第三章 光波导耦合器
第三章 模耦合理论及应用
B( z )
2
d 2 2 ( A( z ) B( z ) ) 0 dz
3.1.2模耦合理论的基本概念—同向传输
如果耦合区域在 0 z L范围内,而初始条 A(0) 1, B(0) 0 即:在起始处光功率在 件为 波导I处,即书上说的波导I被激励 如果 A(0) 0, B(0) 1 ,则是起始处在波导 II处。 则将模耦合方程求解得到:
3.1.1模耦合理论的基本概念—耦合方程
模耦合的基本思想:
有波导I和 II ,当它们离得充分远时,假设其 各自的简正模场分布为φaφb ,并分别以传输 常数βa βb进行传输,然后,将两个波导相互 靠近,简正模的场分布不再是φaφb,而是将 包含波导I、II 的整个体系看作是一个波导, 此时耦合波导体系中传输的将是两个新的简正 模φeφo传输常数φe φo 此是模耦合的基本 概念。 53页给出
3.1.2模耦合理论的基本概念—同向传输
则将模耦合方程求解得到:
A( z )
B( z ) e
iz
12
2 c 2
e iz sin ( c2 2 )1 / 2 2
2 1/ 2
cos(
2 c
)
z i 2 sin ( c2 2 )1/ 2 z ( c 2 )1/ 2
e
j ( b a ) z
表示两个模之间的耦合系数
表示两个模之间的相位匹配常数
3.1.1模耦合理论的基本概念—耦合方程
ab c f f b dxdy
* a II
其积分范围是波导II 的截面
C是 a , b 归一化相关常数
3.1.2模耦合理论的基本概念—同向传输
第三章光纤通信器件
输出 调制光 信息电信号 激光器
信息 电信号
连续
激光器 光信号
外调 制器
输出 调制光
信息电信号 0 1 0 1 0 输出调制光波
(a)直接调制
L D 输出连续光 信息电信号 0 1 0 1 0
输出调制光波 (b)外调制
直接调制是用电信号直接调制激光器的驱动电流,使输出 光随电信号变化而实现的。
光调制器是通过电压或电场的变化最终调控输 出光的折射率、吸收率、振幅或相位的器件。
F-P滤波器的传输特性
(a) 传输函数
(b) N 个信道 经波分复用后 加到滤波器 输入端的频谱图
(c) 滤波器输出频谱图
T(f )
传 1.0 输 函 0.5 数
P
in
f
输
入
功
f ch
率
f f
i1
f2
Pout f
输 出 功 率
P1 P2
FSR= f L
f
3
fs
P3
f1
f
2
f
3
f F-P
光频
输出 光纤1
出射光
光纤
微反射镜
镜面 旋转轴
输出 光纤2
控制 信号
硅衬底PLC
MEMS光开关优缺点
具有机械光开关和波导光开关的优点,却克服了 它们所固有的缺点;
采用了机械光开关的原理,但又能象波导开关那 样,集成在单片硅基上;
基于围绕微机械中枢转动的自由移动镜面。 主要开发商有美国Lucent、德克萨斯仪表公司和
光栅型解复用器
(a)普通透镜反射光栅
(b)渐变折射率透镜反射光栅
AWG型
星形耦合器
1
光波导理论与技术
激光雷达系统中的应用
总结词
光波导在激光雷达系统中发挥了重要作用,能够实现 高精度、高分辨率的测量和成像。
详细描述
激光雷达系统利用光波导作为传输介质,将激光雷达 发射出的光信号传输到目标物体上,并收集目标物体 反射回来的光信号。通过测量光信号的往返时间和角 度信息,可以实现对目标物体的距离、速度、形状和 表面特征等的测量和成像。光波导的高灵敏度和低损 耗特性使得激光雷达系统具有高精度、高分辨率和低 噪声等优点,在遥感测量、无人驾驶、机器人等领域 得到广泛应用。
光波导技术面临的挑战
制造工艺限制
目前,光波导器件的制造工艺仍 受限于材料和加工技术的限制, 难以实现更精细的结构和更高的
性能。
耦合效率问题
光波导器件之间的耦合效率是影响 光子集成回路性能的关键因素,如 何实现高效的光波导耦合仍是一个 挑战。
稳定性问题
光波导器件在温度、湿度等环境因 素下的稳定性问题仍需进一步研究 和改善。
开关分类
光波导开关可以分为电光开关、磁光开关和热光开关等。其中,电光开关是最常用的一种,其利用电场 改变光波导的折射率,实现对光信号的通断进行控制。
光波导耦合器
耦合器概述
光波导耦合器是一种利用光波导 结构实现光信号耦合的器件。通 过将两个或多个光波导连接在一 起,可以实现光信号在不同波导 之间的传输和能量转移。
光波导的波动理论
总结词
波动理论是描述光波在光波导中传播的基本理论。
详细描述
波动理论是研究光波在介质中传播的基础理论,它通过麦克斯韦方程组描述了 光波在空间中的分布和演化。在光波导中,波动理论用于分析光波的传播特性, 如相位速度、群速度、模场分布等。
《波导定向耦合器》课件
应用场景二:卫星通信
在卫星通信中,波导定向耦合器主要用于信号 的传输、分路和合成,实现卫星信号的定向耦
合和功率分配。
波导定向耦合器在卫星通信中还可以用于天线阵列的 信号处理,实现天线的相位和幅度控制。
卫星通信是波导定向耦合器的另一个重要应用 领域。
它能够提高卫星通信系统的信号传输效率和稳定 性,增强卫星通信系统的抗干扰能力。
结构分析
波导定向耦合器的结构通常由输入波导、主波导、副波导和输出波导组成。输入信号通过输入波导进入主波导,并在主波导 上产生多个谐振模。通过适当的结构设计,使得其中一个谐振模被强烈激励,而其他谐振模被抑制,从而实现信号的定向传 输。副波导的作用是提取被强烈激励的谐振模信号,并将其传输到输出波导中。
在选择使用哪种类型的波导定向耦合器时, 需要根据实际需求进行综合考虑。例如,对 于需要高集成度、小体积的应用场景,E面 波导定向耦合器是较好的选择;对于需要简 单结构、高可靠性的应用场景,H面波导定 向耦合器是较好的选择;对于需要便携式、 低成本的应用场景,微型波导定向耦合器是
较好的选择。
波导定向耦合器的
波导定向耦合器的
04
制造工艺
制造材料
金属材料
常用的金属材料包括铜、铝、不锈钢等,它们具有良好的导电性和机械强度, 适合用于制造波导定向耦合器。
绝缘材料
绝缘材料用于制造波导定向耦合器的介质层,常用的有聚乙烯、聚四氟乙烯等 ,它们具有良好的绝缘性能和耐高温性能。
制造流程
设计和绘图
01
根据设计要求,绘制波导定向耦合器的图纸,确定各部分的尺
制作样品并测试
根据优化后的设计参数,制作 波导定向耦合器样品,并进行 性能测试,验证设计效果。
设计参数
光纤通信-第三节光波导的横向耦合和耦合器
( 1 . 5 5 m )
Optical fiber communications
17.03.2019
当Input1和Input2同时有能量输入,两光场频率相同,位相不同。 Output1和Output2的输出功率比值范围是很大的。
波导没有损失和反射,即输入波导的功率等于输出波导的功率。 Pin1+P1n2=Pout1+Pout2
2
Optical fiber communications
17.03.2019
若:
2 P () z p ( 0 ) c o s k z 1 1
2 P () z p ( 0 ) s i n k z 2 1
A、两波导中传输功率的变化规律是能量在两波导中周期性的转换。 B、在波导中,光功率从P2(0)=0到z=L0处最大。 /k ,转换 此时,P1(L0)=0,即光功率全部耦合进第二波导,L 0 2 长度,取不同的长度,即可改变两耦合波导的输出功率比,这就是 定向耦合器的基本原理。
0 . 7 5 P 0 . 2 5 P c o s 1 2 1
0 . 2 5 P 0 . 7 5 P c o s 1 2 2
c o s c o s 1 2
P 1 P 2 P
1 3 2 P ( 0 . 7 5 P . 2 5 P ( )p o u t1 | m a x 1 0 2) 2 2 3 1 P 0 . 2 5 P 0 . 7 5 P p o u t2 m 1 2 i n 2 3 12 2 P ( 0 . 7 5 P . 2 5 P ( ) p o u t 1| m i n 12 0 2) 2
z=0, a1(0), a2(0)
Optical fiber communications
光耦合器的分类
光耦合器的分类光耦合器是一种将光信号转换为电信号或将电信号转换为光信号的器件。
根据其工作原理和结构特点的不同,光耦合器可以分为几种不同的分类。
本文将从不同的角度介绍光耦合器的分类。
一、按工作原理分类根据光耦合器的工作原理,可以将其分为两类:光电耦合器和电光耦合器。
1. 光电耦合器:光电耦合器是将光信号转换为电信号的器件。
当外界的光照射到光电耦合器的光敏元件上时,光敏元件将光信号转化为电信号输出。
光电耦合器常用于光电转换、光通信和光测量等领域。
2. 电光耦合器:电光耦合器是将电信号转换为光信号的器件。
当外界的电信号输入到电光耦合器中时,电光耦合器会根据电信号的强弱和频率等参数,将其转化为相应的光信号输出。
电光耦合器广泛应用于光通信、光传感和光存储等领域。
二、按结构分类根据光耦合器的结构特点,可以将其分为两类:直连式光耦合器和波导式光耦合器。
1. 直连式光耦合器:直连式光耦合器是指光源和光接收器之间通过直接连接实现信号传输的光耦合器。
直连式光耦合器的结构简单,成本较低。
然而,由于光源和光接收器之间没有光波导的引导作用,光耦合效率相对较低。
2. 波导式光耦合器:波导式光耦合器是指光源和光接收器之间通过光波导实现信号传输的光耦合器。
波导式光耦合器通过光波导的引导作用,能够提高光耦合效率,并减少光信号的损耗。
波导式光耦合器结构复杂,制造工艺要求较高,成本相对较高。
三、按应用领域分类根据光耦合器在不同应用领域中的特点和要求,可以将其分为几类:光通信耦合器、光电转换耦合器和光传感耦合器。
1. 光通信耦合器:光通信耦合器是指用于光通信系统中的光耦合器。
光通信耦合器通常要求具有较高的光耦合效率和较低的光损耗,以确保光信号的传输质量。
2. 光电转换耦合器:光电转换耦合器是指用于光电转换系统中的光耦合器。
光电转换耦合器常用于光电转换设备、光电器件和光电模块等领域。
3. 光传感耦合器:光传感耦合器是指用于光传感系统中的光耦合器。
第3章 光波导元器件和传感器
第3章 光波导元器件和传感器
3.4.4
模变换器
模变换器是将基模变换成其它高阶模的器件, 如图3.20所示。
2、分段连接。如图3.4所示,把直接连接的耦 合段部分分割成N-1个曲折的直波导,并使每段直 波导的长度∆l具有相等的耦合长度Lc,然后将它们 连接起来。
长春理工大学
第3章 光波导元器件和传感器
2 N 2
(3.1-1)
式中,N 表示连接点个数(N 3) ,为直接连接时的 曲折角。 3、S型连接。如图3.5所示,利用两个曲率半径 为R的弯曲波导以S形将两个波导连接。
5、什么是方向耦合器?
长春理工大学
第3章 光波导元器件和传感器
3.1 光路变换器
3.2 功率分配器
3.3 光波导偏振器 3.4 模分割器和模变换器 3.5 波导型透镜 3.6 光波导传感器
第3章 光波导元器件和传感器
3.3 光波导偏振器
在导波光学中,把除去某种偏振光的器件称为 偏振器。集成光路中偏振器主要有金属包层和各向 异性晶体。
长春理工大学
第3章 光波导元器件和传感器
2、方向耦合器。方向耦合器包括双通道方向耦合器, 二模波导耦合器,三波导方向耦合器和间隙渐变的方 向耦合器。 1)双通道方向耦合器,如图3.8所示。它由两条 相隔2~3μm的平行单模光波导构成。使用方向耦合 器,是构成功率分配器的有效方法。
长春理工大学
第3章 光波导元器件和传感器
第3章 光波导元器件和传感器
在非对称结构的分支波导中的输出分支2,主要 用于功率的监控,通常可以通过改变分支角θB的 方法调整功率分配比。 在多分支波导的情况下,为了能够在平均分配 功率的同时又将散射损耗控制在几分贝以下,需 要改变各个输出分支的宽度或者它们的折射率。 对称二分支波导是分支波导的基本结构,将多 个二分支波导串联就可以构造成1×N功率分配器。
光波导加速度传感器中3dB耦合器设计
9 O年代开始人们关 注集 成光 学传感 器 , 如 B r a g g光栅加 速
Ab s t r a c t :T h e o p t i c a l wa v e g u i d e a c c e l e r a t i o n s e n s o r i s a p r a c t i c a l a c c e l e r a t i o n s e n s o r , c o r e c o mp o n e n t s o f wi d e l y u s e d i n t e r f e r o me t e r , s u c h a s Mi c h e l s o n, Ma c h — Z e h n d e r i n t e r f e r o me t e r , e t c, t o f a b r i c a t e o p t i c a l a c c e l e r o me t e r , c o n t a i n 3 d B c o u p l e r . T h e d e s i g n o f 3 d B c o u p l e r i s p a r t i c u l a r l y i mp o r t a n t f o r d e t e c t i o n p r e c i s i o n o f a c c e l e r a t i o n s e n s o r . T h e w o r k i n g p r i n c i p l e o f o p t i c l a w a v e g u i d e a c c e l e r a t i o n s e n s o r i s d e s c r i b e d, a n d s t r u c t u r e a n d p a r a me t e r s o f 3 d B c o u p l e r a r e d e s i g n e d, a n d t h e s o f t wa r e O p t i B P M i s u s e d t o s i mu l a t e t h e 3 D c o u p l e r . T h e r e s u l t s s h o w t h a t t h e d e s i g n e d 3 d B c o u p l e r h a s g o o d p e r f o r ma n c e , a n d me e t s t h e d e s i g n r e q u i r e me n t s .
03 光纤耦合器
-0.5
10
原理——平行光纤之间的耦合 光互易定理
当耦合器的参数相同时
(1)相同波长间的耦合总是会引入3dB(50%)损耗 (2)不可能利用光纤耦合器将两个光纤的相同波长光 信号功率耦合到同一根光纤之中!
11
原理——平行光纤之间的耦合 不同波长光信号的耦合(分波)
1.5
R1(z)=cos (K1z)
矩形波导简图
种类——平面波导型耦合器
光波导耦合器的基本单元有分支波导和定向耦合器,其基本结构 如图所示。将多个1×2分支波导、2×2定向耦合器级联可以构成树 形耦合器。图(a)所示为7个1×2分支波导级联构成的1×8树形耦 合器,图(b)所示为一个2×2定向耦合器与6个1×2分支波导级联 构成的2×8树形耦合器.
种类——微器件型耦合器
利用自聚焦透镜和分光片(光部分投射、部分反射)、滤 光片(一个波长的透射,其它波长的光反射)或光栅(不同波 长的光有不同的反射方向)等微光学器件可以构成T型耦合器、 定向耦合器和波分/解波分复用器。
微器件型耦合器 (a)T型耦合器; (b)定向耦合器; (c)滤光式解复用 器; (d)光栅式解复用 器
参数——分光比
分光比是光耦合器所特有的技术术语,定义为耦合器各输出端口 的输出功率相对输出总功率的百分比,它的数学表达式为:
种类——微器件型耦合器
用2×2的耦合器作为基本单元同样可以构成n×n星型耦合器。自 聚焦透镜在光无源器件中起着非常重要的作用,它是利用自聚 焦效应而制成的,自聚焦效应是这样描述的:不同入射角相应 的光纤,虽然经历的路程不同,但是最后都会聚焦在一点上。
种类——平面波导型耦合器
平面波导型耦合器是指利用平 面介质光波导工艺制作的一类 光耦和器件,其关键技术包括 波导结构的制作和器件与传输 线路的耦合。目前广泛采用的 制作介质光波导的方法主要是 在铌酸锂(LiNbO3)等衬底材 料上,以薄膜沉积、光刻、扩 散等工艺形成波导结构。
光纤耦合器的理论 设计及进展
3、光纤耦合器的设计方法
光纤耦合器的设计主要涉及光波导理论、干涉光学和计算机模拟等方法。设 计过程中需要考虑到光纤的几何形状、折射率分布、模式特征等因素,以实现所 需的光信号耦合效果。
1、光纤耦合器的商业产品
目前,市面上已有多种商业化的光纤耦合器产品,如直通型、分束型、星型 等。这些产品具有较高的耦合效率和稳定的性能表现,被广泛应用于各类光纤通 信和光学传感系统中。
光纤耦合器的理论 设计及进展
01 引言
03 参考内容
目录
02 理论分析
引言
光纤耦合器是一种关键的光学元件,它在光纤通信、光学传感、光束控制等 领域有着广泛的应用。光纤耦合器的主要作用是将两根或多根光纤的信号有效地 耦合在一起,从而实现光能量的传递、分配和控制。本次演示将详细介绍光纤耦 合器的理论、设计及发展现状,以期为相关领域的研究和应用提数是描述光波在光纤中传播特性的重要参数。它包括了光波的振幅、 相位和群速度等参数。通过求解传输常数,可以得到光波在光纤中的传输特性, 如传输带宽、色散等。这些特性对于设计高效的光纤通信系统具有重要意义。
四、总结
本次演示详细解析了光纤模式理论,包括单模和多模光纤的分类、光的波动 方程、光纤的折射率分布以及传输常数等概念。这些理论对于理解光纤的传输特 性和设计高效的光纤通信系统具有重要意义。在实际应用中,我们需要根据具体 需求选择合适的光纤类型和参数,以实现高效、稳定的光纤通信系统。
二、光纤模式分类
1、单模光纤
单模光纤只支持一个模式的光波传播。这意味着在单模光纤中,光波的传播 路径是唯一的。这种模式使得单模光纤具有较高的传输带宽和较低的色散。因此, 单模光纤在长距离通信中得到了广泛应用。
2、多模光纤
多模光纤支持多个模式的光波传播。这意味着在多模光纤中,光波可以沿着 多个路径传播。这种模式使得多模光纤具有较低的传输带宽和较高的色散。因此, 多模光纤通常用于短距离通信和局域网等应用。
超高速宽带通信中的光纤耦合器研究与设计
超高速宽带通信中的光纤耦合器研究与设计第一章引言超高速宽带通信已经成为了信息通信领域中的重要技术。
光纤通信的高带宽、低损耗、高信噪比等特性,使得其在超高速宽带通信技术中发挥着关键作用。
光纤耦合器则是实现光纤通信的重要组件之一。
本文将重点研究和探讨超高速宽带通信中的光纤耦合器,在此基础上进行设计和改进。
第二章光纤耦合器的原理光纤耦合器通常由多根光纤通过耦合器件的耦合作用而得到。
根据不同的耦合方式,常见的光纤耦合器有两个主要类型:直连式光纤耦合器和无源式光纤耦合器。
直连式光纤耦合器是指把两根光纤端对端连接,使其共同在同一被测量环境之下进行信号传输。
无源式光纤耦合器则是通过光学元件(例如棱镜、透镜和非线性晶体等)将两条纤维直通透过,使得两条光纤之间的光信号得以转移。
第三章光纤耦合器的应用光纤耦合器广泛应用于光通信领域,目前主要应用于高速通信、零位移、小尺寸化、光波导和光学传感等领域。
它能够提高光纤光路的一致性和差异系数,并提高网络稳定性和可靠性。
第四章光纤耦合器的设计原则在进行光纤耦合器的设计时,应遵循以下原则:1.合理选用耦合器类型;2.合理选择器件的参数;3.器件的耦合面和耦合角度要匹配,减小反射干扰;4.保证器件的密封性能和机械性能。
第五章光纤耦合器的设计流程光纤耦合器的设计流程主要包括以下几个阶段:1.确定设计目标,包括耦合器的带宽、损耗、反射等性能;2.确定材料、制造工艺和器件参数;3.进行光纤耦合器的仿真分析和性能测试;4.进行光纤耦合器的优化。
第六章光纤耦合器的改进方法为改善光纤耦合器的性能,可采用以下改进方法:1.采用合适的耦合面和耦合角度;2.利用特殊材料(例如光子晶体)材料取代原有的传统材料;3.采用高精度的器件加工工艺;4.结合微纳加工技术进行光纤环境的构建。
第七章结论光纤耦合器是重要的光通信组件之一,其性能对光通信系统的性能有直接影响。
因此,对于超高速宽带通信中的光纤耦合器的研究与设计是非常必要的,可是提高通讯质量和通讯速度,推动信息通信领域的发展。
光波导器件ppt课件
光在介质表面的反射与折射 全反射 平面光波导
1
光在介质界面上的反射与折射
界面条件:
nˆ1 n1; nˆ2 n2 i2
P光:光矢量与入 射面平行, TM波 N光:光矢量与入 射面垂直, TE波
1 1 1
O
2
Z 2
X
图 1.3.1 光在介质与导电材料界面上的反射与折射 Fig1.3.1 reflection and refraction of light on the surface between transparent medium and conducting medium
4
反射率与相移
rj j exp( i j ); j p n
• 反射率
Rj
2 j
自然光
R
1 2
(Rp
Rn )
• 相移 j ; j p n
5
举例
• 求 0.431m 的p光从空气垂直入射铝板
(移nˆ2 0.78 i 2.85 )上的反射率并讨论光的相
解:因为垂直入射,所以 1 2 0 于是
反射系数r:反射光与入射光振幅之比;反射率R:反射光与入射光强度之比
透射系数t:透射光与入射光振幅之比;透射率T:透射光与入射光强度之比
2
定律 1 1 n1 sin1 nˆ2 sin2
3
反射率Ri ri 2; 透射率Ti ti 2 i p, n
显然:R+T=1
rp
nˆ2 nˆ2
c os1 c os1
rp
(n2 (n2
n1) i2 n1) i2
n2 n2
n1 2 n1 2
2 2
2 2
1/ 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教师:宋军
光功分器
思考:空间光学如何实现光的分束
预思考:我们学过的知识里哪用过分束器?
什么原理?
思考:集成光电子技术里可以用于 功分器的原理
Y分支
星型耦合
多模干涉
定向耦合
思考:如何将光纤中的光耦合入波 导?
球透镜耦合结构
自聚焦透镜耦合
思考:能量耦合的初略计算
哪个模式能量多?
3dB direction coupler
思考:这 个器件是 否与波长 有关?为 什么?
1550 nm
1310 nm
思考:这有什么用?
思考:定向耦合器是否可逆?
0.5W 0.5W 0.5W 0.5W
?
1W
光纤定向耦合器
思考:能否想出更简单的结构用波 导实现3dB定向耦合器?
现在让我们一起基于Rsoft软件来设计这个结构
[ k n ]U ( x ) 0
2 x 2 0 2 2
[
1 2 x V E ] ( x ) 0 2m
V
x
nclad ncore
nclad
nclad ncore n
?
V0
E3 E2 E1
Vwell
x
• 离散的传播常数值 • 波导越宽折射率差越大,可容纳的模 数就越多
1550 nm
1310 nm
马赫泽德干涉仪
思考:如何用集成光电子元件实现马 赫泽德干涉仪的结构?
使用两个 任意结构 的3dB耦 合器连接 都可以构 成马赫泽 德干涉仪
发挥你的想象 力,看这个结 构可以用来干 什么?
让我们一起实践使用Rsoft软件来设计一个光学 传感器
总结
• 了解耦合器的原理、性能评价指标 和常用结构 • 能够灵活设计耦合器,并解释相关 现象 • 能理解耦合器的各种应用
Pouti C.R 100% Pouti
i
例如对于标准X形耦合器,1∶1或50∶50代 表了同样的分光比,即输出为均分的器件。
一起设计Y分支耦合器
最终四束光功率分别为0.244、0.244、 0.2095、0.2095
分光比和附加损耗
• 最终四束光功率分别为0.244、0.244、0.2095、 0.2095 • 输出总功率为0.9070
EL 10lg
P
i
outi
Pin
(dB)
式中:Pouti为第i个输出口的输出功率;Pin为输 入光功率。
思考:对除星型耦合器外其他三种, 附加损耗的主要来源
Y分支
星型耦合
多模干涉
定向耦合
2. 插入损耗
插入损耗定义为指定输出端口的光功率相对全 部输入光功率的减少值。该值通常以分贝(dB) 表示,数学表达式为
Pouti I .Li 10lg (dB) Pin
其中:ILi是第i个输出端口的插入损耗;Pouti是 第i个输出端口测到的光功率值;Pin 是输入端 的光功率值。
什么是3dB耦合器?
3. 分光比
分光比(Coupling Ratio,CR)是光耦合器所 特有的技术术语,它定义为耦合器各输出端 口的输出功率相对输出总功率的百分比,在 具体应用中常用数学表达式表示为
1-d potential well (particle in a well) • 离散能级 (能态) • 势阱越深将支持更多的能级
思考:如何设计一个分光比可调的Y 分支功分器?
思考:可 调分光可 以有什么 应用?
思考:如何制作一个1:2的耦合器?
拍长
π/kβ
Optical power
Propagation distance
思考:这个器件是否可逆?
多模干涉耦合器
自映像现象
• 思考:如何才能成像? • 不用透镜能成像的手段有哪些?
物理光学:泰伯效应
这里的多模干涉也是一种不用透 镜的成像现象
思考:如何让多模干涉后的像更清 晰?
从干涉的基本原理 思考
思考:多模干涉现象是否与波长有 关? 让我们一起用Rsoft软件来验证, 根据现象来思考原因
思考:哪端光强 更大,为什么?
下端折 射率差 0.01
思考:继 续增大两 端折射率 差会有什 么现象
左端折 射率差 0.1
右端折 射率差 0.01
用Rsoft来尝 试验证一下
下端折 射率差 0.01
从量子力学的角度来看平板波导对光的束缚
Helmholtz equation: Schrödinger equation:
宽的一端和 窄的一端哪 个走的能量 多? 能否用此结构,利 用分支1:2的宽度差 实现1:2分束比,为 什么?
可以通过改 变两分支宽 度比来改变 分光比,但 并不是成比 例的
使用这样 的渐变结 构是否可 行?
如果两端口尺寸完全一样折射率不 同会如何?
左端折 射率差 0.011 右端折 射率差 0.01
0.9070 附加耗:EL 10lg (dB) 0.4239 dB 1
0. 244 0. 244 0. 2095 0. 2095 分束比: : : : 0. 9070 0. 9070 0. 9070 0. 9070 =26.9%: 26.9%: 23.1%: 23.1%
思考:如何制作一个1:2的耦合器?
E1 E2
高斯光
高斯光耦合进入单模平板波导后 怎么传输?有多少能耦合进去?
如果这个波导有 两个模式呢?
思考:两根光纤靠得非常近是否有 损耗?
只间隔10微米
光耦合器的基本参数
1. 附加损耗
附加损耗定义为所有输出端口的光功率总和相 对于全部输入光功率的减小值。该值以分贝 (dB)表示的数学表达式为