高中数学对数-对数运算性质的运用
【高中数学】第六节 对数与对数函数
第六节对数与对数函数学习要求:1.理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数,了解对数在化简运算中的作用.2.理解对数函数的概念,理解对数函数的单调性,掌握对数函数图象通过的特殊点.3.知道对数函数是一类重要的函数模型.4.了解指数函数y=a x与对数函数y=log a x互为反函数(a>0,且a≠1).1.对数的概念(1)对数的定义:一般地,如果①a x=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作②x=logN ,其中③ a 叫做对数的底数,④N 叫做真数.a(2)几种常见的对数:对数形式特点记法一般对数底数为a(a>0,且a≠1) ⑤log a N常用对数底数为10 ⑥lg N自然对数底数为e ⑦ln N2.对数的性质与运算法则(1)对数的性质:a log a N=⑧N ;log a a N=⑨N .(a>0,且a≠1)(2)对数的重要公式:换底公式:⑩log b N =log a N(a,b均大于0且不等于1);log a b,log a b·log b c·log c d=log a d (a,b,c均大于0且不等于1,d大于相关结论:log a b=1log b a0).(3)对数的运算法则:如果a >0且a ≠1,M >0,N >0,那么 log a (MN )= log a M +log aN; log a MN = log a M -log a N ; log a M n = n log a M (n ∈R); lo g a m M n =nm log a M (m ,n ∈R,且m ≠0). 3.对数函数的图象与性质a >1 0<a <1图象性质定义域:(0,+∞) 值域:R图象恒过点(1,0),即x =1时,y =0 当x >1时,y >0; 当0<x <1时,y <0 当x >1时,y <0; 当0<x <1时,y >0 是(0,+∞)上的增函数 是(0,+∞)上的减函数4.反函数指数函数y =a x (a >0,且a ≠1)与对数函数 y =log a x (a >0,且a ≠1)互为反函数,它们的图象关于直线 y =x 对称. 知识拓展对数函数的图象与底数大小的比较如图,作直线y =1,则该直线与四个函数图象交点的横坐标为相应的底数,故0<c <d <1<a <b.由此我们可得到以下规律:在第一象限内,从左到右底数逐渐增大.1.判断正误(正确的打“√”,错误的打“✕”). (1)log a (MN )=log a M +log a N. ( ) (2)log a x ·log a y =log a (x +y ). ( )(3)log 2x 2=2log 2x. ( ) (4)若log a m <log a n ,则m <n. ( )(5)函数y =ln 1+x1-x 与函数y =ln(1+x )-ln(1-x )的定义域相同.( )(6)对数函数y =log a x (a >0,且a ≠1)的图象过定点(1,0),且过点(a ,1),(1a ,-1),其图象经过第一,四象限.( )答案 (1)✕ (2)✕ (3)✕ (4)✕ (5)√ (6)√ 2.log 525+1612=( )A.94 B.6 C.214 D.9答案 B log 525+1612=log 552+(42)12=2log 55+4=6.故选B . 3.下列各式中正确的是( )A.log a 6log a3=log a 2 B.lg 2+lg 5=lg 7 C.(ln x )2=2ln x D.lg √x 35=35lg x答案 D 对于A 选项,由换底公式得log a 6log a3=log 36=1+log 32,故A 错;对于B 选项,lg 2+lg 5=lg(2×5)=1,故B 错; 对于C 选项,(ln x )2=ln x ×ln x ≠2ln x ,故C 错;对于D选项,lg √x 35=lg x 35=35lg x ,故D 正确.故选D.4.(2020安徽月考)已知a =log 23,b =(12)12,c =(13)13,则a ,b ,c 的大小关系是 ( )A.a <b <cB.a <c <bC.b <c <aD.c <b <a 答案 D 因为a =log 23>log 22=1,0<b =(12)12<(12)0=1,0<c =(13)13<(13)0=1, 又b 6=(12)3=18,c 6=(13)2=19,所以b 6>c 6,所以b >c ,即c <b <a.故选D.5.(2020河北唐山第十一中学期末)函数f (x )=lg(x -2)的定义域为 ( )A.(-∞,+∞)B.(-2,2)C.[2,+∞)D.(2,+∞)答案 D 函数f (x )=lg(x -2)的定义域为x -2>0,即x >2,所以函数f (x )=lg(x -2)的定义域为(2,+∞),故选D .6.(易错题)已知a >0,且a ≠1,则函数f (x )=a x 与函数g (x )=log a x 的图象可能是( )答案 B 由函数f (x )=a x 与函数g (x )=log a x 互为反函数,得图象关于y =x 对称,从而排除A,C,D.易知当a >1时,两函数图象与B 选项中的图象相同.故选B. 易错分析 忽视反函数的定义.对数的概念、性质与运算角度一 对数的概念与性质典例1 (1)若log a 2=m ,log a 5=n (a >0,且a ≠1),则a 3m +n = ( )A.11B.13C.30D.40 (2)已知2a =5b =10,则a+bab = . (3)设52log 5(2x -1)=9,则x = . 答案 (1)D (2)1 (3)2 角度二 对数的运算典例2 计算:(1)(lg 2)2+lg 2·lg 50+lg 25; (2)log 3√2743+lg 5+7log 72+log 23·log 94+lg 2; (3)(log 32+log 92)·(log 43+log 83).解析 (1)原式=(lg 2)2+(1+lg 5)·lg 2+lg 52=(lg 2+lg 5+1)·lg 2+2lg 5=(1+1)·lg 2+2lg 5=2(lg 2+lg 5)=2.(2)原式=log 3334-1+lg 5+2+lg3lg2·2lg22lg3+lg 2=34-1+(lg 5+lg 2)+2+1=-14+1+3=154.(3)原式=log 32·log 43+log 32·log 83+log 92·log 43+log 92·log 83 =lg2lg3·lg32lg2+lg2lg3·lg33lg2+lg22lg3·lg32lg2+lg22lg3·lg33lg2=12+13+14+16=54. 规律总结对数运算的求解思路(1)首先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后利用对数的运算性质求解.(2)将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算性质,将其转化为同底数对数的真数的积、商、幂的运算.1.(lg 5)2+lg 2·lg 5+lg 20-log 23·log 38+2(1+log 25)= . 答案 9解析 原式=lg 5·(lg 5+lg 2)+lg 2+lg 10-log 23·log 28log 23+2·2log 25=1+1-3+10=9.2.如果45x =3,45y =5,那么2x +y = . 答案 1解析 ∵45x =3,45y =5,∴x =log 453,y =log 455,∴2x +y =2log 453+log 455=log 459+log 455=log 45(9×5)=1.对数函数的图象及应用典例3 (1)函数f (x )=ln|x -1|的大致图象是( )(2)当0<x ≤12时,4x <log a x (a >0,且a ≠1),则a 的取值范围是 ( )A.(0,√22) B.(√22,1) C.(1,√2) D.(√2,2)(3)已知函数f (x )=4+log a (x -1)(a >0,且a ≠1)的图象恒过定点P ,则点P 的坐标是 .答案 (1)B (2)B (3)(2,4)解析 (1)当x >1时, f (x )=ln(x -1),又f (x )的图象关于直线x =1对称,所以选B .(2)易知0<a <1,函数y =4x与y =log a x 的大致图象如图所示,则由题意可知只需满足log a 12>412,解得a >√22,∴√22<a <1,故选B .方法技巧对数函数图象的应用方法一些对数型方程、不等式的问题常转化为相应函数的图象问题,利用数形结合求解.1.(2020黑龙江齐齐哈尔第六中学模拟)函数f(x)=|log a(x+1)|(a>0,且a≠1)的大致图象是()答案C函数f(x)=|log a(x+1)|的定义域为{x|x>-1},且对任意的x∈(-1,+∞),均有f(x)≥0,结合对数函数的图象可知选C.2.函数y=x-a与函数y=log a x(a>0,且a≠1)在同一坐标系中的图象可能是()答案C当a>1时,对数函数y=log a x为增函数,当x=1时,函数y=x-a的值为负,故A、D错误; 当0<a<1时,对数函数y=log a x为减函数,当x=1时,函数y=x-a的值为正,故B错误,C正确.故选C.对数函数的性质及应用角度一比较对数值的大小典例4(1)(2018天津,5,5分)已知a=log2e,b=ln 2,c=lo g1213,则a,b,c的大小关系为()A.a >b >cB.b >a >cC.c >b >aD.c >a >b(2)已知f (x )满足f (x )-f (-x )=0,且在(0,+∞)上单调递减,若a =(79)-14,b =(97)15,c =log 219,则f (a ), f (b ), f (c )的大小关系为 ( )A.f (b )<f (a )<f (c )B.f (c )<f (b )<f (a )C.f (c )<f (a )<f (b )D.f (b )<f (c )<f (a ) 答案 (1)D (2)C解析 (1)由已知得c =log 23,∵log 23>log 2e>1,b =ln 2<1,∴c >a >b ,故选D . (2)∵f (x )-f (-x )=0,∴f (x )=f (-x ), ∴f (x )为偶函数.∵c =log 219<0,∴f (c )=f (-log 219) =f (-log 219)=f (log 29),∵log 29>log 24=2,2>(97)1>a =(79)-14=(97)14>(97)15=b >0,∴log 29>a >b.∵f (x )在(0,+∞)单调递减, ∴f (log 29)<f (a )<f (b ), 即f (c )<f (a )<f (b ). 故选C .角度二 解简单的对数不等式典例5 (1)函数f (x )=√(log 2x )-1的定义域为 ( )A.(0,12)B.(2,+∞)C.(0,12)∪(2,+∞) D.(0,12]∪[2,+∞) (2)函数y =√log 3(2x -1)+1的定义域是 ( )A.[1,2]B.[1,2)C.[23,+∞)D.(23,+∞) 答案 (1)C (2)C角度三 对数函数性质的综合应用典例6 已知函数f (x )=log a (ax 2-x +1)(a >0,且a ≠1). (1)若a =12,求函数f (x )的值域;(2)当f (x )在[14,32]上为增函数时,求a 的取值范围. 解析 (1)当a =12时,ax 2-x +1=12x 2-x +1=12[(x -1)2+1]>0恒成立, 故函数f (x )的定义域为R,∵12x 2-x +1=12[(x -1)2+1]≥12,且函数y =lo g 12x 在(0,+∞)上单调递减,∴lo g 12(12x 2-x +1)≤lo g 1212=1,即函数f (x )的值域为(-∞,1]. (2)由题意可知,①当a >1时,由复合函数的单调性可知,必有y =ax 2-x +1在[14,32]上单调递增,且ax 2-x +1>0对任意的x ∈[14,32]恒成立,所以{x =12a ≤14,a ·(14)2-14+1>0,解得a ≥2;②当0<a <1时,同理可得必有y =ax 2-x +1在[14,32]上单调递减,且ax 2-x +1>0对任意的x ∈[14,32]恒成立,所以{x =12a ≥32,a ·(32)2-32+1>0,解得29<a ≤13.综上,a 的取值范围是(29,13]∪[2,+∞).规律总结1.比较对数值大小的方法(1)若底数为同一常数,则可由对数函数的单调性直接进行判断;若底数为同一字母,则需对底数进行分类讨论.(2)若底数不同,真数相同,则可以先用换底公式化为同底后,再进行比较. (3)若底数与真数都不同,则常借助1,0等中间值进行比较.2.对数不等式的类型及解法(1)形如log a x >log a b (a >0,且a ≠1)的不等式,需借助y =log a x 的单调性求解,如果a 的取值不确定,那么需要分为a >1与0<a <1两种情况讨论.(2)形如log a x >b (a >0,且a ≠1)的不等式,需先将b 化为以a 为底的对数式的形式,再求解.1.设a =log 36,b =log 510,c =log 714,则 ( )A.c >b >aB.b >c >aC.a >c >bD.a >b >c答案 D ∵a =log 36=1+log 32=1+1log 23,b =log 510=1+log 52=1+1log 25,c =log 714=1+log 72=1+1log 27,且log 27>log 25>log 23>0,∴a >b >c.2.(2019山东高考模拟)已知f (x )=e x -1+4x -4,若正实数a 满足f (log a 34)<1,则a 的取值范围是( )A.a >34 B.0<a <34或a >43 C.0<a <34或a >1 D.a >1答案 C 因为y =e x -1与y =4x -4都是在R 上的增函数,所以f (x )=e x -1+4x -4是在R 上的增函数,又因为f (1)=e 1-1+4-4=1,所以f (log a 34)<1等价于log a 34<1,所以log a 34<log a a ,当0<a <1时,y =log a x 在(0,+∞)上单调递减,所以a <34,故0<a <34; 当a >1时,y =log a x 在(0,+∞)上单调递增,所以a >34,故a >1, 综上所述,a 的取值范围是0<a <34或a >1.故选C.3.(2020上海高三专题练习)函数y=√log0.5(4x2-3x)的定义域为.答案[-14,0)∪(34,1]解析由题意可知0<4x2-3x≤1,解得x∈[-14,0)∪(34,1].4.函数f(x)=lo g13(-x2+2x+3)的单调递增区间是.答案[1,3)解析令u=-x2+2x+3,由u>0,解得-1<x<3,即函数f(x)的定义域为(-1,3),根据二次函数的图象与性质可知函数u=-x2+2x+3在(-1,1)上单调递增,在[1,3)上单调递减, 因为函数f(x)=lo g13u为单调递减函数,所以根据复合函数的单调性可得函数f(x)的单调递增区间为[1,3).5.已知函数f(x)=ln(√1+9x2-3x)+1,求f(lg 2)+f(lg12)的值.解析由√1+9x2-3x>0恒成立知函数f(x)的定义域为R,因为f(-x)+f(x)=[ln(√1+9x2+3x)+1]+[ln(√1+9x2-3x)+1]=ln [(√1+9x2+3x)·(√1+9x2-3x)]+2=ln 1+2=2,所以f(lg 2)+f(lg12)=f(lg 2)+f(-lg 2)=2.A组基础达标1.已知函数f(x)=log2(x2-2x+a)的最小值为2,则a= ()A.4B.5C.6D.7答案 B2.log29×log34+2log510+log50.25= ()A.0B.2C.4D.6答案 D 原式=2log 23×(2log 32)+log 5(102×0.25)=4+log 525=4+2=6. 3.(2020河北冀州中学模拟)函数y =√log 3(2x -1)+1的定义域是 ( ) A.[1,2] B.[1,2) C.[23,+∞) D.(23,+∞) 答案 C4.log 6[log 4(log 381)]的值为( )A.-1B.1C.0D.2 答案 C5.(2019河南郑州模拟)设a =log 50.5,b =log 20.3,c =log 0.32,则 ( )A.b <a <cB.b <c <aC.c <b <aD.a <b <c答案 B a =log 50.5>log 50.2=-1,b =log 20.3<log 20.5=-1,c =log 0.32>log 0.3103=-1,log 0.32=lg2lg0.3,log 50.5=lg0.5lg5=lg2-lg5=lg2lg0.2.∵-1<lg 0.2<lg 0.3<0,∴lg2lg0.3<lg2lg0.2,即c <a ,故b <c <a.故选B .6.若lg 2=a ,lg 3=b ,则log 418= ( ) A.a+3b a 2B.a+3b 2aC.a+2b a 2D.a+2b 2a答案 D log 418=lg18lg4=lg2+2lg32lg2.因为lg 2=a ,lg 3=b ,所以log 418=a+2b 2a.故选D .7.已知函数f (x )=lg 1-x1+x ,若f (a )=12,则f (-a )= ( ) A.2 B.-2 C.12 D.-12答案 D ∵f (x )=lg 1-x1+x 的定义域为{x |-1<x <1},且f (-x )=lg 1+x1-x =-lg 1-x1+x =-f (x ), ∴f (x )为奇函数,∴f (-a )=-f (a )=-12.8.设f (x )=lg(10x +1)+ax 是偶函数,则a 的值为 ( ) A.1 B.-1 C.12 D.-12答案 D 函数f (x )=lg(10x+1)+ax 的定义域为R,因为f (x )为偶函数,所以f (x )-f (-x )=0,即lg(10x +1)+ax -[lg(10-x +1)+a (-x )]=(2a +1)x =0,所以2a +1=0,解得a =-12.B 组 能力拔高9.已知f (x )=lo g 12x ,则不等式(f (x ))2>f (x 2)的解集为 ( ) A.(0,14) B.(1,+∞) C.(14,1) D.(0,14)∪(1,+∞)答案 D 由(f (x ))2>f (x 2)得(lo g 12x )2>lo g 12x 2⇒lo g 12x ·(lo g 12x -2)>0,即lo g 12x >2或lo g 12x <0,解得原不等式的解集为(0,14)∪(1,+∞).10.若x 、y 、z 均为正数,且2x =3y =5z ,则 ( ) A.2x <3y <5z B.5z <2x <3y C.3y <5z <2x D.3y <2x <5z答案 D 令2x =3y =5z =k (k >1),则x =log 2k ,y =log 3k ,z =log 5k ,∴2x 3y =2lgklg2·lg33lgk =lg9lg8>1,则2x >3y ,2x 5z =2lgklg2·lg55lgk =lg25lg32<1,则2x <5z ,故选D . 11.(2020福建莆田第六中学模拟)已知函数f (x )=|log 3x |,实数m ,n 满足0<m <n ,且f (m )=f (n ),若f (x )在[m 2,n ]上的最大值为2,则nm = . 答案 9解析 ∵f (x )=|log 3x |,实数m ,n 满足0<m <n ,且f (m )=f (n ),∴0<m <1<n ,-log 3m =log 3n ,∴mn =1. ∵f (x )在区间[m 2,n ]上的最大值为2,且函数f (x )在[m 2,1)上是减函数,在(1,n ]上是增函数, ∴-log 3m 2=2或log 3n =2.若-log 3m 2=2,则m =13(舍负),故n =3, 此时log 3n =1=-log 3m ,符合题意, 即nm =3÷13=9;若log 3n =2,则n =9,故m =19,此时-log 3m 2=4>2,不符合题意.故nm =9.C 组 思维拓展12.(2020四川攀枝花第七中学模拟)设函数f (x )=|log a x |(0<a <1)的定义域为[m ,n ](m <n ),值域为[0,1],若n -m 的最小值为13,则实数a 的值为 . 答案 23解析 作出y =|log a x |(0<a <1)的大致图象如图所示,令|log a x |=1,得x =a 或x =1a ,又1-a -(1a -1)=1-a -1-a a=(1-a )(a -1)a<0,所以1-a <1a -1,所以n -m 的最小值为1-a =13,即a =23.13.若log a (a 2+1)<log a (2a )<0,则a 的取值范围是 . 答案 (12,1)解析 由题意得a >0且a ≠1,故必有a 2+1>2a ,又log a (a 2+1)<log a (2a )<0,所以0<a <1,又2a >1,所以a >12.综上,实数a 的取值范围为(12,1).14.已知2x ≤16且log 2x ≥12,求函数f (x )=log 2x2·lo g √2√x2的值域. 解析 由2x ≤16得x ≤4,∴log 2x ≤2, 又log 2x ≥12,∴12≤log 2x ≤2,f (x )=log 2x2·lo g √2√x 2=(log 2x -1)·(log 2x -2) =(log 2x )2-3log 2x +2 =(log 2x -32)2-14,∴当log 2x =32时, f (x )min =-14.又当log 2x =12时, f (x )=34; 当log 2x =2时, f (x )=0, ∴当log 2x =12时, f (x )max =34. 故函数f (x )的值域是[-14,34].15.已知函数f (x )=3-2log 2x ,g (x )=log 2x.(1)当x ∈[1,4]时,求函数h (x )=[f (x )+1]·g (x )的值域;(2)如果对任意的x ∈[1,4],不等式f (x 2)·f (√x )>k ·g (x )恒成立,求实数k 的取值范围. 解析 (1)h (x )=(4-2log 2x )·log 2x =-2(log 2x -1)2+2. 因为x ∈[1,4],所以log 2x ∈[0,2], 故函数h (x )的值域为[0,2]. (2)由f (x 2)·f (√x )>k ·g (x )得 (3-4log 2x )·(3-log 2x )>k ·log 2x. 令t =log 2x ,因为x ∈[1,4], 所以t =log 2x ∈[0,2],所以(3-4t )·(3-t )>k ·t 对任意的t ∈[0,2]恒成立. 当t =0时,k ∈R; 当t ∈(0,2]时,k <(3-4t )(3-t )t 恒成立,即k <4t +9t -15恒成立. 因为4t +9t ≥12,当且仅当4t =9t ,即t =32时取等号, 所以(4t +9t -15)min =-3,则k <-3.综上,实数k 的取值范围是(-∞,-3).高考数学:试卷答题攻略一、“六先六后”,因人因卷制宜。
高中数学对数-对数函数性质的综合运用
对数-对数函数性质的综合运用教学目标:1.会利用对数函数的性质求复合函数的值域、单调区间及判断奇偶性;2.能熟练地运用对数函数的性质解题;3.提高学生分析问题和解决问题的能力。
教学重、难点:1.复合函数的值域及单调区间;2.对数函数的图象和性质在解题中的运用。
教学过程:(一)复习:对数函数的图象及性质(由学生画图并结合图形描述性质)。
(二)新课讲解:例1、解下方程:()()11125;22590x x -+=⨯-=例2、解下列不等式: ()()()()3231522363log (2)34lg(1)1x x x x -+><+>-<例3.求函数2132log (32)y x x =-+的单调区间。
解:令223132()24u x x x =-+=--在3[,)2+∞上递增,在3(,]2-∞上递减, 又∵2320x x -+>, ∴2x >或1x <, 故232u x x =-+在(2,)+∞上递增,在(,1)-∞上递减, 又∵132log y u =为减函数, 所以,函数2132log (32)y x x =-+在(2,)+∞上递增,在(,1)-∞上递减。
说明:利用对数函数性质判断函数单调性时,首先要考察函数的定义域,再利用复合函数单调性的判断方法来求单调区间。
例4.若函数22log ()y x ax a =---在区间(,1-∞-上是增函数,a 的取值范围。
解:令2()u g x x ax a ==--,∵函数2log y u =-为减函数,∴2()u g x x ax a ==--在区间(,1-∞上递减,且满足0u >,∴12(10a g ⎧≥⎪⎨⎪≥⎩,解得22a -≤≤,所以,a的取值范围为[22]-.五.课堂练习:1.函数y =的定义域是 ,2.若函数log (1)a y x =-在[0,1)上是增函数,a 的取值范围是 ;3.函数2lg(2)y x x =-的值域是 ,单调增区间是 .六.小结:1.用对数函数的性质求复合函数的值域、单调区间及判断奇偶性的方法。
对数的性质与运算
对数的性质与运算对数是数学中常用的一种运算工具,它在科学、工程和计算机等领域被广泛应用。
对数有许多独特的性质和运算规则,下面将对这些内容进行介绍。
一、对数的定义对数可以理解为指数的逆运算。
设 a 和 x 是正数,且a ≠ 1,那么以a 为底的 x 的对数表示为logₐx,满足 a 的 x 次幂等于 x,即a^logₐx = x。
其中,a 称为底数,x 称为真数。
二、对数的性质1. logₐ1 = 0:任何数以自身为底数的对数均为 0。
2. logₐa = 1:任何数以自身为底数的对数均为 1。
3. logₐ(a × b) = logₐa + logₐb:两个正数的乘积的对数等于各自对数之和。
4. logₐ(a / b) = logₐa - logₐb:两个正数的商的对数等于被除数的对数减去除数的对数。
5. logₐaⁿ = n × logₐa:一个数的 n 次幂的对数等于该数的对数乘以 n。
6. logₐa = 1 / logₐa:等式左右两边互为倒数。
三、对数的运算1. 对数的乘法:logₐ(a × b) = logₐa + logₐb。
对数的乘法规则表明,两个正数的乘积的对数等于各自对数之和。
例如:log₂2 + log₂3 = log₂(2 × 3) = log₂6。
2. 对数的除法:logₐ(a / b) = logₐa - logₐb。
对数的除法规则表明,两个正数的商的对数等于被除数的对数减去除数的对数。
例如:log₃8 - log₃2 = log₃(8 / 2) = log₃4。
3. 对数的幂:logₐaⁿ = n × logₐa。
对数的幂规则表明,一个数的n 次幂的对数等于该数的对数乘以n。
例如:log₄(2³) = 3 × log₄2。
4. 对数的换底公式:logₐb = logₓb / logₓa。
换底公式是用于将对数的底数从一个给定的底数转换为另一个给定的底数。
专题10 对数与对数函数 (学生版)高中数学53个题型归纳与方法技巧总结篇
【考点预测】1.高中数学53个题型归纳与方法技巧总结篇专题10对数与对数函数对数式的运算(1)对数的定义:一般地,如果(0x a N a =>且1)a ≠,那么数x 叫做以a 为底N 的对数,记作log a x N =,读作以a 为底N 的对数,其中a 叫做对数的底数,N 叫做真数.(2)常见对数:①一般对数:以(0a a >且1)a ≠为底,记为log Na ,读作以a 为底N 的对数;②常用对数:以10为底,记为lg N ;③自然对数:以e 为底,记为ln N ;(3)对数的性质和运算法则:①1log 0a =;log 1a a =;其中0a >且1a ≠;②log Na a N =(其中0a >且1a ≠,0N >);③对数换底公式:log log log c a c bb a=;④log ()log log a a a MN M N =+;⑤log log log aa a MM N N=-;⑥log log (m na a nb b m m=,)n R ∈;⑦log a b a b =和log b a a b =;⑧1log log a b b a=;2.对数函数的定义及图像(1)对数函数的定义:函数log a y x =(0a >且1)a ≠叫做对数函数.对数函数的图象过定点(10),,即1x =时,0y =在(0)+∞,上增函数在(0)+∞,上是减函数当01x <<时,0y <,当1x ≥时,y≥当01x <<时,0y >,当1x ≥时,0y≤【方法技巧与总结】1.对数函数常用技巧在同一坐标系内,当1a >时,随a 的增大,对数函数的图象愈靠近x 轴;当01a <<时,对数函数的图象随a 的增大而远离x 轴.(见下图)a 增大a 增大【题型归纳目录】题型一:对数运算及对数方程、对数不等式题型二:对数函数的图像题型三:对数函数的性质(单调性、最值(值域))题型四:对数函数中的恒成立问题题型五:对数函数的综合问题【典例例题】题型一:对数运算及对数方程、对数不等式例1.(2022·全国·高三专题练习)(1)计算331log 2327lg 50lg 2+++;(2)已知()23log log lg 1x ⎡⎤=⎣⎦,求实数x 的值;(3)若185a =,18log 9b =,用a ,b ,表示36log 45.例2.(2022·全国·高三专题练习)(1)求23151log log 8log 2725⋅⋅的值.(2)已知9log 5=a ,37b =,试用a ,b 表示21log 35例3.(2022·全国·高三专题练习)(1)已知a ,b ,c 均为正数,且3a =4b =6c ,求证:212a b c +=;(2)若60a =3,60b =5,求12(1)12a b b ---的值.例4.(2022·全国·模拟预测)若e 4a =,e 25b =,则()A .a +b =100B .b -a =eC .28ln 2ab <D .ln 6b a ->例5.(2022·全国·模拟预测)已知实数x ,y 满足0x >,0y >,1x ≠,1y ≠,y x x y =,log 4y xx y+=,则x y +=()A .2B .4C .6D .8例6.(2022·北京昌平·二模)已知函数2()42(0)f x ax ax a =-+<,则关于x 的不等式2()log f x x >的解集是()A .(,4)-∞B .(0,1)C .(0,4)D .(4,)+∞例7.(2022·全国·江西师大附中模拟预测(文))已知函数()122log ,1,1,1,x x f x x x >⎧⎪=⎨⎪-≤⎩则不等式()(1)f x f x <-的解集为______.例8.(2022·辽宁·东北育才学校二模)若函数()f x 满足:(1)1x ∀,()20,x ∈+∞且12x x ≠,都有()()21210f x f x x x -<-;(2)()()1122x f f x f x x ⎛⎫=- ⎪⎝⎭,则()f x =___________.(写出满足这些条件的一个函数即可)例9.(2022·全国·高三专题练习)设函数()log m f x x =(0m >且1m ≠)的图像经过点()3,1.(1)解关于x 的方程()()22(1)10f x m f x m +-+-=;(2)不等式()()10f x a f x +⋅->⎡⎤⎡⎤⎣⎦⎣⎦的解集是1,93⎛⎫⎪⎝⎭,试求实数a 的值.【方法技巧与总结】对数的有关运算问题要注意公式的顺用、逆用、变形用等.对数方程或对数不等式问题是要将其化为同底,利用对数单调性去掉对数符号,转化为不含对数的问题,但这里必须注意对数的真数为正.题型二:对数函数的图像例10.(2022·山东潍坊·二模)已知函数()()log a f x x b =-(0a >且1a ≠)的图像如图所示,则以下说法正确的是()A .0a b +<B .1ab <-C .01b a <<D .log 0a b >例11.(2022·江苏省高邮中学高三阶段练习)函数log (3)1(0a y x a =+->且1)a ≠的图象恒过定点A ,若点A 在直线10mx ny ++=上,其中0mn >,则11+m n的最小值为()A .3-B .1C . 3+D .2+(多选题)例12.(2022·福建·莆田二中模拟预测)已知函数()()log a g x x k =+(0a >且1a ≠)的图象如下所示.函数()()1x xf x k a a -=--的图象上有两个不同的点()11,A x y ,()22,B x y ,则()A .1a >,2k >B .()f x 在R 上是奇函数C .()f x 在R 上是单调递增函数D .当0x ≥时,()()22f x f x ≤例13.(2022·全国·高三专题练习)已知223,20(){1ln ,021x x x f x x x -+-≤<=≤≤+,若()()g x f x ax a =--的图象与x 轴有3个不同的交点,则实数a 的取值范围为______.【方法技巧与总结】研究和讨论题中所涉及的函数图像是解决有关函数问题最重要的思路和方法.图像问题是数和形结合的护体解释.它为研究函数问题提供了思维方向.题型三:对数函数的性质(单调性、最值(值域))例14.(2022·陕西·榆林市第十中学高二期中(文))函数()22log 43y x x =+-的一个单调增区间是()A .3,2⎛⎫-∞ ⎪⎝⎭B .3,2 ⎡⎫+⎪⎢⎣⎭C .31,2⎛⎫- ⎪⎝⎭D .3,42⎡⎫⎪⎢⎣⎭例15.(2022·天津·南开中学二模)已知函数()21,14log 1,1a ax x x f x x x ⎧--≤⎪=⎨⎪->⎩是R 上的单调函数,则实数a 的取值范围为()A .11,42⎡⎫⎪⎢⎣⎭B .11,42⎡⎤⎢⎥⎣⎦C .10,2⎛⎤ ⎥⎝⎦D .1,12⎛⎫ ⎪⎝⎭例16.(2022·浙江·模拟预测)己知实数,(1,)∈+∞a b ,且33log log 3log log 4b a a b +=+,则()Ab a<<B.b a<<Ca b<<D.a b <例17.(2022·全国·高三专题练习(理))函数f (x )=log ax (0<a <1)在[a 2,a ]上的最大值是()A .0B .1C .2D .a例18.(2022·重庆·模拟预测)若函数()2()log 341a f x x ax =-+-有最小值,则实数a 的取值范围是()A.⎫⎪⎪⎝⎭B.C.⎛ ⎝⎭D.)+∞【方法技巧与总结】研究和讨论题中所涉及的函数性质是解决有关函数问题最重要的思路和方法.性质问题是数和形结合的护体解释.它为研究函数问题提供了思维方向.题型四:对数函数中的恒成立问题例19.(2022·北京·高三专题练习)若不等式2log 0a x x -<在10,2⎛⎫ ⎪⎝⎭内恒成立,则a 的取值范围是()A .1116a ≤<B .1116a <<C .1016a <≤D .1016a <<例20.(2022·江苏·高三专题练习)已知函数22414ax x y -+⎛⎫= ⎪⎝⎭的值域为10,16⎛⎤⎥⎝⎦,若不等式()()log 4log 2x a x a t t ⋅<-在[]1,2x ∈上恒成立,则t 的取值范围是()A .2,25⎛⎫ ⎪⎝⎭B .2,5⎛⎫+∞ ⎪⎝⎭C .(,2)-∞D .()0,2例21.(2022·浙江·高三阶段练习)已知函数()29x f x x+=,()2log g x x a =+,若存在[]13,4x ∈,任意[]24,8x ∈,使得()()12f x g x ≥,则实数a 的取值范围是___________.例22.(2022·全国·高三专题练习)已知函数()ln f x x x =-,已知实数0a >,若2()e ln 0x f x a a ++≥在()0+∞,上恒成立,求实数a 的取值范围.例23.(2022·全国·高三专题练习)已知函数()log (0,1)x a f x a x a a =+>≠在[1,2]上的最大值与最小值之和为6log 2a +.(1)求实数a 的值;(2)对于任意的[2,)x ∈+∞,不等式()10kf x -≥恒成立,求实数k 的取值范围.例24.(2022·陕西安康·高三期末(文))已知函数()()()2log 2log 30,1a a f x x x a a =++>≠.(1)若()32f =,求a 的值;(2)若对任意的[]8,12x ∈,()6f x >恒成立,求a 的取值范围.例25.(2022·上海·高三专题练习)已知2()32log f x x =-,2()log g x x =.(1)当[]1,4x ∈时,求函数[]()1()y f x g x =+⋅的值域;(2)对任意12,2n n x +⎡⎤∈⎣⎦,其中常数n N ∈,不等式()2()f x f kg x ⋅>恒成立,求实数k的取值范围.【方法技巧与总结】(1)利用数形结合思想,结合对数函数的图像求解;(2)分离自变量与参变量,利用等价转化思想,转化为函数的最值问题.(3)涉及不等式恒成立问题,将给定不等式等价转化,借助同构思想构造函数,利用导数探求函数单调性、最值是解决问题的关键.题型五:对数函数的综合问题例26.(2022·河北·张家口市第一中学高三阶段练习)已知定义域为()0, +的单调递增函数()f x 满足:()0,x ∀∈+∞,有()()ln 1f f x x -=,则方程()242f x x x =-+-的解的个数为()A .3B .2C .1D .0例27.(2022·四川雅安·三模(文))设()f x 是定义在R 上的偶函数,对任意R x ∈,都有()()4f x f x +=,且当[]2,0x ∈-时,()163xf x ⎛⎫=- ⎪⎝⎭.若在区间(]2,6-内关于x 的方程()()()log 201a f x x a -+=>恰有3个不同的实数根,则a 的取值范围是().A .()1,2B .()2,+∞C .(D .)2例28.(2022·广西柳州·高一期中)已知0a b >>,且1a b +=,则()A .sin sin a b>B .11a b>C .22a b +>D .lg lg 0a b +=例29.(2022·河北保定·二模)已知函数2332xxy =-在()0,∞+上先增后减,函数3443xxy =-在()0,∞+上先增后减.若()231log log x =()321log log 0x a =>,()()242422log log log log x x b ==,()()343433log log log log 0x x c ==>,则()A .a c<B .b a<C .c a<D .a b<例30.(2022·广东·三模)已知,R a b ∈,e 是自然对数的底,若e ln b b a a +=+,则ab的取值可以是()A .1B .2C .3D .4例31.(2022·全国·高三专题练习)已知0x 是函数()22e ln 2xf x x x -=+-的零点,则020e ln x x -+=_______.【过关测试】一、单选题1.(2022·辽宁辽阳·二模)区块链作为一种新型的技术,被应用于许多领域.在区块链技术中,某个密码的长度设定为512B ,则密码一共有5122种可能,为了破解该密码,在最坏的情况下,需要进行5122次运算.现在有一台计算机,每秒能进行142.510⨯次运算,那么在最坏的情况下,这台计算机破译该密码所需的时间大约为(参考数据lg20.3≈ 1.58≈)()A .1393.1610s ⨯B .1391.5810s ⨯C .1401.5810s⨯D .1403.1610s⨯2.(2022·山东·肥城市教学研究中心模拟预测)已知1log 3m p =,9p n =,其中0m >且1m ≠,0n >且1n ≠,若20m n -=,则p 的值为()A .3log 2B .2log 3C .2D .33.(2022·河南安阳·模拟预测(文))已知正实数x ,y ,z 满足(34zx y ==,则()A .111x y z+=B .111y z x+=C .112x y z +=D .112x z y+=4.(2022·河南·南阳中学高三阶段练习(文))已知函数()()()ln 22ln 33f x x x =++-,则()f x ()A .是奇函数,且在()0,1上单调递增B .是奇函数,且在()0,1上单调递减C .是偶函数,且在()0,1上单调递增D .是偶函数,且在()0,1上单调递减5.(2022·全国·高三专题练习)函数()log (1)2a f x x =-+的图象恒过定点A .(2,2)B .(2,1)C .(3,2)D .(2,0)6.(2022·安徽六安·一模(文))设函数()2f x =,()()2ln 41g x ax x =-+,若对任意的1R x ∈,都存在实数2x ,使得()()12f x g x =成立,则实数a 的取值范围为()A .(],4-∞B .(]0,4C .[]0,4D .(]0,27.(2022·湖北·荆门市龙泉中学二模)设0a >且1a ≠,sin cos a x x x >+对(0,)4x π∈恒成立,则a 的取值范围是()A .(0,)4πB .(0,]4πC .(,1)(1,)42ππ⋃D .[,1)4π8.(2022·浙江·模拟预测)己知实数,(1,)∈+∞a b ,且33log log 3log log 4b a a b +=+,则()A b a<<B .b a<<C a b<<D .a b <二、多选题9.(2022·重庆市天星桥中学一模)已知0,0a b >>,且1a b +=,则下列结论正确的是()A .11a b+的最小值是4B .1ab ab+的最小值是2C .22a b +的最小值是D .22log log a b +的最小值是2-10.(2022·广东汕头·二模)设a ,b ,c 都是正数,且469a b c ==,则下列结论正确的是()A .2ab bc ac+=B .ab bc ac+=C .4949b b a c⋅=⋅D .121c b a=-11.(2022·河北·高三阶段练习)下列函数中,存在实数a ,使函数()f x 为奇函数的是()A .()(lg f x x =B .()2f x x ax=+C .()21xaf x e =--D .()()2ln 2xx f x x e a =+-12.(2022·江苏·南京师大附中高三开学考试)当102x <≤时,4log xa x ≤,则a 的值可以为()ABCD三、填空题13.(2022·天津·二模)已知()42log 41log x y +=+,则2x y +的最小值为__________.14.(2022·全国·高三专题练习)已知23e ln 3x x x -+=,则3e ln x x -+=__________.15.(2022·河南·模拟预测(文))已知函数()241,1log ,1x x f x x x ⎧-≤=⎨>⎩,若1()2f a <≤,则实数a的取值范围为___________.16.(2022·河南·开封高中模拟预测(文))已知函数()y f x =为奇函数,且对定义域内的任意x 都有()()11f x f x +=--.当()1,2x ∈时,()21log f x x =-.给出以下4个结论:①函数()y f x =的图象关于点()(),0k k ∈Z 成中心对称;②函数()y f x =是以2为周期的周期函数;③当()0,1x ∈时,()()2log 21f x x =--;④函数()y f x =在()(),1k k k +∈Z 上单调递减.其中所有正确结论的序号为______.四、解答题17.(2022·北京·高三专题练习)已知函数()log (0),1)a f x x a a =>≠且,设1a >,函数log a y x =的定义域为[m ,n ](m <n ),值域为[0,1],定义“区间[m ,n ]的长度等于n -m ”,若区间[m ,n ]长度的最小值...为5,6求实数a 的值;18.(2022·全国·高三专题练习(理))已知函数f (x )=log a (x +1)-log a (1-x ),a >0且a ≠1.(1)求f (x )的定义域;(2)判断f (x )的奇偶性并予以证明;(3)当a >1时,求使f (x )>0的x 的解集.19.(2022·北京·高三专题练习)已知函数()log (0)1)a f x x a a =>≠且,作出|()|y f x =的大致图像并写出它的单调性;20.(2022·全国·高三专题练习)已知函数()()44log 3log 4f x x x =-⋅.当1,164x ⎡⎤∈⎢⎥⎣⎦时,求该函数的值域;21.(2022·全国·高三专题练习)已知:函数()0.51log 1ax f x x -=-在其定义域上是奇函数,a 为常数.(1)求a 的值.(2)证明:()f x 在()1,+∞上是增函数.(3)若对于[]3,4上的每一个x 的值,不等式()12xf x m ⎛⎫>+ ⎪⎝⎭恒成立,求实数m 的取值范围.22.(2022·北京东城·高三期末)曲线ln y x =在点(,ln )A t t 处的切线l 交x 轴于点M .(1)当t e =时,求切线l 的方程;(2)O 为坐标原点,记AMO 的面积为S ,求面积S 以t 为自变量的函数解析式,写出其定义域,并求单调增区间.。
高考数学中的对数函数性质及其应用
高考数学中的对数函数性质及其应用对数函数是高中数学中非常重要的一个概念。
在高考中,对数函数也是非常重要的考点之一。
本文将从对数函数的定义、性质、公式以及应用来进行简单的讲解,帮助同学们更好地掌握这一重要概念。
一、对数函数的定义与性质对数函数可以这样定义:设a>0,且且a≠1,则称y=loga x是以a为底,x为真数的对数函数。
其中a被称为底数,x为真数,y 为对数值。
对数函数最基本的性质是:若a>1,则loga 1=0;若0<a<1,则loga 1=0;若a=1,则无解。
对于对数函数的底数a和真数x均不能为负数或零。
对数函数还有一个很重要的性质是对数函数的定义域为正实数集,值域为实数集。
这个性质说明了,对数函数的定义需要满足a>0,x>0,根据定义,y=loga x,那么y也一定为实数,因此对数函数的值域为实数集。
二、对数函数的公式运用对数函数公式,能够快速简便地完成数值计算,增强数学思维,提高解题能力。
主要有以下四个公式:1、loga (mn) = loga m + loga n2、loga (m/n) = loga m - loga n3、loga m^p = p*loga m4、loga a^n = n公式1和2用于将对数函数中的乘、除法转换成加、减法。
公式3用于将对数函数中的指数运算转换成乘法。
公式4是对数函数的基本公式,即对数函数中以a为底,a的幂次方的值等于幂次数。
三、对数函数的应用1、复利计算:实际生活中,人们常常要面临各种复利计算问题。
在复利计算中,常常需要用到对数函数。
例如求N年后本金为P的投资,在年利率为r的情况下,总收益为多少。
用对数函数可以快速算出结果,公式为:A=P*(1+r)的N次方。
2、化简大数:在高精度计算和密码学领域中,经常需要对大数进行化简计算。
对于x^y的结果,如果y过大,那么我们需要通过对数函数将其化简。
即对x取对数,乘以y,再通过反函数将结果还原。
高中数学对数运算和对数函数
对数运算和对数函数要求层次重难点对数的概念及其运算性质B 理解对数的概念掌握当底数1a >与01a <<时,对数函数的不同性质掌握对数函数的概念、图象和性质;能利用对数函数的性质解题换底公式 A 对数函数的概念 B 对数函数的图象和性质C 指数函数xy a =与对数函数log a y x =互为反函数(0a >且1a ≠)B<教师备案>本讲的内容为对数和对数函数,关于对数的历史,在后面的小故事中有所体现,还有一部分可称为前转:“给我空间、时间和对数,我可以创造一个宇宙”,这是16世纪意大利著名学者伽利略的一段话.从这段话可以看出,伽利略把对数与宝贵的空间和时间相提并论.对数的发展绝非一人之功.首先要提到的是16世纪瑞士钟表匠标尔基,当他结识了天文学家开普勒,看到开普勒每天与天文数字打交道,数字之大、计算量之繁重,真的难以想象,于是便产生了简化计算的想法.从16031611年,标尔基用了八年的时间,一个数一个数的算,造出了一个对数表,这个对数表帮了开普勒的大忙.开普勒认识到了对数表的使用价值,劝标尔基赶快把对数表出版,标尔基认为这个对数表还过于粗糙,一直没下决心出版.正在标尔基犹豫不决的时候,1614年6月在爱丁堡出版了苏格兰纳皮尔男爵所造的题为《奇妙的对数表的说明》一书,这个对数表的出版震动了整个数学界.“对数”一词是纳皮尔首先创造的,意思是“比数”.他最早用“人造的数”来表示对数.俄国著名诗人莱蒙托夫是一位数学爱好者,传说有一次他在解答一道数学题时,冥知识框架例题精讲高考要求第5讲 对数运算和对数函数思苦想没法解决,睡觉时做了一个梦,梦中一位老人揭示他解答的方法,醒后他真的把此题解出来了,莱蒙托夫把梦中老人的像画了出来,大家一看竟是数学家纳皮尔,这个传说告诉我们:纳皮尔在人们心目中的地位是多么的高.(一)知识内容<教师备案>在指数函数x y a =中,对于每个y +∈R ,存在唯一的x 与之对应,幂指数x 叫做以a 为底的y 的对数,这样从y 到x 的对应是指数运算的一个相反运算,让同学思考由函数的定义,判断这是否可以定义一种新的函数?这种运算和对应的函数有什么样的性质呢?1.对数:一般地,如果x a y =(0a >,且1)a ≠,那么数x 叫做以a 为底y 的对数,记作log a x y =,其中a 叫做对数的底数,y 叫做真数.关系式axy指数式 x a y =底数(0,1)a a >≠ 指数(R)x ∈ 幂(值)(R )y +∈对数式 log a y x = 底数(0,1)a a >≠ 对数(R)x ∈ 真数(R )y +∈ 对数恒等式及对数的性质,对数log (0,1)a N a a >≠满足: ⑴零和负数没有对数; ⑵1的对数是零,即log 10a =; ⑶底的对数等于1,即log 1a a =.2.常用对数:通常将以10为底的对数叫做常用对数,并把10log N 记为lg N .3.自然对数:在科学技术中常使用以无理数 2.71828e =为底的对数,以e 为底的对数称为自然对数,并且把log e N 记为ln N .4.对数与指数间的关系:当0,1a a >≠时,log x a a N x N =⇔=.5.指数和对数的互化:log b a a N N b =⇔=.N a N a =log ,log N a a N =(二)主要方法:1.重视对数的概念,应用基础概念解决具体问题2.熟练运用指数和对数的互化板块一:对数的定义和相关概念(三)典例分析:【例1】 ⑴将下列指数式化为对数式,对数式化为指数式:①45625=;②61264-=;③1 5.733m⎛⎫= ⎪⎝⎭;④12log 164=-;⑤lg0.012=-;⑥ln10 2.303=.⑵求下列各式中x 的值:①642log 3x =-;②log 86x =;③lg100x =;④2ln e x -=.【例2】 将下列对数式写成指数式:(1)416log 21-=;(2)2log 128=7;(3)lg0.01=-2;(4)ln10=2.303【例3】 ⑴27log 9,⑵81log 43,⑶()()32log 32-+,⑷625log 345(一)知识内容1.对数的运算性质:如果0a >,且1,0,0a M N ≠>>,那么:⑴log ()log log a a a M N M N ⋅=+;(积的对数等于对数的和) 推广1212log (...)log log ...log a k a a a k N N N N N N ⋅=+++ ⑵log log log aa a MM N N=-;(商的对数等于对数的差) ⑶log log (R)a a M M ααα=∈ ⑷1log log naa N N n=(正数幂的对数,等于幂指数乘以同一底数幂的底数的对数) <教师备案>以性质⑴为例进行证明如下: 已知log a M ,log a N (M 、0N >),求log ()a MN 设log a M p =,log a N q =,根据对数的定义,可得p M a =,q N a = 由p q MN a a =⋅p q a +=∴log ()log log a a a MN p q M N =+=+2.换底公式:log log log a b a NN b=(,0,,1,0a b a b N >≠>) <教师备案>证明: 法一:根据指数的运算性质推导 设log b N x =,则x b N =.两边取以a 为底的对数,得log log a a x b N =, 所以log log a a N x b =,即log log log a b a NN b=. 法二:根据对数恒等式及对数的运算性质推导由对数恒等式得:log log log log ()log bN b a a a N b b N ⋅==,所以有log log log a b a NN b=. 换底公式的意义:把以一个数为底的对数换成以另一个大于0且不等于1的数为底的对数,以达到计算、化简或证明的目的.<教师备案>常见错误:log ()log log a a a M N M N ±=±;log ()log log a a a MN M N =⋅;log log log a aa MM N N=. 3.关于对数的恒等式板块二:对数的运算性质和法则①log a N a N =②log n a a n =③1log log a b b a=④log log n n a a M M = ⑤log log log log a b a b M MN N=(二)主要方法1.解决与对数函数有关的问题,要特别重视定义域;2.解决对数不等式、对数方程时,要重视考虑对数的真数、底数的范围;3.对数不等式的主要解决思想是对数函数的单调性.(三)典例分析【例4】 求下列各值:⑴221log 36log 32-;⑵log ;⑶lg1;⑷3log 53;⑸3log 59;⑹3log 3;⑺;⑻22(lg5)lg 2lg 25(lg 2)+⋅+;⑼827log 9log 32⋅.【例5】 求值:⑴2572lg3lg7lg lg 94++-;⑵32516log 4log 9log 5⋅⋅.【例6】 若a 、0b >,且a 、1b ≠,log log a b b a =,则A.a b =B.1a b=C.a b =或1a b=D.a 、b 为一切非1的正数【例7】 ⑴8log 3p =,3log 5q =,那么lg5等于______(用p ,q 表示);⑵知18log 9a =,185b =,用,a b 表示36log 45.【点评】⑴换底公式的一个重要应用:log log 1m n n m ⋅=⑵181818log 2log 9=,将未知转化为已知,是对数函数运算性质的重要应用. 【例8】 已知2log 3a =,37b =,求12log 56【例9】 已知lg5m =,lg3n =,用,m n 表示30log 8.【例10】 已知(0,0,1)ab m a b m =>>≠且log m b x =,则log m a 等于A.1x -B.1x +C.1xD.1x -【例11】 已知12()x f x a-=,且(lg )f a =a 的值.【例12】 下列各式中,正确的是A.2lg 2lg x x =B.1log log a a x n =C.log log log a a a x xy y=1log 2a x =【例13】 已知2(3)log (3)1x x x ++=,求实数x 的值.【例14】 设a 为实常数,解关于x 的方程)lg()3lg()1lg(x a x x -=-+-.1.对数函数:我们把函数log (0a y x a =>且1a ≠)叫做对数函数,其中x 是自变量,函数的定义域是(0,)+∞,值域为实数集R .2.对数函数的图象和性质:一般地,对数函数log (0a y x a =>且1a ≠)的图象和性质如下表所示:01a <<1a >图象定义域 (0,)+∞值域 R性质⑴过定点(1,0),即1x =时,0y =⑵在(0,)+∞上是减函数; (2)在(0,)+∞上是增函数.<教师备案>因为对数函数与指数函数密切相关,所以在学习对数函数的概念、图象与性质时,要处处与指数函数相对照.如:指数函数的值域(0,)+∞,变成了对数函数的定义域;而指数函数的定义域为实数集R ,则变成了对数函数的值域;同底的指数函数与对数函数的图象关于直线y x =对称等.y=log a x (0<a <1)O 1yx y=log a x (a >1)O 1yx板块三:对数函数【例15】 求下列函数的定义域:⑴2log a y x =;⑵log (4)a x -;⑶y .【例16】 求下列函数的定义域:⑴31log (32)y x =-;⑵1log (3)x y x -=-.【例17】 已知()log (1)x a f x a =-(0,a >且1)a ≠,⑴求()f x 的定义域; ⑵讨论函数()f x 的单调性;【例18】 求函数)(log )1(log 11log )(222x p x x x x f -+-+-+=的定义域和值域.【例19】 函数2lg(20)y x x =-的值域是A.y >0B.y ∈RC.y >0且y ≠1D.y ≤2【例20】 已知函数2()lg[2(1)94]f x mx m x m =++++,⑴若此函数的定义域为R ,求实数m 的取值范围;⑵若此函数的值域为R ,求实数m 的取值范围.【点评】本题涉及到解一元二次不等式的解法,可根据学生情况进行讲解.【例21】 已知函数18log )(223+++=x nx mx x f 的定义域为R ,值域为[0,2],求m ,n 的值.【例22】 下面结论中,不正确的是A.若a >1,则x a y =与x y a log =在定义域内均为增函数B.函数x y 3=与x y 3log =图象关于直线x y =对称C.2log a y x =与2log a y x =表示同一函数D.若01,01a m n <<<<<,则一定有log log 0a a m n >>【例23】 已知),,)(lg()(为常数b a b a x f xx-=①当a ,b >0且a ≠b 时,求f (x )的定义域;②当a >1>b >0时,判断f (x )在定义域上的单调性,并用定义证明【例24】 在函数10(log <<=a x y a ,)1≥x 的图象上有A ,B ,C 三点,它们的横坐标分别是t ,t +2,t +4,(1)若△ABC 的面积为S ,求S =f (t ); (2)判断S =f (t )的单调性; (3)求S =f (t )的最大值.【例25】 已知函数22log )(+-=x x x f a的定义域为[],αβ,值域为[]log (1),log (1)a a a a βα--,且)(x f 在[],αβ上为减函数. (1)求证α>2; (2)求a 的取值范围.【例26】 对于212()log (23)f x x ax =-+,⑴函数的“定义域为R ”和“值域为R ”是否是一回事;⑵结合“实数a 取何值时,()f x 在[1)-+∞,上有意义”与“实数a 取何值时,函数的定义域为(1)(3)-∞+∞,,”说明求“有意义”问题与求“定义域”问题的区别.⑶结合⑴⑵两问,说明实数a 的取何值时()f x 的值域为(1]-∞-,.【例27】 ⑷实数a 取何值时,()f x 在(1]-∞,内是增函数.⑸是否存在实数a ,使得()f x 的单调递增区间是(1]-∞,,若存在,求出a 的值;若不存在,说明理由.【点评】该题主要考察复合对数函数的定义域、值域以及单调性问题.解题过程中遇到了恒成立问题,“恒为正”与“取遍所有大于零的数”不等价,同时又考察了一元二次函数函数值的分布情况,解题过程中结合三个“二次”的重要结论来进行处理.【例28】 比较下列各组数的大小:⑴2log 3.4,2log 8.5;⑵0.3log 1.8,0.3log 2.7;⑶log 5.1a ,log 5.9a (0,a >且1)a ≠;⑷20.3,2log 0.3,0.32.【点评】利用对数函数的性质比较大小的题,一般都可以通过对数函数的单调性,通过直接比较、中间值法或者图象法得到相关结论.如:设110a <<,比较2lg a ,2(lg )a ,lg(lg )a 的大小.1100lg 1a a <<⇒<<,于是22lg(lg )0(lg )lg a a a <<<.【例29】 设2(log )2(0)x f x x =>,则f (3)的值是A.128B.256C.512D.8【例30】 a 、b 、c 是图中三个对数函数的底数,它们的大小关系是A.c >a >bB.c >b >aC.a >b >cD.b >a >c【例31】 (2005年天津文) 已知111222log log log b a c <<,则()A.222b a c >>B.222a b c >>C.222c b a >>D.222c a b >>【例32】 如果02log 2log <<b a ,那么a ,b 的关系及范围.【例33】 ⑴若log 2log 20a b <<,则()A.01a b <<<B.01b a <<<C.1a b >>D.1b a >> ⑵已知2log 13a <,求a 的取值范围.【点评】在上面的对数函数图象中,共有四条对数函数log a y x =,底数a 的大小比较可以通过作一条直线:1y =,于四条曲线分别交于点1234,,,P P P P ,易知,这四点的横坐标即对应相应的底数的值,故比较这四点的横坐标即可.【例34】 已知函数()1log 3x f x =+,()2log 2x g x =,⑴试比较函数值()f x 与()g x 的大小;⑵求方程|()()|()()4f x g x f x g x -++=的解集.【例35】 函数log a y x =在[2,)x ∈+∞上恒有||1y >,求a 的范围.【例36】 已知a >0,a ≠1,10<<x ,比较|)1(log |x a +和|)1(log |x a -的大小.【例37】 若23log 1a <,则a 的取值范围是 A.203a <<B.23a >C.213a <<D.203a <<或a >1【例38】 若关于23lg lg )lg(=--x a x 至少有一个实数根,则求a 的取值范围.【例39】 设a ,b 为正数,若lg()lg()10ax bx +=有解,则求b a 的取值范围.【例40】 如果2112222log (1)log 2a a a a +++≤,求a 的取值范围.【例41】 已知}2)385(log |{2>+-=x x x A x ,24{|210}B x x x k =-+-≥,要使A B ,求实数k 的取值范围.【例42】 设正数a ,b ,c 满足222c b a =+. (1)求证:1)1(log )1(log 22=-++++bc a a c b ; (2)又设1)1(log 4=++a c b ,32)(log 8=-+c b a ,求a ,b ,c 的值.【例43】 (1)已知0(2log log >=+a y x a a ,)1≠a ,求yx 11+的最小值. (2)已知2052=+y x ,求y x lg lg +的最大值.(3)已知4422=+y x ,求xy 的最大值.【例44】 解方程)12(log 2)22(log 212+=++x x。
高中对数运算知识点总结
高中对数运算知识点总结一、对数的定义和性质1. 对数的定义对数是一种表示指数运算的逆运算。
当a的x次方等于b时,就称loga b等于x,表示为loga b = x。
其中,a叫做底数,b叫做真数,x叫做对数。
2. 对数的性质(1)对数的底数不为1且不等于0。
因为对数的底数不能为1或0,否则无法对应一个唯一的真数。
(2)对数的底数不等于1且不等于0。
因为对数的底数不等于1或0,否则无法对应一个唯一的真数。
(3)对数的真数必须大于0。
因为对数的真数必须大于0,否则无法定义对数。
(4)logab = logcb / logca对数的底数不影响对数的计算,可以利用这个性质进行对数运算的计算。
(5)a^logab = b这是对数的定义的逆过程,当底数为a时,对数运算和指数运算是相互逆的。
二、对数运算法则1. 对数的基本运算法则(1)对数的乘法法则若loga m = p,loga n = q,则loga (mn) = p+q。
两个数相乘的对数等于这两个数的对数之和。
(2)对数的除法法则若loga m = p,loga n = q,则loga (m/n) = p-q。
两个数相除的对数等于这两个数的对数之差。
(3)对数的幂运算法则若loga m = p,则loga (m^k) = k*loga m。
一个数的幂的对数等于这个数的对数乘以幂的指数。
2. 对数的换底公式在计算对数时,如果底数不同,可以使用对数的换底公式来计算。
loga b = logc b / logc a,其中a、b、c为任意正数,且a≠1,b>0,c>0,c≠1。
三、对数函数1. 对数函数的定义和性质对数函数是指以某一固定的正数a为底的函数,通常表示为y=loga x。
对数函数的图像是一条连续递增的曲线。
2. 对数函数的性质(1)定义域对数函数的定义域为正实数集(x>0),因为对数函数的真数必须大于0。
(2)值域对数函数的值域为全体实数集,因为当底数大于1时,对数函数是递增函数,当底数在(0,1)之间时,对数函数是递减函数。
高中数学:2.2.1对数与对数运算 (1)
第2课时 对数的运算[目标] 1.理解对数的运算性质;2.能用换底公式将一般对数转化成自然对数或常用对数;3.了解对数在简化运算中的作用.[重点] 对数的运算性质的推导与应用.[难点] 对数的运算性质的推导和换底公式的应用.知识点一 对数的运算性质[填一填]如果a >0,且a ≠1,M >0,N >0.那么: (1)log a (M ·N )=log a M +log a N . (2)log a MN =log a M -log a N .(3)log a M n =n log a M (n ∈R ).[答一答]1.若M ,N 同号,则式子log a (M ·N )=log a M +log a N 成立吗? 提示:不一定,当M >0,N >0时成立,当M <0,N <0时不成立.2.你能推导log a (MN )=log a M +log a N 与log a MN =log a M -log a N (M ,N >0,a >0且a ≠1)两个公式吗?提示:①设M =a m ,N =a n ,则MN =a m +n .由对数的定义可得log a M =m ,log a N =n , log a (MN )=m +n .这样,我们可得log a (MN )=log a M +log a N . ②同样地,设M =a m ,N =a n , 则MN =a m -n .由对数定义可得log a M =m , log a N =n ,log a MN =m -n ,即log a MN=log a M -log a N .知识点二 换底公式[填一填]换底公式常见的推论: (1)log an b n =log a b ;(2)log am b n =n m log a b ,特别log a b =1log b a ;(3)log a b ·log b a =1; (4)log a b ·log b c ·log c d =log a d .[答一答]3.换底公式的作用是什么?提示:利用换底公式可以把不同底数的对数化为同底数的对数. 4.若log 34·log 48·log 8m =log 416,求m 的值. 提示:∵log 34·log 48·log 8m =log 416, ∴lg4lg3·lg8lg4·lg mlg8=log 442=2, 化简得lg m =2lg3=lg9,∴m =9.类型一 对数运算性质的应用[例1] 计算下列各式: (1)12lg 3249-43lg 8+lg 245; (2)2lg2+lg31+12lg0.36+13lg8;(3)lg25+23lg8+lg5lg20+(lg2)2.[分析] (1)(2)正用或逆用对数的运算性质化简;(3)用lg2+lg5=1化简.[解] (1)(方法1)原式=12(5lg2-2lg7)-43×32lg2+12(2lg7+lg5)=52lg2-lg7-2lg2+lg7+12lg5=12lg2+12lg5=12(lg2+lg5)=12lg10=12. (方法2)原式=lg427-lg4+lg(75)=lg 42×757×4=lg(2×5)=lg 10=12.(2)原式=lg4+lg31+lg0.6+lg2=lg12lg (10×0.6×2)=lg12lg12=1. (3)原式=2lg5+2lg2+(1-lg2)(1+lg2)+(lg2)2 =2(lg5+lg2)+1-(lg2)2+(lg2)2=2+1=3.利用对数的运算性质解决问题的一般思路:(1)把复杂的真数化简;(2)正用公式:对式中真数的积、商、幂、方根,运用对数的运算法则,将它们化为对数的和、差、积、商,然后再化简;(3)逆用公式:对式中对数的和、差、积、商,运用对数的运算法则,将它们化为真数的积、商、幂、方根,然后化简求值.[变式训练1] (1)计算:log 53625=43;log 2(32×42)=9.(2)计算:lg8+lg125=3;lg 14-lg25=-2;2log 36-log 34=2.类型二 换底公式的应用[例2] (1)计算:(log 32+log 92)·(log 43+log 83); (2)已知log 189=a,18b =5,试用a ,b 表示log 3645. [解] (1)原式=⎝⎛⎭⎫lg2lg3+lg2lg9⎝⎛⎭⎫lg3lg4+lg3lg8 =⎝⎛⎭⎫lg2lg3+lg22lg3⎝⎛⎭⎫lg32lg2+lg33lg2=3lg22lg3·5lg36lg2=54. (2)由18b =5,得log 185=b ,∴log 3645=log 18(5×9)log 18(18×2)=log 185+log 1891+log 182=log 185+log 1891+log 18189=log 185+log 1892-log 189=a +b 2-a .利用换底公式可以统一“底”,以方便运算.在用换底公式时,应根据题目特点灵活换底.由换底公式可推出常用结论:log a b ·log b a =1.[变式训练2] 计算下列各式:(1)(log 2125+log 425+log 85)·(log 52+log 254+log 1258). (2)log 89log 23×log 6432. 解:(1)方法1:原式=(log 253+log 225log 24+log 25log 28)(log 52+log 54log 525+log 58log 5125)=⎝⎛⎭⎫3log 25+2log 252log 22+log 253log 22⎝⎛⎭⎫log 52+2log 522log 55+3log 523log 55 =⎝⎛⎭⎫3+1+13log 25·(3log 52)=13log 25·log 22log 25=13. 方法2:原式=⎝⎛⎭⎫lg125lg2+lg25lg4+lg5lg8⎝⎛⎭⎫lg2lg5+lg4lg25+lg8lg125 =⎝⎛⎭⎫3lg5lg2+2lg52lg2+lg53lg2⎝⎛⎭⎫lg2lg5+2lg22lg5+3lg23lg5 =⎝⎛⎭⎫13lg53lg2⎝⎛⎭⎫3lg2lg5=13.(2)方法1:原式=log 29log 28÷log 23×log 232log 264=2log 233÷log 23×56=59.方法2:原式=lg9lg8÷lg3lg2×lg32lg64=2lg33lg2×lg2lg3×5lg26lg2=59.类型三 与对数方程有关的问题[例3] (1)若lg(x -y )+lg(x +2y )=lg2+lg x +lg y ,求xy 的值;(2)解方程:log 2x +log 2(x +2)=3.[解] (1)由题可知lg[(x -y )(x +2y )]=lg(2xy ), 所以(x -y )(x +2y )=2xy ,即x 2-xy -2y 2=0.所以⎝⎛⎭⎫x y 2-xy -2=0. 解得x y =2或xy=-1.又因为x >0,y >0,x -y >0.所以x y =2.(2)由方程可得log 2x +log 2(x +2)=log 28. 所以log 2[x (x +2)]=log 28, 即x (x +2)=8.解得x 1=2,x 2=-4. 因为x >0,x +2>0,所以x =2.对数方程问题的求解策略:利用对数运算性质或换底公式将方程两边写成同底的对数形式,由真数相等求解方程,转化过程中注意真数大于零这一条件,防止增根.[变式训练3] (1)方程lg x +lg(x -1)=1-lg5的根是( B ) A .-1 B .2 C .1或2D .-1或2(2)已知lg x +lg y =2lg(x -2y ),则log2 xy的值为4. 解析:(1)由真数大于0,易得x >1,原式可化为lg x (x -1)=lg2⇒x (x -1)=2⇒x 2-x -2=0⇒x 1=2,x 2=-1(舍).(2)因为lg x +lg y =2lg(x -2y ), 所以lg xy =lg(x -2y )2,所以xy =(x -2y )2,即x 2-5xy +4y 2=0. 所以(x -y )(x -4y )=0,解得x =y 或x =4y . 因为x >0,y >0,x -2y >0,所以x =y 应舍去, 所以x y =4.故log 2 xy =log 2 4=4.类型四 对数的实际应用[例4] 人们对声音有不同的感觉,这与它的强度有关系.声音强度I 的单位用瓦/平方米(W/m 2)表示,但在实际测量时,声音的强度水平常用L 1表示,它们满足以下公式:L 1=10lg I I 0(单位为分贝,L 1≥0,其中I 0=1×10-12 W/m 2,是人们平均能听到的最小强度,是听觉的开端).回答下列问题:树叶沙沙声的强度是1×10-12W/m 2,耳语的强度是1×10-10W/m 2,恬静的无线电广播的强度是1×10-8W/m 2,试分别求出它们的强度水平.[解] 由题意,可知树叶沙沙声的强度是I 1=1×10-12W/m 2,则I 1I 0=1,故LI 1=10·lg1=0,则树叶沙沙声的强度水平为0分贝;耳语的强度是I 2=1×10-10W/m 2,则I 2I 0=102,故LI 2=10lg102=20,即耳语声的强度水平为20分贝. 同理,恬静的无线电广播强度水平为40分贝.对数运算在实际生产和科学技术中运用广泛,其运用问题大致可分为两类:一类是已知对数应用模型(公式),在此基础上进行一些实际求值.计算时要注意利用“指、对互化”把对数式化成指数式.另一类是先建立指数函数应用模型,再进行指数求值,此时往往将等式两边进行取对数运算.[变式训练4] 抽气机每次抽出容器内空气的60%,要使容器内的空气少于原来的0.1%,则至少要抽几次?(lg2≈0.301 0)解:设至少抽n 次可使容器内空气少于原来的0.1%,则a (1-60%)n <0.1%a (设原先容器中的空气体积为a ),即0.4n <0.001,两边取常用对数得n ·lg0.4<lg0.001,所以n >lg0.001lg0.4=-32lg2-1≈7.5.故至少需要抽8次.1.设a ,b ,c 均为不等于1的正实数,则下列等式中恒成立的是( B ) A .log a b ·log c b =log c a B .log a b ·log c a =log c b C .log a (bc )=log a b ·log a c D .log a (b +c )=log a b +log a c解析:由换底公式得log a b ·log c a =lg b lg a ·lg alg c =log c b ,所以B 正确.2.2log 32-log 3329+log 38的值为( B )A.12 B .2 C .3D.13解析:原式=log 34-log 3329+log 38=log 34×8329=log 39=2.3.lg 5+lg 20的值是1.解析:lg 5+lg 20=lg(5×20)=lg 100=1.4.若a >0,且a ≠1,b >0,且b ≠1,则由换底公式可知log a b =lg b lg a ,log b a =lg alg b ,所以log a b =1log b a ,试利用此结论计算1log 321+1log 721=1.解析:1log 321+1log 721=1lg21lg3+1lg21lg7=lg3lg21+lg7lg21=lg (3×7)lg21=1. 5.计算:(1)3log 72-log 79+2log 7⎝⎛⎭⎫322; (2)(lg2)2+lg2·lg50+lg25.解:(1)原式=log 78-log 79+log 798=log 78-log 79+log 79-log 78=0.(2)原式=lg2(lg2+lg50)+2lg5=lg2·lg100+2lg5 =2lg2+2lg5=2(lg2+lg5)=2lg10=2.——本课须掌握的两大问题1.运用对数的运算性质应注意:(1)在各对数有意义的前提下才能应用运算性质. (2)根据不同的问题选择公式的正用或逆用. (3)在运算过程中避免出现以下错误:①log a N n =(log a N )n ,②log a (MN )=log a M ·log a N ,③log a M ±log a N =log a (M±N ). 2.换底公式可完成不同底数的对数式之间的转化,可正用,逆用;使用的关键是恰当选择底数,换底的目的是利用对数的运算性质进行对数式的化简.学习至此,请完成课时作业19。
对数函数的单调性和应用
数字签名
对数函数还可以用于实现数字签 名算法,如DSA和ECDSA。通过 对数据进行对数运算,可以生成 数字签名,用于验证数据的完整 性和来源。
THANKS FOR WATCHING
感谢您的观看
数学表达式
当底数a(a>1)时,对 于任意x1<x2,有 log_a(x1)<log_a(x2)。
单调性证明
由于对数函数的导数 log'(x)=1/(xln(a))>0, 所以对数函数在底数大 于1时是单调增函数。
单调减函数
总结词
当底数小于1时,对数函数 是单调减函数。
详细描述
对于底数小于1的对数函数, 随着自变量的增加,函数值 相应减小,表现出单调递减 的性质。
01
对数函数和三角函数在形式上 有些相似,例如自然对数函数 和正弦函数都关于y=x对称。
02
在复数域中,对数函数和三角 函数有密切的联系,例如复数 的模和辐角可以用对数和三角 函数来表示。
03
在解决一些物理问题时,例如 波动方程和热传导方程,对数 函数和三角函数也会一起出现 。
对数函数与微积分的联系
03
风险评估
在评估投资风险时,可以利用对数函数计算投资组合的收益率和波动率,
从而确定投资组合的风险水平。
利用对数函数进行科学计算
声学计算
在物理学中,声波的传播速度与频率的对数成正比。利用 对数函数可以简化声学计算,例如计算声音的传播距离和 时间等。
化学反应速率
在化学反应中,反应速率与反应物浓度的对数成正比。利 用对数函数可以建立反应速率方程,从而研究化学反应的 动力学特征。
生物种群数量变化
在生态学中,某些生物种群的数量增长符合对数函数模型。 通过对历史数据进行分析,可以预测未来种群数量的变化 趋势。
对数函数的性质及运算法则
对数函数的性质及运算法则
数学中的对数函数是一个非常重要的函数,它以一组等式将指数函数和自然对数函数联系
起来。
对数函数满足多项式和幂函数的性质,在金融计算,物理学和化学中应用广泛。
对数函数的性质和运算概括如下:
1.复合性:给定任意实数x和t,有 log(x^t)=t*logx。
2.乘性:给定任意实数x,y,有log(xy)=logx+logy。
3.除法性:给定任意实数x,y,有log(x/y)=logx-logy。
4.反比性:给定任意实数x,y,有logy/logx=log(x/y)。
5.幂性:给定任意实数x,y,有logx^y=y*logx。
6.指数性:给定任意实数x,有e^logx=x。
上述性质可有效用来解决复杂的数学运算问题。
比如,解决2的3次方等于多少的问题,可以将对数函数的性质和运算应用到这一问题上,得出公式 log2^3=3*log2,故 2的3次
方等于8。
以上是对数函数的性质及运算法则的简单介绍,它包括多种基本性质和运算法则,以及扩
展到多种相关问题的应用。
正确理解和运用对数函数,可以有效解决复杂的数学运算问题。
对数的运算性质
对数的运算性质对数的运算性质是解决各种计算问题的基础,它是数学中的一个重要分支。
对数的运算性质包括:加法公式、减法公式、乘法公式、除法公式、幂运算、指数运算等。
下面,我们将详细介绍这些内容。
一、加法公式对数的加法公式是对数学中两个数的和进行求解的公式。
对数的加法公式是:logab + logac = loga(bc)其中,a、b、c分别代表底数、被加数、加数,bc为和。
加法公式的解释:如果幂运算a^{x}=b,那么对数运算是x=log_{a}(b)。
如果对a^{x}和a^{y}取对数,那么可以得到:x=log_{a}(b)y=log_{a}(c)将两式相加可以得到:x+y=log_{a}(b)+log_{a}(c)将b和c用求和的形式表示可以得到:a^{x+y}=a^{log_{a}{(b+c)}}移项可以得到:log_{a}(b)+log_{a}(c)=log_{a}(bc)因此上述公式就是加法公式。
二、减法公式减法公式是对数学中两个数的差进行求解的公式。
对数的减法公式是:logab - logac = loga(b/c)其中,a、b、c分别代表底数、被减数、减数,b/c为差。
减法公式的解释:如果幂运算a^{x}=b,那么对数运算是x=log_{a}(b)。
如果对a^{x}和a^{y}求差,那么可以得到:x=log_{a}(b)y=log_{a}(c)将两式相减可以得到:x-y=log_{a}\\frac{b}{c}因此,上述公式就是减法公式。
三、乘法公式乘法公式是对数学中两个数的乘积进行求解的公式。
对数的乘法公式是:logab * logac = loga(b * c)其中,a、b、c分别代表底数、被乘数、乘数,bc为积。
乘法公式的解释:如果幂运算a^{x}=b,那么对数运算是x=log_{a}(b)。
如果对a^{x}和a^{y}取对数,那么可以得到:x=log_{a}(b)y=log_{a}(c)将两式相乘可以得到:xy=(log_{a}(b))*(log_{a}(c))展开可以得到:log_{a}(b*c)=(log_{a}(b))*(log_{a}(c))因此,上述公式就是乘法公式。
对数函数及其性质的应用(高中数学)
(2)法一(单调性法):由于 log132= 1
又因对数函数 y=log2x 在(0,+∞)上是增函数,
且13>15,所以 0>log213>log215,
常见的对数不等式的三种类型 1形如 logax>logab 的不等式,借助 y=logax 的单调性求解,如果 a 的取值不确定,需分 a>1 与 0<a<1 两种情况讨论; 2形如 logax>b 的不等式,应将 b 化为以 a 为底数的对数式的形式, 再借助 y=logax 的单调性求解; 3形如 logax>logbx 的不等式,可利用图象求解.
[解] (1)∵22a+1>25a-2,∴2a+1>5a-2,即 3a<3,∴a<1,即 0 <a<1.∴实数 a 的取值范围是(0,1).
(2)由(1)得,0<a<1,∵loga(3x+1)<loga(7-5x),
3x+1>0,
∴7-5x>0, 3x+1>7-5x,
x>-31, 即x<75,
x>34,
2.如何求形如 y=logaf(x)的值域? 提示:先求 y=f(x)的值域,注意 f(x)>0,在此基础上,分 a>1 和 0<a<1 两种情况,借助 y=logax 的单调性求函数 y=logaf(x)的值域.
【例 3】 (1)已知 y=loga(2-ax)是[0,1]上的减函数,则 a 的取值范 围为( )
A.(0,1)
B.(1,2)
C.(0,2)
D.[2,+∞)
(2)函数 f(x)=log21(x2+2x+3)的值域是________. [思路点拨] (1)结合对数函数及 y=2-ax 的单调性,构造关于 a 的
对数函数的性质及运算
对数函数的性质及运算对数函数是数学中经常使用的一种函数,它在许多领域都有重要的应用。
本文将探讨对数函数的性质及其运算规则。
一、对数函数的定义及性质对数函数的定义:给定一个正数a(a>0且a≠1),那么以a为底的对数函数记作logₐ(x),定义为满足a的x次方等于b的数x,即aˣ=b,其中b>0。
1. 对数函数的定义域和值域:对数函数的定义域是(0, +∞),值域是(-∞, +∞)。
当底数a>1时,对数函数是递增的;当0<a<1时,对数函数是递减的。
2. 对数函数的性质:(1)logₐ(a)=1,即对数函数的基本性质。
(2)logₐ(aˣ)=x,即对数函数的反函数性质。
(3)logₐ(a×b)=logₐ(a)+logₐ(b),即对数函数的乘法公式。
(4)logₐ(a/b)=logₐ(a)-logₐ(b),即对数函数的除法公式。
(5)logₐ(a^k)=k·logₐ(a),即对数函数的幂函数公式。
(6)logₐ1=0,即对数函数的特殊性质。
二、对数函数的运算规则1. 对数运算的基本性质:(1)logₐ(m×n)=logₐ(m)+logₐ(n),即对数乘法法则。
(2)logₐ(m/n)=logₐ(m)-logₐ(n),即对数除法法则。
(3)logₐ(m^k)=k·logₐ(m),即对数幂函数法则。
(4)logₐ(a)=1/logₐ(a),即对数底变换公式。
2. 特殊情况下的对数运算:(1)logₐ(a)=1,其中a是正实数且a>0,即指数和对数的底为同一个数时,结果为1。
(2)logₐ(a)≠0,其中a是正实数且a>0,即指数和对数的底不相等时,结果不为0。
三、对数函数的应用对数函数在科学研究和实际生活中有着广泛的应用,例如:1. 财务与利息计算:对数函数可以用于计算复利、年化利率等问题。
2. 生物学与医学研究:对数函数可以用于研究生物体的生长和代谢等问题。
高中数学-对数函数性质的应用
对数函数性质的应用一.对数函数的定义域、值域例1、求函数)35(log 21-=x y 的定义域。
解:由题意,得0)35(log 21≥-x ,结合对数函数的图像与性质,得1350≤-<x , 解得5443≤<x ,所以函数)35(log 21-=x y 的定义域为}.5443|{≤<x x 点评:本题的易错点是注意了被开方数要大于等于0,却忽略了对数函数本身的定义域。
求解对数型复合函数的问题时,应该首先保证对数的真数大于0.二.对数函数的单调性对数函数的单调性受底数a 的制约,所以当题目中关于对数函数的底数的条件仅仅是“a>0且1≠a ”时,就要注意对底数进行分类讨论。
例2、)1(log )(++=x a x f a x 在[0,1]上的最大值与最小值之和为a ,则a 的值是( )A 、41B 、21 C 、2 D 、4 解:(1)当a>1时,2log )1()(max a a f x f +==,11log )0()(0min =+==a a f x f ,所以a a a =++12log ,所以a =21,不合题意,舍去; (2)当0<a<1时,11log )0()(0max =+==a a f x f ,2log )1()(min a a f x f +==,所以a a a =++12log ,所以a =21,故选B. 点评:对于对数函数的底数,要根据单调性的不同,分a>1和0<a<1两种情况讨论。
三.对数函数的图像过定点(1,0)根据01log =a (a>0且1≠a )可知,对数函数的图像经过定点(1,0)例3、若函数112log -+=x x y a(a>0且1≠a )的图像过定点P ,则点P 的坐标为________. 解:当1112=-+x x ,即x =-2时,y =0,故点P 的坐标为(-2,0). 点评:对复合函数112log -+=x x y a (a>0且1≠a ),内层函数112-+=x x μ就是外层函数μa y log =的自变量,因为外层函数的图像过定点(1,0),所以令1=μ,得x 的值,从而得复合函数经过的定点。
高中数学:2.2.3对数函数的性质与应用 (26)
2.2 对数函数互动课堂疏导引导2.2.1 对数与对数运算 1.对数的定义一般地,如果a x=N(a>0,a ≠1),那么数x 叫做以a 为底N 的对数,记作x=log a N,其中a 叫做对数的底数,N 叫做真数.通常我们将以10为底的对数叫做常用对数,并把log 10N 记为lg N,以e(e=2.718 28…)为底的对数称为自然对数,并且把log e N 记为lnN.疑难疏引 (1)因为a>0,所以不论b 是什么数,都有a b >0,即不论b 是什么数,N=a b永远是正数,这说明在相应的对数式b=log a N 中真数N 永远是正数,换句话说负数和零没有对数. (2)指数与对数的关系: a x=N(a>0,a ≠1)x=log a N. (3)负数和零没有对数. 2.对数的运算 (1)换底公式: ①log a b=alog blog c c ,即有log c a ·log a b=log c b; ②log b a=blog 1a ,即有log ab ·log b a=1; ③log a m b n=mnlog a b; (2)对数恒等式:a logaN=N.疑难疏引 换底公式是对数中一个非常重要的公式,这是因为它是对一个对数进行变形运算的主要依据之一,是对数的运算性质. 3.对数式与指数式的关系 【探究思路】 由定义可知:对数就是指数变换而来的,因此对数式与指数式联系密切,且可以互相转化.它们的关系可用下图表示.●案例1下列四个命题中,真命题是( ) A. lg2lg3=lg5B. lg 23=lg9C.若log a M+ N=b,则M+N=a bD.若log 2M+ log 3N=log 2N+log 3M,则M=N 【探究】 解答本题的关键是熟练掌握对数概念及对数运算的有关性质.将选项中提供的-=-=答案=-=-一一与相关的对数运算性质相对照,不难得出应选D.【溯源】 初学对数运算性质,容易犯下面错误:log a (M ±N)=log a M ±log a N, log a (M ×N)=log a M ×log a N, log aN M =Nlog M log a a ,log a N n =(log a N) n.要注意:积的对数变为加,商的对数变为减,幂的乘方取对数,要把指数提到前. ●案例2求值: (1)7log -133;(2)lg5·lg20+lg 22;(3)已知log 23=a,3 b=7,求log 1256的值.【探究】 (1)(2)严格按照指数、对数的运算法则计算,(3)先将3 b=7转化为log 37=b,然后设法将log 1256化成关于log 23和log 37的表达式即可求值. (1) 7log -133=733log 3 =73. (2)lg5·lg20+lg 22=lg5(lg4+lg5)+lg 22=2lg2·lg5+lg 25+lg 22=(lg2+lg5) 2=1. (3)解法一:∵log 23=a,∴2 a=3.又3 b =7,∴7=(2 a ) b =2 ab.故56=2 3+ab.又12=3·4=2 a ·4=2 a+2, 从而56=(2 a+2)aab ++23 =1223++a ab .故log 1256=log 121223++a ab =23++a ab. 解法二:∵log 23=a,∴log 32=a1. 又3 b=7,∴log 37=b.从而log 1256=12log 56log 33=4log 3log 8log 7log 3333++=2log 212log 37log 333++=a ab 12113•+•+=23++a ab . 解法三: ∵log 23=2lg 3lg =a,∴lg3=alg2. 又3 b=7,∴lg7=blg3. ∴lg7=ablg2.从而log 1256=12lg 56lg =3lg 2lg 27lg 2lg 3++=2lg 2lg 22lg 2lg 3a ab ++ =aab++23. 【溯源】 (1)lg2+lg5=1在对数计算中经常用到.(2)第三小题中解法一借助指数变形来解;解法二与解法三是利用换底公式来解,显得较简明.应用对数换底公式解这类题的关键是适当选取新的底数,从而把已知对数和所求对数都换成新的对数,再代入求值即可.2.2.2 对数函数及其性质1.概念一般地,我们把函数y=log a x(a>0且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).2.对数函数的性质a>1 0<a<1图象性质(1)定义域:(0,+∞)(2)值域:R(3)图象过定点(1,0)(4)在(0,+∞)上是增函数在(0,+∞)上是减函数疑难疏引对数函数的图象特征和对数函数的性质之间有以下对应关系:(1)图象都位于y轴右侧,且以y轴为渐近线→函数定义域为(0,+∞);(2)图象向上、向下无限延展→函数值域为R;(3)图象恒过定点(1,0)→1的对数是零,即log a1=0;(4)当a>1时,图象由左向右逐渐上升,即当a>1时,y=log a x在(0,+∞)上是增函数;当0<a<1时,图象由左向右逐渐下降,即当0<a<1时,y=log a x在(0,+∞)上是减函数;(5)当a>1时,在直线x=1的右侧,图象位于x轴上方;在直线x=1与y轴之间,图象位于x轴下方,即当a>1时,x>1,则y=log a x>0;0<x<1,则y=log a x<0;当0<a<1时,在直线x=1的右侧,图象位于x轴下方;在直线x=1与y轴之间,图象位于x轴上方,即当0<a<1时,x>1,则y=log a x<0;0<x<1,则y=log a x>0.对数函数y=log a x(a>0且a≠1)的性质的助记口诀:对数增减有思路,函数图象看底数,底数只能大于0,等于1来也不行,底数若是大于1,图象从下往上增;底数0到1之间,图象从上往下减.无论函数增和减,图象都过(1,0)点.●案例1比较大小:(1)log0.27和log0.29;(2)log35和log65;(3)(lgm) 1.9和(lgm) 2.1(m>1);(4)log85和lg4.【探究】 (1)log0.27和log0.29可看作是函数y=log0.2x,当x=7和x=9时对应的两函数值,由y=log0.2x在(0,+∞)上单调递减,得log0.27>log0.29.(2)考查函数y=log a x底数a>1的底数变化规律,函数y=log3x(x>1)的图象在函数y=log6x(x>1)的上方,故log 35>log 65.(3)把lgm看作指数函数的底数,要比较两数的大小,关键是比较底数lgm与1的关系.若lgm>1即m>10,则(lgm)x在R上单调递增,故(lgm)1.9<(lgm)2.1.若0<lgm<1即1<m<10,则(lgm)x在R 上单调递减,故(lgm) 1.9>(lgm) 2.1.若lgm=1即m=10,则(lgm) 1.9=(lgm) 2.1. (4)因为底数8、10均大于1,且10>8,所以log 85>lg5>lg4,即log 85>lg4. 【溯源】 两数(式)大小的比较主要是找出适当的函数,把要比较的两数作为此函数的函数值,然后利用函数的单调性等来比较两数的大小.一般采用的方法有: (1)直接法:由函数的单调性直接作答;(2)作差法:把两数作差变形,然后判断其大于、等于、小于零来确定;(3)作商法:若两数同号,把两数作商变形,判断其大于、等于、小于1来确定; (4)转化法:把要比较的两数适当转化成两个新数大小的比较; (5)媒介法:选取适当的“媒介”数,分别与要比较的两数比较大小,从而间接地求得两数的大小.●案例2已知函数y=lg(x 2+1-x),求其定义域,并判断其奇偶性、单调性. 【探究】 注意到12+x +x=xx -+112,即有lg(12+x -x)=-lg(12+x +x),从而f(-x)=lg(12+x +x)=-lg(12+x -x)=-f(x),可知其为奇函数.又因为奇函数在关于原点对称的区间上的单调性相同,所以我们只需研究(0,+∞)上的单调性. 由题意12+x -x>0,解得x ∈R,即定义域为R. 又f(-x)=lg [1)(2+-x -(-x)]=lg(12+x +x) =lgxx -+)1(12=lg(12+x -x) -1=-lg(12+x -x)=-f(x). ∴y=lg(12+x -x)是奇函数. 任取x 1、x 2∈(0,+∞)且x 1<x 2, 则121+x <122+x ⇒121+x +x 1<122+x +x 212111x x ++>22211x x ++,即有121+x -x 1>121+x -x 2>0, ∴lg(121+x -x 1)>lg(122+x -x 2),即f(x 1)>f(x 2)成立.∴f(x)在(0,+∞)上为减函数. 又f(x)是定义在R 上的奇函数, 故f(x)在(-∞,0)上也为减函数. 【溯源】研究函数的性质一定得先考虑定义域,在研究函数单调性时,注意奇偶性对函数单调性的影响,即偶函数在关于原点对称的区间上具有相反的单调性;奇函数在关于原点对称的区间上具有相同的单调性.●案例3作出下列函数的图象: (1)y=|log 4x|-1; (2)y=log 31|x+1|. 【探究】 (1)y=|log 4x|-1的图象可以看成由y=log 4x 的图象经过变换而得到:将函数y=log 4x 的图象在x 轴下方部分以x 轴为对称轴翻折上去,得到y=|log 4x|的图象,再将y=|log 4x|的图象向下平移1个单位,横坐标不变,就得到了y=|log 4x|-1的图象.(2)y=log 31|x+1|的图象可以看成由y=log 31x 的图象经过变换而得到:将函数y=log 31x 的图象作出,然后关于y 轴对称,即得到函数y=log 31|x|的图象,再将所得图象向左平移一个单位,就得到所求的函数y=log 31|x+1|的图象. 函数(1)的图象作法如图①~③所示. 函数(2)的图象作法如图④~⑥所示.【溯源】 画函数图象是研究函数变化规律的重要手段,画函数图象通常有两种方法:列表法和变换法.变换法有如下几种:平移变换:y=f(x+a),将y=f(x)的图象向左(a>0)或向右(a<0)平移|a|个单位而得到;y=f(x)+a,将y=f(x)的图象向上(a>0)或向下(a<0)平移|a|个单位而得到.翻折变换:y=|f(x)|,将y=f(x)的图象在x 轴下方部分沿x 轴翻折到x 轴的上方,其他部分不变;y=f(|x|),它是一个偶函数,x ≥0时,图象与y=f(x)的图象完全一样;当x ≤0时,其图象与x ≥0时的图象关于y 轴对称.对称变换:y=-f(x),它的图象与函数y=f(x)的图象关于x 轴对称;y=f(-x),它的图象与y=f(x)的图象关于y 轴对称;y=-f(-x),它的图象与y=f(x)的图象关于原点成中心对称.伸缩变换:y=f(ax)(a>0),将y=f(x)图象上各点的横坐标压缩(a>1)或伸长(0<a<1)到原来的a 倍,纵坐标不变而得到;y=af(x)(a>0),将y=f(x)图象上各点的横坐标不变,纵坐标压缩(0<a<1)或伸长(a>1)到原来的a 倍而得到.●案例4已知f(x)=2+log 3x, x ∈[1,9],求y=[f(x)]2+f(x 2)的最大值,及y 取最大值时,x 的值.【探究】 要求函数y=[f(x)]2+f(x 2)的最大值,一是要求其表达式;二是要求出它的定义域,然后求值域.【解】 ∵f(x)=2+log 3x,∴y=[f(x)]2+f(x 2)=(2+log 3x) 2+2+log 3x 2=(2+log 3x) 2+2+2log 3x=log 32x+6log 3x+6=(log 3x+3) 2-3.∵函数f(x)的定义域为[1,9],∴要使函数y=[f(x)]2+f(x 2)有意义,就需1≤x 2≤9,1≤x ≤9. ∴1≤x ≤3.∴0≤log 3x ≤1.∴6≤y=(log 3x+3) 2-3≤13.∴当x=3时,函数y=[f(x)]2+f(x 2)取最大值13.【溯源】 在处理有关对数的复合函数的问题时,定义域的求解往往是解题的关键所在,同时要注意对数单调性的应用.●案例5某工厂2006年生产一种产品2万件,计划从2007年开始每年的产量比上一年增长20%.则这家工厂生产这种产品的年产量超过12万件时是年.(已知lg2=0.301 0,lg3=0.477 1)( ) A.2015 B.2016 C.2017 D.2018【探究】 此题是平均增长率问题的变式考题,哪一年的年产量超过12万件,其实就是求在2006年的基础上再过多少年的年产量大于12万件,即求经过多少年. 设再过n 年这家工厂生产这种产品的年产量超过12万件,根据题意,得2(1+20%)n >12,即1.2n>6, 两边取对数,得nlg1.2>lg6, ∴n>2.1lg 6lg =3lg 2lg 23lg 2lg + =14471.03010.024771.03010.0-+⨯+. ∴n=10,即2 006+10=2 016. 因此,选B.【溯源】 对数函数在求解指数方程时有着无比神奇的效果,经常是根据题意列出指数函数,再根据题意将指数函数转化为指数方程或不等式,然后两边取对数,即求解指数方程的解或指数不等式的解集.3.反函数的图象和性质对数函数y=log a x(a>0且a ≠1)与指数函数y=a x(a>0且a ≠1)互为反函数,这两个函数的图象关于y=x 对称.疑难疏引 (1)f(a)=b f -1(b)=a;(2)若原函数过点(a, b),则其反函数必过点(b, a); (3)原函数的定义域、值域为其反函数的值域、定义域; (4)原函数与其反函数的图象关于直线y=x 对称.在遇到反函数问题时,不要盲目将反函数求出,如果合理利用互为反函数的函数图象间的关系和性质,往往可收到事半功倍的效果.●案例6如何求函数y=5 x2-1(-1≤x<0)的反函数? 【探究】先求原函数的值域.由-1≤x<0,∴-1<x 2-1≤0.∴51<5x2-1≤1,即51<y ≤1,y=5x2-1⇒log 5y=log 55x2-1⇒log 5y=x 2-1x 2=1+log 5y.∵-1≤x<0,∴x=-y 5log 1+,即y=-x 5log 1+ (51<x ≤1). 【溯源】求反函数时,首先要求值域,然后解关于x 的方程,第三要把解出的方程中的x 、y 互换位置,用f -1(x)表示,最后把原函数的值域作为定义域标出. 关于对数运算的几点提示:(1)对数式log a N=b 中各字母的取值范围(a>0且a ≠1,N>0,b ∈R)容易记错. (2)解决对数函数y=log a x(a>0且a ≠1)的单调性问题时,忽视对底数a 的讨论.(3)关于对数式log a N 的符号问题,既受a 的制约又受N 的制约,两种因素交织在一起,应用时经常出错.下面介绍一种简单记忆方法,供学习时参考.以1为分界点,当a 、N 在同侧时,log a N>0;当a 、N 在异侧时,log a N<0. 活学巧用 1.3log 9log 28的值是( ) A.32 B. 1C.23 D. 2【思路解析】 考查有关对数的运算性质,log a m b n=mnlog a b. 【-=-=答案=-=-】 A2. 若log 2[log 21(log 2x)]=log 3[log 31(log 3y)]=log 5[log 51(log 5z)]=0,则x 、y 、z 的大小关系是( ) A. z<x<y B. x<y<z C. y<z<x D. z<y<x【思路解析】 依特殊的对数式log a 1=0及log a a=1可分别求出相应的x 、y 、z 的值. log 5[log51(log 5z)]=0,可知log51(log 5z)=1,所以log 5z=51,可得z=551.同理可得x=221,y=331,借助分数指数幂可得这三个数的大小,-=-=答案=-=-为D. 【-=-=答案=-=-】 D3. 下列各式中成立的是( )A. log a x 2=2log a xB. log a |xy|=log a |x|+log a |y|C. log a 3>log a 2D. log ayx=log a x- log a y【思路解析】 用对数的运算法则解决问题.A 、D 的错误在于不能保证真数为正,C 的错误在于a 值不定.选B. 【-=-=答案=-=-】B 4. 求下列各式中的x:(1)log 54x=-21; (2)log x 5=23; (3)log (x-1)(x 2-8x+7)=1.【思路解析】 根据式中未知数的位置或直接转化成指数式计算或利用对数性质进行计算.【解】 (1)原式转化为(54)-21=x,所以x=25.(2)原式转化为x 23=5,所以x=325.(3)由对数性质得⎪⎩⎪⎨⎧>+-≠->--=+-07811,0117822x x x x x x x 解得x=8.5. 已知log a 2=m,log a 3=n,则a 2m-n=__________.【思路解析】 首先把对数式化为指数式,再进行指数运算. ∵log a 2=m,log a 3=n, ∴a m =2,a n=3. ∴a2m-n=n maa 2 =n m a a 2)( =322=34.【-=-=答案=-=-】34 6. (1)已知3a=2,用a 表示log 34-log 36; (2)已知log 32=a,3b=5,用a 、b 表示log 330. 【解】 (1)∵3a=2,∴a=log 32. ∴log 34-log 36=log 332=log 32-1=a-1. (2)∵3b=5,∴b=log 35. 又∵log 32=a, ∴log 330=21log 3(2×3×5)=21 (log 32+log 33+log 35)=21(a+b+1). 7. (1)将下列指数式写成对数式: ①2 10=1 024;②10 -3=10001;③0.3 3=0.027;④e 0=1. (2)将下列对数式写成指数式: ①log 0.46.25=-2; ②lg2=0.301 0;③log 310=2.095 9; ④ln23.14=x. 【思路解析】应用指数式与对数式的等价关系求解. 【-=-=答案=-=-】 (1)①log 21 024=10;②lg10001=-3;③log 0.30.027=3;④ln1=0.(2)①0.4 -2=6.25;②10 0.301 0=2;③3 2.095 9=10;④e x=23.14.8. 已知log a 3>log b 3>0,则a 、b 、1的大小关系是.【思路解析】 由对数函数的性质可知a>1,b>1,关键是判断a 与b 的大小,这可以利用对数函数的单调性来解决. 【解法一】 由log a 3>log b 3>0a 3log 1>b3log 1>0log 3b>log 3a>0log 3b>log 3a>log 31.∵y=log 3x 是增函数,故b>a>1. 【解法二】分别作出y=log a x 与y=log b x 的图象,然后根据图象特征进行推断. ∵log a 3>log b 3>0,∴a>1,b>1. 故y=log a x 与y=log b x 均为增函数. 又∵log a 3>log b 3>0,∴当x>1时,y=log a x 的图象应在y=log b x 图象的上方,如图所示.根据对数函数的图象分布规律,可知b>a>1. 【-=-=答案=-=-】 b>a>19. 比较下列各组数中两个值的大小: (1)log 23.4, log 28.5; (2)log 0.31.8, log 0.32.7;(3)log a 5.1, log a 5.9(a>0,a ≠1).【解】 (1)考查对数函数y=log 2x,因为它的底数2>1,所以它在(0,+∞)上是增函数,于是log 23.4<log 28.5.(2)考查对数函数y=log 0.3x,因为它的底数0<0.3<1,所以它在(0,+∞)上是减函数,于是log 0.31.8>log 0.32.7.(3)当a>1时,y=log a x 在(0,+∞)上是增函数,于是log a 5.1<log a 5.9; 当0<a<1时,y=log a x 在(0,+∞)上是减函数,于是log a 5.1>log a 5.9. 10. 求函数y=log 31(-x 2+4x+5)的定义域和值域.【解】 函数有意义,必须-x 2+4x+5>0⇒x 2-4x-5<0⇒-1<x<5, ∴函数的定义域为{x|-1<x<5}.由-1<x<5,∴在此区间内(-x 2+4x+5) max =9.∴0≤-x 2+4x+5≤9.从而log 31(-x 2+4x+5)≥log 319=-2, 即值域为{y|y ≥-2}. 11. 已知函数f(x)=log abx bx -+ (a>1且b>0). (1)求f(x)的定义域; (2)判断函数的奇偶性.【思路解析】 本题考查定义域、单调性的求法及判断方法,注意要利用定义求解.【解】 (1)由⎪⎩⎪⎨⎧≠->-+00b x b x bx ,解得x<-b 或x>b.∴函数f(x)的定义域为(-∞,-b)∪(b,+∞). (2)由于f(-x)=log a (b x b x --+-)=log a (b x b x +-)=log a (b x b x -+)-1=-log a (bx bx -+)=-f(x),所以f(x)为奇函数.12. 求函数y=log 21(-x 2+2x+3)的值域和单调区间. 【思路解析】 通过换元,令t=-x 2+2x+3,是复合函数的问题. 【解】 设t=-x 2+2x+3,则t=-(x-1)2+4. ∵y=log 21t 为减函数,且0<t ≤4, ∴y ≥log 214=-2,即函数的值域为[-2,+∞). 再由函数y=log 21(-x 2+2x+3)的定义域为-x 2+2x+3>0,即-1<x<3, ∴t=-x 2+2x+3在(-1,1)上递增而在[1,3)上递减. 而y=log 21t 为减函数. ∴函数y=log 21(-x 2+2x+3)的减区间为(-1,1),增区间为[1,3). 13. 函数y=lg|x|( )A.是偶函数,在区间(-∞,0)上单调递增B.是偶函数,在区间(-∞,0)上单调递减C.是奇函数,在区间(0,+∞)上单调递增D.是奇函数,在区间(0,+∞)上单调递减 【思路解析】 画出函数y=lg|x|的草图即见-=-=答案=-=-.在画函数y=lg|x|的草图时,注意应用函数y=lg|x|是个偶函数,其图象关于y 轴对称.比如列表时,要先确定对称轴,然后在对称轴的两侧取值列表.【-=-=答案=-=-】 B14. (2005北京高考,文2)为了得到函数y=2 x-3-1的图象,只需把函数y=2x 上所有点…( )A.向右平移3个单位长度,再向下平移1个单位长度B.向左平移3个单位长度,再向下平移1个单位长度C.向右平移3个单位长度,再向上平移1个单位长度D.向左平移3个单位长度,再向上平移1个单位长度【思路解析】 本题考查函数图象的平移问题,根据图象平移的方法口决“左加右减,上加下减”,极易求出-=-=答案=-=-.【-=-=答案=-=-】 A15. 已知函数f(x)=lg(ax 2+2x+1).(1)若函数f(x)的定义域为R,求实数a 的取值范围;(2)若函数f(x)的值域为R,求实数a 的取值范围.【思路解析】 f(x)的定义域为R,即关于x 的不等式ax 2+2x+1>0的解集为R,这是不等式中的常规问题.f(x)的值域为R 要求u=ax 2+2x+1取遍一切正数,使u 能取遍一切正数的条件是a>0,Δ≥0.【解】 (1)f(x)的定义域为R,即关于x 的不等式ax 2+2x+1>0的解集为R,当a=0时,此不等式变为2x+1>0,其解集不是R;当a ≠0时,有⎩⎨⎧<-=∆>0440a a ⇔ a>1. ∴a 的取值范围为a>1.(2)f(x)的值域为R,即u=ax 2+2x+1能取遍一切正数⇔a=0或⎩⎨⎧>-=∆>0440a a ⇔0< a ≤1. ∴a 的取值范围为0≤a ≤1.16. 设函数f(x)=x 2-x+b,且f(log 2a)=b,log 2[f(a)]=2(a ≠1),求f(log 2x)的最小值及对应的x 的值.【思路解析】 关键是利用已知的两个条件求出a 、b 的值.【解】 由已知得log 22a-log 2a+b=b,log 2(a 2-a+b)=2,即log 2a(log 2a-1)=0,a 2-a+b=4,①②由①得log 2a=1,∴a=2.代入②得b=2.∴f(x)=x 2-x+2.∴f(log 2x)=log 22x-log 2x+2=(log 2x-21) 2+47.∴当log 2x=21时,f(log 2x)取得最小值47,此时x=2. 17. 已知y=log a (2-ax)在区间[0,1]上是x 的减函数,求a 的取值范围.【思路解析】 本题的关键是要注意到真数与底数中两个参量a 是一样的,可知a>0且a ≠1,然后根据复合函数的单调性即可解决.【解】 先求函数定义域:由2-ax>0,得ax<2,又a 是对数的底数,∴a>0且a ≠1.∴x<a2. 由递减区间[0,1]应在定义域内,可得a2>1,∴a<2. 又2-ax 在x ∈[0,1]上是减函数,∴y=log a (2-ax)在区间[0,1]上也是减函数.由复合函数单调性可知a>1,∴1<a<2.18. 某县计划十年内产值翻两番,则产值平均每年增长的百分率为.(lg2=0.301 0, lg11.49= 1.060 2)【思路解析】 设产值平均年增长率为x,则(1+x) 10=4.两边同取以10为底的对数得10lg(1+x)=2lg2.∴lg(1+x)= 103010.02 =0.0602 ∴1+x=10 0.060 2.又∵lg11.49=1.060 2,∴11.49=10 1.060 2=10·10 0.060 2.∴10 0.060 2=1.149.因此1+x=1.149,x=0.149=14.9%.【-=-=答案=-=-】 14.9%19. 已知函数f(x)=2 x+1,则f -1(4)=__________.【思路解析】 由反函数定义域和值域间的对应关系知,f -1(4)的值即为f(x)=2 x+1=4时,自变量x 对应的值.【-=-=答案=-=-】 120. 已知函数f(x)=a x +k 的图象过点(1,3),其反函数f -1(x)的图象过点(2,0),求f(x).【思路解析】 根据函数f(x)=a x +k 的图象过点(1,3),可列出一个关于a 和k 的方程,再根据其反函数f -1(x)的图象过点(2,0),可知函数f(x)=a x +k 的图象过点(0,2),这样就又可以列出一个关于a 和k 的方程.【解】 依题意得a 1+k=3,a 0+k=2,解得a=2,k=1.∴f(x)=2x +1.。
高中数学对数与对数函数知识点及经典例题讲解
对数与对数函数1.对数(1)对数的定义:如果a b =N (a >0,a ≠1),那么b 叫做以a 为底N 的对数,记作log a N =b .(2)指数式与对数式的关系:a b =N log a N =b (a >0,a ≠1,N >0).两个式子表示的a 、b 、N 三个数之间的关系是一样的,并且可以互化.(3)对数运算性质:①log a (MN )=log a M +log a N .②log a =log a M -log a N .NM ③log a M n =n log a M .(M >0,N >0,a >0,a ≠1)④对数换底公式:log b N =(a >0,a ≠1,b >0,b ≠1,N >0).bN a a log log 2.对数函数(1)对数函数的定义函数y =log a x (a >0,a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).注意:真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于零,底数则要大于0且不为1在一个普通对数式里 a<0,或=1 的时候是会有相应b 的值的。
但是,根据对数定义: log a a=1;如果a=1或=0那么log a a 就可以等于一切实数(比如log 1 1也可以等于2,3,4,5,等等)第二,根据定义运算公式:log a M^n = nlog a M 如果a<0,那么这个等式两边就不会成立 (比如,log (-2) 4^(-2) 就不等于(-2)*log (-2) 4;一个等于1/16,另一个等于-1/16)(2)对数函数的图象11))底数互为倒数的两个对数函数的图象关于x 轴对称.(3)对数函数的性质:①定义域:(0,+∞).②值域:R .③过点(1,0),即当x =1时,y =0.④当a >1时,在(0,+∞)上是增函数;当0<a <1时,在(0,+∞)上是减函数.基础例题1.函数f (x )=|log 2x |的图象是?2.若f-1(x )为函数f (x )=lg (x +1)的反函数,则f-1(x )的值域为___________________.3.已知f (x )的定义域为[0,1],则函数y =f [log(3-x )]的定21义域是__________.4.若log x =z ,则x 、y 、z 之间满足7y A.y 7=x z B.y =x 7z C.y =7x zD.y =z x5.已知1<m <n ,令a =(log n m )2,b =log n m 2,c =log n (log n m ),则A.a <b <cB.a <c <bC.b <a <cD.c <a <b6.若函数f (x )=log a x (0<a <1)在区间[a ,2a ]上的最大值是最小值的3倍,则a 等于A.B.C. D.422241217.函数y =log 2|ax -1|(a ≠0)的对称轴方程是x =-2,那么a 等于 (x=-2非解)A.B.-C.2D.-221218.函数f (x )=log 2|x |,g (x )=-x 2+2,则f (x )·g (x )的图象只可能是AB9.设f-1(x )是f (x )=log 2(x +1)的反函数,若[1+ f-1(a )][1+ f -1(b )]=8,则f (a +b )的值为A.1B.2C.3D.log 2310.方程lg x +lg (x +3)=1的解x =___________________.典型例题【例1】 已知函数f (x )=则f (2+log 23)的值为⎪⎩⎪⎨⎧<+≥,4),1(,4,21(x x f x xA.B.C.D.3161121241【例2】 求函数y =log 2|x |的定义域,并画出它的图象,指出它的单调区间.【例3】已知f (x )=log [3-(x -1)2],求f (x )的值域及单31调区间.【例4】已知y =log a (3-ax )在[0,2]上是x 的减函数,求a 的取值范围.【例5】设函数f (x )=lg (1-x ),g (x )=lg (1+x ),在f (x )和g (x )的公共定义域内比较|f (x )|与|g (x )|的大小.【例6】 求函数y =2lg (x -2)-lg (x -3)的最小值.【例7】 在f 1(x )=x ,f 2(x )=x 2,f 3(x )=2x ,f 4(x )=log x 四2121个函数中,x 1>x 2>1时,能使[f (x 1)+f (x 2)]<f ()成21221x x 立的函数是A.f 1(x )=x(平方作差比较)B.f 2(x )21=x 2C.f3(x)=2xD.f4(x)=log x12探究创新1.若f(x)=x2-x+b,且f(log2a)=b,log2[f(a)]=2(a≠1).(1)求f(log2x)的最小值及对应的x值;(2)x取何值时,f(log2x)>f(1)且log2[f(x)]<f(1)?2.已知函数f(x)=3x+k(k为常数),A(-2k,2)是函数y=f -1(x)图象上的点.(1)求实数k的值及函数f-1(x)的解析式;(2)将y= f-1(x)的图象按向量a=(3,0)平移,得到函数y=g(x)的图象,若2f-1(x+-3)-g(x)≥1恒成立,试求m实数m的取值范围.。
对数函数及其性质-对数的公式互化-详尽的讲解
精心整理2.1 对数与对数运算1.对数的概念一般地,如果a x =N (a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数.说明:(1)实质上,上述对数表达式,不过是指数函数y =a x 的另一种表达形式,例如:34=81与4=log 381这两个式子表达是同一关系,因此,有关系式a x =N ?x =log a N ,从而得对数恒等式:a log a N =N .这种(3)①②1③2(1)①②③数.(2)对数的运算性质注意点①必须注意M >0,N >0,例如log a [(-3)×(-4)]是存在的,但是log a (-3)与log a (-4)均不存在,故不能写成log a [(-3)×(-4)]=log a (-3)+log a (-4).②防止出现以下错误:log a (M ±N )=log a M ±log a N ,log a (M ·N )=log a M ·log a N ,log a =,log a M n =(log a M )n .3.对数换底公式在实际应用中,常碰到底数不为10的对数,如何求这类对数,我们有下面的对数换底公式:log b N=(b>0,且b≠1;c>0,且c≠1;N>0).证明设log b N=x,则b x=N.两边取以c为底的对数,得x log c b=log c N.所以x=,即log b N=.换底公式体现了对数运算中一种常用的转化,即将复杂的或未知的底数转化为已知的或需要的底数,这是数学转化思想的具体应用.由换底公式可推出下面两个常用公式:(1)log b N=或log b N·log N b=1(N>0,且N≠1;b>0,且b≠1);.正确理解对数运算性质,下列说法中,正确的是()①若②若③若④若A.解析在②在③=N.例如,M=2,N在④所以,只有②成立.答案 C点评正确理解对数运算性质公式,是利用对数运算性质公式解题的前提条件,使用运算性质时,应牢记公式的形式及公式成立的条件.题型二对数运算性质的应用求下列各式的值:(1)2log32-log3+log38-5log53;(2)lg25+lg8+lg5·lg20+(lg2)2;(3).分析利用对数的性质求值,首先要明确解题目标是化异为同,先使各项底数相同,才能使用性质,再找真数间的联系,对于复杂的真数,可以先化简再计算.解(1)原式=2log32-(log332-log39)+3log32-3=2log32-5log32+2+3log32-3=-1.(2)原式=2lg5+2lg2+lg·lg(2×10)+(lg2)2=2lg(5×2)+(1-lg2)·(lg2+1)+(lg2)2=2+1-(lg2)2+(lg2)2=3.(3)∵点评分析解======13.点评方法一是先将括号内换底,然后再将底统一;方法二是在解题方向还不清楚的情况下,一次性地统一为常用对数(当然也可以换成其他非1的正数为底),然后再化简.上述方法是不同底数对数的计算、化简和恒等证明的常用方法.(x2+3x)=1,求实数x的值.已知log(x+3)错解由对数的性质可得x2+3x=x+3.解得x=1或x=-3.错因分析对数的底数和真数必须大于0且底数不等于1,这点在解题中忽略了.正解由对数的性质知解得x=1,故实数x的值为1.对数的定义及其性质是高考中的重要考点之一,主要性质有:log a1=0,log a a=1,a log a N=N(a>0,且a≠1,N>0).1.(上海高考)方程9x-6·3x-7=0的解是________.解析∵9x-6·3x-7=0,即32x-6·3x-7=0∴(3x-7)(3x+1)=0∴3x=7或3x=-1(舍去)∴x答案2.(解析∴g答案1A.(C.答案解析2A.aC.5答案解析∵a=log32,∴log38-2log36=3log32-2(log32+1)=3a-2(a+1)=a-2.3.log56·log67·log78·log89·log910的值为()A.1B.lg5C.D.1+lg2答案 C解析原式=····==.4.已知log a(a2+1)<log a2a<0,则a的取值范围是()A.(0,1)B.C.D.(1,+∞)答案 C解析由题意,得∵a>0,a≠1,log a(a2+1)<log a2a,∴0<a<1.∴<a<1.5.已知函数f(x)=a x-1+log a x(a>0,a≠1)在[1,3]上最大值与最小值之和为a2,则a的值为() A.4B.C.3D.答案 D6.若方程(lg x)2+(lg7+lg5)lg x+lg7·lg5=0的两根为α,β,则αβ等于()A.lg7·lg5B.lg35C.35D.答案解析∴α7答案解析8.答案解析=9答案解析而即lg∴lg x=lg(6×10),即x=6×10=0.06.10.(1)已知lg x+lg y=2lg(x-2y),求log的值;(2)已知log189=a,18b=5,试用a,b表示log365.解(1)lg x+lg y=2lg(x-2y),∴xy=(x-2y)2,即x2-5xy+4y2=0.即(x-y)(x-4y)=0,解得x=y或x=4y,又∵∴x>2y>0,∴x=y,应舍去,取x=4y.则log=log=log4==4.(2)∵18b=5,∴log185=b,又∵log189=a,∴log365======.11.设a,b,c均为不等于1的正数,且a x=b y=c z,++=0,求abc的值.解令a x=b y=c z=t(t>0且t≠1),则有=log t a,=log t b,=log t c,又++=0,∴log t abc=0,∴abc=1.12试判定△解∴Δ即∴a22.2.11231b=log a N,其中2(2)底的对数为1;(3)零和负数没有对数.3.通常将以10为底的对数叫做常用对数,以e为底的对数叫做自然对数,log10N可简记为lg N,log e N简记为ln N.4.若a>0,且a≠1,则a b=N等价于log a N=b.5.对数恒等式:a log a N=N(a>0且a≠1).一、对数式有意义的条件例1求下列各式中x的取值范围:(1)log2(x-10);(2)log(x-1)(x+2);(3)log(x+1)(x-1)2.分析由真数大于零,底数大于零且不等于1可得到关于x的不等式(组),解之即可.解(1)由题意有x-10>0,∴x>10,即为所求.(2)由题意有即∴x>1且x≠2.(3)由题意有解得x>-1且x≠0,x≠1.点评于1.A.aC.答案解析∴2<例2(1)54(3)-2分析解(2)∵(3)∵=16,∴log16=-2.(4)∵log101000=3,∴103=1000.点评指数和对数运算是一对互逆运算,在解题过程中,互相转化是解决相关问题的重要途径.在利用a x=N?x=log a N进行互化时,要分清各字母分别在指数式和对数式中的位置.变式迁移2将下列对数式化为指数式求x值:(1)log x27=;(2)log2x=-;(3)log5(log2x)=0;(4)x=log27;(5)x=log16.解(1)由log x27=,得x=27,∴x=27=32=9.(2)由log2x=-,得2-=x,∴x==.(3)由log5(log2x)=0,得log2x=1,∴x=21=2.(4)由x=log27,得27x=,即33x=3-2,∴x=-.(5)由x=log16,得x=16,即2-x=24,∴x=-4.三、对数恒等式的应用例3(1)a log a b·log b c·log c N的值(a,b,c∈R+,且不等于1,N>0);解=c(2)点评(3)解1N的对数,记作log a231A.10=1与lg1=0B.27-=与log27=-C.log3=9与9=3D.log55=1与51=5答案 C2.指数式b6=a(b>0,b≠1)所对应的对数式是()A.log6a=a B.log6b=aC.log a b=6D.log b a=6答案 D3.若log x(-2)=-1,则x的值为() A.-2B.+2C.-2或+2D.2-答案 B4.如果f(10x)=x,则f(3)等于() A.log310B.lg3C.103D.310答案 B解析方法一令10x=t,则x=lg t,∴f(t)5.A.2C.2答案解析=6答案解析7答案解析∴a2=a·a=(a)·a=2×3=12. 8.已知lg6≈0.7782,则102.7782≈________.答案600解析102.7782≈102×10lg6=600.三、解答题9.求下列各式中x的值(1)若log3=1,则求x值;(2)若log2003(x2-1)=0,则求x值.解(1)∵log3=1,∴=3∴1-2x=27,即x=-13(2)∵log2003(x2-1)=0∴x2-1=1,即x2=2∴x=±10.求x的值:(1)x=log4;(2)x=log9;(3)x=71-log75;(4)log x8=-3;(5)log x=4.解(1)由已知得:x=4,∴2-x=22,-=2,x=-4.(2)∴2x(3)x(4)即3(5)1212一、正确理解对数运算性质例1若a>0,a≠1,x>0,y>0,x>y,下列式子中正确的个数有()①log a x·log a y=log a(x+y);②log a x-log a y=log a(x-y);③log a=log a x÷log a y;④log a(xy)=log a x·log a y.A.0个B.1个C.2个D.3个答案 A解析对数的运算实质是把积、商、幂的对数运算分别转化为对数的加、减、乘的运算.在运算中要注意不能把对数的符号当作表示数的字母参与运算,如log a x≠log a·x,log a x是不可分开的一个整体.四个选项都把对数符号当作字母参与运算,因而都是错误的.点评正确理解对数运算性质公式,是利用对数运算性质公式解题的前提条件.变式迁移1若a>0且a≠1,x>0,n∈N*,则下列各式正确的是()A.log a x=-log a B.(log a x)n=n log a xC.(log a x)n=log a x n D.log a x=log a答案 A二、对数运算性质的应用例2(3);分析解==(2)=(3)(4)=点评变式迁移2求下列各式的值:(1)log535+2log-log5-log514;(2)[(1-log63)2+log62·log618]÷log64.解(1)原式=log5(5×7)-2log22+log5(52×2)-log5(2×7)=1+log57-1+2+log52-log52-log57=2.(2)原式=[log2+log62·log6(3×6)]÷log622=log62(log62+log63+1)÷(2log62)=1.三、换底公式的应用例3(1)设3x=4y=36,求+的值;(2)已知log189=a,18b=5,求log3645.解(1)由已知分别求出x和y.∵3x=36,4y=36,∴x=log336,y=log436,由换底公式得:x==,y==,∴=log363,=log364,∴=(2)∵∴点评(2)解∴lg(2)由∴∴=.1.对于同底的对数的化简常用方法是:(1)“收”,将同底的两对数的和(差)化成积(商)的对数;(2)“拆”,将积(商)的对数拆成对数的和(差).2.对于常用对数的化简要充分利用“lg5+lg2=1”来解题.3.对于多重对数符号对数的化简,应从内向外逐层化简求值.一、选择题1.lg8+3lg5的值为()A.-3B.-1C.1D.3答案 D解析lg8+3lg5=lg8+lg53=lg1000=3.2.已知lg2=a,lg3=b,则log36等于()A.B.C.D.答案 B解析log36===.3.若lg a,lg b是方程2x2-4x+1=0的两个根,则2的值等于()A.2B.C.4D.答案解析∴2=(lg=224A.B答案解析x=5.() A.答案解析所以=log a x+log a x+…+log a x=2log a|x1|+2log a|x2|+…+2log a|x2005|=2log a|x1x2…x2005|=2f(x1x2…x2005)=2×8=16.二、填空题6.设lg2=a,lg3=b,那么lg=__________.答案解析lg=lg1.8=lg=lg=(lg2+lg9-1)=(a+2b-1).7.若log a x=2,log b x=3,log c x=6,则log abc x的值为____.答案 1解析log abc x==∵log a x=2,log b x=3,log c x=6∴log x a=,log x b=,log x c=,∴log abc x===1.8.已知log63=0.6131,log6x=0.3869,则x=________.答案解析得9(1)lg解+====lg=(2)方法一原式=(lg5+lg2)(lg5-lg2)+2lg2=lg10·lg+lg4=lg=lg10=1.方法二原式=(lg10-lg2)2+2lg2-lg22=1-2lg2+lg22+2lg2-lg22=1.10.若26a=33b=62c,求证:+=.证明设26a=33b=62c=k(k>0),那么∴∴+=6·log k2+2×3log k3=log k(26×36)=6log k6=3×2log k6=,即+=.2.2.2对数函数及其性质1.对数函数的概念形如y=log a x(a>0且a≠1)的函数叫做对数函数.对于对数函数定义的理解,要注意:(1)对数函数是由指数函数变化而来的,由指数式与对数式关系知,对数函数的自变量x恰好是指数函数的函数值y,所以对数函数的定义域是(0,+∞);(2)对数函数的解析式y=log a x中,log a x前面的系数为1,自变量在真数的位置,底数a必须满足a23.(1)-1)<0,即m 、n了,如 (1)y (2)y 解 ∴(2)即log a (x +a )<1=log a a .当a >1时,0<x +a <a ,∴-a <x <0. 当0<a <1时,x +a >a ,∴x >0.∴当a >1时,原函数定义域为{x |-a <x <0}; 当0<a <1时,原函数定义域为{x |x >0}.点评 求与对数函数有关的定义域问题,首先要考虑:真数大于零,底数大于零且不等于1,若分母中含有x ,还要考虑不能使分母为零.题型二 对数单调性的应用(1)log 43,log 34,log 的大小顺序为( )A.log34<log43<logB.log34>log43>logC.log34>log>log43D.log>log34>log43(2)若a2>b>a>1,试比较log a,log b,log b a,log a b的大小.(1)解析∵log34>1,0<log43<1,log=log-1=-1,∴log34>log43>log.答案(2)解∴又a故有点评①②③2>0,a2≠1).当a10<x<1时,y1>y2当;当0<x<1时,y1>y2已知分析解析a a<,∴0<a<.故a>1或0<a<.答案a>1或0<a<点评解含有对数符号的不等式时,必须注意对数的底数是大于1还是小于1,然后再利用相应的对数函数的单调性进行解答.理解会用以下几个结论很有必要:(1)当a>1时,log a x>0?x>1,log a x<0?0<x<1;(2)当0<a<1时,log a x>0?0<x<1,log a x<0?x>1.题型三函数图象的应用若不等式2x-log a x<0,当x∈时恒成立,求实数a的取值范围.解要使不等式2x<logax 在x ∈⎪⎭⎫ ⎝⎛21,0时恒成立,即函数y=logax 的图象在⎪⎭⎫⎝⎛21,0内恒在函数y=2x图象的上方,而y=2x 图象过点⎪⎭⎫⎝⎛2,21.由图可知,loga 21>2,显然这里0<a<1,∴函数y=logax 递减. 又loga21>2=log 2a a ,∴a2>21,即a>2221⎪⎭⎫ ⎝⎛.点评a 的大小时,y2错解∴ax 即??正解?当a =0时,只要x >-,即可使真数t 取到所有的正数,符合要求; 当a ≠0时,必须有??0<a ≤1.∴f (x )的值域为R 时,实数a 的取值范围为[0,1].本节内容在高考中考查的形式、地位与指数函数相似,着重考查对数的概念与对数函数的单调性,考查指数、对数函数的图象、性质及其应用.1.(广东高考)已知函数f (x )=的定义域为M ,g (x )=ln(1+x )的定义域为N ,则M ∩N 等于( ) A .{x |x >-1} B .{x |x <1} C .{x |-1<x <1}D .?解析由题意知M={x|x<1},N={x|x>-1}.故M∩N={x|-1<x<1}.答案 C2.(湖南高考)下列不等式成立的是()A.log32<log23<log25B.log32<log25<log23C.log23<log32<log25D.log23<log25<log32解析∴又y∴答案3.(A.aC.b解析令t∴ac-a又∵∴0<∴c>答案1.已知函数f(x)=的定义域为集合M,g(x)=ln(1-x)的定义域为集合N,则M∩N等于() A.{x|x>-1}B.{x|x<1}C.D.?答案 C2.已知函数f(x)=lg,若f(a)=,则f(-a)等于()A.B.-C.-2D.2答案 B解析f(-a)=lg=-lg-1=-lg=-f(a)=-.3.已知a=log23,b=log32,c=log42,则a,b,c的大小关系是()A.c<b<a B.a<b<cC.b<c<a D.c<a<b答案 A解析因为a=log23>1,b=log32<1,所以a>b;又因为2>,则log32>log3=,而log42=log2=,所以4ABCD答案解析x|=lg|x|=f(x)又当又f(5答案解析(1,0);若a>1方法二注意到y=-log a x的图象关于x轴对称的图象的表达式为y=log a x,又y=log a x与y =a x互为反函数(图象关于直线y=x对称),则可直接选定选项A.6.设函数f(x)=log2a(x+1),若对于区间(-1,0)内的每一个x值都有f(x)>0,则实数a的取值范围为()A.(0,+∞)B.C.D.答案 D解析已知-1<x<0,则0<x+1<1,又当-1<x<0时,都有f(x)>0,即0<x+1<1时都有f(x)>0,所以0<2a<1,即0<a<.7.若指数函数f(x)=a x(x∈R)的部分对应值如下表:则不等式log a(x-1)<0答案{x|1<x<2}解析由题可知a=1.2,∴log1.2(x-1)<0,∴log1.2(x-1)<log1.21,解得x<2,又∵x-1>0,即x>1,∴1<x<2.8答案解析故即9答案解析10解∴g(∵g(x)=f2(x)+f(x2)=(1+log2x)2+(1+log2x2)=(log2x+2)2-2,又1≤x≤2,∴0≤log2x≤1.∴当x=1时,g(x)min=2;当x=2时,g(x)max=7.学习目标1.掌握对数函数的概念、图象和性质.2.能够根据指数函数的图象和性质得出对数函数的图象和性质,把握指数函数与对数函数关系的实质.自学导引1.对数函数的定义:一般地,我们把函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).2.对数函数的图象与性质3.对数函数y=log a x(a>0且a≠1)和指数函数y=a x_(a>0且a≠1)互为反函数.一、对数函数的图象例1下图是对数函数y=log a x的图象,已知a值取,,,,则图象C1,C2,C3,C4相应的a 值依次是()A.101,53,34,3B .53,101,34,3C .101,53,3,34D 解析 ,C3,C4的a 过,(a4,1),其中a10且小于 (1)(2)若logm0.5>logn0.5,则m n. 答案 (1)< (2)>二、求函数的定义域 例2 求下列函数的定义域: (1)y =; (2)y =;(3)y =log (x +1)(2-x ).分析 定义域即使函数解析式有意义的x 的范围.解(1)∵该函数是奇次根式,要使函数有意义,只要对数的真数是正数即可,∴定义域是{x|x>0}.(2)要使函数y=有意义,必须log0.5(4x-3)≥0=log0.51,∴0<4x-3≤1.解得<x≤1.∴定义域是.(3)由,得即0<x<2或-1<x<0,点评还解当a∴4x当log a∴当例3(1)log0.81.5与log0.82;(2)log35与log64.分析从比较底数、真数是否相同入手.解(1)考查对数函数y=log0.8x在(0,+∞)内是减函数,∵1.5<2,∴log0.81.5>log0.82.(2)log35和log64的底数和真数都不相同,找出中间量“搭桥”,再利用对数函数的单调性,即可求解.∵log35>log33=1=log66>log64,∴log35>log64.点评比较两个对数值的大小,常用方法有:①底数相同真数不同时,用函数的单调性来比较;②底数不同而真数相同时,常借助图象比较,也可用换底公式转化为同底数的对数后比较;③底数与真数都不同,需寻求中间值比较.变式迁移3比较下列各组中两个值的大小:(1)log0.52.7,log0.52.8;(2)log34,log65;(3)log aπ,log a e(a>0且a≠1).解(1)∵0<0.5<1,∴对数函数y=log0.5x在(0,+∞)上是减函数.又∵(2)∵∴∵y∴∴(3)当∵π当∵π当例4分析解a a a a当a>1时,<<a,∴a>.当0<a<1时,>>a,∴0<a<.∴a的取值范围是∪.点评(1)解对数不等式问题通常转化为不等式组求解,其依据是对数函数的单调性.(2)解决与对数函数相关的问题时要遵循“定义域优先”原则.(3)若含有字母,应考虑分类讨论.变式迁移4已知log a(2a+1)<log a3a<0,求a的取值范围.解log a(2a+1)<log a3a<0(*)当a>1时,(*)可化为,解得,∴此时a无解.当0<a<1时,(*)可化为,解得,∴<a<1.综上所述,a的取值范围为.1.求对数函数定义域要注意底数中是否含有自变量,此时底数大于0且不等于1.2.应用对数函数的图象和性质时要注意a>1还是0<a<1。
高考数学复习点拨 对数与对数运算要点精析
对数与对数运算要点精析一、对数的概念及运算性质 1.对数的概念⑴对数式log a N = b 是由指数式a b = N 而来的,两式底数相同,对数式中的真数N 就是指数式中的幂值N ,而对数值b 是指数式的幂指数.这是指数式与对数式互化的依据.⑵当底数a >0,且a ≠1,真数N >0时,log a N 才有意义.⑶关于对数的几个结论:①零和负数没有对数;②log a 1= 0;③log a a = 1;④log a NaN =.⑷当底数a = 10时,叫做常用对数,记做lg N ;当底数a =e 时,叫做自然对数,记做l NN ,其中e 是一个无理数,e = 2.71828…….2.掌握对数符号“log ”的含义 对数符号“log ”同“+、-、×、”等符号一样,表示一种运算,即已知一个数和它的幂求指数的运算,这种运算叫对数运算,不过对数运算的符号写在数的前面.3.指数式与对数式的关系及运算性质的联系与区别由于指数式与对数式是同一关系的不同表示形式,所以要注意与指数式的关系及运算法则的联系和区别,如下列两个表所示.⑴指数式与对数式的关系⑵指数运算性质与对数运算性质的比较⑶对数运算可看作指数运算的逆运算,对数运算性质的着呢革命,可利用定义将对数问题转化为指数问题,利用指数的性质进行证明.4.对数的运算实质是把积、商、幂的运算分别转化为加、减、乘的运算,在运算中要注意不能把对数符号当作表示数的字母参数与运算,即logaN是不可分开的一个整体,loga N≠loga·N.5.因为a>0,所以不论b是什么实数,都有a b>0,这就是说不论b是什么数,N永远是正数,因此,负数和零没有对数.二、应注意的几个问题1.运用对数的性质及运算法则应注意的问题:⑴要理解logaN= b和a b= N 是a、b、N同一关系的不同表示形式,这两种形式可以互化,这是学习对数的性质和运算法则的关键;⑵利用对数的性质及运算法则时运算时,首先要注意各个字母的取值X围,即真数为正数,底为不等于1的正数;然后注意积的对数等于同底的对数和;商的对数等于同底的对数差;幂的对数等于底的对数与幂指数的积;⑶在运用log a M n= N log a M时,要特别注意条件,如在无M>0的条件下应有log a M2= 2log a| M|.⑷还要防止出现诸如loga (M±N) = logaM±logaN,loga (M·N) = logaM·logaN,loga NM=NMaaloglog等这样的错误,产生这种错误的原因是将积、商、幂的对数与对数的积、商、幂混淆起来.2.在进行指数式与对数式互化时,既要知道指数式可化为对数式,即a b=N⇒loga N = b,又要知道对数式可以化为指数式,即logaN = b⇒a b= N.在利用对数运算法则时,既要晓得loga (MN) = logaM+logaN,又要会用logaM+loga N = loga(MN).以上这些都是逆向思维的表现形式.3.对一个等式的两边取同底的对数,是一种常用的解题技巧,一般当给出的等式是指数形式时,常用此解题方法.三、典型例题评析设a ,b 为正数,且a 2-2ab -9b 2= 0,求lg(a 2+ab -6b 2)-lg(a 2+4ab +15b 2)的值.由a 2-2ab -9b 2= 0,得(b a )2-2(ba)-9 = 0, 令ba= x >0,∴x 2-2x -9 = 0,解得x =1+10,(舍去负根),且x 2= 2x +9,∴lg(a 2+ab -6b 2)-lg(a 2+4ab +15b 2) = lg 22221546bab a b ab a ++-+= lg 154622++-+x x x x = lg 154)92(6)92(+++-++x x x x= lg)4(6)1(3++x x = lg )4(21++x x = lg )4101(21101++++= lg 1010=-21.评析:运用对数运算法则时,要注意各字母的取值X 围,只有当所得结果中的对数和所给出的数的对数都存在时才成立.例2 已知log 2[ log 21( log 2x )] = log 3[ log 31( log 3y )] =log 5[ log 51( log 5z )] = 0,试比较x 、y 、z 的大小.由log 2[ log 21( log 2x )] = 0得,log 21( log 2x )= 1,log 2x =21,即x = 221;由log 3[ log 31( log 3y )] = 0得,log 31( log 3y ) = 1,log 3y =31,即y =331;由log 5[ log 51( log 5z )] = 0得,log 51( log 5z ) = 1,log 5z =51,即z =551.∵y =331= 362= 961,∴x = 221= 263= 861,∴y >x , 又∵x = 221= 2105= 32101,z = 551= 5102= 25101,∴x >z . 故y >x >z .评析:在解题前需要先将x 、y 、z 分别求出再比较大小,也就是将已知对数式化为指数式.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对数-对数运算性质的运用
教学目标:
1. 熟练运用对数运算性质;
2.掌握化简、求值技巧;
3.培养学生的数学应用意识。
教学重点:对数运算性质应用。
教学难点:化简、求值技巧。
教学过程:
(一)复习:
1.基本性质:若0a >且1a ≠,0N >,则
(1)log 10a =,log 1a a =;
(2)log a N a N =.
2.运算性质:如果 a > 0 , a ≠ 1, M > 0 ,N > 0,那么
(1)log ()log log a a a MN M N =+;
(2)log log -log a a a M M N N
=; (3)log log ()n a a M n M n R =∈.
(二)新课讲解:
例1.求值:
()(
)()()5231133
1log (927)
28)
3lg 25lg 44log 27log 9⨯⨯+-
例2.已知lg 20.3010=,lg30.4771=,求lg1.44的值。
分析:此题应注意已知条件中的真数2,3,与所求中的真数有内在联系,故应将1.44进行恰当变形:
22121.44 1.2(3210)-==⨯⨯,然后应用对数的运算性质即可出现已知条件的形式。
解:2212lg1.44lg1.2lg(3210)-==⨯⨯
2(lg32lg 21)=+-
2(0.477120.30101)0.1582=+⨯-=.
说明:此题应强调学生注意已知与所求的内在联系。
例3.(1)已知32a
=,用a 表示33log 4log 6-;
(2)已知3log 2a =,35b =,用a 、b 表示 30log 3.
解:(1)∵32a =,
∴3log 2a =,
∴ log 3 4 - log 3 6 = 112log 32log 33
-=-=a . (2)∵35b =, ∴3log 5b =,
又∵3log 2a =, ∴30log 3=
()31log 2352⨯⨯()33311log 2log 3log 5(1)22a b =++=++.
六.课堂练习:1.已知3log 12a =,试用a 表示24log 3;
2.已知5log 2a =,求5.0log 10log 255+的值。
七.小结:1.对数的运算性质的熟练运用;
2.掌握有关的对数运算中的解题技巧,提高解题能力。