以c <a <b.二、多项选择题(此题共4小题,每题5分,共20分.在每题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,局部选对的得3分)9.(2021·抚顺高二检测)圆C :()x -1 2+()y -2 2=25,直线l :()2m +1 x +()m +1 y -7m -4=0.那么以下几个说法正确的有( ) A .直线l 恒过定点()3,1 B .圆C 被y 轴截得的弦长为4 6 C .直线l 与圆C 恒相交D .直线l 被圆C 截得的弦最长时,直线l 的方程为2x -y -5=0 【解析】选ABC.直线l 的方程整理得m(2x +y -7)+x +y -4=0,由⎩⎪⎨⎪⎧2x +y -7=0x +y -4=0, 解得⎩⎪⎨⎪⎧x =3y =1 ,所以直线l 恒过定点(3,1),A 正确;在圆方程中令x =0,得1+(y -2)2=25,y =2±2 6 , 所以y 轴上的弦长为4 6 ,B 正确; (3-1)2+(1-2)2=5<25,所以点(3,1)在圆内,直线l 与圆一定相交,C 正确; 直线l 被圆C 截得弦最长时,直线过圆心(1,2),那么(2m +1)+2(m +1)-7m -4=0,得m =-13 ,直线方程为13 x +23 y -53 =0,即x +2y -5=0,D 错.10.(2021·无锡高二检测)我们把离心率为5-12 的椭圆称为黄金椭圆,类似地,也把离心率为5+12 的双曲线称为黄金双曲线,那么( ) A .双曲线x 23 -y 25+1=1是黄金双曲线B .如果双曲线x 2a 2 -y 2b 2 =1(a>0,b>0)是黄金双曲线,那么b 2=ac(c 为半焦距)C .如果双曲线x 2a 2 -y 2b 2 =1(a>0,b>0)是黄金双曲线,那么右焦点F 2到一条渐近线的距离等于焦距的四分之一D .过双曲线C :x 2a 2 -y 2b 2 =1(a>0,b>0)的右焦点F 2且垂直于实轴的直线l 交C 于M ,N 两点,O 为坐标原点,假设∠MON =90°,那么双曲线C 是黄金双曲线 【解析】选BD.对于A :x 23 -y 25+1 =1,a 2=3,b 2= 5 +1,所以c 2= 5 +4,所以e 2=c 2a 2 =5+43 ≠⎝ ⎛⎭⎪⎫5+12 2=3+52 ,故A 错误;对于B :双曲线x 2a 2 -y 2b 2 =1(a>0,b>0)是黄金双曲线, 所以e =ca =5+12 ,由c 2=a 2+b 2,所以b 2=⎝ ⎛⎭⎪⎫5+12a 2-a 2=5+12 a 2=ac ,故B 正确; 对于C :双曲线x 2a 2 -y 2b 2 =1(a>0,b>0)的一条渐近线 y =b a x ,那么F 2()c ,0 到其距离d =bc a ×112+⎝⎛⎭⎫b a 2 =b ,而由B 可知,b 2=ac≠14 c 2,故C错误;对于D :M ,N 两点的横坐标为C ,y 2=⎝⎛⎭⎫x 2a 2-1 b 2,得M(c ,b 2a ),N ⎝⎛⎭⎫c ,-b 2a ,那么OM ―→=⎝⎛⎭⎫c ,b 2a ,ON ―→=⎝⎛⎭⎫c ,-b 2a ,所以OM ―→·ON―→=c 2-b 4a 2 =0,那么b 2=ac ,由B 可知,双曲线C 是黄金双曲线,故D 正确.11.在?增减算法统宗?中有这样一那么故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关〞那么以下说法正确的选项是( ) A .此人第三天走了四十八里路B .此人第一天走的路程比后五天走的路程多六里C .此人第二天走的路程占全程的14D .此人前三天走的路程是后三天走的路程的8倍【解析】选ABD.根据题意知,此人每天行走的路程成等比数列,设此人第n 天走a n 里路, 那么{}a n 是首项为a 1,公比为q =12 的等比数列.所以S 6=a 1()1-q 61-q =a 1⎣⎡⎦⎤1-⎝⎛⎭⎫1261-12=378,解得a 1=192. 所以a 3=a 1q 2=192×14 =48,所以A 正确.由a 1=192,S 6=378,得a 2+a 3+a 4+a 5+a 6=S 6-a 1=378-192=186, 又192-186=6,所以B 正确.因为a 2=a 1q =192×12 =96,14 S 6=94.5, 所以a 2>14 S 6,所以C 不正确. 因为a 1+a 2+a 3=a 1()1+q +q 2=192×⎝⎛⎭⎫1+12+14 =336, 所以后3天走的路程为378-336=42,而且42×8=336,所以D 正确.12.(2021·南通高二检测)设函数f ()x =x l n x ,g ()x =12 x 2,给定以下命题,其中正确的选项是( )A .假设方程f ()x =k 有两个不同的实数根,那么k ∈⎝⎛⎭⎫-1e ,0B .假设方程kf ()x =x 2恰好只有一个实数根,那么k<0C .假设x 1>x 2>0,总有m []g ()x 1-g ()x 2 >f ()x 1 -f ()x 2 恒成立,那么m≥1D .假设函数F ()x =f ()x -2ag ()x 有两个不同的极值点,那么实数a ∈⎝⎛⎭⎫0,12【解析】选ACD.对于A ,f(x)的定义域是(0,+∞), f′(x)=l n x +1,令f′(x)>0,有l n x>-1,即x>1e ,可知f(x)在⎝⎛⎭⎫0,1e 上单调递减,在⎝⎛⎭⎫1e ,+∞ 上单调递增, 所以极小值等于最小值, 所以f(x)min =f ⎝⎛⎭⎫1e =-1e ,且当x→0时f(x)→0,又f(1)=0,从而要使得方程f(x)=k 有两个不同的实数根, 即y =f(x)与y =k 有两个不同的交点,所以k ∈⎝⎛⎭⎫-1e ,0 ,故A 正确; 对于B ,易知x =1不是该方程的根,当x≠1时,f(x)≠0,方程kf(x)=x 2恰好只有一个实数根, 等价于y =k 和y =xln x 只有一个交点, y′=ln x -1〔ln x 〕2 ,又x>0且x≠1,令y′>0,即l n x>1,有x>e ,知y =xln x 在(0,1)和(1,e)单调递减,在(e ,+∞)上单调递增, x =1是一条渐近线,极小值为e ,由y =xln x 的大致图象可知k<0或k =e ,故B 错误;对于C ,当x 1>x 2>0时,m []g 〔x 1〕-g 〔x 2〕 >f(x 1)-f(x 2)恒成立, 等价于mg(x 1)-f(x 1)>mg(x 2)-f(x 2)恒成立, 即函数y =mg(x)-f(x)在(0,+∞)上为增函数, 即y′=mg′(x)-f′(x)=mx -l n x -1≥0恒成立, 即m≥ln x +1x 在(0,+∞)上恒成立, 令r(x)=ln x +1x , 那么r′(x)=-ln xx 2 ,令r′(x)>0得l n x<0,有0<x<1,从而r(x)在(0,1)上单调递增,在(1,+∞)上单调递减,那么r(x)max =r(1)=1,于是m≥1,故C 正确; 对于D ,F(x)=x l n x -ax 2(x>0)有两个不同的极值点,等价于F′(x)=l n x +1-2ax =0有两个不同的正根,即方程2a =ln x +1x 有两个不同的正根, 由C 可知,0<2a<1,即0<a<12 ,那么D 正确. 三、填空题(此题共4小题,每题5分,共20分)13.各项为正数的等比数列{}a n 中,a 2与a 10的等比中项为33 ,那么l og 3a 4+l og 3a 8=________. 【解析】根据题意,等比数列{}a n 中,a 2与a 10的等比中项为33 ,那么有a 2a 10=13 , 又由等比数列的性质可得:a 4a 8=a 2a 10=13 , 那么l og 3a 4+l og 3a 8=l og 3a 4a 8=l og 313 =-1. 答案:-114.(2021·西安高二检测)某莲藕种植塘每年的固定本钱是1万元,每年最大规模的种植量是8万斤,每种植一万斤莲藕,本钱增加0.5万元.如果销售额函数是f(x)=-18 x 3+916 ax 2+12 x(x 是莲藕种植量,单位:万斤;销售额的单位:万元,a 是常数).假设种植2万斤,利润是2.5万元,那么要使利润最大,每年需种植莲藕________万斤 . 【解析】设销售利润为g(x),得g(x)=-18 x 3+ 916 ax 2+12 x -1-12 x =-18 x 3+916 ax 2-1, 当x =2时,g(2)=-18 ×23+916 a×22-1=2.5, 解得a =2.所以g(x)=-18 x 3+98 x 2-1, g′(x)=-38 x 2+94 x =-38 x(x -6),所以函数g(x)在(0,6)上单调递增,在(6,8)上单调递减. 所以当x =6时,函数g(x)取得极大值即最大值.答案:615.(2021·广州高二检测)数列{}a n 的前n 项和是S n ,且a n +S n =3n -1,那么数列{}a n 的通项公式a n =________.【解析】由题得a n +S n =3n -1,a n -1+S n -1=3n -4, 两式相减得a n =12 a n -1+32 , 所以a n -3=12 (a n -1-3), 所以{}a n -3 是一个等比数列,所以a n -3=(a 1-3)⎝⎛⎭⎫12 n -1=(1-3)⎝⎛⎭⎫12 n -1, 所以a n =3-⎝⎛⎭⎫12 n -2. 答案:3-⎝⎛⎭⎫12 n -2 16.(2021·贵阳高二检测)在椭圆y 24 +x 2=1上有两个动点P ,Q ,E ()0,1 为定点,EP ⊥EQ ,那么EP ―→·QP―→的最小值为________.【解析】由题意得EP ―→·QP―→=EP ―→·()EP ―→-EQ ―→ =EP ―→2-EP ―→·EQ―→=EP ―→2.设椭圆上一点P ()x ,y ,那么EP ―→=()x ,y -1 ,EP ―→2=x 2+()y -1 2=⎝⎛⎭⎫1-y 24 +()y -1 2=34 ⎝⎛⎭⎫y -43 2+23 ,又-2≤y≤2,所以当y =43 时,EP ―→2取得最小值23 . 答案:23四、解答题(此题共6小题,共70分.解容许写出文字说明、证明过程或演算步骤) 17.(10分)(2021·北京高二检测)等差数列{a n }满足a 2=4,a 3+a 4=17. (1)求数列{a n }的通项公式;(2)假设数列{b n }满足b 1=2,再从①b n +1=2b n ;②2b n +1=b n ;③b n +1=-b n 这三个条件中任选一个作为条件,求数列{a n +b n }的前n 项和T n .注:如果选择多个条件分别解答,按第一个解答计分.【解析】(1)设等差数列{a n }的公差为d.由⎩⎪⎨⎪⎧a 2=4a 3+a 4=17 ,可得⎩⎪⎨⎪⎧a 1+d =42a 1+5d =17,解得a 1=1,d =3.所以a n =a 1+(n -1)d =3n -2(2)选①:由b 1=2,b n +1=2b n 可得b n ≠0,b n +1b n =2,所以{b n }是等比数列,公比q =2.所以b n =b 1q n -1=2n .所以T n =(a 1+a 2+…+a n )+(b 1+b 2+…+b n )=n 〔1+3n -2〕2 +2〔1-2n 〕1-2=3n 2-n 2 +2n +1-2选②:由b 1=2,2b n +1=b n 可得b n ≠0,b n +1b n =12 ,所以{b n }是等比数列,公比q =12 .所以b n =b 1q n -1=2·⎝⎛⎭⎫12 n -1=⎝⎛⎭⎫12 n -2.所以T n =(a 1+a 2+…+a n )+(b 1+b 2+…+b n )=n 〔1+3n -2〕2 +2⎣⎢⎡⎦⎥⎤1-⎝⎛⎭⎫12n 1-12=3n 2-n 2 -⎝⎛⎭⎫12 n -2 +4. 选③:由b 1=2,b n +1=-b n 可得b n ≠0,b n +1b n=-1, 所以{b n }是等比数列,公比q =-1,所以b n =b 1q n -1=2·(-1)n -1.所以T n =(a 1+a 2+…+a n )+(b 1+b 2+…+b n )=n 〔1+3n -2〕2 +2[1-〔-1〕n ]1-〔-1〕=3n 2-n +22-(-1)n . 18.(12分)(2021·黄冈高二检测)与x =-1相切的圆C 的圆心在射线x -3y =0(x>0)上,且被直线l :3x -4y +5=0截得弦长为4 3 .(1)求圆C 的方程;(2)假设圆C 上有且仅有2个点到与l 平行的直线l ′的距离为2,求直线l ′在x 轴上截距的取值范围.【解析】(1)依题意设圆心坐标C ()3t ,t ,t>0,圆心到直线l :3x -4y +5=0的距离为||9t -4t +532+42 =t +1,又圆与x =-1相切,那么圆的半径r =3t +1,因为弦长为4 3 ,所以(3t +1)2=12+(t +1)2,解得t =1或t =-32 (舍去),所以圆心C(3,1),r =4,所以圆的方程为(x -3)2+(y -1)2=16.(2)设直线l ′的方程为3x -4y +m =0,那么圆心到直线l ′的距离为d =|5+m|5 ,当且仅当2<d<6时,圆C 上有且仅有2个点到l ′的距离为2;即2<|5+m|5 <6,所以-35<m<-15或5<m<25,设直线l ′在x 轴上的截距为a ,那么a =-m 3 ,m =-3a ,所以-35<-3a<-15或5<-3a<25,解得5<a<353 或-253 <a<-53 .19.(12分){a n }为等差数列,{b n }为等比数列,a 1=b 1=1,a 5=5(a 4-a 3),b 5=4(b 4-b 3).(1)求{a n }和{b n }的通项公式;(2)c n =a 2n b 2n +1,求数列{c n }的前n 项和S n .【解析】(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q ,由a 1=1,a 5=5(a 4-a 3),可得1+4d =5d ,解得d =1,所以a n =1+n -1=n ,由b 1=1,b 5=4(b 4-b 3),可得q 4=4(q 3-q 2),解得q =2,所以b n =2n -1.(2)由(1)可得a 2n =2n ,b 2n +1=22n =4n ,所以c n =a 2n b 2n +1=2n×4n ,故S n =2×4+4×42+6×43+…+2(n -1)×4n -1+2n×4n4S n =2×42+4×43+6×44+…+2(n -1)×4n +2n×4n +1,上述两式相减,得-3S n =2×4+2×42+2×43+…+2×4n -2n×4n +1=2×4〔1-4n 〕1-4 -2n×4n +1=-83 -⎝⎛⎭⎫2n -23 ×4n +1,所以S n =89 +6n -29 ×4n +1.20.(12分)函数f(x)=a·e x x (a ∈R ,a≠0).(1)当a =1时,求曲线y =f(x)在点(1,f(1))处切线的方程;(2)求函数f(x)的单调区间.【解析】(1)当a =1时,f(x)=e x x (x≠0),f(1)=e ,切点(1,e),f′(x)=e x x -e xx 2 ,k =f′(1)=0,所以切线方程为y -e =0,即y =e.(2)f′(x)=a e x x -e xx 2 =a e x 〔x -1〕x 2 (x≠0),①a>0,当x -1>0,即x>1时,f′(x)>0,函数f(x)单调递增;当x -1<0,即x<0或0<x<1时,f′(x)<0,函数f(x)在每个区间上单调递减;②a<0,当x -1>0,即x>1时,f′(x)<0,函数f(x)单调递减;当x -1<0,即x<0或0<x<1时,f′(x)>0,函数f(x)在每个区间上单调递增;综上所述,a>0时,f(x)的单调递增区间为(1,+∞),单调递减区间为(-∞,0),(0,1); a<0时,f(x)的单调递增区间为(-∞,0),(0,1),单调递减区间为(1,+∞).21.(12分)椭圆C :x 2a 2 +y 2b 2 =1(a>b>0)的两个顶点分别为点A(-2,0),B(2,0),离心率为32 .(1)求椭圆C 的方程;(2)点D 为x 轴上一点,过D 作x 轴的垂线交椭圆C 于不同的两点M ,N ,过D 作AM 的垂线交BN 于点E.证明:△BDE 与△BDN 的面积之比为定值.【解析】(1)因为焦点在x 轴上,两个顶点分别为点A(-2,0),B(2,0),所以a =2,因为e =c a =32 ⇒c = 3 ,所以b 2=a 2-c 2=1,所以椭圆C 的方程为x 24 +y 2=1;(2)设D(x 0,0),M(x 0,y 0),N(x 0,-y 0),y 0>0,可得y 20 =1-x 20 4 ,直线AM 的方程为:y =y 0x 0+2(x +2), 因为DE ⊥AM ,所以k DE =-x 0+2y 0, 直线DE 的方程:y =-x 0+2y 0 (x -x 0), 直线BN 的方程:y =-y 0x 0-2(x -2), 直线DE 与直线BN 的方程联立可得 ⎩⎨⎧y =-x 0+2y 0〔x -x 0〕y =-y 0x 0-2〔x -2〕 ,整理为:x 0+2y 0 (x -x 0)=y 0x 0-2(x -2), 即(x 20 -4)(x -x 0)=y 20 (x -2),(x 20 -4)(x -x 0)=4-x 20 4 (x -2),计算可得x E =4x 0+25 ,代入直线DE 的方程可得y E =-x 0+2y 0 ·2-x 05=-4-x 205y 0 =-45 y 0,那么|y E ||y N | =45 ,又S △BDES △BDN =12BD·|y E |12BD·|y N |=|y E ||y N | =45 ,所以△BDE 与△BDN 的面积之比为定值45 .22.(12分)(2021·邯郸高二检测)函数f(x)=l n x -2a 〔x -1〕x +2a -1 (其中a>12 ,a 为常数).(1)当a =1时,证明:f(x)有唯一的零点;(2)当x≥1时,假设不等式f(x)≥2l n 2-32 恒成立,求实数a 的取值范围.【解析】(1)当a =1时,f(x)=l n x -2〔x -1〕x +1 (x>0),显然f(1)=0,所以f′(x)=〔x -1〕2x 〔x +1〕2 ≥0(x>0),所以f(x)在(0,+∞)上为增函数,f(e -2)=-4+4e -2+1 <0,f(e)=-1+4e +1 >0,所以f(x)有唯一的零点.(2)f′(x)=〔x -1〕[]x -〔2a -1〕2x 〔x +2a -1〕2 (x≥1),假设(2a -1)2≤1即12 <a≤1,所以f′(x)≥0(x≥1),所以f(x)在[1,+∞)上单调递增,所以f(x)在x =1处有最小值f(1)=0>2l n 2-32 成立;假设(2a -1)2>1即a>1时,f(x)在x =(2a -1)2处取得最小值f ()〔2a -1〕2 =l n (2a -1)2-2a []〔2a -1〕2-12a 〔2a -1〕=2l n (2a -1)-〔2a -1〕2-12a -1=2l n (2a -1)-(2a -1)+12a -1 ,令t =2a -1,t>1,设g(t)=2l n t -t +1t ,所以g(2)=2l n 2-32 ,g′(t)=-(1t -1)2<0,所以g(t)为减函数,由g(t)≥g(2)=2l n 2-32 得1<t≤2,此时1<2a -1≤2,1<a≤32 .综上所述,实数a 的取值范围为⎝⎛⎦⎤12,32 .。
高中数学苏教版高一必修1练习模块综合检测B
模块综合检测(B)(时间:120分钟 满分:160分)一、填空题(本大题共14小题,每小题5分,共70分) 1.集合A ={0,2,a },B ={1,a 2},若A ∪B ={0,1,2,4,16},则a 的值为________________.2.设函数f (x )=⎩⎪⎨⎪⎧1-2x 2 (x ≤1)x 2+3x -2 (x >1),则f (1f (3))的值为________.3.若函数y =f (x )的定义域是[0,2],则函数g (x )=f (2x )x -1的定义域是________.4.三个数a =0.32,b =log 20.3,c =20.3之间的大小关系是________.5.若函数f (x )唯一的一个零点同时在区间(0,16)、(0,8)、(0,4)、(0,2)内,那么下列命题中正确的是________.(填序号) ①函数f (x )在区间(0,1)内有零点;②函数f (x )在区间(0,1)或(1,2)内有零点; ③函数f (x )在区间[2,16)内无零点; ④函数f (x )在区间(1,16)内无零点.6.已知0<a <1,则方程a |x |=|log a x |的实根个数是________.7.函数f (x )=x 2-2ax +1有两个零点,且分别在(0,1)与(1,2)内,则实数a 的取值范围是________.8.一批设备价值a 万元,由于使用磨损,每年比上一年价值降低b %,则n 年后这批设 备的价值为________万元. 9.下列4个函数中: ①y =2 008x -1;②y =log a 2 009-x2 009+x (a >0且a ≠1);③y =x 2 009+x 2 008x +1;④y =x (1a -x -1+12)(a >0且a ≠1).其中既不是奇函数,又不是偶函数的是________.(填序号)10.设函数的集合P ={f (x )=log 2(x +a )+b |a =-12,0,12,1;b =-1,0,1},平面上点的集合Q ={(x ,y )|x =-12,0,12,1;y =-1,0,1},则在同一直角坐标系中,P 中函数f (x )的图象恰好..经过Q 中两个点的函数的个数是________. 11.计算:0.25×(-12)-4+lg 8+3lg 5=________.12.若规定⎪⎪⎪⎪⎪⎪a b c d =|ad -bc |,则不等式log 2⎪⎪⎪⎪⎪⎪1 11 x <0的解集是________. 13.已知关于x 的函数y =log a (2-ax )在[0,1]上是减函数,则a 的取值范围是________.14.已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=1-2-x ,则不等式f (x )<-12的解集是________.二、解答题(本大题共6小题,共90分)15.(14分)已知函数f (x )A ,函数g (x )=223m x x ---1的值域为集合B ,且A ∪B =B ,求实数m 的取值范围.16.(14分)已知f (x )=x +ax 2+bx +1是定义在[-1,1]上的奇函数,试判断它的单调性,并证明你的结论. 17.(14分)若非零函数f (x )对任意实数a ,b 均有f (a +b )=f (a )·f (b ),且当x <0时,f (x )>1; (1)求证:f (x )>0;(2)求证:f (x )为减函数;(3)当f (4)=116时,解不等式f (x 2+x -3)·f (5-x 2)≤14.18.(16分)我市有甲,乙两家乒乓球俱乐部,两家设备和服务都很好,但收费方式不同.甲家每张球台每小时5元;乙家按月计费,一个月中30小时以内(含30小时)每张球台90元,超过30小时的部分每张球台每小时2元.某公司准备下个月从这两家中的一家租一张球台开展活动,其活动时间不少于15小时,也不超过40小时. (1)设在甲家租一张球台开展活动x 小时的收费为f (x )元(15≤x ≤40),在乙家租一张球台开展活动x 小时的收费为g (x )元(15≤x ≤40),试求f (x )和g (x ); (2)选择哪家比较合算?为什么?19.(16分)已知函数y =f (x )的定义域为D ,且f (x )同时满足以下条件: ①f (x )在D 上是单调递增或单调递减函数;②存在闭区间[a ,b ]D (其中a <b ),使得当x ∈[a ,b ]时,f (x )的取值集合也是[a ,b ].那么,我们称函数y =f (x )(x ∈D )是闭函数.(1)判断f (x )=-x 3是不是闭函数?若是,找出条件②中的区间;若不是,说明理由. (2)若f (x )=k +x +2是闭函数,求实数k 的取值范围.(注:本题求解中涉及的函数单调性不用证明,直接指出是增函数还是减函数即可)20.(16分)已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=a x -1.其中a >0且a ≠1. (1)求f (2)+f (-2)的值; (2)求f (x )的解析式;(3)解关于x 的不等式-1<f (x -1)<4,结果用集合或区间表示.模块综合检测(B)1.4解析 ∵A ∪B ={0,1,2,a ,a 2},又∵A ∪B ={0,1,2,4,16},∴⎩⎪⎨⎪⎧ a =4,a 2=16,即a =4.否则有⎩⎪⎨⎪⎧a =16a 2=4矛盾.2.127128解析 ∵f (3)=32+3×3-2=16,∴1f (3)=116,∴f (1f (3))=f (116)=1-2×(116)2=1-2256=127128.3.[0,1)解析 由题意得:⎩⎪⎨⎪⎧0≤2x ≤2x ≠1,∴0≤x <1.4.b <a <c解析 20.3>20=1=0.30>0.32>0=log 21>log 20.3. 5.③解析 函数f (x )唯一的一个零点在区间(0,2)内,故函数f (x )在区间[2,16)内无零点. 6.2解析 分别画出函数y =a |x |与y =|log a x |的图象,通过数形结合法,可知交点个数为2.7.1<a <54解析 ∵f (x )=x 2-2ax +1,∴f (x )的图象是开口向上的抛物线.由题意得:⎩⎨⎧f (0)>0,f (1)<0,f (2)>0.即⎩⎪⎨⎪⎧1>0,1-2a +1<0,4-4a +1>0,解得1<a <54.8.a (1-b %)n解析 第一年后这批设备的价值为a (1-b %);第二年后这批设备的价值为a (1-b %)-a (1-b %)·b %=a (1-b %)2;故第n 年后这批设备的价值为a (1-b %)n . 9.①③解析 其中①不过原点,不可能为奇函数,也可能为偶函数;③中定义域不关于原点对称,则既不是奇函数,又不是偶函数. 10.6解析 当a =-12,f (x )=log 2(x -12)+b ,∵x >12,∴此时至多经过Q 中的一个点;当a =0时,f (x )=log 2x 经过(12,-1),(1,0),f (x )=log 2x +1经过(12,0),(1,1);当a =1时,f (x )=log 2(x +1)+1经过(-12,0),(0,1),f (x )=log 2(x +1)-1经过(0,-1),(1,0);当a =12时,f (x )=log 2(x +12)经过(0,-1),(12,0),f (x )=log 2(x +12)+1经过(0,0),(12,1).11.7解析 原式=0.25×24+lg 8+lg 53=(0.5×2)2×22+lg(8×53)=4+lg 1 000=7. 12.(0,1)∪(1,2)解析 ⎪⎪⎪⎪⎪⎪1 11 x =|x -1|, 由log 2|x -1|<0,得0<|x -1|<1, 即0<x <2,且x ≠1. 13.(1,2)解析 依题意,a >0且a ≠1, ∴2-ax 在[0,1]上是减函数,即当x =1时,2-ax 的值最小,又∵2-ax 为真数,∴⎩⎨⎧a >12-a >0,解得1<a <2. 14.(-∞,-1)解析 当x >0时,由1-2-x <-12,(12)x >32,显然不成立. 当x <0时,-x >0.因为该函数是奇函数,所以f (x )=-f (-x )=2x -1.由2x -1<-12,即2x <2-1,得x <-1.又因为f (0)=0<-12不成立,所以不等式的解集是(-∞,-1).15.解 由题意得A ={x |1<x ≤2},B =(-1,-1+31+m ]. 由A ∪B =B ,得A ⊆B ,即-1+31+m ≥2,即31+m ≥3, 所以m ≥0.16.解 ∵f (x )=x +ax 2+bx +1是定义在[-1,1]上的奇函数,∴f (0)=0,即0+a02+0+1=0,∴a =0.又∵f (-1)=-f (1),∴-12-b =-12+b ,∴b =0,∴f (x )=xx 2+1.∴函数f (x )在[-1,1]上为增函数. 证明如下:任取-1≤x 1<x 2≤1, ∴x 1-x 2<0,-1<x 1x 2<1, ∴1-x 1x 2>0.∴f (x 1)-f (x 2)=x 1x 21+1-x 2x 22+1=x 1x 22+x 1-x 21x 2-x 2(x 21+1)(x 22+1)=x 1x 2(x 2-x 1)+(x 1-x 2)(x 21+1)(x 22+1)=(x 1-x 2)(1-x 1x 2)(x 21+1)(x 22+1)<0,∴f (x 1)<f (x 2),∴f (x )为[-1,1]上的增函数.17.(1)证明 f (x )=f (x 2+x 2)=f 2(x2)≥0,又∵f (x )≠0,∴f (x )>0.(2)证明 设x 1<x 2,则x 1-x 2<0, 又∵f (x )为非零函数,∴f (x 1-x 2)=f (x 1-x 2)·f (x 2)f (x 2)=f (x 1-x 2+x 2)f (x 2)=f (x 1)f (x 2)>1,∴f (x 1)>f (x 2),∴f (x )为减函数. (3)解 由f (4)=f 2(2)=116,f (x )>0,得f (2)=14.原不等式转化为f (x 2+x -3+5-x 2)≤f (2),结合(2)得: x +2≥2,∴x ≥0,故不等式的解集为{x |x ≥0}. 18.解 (1)f (x )=5x,15≤x ≤40;g (x )=⎩⎪⎨⎪⎧90, 15≤x ≤3030+2x , 30<x ≤40.(2)①当15≤x ≤30时,5x =90,x =18, 即当15≤x <18时,f (x )<g (x ); 当x =18时,f (x )=g (x ); 当18<x ≤30时,f (x )>g (x ). ②当30<x ≤40时,f (x )>g (x ), ∴当15≤x <18时,选甲家比较合算; 当x =18时,两家一样合算; 当18<x ≤40时,选乙家比较合算.19.解 (1)f (x )=-x 3在R 上是减函数,满足①;设存在区间[a ,b ],f (x )的取值集合也是[a ,b ],则⎩⎪⎨⎪⎧-a 3=b -b 3=a,解得a =-1,b =1,所以存在区间[-1,1]满足②,所以f (x )=-x 3(x ∈R )是闭函数. (2)f (x )=k +x +2是在[-2,+∞)上的增函数,由题意知,f (x )=k +x +2是闭函数,存在区间[a ,b ]满足②即:⎩⎪⎨⎪⎧k +a +2=a k +b +2=b.即a ,b 是方程k +x +2=x 的两根,化简得,a ,b 是方程x 2-(2k +1)x +k 2-2=0的两根.且a ≥k ,b >k .令f (x )=x 2-(2k +1)x +k 2-2,得⎩⎪⎨⎪⎧f (k )≥0Δ>02k +12>k,解得-94<k ≤-2,所以实数k 的取值范围为(-94,-2].20.解 (1)∵f (x )是奇函数, ∴f (-2)=-f (2),即f (2)+f (-2)=0. (2)当x <0时,-x >0,∴f (-x )=a -x -1. 由f (x )是奇函数,有f (-x )=-f (x ), ∵f (-x )=a -x -1, ∴f (x )=-a -x +1(x <0).∴所求的解析式为f (x )=⎩⎪⎨⎪⎧a x -1 (x ≥0)-a -x +1 (x <0).(3)不等式等价于⎩⎪⎨⎪⎧x -1<0-1<-a -x +1+1<4或⎩⎪⎨⎪⎧ x -1≥0-1<a x -1-1<4,即⎩⎪⎨⎪⎧x -1<0-3<a -x +1<2或⎩⎪⎨⎪⎧x -1≥00<a x -1<5.当a >1时,有⎩⎨⎧ x <1x >1-log a 2或⎩⎨⎧x ≥1x <1+log a 5,注意此时log a 2>0,log a 5>0,可得此时不等式的解集为(1-log a 2,1+log a 5). 同理可得,当0<a <1时,不等式的解集为R . 综上所述,当a >1时,不等式的解集为(1-log a 2,1+log a 5);当0<a<1时,不等式的解集为R.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
苏教版数学精品资料模块学习评价(时间120分钟,满分160分)一、填空题(本大题共14小题,每小题5分,共70分,请把答案填在题中横线上)1.(2013·冀州高一检测)已知集合P={y|y=-x2+2},Q={x|y=x2-2x-3},那么P∩Q等于________.【解析】P={y|y=-x2+2}={y|y≤2},Q={x|y=x2-2x-3}=R,故P∩Q=(-∞,2].【答案】(-∞,2]2.若集合A={x|log12x≤12},则∁R A=________.【解析】由log12x≤12得,x≥(12)12=22,∴A=[22,+∞),∴∁R A=(-∞,2 2).【答案】(-∞,2 2)3.(2013·嘉兴高一检测)如果幂函数f(x)=xα的图象经过点(2,22),则f(4)的值等于________.【解析】将点(2,22)代入f(x)=xα中,得2α=22,即2α=2-12,∴α=-12.∴f(x)=x-12,∴f(4)=4-12=12.【答案】1 24.已知集合A =[1,4),B =(-∞,a ),若A ⊆B ,则实数a 的取值范围是________.【解析】 ∵A =[1,4),B =(-∞,a ),且A ⊆B ,由数轴可知a ≥4.【答案】 [4,+∞).5.函数f (x )=a 3x -2+2(a >0,a ≠1)的图象恒过定点________.【解析】 由3x -2=0,得x =23,故函数f (x )=a 3x -2+2(a >0,a ≠1)的图象恒过定点(23,3).【答案】 (23,3)6.(2012·山东高考改编)函数f (x )=1ln (x +1)+4-x 2的定义域为________.【解析】x 满足⎩⎨⎧x +1>0,x +1≠1,4-x 2≥0,即⎩⎨⎧x >-1,x ≠0,-2≤x ≤2.解得-1<x <0或0<x ≤2.【答案】 (-1,0)∪(0,2]7.已知函数f (x )=⎩⎨⎧log 2x (x >0)3x (x ≤0),则f (f (14))的值是________.【解析】 ∵f (14)=log 214=-2, ∴f (f (14))=f (-2)=3-2=19. 【答案】 198.若函数f (x )=ax -b 有一个零点是3,那么函数g (x )=bx 2+3ax 的零点是________.【解析】 由条件可得3a -b =0,即b =3a , ∴g (x )=bx 2+3ax =3ax 2+3ax ,令g (x )=0, 得x =-1,0. 【答案】 -1,09.(2013·鄂州高一检测)(169)-12+100(12lg 9-lg 2)+ln 4e 3+log 98·log 433=________.【解析】 原式=[(43)2]-12+102×(12lg 9-lg 2)+ln e 34+32log 32·13×2log 23=(43)-1+94+34+32×16=4. 【答案】 410.(2013·广州高一检测)根据下表,能够判断f (x )=g (x )在四个区间:①(-1,0);②(0,1);③(1,2);④(2,3)中有实数解的是________(填序号).,F (1)>0,F (2)>0,F (3)>0,结合零点存在的判断条件可知F (x )在区间(0,1)内存在零点,∴f (x )=g (x )在区间(0,1)内有实数解.【答案】 ②11.设f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且满足:f (x )+2g (x )=x 3+x 2,则f (-2)=________.【解析】 由题意知⎩⎨⎧f (x )+2g (x )=x 3+x2f (-x )+2g (-x )=-x 3+x 2,即⎩⎨⎧f (x )+2g (x )=x 3+x 2f (x )-2g (x )=-x 3+x2, 所以f (x )=x 2, 从而f (-2)=4. 【答案】 412.(2013·常熟高一检测)已知x +x -1=3,则x 2+x -2=________;x 12+x -12=________.【解析】 x 2+x -2=(x +x -1)2-2=7.【答案】 7513.(2013·镇江高一检测)若函数f (x )=lg(10x+1)+ax 是偶函数,g (x )=4x -b 2x是奇函数,则a +b 的值是________.【解析】 ∵f (x )是偶函数, ∴f (-x )=f (x ), 即lg(10-x +1)-ax =lg(10x +1)-(a +1)x =lg(10x +1)+ax , ∴a =-(a +1),a =-12. 又g (x )是奇函数, ∴g (-x )=-g (x ), 即2-x -b 2-x =-2x+b 2x , ∴b =1,∴a +b =12. 【答案】 1214.函数y =log 2x +log 2(1-x )的最大值是________. 【解析】 要使函数有意义,只要⎩⎨⎧x >0,1-x >0,解得0<x <1.又y =log 2[x (1-x )]=log 2[-(x -12)2+14], 当x ∈(0,1)时,0<-(x -12)2+14≤14, ∴y ≤log 214=-2,∴y max =-2. 【答案】 -2二、解答题(本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤)15.(本小题满分14分)计算:(1)[(549)0.5+(0.008)-23÷(0.2)-1]÷0.06250.25;(2)[(1-log 63)2+log 62·log 618]÷log 64.【解】 (1)原式=[(73)2×0.5+(0.2)3×(-23)÷(0.2)-1]÷(0.5)4×14=(73+25÷5)÷0.5=223÷12=443.(2)[(1-log 63)2+log 62·log 618]÷log 64=[(log 66-log 63)2+log 62·(log 63+log 66)]÷log 64 =[log 62(log 62+log 63+1)]÷2log 62=1.16.(本小题满分14分)(2013·荆州高一检测)已知集合A ={x |18≤2x +1≤16},B ={x |m +1≤x ≤3m -1}.(1)求集合A ;(2)若B ⊆A ,求实数m 的取值范围.【解】 (1)A ={x |18≤2x +1≤16},有2-3≤2x +1≤24, 于是-3≤x +1≤4,-4≤x ≤3, 则A ={x |-4≤x ≤3}.(2)若B =∅,即m +1>3m -1,即m <1时,满足题意, 若B ≠∅,即m +1≤3m -1,即m ≥1时, ⎩⎨⎧m +1≥-43m -1≤3得-5≤m ≤43,即1≤m ≤43, 综上,实数m 的取值范围为(-∞,43].17.(本小题满分16分)已知函数f (x )=ax 2+23x +b 是奇函数,且f (2)=53.(1)求实数a ,b 的值;(2)判断函数f(x)在(-∞,-1]上的单调性,并加以证明.【解】(1)∵f(x)是奇函数,∴f(-x)=-f(x).∴ax2+2-3x+b=-ax2+23x+b=ax2+2-3x-b.因此b=-b,即b=0.又f(2)=5 3,∴4a+26=53,∴a=2.(2)由(1)知f(x)=2x2+23x=2x3+23x,f(x)在(-∞,-1]上为单调增函数.证明:设x1<x2≤-1,则x2-x1>0,f(x2)-f(x1)=23(x2-x1)(1-1x1x2)=23(x2-x1)·x1x2-1x1x2∵x1< x2≤-1,∴x2-x1>0,x1x2>1,f(x2)>f(x1).∴f(x)在(-∞,-1]上为单调增函数.18.(本小题满分16分)是否存在这样的实数a,使函数f(x)=x2+(3a-2)x +a-1在区间[-1,3]上与x轴恒有一个交点,且只有一个交点,若存在,求出实数a的取值范围;若不存在,说明理由.【解】(1)若函数f(x)在(-1,3)上有一个零点,则只需有f(-1)·f(3)<0,即(1-3a+2+a-1)( 9+9a-6+a-1)=4(1-a)(5a+1)<0,∴a<-15或a>1.(2)若f(-1)=0,则a=1,此时f(x)=x2+x. 令f(x)=0,即x2+x=0,得x=0或x=-1.方程在[-1,3]上有两根,不合题意, 故a ≠1. (3)若f (3)=0,则a =-15, 此时f (x )=x 2-135x -65. 令f (x )=0,即x 2-135x -65=0, 解得x =-25或x =3,方程在[-1,3]上有两根,不合题意,故a ≠-15. 综上所述,a <-15或a >1.19.(本小题满分16分)(2013·湖南师大附中高一检测)经市场调查,某门市部的一种小商品在过去的20天内的日销售量(件)与价格(元)均为时间t (天)的函数,且日销售量近似满足函数g (t )=80-2t (件),而日销售价格近似满足于f (t )=⎩⎪⎨⎪⎧15+12t (0≤t ≤10)25-12t (10<t ≤20)(元).(1)试写出该种商品的日销售额y 与时间t (0≤t ≤20)的函数表达式; (2)求该种商品的日销售额y 的最大值与最小值. 【解】 (1)由已知得:y =⎩⎪⎨⎪⎧(15+12t )(80-2t ),(0≤t ≤10)(25-12t )(80-2t ),(10<t ≤20)=⎩⎨⎧-t 2+10t +1 200,(0≤t ≤10)t 2-90t +2 000,(10<t ≤20)(2)由(1)知①当0≤t ≤10时,y =-t 2+10t +1 200=-(t -5)2+1 225, 该函数在t ∈[0,5]递增,在t ∈(5,10]递减.∴y max =1 225(当t =5时取得),y min =1 200(当t =0或10时取得) ②当10<t ≤20时,y =t 2-90t +2 000=(t -45)2-25该函数在t ∈(10,20]递减,y min =600(当t =20时取得)由①②知:y max =1 225(当t =5时取得),y min =600(当t =20时取得). 20.(本小题满分16分)(2013·杭州高一检测)已知函数f (x )定义域为 [-1,1],若对于任意的x ,y ∈[-1,1],都有f (x +y )=f (x )+f (y ),且x >0时,有f (x )>0.(1)证明:f (x )为奇函数;(2)证明:f (x )在[-1,1]上为单调递增函数;(3)设f (1)=1,若f (x )<m 2-2am +1,对所有x ,y ∈[-1,1],a ∈[-1,1]恒成立,求实数m 的取值范围.【解】 (1)令x =y =0,f (0)=0, 令y =-x ,f (0)=f (x -x )=f (x )+f (-x )=0, ∴f (-x )=-f (x ),f (x )为奇函数. (2)∵f (x )是定义在[-1,1]上的奇函数,令-1≤x 1≤x 2≤1,则f (x 2)-f (x 1)=f (x 2)+f (-x 1)=f (x 2-x 1)>0, ∴f (x )在[-1,1]上为单调递增函数.(3)f (x )在[-1,1]上为单调递增函数,f (x )max =f (1)=1,使f (x )<m 2-2am +1对所有x ∈[-1,1],a ∈[-1,1]恒成立,只要m 2-2am +1>1,即m 2-2am >0.令g (a )=m 2-2am =-2am +m 2, 要使g (a )>0恒成立, 则⎩⎨⎧g (-1)>0g (1)>0, ∴m ∈(-∞,-2)∪(2,+∞).。