测井解释识别油、水、气层

合集下载

油气田地下地质学 第二章油、气、水的综合识别

油气田地下地质学 第二章油、气、水的综合识别
所以,稠油油层的含油饱和度普遍高 于稀油油层。
总之,含油性和不含可动水是油、气 层的两个重要特征,并在事实上构成了判 断油、气、水层的两个重要条件。其中含 油性是评价油、气层的依据,分析产层的 可动水则能把握油、气层的变化和界限, 而对油、气层的最终评价则取决于对地层 油、气、水相渗透率的分析.★★
1、选择测井系列的主要原则
➢ 能够确定岩性的成分、清楚的划分渗透层; ➢ 至少能够比较完整的提供下列主要参数:孔隙度、含油饱和 度、束缚水饱和度、可动油量和残余油饱和度、泥质含量以及 渗透率的近似值等;
➢ 能够比较清楚的区分油层、气层、水层,确定有效厚度和计 算地质储量;
➢ 能够尽量的较少和克服井眼、围岩和钻井液侵入的影响,至 少在通常情况下,不使测井信息失真;
只含“不动水” 不含“可动水”
油、气层
(三)储集层的产流体性质主要取决于油、气、水 各项的相渗透率
绝对渗透率:当单向流体充满岩石孔隙,流体不 与岩石发生任何物理化学反应,流体的流动符合 达西直线渗滤定律时,所测得的岩石对流体的渗
透能力称为该岩石的绝对渗透率。
2 bt a / bQ K (P1 P2 )F L
短电极视电阻率为高阻,长
电极为低阻;
感应曲线为高电导值;
水 层
声波时差中等,呈平台状。
4、快速直观显示油、气、水层的方法
A、声波时差-中子伽马曲线重叠
一、评价油、气层的地质依据
(一)含油性是评价油气层的重要依据
习惯概念:以含油饱和度的大小作为划分油、气、 水层的主要标准
特殊情况: 1、低渗透砂岩油气层含油性普遍解释偏低 2、高渗透砂岩油气层的含油性解释偏高
1、低渗透率砂岩油气层
低渗透产层的特点:

油、气、水层在测井曲线上显示不同的特征

油、气、水层在测井曲线上显示不同的特征

油、气、水层在测井曲线上显示不同的特征:(1)油层:声波时差值中等,曲线平缓呈平台状。

自然电位曲线显示正异常或负异常,随泥质含量的增加异常幅度变小。

微电极曲线幅度中等,具有明显的正幅度差,并随渗透性变差幅度差减小。

长、短电极视电阻率曲线均为高阻特征。

感应曲线呈明显的低电导(高电阻)。

井径常小于钻头直径。

(2)气层:在自然电位、微电极、井径、视电阻率曲线及感应电导曲线上气层特征与油层相同,所不同的是在声波时差曲线上明显数值增大或周波跳跃现象,中子、伽玛曲线幅度比油层高。

(3)油水同层:在声波时差、微电极、井径曲线上,油水同层与油层相同,不同的是自然电位曲线比油层大一点,而视电阻率曲线比油层小一点,感应电导率比油层大一点。

(4)水层:自然电位曲线显示正异常或负异常,且异常幅度值比油层大;微电极曲线幅度中等,有明显的正幅度差,但与油层相比幅度相对降低;短电极视电阻率曲线幅度较高而长电极视电阻率曲线幅度较低,感应曲线显示高电导值,声波时差数值中等,呈平台状,井径常小于钻头直径。

2、定性判断油、气、水层油气水层的定性解释主要是采用比较的方法来区别它们。

在定性解释过程中,主要采用以下几种比较方法:(1)纵向电阻比较法:在水性相同的井段内,把各渗透层的电阻率与纯水层比较,在岩性、物性相近的条件下,油气层的电阻率较高。

一般油气层的电阻率是水层的3倍以上。

纯水层一般应典型可靠,一般典型水层应该厚度较大,物性好,岩性纯,具有明显的水层特征,而且在录井中无油气显示。

(2)径向电阻率比较法:若地层水矿化度比泥浆矿化度高,泥浆滤液侵入地层时,油层形成减阻侵入剖面,水层形成增阻侵入剖面。

在这种条件下比较探测不同的电阻率曲线,分析电阻率径向变化特征,可判断油、气、水层。

一般深探测电阻率大于浅探测电阻率的岩层为油层,反之则为水层,有时油层也会出现深探测电阻率小于浅探测电阻率的现象,但没有水层差别那样大。

(3)邻井曲线对比法:将目的层段的测井曲线作小层对比,从中分析含油性的变化。

测井解释原理

测井解释原理

测井解释原理一:储集层定义:具有连通孔隙,既能储存油气,又能使油气在一定压差下流动的岩层。

必须具备两个条件:(1)孔隙性(孔隙、洞穴、裂缝)具有储存油气的孔隙、孔洞和裂缝等空间场所。

(2)渗透性(孔隙连通成渗滤通道)孔隙、孔洞和裂缝之间必须相互连通,在一定压差下能够形成油气流动的通道。

储集层是形成油气层的基本条件,因而储集层是应用测井资料进行地层评价和油气分析的基本对象。

储集层的分类•按岩性:–碎屑岩储集层、碳酸盐岩储集层、特殊岩性储集层。

•按孔隙空间结构:–孔隙型储集层、裂缝型储集层和洞穴型储集层、裂缝-孔洞型储集层。

碎屑岩储集层•1、定义:–由砾岩、砂岩、粉砂岩和砂砾岩组成的储集层。

•2、组成:–矿物碎屑(石英、长石、云母)–岩石碎屑(由母岩类型决定)–胶结物(泥质、钙质、硅质)•3、特点:–孔隙空间主要是粒间孔隙,孔隙分布均匀,岩性和物性在横向上比较稳定。

•4、有关的几个概念–砂岩:骨架由硅石组成的岩石都称为砂岩。

骨架成份主要为SiO 2–泥岩(Shale):由粘土(Clay)和粉砂组成的岩石。

–砂泥岩剖面:由砂岩和泥岩构成的剖面。

碳酸盐岩储集层•1、定义:–由碳酸盐岩石构成的储集层。

•2、组成:–石灰岩(CaCO 3)、白云岩Ca Mg(CO 3)2)、泥灰岩•3、特点:–储集空间复杂有原生孔隙:分布均匀(如晶间、粒间、鲕状孔隙等)次生孔隙:形态不规则,分布不均匀(裂缝、溶洞等)–物性变化大:横向纵向都变化大•4 、分类按孔隙结构:•孔隙型:与碎屑岩储集层类似。

•裂缝型:孔隙空间以裂缝为主。

裂缝数量、形态及分布不均匀,孔隙度、渗透率变化大。

•孔洞型:孔隙空间以溶蚀孔洞为主。

孔隙度可能较大、但渗透率很小。

•洞穴型:孔隙空间主要是由于溶蚀作用产生的洞穴。

•裂缝-孔洞型:裂缝、孔洞同时存在。

碳酸盐岩储集空间的基本类型砂泥岩储集层的孔隙空间是以沉积时就存在或产生的原生孔隙为主;碳酸盐岩储集层则以沉积后在成岩后生及表生阶段的改造过程中形成的次生孔隙为主。

测井解释3-测井资料解释基础3-快速解释、统计法解释模型

测井解释3-测井资料解释基础3-快速解释、统计法解释模型
用GR曲线与地面岩心GR曲线进行深度对比, 找出两者的深度误差。 用岩心分析孔隙度与测井孔隙度(DEN、DT) 曲线对比,找出两者的深度误差。 把岩心数据作成杆状图,与相同纵横比例的曲 线作对比,通过移动确定其深度误差。
P141 图3-20 岩心深度归位图
(三)、用统计法建立测井解释模型 1、用统计法建立测井解释模型 (1)、线性回归方程 例 y=b0+b1x 用最小二乘 法求出b0、b1
Rmf < Rmfa 且Rw< Rwa< Rmf 泥浆侵入很深,井壁 附近有严重的冲洗,此时用Rwa划分的可能油气层要 作进一步的研究,因为Rw < Rwa< Rmf 也可能是淡水 泥浆侵入很深造成的.
(二)、交会图法评价地层含油气性 1、电阻率---孔隙度交会图
Rt
abRw FmSwn
P137 图3-16
尕斯地区
350
P135 图3-14
(一)、应用曲线重叠法评价地层的含油气性
1、双孔隙度重叠 Fwt
原理 FwF 水层 Fw<<F 油气层
式中的2应根据地区 的SW来定.
P135、图3-14演示图片
2、三孔隙度重叠 Fw、F、 FXo
F xo
m
aRmf Rxo
FSxo
原理
含油气孔隙度 Fh = F - Fw
T检验 假设H0:X与Y的线性关系不存立
t R n-2 1- R2
如t>ta(1,n-2),则线性关系密切
在数学上可以证明,R、F、T检验三者是等 价的,实际应用中进行一种检验即可。
2、应用统计法建立解释模型的实例 例题对你有何启发?
形式不同、人不同、参数不同,都引起差别 回归方程的形式可以多样化,不同的油田、 不同的人,可能回归方程不同,但最终都可 换成线性进行回归,合理选择回归方程,最 好是用作图的方法大致找出两者的关系,然 后再回归,这样少走弯路。

第4章5 油气水层识别方法

第4章5 油气水层识别方法
A井是最先获得工业油流的井,以后钻B井,录井和井壁取心 均未见到明显的油气显示,当时的测井解释结论也是悲观的。 但在C井完钻并获得高产油流后,对这三口相邻很近的井作了如 图所示的对比,发现它们同属于一个断块,故重新对B井作了解 释,划分出总厚度为18.8m的油层。试油获日产原油70吨。
一、储集层油、气、水层的定性识别
邻井曲线对比法实例 虚线-SP曲线;实线-0.45m视电阻率曲线
二、储集层油、气、水层的定量识别
含水饱和度是评价油气层是测井资料综合解释的核心。而含 水饱和度又是划分油、水层的主要标志,所以含水饱和度是最 重要的储集层参数。
确定含水饱和度的基本方法,通常是以电阻率测井为基础的 阿尔奇(Archie)公式。
一、储集层油、气、水层的定性识别
上部储集层深三侧向大于浅三侧向,初步判断为油气层; 下部储集层深三侧向小于浅三侧向,初步判断为水层。 但最后认定油、水层还要经过综合解释,根据地质参数而定。
一、储集层油、气、水层的定性识别
4 邻井曲线对比法
如果相应地层在邻井经试油已证实为油气层或水层,则可根 据地质规律与邻井对比,这将有助于提高解释结论的可靠性。 下图是某地区3口井的测井曲线对比实例。
一、储集层油、气、水层的定性识别
(3) 径向电阻率法 这是采用不同探测深度的电阻率曲线进行对比的方法,它依赖
于储集层的泥浆侵入特征,从分析岩层的径向电阻率变化来区分 油、水层。一般情况下,油气层产生减阻侵入,水层产生增阻侵 入。此时,深探测视电阻率大于浅探测视电阻率者可判断为油气 层,反之为水层。
于3~4倍标准水层电阻率者可判断为油气层,这种比较方法的
依据,就是解释井段内各地层均有相近的值,由阿尔奇公式知

,当油层的饱和度界限为50%时,显然油气层的

油、气、水层划分

油、气、水层划分
(3)邻井曲线对比法:将目的层段的测井曲线作小层对比,从中分析含油性的变化。这种对比要注意储集层的岩性、物性和地层水矿化度等在横向上的变化,如下图所示。
(4)最小出油电阻率法:对某一构造或断块的某一层组来说,地层矿化度一般比较稳定,纯水层的电阻率高低主要与岩性、物性有关,所以若地层的岩性物性相近,则水层的电阻率相同,当地层含油饱和度增加,地层电阻率也随之升高。比较测井解释的真电阻率与试油结果,就要以确定一个电性标准(最小出油电阻率),高于电性标准是油层,低于电性标准的是水层。从而利用地层真电阻率(感应曲线所求的电阻率)和其它资料,可划分出油(气)、水层。但是应用这种方法时,必须考虑到不同断块、不同层系的电性标准不同,当岩性、物性、水性变化,则最小出油电阻也随之变化。
(2)气层:在自然电位、微电极、井径、视电阻率曲线及感应电导曲线上气层特征与油层相同,所不同的是在声波时差曲线上明显数值增大或周波跳跃现象,中子、伽玛曲线幅度比油层高。
(3)油水同层:在声波时差、微电极、井径曲线上,油水同层与油层相同,不同的是自然电位曲线比油层大一点,而视电阻率曲线比油层小一点,感应电导率比油层大一点。
(1)纵向电阻比较法:在水性相同的井段内,把各渗透层的电阻率与纯水层比较,在岩性、物性相近的条件下,油气层的电阻率较高。一般油气层的电阻率是水层的3倍以上。纯水层一般应典型可靠,一般典型水层应该厚度较大,物性好,岩性纯,具有明显的水层特征,而且在录井中无油气显示。
(2)径向电阻率比较法:若地层水矿化度比泥浆矿化度高,泥浆滤液侵入地层时,油层形成减阻侵入剖面,水层形成增阻侵入剖面。在这种条件下比较探测不同的电阻率曲线,分析电阻率径向变化特征,可判断油、气、水层。一般深探测电阻率大于浅探测电阻率的岩层为油层,反之则为水层,有时油层也会出现深探测阻率小于浅探测电阻率的现象,但没有水层差别那样大。

油气水层测井曲线特征

油气水层测井曲线特征

油、气、水层在测井曲线上显示不同的特征(1)油层:声波时差值中等,曲线平缓呈平台状。

自然电位曲线显示正异常或负异常,随泥质含量的增加异常幅度变小。

微电极曲线幅度中等,具有明显的正幅度差,并随渗透性变差幅度差减小。

长、短电极视电阻率曲线均为高阻特征。

感应曲线呈明显的低电导(高电阻)。

井径常小于钻头直径。

(2)气层:在自然电位、微电极、井径、视电阻率曲线及感应电导曲线上气层特征与油层相同,所不同的是在声波时差曲线上明显数值增大或周波跳跃现象,中子、伽玛曲线幅度比油层高。

(3)油水同层:在声波时差、微电极、井径曲线上,油水同层与油层相同,不同的是自然电位曲线比油层大一点,而视电阻率曲线比油层小一点,感应电导率比油层大一点。

(4)水层:自然电位曲线显示正异常或负异常,且异常幅度值比油层大;微电极曲线幅度中等,有明显的正幅度差,但与油层相比幅度相对降低;短电极视电阻率曲线幅度较高而长电极视电阻率曲线幅度较低,感应曲线显示高电导值,声波时差数值中等,呈平台状,井径常小于钻头直径。

2、定性判断油、气、水层油气水层的定性解释主要是采用比较的方法来区别它们。

在定性解释过程中,主要采用以下几种比较方法:(1)纵向电阻比较法:在水性相同的井段内,把各渗透层的电阻率与纯水层比较,在岩性、物性相近的条件下,油气层的电阻率较高。

一般油气层的电阻率是水层的3倍以上。

纯水层一般应典型可靠,一般典型水层应该厚度较大,物性好,岩性纯,具有明显的水层特征,而且在录井中无油气显示。

(2)径向电阻率比较法:若地层水矿化度比泥浆矿化度高,泥浆滤液侵入地层时,油层形成减阻侵入剖面,水层形成增阻侵入剖面。

在这种条件下比较探测不同的电阻率曲线,分析电阻率径向变化特征,可判断油、气、水层。

一般深探测电阻率大于浅探测电阻率的岩层为油层,反之则为水层,有时油层也会出现深探测电阻率小于浅探测电阻率的现象,但没有水层差别那样大。

(3)邻井曲线对比法:将目的层段的测井曲线作小层对比,从中分析含油性的变化。

常规储层油气水层的识别方法

常规储层油气水层的识别方法
在实际生产中采用 0.5 米电阻率(RE)求SH,在没有 RE 曲线的情况下用 RT 求 SH。在求泥质含量的过程中,各种方法均统一于下面的经验公式:
S = SHLG GMAX
− GMIN − GMIN
SH
=
2 GCUR 2 GCUR
*S − 1 −1
(1 )
(2 )
SHLG-----解释层段内 RE 曲线的测井值; GMIN-----RE 曲线在纯砂岩处(即纯水层)的测井值; GMAX----RE 曲线在纯泥岩处的测井值; S -------是 RE 曲线测井相对值; GCUR----地区经验系数,辽河地区GCUR取值为 5;
TSH1------孔隙度进行泥质校正时所用的中间变量;
TSH -------解释层段内泥质声波时差值;
TM ------砂岩声波骨架值;
PORR = AAC − TM * 100 − SH * TSH 1 − TM * 100
(6)
TF − TM
TF − TM
其中
PORR-----有效孔隙度;
TF ------孔隙流体的声波时差值(us/m)。
POR = PORR + SH * TSH 1 − TM * 100
(7)
TF − TM
3).求总孔隙度
c、计算地层含水饱和度(SW)
本地区有四种方法求地层含水饱和度,但在实际数字处理过程中只采用阿尔
奇公式求 SW。即
SW
=

B* POR
A * RW M * RT
其中:
1
N
(8 )
B------与岩性有关的系数;
(3)
其中 DEP------深度;
CP -------地层压实校正系数,当大于 1 时,令 CP 为 1。

测井曲线划分油水层知识讲解

测井曲线划分油水层知识讲解

测井曲线划分油水层石油知识:测井曲线划分油、气、水层(多学点,没坏处)油、气、水层在测井曲线上显示不同的特征:(1)油层:声波时差值中等,曲线平缓呈平台状。

自然电位曲线显示正异常或负异常,随泥质含量的增加异常幅度变小。

微电极曲线幅度中等,具有明显的正幅度差,并随渗透性变差幅度差减小。

长、短电极视电阻率曲线均为高阻特征。

感应曲线呈明显的低电导(高电阻)。

井径常小于钻头直径。

(2)气层:在自然电位、微电极、井径、视电阻率曲线及感应电导曲线上气层特征与油层相同,所不同的是在声波时差曲线上明显数值增大或周波跳跃现象,中子、伽玛曲线幅度比油层高。

(3)油水同层:在声波时差、微电极、井径曲线上,油水同层与油层相同,不同的是自然电位曲线比油层大一点,而视电阻率曲线比油层小一点,感应电导率比油层大一点。

(4)水层:自然电位曲线显示正异常或负异常,且异常幅度值比油层大;微电极曲线幅度中等,有明显的正幅度差,但与油层相比幅度相对降低;短电极视电阻率曲线幅度较高而长电极视电阻率曲线幅度较低,感应曲线显示高电导值,声波时差数值中等,呈平台状,井径常小于钻头直径。

2、定性判断油、气、水层油气水层的定性解释主要是采用比较的方法来区别它们。

在定性解释过程中,主要采用以下几种比较方法:(1)纵向电阻比较法:在水性相同的井段内,把各渗透层的电阻率与纯水层比较,在岩性、物性相近的条件下,油气层的电阻率较高。

一般油气层的电阻率是水层的3倍以上。

纯水层一般应典型可靠,一般典型水层应该厚度较大,物性好,岩性纯,具有明显的水层特征,而且在录井中无油气显示。

(2)径向电阻率比较法:若地层水矿化度比泥浆矿化度高,泥浆滤液侵入地层时,油层形成减阻侵入剖面,水层形成增阻侵入剖面。

在这种条件下比较探测不同的电阻率曲线,分析电阻率径向变化特征,可判断油、气、水层。

一般深探测电阻率大于浅探测电阻率的岩层为油层,反之则为水层,有时油层也会出现深探测电阻率小于浅探测电阻率的现象,但没有水层差别那样大。

测井曲线划分油、气、水层

测井曲线划分油、气、水层
(4)水层:自然电位曲线显示正异常或负异常,且异常幅度值比油层大;微电极曲线幅度中等,有明显的正幅度差,但与油层相比幅度相对降低;短电极视电阻率曲线幅度较高而长电极视电阻率曲线幅度较低,感应曲线显示高电导值,声波时差数值中等,呈平台状,井径常小于钻头直径。ﻫ2、定性判断油、气、水层
油气水层的定性解释主要是采用比较的方法来区别它们。在定性解释过程中,主要采用以下几种比较方法:ﻫ(1)纵向电阻比较法:在水性相同的井段内,把各渗透层的电阻率与纯水层比较,在岩性、物性相近的条件下,油气层的电阻率较高。一般油气层的电阻率是水层的3倍以上。纯水层一般应典型可靠,一般典型水层应该厚度较大,物性好,岩性纯,具有明显的水层特征,而且在录井中无油气显示。
长、短电极视电阻率曲线均为高阻特征。ﻫ感应曲线呈明显的低电导(高电阻)。ﻫ井径常小于钻头直径。ﻫ(2)气层:在自然电位、微电极、井径、视电阻率曲线及感应电导曲线上气层特征与油层相同,所不同的是在声波时差曲线上明显数值增大或周波跳跃现象,中子、伽玛曲线幅度比油层高。ﻫ(3)油水同层:在声波时差、微电极、井径曲线上,油水同层与油层相同,不同的是自然电位曲线比油层大一点,而视电阻率曲线比油层小一点,感应电导率比油层大一点。
电阻增大系数I:含油岩石的电阻率与该岩石完全含水时电阻率的比值。即
概述 分类 主要方法 应用" alt="地球物理测井 概述 分类 主要方法 应用" src="" width=1 height=1 real_src="" eventslistuid="e4">
第一节:概述
普通电阻率测井就是把一个电极系放入井内,测量井内岩层电阻率变化,用以研究地质剖面、判断油气水层。又称视电阻率测井。
沉积岩的导电能力主要取决于其孔隙中的地层水的性质—地层水电阻率。

测井解释

测井解释

五、判断油气水层1、电阻率测井曲线反映储集层含油气性的机理岩石颗粒(石英、长石等不导电,油气也不导电,它们的电阻率接近无穷大。

地层水靠离子导电,砂层中的泥质具有附加导电性,随地层水矿化度增加,地层水的电阻率减小。

砂岩层孔隙中饱和有地层水,砂岩层就具有导电性,地层水矿化度愈高,砂岩层的电阻率愈低。

砂岩层孔隙中同时饱和有油气和水时,随含油气饱和度增加,砂岩层的电阻率RT增加,含油气饱和度与砂岩层电阻率之间有如下实验关系:SW=a•b•Rw/m•RTS0=1-SWSW---含水饱和度S0-----含油饱和度RT-----地层电阻率RW----地层水电阻率a•b-----比例系数m------胶结指数n-------饱和度指数由以上分析可知,同一砂岩层含油气时电阻率高,含地层水时电阻率低。

含油气饱和度愈高,砂岩层电阻率愈高;含水饱和度愈高,砂岩层电阻率愈低。

含水饱和度100%则为纯水层,其电阻率称为纯水层电阻率。

2、测井资料解释具有多解性利用测井资料判断储集层的含油气性具有多解性。

岩层孔泽性变化,颗粒度化,胶结物变化以及地层水变化者可以引起电阻率变化。

因此,准确的判断储集层的含油气性,必须利用多种测井资料,结合地质录井资料和邻井试油结果进行综合分析。

3、目视法判断油气水层利用国产测井系列的回放测井曲线图等图件,或者利用3700测井曲线图,可以简捷快速地判断油气水层,并且有相当高的可靠性。

第一步,利用深双侧向曲线(参考0.5米电位和浅双侧向曲线)在测量井段找出高电阻率异常层。

在一定测量井段内(如:东营、沙一、沙二或沙三等),受地质条件控制水层电阻率变化较小,在油气层上其电阻率会成倍或成数倍增高,形成明显的高电阻率异常。

第二步,利用自然电位(自然伽玛),声波时差和微电极等曲线,检查高电阻率异常层是否是渗透性储集层。

在渗透层上,SP为负异常,声波时差与水层的时差相当,微电极曲线为“低均正”差异。

非渗透性致密层(玄武岩等)也能形成高电阻率异常。

利用综合录井气测资料解释评价油气水层

利用综合录井气测资料解释评价油气水层

利用综合录井气测资料解释评价油气水层气测录井现场解释评价常用且比较成熟的经验统计法有烃组分三角形图解法、皮克斯勒解释图板法、烃类比值法(3H法)等,由于不同井场的地下地质和地面环境因素不尽相同、钻井工程参数的差异和解释方法的局限性,各种方法的解释符合率均有一定程度的差异。

从提高解释符合率以及简便、快速发现并判别油、气层的角度出發,分析了应用气测录井全烃判别储集层油气水状况的理论依据,结合实例分析了不同条件下的判别原则,同时指出了该方法的局限性以及气测仪器的标定、影响因素。

标签:气测录井;全烃;异常倍数;重烃相对含量;油气水层;解释标准气测录井在油气勘探过程中起着重要的、不可替代的作用,是直接寻找油气的一种地球化学方法。

应用气体检测仪自动连续地检测钻井液中所含气体成分的含量。

它是综合录井的重要组成部分。

影响气显示的因素很多,有地面的,有井下的,有客观的,有人为造成的。

概括起来为地质因素和非地质因素两种。

其中地质因素引起的气测显示变化正是气测所要研究、探讨的问题。

1 综合录井气测资料的重要性气测录井过程中,全烃曲线具有连续性、实时性的特点,已成为现场录井技术人员发现和判断油气异常显示的重要手段。

正常钻进情况下,如果钻遇地层岩性稳定,地层中流体性质没有发生变化,录井过程中全烃含量就比较稳定,全烃曲线的变化幅度较小;在受到钻井施工情况、地层流体压力变化以及烃组分总量变化等多方面因素的影响后,容易造成全烃曲线出现异常变化。

分清不同因素影响的差异,有助于提高油气储集层的解释评价水平。

油、气、水层识别与评价是油气勘探开发研究工作中的重要环节之一。

提高油、气、水层解释评价的准确性,对于避免漏掉油气层、及时发现油气田、减少试油层位、节约试油成本均具有重要现实意义。

各种录井资料是识别油气层最直观、最重要的第一手资料,也是目前油、气、水层综合分析和评价的基础田。

多年来,虽然在储集层物性、流体性质、岩电关系等方面测井解释研究取得了长足进展,但对一些地区、一些层位的油、气、水层性质的判别上仍存在不准确性,对录井资料缺乏深人系统分析及应用是其中重要原因之一。

测井数据解释油气水层

测井数据解释油气水层

测井数据解释油气水层测井项目地层岩性泥岩微电极最低(无差异)中低次低(正差异)中值(正差异)0.4m电位感应双感应八侧向低(无差异)中低(无差异)中值(有差异)高(正差异大)高(正差异大)中高(正差异)4m(底)电阻低平尖状较高中值自然电位双侧向声波时差μ/m中子伽马API很低较低中高补偿中子%密度补偿密体积密度度33g/cmg/cm最低<2.1~2.5低中等2.3~2.65光电截面巴/电子自然伽马API自然伽马能谱API很高高C/O能谱核磁共振(T2驰豫)很低<12m低介相位(ΔQ)>160°电常数(ε)15~150井径井温流体密度低平很低偏正基最低最大线(无差异)(>300)大偏正基中低线(无差异)(260~300)较大较低负(180~(有差异)250)负很大(>270)大(>250)很高最小(30~40<2.3最小<2.3中等中等2.3~14~232.65偏低中等20±低1.83~最高3.45高一般d0>d0≤d0(正常斜率)油页岩砂岩尖状高低~中中值中值1.81~K、U较高低~很低2.86Th偏低纯气0.1纯油0.12低K、U较高Th偏低<1.4中低60°~4.65(不向大移)140°4~10谱峰向大移可动烃高(1.0)较高高高高>1.4≤d0低最低中值孔油层较高(正差异)隙性砂中值较高~岩油水(微正差中储层异)层低水层(负差异)低很高很高中负较高上高下低负幅大类似微电极较低谱峰向大移60°~K、U较高1.4~1.52~4Th低可动烃高140°K、U低Th偏低峰移少可动烃低60°~2~4140°<d0偏低较低大(>250)较低较低16~18(类似补偿密度数值)盐水1.64淡水0.36低≥1.4<d0稍高中值低低(负差异)较高(有差异)低平负幅最大大不规则(>250)低较大块状高(190~(有差异)240)低低<1.4低,无可动80°~60~80<d0烃120°高较高砾岩高峰状高高高负幅大较高低<15较低较低中低≥d0<<d0先5.6~缩径后升高6.4溶解4.6~4.8<d0升高最低(近于0)最低(近于0)很低不规则最低负(偶正)负(偶正)较高特小2.034.65低较低最高钾盐层很低不规则最低较高大2.6~2.868.51(最高)较小2.35最大2.98小1.8~2.6很高K最高Th、U低很高泥膏岩高尖状高尖状(无差异)高值(无差异)较高(近无差异)高(有差异)高(无差异)高较高高尖状偏正较小(165~175)高较低最低(<0.5)3.99较低低(5~15)4.14.2~6.35≥d0(硬石膏高高块状偏正一般负(偶正)正或稍偏负很高负幅大,(700~不规则3000Ω.m)5~5.05≥d0白垩土较高较高较高≥d60°~120°<1.6<60°正常斜率)泥灰岩次高较高次高较低很小(≤160)很低0~3大2.71高较高>107.5~9.2≈d0石灰岩高高高4.8~较低很低5.2(10~30)(近于0)(5.08)≤d0偏高测井项目地层岩性微电极0.4m电位感应双感应八侧向4m(底)电阻低~较低较低自然电位双侧向声波时差μ/m中子伽马API补偿中子%密度补偿密体积密度度33g/cmg/cm小光电截面巴/电子自然伽马API特低(<2)低自然伽马能谱APIC/O能谱核磁共振(T2驰豫)介相位(ΔQ)电常数(ε)井径井温流体密度Ⅰ类低~较低裂缝性Ⅱ类储层Ⅲ类低~较低较低较低负幅大低较大(明显)(有正差)(>170)负(不规则)负(不规则)负幅大(不规则)负(不规则)偏负(不规则)偏正较大中低(>160~(微差异)170)中低较大(微差异)(>160)最高≥3000Ω.m高(>100)最小(150)最小(150)低低较低较低低较小(2~3)低含气(裂缝带见时高高峰值)1.77~1.6一般>d0(含气(随含偏低≥d0含水≈d0性质偏高)而变)流体中低高(常无差异)高(常无差异)中低中低中低偏低低中等(≥3)较低(10~30)6.8~10白云岩高高高低中2~21大2.873~3.6(类似补偿密度数值)低<1.6<60°≤d0偏高燧石岩高较高高1.81特低-2.85~-3.41.83低较低4.65≤d0偏高安山、玄高武岩(微差异)中(常无差异)中(常无差异)“异电于度正”位微差微大梯高很高很高~高中值高(100~(180~200Ω.m)200)较低较大2.47~2.87中低2.12~2.2较大2.67与地层含气量、含泥量密切相关测地层的中子孔隙度(%)测地层体积密度ρb低(1~4)<60°≥d0稍偏高高岭土中值中值中值较高≥d0花岗岩高很高感电率则导低应阻高电率“正差异”深感应>中感应>八侧向最高不规则油气层正差异,深>浅侧向很小致密层、钙尖层时差小很低-2.78高(>15~20)<60°≈d0偏高不规则备注说明电阻率、仪器探测深度、温压等影响;2、“碳氧比(C/O)”是一种重要的直接找油的测井方法。

测井曲线划分油水层知识讲解

测井曲线划分油水层知识讲解

测井曲线划分油水层石油知识:测井曲线划分油、气、水层(多学点,没坏处)油、气、水层在测井曲线上显示不同的特征:(1)油层:声波时差值中等,曲线平缓呈平台状。

自然电位曲线显示正异常或负异常,随泥质含量的增加异常幅度变小。

微电极曲线幅度中等,具有明显的正幅度差,并随渗透性变差幅度差减小。

长、短电极视电阻率曲线均为高阻特征。

感应曲线呈明显的低电导(高电阻)。

井径常小于钻头直径。

(2)气层:在自然电位、微电极、井径、视电阻率曲线及感应电导曲线上气层特征与油层相同,所不同的是在声波时差曲线上明显数值增大或周波跳跃现象,中子、伽玛曲线幅度比油层高。

(3)油水同层:在声波时差、微电极、井径曲线上,油水同层与油层相同,不同的是自然电位曲线比油层大一点,而视电阻率曲线比油层小一点,感应电导率比油层大一点。

(4)水层:自然电位曲线显示正异常或负异常,且异常幅度值比油层大;微电极曲线幅度中等,有明显的正幅度差,但与油层相比幅度相对降低;短电极视电阻率曲线幅度较高而长电极视电阻率曲线幅度较低,感应曲线显示高电导值,声波时差数值中等,呈平台状,井径常小于钻头直径。

2、定性判断油、气、水层油气水层的定性解释主要是采用比较的方法来区别它们。

在定性解释过程中,主要采用以下几种比较方法:(1)纵向电阻比较法:在水性相同的井段内,把各渗透层的电阻率与纯水层比较,在岩性、物性相近的条件下,油气层的电阻率较高。

一般油气层的电阻率是水层的3倍以上。

纯水层一般应典型可靠,一般典型水层应该厚度较大,物性好,岩性纯,具有明显的水层特征,而且在录井中无油气显示。

(2)径向电阻率比较法:若地层水矿化度比泥浆矿化度高,泥浆滤液侵入地层时,油层形成减阻侵入剖面,水层形成增阻侵入剖面。

在这种条件下比较探测不同的电阻率曲线,分析电阻率径向变化特征,可判断油、气、水层。

一般深探测电阻率大于浅探测电阻率的岩层为油层,反之则为水层,有时油层也会出现深探测电阻率小于浅探测电阻率的现象,但没有水层差别那样大。

测井曲线划分油水层

测井曲线划分油水层

石油知识:测井曲线划分油、气、水层(多学点,没坏处)油、气、水层在测井曲线上显示不同的特征:(1)油层:声波时差值中等,曲线平缓呈平台状。

自然电位曲线显示正异常或负异常,随泥质含量的增加异常幅度变小。

微电极曲线幅度中等,具有明显的正幅度差,并随渗透性变差幅度差减小。

长、短电极视电阻率曲线均为高阻特征。

感应曲线呈明显的低电导(高电阻)。

井径常小于钻头直径。

(2)气层:在自然电位、微电极、井径、视电阻率曲线及感应电导曲线上气层特征与油层相同,所不同的是在声波时差曲线上明显数值增大或周波跳跃现象,中子、伽玛曲线幅度比油层高。

(3)油水同层:在声波时差、微电极、井径曲线上,油水同层与油层相同,不同的是自然电位曲线比油层大一点,而视电阻率曲线比油层小一点,感应电导率比油层大一点。

(4)水层:自然电位曲线显示正异常或负异常,且异常幅度值比油层大;微电极曲线幅度中等,有明显的正幅度差,但与油层相比幅度相对降低;短电极视电阻率曲线幅度较高而长电极视电阻率曲线幅度较低,感应曲线显示高电导值,声波时差数值中等,呈平台状,井径常小于钻头直径。

2、定性判断油、气、水层油气水层的定性解释主要是采用比较的方法来区别它们。

在定性解释过程中,主要采用以下几种比较方法:(1)纵向电阻比较法:在水性相同的井段内,把各渗透层的电阻率与纯水层比较,在岩性、物性相近的条件下,油气层的电阻率较高。

一般油气层的电阻率是水层的3倍以上。

纯水层一般应典型可靠,一般典型水层应该厚度较大,物性好,岩性纯,具有明显的水层特征,而且在录井中无油气显示。

(2)径向电阻率比较法:若地层水矿化度比泥浆矿化度高,泥浆滤液侵入地层时,油层形成减阻侵入剖面,水层形成增阻侵入剖面。

在这种条件下比较探测不同的电阻率曲线,分析电阻率径向变化特征,可判断油、气、水层。

一般深探测电阻率大于浅探测电阻率的岩层为油层,反之则为水层,有时油层也会出现深探测电阻率小于浅探测电阻率的现象,但没有水层差别那样大。

测井曲线油气水层识别概要

测井曲线油气水层识别概要

油、气、水层在测井曲线上显示不同的特征:(1油层:声波时差值中等,曲线平缓呈平台状。

自然电位曲线显示正异常或负异常,随泥质含量的增加异常幅度变小。

微电极曲线幅度中等,具有明显的正幅度差,并随渗透性变差幅度差减小。

长、短电极视电阻率曲线均为高阻特征。

感应曲线呈明显的低电导(高电阻。

井径常小于钻头直径。

(2气层:在自然电位、微电极、井径、视电阻率曲线及感应电导曲线上气层特征与油层相同,所不同的是在声波时差曲线上明显数值增大或周波跳跃现象,中子、伽玛曲线幅度比油层高。

(3油水同层:在声波时差、微电极、井径曲线上,油水同层与油层相同,不同的是自然电位曲线比油层大一点,而视电阻率曲线比油层小一点,感应电导率比油层大一点。

(4水层:自然电位曲线显示正异常或负异常,且异常幅度值比油层大;微电极曲线幅度中等,有明显的正幅度差,但与油层相比幅度相对降低;短电极视电阻率曲线幅度较高而长电极视电阻率曲线幅度较低,感应曲线显示高电导值,声波时差数值中等,呈平台状,井径常小于钻头直径。

2、定性判断油、气、水层油气水层的定性解释主要是采用比较的方法来区别它们。

在定性解释过程中,主要采用以下几种比较方法:(1纵向电阻比较法:在水性相同的井段内,把各渗透层的电阻率与纯水层比较,在岩性、物性相近的条件下,油气层的电阻率较高。

一般油气层的电阻率是水层的3倍以上。

纯水层一般应典型可靠,一般典型水层应该厚度较大,物性好,岩性纯,具有明显的水层特征,而且在录井中无油气显示。

(2径向电阻率比较法:若地层水矿化度比泥浆矿化度高,泥浆滤液侵入地层时,油层形成减阻侵入剖面,水层形成增阻侵入剖面。

在这种条件下比较探测不同的电阻率曲线,分析电阻率径向变化特征,可判断油、气、水层。

一般深探测电阻率大于浅探测电阻率的岩层为油层,反之则为水层,有时油层也会出现深探测电阻率小于浅探测电阻率的现象,但没有水层差别那样大。

(3邻井曲线对比法:将目的层段的测井曲线作小层对比,从中分析含油性的变化。

测井曲线划分油气水层

测井曲线划分油气水层

油、气、水层在测井曲线上显示不同的特征:1油层:声波时差值中等,曲线平缓呈平台状;自然电位曲线显示正异常或负异常,随泥质含量的增加异常幅度变小;微电极曲线幅度中等,具有明显的正幅度差,并随渗透性变差幅度差减小;长、短电极视电阻率曲线均为高阻特征;感应曲线呈明显的低电导高电阻;井径常小于钻头直径;2气层:在自然电位、微电极、井径、视电阻率曲线及感应电导曲线上气层特征与油层相同,所不同的是在声波时差曲线上明显数值增大或周波跳跃现象,中子、伽玛曲线幅度比油层高;3油水同层:在声波时差、微电极、井径曲线上,油水同层与油层相同,不同的是自然电位曲线比油层大一点,而视电阻率曲线比油层小一点,感应电导率比油层大一点;4水层:自然电位曲线显示正异常或负异常,且异常幅度值比油层大;微电极曲线幅度中等,有明显的正幅度差,但与油层相比幅度相对降低;短电极视电阻率曲线幅度较高而长电极视电阻率曲线幅度较低,感应曲线显示高电导值,声波时差数值中等,呈平台状,井径常小于钻头直径;2、定性判断油、气、水层油气水层的定性解释主要是采用比较的方法来区别它们;在定性解释过程中,主要采用以下几种比较方法:1纵向电阻比较法:在水性相同的井段内,把各渗透层的电阻率与纯水层比较,在岩性、物性相近的条件下,油气层的电阻率较高;一般油气层的电阻率是水层的3倍以上;纯水层一般应典型可靠,一般典型水层应该厚度较大,物性好,岩性纯,具有明显的水层特征,而且在录井中无油气显示;2径向电阻率比较法:若地层水矿化度比泥浆矿化度高,泥浆滤液侵入地层时,油层形成减阻侵入剖面,水层形成增阻侵入剖面;在这种条件下比较探测不同的电阻率曲线,分析电阻率径向变化特征,可判断油、气、水层;一般深探测电阻率大于浅探测电阻率的岩层为油层,反之则为水层,有时油层也会出现深探测电阻率小于浅探测电阻率的现象,但没有水层差别那样大;3邻井曲线对比法:将目的层段的测井曲线作小层对比,从中分析含油性的变化;这种对比要注意储集层的岩性、物性和地层水矿化度等在横向上的变化,如下图所示;4最小出油电阻率法:对某一构造或断块的某一层组来说,地层矿化度一般比较稳定,纯水层的电阻率高低主要与岩性、物性有关,所以若地层的岩性物性相近,则水层的电阻率相同,当地层含油饱和度增加,地层电阻率也随之升高;比较测井解释的真电阻率与试油结果,就要以确定一个电性标准最小出油电阻率,高于电性标准是油层,低于电性标准的是水层;从而利用地层真电阻率感应曲线所求的电阻率和其它资料,可划分出油气、水层;但是应用这种方法时,必须考虑到不同断块、不同层系的电性标准不同,当岩性、物性、水性变化,则最小出油电阻也随之变化;5判断气层的方法:气层与油层在许多方面相似,利用一般的测井方法划分不开,只能利用气层的“三高”特点进行区分;所谓“三高”即高时差值或出现周波跳跃;高中子伽马值;高气测值甲烷高,重烃低;根据油、气、水层的这些曲线特征和划分油、气、水层的方法,就可以把一般岩性、简单明显的油、气、水层划分出来;注解:周波跳跃现象:声波测井在含气裂缝性地层处的典型响应特征;裂缝和气显示强烈,声波会周波跳跃;当遇到气层时候,声波时差会引起周波跳跃;挖掘效应:挖掘效应是气层段中子与密度曲线交叉,分开明显的曲线特征;周波跳跃现象 挖掘效应井下地层是由各类岩石组成,不同的岩石具有不同的物理化学性质,为了研究各类岩石的物理性质及井下地层是否含有石油天然气和其他有用矿产,建立了一门实用性很强的边缘学科---地球物理测井学,简称“测井”,它以地质学、物理学、数学为理论基础,采用计算机信息技术、电子技术及传感器技术,设计出专门的测井仪器,沿着井身进行测量,得出地层的各种物理、化学性质、地层结构及井身几何特性等各种信息,为石油天然气勘探、油气田开发提供重要数据和资料;测井的井场作业如图所示,由测井地面仪器、绞车和电缆组成,通过电缆把下井仪器放到井底,在提升电缆过程中进行测量;概述分类主要方法应用" alt="地球物理测井概述分类主要方法应用" src=""width=1 height=1 real_src="" eventslistuid="e4">第一节:概述普通电阻率测井就是把一个电极系放入井内,测量井内岩层电阻率变化,用以研究地质剖面、判断油气水层;又称视电阻率测井;内容:梯度电极系、电位电极系、微电极测井主要任务:通过测井岩石电阻率的差别来区分岩性、划分油气水层,进行剖面地层对比等; 岩石电阻率一、岩石电阻率与岩性的关系不同岩性的岩石,电阻率不同;主要造岩矿物的电阻率很高,石油的电阻率很高,几乎不导电;沉积岩是靠岩石孔隙中所含地层水中的离子导电的;二、岩石电阻率与地层水性质的关系岩石骨架:组成沉积岩的造岩矿物的固体颗粒部分;沉积岩的导电能力主要取决于其孔隙中的地层水的性质—地层水电阻率;1.地层水电阻率与含盐类化学成分的关系2.地层水Rw与矿化度Cw的关系:反比与温度的关系:反比三、含水岩石电阻率与孔隙度的关系地层因素F:完全含水100%含水岩石的电阻率Ro与地层水电阻率的比值;即F=Ro/Rw该比值只与岩石的孔隙度、胶结情况和孔隙结构有关,与Rw无关;实验证明:F=a/φm其中:a—与岩性有关的系数,;m—胶结指数,随岩石胶结程度不同而变化,;例:某油田第三系一含水砂岩的电阻率为欧姆.米,地层水电阻率为欧姆.米;试求该层的孔隙度;a=,m=解:F=Ro/Rw==6F=a/φm=φ得,φ=32%四、含油岩石电阻率Rt与含油饱和度So的关系电阻增大系数I:含油岩石的电阻率与该岩石完全含水时电阻率的比值;即I=Rt/Ro对一定的岩样,该比值只与岩样的含油饱和度有关,与Rw、φ及孔隙形状无关;实验证明:I=Rt/Ro=b/Swn=b/1-Son其中:b-系数,与岩性有关n—饱和度指数,与岩性有关;例:已知某砂岩层的电阻率为14欧姆.米,地层水电阻率Rw为欧姆.米;地层孔隙度为25%;求含油饱和度So.a=b=1,m=n=2解:由F=Ro/Rw=1/φ2得Ro=Rw/φ2=2=由I=Rt/Ro=1/Sw2得Sw=Ro/Rt=14=%So=1-Sw=%=%普通电阻率测井原理一、均匀介质中电阻率的测量原理1.均匀介质中电阻率R、电流强度I与电位U的关系R=4пrU/I其中,I—点电源的电流强度U—距点电源距离为r点处的电位2.均匀介质电阻率的测量原理Rt=KΔU/I其中,K—电极系系数,只与电极系结构尺寸有关ΔU—测量电极M、N之间的电位差二、非均匀介质电阻率的测量1.泥浆侵入冲洗带:侵入带:原状地层:泥浆侵入类型:泥浆高侵:是指冲洗带电阻率Rxo明显高于地层电阻率Rt.淡水泥浆钻井的水层多位泥浆高侵;泥浆低侵:是指冲洗带电阻率Rxo明显小于地层电阻率Rt;油层多为泥浆低侵或侵入不明显;2.视电阻率RaRa=KΔU/I三、电极系按一定顺序排列的一组电极;由供电电极和测量电极组成;成对电极不成对电极单电极1.梯度电极系:在电极系的三个电极中,成对电极间距离最小的电极系; 分为:顶部梯度电极系—成对电极在不成对电极之上的梯度电极系;底部梯度电极系—之下理想梯度电极系:成对电极之间距离无限小时的梯度电极系;记录点O:在成对电极的中点上;即AB或MN的中点;电极距L:记录点到单电极之间的距离;L=OA或OM2.电位电极系:在电极系的三个电极中,成对电极之间距离较大的电极系; 理想电位电极系:成对电极之间距离无限大时的电极系;记录点O:单电极同与它最近的成对电极的中点上;即AM的中点;电极距L:单电极到与它最近的电极之间的距离,L=AM;3.电极系的表示法:符号法图示法4.电极系的探测深度:探测半径r在均匀介质中,电位电极系:r=2L梯度电极系:r=视电阻率曲线的特点及其影响因素一、梯度电极系理论曲线1.理想梯度电极系视电阻率简化公式对理想梯度电极系,MN→0,其视电阻率公式可简化为:Ra=4п.AO2Eo/I在记录点,Eo=所以,Ra=Rojo/joj其中,joj=I/4п.AO2,为均匀介质中记录点处的电流密度,常数;上式表明,在测量条件不变的情况下,所测的Ra与记录点处的电流密度、电阻率成正比; 对一定的地层来讲,记录点处的电流密度jo是引起视电阻率变化的主要因素,分析Ra曲线变化,主要分析jo变化即可;2.梯度电极系曲线特点图2-9,2-10,2-111Ra曲线对地层中部不对称,对高祖层,底部梯度电极系的Ra曲线在高阻层的底界面显示极大值,顶界面显示极小值;顶部梯度电极系则正好相反;2地层厚度很大时,对着地层中部Ra曲线出现一个直线段,其幅度值接对应地层的真电阻率Rt;3对厚度大于电极距的中厚层,其视电阻率曲线形状与厚层相似;但随厚度变薄,地层中部的直线段变小直至消失,幅度变小;二、电位电极系Ra曲线图2-12由图2-12可看出:1.电位电极系的Ra曲线对地层中部对称;曲线对着地层中点取值;当厚度h大于电极距L时,对应地层中点,Ra呈现极大值,且h越大,极大值月接近Rt;当h<L时,对应地层中点,Ra呈现极小值,不反映地层Rt的变化;要求:实际工作中使用的电位电极系的电极距小于要求划分地层的最小厚度;四、Ra曲线的影响因素1.电极系的影响不同电极系,其电极距不同,探测深度不同,泥浆、围岩等的影响不同,曲线也就不同;2.井的影响—井内泥浆Rm的影响见图2-14实际工作中,要求Rm>5Rw;3.围岩—层厚的影响4.泥浆侵入影响:高侵,使Ra增大;低侵使Ra减小;5.高阻邻层的屏蔽影响:增阻屏蔽影响视电阻率曲线的应用一、划分岩性剖面在砂泥岩剖面,利用Ra曲线的幅度差异将高阻层分辨出来,然后参考SP曲线,将显示负异常的高阻层段划分出来即为渗透层;二、求岩层的电阻率三、求岩层的孔隙度首先在Ra曲线上找出厚度很大的含水纯地层,取其Ra值,经过相应校正作为Ro,再通过水样化验或其它资料求得Rw,然后利用阿尔奇公式F=Ro/Rw,F=fφ关系求得φ;四、求含油饱和度由孔隙度测井Δt、ρ中子→F →Ro=FRw Rt →So球物理测井的分类:分为电法测井和非电法测井两种;1、电法测井:a:视电阻率、b:微电极、c:自然电位、d:微球型聚焦、e:感应测井、f:侧向测井、g:电磁波传播测井;2、非电法测井:a:声速测井、b:自然伽玛测井、c:中子测井、d:密度测井,e:井径、f:井斜、g:井温、h:地层倾角HDT、I:地层压力RFT、j:垂直地震测井VSP第二节:电法测井一、视电阻率曲线:测井时将电极系放入井下,在上提过程中测量记录一条△Vmn电位差随井深变化的曲线,称为视电阻率曲线;梯度电极系:成对电极间的距离小于不成对电极到靠近它的一个成对电极间的距离的电极系称为梯度电极系;电位电极系:成对电极间的距离大于不成对电极到靠近它的一个成对电极间的距离的电极系称为梯度电极系;底部梯度电极系在高阻层测井曲线的形状特点如下:1对着高阻层视电阻率升高,但曲线不对称于地层中点,高阻层顶界面、底界面分别在极小值、极大值的1/2mn处;2对于厚层、地层中部附近曲线出现平直或变化平缓,随地层减薄平直段缩短直至消失,该处视电阻率值接近地层真电阻率;3对于薄层,在高阻层底界面以下一个电极处,在视电阻率曲线上出现一个“假极大”,极小也比原层上移;视电阻率曲线的应用:1、划分岩层界面:利用底部梯度电极系视电阻率曲线划分岩层界面的原理是高阻层顶界面底界面位于视电阻率曲线极小值极大值以下1/2MN处;2、判断岩性:在砂泥岩剖面中,当地层水含盐浓度不是很大时,砂岩电阻率大于泥岩的电阻率,粉砂岩泥质砂岩、砂质泥岩介于它们之间;但视电阻率曲线无法区分灰岩和拉拉扯扯云岩,它们的电阻都非常大;3、地层对比和定性判断油水层:对于同一储层,如果底部梯度幅度高于4m底部梯度梯度测井曲线幅度该层可能为水层,反之则为水层;二:微电极测井微电极测井:利用特制的短电极系帖附井壁,测量井壁附近的岩层电阻率的一种测井方法叫微电极测井;微电极测井曲线的应用:1、详细划分地层:地层界面一般在曲线的转折点或半幅点2、划分渗透层,判断岩性:微电极曲线在渗层上显示正幅度差,数值中等,地层渗透率越好,二者的幅度差越大,因此可以根据微电极曲线的幅度差判断地层的渗透性好坏;各种岩性的微电极曲线特征如下:1泥岩和粘土,为非渗生地层,没有幅度差,值很低;2渗透性砂岩:渗透性砂岩在微电极曲线上显示中等幅度和较大正异常,对于含油砂岩,由于冲洗带孔隙中有残余油存在,在其它条件相同的条件下,含油砂岩比含水砂岩有较高的幅度和幅度差;3致密砂岩:渗透性很差,在微电砐曲线上读数很高,曲线呈剧齿状钙质砂岩薄层在曲线上呈“刺刀状”的突起;4渗透性灰岩:渗性灰岩与渗透性砂岩相近,但曲线幅度更高;5致密灰岩:与致密砂岩相近,曲线幅度高,呈锯齿状,并有正负不定的差异;6石膏或硬石膏:石膏或硬石膏地层电阻率高,井壁无泥饼,曲线与石灰岩相似;7盐岩:盐岩地层易溶于泥浆,使井径扩大,微电极曲线幅度低;8油面岩:油面岩处微电极曲线呈锯齿状,并且大多数为负差异,曲线幅度高于泥岩;三:自然电位测井自然电位测井:沿井剖面测量自然电位变化叫自然电位测井;影响自然电位曲线异常幅度的因素:1岩性、地层水与泥浆含盐度比值的影响;2地层厚度、井径的影响;3止的层电阻率,泥浆电阻率的影响;4泥浆侵入带的影响;自然电位曲线的应用:1、自然电位曲线在砂泥岩剖面中的应用:1划分岩层界面:从自然电位曲线特点可知,当地层厚度大于四倍井径时,自然电位曲线异常幅度的半幅点为渗透层的顶底界,岩层变薄,则划分不准;2分析岩性、确定渗透层;当地层水含盐浓度大于泥浆含盐浓度时,测得自然电位曲线是以泥岩为斟线,对着渗透性砂岩则为负异常,渗透性越好则异常越大;3判断油、水层;当地层水含盐浓度大于泥浆含盐浓度时,油、水层在自然电位曲线上均为负异常,在其它条件相同的情况下,含油气砂岩的幅度比含水砂岩要小些;4判断水淹层:水淹层在自然电位曲线上的显示特点较多,如基线偏移等;5求地层水电阻率和储层的泥质含量;2、自然电位曲线在碳酸盐岩地层中不能反映地层孔隙度和渗透率的好坏;3、不能反映膏盐岩剖面地层的岩性;四:侧向测井侧向测井也叫聚焦测井,它的电极系除主电极外,上下设置了两个屏蔽电极,降低井内泥浆及围岩和高阻邻层的影响;侧向测井的应用:1、划分岩层界面:侧向测井受井眼、层厚、邻层等的影响较小,分层能力较强;2、判断油水层:当深浅侧向重叠显示为正差异即深侧向曲线幅度高于浅侧向曲线幅度为油层,反之遇为水层;3、配合其它曲线在碳酸盐岩地层剖面划分储集层;如电阻率曲线较低值时可能为储集层;4、求地层真电阻率;五:微球型聚焦测井普2型、CSU微球型聚焦测井的应用:划分渗透层,利用冲冼带电阻率曲线和泥饼电阻率曲线的幅度差可以划分渗透层,比微电极明显;六:感应测井感应测井:应是利用电磁感应的原理测量地层电导率的一种测井方法;感应测井曲线的应用:1、确定岩性,划分岩层界面:在砂泥岩地层剖面中,感应曲线反映井剖面地层电性的变化较为清楚,当地层厚度大于2米时,感应测井按半幅点确定地层界面,当地层厚度小于2米时,地层界面不在半幅点处,一般不用感应曲线单独分层;2、定性估计油、水层:在淡水钻井液,侵入较浅,地层较厚的条件下,利用感应曲线测得的视电阻率接近地层真电阻率,根据渗透性砂岩视电阻率数值的大小,配合其它曲线能够估计油层和水层;3、求地层真电阻率;第三节:非电法测井一:声速测井声速测井是测量地层声波传播速度,主要用来判断岩性、求孔隙度和判断气层;1、声波时差测井曲线的特点:1、对于岩性均匀的厚地层砂岩或石灰岩曲线上下对称,在岩层中部曲线显示平行于井轴的直线,并且曲线的半幅点与岩层界面相对应;2、致密砂岩、渗透性砂岩、泥质砂岩、粉砂岩、泥岩等不同岩性,显示不同的声波时差数值;3、界面处井径严重扩大时,由于同一个滑行波的首波到达两个接收探头时在泥浆中的路程不等,故在岩层下界面处时差增大,曲线出现增高的尖峰;在岩层上界面处时差减小,曲线出现减低的小峰;2、声波时差曲线的应用:1、判断岩性:各种岩性地层其声波速度是不同的,并且有不同的曲线特征,因此可以根据岩层的声波时差和曲线特征判断岩性;在砂泥岩剖面中,粘土泥岩的声波时差较大350-500微秒/米并且曲线变化剧烈;砂岩时差250-450微秒/米曲线较平直,时差大小与孔隙大小有关;碳酸盐岩地层曲线平直时差值较低,缝洞地层曲线变化剧烈,值增大;膏盐岩剖面的盐比无水石膏声波时差大,盐溶解井径扩大,测的可能是泥浆的声波时差;2气层:气层在声波时差上显示的高时差特征或周波跳跃,但泥浆侵入较深时不一定明显; 3岩层孔隙度;二:声幅测井声幅测井:用声波幅度的衰减变化来认识地层特点及水泥胶结情况的测井方法;用来进行固井质量检查测井;三:自然伽玛测井自然伽玛测井:就是测量井剖面上各深度地层的自然伽玛射线强度的一种测井方法;自然伽玛测井应用:1、确定岩性:在砂泥岩剖面中,纯砂岩在自然伽玛显示为最低值幅度最小,泥岩显示为最高值幅度最大,泥质砂岩、粉砂岩介于中间,并随着砂岩中泥质含量的增加而自然伽玛读数增高;在碳酸盐岩地层剖面中,沾土岩泥岩的自然伽玛读数最高,纯灰岩、折云岩读数最低,而泥灰岩泥质白云岩介于两者之间,并随泥质含量的增加而增高;2、地层对比:利用自然伽玛测井曲线进行地层对比有下列优点:1自然伽玛测井值与岩石孔隙中的流体性质油或水无关;2自然伽玛测井值与地层水和泥浆的矿化度无关;3自然伽玛曲线容易找到标准层;四:中子测井中子测井:就是使用中子源发射一定能量的中子流,中子穿过泥浆井入地层,中子的能量逐渐衰减,最后减速为热中子,热中子被岩石的原子核俘获,便放出伽玛射线,选用不同的探测器,记录俘获前的热中子或超热中子的方法叫中子测井;五:中子测井的作用:a判断岩性,在砂泥岩剖面中假设地层水矿化度较低,泥岩的中子伽玛值低,砂岩的值高;在碳酸盐岩地层中,致密灰岩、白云岩的中子曲线幅度较高,孔隙性、裂缝性岩层承受孔隙度和泥质含量的增大而其幅度降低;b划分气层:若储集层含气时,中子伽玛测井曲线的幅度将明显升高;c划分油水层:当地层水矿化度低时,用中子伽玛测井曲线将很难划分油水界面;但当地层水矿化度高时,水层中中子伽玛值要比油层高15-20%,利用中子伽玛可划分油水层;d定位射孔计算深度;e确定地层也隙度:在地层水矿化度不高和泥浆含氯量较少的地层,用中子伽玛可以确定地层孔隙度;六:密度测井密度测井:密度测井是一种孔隙度测井,它是通过测量伽玛源发射的伽玛射线被地层散射后到达探测器的强度,来反映岩层体积密度的一种方法;作用:在油气井中密度测井的主要作用是确定岩层的孔隙度;七:井径测井井径测井:就是测量井径大小的测井方法;作用:1为固井计算水泥量提供平均井径;2划分剖面,判断岩性;A:泥岩井径出现扩大现象,在井径曲线上一般大于钻头直径;B:页岩对于泥质页岩,井径稍大于或接近于钻头直径,但对于膨胀性面岩井径却小于钻头直径;C:砂岩由于渗透性好,有泥饼行成,井径曲线一般小于钻头直径;曲线光滑平直;D:粉砂岩在井径曲线上的显示介于砂岩和泥岩之间;E:砾岩和砾石层致密坚硬砾岩井拚接近于钻头直径,砾石层会因胶结不紧井径会扩大;G:石灰岩和白云岩致密坚硬的石灰岩和白云岩井径等于钻头直径,含泥质的石灰岩、白云岩井径略有扩大,孔隙性、渗透性灰岩白云岩井径略小,裂缝性石灰岩、白云岩因井径不规则,井径曲线上呈锯齿状变化;H:盐岩,在膏盐岩剖面由于盐岩易溶于泥浆井径重扩径.I:石膏井径等于钻头直径,或因溶解井径圹大.3判断渗透层;根据井径的缩径现象可反渗透层在井径曲线上划分出来.八:井斜测井井斜:井斜倾角是指井轴和铅垂线之间的夹角;方位角:是磁北方向与井轴的水平投影线之间按顺时针方向的夹角;九:井温测量用井温仪测定井下温度的变化,井下温度随井深变化的曲线叫做井温曲线;十:地层倾角测井 HDT测量地层的倾角和倾向的测井方法;作用是判断地层倾角、倾向、断层等;十一:地层压力测井RFT测量地层压力的方法;第四节:测井资料的综合利用一:标准测井曲线的应用一、在绘制综合录井图中的应用1、确定岩性,划分地层界面:在砂泥岩剖面,非渗透性泥质岩地层在自然电位曲线上显示为基值,砂岩随其渗透性的不同,地层水矿化度的变化,显示幅度不同的正、负异常;泥岩在视电阻率曲线上显示最低值致密砂岩灰质砂岩、石英砂岩等电阻率最高,渗透性砂岩电阻率较高,但在地层水矿化度很高时,也可能在曲线上显示出较底的电阻率值;泥质砂岩,粉砂岩在标准曲线上的显示是界于砂岩和泥岩之间,页岩的电阻率较泥岩高些,但自然电位曲线显示与泥岩相同;利用井径曲线一般可以把砂质和泥质的岩层区分开来,泥质岩层在井径曲线上表现为井径扩大大于钻头直径砂质岩层在其是渗透性好的砂岩在井径曲线上显示为缩径小于钻头直径或近等于钻头直径;利用标准曲线划分地层界面时两条曲线要综合考虑,一般以米底部梯度电极系视电阻率曲线的极大值为准并参考自然电位曲线的半幅点来划分岩层底界面,以米底部梯度电极系的视电阻率曲线的极小值和自然电位曲线的半幅点来划分岩层顶界面;高阻层被划分出来了,低阻层也相应的被划分出来了,但对于一些特殊岩性和有意义的薄层在标准曲线上不能很好的反映出来,可根据微电极曲线划分界面;2、估计油、水层:根据标准曲线判断油气水层往往拫粗略,在相同条件下,油气层的视电阻率曲线比水层的视电阻率高,所以结合录井资料,比较渗透层视电阻率数值的大小要以估计油气、水层;目前现场绘制砂泥岩综合录井图时,还要参考组合测井图,以确定岩性和判断油气水层;二、在地层对比中的应用:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用测井曲线判断划分油、气、水层
测井资料是评价地层、详细划分地层,正确划分、判断油、气、水层依据;从渗透层中区分出油、气、水层,并对油气层的物性及含油性进行评价是测井工作的重要任务,要做好解释工作,必须深入实际,掌握油气层的地质特点和四性关系(岩性、物性、含油性、电性),掌握油、气、水层在各种测井曲线上显示不同的特征。

1、油、气、水层在测井曲线上显示不同的特征:
(1)、油层:
微电极曲线幅度中等,具有明显的正幅度差,并随渗透性变差幅度差减小。

自然电位曲线显示正异常或负异常,随泥质含量的增加异常幅度变小。

长、短电极视电阻率曲线均为高阻特征。

感应曲线呈明显的低电导(高电阻)。

声波时差值中等,曲线平缓呈平台状。

井径常小于钻头直径。

(2)、气层:在微电极、自然电位、井径、视电阻率曲线及感应电导曲线上气层特征与油层相同,所不同的是在声波时差曲线上明显的数值增大或周波跳跃现象,中子伽玛曲线幅度比油层高。

(3)、油水同层:在微电极、声波时差、井径曲线上,油水同层与油层相同,不同的是自然电位曲线比油层大一点,而视电阻率曲线比油层小一点,感应电导率比油层大一点。

(4)、水层:微电极曲线幅度中等,有明显的正幅度差,但与油层相比幅度相对降低;自然电位曲线显示正异常或负异常,且异常幅度值比油层大;短电极视电阻率曲线幅度较高而长电极视电阻率曲线幅度较低,感应曲线显示高电导值,声波时差数值中等,呈平台状,井径常小于钻头直径。

2、定性判断油、气、水层
油气水层的定性解释主要是采用比较(对比)的方法来区别它们。

在定性解释过程中,主要采用以下几种比较方法:
(1) 纵向电阻比较法:在水性相同的井段内,把各渗透层的电阻率与纯水层比较,在岩性、物性相近的条件下,油气层的电阻率较高。

一般油气层的电阻率是水层的3倍以上。

纯水层一般应典型可靠,一般典型水层应该厚度较大,物性好,岩性纯,具有明显的水层特征,而且在录井中无油气显示。

(2) 径向电阻率比较法:若地层水矿化度比泥浆矿化度高,泥浆滤液侵入地层时,油层形成减阻侵入剖面,水层形成增阻侵入剖面。

在这种条件下比较探测不同的电阻率曲线,分析电阻率径向变化特征,可判断油、气、水层。

一般深探测电阻率大于浅探测电阻率的岩层为油层,反之则为水层,有时油层也会出现深探测电阻率小于浅探测电阻率的现象,但没有水层差别那样大。

(3) 邻井曲线对比法:将目的层段的测井曲线作小层对比,从中分析含油性的变化。

这种对比要注意储集层的岩性、物性和地层水矿化度等在横向上的变化,如下图所示。

(4) 最小出油电阻率法:对某一构造或断块的某一层组来说,地层矿化度一般比较稳定,纯水层的电阻率高低主要与岩性、物性有关,所以若地层的岩性物性相近,则水层的电阻率相同,当地层含油饱和度增加,地层电阻率也随之升高。

比较测井解释的真电阻率与试油结果,就要以确定一个电性标准(最小出油电阻率),高于电性标准是油层, 低于电性标准的是水层。

从而利用地层真电阻率(感应曲线所求的电阻率)和其它资料,可划分出油(气)、水层。

但是应用这种方法时,必须考虑到不同断块、不同层系的电性标准不同,当岩性、物性、水性变化,则最小出油电阻也随之变化。

(5) 判断气层的方法:气层与油层在许多方面相似,利用一般的测井方法划分不开,只能利用气层的“三高”特点进行区分。

所谓“三高”即高时差值(或出现周波跳跃);高中子伽马值;高气测值(甲烷高,重烃低)。

根据油、气、水层的这些曲线特征和划分油、气、水层的方法,就可以把一般岩性的、简单明显的油、气、水层划分出来。

相关文档
最新文档