浙江版(第01期)-2014届高三数学(理)试题分省分项汇编:专题04 三角函数与三角形(解析版) Word版含解析]
2014年全国高考理科三角函数与解三角形真题汇编解析
2014年全国高考理科数学试题分类汇编(纯word 解析版)第I 部分1.【2014年江西卷(理04)】在ABC ∆中,内角A,B,C 所对的边分别是,,,c b a ,若,3,6)(22π=+-=C b a c 则ABC ∆的面积是A.3B.239C.233 D.33 【答案】C【解析】()2222222222cos 2611333cos 2222c a b b a b c ab ba b c ab C abab b abab S ab C b =-+∴+-=-+-==∴-=∴=∴===Q Q g g2.【2014年陕西卷(理02)】函数()cos(2)6f x x π=-的最小正周期是( ).2A π.B π .2C π .4D π【答案】 B 【解析】B T 选∴,π2π2||π2===ω 3.【2014年浙江卷(理04)】为了得到函数sin3cos3y x x =+的图象,可以将函数2sin3y x =的图象A.向右平移4π个单位 B.向左平移4π个单位 C.向右平移12π个单位 D.向左平移12π个单位【答案】C【解析】函数y=sin3x+cos3x=,故只需将函数y=cos3x 的图象向右平移个单位,得到y==的图象.故选:C .4.【2014年全国新课标Ⅱ(理04)】钝角三角形ABC 的面积是12,AB=1,BC=2 ,则AC=( ) A. 5 B.5C. 2D. 1【答案】B 【解析】..5,cos 2-43π∴ΔABC 4π.43π,4π∴,22sin ∴21sin 1221sin 21222ΔABC B b B ac c a b B B B B B B ac S 故选解得,使用余弦定理,符合题意,舍去。
为等腰直角三角形,不时,经计算当或=+======•••== 5.【2014年全国新课标Ⅰ(理08)】设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则 A .32παβ-=B .22παβ-=C .32παβ+=D .22παβ+=【答案】:B【解析】:∵sin 1sin tan cos cos αβααβ+==,∴sin cos cos cos sin αβααβ=+ ()sin cos sin 2παβαα⎛⎫-==- ⎪⎝⎭,,02222ππππαβα-<-<<-<∴2παβα-=-,即22παβ-=,选B6.【2014年四川卷(理03)】为了得到函数sin(21)y x =+的图象,只需把函数sin 2y x =的图象上所有的点 A .向左平行移动12个单位长度 B .向右平行移动12个单位长度 C .向左平行移动1个单位长度 D .向右平行移动1个单位长度 【答案】A【解析】因为1sin(21)sin[2()]2y x x =+=+,故可由函数sin 2y x =的图象上所有的点向左平行移动12个单位长度得到7.【2014年全国大纲卷(03)】设0sin 33a =,0cos55b =,0tan 35c =,则( ) A .a b c >> B .b c a >> C .c b a >> D .c a b >> 【答案】C【解析】由诱导公式可得b=cos55°=cos (90°﹣35°)=sin35°,由正弦函数的单调性可知b >a , 而c=tan35°=>sin35°=b ,∴c >b >a 故选:C8.【2014年辽宁卷(理09)】将函数3sin(2)3y x π=+的图象向右平移2π个单位长度,所得图象对应的函数( ) A .在区间7[,]1212ππ上单调递减 B .在区间7[,]1212ππ上单调递增 C .在区间[,]63ππ-上单调递减 D .在区间[,]63ππ-上单调递增 【答案】B【解析】把函数y=3sin (2x+)的图象向右平移个单位长度,得到的图象所对应的函数解析式为:y=3sin[2(x ﹣)+].即y=3sin (2x ﹣).由,得.取k=0,得.∴所得图象对应的函数在区间[,]上单调递增.故选:B9.【2014年湖南卷(理09)】 已知函数)sin()(ϕ-=x x f ,且⎰=3200)(πdx x f ,则函数)(x f 的图象的一条对称轴是 A. 65π=x B. 127π=x C. 3π=x D. 6π=x【答案】A【解析】函数()f x 的对称轴为2x k πϕπ-=+2x k πϕπ⇒=++,又由⎰=3200)(πdx x f 得ϕ的一个值为3πϕ=,则56x π=是其中一条对称轴,故选A 10.【2014年重庆卷(理10)】已知A B C ∆的内角21)s i n ()s i n (2s i n ,+--=+-+B A C C B A A C B A 满足,,面积S满足C B A c b a S ,,,,21分别为,记≤≤所对的边,则下列不等式成立的是( )A.8)(>+c b bcB.()162ac a b +>C.126≤≤abcD.1224abc ≤≤【答案】A【解析】已知变形为1sin 2sin[()]sin[()]2A CB AC B A +-+=--+展开整理得11sin 22cos()sin 2sin [cos cos()]22A C B A A A C B +-=⇒+-= 即112sin [cos()cos()]sin sin sin 28A CBC B A B C -++-=⇒=而22111sin 2sin 2sin sin 2sin sin sin 224S ab C R A R B C R A B C R ==⋅⋅⋅=⋅⋅=故2122224R R ≤≤⇒≤≤,故338sin sin sin [8,162]abc R A B C R =⋅=∈, 排除,C D ,因为b c a +>,所以()8bc b c abc +>≥,选择A第II 部分11.【2014年天津卷(理12)】在ABC ∆中,内角A 、B 、C 所对的边分别是a 、b 、c .已知14b c a -=,2sin 3sin B C =,则cos A 的值为_____________. 【答案】14-【解析】 因为2sin 3sin B C =,所以23b c =,解得32cb =,2a c =. 所以2221cos 24b c a A bc +-==-. 12.【2014年山东卷(理12)】在ABC V 中,已知tan AB AC A ⋅=uu u r uu u r ,当6A π=时,ABCV 的面积为 。
2014年浙江省高考数学试卷(理科)(附参考答案+详细解析Word打印版)
2014年浙江省普通高等学校招生统一考试数学试卷(理科)一、选择题(每小题5分,共50分)1.(5分)设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁U A=()A.∅B.{2}C.{5}D.{2,5}2.(5分)已知i是虚数单位,a,b∈R,则“a=b=1”是“(a+bi)2=2i”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.(5分)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是()A.90cm2B.129cm2C.132cm2D.138cm24.(5分)为了得到函数y=sin3x+cos3x的图象,可以将函数y=cos3x的图象()A.向右平移个单位B.向左平移个单位C.向右平移个单位D.向左平移个单位5.(5分)在(1+x)6(1+y)4的展开式中,记x m y n项的系数为f(m,n),则f (3,0)+f(2,1)+f(1,2)+f(0,3)=()A.45 B.60 C.120 D.2106.(5分)已知函数f(x)=x3+ax2+bx+c.且0<f(﹣1)=f(﹣2)=f(﹣3)≤3,则()A.c≤3 B.3<c≤6 C.6<c≤9 D.c>97.(5分)在同一直角坐标系中,函数f(x)=x a(x>0),g(x)=log a x的图象可能是()A.B.C.D.8.(5分)记max{x,y}=,min{x,y}=,设,为平面向量,则()A.min{|+|,|﹣|}≤min{||,||} B.min{|+|,|﹣|}≥min{||,||}C.max{|+|2,|﹣|2}≤||2+||2 D.max{|+|2,|﹣|2}≥||2+||2 9.(5分)已知甲盒中仅有1个球且为红球,乙盒中有m个红球和n个蓝球(m ≥3,n≥3),从乙盒中随机抽取i(i=1,2)个球放入甲盒中.(a)放入i个球后,甲盒中含有红球的个数记为ξi(i=1,2);(b)放入i个球后,从甲盒中取1个球是红球的概率记为p i(i=1,2).则()A.p1>p2,E(ξ1)<E(ξ2)B.p1<p2,E(ξ1)>E(ξ2)C.p1>p2,E(ξ1)>E(ξ2)D.p1<p2,E(ξ1)<E(ξ2)10.(5分)设函数f1(x)=x2,f2(x)=2(x﹣x2),,,i=0,1,2,…,99.记I k=|f k(a1)﹣f k(a0)|+|f k(a2)﹣f k(a1)丨+…+|f k(a99)﹣f k(a98)|,k=1,2,3,则()A.I1<I2<I3B.I2<I1<I3C.I1<I3<I2D.I3<I2<I1二、填空题11.(4分)在某程序框图如图所示,当输入50时,则该程序运算后输出的结果是.12.(4分)随机变量ξ的取值为0,1,2,若P(ξ=0)=,E(ξ)=1,则D(ξ)=.13.(4分)当实数x,y满足时,1≤ax+y≤4恒成立,则实数a的取值范围是.14.(4分)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有种(用数字作答).15.(4分)设函数f(x)=,若f(f(a))≤2,则实数a的取值范围是.16.(4分)设直线x﹣3y+m=0(m≠0)与双曲线=1(a>0,b>0)的两条渐近线分别交于点A,B.若点P(m,0)满足|PA|=|PB|,则该双曲线的离心率是.17.(4分)如图,某人在垂直于水平地面ABC的墙面前的点A处进行射击训练.已知点A到墙面的距离为AB,某目标点P沿墙面上的射线CM移动,此人为了准确瞄准目标点P,需计算由点A观察点P的仰角θ的大小.若AB=15m,AC=25m,∠BCM=30°,则tanθ的最大值是.(仰角θ为直线AP与平面ABC所成角)三、解答题18.(14分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a≠b,c=,cos2A﹣cos2B=sinAcosA﹣sinBcosB(1)求角C的大小;(2)若sinA=,求△ABC的面积.19.(14分)已知数列{a n}和{b n}满足a1a2a3…a n=(n∈N*).若{a n}为等比数列,且a1=2,b3=6+b2.(Ⅰ)求a n和b n;(Ⅱ)设c n=(n∈N*).记数列{c n}的前n项和为S n.(i)求S n;(ii)求正整数k,使得对任意n∈N*均有S k≥S n.20.(15分)如图,在四棱锥A﹣BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC=.(Ⅰ)证明:DE⊥平面ACD;(Ⅱ)求二面角B﹣AD﹣E的大小.21.(15分)如图,设椭圆C:(a>b>0),动直线l与椭圆C只有一个公共点P,且点P在第一象限.(Ⅰ)已知直线l的斜率为k,用a,b,k表示点P的坐标;(Ⅱ)若过原点O的直线l1与l垂直,证明:点P到直线l1的距离的最大值为a ﹣b.22.(14分)已知函数f(x)=x3+3|x﹣a|(a∈R).(Ⅰ)若f(x)在[﹣1,1]上的最大值和最小值分别记为M(a),m(a),求M (a)﹣m(a);(Ⅱ)设b∈R,若[f(x)+b]2≤4对x∈[﹣1,1]恒成立,求3a+b的取值范围.2014年浙江省高考数学试卷(理科)参考答案与试题解析一、选择题(每小题5分,共50分)1.(5分)设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁U A=()A.∅B.{2}C.{5}D.{2,5}【分析】先化简集合A,结合全集,求得∁U A.【解答】解:∵全集U={x∈N|x≥2},集合A={x∈N|x2≥5}={x∈N|x≥3},则∁U A={2},故选:B.【点评】本题主要考查全集、补集的定义,求集合的补集,属于基础题.2.(5分)已知i是虚数单位,a,b∈R,则“a=b=1”是“(a+bi)2=2i”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】利用复数的运算性质,分别判断“a=b=1”⇒“(a+bi)2=2i”与“a=b=1”⇐“(a+bi)2=2i”的真假,进而根据充要条件的定义得到结论.【解答】解:当“a=b=1”时,“(a+bi)2=(1+i)2=2i”成立,故“a=b=1”是“(a+bi)2=2i”的充分条件;当“(a+bi)2=a2﹣b2+2abi=2i”时,“a=b=1”或“a=b=﹣1”,故“a=b=1”是“(a+bi)2=2i”的不必要条件;综上所述,“a=b=1”是“(a+bi)2=2i”的充分不必要条件;故选:A.【点评】本题考查的知识点是充要条件的定义,复数的运算,难度不大,属于基础题.3.(5分)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是()A.90cm2B.129cm2C.132cm2D.138cm2【分析】几何体是直三棱柱与直四棱柱的组合体,根据三视图判断直三棱柱的侧棱长与底面的形状及相关几何量的数据,判断四棱柱的高与底面矩形的边长,把数据代入表面积公式计算.【解答】解:由三视图知:几何体是直三棱柱与直四棱柱的组合体,其中直三棱柱的侧棱长为3,底面是直角边长分别为3、4的直角三角形,四棱柱的高为6,底面为矩形,矩形的两相邻边长为3和4,∴几何体的表面积S=2×4×6+3×6+3×3+2×3×4+2××3×4+(4+5)×3=48+18+9+24+12+27=138(cm2).故选:D.【点评】本题考查了由三视图求几何体的表面积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.4.(5分)为了得到函数y=sin3x+cos3x的图象,可以将函数y=cos3x的图象()A.向右平移个单位B.向左平移个单位C.向右平移个单位D.向左平移个单位【分析】利用两角和与差的三角函数化简已知函数为一个角的一个三角函数的形式,然后利用平移原则判断选项即可.【解答】解:函数y=sin3x+cos3x=,故只需将函数y=cos3x的图象向右平移个单位,得到y==的图象.【点评】本题考查两角和与差的三角函数以及三角函数的平移变换的应用,基本知识的考查.5.(5分)在(1+x)6(1+y)4的展开式中,记x m y n项的系数为f(m,n),则f (3,0)+f(2,1)+f(1,2)+f(0,3)=()A.45 B.60 C.120 D.210【分析】由题意依次求出x3y0,x2y1,x1y2,x0y3,项的系数,求和即可.【解答】解:(1+x)6(1+y)4的展开式中,含x3y0的系数是:=20.f(3,0)=20;含x2y1的系数是=60,f(2,1)=60;含x1y2的系数是=36,f(1,2)=36;含x0y3的系数是=4,f(0,3)=4;∴f(3,0)+f(2,1)+f(1,2)+f(0,3)=120.故选:C.【点评】本题考查二项式定理系数的性质,二项式定理的应用,考查计算能力.6.(5分)已知函数f(x)=x3+ax2+bx+c.且0<f(﹣1)=f(﹣2)=f(﹣3)≤3,则()A.c≤3 B.3<c≤6 C.6<c≤9 D.c>9【分析】由f(﹣1)=f(﹣2)=f(﹣3)列出方程组求出a,b,代入0<f(﹣1)≤3,即可求出c的范围.【解答】解:由f(﹣1)=f(﹣2)=f(﹣3)得,解得,则f(x)=x3+6x2+11x+c,由0<f(﹣1)≤3,得0<﹣1+6﹣11+c≤3,故选:C.【点评】本题考查方程组的解法及不等式的解法,属于基础题.7.(5分)在同一直角坐标系中,函数f(x)=x a(x>0),g(x)=log a x的图象可能是()A.B.C.D.【分析】结合对数函数和幂函数的图象和性质,分当0<a<1时和当a>1时两种情况,讨论函数f(x)=x a(x≥0),g(x)=log a x的图象,比照后可得答案.【解答】解:当0<a<1时,函数f(x)=x a(x≥0),g(x)=log a x的图象为:此时答案D满足要求,当a>1时,函数f(x)=x a(x≥0),g(x)=log a x的图象为:无满足要求的答案,综上:故选D,故选:D.【点评】本题考查的知识点是函数的图象,熟练掌握对数函数和幂函数的图象和性质,是解答的关键.8.(5分)记max{x,y}=,min{x,y}=,设,为平面向量,则()A.min{|+|,|﹣|}≤min{||,||} B.min{|+|,|﹣|}≥min{||,||}C.max{|+|2,|﹣|2}≤||2+||2 D.max{|+|2,|﹣|2}≥||2+||2【分析】将,平移到同一起点,根据向量加减法的几何意义可知,+和﹣分别表示以,为邻边所做平行四边形的两条对角线,再根据选项内容逐一判断.【解答】解:对于选项A,取⊥,则由图形可知,根据勾股定理,结论不成立;对于选项B,取,是非零的相等向量,则不等式左边min{|+|,|﹣|}=0,显然,不等式不成立;对于选项C,取,是非零的相等向量,则不等式左边max{|+|2,|﹣|2}=|+|2=4,而不等式右边=||2+||2=2,故C不成立,D选项正确.故选:D.【点评】本题在处理时要结合着向量加减法的几何意义,将,,,放在同一个平行四边形中进行比较判断,在具体解题时,本题采用了排除法,对错误选项进行举反例说明,这是高考中做选择题的常用方法,也不失为一种快速有效的方法,在高考选择题的处理上,未必每一题都要写出具体解答步骤,针对选择题的特点,有时“排除法”,“确定法”,“特殊值”代入法等也许是一种更快速,更有效的方法.9.(5分)已知甲盒中仅有1个球且为红球,乙盒中有m个红球和n个蓝球(m ≥3,n≥3),从乙盒中随机抽取i(i=1,2)个球放入甲盒中.(a)放入i个球后,甲盒中含有红球的个数记为ξi(i=1,2);(b)放入i个球后,从甲盒中取1个球是红球的概率记为p i(i=1,2).则()A.p1>p2,E(ξ1)<E(ξ2)B.p1<p2,E(ξ1)>E(ξ2)C.p1>p2,E(ξ1)>E(ξ2)D.p1<p2,E(ξ1)<E(ξ2)【分析】首先,这两次先后从甲盒和乙盒中拿球是相互独立的,然后分两种情况:即当ξ=1时,有可能从乙盒中拿出一个红球放入甲盒,也可能是拿到一个蓝球放入甲盒;ξ=2时,则从乙盒中拿出放入甲盒的球可能是两蓝球、一红一蓝、或者两红;最后利用概率公式及分布列知识求出P1,P2和E(ξ1),E(ξ2)进行比较即可.【解答】解析:,,,所以P1>P2;由已知ξ1的取值为1、2,ξ2的取值为1、2、3,所以,==,E(ξ1)﹣E(ξ2)=.故选:A.【点评】正确理解ξi(i=1,2)的含义是解决本题的关键.此题也可以采用特殊值法,不妨令m=n=3,也可以很快求解.10.(5分)设函数f1(x)=x2,f2(x)=2(x﹣x2),,,i=0,1,2,…,99.记I k=|f k(a1)﹣f k(a0)|+|f k(a2)﹣f k(a1)丨+…+|f k(a99)﹣f k(a98)|,k=1,2,3,则()A.I1<I2<I3B.I2<I1<I3C.I1<I3<I2D.I3<I2<I1【分析】根据记I k=|f k(a1)﹣f k(a0)|+|f k(a2)﹣f k(a1)丨+…+|f k(a99)﹣f k (a98)|,分别求出I1,I2,I3与1的关系,继而得到答案【解答】解:由,故==1,由,故×=×<1,+=,故I2<I1<I3,故选:B.【点评】本题主要考查了函数的性质,关键是求出这三个数与1的关系,属于难题.二、填空题11.(4分)在某程序框图如图所示,当输入50时,则该程序运算后输出的结果是6.【分析】根据框图的流程模拟运行程序,直到满足条件S>50,跳出循环体,确定输出的i的值.【解答】解:由程序框图知:第一次循环S=1,i=2;第二次循环S=2×1+2=4,i=3;第三次循环S=2×4+3=11,i=4;第四次循环S=2×11+4=26,i=5;第五次循环S=2×26+5=57,i=6,满足条件S>50,跳出循环体,输出i=6.故答案为:6.【点评】本题考查了直到型循环结构的程序框图,根据框图的流程模拟运行程序是解答此类问题的常用方法.12.(4分)随机变量ξ的取值为0,1,2,若P(ξ=0)=,E(ξ)=1,则D(ξ)=.【分析】结合方差的计算公式可知,应先求出P(ξ=1),P(ξ=2),根据已知条件结合分布列的性质和期望的计算公式不难求得.【解答】解析:设P(ξ=1)=p,P(ξ=2)=q,则由已知得p+q=,,解得,,所以.故答案为:【点评】本题综合考查了分布列的性质以及期望、方差的计算公式.13.(4分)当实数x,y满足时,1≤ax+y≤4恒成立,则实数a的取值范围是[] .【分析】由约束条件作出可行域,再由1≤ax+y≤4恒成立,结合可行域内特殊点A,B,C的坐标满足不等式列不等式组,求解不等式组得实数a的取值范围.【解答】解:由约束条件作可行域如图,联立,解得C(1,).联立,解得B(2,1).在x﹣y﹣1=0中取y=0得A(1,0).要使1≤ax+y≤4恒成立,则,解得:1.∴实数a的取值范围是.解法二:令z=ax+y,当a>0时,y=﹣ax+z,在B点取得最大值,A点取得最小值,可得,即1≤a≤;当a<0时,y=﹣ax+z,在C点取得最大值,①a<﹣1时,在B点取得最小值,可得,解得0≤a≤(不符合条件,舍去)②﹣1<a<0时,在A点取得最小值,可得,解得1≤a≤(不符合条件,舍去)综上所述即:1≤a≤;故答案为:.【点评】本题考查线性规划,考查了数形结合的解题思想方法,考查了数学转化思想方法,训练了不等式组得解法,是中档题.14.(4分)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有60种(用数字作答).【分析】分类讨论,一、二、三等奖,三个人获得;一、二、三等奖,有1人获得2张,1人获得1张.【解答】解:分类讨论,一、二、三等奖,三个人获得,共有=24种;一、二、三等奖,有1人获得2张,1人获得1张,共有=36种,共有24+36=60种.故答案为:60.【点评】本题考查排列、组合及简单计数问题,考查学生的计算能力,属于基础题.15.(4分)设函数f(x)=,若f(f(a))≤2,则实数a的取值范围是(﹣∞,] .【分析】画出函数f(x)的图象,由f(f(a))≤2,可得f(a)≥﹣2,数形结合求得实数a的取值范围.【解答】解:∵函数f(x)=,它的图象如图所示:由f(f(a))≤2,可得f(a)≥﹣2.当a<0时,f(a)=a2+a=(a+)2﹣≥﹣2恒成立;当a≥0时,f(a)=﹣a2≥﹣2,即a2≤2,解得0≤a≤,则实数a的取值范围是a≤,故答案为:(﹣∞,].【点评】本题主要考查分段函数的应用,其它不等式的解法,体现了数形结合的数学思想,属于中档题.16.(4分)设直线x﹣3y+m=0(m≠0)与双曲线=1(a>0,b>0)的两条渐近线分别交于点A,B.若点P(m,0)满足|PA|=|PB|,则该双曲线的离心率是.【分析】先求出A,B的坐标,可得AB中点坐标为(,),利用点P(m,0)满足|PA|=|PB|,可得=﹣3,从而可求双曲线的离心率.【解答】解:双曲线(a>0,b>0)的两条渐近线方程为y=±x,则与直线x﹣3y+m=0联立,可得A(,),B(﹣,),∴AB中点坐标为(,),∵点P(m,0)满足|PA|=|PB|,∴=﹣3,∴a=2b,∴=b,∴e==.故答案为:.【点评】本题考查双曲线的离心率,考查直线的位置关系,考查学生的计算能力,属于中档题.17.(4分)如图,某人在垂直于水平地面ABC的墙面前的点A处进行射击训练.已知点A到墙面的距离为AB,某目标点P沿墙面上的射线CM移动,此人为了准确瞄准目标点P,需计算由点A观察点P的仰角θ的大小.若AB=15m,AC=25m,∠BCM=30°,则tanθ的最大值是.(仰角θ为直线AP与平面ABC所成角)【分析】过P作PP′⊥BC,交BC于P′,连接AP′,则tanθ=,求出PP′,AP′,利用函数的性质,分类讨论,即可得出结论.【解答】解:∵AB=15m,AC=25m,∠ABC=90°,∴BC=20m,过P作PP′⊥BC,交BC于P′,连接AP′,则tanθ=,设B P′=x,则CP′=20﹣x,由∠BCM=30°,得PP′=CP′tan30°=(20﹣x),在直角△ABP′中,AP′=,∴tanθ=•,令y=,则函数在x∈[0,20]单调递减,∴x=0时,取得最大值为=.若P′在CB的延长线上,PP′=CP′tan30°=(20+x),在直角△ABP′中,AP′=,∴tanθ=•,令y=,则y′=0可得x=时,函数取得最大值,故答案为:.【点评】本题考查利用数学知识解决实际问题,考查函数的单调性,考查学生分析解决问题的能力,属于中档题.三、解答题18.(14分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a≠b,c=,cos2A﹣cos2B=sinAcosA﹣sinBcosB(1)求角C的大小;(2)若sinA=,求△ABC的面积.【分析】(1)利用倍角公式、两角和差的正弦公式可得,由a≠b得,A≠B,又A+B∈(0,π),可得,即可得出.(2)利用正弦定理可得a,利用两角和差的正弦公式可得sinB,再利用三角形的面积计算公式即可得出.【解答】解:(1)由题意得,,∴,化为,由a≠b得,A≠B,又A+B∈(0,π),得,即,∴;(2)由,利用正弦定理可得,得,由a<c,得A<C,从而,故,∴.【点评】本题考查了正弦定理、倍角公式、两角和差的正弦公式、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题.19.(14分)已知数列{a n}和{b n}满足a1a2a3…a n=(n∈N*).若{a n}为等比数列,且a1=2,b3=6+b2.(Ⅰ)求a n和b n;(Ⅱ)设c n=(n∈N*).记数列{c n}的前n项和为S n.(i)求S n;(ii)求正整数k,使得对任意n∈N*均有S k≥S n.【分析】(Ⅰ)先利用前n项积与前(n﹣1)项积的关系,得到等比数列{a n}的第三项的值,结合首项的值,求出通项a n,然后现利用条件求出通项b n;(Ⅱ)(i)利用数列特征进行分组求和,一组用等比数列求和公式,另一组用裂项法求和,得出本小题结论;(ii)本小题可以采用猜想的方法,得到结论,再加以证明.【解答】解:(Ⅰ)∵a1a2a3…a n=(n∈N*)①,当n≥2,n∈N*时,②,由①②知:,令n=3,则有.∵b3=6+b2,∴a3=8.∵{a n}为等比数列,且a1=2,∴{a n}的公比为q,则=4,,∴q>0,∴q=2.由题意知a n>0∴(n∈N*).又由a1a2a3…a n=(n∈N*)得:,,∴b n=n(n+1)(n∈N*).(Ⅱ)(i)∵c n===.∴S n=c1+c2+c3+…+c n====;(ii)因为c1=0,c2>0,c3>0,c4>0;当n≥5时,,而=>0,得,所以,当n≥5时,c n<0,综上,对任意n∈N*恒有S4≥S n,故k=4.【点评】本题考查了等比数列通项公式、求和公式,还考查了分组求和法、裂项求和法和猜想证明的思想,证明可以用二项式定理,还可以用数学归纳法.本题计算量较大,思维层次高,要求学生有较高的分析问题解决问题的能力.本题属于难题.20.(15分)如图,在四棱锥A﹣BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC=.(Ⅰ)证明:DE⊥平面ACD;(Ⅱ)求二面角B﹣AD﹣E的大小.【分析】(Ⅰ)依题意,易证AC⊥平面BCDE,于是可得AC⊥DE,又DE⊥DC,从而DE⊥平面ACD;(Ⅱ)作BF⊥AD,与AD交于点F,过点F作FG∥DE,与AE交于点G,连接BG,由(Ⅰ)知DE⊥AD,则FG⊥AD,所以∠BFG就是二面角B﹣AD﹣E的平面角,利用题中的数据,解三角形,可求得BF=,AF=AD,从而GF=,cos∠BFG==,从而可求得答案.【解答】证明:(Ⅰ)在直角梯形BCDE中,由DE=BE=1,CD=2,得BD=BC=,由AC=,AB=2得AB2=AC2+BC2,即AC⊥BC,又平面ABC⊥平面BCDE,从而AC⊥平面BCDE,所以AC⊥DE,又DE⊥DC,从而DE⊥平面ACD;(Ⅱ)作BF⊥AD,与AD交于点F,过点F作FG∥DE,与AE交于点G,连接BG,由(Ⅰ)知DE⊥AD,则FG⊥AD,所以∠BFG就是二面角B﹣AD﹣E的平面角,在直角梯形BCDE中,由CD2=BC2+BD2,得BD⊥BC,又平面ABC⊥平面BCDE,得BD⊥平面ABC,从而BD⊥AB,由于AC⊥平面BCDE,得AC⊥CD.在Rt△ACD中,由DC=2,AC=,得AD=;在Rt△AED中,由ED=1,AD=得AE=;在Rt△ABD中,由BD=,AB=2,AD=得BF=,AF=AD,从而GF=,在△ABE,△ABG中,利用余弦定理分别可得cos∠BAE=,BG=.在△BFG中,cos∠BFG==,所以,∠BFG=,二面角B﹣AD﹣E的大小为.【点评】本题主要考查空间点、线、面位置关系,二面角等基础知识,同时考查空间想象能力,推理论证能力和运算求解能力.21.(15分)如图,设椭圆C:(a>b>0),动直线l与椭圆C只有一个公共点P,且点P在第一象限.(Ⅰ)已知直线l的斜率为k,用a,b,k表示点P的坐标;(Ⅱ)若过原点O的直线l1与l垂直,证明:点P到直线l1的距离的最大值为a ﹣b.【分析】(Ⅰ)设直线l的方程为y=kx+m(k<0),由,消去y得(b2+a2k2)x2+2a2kmx+a2m2﹣a2b2=0,利用△=0,可求得在第一象限中点P的坐标;(Ⅱ)由于直线l1过原点O且与直线l垂直,设直线l1的方程为x+ky=0,利用点到直线间的距离公式,可求得点P到直线l1的距离d=,整理即可证得点P到直线l1的距离的最大值为a﹣b..【解答】解:(Ⅰ)设直线l的方程为y=kx+m(k<0),由,消去y得(b2+a2k2)x2+2a2kmx+a2m2﹣a2b2=0.由于直线l与椭圆C只有一个公共点P,故△=0,即b2﹣m2+a2k2=0,此时点P的横坐标为﹣,代入y=kx+m得点P的纵坐标为﹣k•+m=,∴点P的坐标为(﹣,),又点P在第一象限,故m>0,故m=,故点P的坐标为P(,).(Ⅱ)由于直线l1过原点O且与直线l垂直,故直线l1的方程为x+ky=0,所以点P到直线l1的距离d=,整理得:d=,因为a2k2+≥2ab,所以≤=a﹣b,当且仅当k2=时等号成立.所以,点P到直线l1的距离的最大值为a﹣b.【点评】本题主要考查椭圆的几何性质、点到直线间的距离、直线与椭圆的位置关系等基础知识,同时考查解析几何的基本思想方法、基本不等式应用等综合解题能力.22.(14分)已知函数f(x)=x3+3|x﹣a|(a∈R).(Ⅰ)若f(x)在[﹣1,1]上的最大值和最小值分别记为M(a),m(a),求M (a)﹣m(a);(Ⅱ)设b∈R,若[f(x)+b]2≤4对x∈[﹣1,1]恒成立,求3a+b的取值范围.【分析】(Ⅰ)利用分段函数,结合[﹣1,1],分类讨论,即可求M(a)﹣m(a);(Ⅱ)令h(x)=f(x)+b,则h(x)=,h′(x)=,则[f(x)+b]2≤4对x∈[﹣1,1]恒成立,转化为﹣2≤h(x)≤2对x∈[﹣1,1]恒成立,分类讨论,即可求3a+b的取值范围.【解答】解:(Ⅰ)∵f(x)=x3+3|x﹣a|=,∴f′(x)=,①a≤﹣1时,∵﹣1≤x≤1,∴x≥a,f(x)在(﹣1,1)上是增函数,∴M(a)=f(1)=4﹣3a,m(a)=f(﹣1)=﹣4﹣3a,∴M(a)﹣m(a)=8;②﹣1<a<1时,x∈(a,1),f(x)=x3+3x﹣3a,在(a,1)上是增函数;x∈(﹣1,a),f(x)=x3﹣3x+3a,在(﹣1,a)上是减函数,∴M(a)=max{f(1),f(﹣1)},m(a)=f(a)=a3,∵f(1)﹣f(﹣1)=﹣6a+2,∴﹣1<a≤时,M(a)﹣m(a)=﹣a3﹣3a+4;<a<1时,M(a)﹣m(a)=﹣a3+3a+2;③a≥1时,有x≤a,f(x)在(﹣1,1)上是减函数,∴M(a)=f(﹣1)=2+3a,m(a)=f(1)=﹣2+3a,∴M(a)﹣m(a)=4;(Ⅱ)令h(x)=f(x)+b,则h(x)=,h′(x)=,∵[f(x)+b]2≤4对x∈[﹣1,1]恒成立,∴﹣2≤h(x)≤2对x∈[﹣1,1]恒成立,由(Ⅰ)知,①a≤﹣1时,h(x)在(﹣1,1)上是增函数,最大值h(1)=4﹣3a+b,最小值h(﹣1)=﹣4﹣3a+b,则﹣4﹣3a+b≥﹣2且4﹣3a+b≤2矛盾;②﹣1<a≤时,最小值h(a)=a3+b,最大值h(1)=4﹣3a+b,∴a3+b≥﹣2且4﹣3a+b≤2,令t(a)=﹣2﹣a3+3a,则t′(a)=3﹣3a2>0,t(a)在(0,)上是增函数,∴t(a)>t(0)=﹣2,∴﹣2≤3a+b≤0;③<a<1时,最小值h(a)=a3+b,最大值h(﹣1)=3a+b+2,则a3+b≥﹣2且3a+b+2≤2,∴﹣<3a+b≤0;④a≥1时,最大值h(﹣1)=3a+b+2,最小值h(1)=3a+b﹣2,则3a+b﹣2≥﹣2且3a+b+2≤2,∴3a+b=0.综上,3a+b的取值范围是﹣2≤3a+b≤0.【点评】本题考查导数的综合运用,考查函数的最值,考查分类讨论、化归与转化的数学思想,难度大.。
2014年高考浙江理科数学试题及答案(精校版)
2014年普通高等学校招生全国统一考试(浙江卷)数 学(理科)一. 选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 设全集{|2}U x N x =∈≥,集合2{|5}A x N x =∈≥,则U C A =( )A. ∅B. {2}C. {5}D. {2,5} 2. 已知i 是虚数单位,,a b R ∈,则“1a b ==”是“2()2a bi i +=”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件3. 某几何体的三视图(单位:cm )如图所示,则此几何体的表面积是( )A. 902cm B. 1292cmC. 1322cm D. 1382cm4. 为了得到函数sin 3cos3y x x =+的图像,可以将函数2cos 3y x =的图像( )A. 向右平移4π 个单位B. 向左平移4π个单位 C. 向右平移12π个单位 D. 向左平移12π个单位5.在64(1)(1)x y ++的展开式中,记m nx y项的系数(,)f m n ,则(3,0)(2,1)(1,2)(0,3)f f f f +++= ( )A. 45B. 60C. 120D. 2106. 已知函数32()f x x ax bx c =+++ ,且0(1)(2)(3)3f f f <-=-=-≤( ) A.3c ≤ B.36c <≤ C.69c <≤ D. 9c >7. 在同一直角坐标系中,函数()(0)af x x x =≥,()log a g x x = 的图像可能是( )8. 记,max{,},x x y x y y x y ≥⎧=⎨<⎩,y,min{,}x,x y x y x y ≥⎧=⎨<⎩,设,a b 为平面向量,则( )A .min{||,||}min{||,||}a b a b a b +-≤B. min{||,||}min{||,||}a b a b a b +-≥C. 2222max{||,||}||||a b a b a b +-≤+ D. 2222max{||,||}||||a b a b a b +-≥+9. 已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个篮球(3,3)m n ≥≥,从乙盒中随机抽取(1,2)i i =个球放入甲盒中.(a )放入i 个球后,甲盒中含有红球的个数记为(1,2)i i ξ=; (b )放入i 个球后,从甲盒中取1个球是红球的概率记为(1,2)i p i =. 则 ( )A.1212,()()p p E E ξξ><B. 1212,()()p p E E ξξ<>C. 1212,()()p p E E ξξ>>D. 1212,()()p p E E ξξ<<10. 设函数21()f x x =,22()2()f x x x =-,31()|sin 2|3f x x π=,99i a i =,,2,1,0=i 99, ,记10219998|()()||()()||()()|k k k k k k k I f a f a f a f a f a f a =-+-++-,1,2,3k = 则 ( )A.123I I I <<B. 213I I I <<C. 132I I I <<D. 321I I I <<二. 填空题:本大题共7小题,每小题4分,共28分.11. 若某程序框图如图所示,当输入50时,则该程序运算后输出的结果是________.12. 随机变量ξ的取值为0,1,2,若1(0)5P ξ==,()1E ξ=,则()D ξ=________.13.当实数,x y 满足240101x y x y x +-≤⎧⎪--≤⎨⎪≥⎩时,14ax y ≤+≤恒成立,则实数a 的取值范围是________.14. 在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有_____种(用数字作答).15.设函数22,0(),0x x x f x x x ⎧+<⎪=⎨-≥⎪⎩若(())2f f a ≤,则实数a 的取值范围是______16.设直线30x y m -+=(0m ≠) 与双曲线12222=-b y a x (0,0a b >>)两条渐近线分别交于点A ,B.若点(,0)P m 满足||||PA PB =,则该双曲线的离心率是__________17、如图,某人在垂直于水平地面ABC 的墙面前的点A 处进行射击训练.已知点A 到墙面的距离为AB ,某目标点P 沿墙面上的射击线CM 移动,此人为了准确瞄准目标点P ,需计算由点A 观察点P 的仰角θ的大小.若15AB m = ,25AC m =,30BCM ∠=︒,则tan θ的最大值是 (仰角θ 为直线AP 与平面ABC 所成角)19.(本题满分14分)已知数列{}n a 和{}n b 满足123(2)(*)n b n a a a a n N =∈.若{}n a 为等比数列,且1322,6a b b ==+(Ⅰ) 求n a 与n b ; (Ⅱ) 设11(*)n n nc n N a b =-∈.记数列{}n c 的前n 项和为n S , (i )求n S ;(ii )求正整数k ,使得对任意*n N ∈均有k n S S ≥.如图,在四棱锥A BCDE -中,平面ABC ⊥平面BCDE ,90CDE BED ∠=∠=︒,2AB CD ==,1DE BE ==,2AC =. (Ⅰ) 证明:DE ⊥平面ACD ;(Ⅱ) 求二面角B AD E --的大小.21(本题满分15分)如图,设椭圆C:)0(12222>>=+b a by a x 动直线l 与椭圆C 只有一个公共点P ,且点P在第一象限.(Ⅰ) 已知直线l 的斜率为k ,用,,a b k 表示点P 的坐标;(Ⅱ) 若过原点O 的直线1l 与l 垂直,证明:点P 到直线1l 的距离的最大值为a b -.已知函数()33().f x x x a a R =+-∈(Ⅰ) 若()f x 在[]1,1-上的最大值和最小值分别记为(),()M a m a ,求()()M a m a -; (Ⅱ) 设,b R ∈若()24f x b +≤⎡⎤⎣⎦对[]1,1x ∈-恒成立,求3a b +的取值范围.2014年高考浙江理科数学试题参考答案一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.【解析】2{|5}A x N x =∈≥={|x N x ∈≥,{|2{2}U C A x N x =∈≤<=【答案】B2.【解析】当1a b ==时,22()(1)2a bi i i +=+=,反之,2()2a bi i +=即2222a b abi i -+= ,则22022a b ab ⎧-=⎨=⎩ 解得11a b =⎧⎨=⎩ 或11a b =-⎧⎨=-⎩【答案】A3.【解析】由三视图可知直观图左边一个横放的三棱柱右侧一个长方体,故几何体的表面积为:1246234363334352341382S =⨯⨯+⨯⨯+⨯+⨯+⨯+⨯+⨯⨯⨯= . 【答案】D4.【解析】sin 3cos 3)4y x x x π=+=+)]12x π+而)2y x x π==+)]6x π+由3()3()612x x ππ+→+,即12x x π→-故只需将3y x =的图象向右平移12π个单位. 故选C【答案】C5.【解析】令x y = ,由题意知(3,0)(2,1)(1,2)(0,3)f f f f +++即为10(1)x + 展开式中3x 的系数,故(3,0)(2,1)(1,2)(0,3)f f f f +++=710120C =,故选C【答案】C6.【解析】由(1)(2)(3)f f f -=-=-得184212793a b c a b ca b c a b c-+-+=-+-+⎧⎨-+-+=-+-+⎩ 解得611a b =⎧⎨=⎩ ,所以32()611f x x x x c =+++ ,由0(1)3f <-≤得016113c <-+-+≤ ,即69c <≤,故选C【答案】C7.【解析】函数()(0)af x x x =≥,()log a g x x =分别的幂函数与对数函数答案A 中没有幂函数的图像, 不符合;答案B 中,()(0)af x x x =≥中1a > ,()log a g x x =中01a << ,不符合;答案C 中,()(0)a f x x x =≥中01a <<,()log a g x x =中1a >,不符合;答案D 中,()(0)a f x x x =≥中01a <<,()log a g x x =中01a <<,符合. 故选D【答案】D8.【解析】由向量运算的平行四边形法可知min{||,||}a b a b +-与min{||,||}a b 的大小不确定,平行四边形法可知max{||,||}a b a b +-所对的角大于或等于90︒ ,由余弦定理知2222max{||,||}||||a b a b a b +-≥+,(或22222222||||2(||||)max{||,||}||||22a b a b a b a b a b a b ++-++-≥==+). 【答案】D 9.【解析1】11222()m n m np m n m n m n +=+⨯=+++ , 211222221233n mn m m n m n m nC C C C p C C C +++=++ =223323()(1)m m mn n n m n m n -++-++- ∴1222()m n p p m n +-=+-223323()(1)m m mn n n m n m n -++-++-=5(1)06()(1)mn n n m n m n +->++- , 故12p p >又∵1(1)n P m n ξ==+ ,1(2)mP m n ξ==+∴12()12n m m nE m n m n m nξ+=⨯+⨯=+++ 又222(1)(1)()(1)n m n C n n P C m n m n ξ+-===++- 11222(2)()(1)n m m n C C mn P C m n m n ξ+===++- 222(m 1)(3)()(1)m m n C m P C m n m n ξ+-===++- ∴2(1)2(1)()123()(1)()(1)()(1)n n mn m m E m n m n m n m n m n m n ξ--=⨯+⨯+⨯++-++-++-=22334()(1)m n m n mnm n m n +--+++-21()()E E ξξ-=22334()(1)m n m n mn m n m n +--+++--2m n m n ++=(1)0()(1)m m mnm n m n -+>++- 所以21()()E E ξξ> ,故选A【答案】A 【解析2】:在解法1中取3m n == ,计算后再比较。
(浙江版)高考数学分项汇编专题4三角函数与三角形(含解析)理
第四章 三角函数与三角形一.基础题组1. 【2014年.浙江卷.理4】为了得到函数x x y 3cos 3sin +=的图像,可以将函数x y 3sin 2=的图像( )A.向右平移4π个单位B.向左平移4π个单位 C.向右平移12π个单位 D.向左平移12π个单位【答案】:D2. 【2013年.浙江卷.理4】已知函数f (x )=A cos(ωx +φ)(A >0,ω>0,φ∈R ),则“f (x )是奇函数”是“π2ϕ=”的( ). A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】:B3. 【2013年.浙江卷.理6】已知α∈R ,sin α+2cos α=10,则tan 2α=( ). A .43 B .34 C .34- D .43- 【答案】:C∴tan α=3或tan α=13-,∴tan 2α=34-.4. 【2012年.浙江卷.理4】把函数y =cos2x +1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图象是( )【答案】A5. 【2011年.浙江卷.理6】若02πα<<,02πβ-<<,1cos()43πα+=,cos()42πβ-=cos()2βα+=(A )3 (B )3- (C )9 (D )9-02<<-βπ,∴36)24sin(=-βπ,∴)]24()4cos[()2cos(βπαπβα--+=+=)24sin()4sin()24cos()4cos(βπαπβπαπ-++-+=363323331⨯+⨯=935. 6. 【2010年.浙江卷.理9】设函数()4sin(21)f x x x =+-,则在下列区间中函数()f x 不.存在零点的是 (A )[]4,2-- (B )[]2,0- (C )[]0,2 (D )[]2,4 【答案】A【解析】:根据函数零点的概念知,()x f 在某个区间上无零点,即方程转()4sin(21)f x x x =+-=0在这个7. 【2010年.浙江卷.理11】函数2()sin(2)4f x x x π=--的最小正周期是__________________. 【答案】π8. 【2009年.浙江卷.理8】已知a 是实数,则函数()1sin f x a ax =+的图象不可能...是 ( )【答案】:D9. 【2008年.浙江卷.理5】在同一平面直角坐标系中,函数])20[)(232cos(ππ,∈+=x xy 的图象和直线21=y 的交点个数是 (A )0 (B )1 (C )2 (D )4 【答案】C10. 【2008年.浙江卷.理13】在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若()C a A c b c o s c o s3=-,则=A cos【答案】311. 【2007年.浙江卷.理2】若函数()2sin(),f x x x R ωϕ=+∈,(其中0,||2πωϕ><)的最小正周期是π,且(0)f =(A )1,26πωϕ== (B )1,23πωϕ== (C )2,6πωϕ== (D )2,3πωϕ== 【答案】D12. 【2007年.浙江卷.理12】已知1sin cos 5θθ+=,且324ππθ≤≤,则cos2θ的值是_____________. 【答案】725-13. 【2006年.浙江卷.理6】函数y =21sin2x +4sin 2x ,x R ∈的值域是 (A)[-21,23] (B)[-23,21](C)[2122,2122++-] (D)[2122,2122---] 【答案】C14. 【2015高考浙江,理16】在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知4A π=,22b a -=122c . (1)求tan C 的值;(2)若ABC ∆的面积为7,求b 的值. 【答案】(1)2;(2)3b =.15.二.能力题组1. 【2014年.浙江卷.理17】如图,某人在垂直于水平地面的墙面前的点处进行射击训练.已知点到墙面的距离为,某目标点沿墙面的射击线移动,此人为了准确瞄准目标点,需计算由点观察点的仰角的大小.若则的最大值答案:5392. 【2013年.浙江卷.理16】在△ABC 中,∠C =90°,M 是BC 的中点.若sin ∠BAM =13,则sin ∠BAC =__________.【答案】63. 【2012年.浙江卷.理18】在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知2cos 3A =,sin BC .(1)求tan C 的值;(2)若a =ABC 的面积.【答案】(1)tan C =;(2)1csin 22S a B == 【解析】解:(1)因为0<A <π,cos A =23,4. 【2011年.浙江卷.理18】(本题满分14分)在ABC 中,角..A B C 所对的边分别为a,b,c. 已知()sin sin sin ,A C p B p R +=∈且214ac b =. (Ⅰ)当5,14p b ==时,求,a c 的值; (Ⅱ)若角B 为锐角,求p 的取值范围;【答案】(Ⅰ)114a c =⎧⎪⎨=⎪⎩ 或141a c ⎧=⎪⎨⎪=⎩ ;(Ⅱ) 2p <<5. 【2009年.浙江卷.理18】(本题满分14分)在ABC ∆中,角,,A B C 所对的边分别为,,a b c,且满足cos2A =, 3AB AC ⋅=. (I )求ABC ∆的面积; (II )若6b c +=,求a 的值.【答案】(I )2;(II )6.【2006年.浙江卷.理15】如图,函数y=2sin(πx φ),x ∈R,(其中0≤φ≤2π)的图象与y 轴交于点(0,1).(Ⅰ)求φ的值;(Ⅱ)设P 是图象上的最高点,M 、N 是图象与x 轴的交点,求.与PM【答案】(Ⅰ) 6πϕ=; (Ⅱ) 15arccos17.cos ,||||PM PNPM PN PM PN ⋅<>=⋅1517=,故,PM PN <>=15arccos17. 7. 【2005年.浙江卷.理8】已知k <-4,则函数y =cos2x +k (cos x -1)的最小值是( )(A) 1 (B) -1 (C) 2k +1 (D) -2k +1 【答案】A三.拔高题组1. 【2014年.浙江卷.理18】(本题满分14分)在ABC ∆中,内角,,A B C 所对的边分别为,,a b c .已知,a b c ≠=22cos -cos cos cos .A B A A B B =(I )求角C 的大小; (II )若4sin 5A =,求ABC ∆的面积.【答案】(Ⅰ)3C π=;(Ⅱ)S =.2. 【2010年.浙江卷.理18】(本题满分l4分)在△ABC 中,角A 、B 、C 所对的边分别为a,b,c ,已知1cos 24C =- (I)求sinC 的值;(Ⅱ)当a=2, 2sinA=sinC 时,求b 及c 的长.【答案】(I) 4 (Ⅱ) 44b bc c ⎧⎧==⎪⎪⎨⎨==⎪⎪⎩⎩b 2b-12=0,解得或,所以 44b bc c ⎧⎧==⎪⎪⎨⎨==⎪⎪⎩⎩3. 【2007年.浙江卷.理18】(本题14分)已知ABC ∆1,且sin sin A B C +=(Ⅰ)求边AB 的长; (Ⅱ)若ABC ∆的面积为1sin 6C ,求角C 的度数.【答案】(Ⅰ)1AB =;(Ⅱ)60C =4. 【2005年.浙江卷.理15】已知函数f (x )=-3sin 2x +sin x cos x .(Ⅰ) 求f (256π)的值;(Ⅱ) 设α∈(0,π),f (2α)=41sin α的值.【答案】(Ⅰ)0; (Ⅱ.∵α∈(0,π),∴sin α>0,故sin α 5. 【2015高考浙江,理11】函数2()sin sin cos 1f x x x x =++的最小正周期是 ,单调递减区间是 .【答案】π,]87,83[ππππk k ++,Z k ∈.6.。
2014年高考浙江理科数学试题及答案(word解析版)
2014年普通高等學校招生全國統一考試(浙江卷)數學(理科)第Ⅰ卷(選擇題 共50分)一、選擇題:本大題共10小題,每小題5分,共50分,在每小題給出の四個選項中,只有一項符合題目要求. (1)【2014年浙江,理1,5分】設全集{|2}U x N x =∈≥,集合2{|5}A x N x =∈≥,則U A =ð( )(A )∅ (B ){2} (C ){5} (D ){2,5} 【答案】B【解析】2{|5}{|A x N x x N x =∈≥=∈,{|2{2}U C A x N x =∈≤=,故選B . 【點評】本題主要考查全集、補集の定義,求集合の補集,屬於基礎題. (2)【2014年浙江,理2,5分】已知i 是虛數單位,,a b R ∈,則“1a b ==”是“2(i)2i a b +=”の( )(A )充分不必要條件 (B )必要不充分條件 (C )充分必要條件 (D )既不充分也不必要條件 【答案】A【解析】當1a b ==時,22(i)(1i)2i a b +=+=,反之,2(i)2i a b +=,即222i 2i a b ab -+=,則22022a b ab ⎧-=⎨=⎩,解得11a b =⎧⎨=⎩ 或11a b =-⎧⎨=-⎩,故選A .【點評】本題考查の知識點是充要條件の定義,複數の運算,難度不大,屬於基礎題.(3)【2014年浙江,理3,5分】某幾何體の三視圖(單位:cm )如圖所示,則此幾何體の表面積是( ) (A )902cm (B )1292cm (C )1322cm (D )1382cm【答案】D【解析】由三視圖可知直觀圖左邊一個橫放の三棱柱右側一個長方體,故幾何體の表面積為:1246234363334352341382S =⨯⨯+⨯⨯+⨯+⨯+⨯+⨯+⨯⨯⨯=,故選D .【點評】本題考查了由三視圖求幾何體の表面積,根據三視圖判斷幾何體の形狀及數據所對應の幾何量是解題の關鍵.(4)【2014年浙江,理4,5分】為了得到函數sin 3cos3y x x =+の圖像,可以將函數y x の圖像( )(A )向右平移4π個單位 (B )向左平移4π個單位 (C )向右平移12π個單位 (D )向左平移12π個單位【答案】C【解析】sin3cos3))]412y x x x x ππ=+=+=+,而2s i n (32y x x π=+)]6x π+,由3()3()612x x ππ+→+,即12x x π→-,故只需將y x の圖象向右平移12π個單位,故選C .【點評】本題考查兩角和與差の三角函數以及三角函數の平移變換の應用,基本知識の考查. (5)【2014年浙江,理5,5分】在64(1)(1)x y ++の展開式中,記m n x y 項の系數(,)f m n ,則(3,0)(2,1)(1,2)f f f f +++=( ) (A )45 (B )60 (C )120 (D )210 【答案】C 【解析】令x y =,由題意知(3,0)(2,1)(1,2)(0,3)f f f f +++即為10(1)x +展開式中3x の系數,故(3,0)(2,1)(1,2)(0,3)f f f f +++=710120C =,故選C .【點評】本題考查二項式定理系數の性質,二項式定理の應用,考查計算能力. (6)【2014年浙江,理6,5分】已知函數32()f x x ax bx c =+++ ,且0(1)(2)(3)3f f f <-=-=-≤( ) (A )3c ≤ (B )36c <≤ (C )69c <≤ (D )9c >【答案】C【解析】由(1)(2)(3)f f f -=-=-得184212793a b c a b c a b c a b c -+-+=-+-+⎧⎨-+-+=-+-+⎩,解得611a b =⎧⎨=⎩,所以32()611f x x x x c =+++,由0(1)3f <-≤,得016113c <-+-+≤,即69c <≤,故選C .【點評】本題考查方程組の解法及不等式の解法,屬於基礎題. (7)【2014年浙江,理7,5分】在同一直角坐標系中,函數()(0)a f x x x =≥,()log a g x x =の圖像可能是( )(A ) (B ) (C ) (D )【答案】D【解析】函數()(0)a f x x x =≥,()log a g x x =分別の冪函數與對數函數答案A 中沒有冪函數の圖像, 不符合;答案B 中,()(0)a f x x x =≥中1a >,()log a g x x =中01a <<,不符合;答案C 中,()(0)a f x x x =≥中01a <<,()log a g x x =中1a >,不符合;答案D 中,()(0)a f x x x =≥中01a <<,()log a g x x =中01a <<,符合,故選D .【點評】本題考查の知識點是函數の圖象,熟練掌握對數函數和冪函數の圖象和性質,是解答の關鍵.(8)【2014年浙江,理8,5分】記,max{,},x x y x y y x y ≥⎧=⎨<⎩,y,min{,}x,x yx y x y ≥⎧=⎨<⎩,設,a b 為平面向量,則( )(A )min{||,||}min{||,||}a b a b a b +-≤ (B )min{||,||}min{||,||}a b a b a b +-≥ (C )2222max{||,||}||||a b a b a b +-≤+ (D )2222max{||,||}||||a b a b a b +-≥+【答案】D【解析】由向量運算の平行四邊形法可知min{||,||}a b a b +-與min{||,||}a b の大小不確定,平行四邊形法可知max{||,||}a b a b +-所對の角大於或等於90︒ ,由餘弦定理知2222max{||,||}||||a b a b a b +-≥+,(或22222222||||2(||||)max{||,||}||||22a b a b a b a b a b a b ++-++-≥==+),故選D .【點評】本題在處理時要結合著向量加減法の幾何意義,將a ,b ,a b +,a b -放在同一個平行四邊形中進行比較判斷,在具體解題時,本題采用了排除法,對錯誤選項進行舉反例說明,這是高考中做選擇題の常用方法,也不失為一種快速有效の方法,在高考選擇題の處理上,未必每一題都要寫出具體解答步驟,針對選擇題の特點,有時“排除法”,“確定法”,“特殊值”代入法等也許是一種更快速,更有效の方法.(9)【2014年浙江,理9,5分】已知甲盒中僅有1個球且為紅球,乙盒中有m 個紅球和n 個籃球(3,3)m n ≥≥,從乙盒中隨機抽取(1,2)i i =個球放入甲盒中.(a )放入i 個球後,甲盒中含有紅球の個數記為(1,2)i i ξ=; (b )放入i 個球後,從甲盒中取1個球是紅球の概率記為(1,2)i p i =.則( )(A )1212,()()p p E E ξξ><(B )1212,()()p p E E ξξ<>(C )1212,()()p p E E ξξ>>(D )1212,()()p p E E ξξ<< 【答案】A【解析】解法一:11222()m n m np m n m n m n +=+⨯=+++ ,211222221233n m n m m n m n m nC C C C p C C C +++=++=223323()(1)m m mn n n m n m n -++-++-,∴1222()m n p p m n +-=+-223323()(1)m m mn n n m n m n -++-++-=5(1)06()(1)mn n n m n m n +->++-,故12p p >. 又∵1(1)n P m n ξ==+,1(2)m P m n ξ==+,∴12()12n m m nE m n m n m nξ+=⨯+⨯=+++,又222(1)(1)()(1)n m n C n n P C m n m n ξ+-===++-,11222(2)()(1)n m m n C C mnP C m n m n ξ+===++-,222(m 1)(3)()(1)m m n C m P C m n m n ξ+-===++- ∴2(1)2(1)()123()(1)()(1)()(1)n n mn m m E m n m n m n m n m n m n ξ--=⨯+⨯+⨯++-++-++-=22334()(1)m n m n mn m n m n +--+++-21()()E E ξξ-=22334()(1)m n m n mn m n m n +--+++--2m nm n ++=(1)0()(1)m m mn m n m n -+>++-,所以21()()E E ξξ>,故選A . 解法二:在解法一中取3m n ==,計算後再比較,故選A .【點評】正確理解()1,2i i ξ=の含義是解決本題の關鍵.此題也可以采用特殊值法,不妨令3m n ==,也可以很快求解.(10)【2014年浙江,理10,5分】設函數21()f x x =,22()2()f x x x =-,31()|sin 2|3f x x π=,99i ia =,0,1,2i =,,99,記10219998|()()||()()||()()|k k k k k k k I f a f a f a f a f a f a =-+-++-,1,2,3k =,則( ) (A )123I I I << (B )213I I I << (C )132I I I << (D )321I I I << 【答案】B【解析】解法一:由22112199999999i i i --⎛⎫⎛⎫-=⎪ ⎪⎝⎭⎝⎭,故2111352991199()199999999999999I ⨯-=++++==,由2211199(21)22||999999999999i i i i i ----⎛⎫⎛⎫--+=⨯ ⎪ ⎪⎝⎭⎝⎭,故2150(980)98100221992999999I +=⨯⨯⨯=<⨯, 3110219998(|sin(2)||sin(2)||sin(2)||sin(2)||sin(2)||sin(2)|)3999999999999I ππππππ=-+-++-=12574[2sin(2)2sin(2)]139999ππ->,故213I I I <<,故選B . 解法二:估算法:k I の幾何意義為將區間[0,1]等分為99個小區間,每個小區間の端點の函數值之差の絕對值之和.如圖為將函數21()f x x =の區間[0,1]等分為4個小區間の情形,因1()f x 在[0,1]上遞增,此時110213243|()()||()()||()()||()()|I f a f a f a f a f a f a f a f a =-+-+-+- =11223344A H A H A H A H +++(1)(0)f f =-1=,同理對題中給出の1I ,同樣有11I =;而2I 略小於1212⨯=,3I 略小於14433⨯=,所以估算得213I I I <<,故選B .【點評】本題主要考查了函數の性質,關鍵是求出這三個數與1の關系,屬於難題.第Ⅱ卷(非選擇題 共100分)二、填空題:本大題共7小題,每小題4分,共28分.(11)【2014年浙江,理11,5分】若某程序框圖如圖所示,當輸入50時,則該程序運算後輸出の結果是 . 【答案】6【解析】第一次運行結果1,2S i ==;第二次運行結果4,3S i ==;第三次運行結果11,4S i ==;第四次運行結果26,5S i ==;第五次運行結果57,6S i ==;此時5750S =>,∴輸出6i =.【點評】本題考查了直到型循環結構の程序框圖,根據框圖の流程模擬運行程序是解答此類問題の常用方法.(12)【2014年浙江,理12,5分】隨機變量ξの取值為0,1,2,若1(0)5P ξ==,()1E ξ=,則()D ξ= . 【答案】25 【解析】設1ξ=時の概率為p ,ξの分布列為: 由11()012(1)155E p p ξ=⨯+⨯+⨯--= ,解得35p =ξの分布列為即為故2221312()(01)(11)(21)5555E ξ=-⨯+-⨯+-⨯=.【點評】本題綜合考查了分布列の性質以及期望、方差の計算公式.(13)【2014年浙江,理13,5分】當實數,x y 滿足240101x y x y x +-≤⎧⎪--≤⎨⎪≥⎩時,14ax y ≤+≤恒成立,則實數a の取值範圍是 __.【答案】3[1,]2【解析】解法一:作出不等式組240101x y x y x +-≤⎧⎪--≤⎨⎪≥⎩所表示の區域如圖,由14ax y ≤+≤恒成立,故3(1,0),(2,1),(1,)2A B C ,三點坐標代入14ax y ≤+≤,均成立得1412143142a a a ⎧⎪≤≤⎪≤+≤⎨⎪⎪≤+≤⎩解得312a ≤≤ ,∴實數a の取值範圍是3[1,]2.解法二:作出不等式組240101x y x y x +-≤⎧⎪--≤⎨⎪≥⎩所表示の區域如圖,由14ax y ≤+≤得,由圖分析可知,0a ≥且在(1,0)A 點取得最小值,在(2,1)B 取得最大值,故1214a a ≥⎧⎨+≤⎩,得312a ≤≤,故實數a の取值範圍是3[1,]2.【點評】本題考查線性規劃,考查了數形結合の解題思想方法,考查了數學轉化思想方法,訓練了不等式組得解法,是中檔題.(14)【2014年浙江,理14,5分】在8張獎券中有一、二、三等獎各1張,其餘5張無獎.將這8張獎券分配給4個人,每人2張,不同の獲獎情況有 種(用數字作答). 【答案】60【解析】解法一:不同の獲獎分兩種,一是有一人獲兩張獎券,一人獲一張獎券,共有223436C A =, 二是有三人各獲得一張獎券,共有3424A =,因此不同の獲獎情況共有362460+=種. 解法二:將一、二、三等獎各1張分給4個人有3464=種分法,其中三張獎券都分給一個人の有4種分法, 因此不同の獲獎情況共有64460-=種.【點評】本題考查排列、組合及簡單計數問題,考查學生の計算能力,屬於基礎題.(15)【2014年浙江,理15,5分】設函數22,0(),0x x x f x x x ⎧+<⎪=⎨-≥⎪⎩若(())2f f a ≤,則實數a の取值範圍是 .【答案】(-∞.【解析】由題意2()0()()2f a f a f a <⎧⎨+≤⎩或2()0()2f a f a ≥⎧⎨-≤⎩,解得()2f a ≥-∴當202a a a <⎧⎨+≥-⎩或202a a ≥⎧⎨-≥-⎩,解得a【點評】本題主要考查分段函數の應用,其它不等式の解法,體現了數形結合の數學思想,屬於中檔題.(16)【2014年浙江,理16,5分】設直線30x y m -+=(0m ≠) 與雙曲線22221x y a b-=(0,0a b >>)兩條漸近線分別交於點A ,B .若點(,0)P m 滿足||||PA PB =,則該雙曲線の離心率是 .【解析】解法一:由雙曲線の方程可知,它の漸近線方程為b y x a =和by x a =-,分別與直線l : 30x y m -+= 聯立方程組,解得,(,)33am bm A a b a b ----,(,)33am bmB a b a b -++,設AB 中點為Q ,由||||PA PB = 得,則3333(,)22am am bm bma b a b a b a b Q ---++-+-+,即2222223(,)99a m b m Q a b a b ----,PQ 與已知直線垂直,∴1PQ l k k =-,即222222319139b m a b a m m a b --=----, 即得2228a b =,即22228()a c a =-,即2254c a =,所以c e a ==.解法二:不妨設1a =,漸近線方程為222201x y b -=即2220b x y -=,由222030b x y x y m ⎧-=⎨-+=⎩消去x ,得2222(91)60b y b my b m --+=,設AB 中點為00(,)Q x y ,由韋達定理得:202391b m y b =-……① ,又003x y m =-,由1P Q l k k =-得00113y x m =--,即得0011323y y m =--得035y m =代入①得2233915b m m b =-, 得214b =,所以22215144c a b =+=+=,所以c =,得c e c a ===.【點評】本題考查雙曲線の離心率,考查直線の位置關系,考查學生の計算能力,屬於中檔題. (17)【2014年浙江,理17,5分】如圖,某人在垂直於水平地面ABC の牆面前の點A 處進行射擊訓練.已知點A 到牆面の距離為AB ,某目標點P 沿牆面上の射擊線CM 移動,此人為了准確瞄准目標點P ,需計算由點A 觀察點P の仰角θの大小.若15AB m =,25AC m =,30∠︒,則tan θの最大值是 (仰角θ為直線AP 與平面ABC 所成角).2320225x x -+2320032250-+'',設B P 2320225x x ++22545204<=355339=,2320225x x -+2320225x x -+20),23225'(x)(225)f x ++454=- 時20時'0y <203445225(++ 15201225AB BC AC ==,20tan 30DB BC ︒=203533DB ===【點評】屬於中檔題. 三、解答題:本大題共5題,共72分.解答應寫出文字說明,演算步驟或證明過程.(18解:(即A B +=,所以C =.(2c 得A C <,從而3cos A =,,所以,ABC ∆(19)【2014年浙江,理19,14分】已知數列{}n a 和{}n b 滿足123(2)(*)n b n a a a a n N =∈.若{}n a 為等比數列,且1322,6a b b ==+.(1)求n a 與n b ;(2)設11(*)n n n c n N a b =-∈.記數列{}n c の前n 項和為n S .(ⅰ)求n S ;(ⅱ)求正整數k ,使得對任意*n N ∈均有S S ≥.解:(1(2)(3(2)n a a =N ). (2n c ++=111(22n n ++-1(12n ++--=1112n n -+20>,3c 55(51)12+<,4n S ≥,故【點評】本題考查了等比數列通項公式、求和公式,還考查了分組求和法、裂項求和法和猜想證明の思想,證明可以用二項式定理,還可以用數學歸納法.本題計算量較大,思維層次高,要求學生有較高の分析問題解決問題の能力.本題屬於難題.(20)【2014年浙江,理20,15分】如圖,在四棱錐A BCDE -中,平面ABC ⊥平面BCDE ,90CDE BED ∠=∠=︒,2AB CD ==,1DE BE ==,AC =(1)證明:DE ⊥平面ACD ;(解:(1(2BF GF=の原點,分別以射線DE所示.由題意知各點坐標如下:(0,2,0),(0,2,Aの法向量為111(,m x y=222(,,)n x y z=,可算得:(0,2)AD=-,(1,2,AE=-,(1,1,0)DB=,由ADm AE=⎨=⎪⎩,即1111122020y zx y⎧--=⎪⎨-=⎪⎩,可取(0,1,m=-,由n ADn BD⎧⋅=⎪⎨⋅=⎪⎩即2222220y zx y⎧--=⎪⎨+=⎪⎩可取(0,n=-,於是|||cos,|||||3m nm nm n⋅<>===⋅⋅運算求解能力.(21)【2014年浙江,理21,15分】如圖,設橢圓C:22221(0)x ya ba b+=>>動直線l與橢圓C 只有一個公共點P,且點P在第一象限.(1)已知直線lの斜率為k,用,,a b k表示點Pの坐標;(2)若過原點Oの直線1l與l垂直,證明:點P到直線1lの距離の最大值為a b-.解:(1''1P l k =-,得,b (2幾何の基本思想方法、基本不等式應用等綜合解題能力.(22)【2014年浙江,理22,14分】已知函數()33()f x x x a a R =+-∈.(1)若()f x 在[]1,1-上の最大值和最小值分別記為(),()M a m a ,求()()M a m a -; (2)設,b R ∈若()24f x b +≤⎡⎤對[]1,1x ∈-恒成立,求3a b +の取值範圍.解:(1(2。
2014年高考浙江理科数学试题及标准答案(精校版)
2014年普通高等学校招生全国统一考试(浙江卷)数 学(理科)一. 选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集{|2}U x N x =∈≥,集合2{|5}A x N x =∈≥,则U C A =( )A . ∅ B. {2} C. {5} D. {2,5}2. 已知i 是虚数单位,,a b R ∈,则“1a b ==”是“2()2a bi i +=”的( )A. 充分不必要条件 B. 必要不充分条件C. 充分必要条件 D. 既不充分也不必要条件3. 某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是( )A. 902cm B . 1292cmC. 1322cm D . 1382cm4. 为了得到函数sin 3cos3y x x =+的图像,可以将函数2cos 3y x =的图像( )A. 向右平移4π 个单位 B. 向左平移4π个单位C. 向右平移12π个单位 D . 向左平移12π个单位5.在64(1)(1)x y ++的展开式中,记m n x y 项的系数(,)f m n ,则(3,0)(2,1)(1,2)(0,3)f f f f +++= ( )A. 45B. 60C. 120D . 2106. 已知函数32()f x x ax bx c =+++ ,且0(1)(2)(3)3f f f <-=-=-≤( )A .3c ≤ B.36c <≤ C .69c <≤ D. 9c >7. 在同一直角坐标系中,函数()(0)a f x x x =≥,()log a g x x = 的图像可能是( )8. 记,max{,},x x y x y y x y ≥⎧=⎨<⎩,y,min{,}x,x y x y x y ≥⎧=⎨<⎩,设,a b 为平面向量,则( ) A.min{||,||}min{||,||}a b a b a b +-≤B. min{||,||}min{||,||}a b a b a b +-≥C. 2222max{||,||}||||a b a b a b +-≤+D. 2222max{||,||}||||a b a b a b +-≥+9. 已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个篮球(3,3)m n ≥≥,从乙盒中随机抽取(1,2)i i =个球放入甲盒中.(a)放入i 个球后,甲盒中含有红球的个数记为(1,2)i i ξ=;(b)放入i 个球后,从甲盒中取1个球是红球的概率记为(1,2)i p i =.则 ( )A.1212,()()p p E E ξξ><B. 1212,()()p p E E ξξ<>C. 1212,()()p p E E ξξ>>D. 1212,()()p p E E ξξ<<10. 设函数21()f x x =,22()2()f x x x =-,31()|sin 2|3f x x π=,99i a i =,,2,1,0=i 99, ,记10219998|()()||()()||()()|k k k k k k k I f a f a f a f a f a f a =-+-++-,1,2,3k = 则( )A.123I I I <<B. 213I I I <<C. 132I I I << D. 321I I I <<二. 填空题:本大题共7小题,每小题4分,共28分.11. 若某程序框图如图所示,当输入50时,则该程序运算后输出的结果是________.12. 随机变量ξ的取值为0,1,2,若1(0)5P ξ==,()1E ξ=,则()D ξ=________. 13.当实数,x y 满足240101x y x y x +-≤⎧⎪--≤⎨⎪≥⎩时,14ax y ≤+≤恒成立,则实数a 的取值范围是________.14. 在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有_____种(用数字作答).15.设函数22,0(),0x x x f x x x ⎧+<⎪=⎨-≥⎪⎩若(())2f f a ≤,则实数a 的取值范围是______16.设直线30x y m -+=(0m ≠) 与双曲线。
2014年高考浙江理科数学试题及答案(精校版)
2014年普通高等学校招生全国统一考试〔浙江卷〕数 学〔理科〕一. 选择题:本大题共10小题,每题5分,共50分. 在每题给出的四个选项中,只有一项是符合题目要求的. 1. 设全集{|2}U x N x =∈≥,集合2{|5}A x N x =∈≥,则U C A =〔 〕A. ∅B. {2}C. {5}D. {2,5} 2. 已知i 是虚数单位,,a b R ∈,则“1a b ==”是“2()2a bi i +=”的〔 〕 A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件3. 某几何体的三视图〔单位:cm 〕如下图,则此几何体的外表积是( )A. 902cm B. 1292cmC. 1322cm D. 1382cm4. 为了得到函数sin 3cos3y x x =+的图像,可以将函数2cos 3y x =的图像〔 〕A. 向右平移4π 个单位B. 向左平移4π个单位 C. 向右平移12π个单位 D. 向左平移12π个单位5.在64(1)(1)x y ++的展开式中,记m nx y项的系数(,)f m n ,则(3,0)(2,1)(1,2)(0,3)f f f f +++= 〔 〕A. 45B. 60C. 120D. 2106. 已知函数32()f x x ax bx c =+++ ,且0(1)(2)(3)3f f f <-=-=-≤〔 〕 A.3c ≤ B.36c <≤ C.69c <≤ D. 9c >7. 在同一直角坐标系中,函数()(0)af x x x =≥,()log a g x x = 的图像可能是〔 〕8. 记,max{,},x x y x y y x y ≥⎧=⎨<⎩,y,min{,}x,x yx y x y≥⎧=⎨<⎩,设,a b 为平面向量,则〔 〕A .min{||,||}min{||,||}a b a b a b +-≤ B. min{||,||}min{||,||}a b a b a b +-≥C. 2222max{||,||}||||a b a b a b +-≤+ D. 2222max{||,||}||||a b a b a b +-≥+9. 已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个篮球(3,3)m n ≥≥,从乙盒中随机抽取(1,2)i i =个球放入甲盒中.〔a 〕放入i 个球后,甲盒中含有红球的个数记为(1,2)i i ξ=; 〔b 〕放入i 个球后,从甲盒中取1个球是红球的概率记为(1,2)i p i =. 则 ( )A.1212,()()p p E E ξξ><B. 1212,()()p p E E ξξ<>C. 1212,()()p p E E ξξ>>D. 1212,()()p p E E ξξ<<10. 设函数21()f x x =,22()2()f x x x =-,31()|sin 2|3f x x π=,99i a i =,,2,1,0=i 99, ,记10219998|()()||()()||()()|k k k k k k k I f a f a f a f a f a f a =-+-++-,1,2,3k = 则 ( )A.123I I I <<B. 213I I I <<C. 132I I I <<D. 321I I I <<二. 填空题:本大题共7小题,每题4分,共28分.11. 假设某程序框图如下图,当输入50时,则该程序运算后输出的结果是________.12. 随机变量ξ的取值为0,1,2,假设1(0)5P ξ==,()1E ξ=,则()D ξ=________.13.当实数,x y 满足240101x y x y x +-≤⎧⎪--≤⎨⎪≥⎩时,14ax y ≤+≤恒成立,则实数a 的取值范围是________.14. 在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有_____种〔用数字作答〕.15.设函数22,0(),0x x x f x x x ⎧+<⎪=⎨-≥⎪⎩假设(())2f f a ≤,则实数a 的取值范围是______16.设直线30x y m -+=(0m ≠) 与双曲线12222=-by a x 〔0,0a b >>〕两条渐近线分别交于点A ,B.假设点(,0)P m 满足||||PA PB =,则该双曲线的离心率是__________17、如图,某人在垂直于水平地面ABC 的墙面前的点A 处进行射击训练.已知点A 到墙面的距离为AB ,某目标点P 沿墙面上的射击线CM 移动,此人为了准确瞄准目标点P ,需计算由点A 观察点P 的仰角θ的大小.假设15AB m = ,25AC m =,30BCM ∠=︒,则tan θ的最大值是 (仰角θ 为直线AP 与平面ABC 所成角)三. 解答题:本大题共5小题,共72分。
浙江版(第01期)-2014届高三名校数学(理)试题分省分项汇编:专题09 圆锥曲线(解析版)
一.基础题组1.【浙江省2013学年第一学期温州八校高三期初联考】设12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的两个焦点,P 是C 上一点,若a PF PF 6||||21=+,且12PF F ∆的最小内角为30,则C 的离心率为( ) A .2 B .23 C .3D .262.【浙江省2014届金华一中高三9月月考数学试卷】已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为(3,0)F ,过点F 的直线交椭圆于,A B 两点.若AB 的中点坐标为(1,1)-,则E 的方程为 ( )A .2214536x y += B .2213627x y += C .2212718x y += D .221189x y += 【答案】D 【解析】试题分析:由题意知,3c =,利用点差法,设过点F 的直线(显然,斜率存在)为()3y k x =-,3.【浙江省2014届金华一中高三9月月考数学试卷理】长为2的线段AB 的两个端点在抛物线x y =2上滑动,则线段AB 中点M 到y 轴距离的最小值是考点:抛物线的定义与性质.4.【浙江省嘉兴市2014届高三上学期9月月考理】已知1F ,2F 是椭圆的两个焦点,若椭圆上存在点P ,使得12PF PF ⊥,则椭圆的离心率的取值范围是( )A. ⎫⎪⎪⎣⎭B. 2⎫⎪⎪⎣⎭C. ⎛ ⎝⎦D. 0,2⎛ ⎝⎦5.如图,F 1,F 2是双曲线C :22221x y a b-=(a >0,b >0)的左、右焦点,过F 1的直线l 与C 的左、右两支分别交于A ,B 两点.若∆ABF 2为等边三角形,则双曲线的离心率为 ( )A B .2 C .D【答案】C 【解析】6.【浙江省嘉兴一中2014届高三上学期入学摸底测试】设点A (3-,0),B (3,0),直线AM 、BM 相交于点M ,且它们的斜率之积为32-.(Ⅰ)求动点M 的轨迹C 的方程;(Ⅱ)若直线l 过点F (1,0)且绕F 旋转,l 与圆5:22=+y x O 相交于P 、Q 两点,l 与轨迹C 相交于R 、S 两点,若|PQ |],19,4[∈求△RS F '的面积的最大值和最小值(F ′为轨迹C 的左焦点).【答案】(Ⅰ)221(32x y x +=≠;(Ⅱ)min S ∴=,max S = 【解析】试题分析:(Ⅰ)根据椭圆的定义、几何性质可求;(Ⅱ)直线与椭圆相交,联立消元,设点代入化简,利用基本不等式求最值.试题解析:(Ⅰ)设(,)M x y ,则2(3MA MB k k x ⋅==-≠考点:椭圆,根与系数关系,基本不等式,坐标表示7.如图,F 1,F 2C :22221x y a b +=(a >b >0)的左、右焦点,直线l :x=-12将线段F 1F 2分成两段,其长度之比为1 : 3.设A ,B 是C 上的两个动点,线段AB 的中垂线与C 交于P ,Q两点,线段AB 的中点M 在直线l 上. (Ⅰ) 求椭圆C 的方程; (Ⅱ) 求22F P F Q ⋅的取值范围.由221122221,21,2xyxy⎧+=⎪⎪⎨⎪+=⎪⎩得(x1+x2)+2(y1+y2)1212y yx x-⋅-=0,令t =1+32m 2,1<t <29,则tQ F P F 3251321922-=⋅. 又1<t <29,所以221251232F P F Q -<⋅< .综上,Q F P F 22⋅的取值范围为1251,232⎡⎫-⎪⎢⎣⎭. 考点:椭圆的方程、平面向量的数量积、韦达定理二.能力题组1.【浙江省2013学年第一学期温州八校高三期初联考】已知直线y a =交抛物线2y x =于,A B 两点.若该抛物线上存在点C ,使得ACB ∠为直角,则a 的取值范围为 .【答案】[)+∞,1 【解析】考点:平面向量的数量积、函数与方程的思想.2.【浙江省嘉兴一中2014届高三上学期入学摸底测试】如图,21,F F 是双曲线)0,0(1:2222>>=-b a b y a x C 的左、右焦点,过1F 的直线与双曲线的左、右两支分别交于BA ,两点.若5:4:3||:||:||22=AF BF AB ,则双曲线的离心率为____ .【答案】13 【解析】试题分析:由双曲线的定义可知a BF BF a AF AF 2,22112=-=-,由3.如图,已知抛物线的方程为22(0)xpy p =>,过点(0,1)A -作直线l 与抛物线相交于,P Q两点,点B 的坐标为(0,1),连接,BP BQ ,设,Q B B P 与x 轴分别相交于,M N 两点.如果QB 的斜率与PB 的斜率的乘积为3-,则MBN ∠的大小等于( )A .2π B .4π C .23π D . 3π4.【2013学年浙江省五校联考理】(本题满分15分)已知椭圆2222:1(0)x y C a b a b +=>>(0,1)A -.(Ⅰ)求椭圆的方程;(Ⅱ)如果过点3(0,)5的直线与椭圆交于,M N 两点(,M N 点与A 点不重合),○1求AM AN ⋅的值;○2当AMN ∆为等腰直角三角形时,求直线MN 的方程.(Ⅱ)①若过点3(0,)5的直线的斜率不存在,此时,M N 两点中有一个点与A 点重合,不满足题目条件.三.拔高题组1.已知双曲线22221(0,0)x y a b a b-=>>的渐近线与圆22420x y x +-+=有交点,则该双曲线的离心率的取值范围是___________.≤,又因为222c a b =+,c ∴≥,2.【浙江省2013学年第一学期温州八校高三期初联考】如图,椭圆2222+=1(>>0)x y C a b a b:经过点3(1,),2P 离心率1=2e ,直线l 的方程为=4x . (Ⅰ)求椭圆C 的方程;(Ⅱ)AB 是经过右焦点F 的任一弦(不经过点P ),设直线AB 与直线l 相交于点M ,记,,PA PB PM 的斜率分别为123,,.k k k 问:是否存在常数λ,使得123+=.k k k λ若存在求λ的值;若不存在,说明理由.故椭圆C 的方程为22143x y +=. ……5分考点:椭圆,根与系数关系,坐标表示.3.【浙江省嘉兴市2014届高三上学期9月月考理】(本题15分)如图,已知抛物线24:焦点为F,直线l经过点F且与抛物线C相交于A,B两点.C y x=y=上,求直线l的方程;(Ⅰ)若线段AB的中点在直线2AB=,求直线l的方程.(Ⅱ)若线段20(Ⅱ)设直线l 的方程为1x my =+,................7分 与抛物线方程联立得214x my y x =+⎧⎨=⎩, 消元得2440y my --=,..............9分。
浙江版2014届高三名校数学(理)试题分省分项汇编:专题04 三角函数与三角形(解析版)
一.基础题组1.【2013学年浙江省五校联考理】已知[,],sin 2παπα∈=,则sin 2α=_______.2.【浙江省嘉兴一中2014届高三上学期入学摸底测试】函数)22sin(2x y -=π是 ( ) A .最小正周期为π的奇函数B . 最小正周期为2π的奇函数C .最小正周期为π的偶函数D .最小正周期为2π的偶函数3.【浙江省绍兴市第一中学2014届高三上学期回头考理】已知cos 2θ=44sin cos θθ-的值为 ( )AB C 1811D 29-4.【温州市十校联合体2014届高三10月测试理】函数)sin()(ϕω+=x A x f (0,0>>ωA )的图象如右图所示,为了得到x A x g ωsin )(=的图象,可以将)(x f 的图象( ) A .向右平移6π个单位长度 B .向左平移3π个单位长度 C .向左平移6π个单位长度 D .向右平移3π个单位长度5.【浙江省2014届金华一中高三9月月考数学试卷】已知cos 23θ=,则44sin cos θθ-的值为( )A . 3B. 3-C. 1811D. 29-【答案】B6.【浙江省嘉兴一中2014届高三上学期入学摸底测试】ABC ∆的内角C B A ,,的对边分别为c b a ,,,且B b C a C c A a sin sin 2sin sin =-+. 则=∠B ( ) A .6πB .4πC .3πD .43π7.【浙江省2013学年第一学期十校联合体高三期初联考】25242sin =a ,20πα<<,则cos()4πα-的值为( )A .51B .51-C .51± D .578.【浙江省2013学年第一学期温州八校高三期初联考】在△ABC 中,内角C B A 、、的对边分别为c b a 、、,已知cos sin a b C c B =+. (Ⅰ)求B ;(Ⅱ)若2=b ,求△ABC 面积的最大值.9(1)求角的大小;(2)若,求的最大值. 【答案】(1) 3A π=;(2) max ()4b c +=.【解析】试题分析:(1)利用两角和与差的公式展开得tan A =再求角;(2)利用正弦定理进行边角互化,转化成一角一函数,结合6B π+的范围求解其最值.A 2a =b c +4sin()6b c B π+=+所以 当且仅当,即时,取得最大值,……… 13分故 . ……… 14分(法二)由余弦定理得,即, ……… 6分则 ,又则 ……… 12分 得 , 故 ,62B ππ+=3B π=sin()6B π+1max ()4b c +=22222cos3b c bc π=+-224b c bc =+-24()3b c bc =+-2()2b c bc +≤22()()434b c b c ++-≤⋅2()16b c +≤4b c +≤当且仅当时,. ……… 14分 考点:1.两角和与差公式;2.正余弦定理;3.基本不等式.二.能力题组1.【浙江省2013学年第一学期温州八校高三期初联考】设当x θ=时,函数x x x f cos 2sin )(+=取得最大值,则cos θ= .2.【浙江省2013学年第一学期温州八校高三期初联考】将函数x x y sin cos 3+=的图像向左平移()0m m >个长度单位后,所得到的图像关于y 轴对称,则m 的最小值是( ) A.12π B.6π C.3π D.65π3.【浙江省嘉兴市2014届高三上学期9月月考理】已知()22cos 6sin cos f x x x x =-,则函数()f x 的最大值是( )b c =max ()4b c +=114.【浙江省2013学年第一学期十校联合体高三期初联考】将函数()sin y x x x R =+∈的图像向左平移()0m m >个长度单位后,所得到的图像关于y 轴对称,则m 的最小值是___________________.5.【温州市十校联合体2014届高三10月测试理】(本题满分14分)设)2(cos )cos sin (cos )(,2x x x x x f R -+-=∈πλλ满足)0()3(f f =-π.(1)求函数)(x f 的对称轴和单调递减区间; (2)设△ABC 三内角A,B,C 所对边分别为a,b,c 且cb a B A 2cos cos +-=,求)(x f 在(]A ,0上的值域.三.拔高题组1.【浙江省嘉兴一中2014届高三上学期入学摸底测试】已知x ,y 均为正数,)2,4(ππθ∈,且满足y x θθcos sin =,)(310sin cos 222222y x y x +=+θθ,则y x的值为 ____ .2.【2013学年浙江省五校联考理】(本题满分14分)已知向量(2sin ,1)m x = ,2,2cos )n x x = ,函数()f x m n t =⋅- .(Ⅰ)若方程()0f x =在[0,]2x π∈上有解,求t 的取值范围;(Ⅱ)在ABC ∆中,,,a b c 分别是A ,B ,C 所对的边,当(Ⅰ)中的t 取最大值且()1,2f A b c =-+=时,求a 的最小值.试题解析:。
2014年浙江地区高考数学试卷(理科)
2014年浙江省高考数学试卷(理科)一、选择题(每小题5分,共50分)1.(5分)(2014•浙江)设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁U A=()A.∅B.{2} C.{5} D.{2,5}2.(5分)(2014•浙江)已知i是虚数单位,a,b∈R,则“a=b=1”是“(a+bi)2=2i”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.(5分)(2014•浙江)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是()A.90cm2B.129cm2C.132cm2D.138cm24.(5分)(2014•浙江)为了得到函数y=sin3x+cos3x的图象,可以将函数y=cos3x的图象()A.向右平移个单位B.向左平移个单位C.向右平移个单位D.向左平移个单位5.(5分)(2014•浙江)在(1+x)6(1+y)4的展开式中,记x m y n项的系数为f(m,n),则f(3,0)+f(2,1)+f(1,2)+f(0,3)=()A.45 B.60 C.120 D.2106.(5分)(2014•浙江)已知函数f(x)=x3+ax2+bx+c,其0<f(﹣1)=f (﹣2)=f(﹣3)≤3,则()A .c≤3 B.3<c ≤6 C.6<c≤9 D.c>97.(5分)(2014•浙江)在同一直角坐标系中,函数f (x)=x a(x≥0),g (x )=log a x的图象可能是()A .B.C.D.8.(5分)(2014•浙江)记max{x,y}=,min{x,y}=,设,为平面向量,则()A.min{|+|,|﹣|}≤min{||,||} B.min{|+|,|﹣|}≥min{||,||}C.max{|+|2,|﹣|2}≤||2+||2D.max{|+|2,|﹣|2}≥||2+||29.(5分)(2014•浙江)已知甲盒中仅有1个球且为红球,乙盒中有m个红球和n个蓝球(m≥3,n≥3),从乙盒中随机抽取i(i=1,2)个球放入甲盒中.(a)放入i个球后,甲盒中含有红球的个数记为ξi(i=1,2);(b)放入i个球后,从甲盒中取1个球是红球的概率记为p i(i=1,2).则()A .p1>p2,E(ξ1)<E(ξ2)B.p1<p2,E(ξ1)>E(ξ2)C .p1>p2,E(ξ1)>E(ξ2)D.p1<p2,E(ξ1)<E(ξ2)10.(5分)(2014•浙江)设函数f1(x)=x2,f2(x)=2(x﹣x2),,,i=0,1,2,…,99.记I k=|f k(a1)﹣f k(a0)|+|f k(a2)﹣f k(a1)丨+…+|f k(a99)﹣f k(a98)|,k=1,2,3,则()A .I1<I2<I3B.I2<I1<I3C.I1<I3<I2D.I3<I2<I1二、填空题11.(4分)(2014•浙江)在某程序框图如图所示,当输入50时,则该程序运算后输出的结果是.12.(4分)(2014•浙江)随机变量ξ的取值为0,1,2,若P(ξ=0)=,E(ξ)=1,则D(ξ)=.13.(4分)(2014•浙江)当实数x,y满足时,1≤ax+y≤4恒成立,则实数a 的取值范围是.14.(4分)(2014•浙江)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有种(用数字作答).15.(4分)(2014•浙江)设函数f(x)=,若f(f(a))≤2,则实数a的取值范围是.16.(4分)(2014•浙江)设直线x﹣3y+m=0(m≠0)与双曲线=1(a>0,b>0)的两条渐近线分别交于点A,B.若点P(m,0)满足|PA|=|PB|,则该双曲线的离心率是.17.(4分)(2014•浙江)如图,某人在垂直于水平地面ABC的墙面前的点A处进行射击训练.已知点A到墙面的距离为AB,某目标点P沿墙面上的射线CM移动,此人为了准确瞄准目标点P,需计算由点A观察点P的仰角θ的大小.若AB=15m,AC=25m,∠BCM=30°,则tanθ的最大值是.(仰角θ为直线AP与平面ABC所成角)三、解答题18.(14分)(2014•浙江)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a≠b,c=,cos2A﹣cos2B=sinAcosA﹣sinBcosB.(Ⅰ)求角C的大小;(Ⅱ)若sinA=,求△ABC的面积.19.(14分)(2014•浙江)已知数列{a n}和{b n}满足a1a2a3…a n=(n∈N*).若{a n}为等比数列,且a1=2,b3=6+b2.(Ⅰ)求a n和b n;(Ⅱ)设c n=(n∈N*).记数列{c n}的前n项和为S n.(i)求S n;(ii)求正整数k,使得对任意n∈N*均有S k≥S n.20.(15分)(2014•浙江)如图,在四棱锥A﹣BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC=.(Ⅰ)证明:DE⊥平面ACD;(Ⅱ)求二面角B﹣AD﹣E的大小.21.(15分)(2014•浙江)如图,设椭圆C:(a>b>0),动直线l与椭圆C只有一个公共点P,且点P在第一象限.(Ⅰ)已知直线l的斜率为k,用a,b,k表示点P的坐标;(Ⅱ)若过原点O的直线l1与l垂直,证明:点P到直线l1的距离的最大值为a﹣b.22.(14分)(2014•浙江)已知函数f(x)=x3+3|x﹣a|(a∈R).(Ⅰ)若f(x)在[﹣1,1]上的最大值和最小值分别记为M(a),m(a),求M(a)﹣m(a);(Ⅱ)设b∈R,若[f(x)+b]2≤4对x∈[﹣1,1]恒成立,求3a+b的取值范围.,.2014年浙江省高考数学试卷(理科)参考答案与试题解析一、选择题(每小题5分,共50分)1.(5分)(2014•浙江)设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁U A=()A .∅B.{2} C.{5} D.{2,5}考点:补集及其运算.专题:集合.分析:先化简集合A,结合全集,求得∁U A.解答:解:∵全集U={x∈N|x≥2},集合A={x∈N|x2≥5}={x∈N|x≥3},则∁U A={2},故选:B.点评:本题主要考查全集、补集的定义,求集合的补集,属于基础题.2.(5分)(2014•浙江)已知i是虚数单位,a,b∈R,则“a=b=1”是“(a+bi)2=2i”的()A .充分不必要条件B.必要不充分条件C .充分必要条件D.既不充分也不必要条件考点:复数相等的充要条件;充要条件.专题:简易逻辑.分析:利用复数的运算性质,分别判断“a=b=1”⇒“(a+bi)2=2i”与“a=b=1”⇐“(a+bi)2=2i”的真假,进而根据充要条件的定义得到结论.解答:解:当“a=b=1”时,“(a+bi)2=(1+i)2=2i”成立,故“a=b=1”是“(a+bi)2=2i”的充分条件;当“(a+bi)2=a2﹣b2+2abi=2i”时,“a=b=1”或“a=b=﹣1”,故“a=b=1”是“(a+bi)2=2i”的不必要条件;综上所述,“a=b=1”是“(a+bi)2=2i”的充分不必要条件;故选A点评:本题考查的知识点是充要条件的定义,复数的运算,难度不大,属于基础题.3.(5分)(2014•浙江)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是()A .90cm2B.129cm2C.132cm2D.138cm2考点:由三视图求面积、体积.专题:立体几何.分析:几何体是直三棱柱与直四棱柱的组合体,根据三视图判断直三棱柱的侧棱长与底面的形状及相关几何量的数据,判断四棱柱的高与底面矩形的边长,把数据代入表面积公式计算.解答:解:由三视图知:几何体是直三棱柱与直四棱柱的组合体,其中直三棱柱的侧棱长为3,底面是直角边长分别为3、4的直角三角形,四棱柱的高为6,底面为矩形,矩形的两相邻边长为3和4,∴几何体的表面积S=2×4×6+3×6+3×3+2×3×4+2××3×4+(4+5)×3=48+18+9+24+12+27=138(cm2).故选:D.点评:本题考查了由三视图求几何体的表面积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.4.(5分)(2014•浙江)为了得到函数y=sin3x+cos3x的图象,可以将函数y=cos3x的图象()A.向右平移个单位B.向左平移个单位C.向右平移个单位D.向左平移个单位考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:利用两角和与差的三角函数化简已知函数为一个角的一个三角函数的形式,然后利用平移原则判断选项即可.解答:解:函数y=sin3x+cos3x=,故只需将函数y=cos3x的图象向右平移个单位,得到y==的图象.故选:C.点评:本题考查两角和与差的三角函数以及三角函数的平移变换的应用,基本知识的考查.5.(5分)(2014•浙江)在(1+x)6(1+y)4的展开式中,记x m y n项的系数为f(m,n),则f(3,0)+f(2,1)+f(1,2)+f(0,3)=()A .45 B.60 C.120 D.210考点:二项式定理的应用.专题:二项式定理.分析:由题意依次求出x3y0,x2y1,x1y2,x0y3,项的系数,求和即可.解答:解:(1+x)6(1+y)4的展开式中,含x3y0的系数是:=20.f(3,0)=20;含x2y1的系数是=60,f(2,1)=60;含x1y2的系数是=36,f(1,2)=36;含x0y3的系数是=4,f(0,3)=4;∴f(3,0)+f(2,1)+f(1,2)+f(0,3)=120.故选:C.点评:本题考查二项式定理系数的性质,二项式定理的应用,考查计算能力.6.(5分)(2014•浙江)已知函数f(x)=x3+ax2+bx+c,其0<f(﹣1)=f(﹣2)=f(﹣3)≤3,则()A .c≤3 B.3<c≤6 C.6<c≤9 D.c>9考点:函数的值域.专题:函数的性质及应用.分析:由f(﹣1)=f(﹣2)=f(﹣3)列出方程组求出a,b,代入0<f(﹣1)≤3求出c的范围.解答:解:由f(﹣1)=f(﹣2)=f(﹣3)得,解得,f(x)=x3+6x2+11x+c,由0<f(﹣1)≤3,得0<﹣1+6﹣11+c≤3,即6<c≤9,故选:C.点评:本题考查方程组的解法及不等式的解法,属于基础题.7.(5分)(2014•浙江)在同一直角坐标系中,函数f(x)=x a(x≥0),g(x)=log a x的图象可能是()A .B.C.D.考点:函数的图象.专题:函数的性质及应用.分析:结合对数函数和幂函数的图象和性质,分当0<a<1时和当a>1时两种情况,讨论函数f(x)=x a(x≥0),g(x)=log a x的图象,比照后可得答案.解答:解:当0<a<1时,函数f(x)=x a(x≥0),g(x)=log a x的图象为:此时答案D满足要求,当a>1时,函数f(x)=x a(x≥0),g(x)=log a x的图象为:无满足要求的答案,综上:故选D点评:本题考查的知识点是函数的图象,熟练掌握对数函数和幂函数的图象和性质,是解答的关键.8.(5分)(2014•浙江)记max{x,y}=,min{x,y}=,设,为平面向量,则()A.min{|+|,|﹣|}≤min{||,||} B.min{|+|,|﹣|}≥min{||,||}C.max{|+|2,|﹣|2}≤||2+||2D.max{|+|2,|﹣|2}≥||2+||2考点:向量的加法及其几何意义;向量的减法及其几何意义.专题:平面向量及应用.分析:将,平移到同一起点,根据向量加减法的几何意义可知,+和﹣分别表示以,为邻边所做平行四边形的两条对角线,再根据选项内容逐一判断.解答:解:对于选项A,取⊥,则由图形可知,根据勾股定理,结论不成立;对于选项B,取,是非零的相等向量,则不等式左边min{|+|,|﹣|}=0,显然,不等式不成立;对于选项C,取,是非零的相等向量,则不等式左边max{|+|2,|﹣|2}=|+|2=4,而不等式右边=||2+||2=2,故C不成立,D选项正确.故选:D.点评:本题在处理时要结合着向量加减法的几何意义,将,,,放在同一个平行四边形中进行比较判断,在具体解题时,本题采用了排除法,对错误选项进行举反例说明,这是高考中做选择题的常用方法,也不失为一种快速有效的方法,在高考选择题的处理上,未必每一题都要写出具体解答步骤,针对选择题的特点,有时“排除法”,“确定法”,“特殊值”代入法等也许是一种更快速,更有效的方法.9.(5分)(2014•浙江)已知甲盒中仅有1个球且为红球,乙盒中有m个红球和n个蓝球(m≥3,n≥3),从乙盒中随机抽取i(i=1,2)个球放入甲盒中.(a)放入i个球后,甲盒中含有红球的个数记为ξi(i=1,2);(b)放入i个球后,从甲盒中取1个球是红球的概率记为p i(i=1,2).则()A .p1>p2,E(ξ1)<E(ξ2)B.p1<p2,E(ξ1)>E(ξ2)C .p1>p2,E(ξ1)>E(ξ2)D.p1<p2,E(ξ1)<E(ξ2)考点:离散型随机变量的期望与方差.专题:概率与统计.分析:首先,这两次先后从甲盒和乙盒中拿球是相互独立的,然后分两种情况:即当ξ=1时,有可能从乙盒中拿出一个红球放入甲盒,也可能是拿到一个蓝球放入甲盒;ξ=2时,则从乙盒中拿出放入甲盒的球可能是两蓝球、一红一蓝、或者两红;最后利用概率公式及分布列知识求出P1,P2和E(ξ1),E(ξ2)进行比较即可.解答:解析:,,,所以P1>P2;由已知ξ1的取值为1、2,ξ2的取值为1、2、3,所以,==,E(ξ1)﹣E(ξ2)=.故选A点评:正确理解ξi(i=1,2)的含义是解决本题的关键.此题也可以采用特殊值法,不妨令m=n=3,也可以很快求解.10.(5分)(2014•浙江)设函数f1(x)=x2,f2(x)=2(x﹣x2),,,i=0,1,2,…,99.记I k=|f k(a1)﹣f k(a0)|+|f k(a2)﹣f k(a1)丨+…+|f k(a99)﹣f k(a98)|,k=1,2,3,则()A I1<I2<I3B I2<I1<I3C I1<I3<I2D I3<I2<I1....考点:函数与方程的综合运用.专题:函数的性质及应用.分析:根据记I k=|f k(a1)﹣f k(a0)|+|f k(a2)﹣f k(a1)丨+…+|f k(a99)﹣f k(a98)|,分别求出I1,I2,I3与1的关系,继而得到答案解答:解:由,故==1,由,故×=×<1,+=,故I2<I1<I3,故选:B.点评:本题主要考查了函数的性质,关键是求出这三个数与1的关系,属于难题.二、填空题11.(4分)(2014•浙江)在某程序框图如图所示,当输入50时,则该程序运算后输出的结果是6.考点:程序框图;循环结构.专题:算法和程序框图.分析:根据框图的流程模拟运行程序,直到满足条件S>50,跳出循环体,确定输出的i的值.解答:解:由程序框图知:第一次循环S=1,i=2;第二次循环S=2×1+2=4,i=3;第三次循环S=2×4+3=11,i=4;第四次循环S=2×11+4=26,i=5;第五次循环S=2×26+5=57,i=6,满足条件S>50,跳出循环体,输出i=6.故答案为:6.点评:本题考查了直到型循环结构的程序框图,根据框图的流程模拟运行程序是解答此类问题的常用方法.12.(4分)(2014•浙江)随机变量ξ的取值为0,1,2,若P(ξ=0)=,E(ξ)=1,则D (ξ)=.考点:离散型随机变量的期望与方差.专题:概率与统计.分析:结合方差的计算公式可知,应先求出P(ξ=1),P(ξ=2),根据已知条件结合分布列的性质和期望的计算公式不难求得.解答:解析:设P(ξ=1)=p,P(ξ=2)=q,则由已知得p+q=,,解得,,所以.故答案为:点评:本题综合考查了分布列的性质以及期望、方差的计算公式.13.(4分)(2014•浙江)当实数x,y满足时,1≤ax+y≤4恒成立,则实数a 的取值范围是[].考点:简单线性规划.专题:不等式的解法及应用.分析:由约束条件作出可行域,再由1≤ax+y≤4恒成立,结合可行域内特殊点A,B,C的坐标满足不等式列不等式组,求解不等式组得实数a的取值范围.解答:解:由约束条件作可行域如图,联立,解得C(1,).联立,解得B(2,1).在x﹣y﹣1=0中取y=0得A(1,0).要使成立,则,解得:1.∴实数a的取值范围是.解法二:令z=ax+y,当a>0时,y=﹣ax+z,在B点取得最大值,A点取得最小值,可得,即1≤a≤;当a<0时,y=﹣ax+z,在C点取得最大值,①a<﹣1时,在B点取得最小值,可得,解得0≤a≤(不符合条件,舍去)时,在A点取得最小值,可得,解得1≤a≤(不符合条件,舍去)综上所述即:1≤a≤;故答案为:.点评:本题考查线性规划,考查了数形结合的解题思想方法,考查了数学转化思想方法,训练了不等式组得解法,是中档题.14.(4分)(2014•浙江)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有60种(用数字作答).考点:排列、组合及简单计数问题.专题:排列组合.分析:分类讨论,一、二、三等奖,三个人获得;一、二、三等奖,有1人获得2张,1人获得1张.解答:解:分类讨论,一、二、三等奖,三个人获得,共有=24种;一、二、三等奖,有1人获得2张,1人获得1张,共有=36种,共有24+36=60种.故答案为:60.点评:本题考查排列、组合及简单计数问题,考查学生的计算能力,属于基础题.15.(4分)(2014•浙江)设函数f(x)=,若f(f(a))≤2,则实数a的取值范围是(﹣∞,].考点:其他不等式的解法.专题:不等式的解法及应用.分析:画出函数f(x)的图象,由f(f(a))≤2,可得f(a)≥﹣2,数形结合求得实数a的取值范围.解答:解:∵函数f(x)=,它的图象如图所示:由f(f(a))≤2,可得f(a)≥﹣2.由f(x)=﹣2,可得﹣x2=﹣2,即x=,故当f(f(a))≤2时,则实数a的取值范围是a≤,故答案为:(﹣∞,].点评:本题主要考查分段函数的应用,其它不等式的解法,体现了数形结合的数学思想,属于中档题.16.(4分)(2014•浙江)设直线x﹣3y+m=0(m≠0)与双曲线=1(a>0,b>0)的两条渐近线分别交于点A,B.若点P(m,0)满足|PA|=|PB|,则该双曲线的离心率是.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:先求出A,B的坐标,可得AB中点坐标为(,),利用点P(m,0)满足|PA|=|PB|,可得=﹣3,从而可求双曲线的离心率.解答:解:双曲线(a>0,b>0)的两条渐近线方程为y=±x,则与直线x﹣3y+m=0联立,可得A(,),B(﹣,),∴AB中点坐标为(,),∵点P(m,0)满足|PA|=|PB|,∴=﹣3,∴a=2b,∴=b,∴e==.故答案为:.点评:本题考查双曲线的离心率,考查直线的位置关系,考查学生的计算能力,属于中档题.17.(4分)(2014•浙江)如图,某人在垂直于水平地面ABC的墙面前的点A处进行射击训练.已知点A到墙面的距离为AB,某目标点P沿墙面上的射线CM移动,此人为了准确瞄准目标点P,需计算由点A观察点P的仰角θ的大小.若AB=15m,AC=25m,∠BCM=30°,则tanθ的最大值是.(仰角θ为直线AP与平面ABC所成角)考点:在实际问题中建立三角函数模型;解三角形.专题:解三角形.分析:过P作PP′⊥BC,交BC于P′,连接AP′,则tanθ=,求出PP′,AP′,利用函数的性质,分类讨论,即可得出结论.解答:解:∵AB=15m,AC=25m,∠ABC=90°,∴BC=20m,过P作PP′⊥BC,交BC于P′,连接AP′,则tanθ=,设BP′=x,则CP′=20﹣x,由∠BCM=30°,得PP′=CP′tan30°=(20﹣x),在直角△ABP′中,AP′=,∴tanθ=•,令y=,则函数在x∈[0,20]单调递减,∴x=0时,取得最大值为=.若P′在CB的延长线上,PP′=CP′tan30°=(20+x),在直角△ABP′中,AP′=,∴tanθ=•,令y=,则y′=0可得x=时,函数取得最大值,故答案为:.点评:本题考查利用数学知识解决实际问题,考查函数的单调性,考查学生分析解决问题的能力,属于中档题.三、解答题18.(14分)(2014•浙江)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a≠b,c=,cos2A﹣cos2B=sinAcosA﹣sinBcosB.(Ⅰ)求角C的大小;(Ⅱ)若sinA=,求△ABC的面积.考点:正弦定理;二倍角的正弦;二倍角的余弦.专题:解三角形.分析:(Ⅰ)△ABC中,由条件利用二倍角公式化简可得﹣2sin(A+B)sin(A﹣B)=2•cos(A+B)sin(A﹣B).求得tan(A+B)的值,可得A+B的值,从而求得C的值.(Ⅱ)由sinA=求得cosA的值.再由正弦定理求得a,再求得sinB=sin[(A+B)﹣A]的值,从而求得△ABC的面积为的值.解答:解:(Ⅰ)∵△ABC中,a≠b,c=,cos2A﹣cos2B=sinAcosA﹣sinBcosB,∴﹣=sin2A﹣sin2B,即cos2A﹣cos2B=sin 2A﹣sin2B,即﹣2sin(A+B)sin(A﹣B)=2•cos(A+B)sin (A﹣B).∵a≠b,∴A≠B,sin(A ﹣B)≠0,∴tan(A+B)=﹣,∴A+B=,∴C=.(Ⅱ)∵sinA=<,C=,∴A<,或A>(舍去),∴cosA==.由正弦定理可得,=,即=,∴a=.∴sinB=sin[(A+B)﹣A]=sin(A+B)cosA﹣cos(A+B)sinA=﹣(﹣)×=,∴△ABC的面积为=×=.点评:本题主要考查二倍角公式、两角和差的三角公式、正弦定理的应用,属于中档题.19.(14分)(2014•浙江)已知数列{a n}和{b n}满足a1a2a3…a n=(n∈N*).若{a n}为等比数列,且a1=2,b3=6+b2.(Ⅰ)求a n和b n;(Ⅱ)设c n=(n∈N*).记数列{c n}的前n项和为S n.(i)求S n;(ii)求正整数k,使得对任意n∈N*均有S k≥S n.考点:数列与不等式的综合;数列的求和.专题:等差数列与等比数列.分析:(Ⅰ)先利用前n项积与前(n﹣1)项积的关系,得到等比数列{a n}的第三项的值,结合首项的值,求出通项a n,然后现利用条件求出通项b n;(Ⅱ)(i)利用数列特征进行分组求和,一组用等比数列求和公式,另一组用裂项法求和,得出本小题结论;(ii)本小题可以采用猜想的方法,得到结论,再加以证明.解答:解:(Ⅰ)∵a1a2a3…a n=(n∈N*)①,当n≥2,n∈N*时,②,由①②知:,令n=3,则有.∵b3=6+b2,∴a3=8.∵{a n}为等比数列,且a1=2,∴{a n}的公比为q,则=4,由题意知a n>0,∴q>0,∴q=2.∴(n∈N*).又由a1a2a3…a n=(n∈N*)得:,,∴b n=n(n+1)(n∈N*).(Ⅱ)(i)∵c n===.∴S n=c1+c2+c 3+…+c n====;(ii)因为c1=0,c2>0,c3>0,c4>0;当n≥5时,,而=>0,得,所以,当n≥5时,c n<0,综上,对任意n∈N*恒有S4≥S n,故k=4.点评:本题考查了等比数列通项公式、求和公式,还考查了分组求和法、裂项求和法和猜想证明的思想,证明可以用二项式定理,还可以用数学归纳法.本题计算量较大,思维层次高,要求学生有较高的分析问题解决问题的能力.本题属于难题.20.(15分)(2014•浙江)如图,在四棱锥A﹣BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC=.(Ⅰ)证明:DE⊥平面ACD;(Ⅱ)求二面角B﹣AD﹣E的大小.考点:二面角的平面角及求法;直线与平面垂直的判定.专题:空间位置关系与距离;空间角;立体几何.分析:(Ⅰ)依题意,易证AC⊥平面BCDE,于是可得AC⊥DE,又DE⊥DC,从而DE⊥平面ACD;(Ⅱ)作BF⊥AD,与AD交于点F,过点F作FG∥DE,与AE交于点G,连接BG,由(Ⅰ)知DE⊥AD,则FG⊥AD,所以∠BFG就是二面角B﹣AD﹣E的平面角,利用题中的数据,解三角形,可求得BF=,AF=AD,从而GF=,cos∠BFG==,从而可求得答案.解答:证明:(Ⅰ)在直角梯形BCDE中,由DE=BE=1,CD=2,得BD=BC=,由AC=,AB=2得AB2=AC2+BC2,即AC⊥BC,又平面ABC⊥平面BCDE,从而AC⊥平面BCDE,所以AC⊥DE,又DE⊥DC,从而DE⊥平面ACD;(Ⅱ)作BF⊥AD,与AD交于点F,过点F作FG∥DE,与AE交于点G,连接BG,由(Ⅰ)知DE⊥AD,则FG⊥AD,所以∠BFG就是二面角B﹣AD﹣E的平面角,在直角梯形BCDE 中,由CD2=BC2+B D2,得BD⊥BC,又平面ABC⊥平面BCDE,得BD⊥平面ABC,从而BD⊥AB,由于AC⊥平面BCDE,得AC⊥CD.在Rt△ACD 中,由DC=2,AC=,得AD=;中,由ED=1,AD=得AE=;在Rt△ABD中,由BD=,AB=2,AD=得BF=,AF=AD,从而GF=,在△ABE,△ABG中,利用余弦定理分别可得cos∠BAE=,BG=.在△BFG中,cos∠BFG==,所以,∠BFG=,二面角B﹣AD﹣E的大小为.点评:本题主要考线、面位置关系,二面角等基础知识,同时考查空间想象能力,推理论证能力和运算求解能力.21.(15分)(2014•浙江)如图,设椭圆C:(a>b>0),动直线l与椭圆C只有一个公共点P,且点P在第一象限.(Ⅰ)已知直线l的斜率为k,用a,b,k表示点P的坐标;(Ⅱ)若过原点O的直线l1与l垂直,证明:点P到直线l1的距离的最大值为a﹣b.考点:直线与圆锥曲线的综合问题.专题:圆锥曲线的定义、性质与方程;圆锥曲线中的最值与范围问题.分析:(Ⅰ)设直线l的方程为y=kx+m(k<0),由,消去y得(b2+a2k2)x2+2a2kmx+a2m2﹣a2b2=0,利用△=0,可求得在第一象限中点P的坐标;(Ⅱ)由于直线l1过原点O且与直线l垂直,设直线l1的方程为x+ky=0,利用点到直线间的距离公式,可求得点P到直线l1的距离d=,整理即可证得点P到直线l1的距离的最大值为a﹣b..解答:解:(Ⅰ)设直线l的方程为y=kx+m(k<0),由,消去y得(b2+a2k2)x2+2a2kmx+a2m2﹣a2b2=0.由于直线l与椭圆C只有一个公共点P,故△=0,即b2﹣m2+a2k2=0,解得点P的坐标为(﹣,),又点P在第一象限,故点P 的坐标为P(,).(Ⅱ)由于直线l1过原点O 且与直线l垂直,故直线l1的方程为x+ky=0,所以点P到直线l1的距离d=,整理得:d=,因为a2k2+≥2ab,所以≤=a﹣b,当且仅当k2=时等号成立.所以,点P到直线l1的距离的最大值为a﹣b.点评:本题主要考查椭圆的几何性质、点到直线间的距离、直线与椭圆的位置关系等基础知识,同时考查解析几何的基本思想方法、基本不等式应用等综合解题能力.22.(14分)(2014•浙江)已知函数f(x)=x3+3|x﹣a|(a∈R).(Ⅰ)若f(x)在[﹣1,1]上的最大值和最小值分别记为M(a),m(a),求M(a)﹣m(a);(Ⅱ)设b∈R,若[f(x)+b]2≤4对x∈[﹣1,1]恒成立,求3a+b的取值范围.考点:导数在最大值、最小值问题中的应用.专题:导数的综合应用.分析:(Ⅰ)利用分段函数,结合[﹣1,1],分类讨论,即可求M(a)﹣m(a);(Ⅱ)令h(x)=f(x)+b,则h(x)=,h′(x)=,则[f(x)+b]2≤4对x∈[﹣1,1]恒成立,转化为﹣2≤h(x)≤2对x∈[﹣1,1]恒成立,分类讨论,即可求3a+b的取值范围.解答:解:(Ⅰ)∵f(x)=x3+3|x﹣a|=,∴f′(x)=,①a≤﹣1时,∵﹣1≤x≤1,∴x≥a,f(x)在(﹣1,1)上是增函数,∴M(a)=f (1)=4﹣3a,m(a)=f(﹣1)=﹣4﹣3a,∴M(a)﹣m (a)=8;②﹣1<a<1时,x∈(a,1),f(x)=x3+3x ﹣3a,在(a,1)上是增函数;x∈(﹣1,a),f(x)=x3﹣3x+3a,在(﹣1,a)上是减函数,∴M(a)=max{f(1),f(﹣1)},m (a)=f(a)=a3,∵f(1)﹣f (﹣1)=﹣6a+2,∴﹣1<a≤时,M(a)﹣m(a)=﹣a3﹣3a+4;<a<1时,M(a)﹣m(a)=﹣a3+3a+2;③a≥1时,有x≤a,f(x)在(﹣1,1)上是减函数,∴M(a)=f (﹣1)=2+3a,m(a)=f(1)=﹣2+3a,∴M(a)﹣m (a)=4;(Ⅱ)令h(x)=f(x)+b,则h(x)=,h′(x)=,∵[f(x)+b]2≤4对x∈[﹣1,1]恒成立,∴﹣2≤h(x)≤2对x∈[﹣1,1]恒成立,由(Ⅰ)知,①a≤﹣1时,h(x)在(﹣1,1)上是增函数,最大值h(1)=4﹣3a+b,最小值h(﹣1)=﹣4﹣3a+b,则﹣4﹣3a+b≥﹣2且4﹣3a+b≤2矛盾;②﹣1<a≤时,最小值h(a)=a3+b,最大值h(1)=4﹣3a+b,∴a3+b≥﹣2且4﹣3a+b≤2,令t(a)=﹣2﹣a3+3a,则t′(a)=3﹣3a2>0,t(a)在(0,)上是增函数,∴t(a)>t(0)=﹣2,∴﹣2≤3a+b≤0;③<a<1时,最小值h(a)=a3+b,最大值h(﹣1)=3a+b+2,则a3+b≥﹣2且3a+b+2≤2,∴﹣<3a+b≤0;④a≥1时,最大值h(﹣1)=3a+b+2,最小值h(1)=3a+b﹣2,则3a+b﹣2≥﹣2且3a+b+2≤2,∴3a+b=0.综上,3a+b的取值范围是﹣2≤3a+b≤0.点评:本题考查导。
2014年全国高考浙江省数学(理)试卷及答案【精校版】
2014年普通高等学校招生全国统一考试(浙江卷)数学(理科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设全集{}2|≥∈=x N x U ,集合{}5|2≥∈=x N x A ,则=A C U ( )A. ∅B. }2{C. }5{D. }5,2{(2)已知i 是虚数单位,R b a ∈,,则“1==b a ”是“i bi a 2)(2=+”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件(3)某几何体的三视图(单位:cm )如图所示,则此几何体的表面积是 A. 902cm B. 1292cm C. 1322cm D. 1382cm4.为了得到函数x x y 3cos 3sin +=的图像,可以将函数x y 3sin 2=的图像( )A.向右平移4π个单位 B.向左平移4π个单位 C.向右平移12π个单位 D.向左平移12π个单位5.在46)1()1(y x ++的展开式中,记nm yx 项的系数为),(n m f ,则=+++)3,0(2,1()1,2()0,3(f f f f ) ( )A.45B.60C.120D. 2106.已知函数则且,3)3()2()1(0,)(23≤-=-=-≤+++=f f f c bx ax x x f ( ) A.3≤c B.63≤<c C.96≤<c D. 9>c7.在同一直角坐标系中,函数x x g x x x f a alog )(),0()(=≥=的图像可能是( )8.记,max{,},x x y x y y x y ≥⎧=⎨<⎩,,min{,},y x yx y x x y≥⎧=⎨<⎩,设a,b 为平面向量,则( )A.min{||,||}min{||,||}a b a b a b +-≤B.min{||,||}min{||,||}a b a b a b +-≥C.2222min{||,||}||||a b a b a b +-≥+ D.2222min{||,||}||||a b a b a b +-≤+9.已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个篮球()3,3m n ≥≥,从乙盒中随机抽取()1,2i i =个球放入甲盒中. (a )放入i 个球后,甲盒中含有红球的个数记为()1,2ii ξ=;(b )放入i 个球后,从甲盒中取1个球是红球的概率记为()1,2i p i =. 则A.()()1212,p p E E ξξ><B.()()1212,p p E E ξξ<>C.()()1212,p p E E ξξ>>D.()()1212,p p E E ξξ<< 10.设函数21)(x x f =,),(2)(22x x x f -=|2sin |31)(3x x f π=,99,,2,1,0,99==i ia i ,记|)()(||)()(||)()(|98991201a f a f a f a f a f a f I k k k k k k k -++-+-= ,.3,2,1=k 则( )A.321I I I <<B. 312I I I <<C. 231I I I <<D. 123I I I <<二、填空题:本大题共7小题,每小题4分,共28分.11.若某程序框图如图所示,当输入50时,则该程序运算后输出的结果是________.12.随机变量ξ的取值为0,1,2,若()105P ξ==,()1E ξ=,则()D ξ=________. 13.当实数x ,y 满足240,10,1,x y x y x +-≤⎧⎪--≤⎨⎪≥⎩时,14ax y ≤+≤恒成立,则实数a 的取值范围是________.14.在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不 同的获奖情况有_____种(用数字作答).15.设函数()⎪⎩⎪⎨⎧≥-<+=0,0,22x x x x x x f 若()()2≤a f f ,则实数a 的取值范围是______15.设直线)0(03≠=+-m m y x 与双曲线12222=-by a x (0a b >>)两条渐近线分别交于点B A ,,若点)0,(m P 满足PB PA =,则该双曲线的离心率是__________17、如图,某人在垂直于水平地面的墙面前的点处进行射击训练.已知点到墙面的距离为,某目标点沿墙面的射击线移动,此人为了准确瞄准目标点,需计算由点观察点的仰角的大小.若则的最大EA值 。
浙江2014年高考理科数学试题答案
2014年普通高等学校招生全国统一考试(浙江卷)数学(理科)参 考 答 案一、 选择题:本题考查基本知识和基本运算。
每小题5分,满分50分。
1.B 2.A 3.D 4.C 5.C 6. C 7.D 8.D 9. A 10.B 二、填空题:本题考查基本知识和基本运算。
每小题4分,满分28分。
11.6 12.25 13.31,2⎡⎤⎢⎥⎣⎦ 14.6015.(-∞ 16.2 17.9三.解答题:本大题共5小题,共72分。
解答应写出文字说明、证明过程或演算步骤。
18.本题主要考查诱导公式、两角和差公式、二倍角公式、正弦定理、余弦定理、三角形面积公式等基础知识,同时考查运算求解能力。
满分14分。
(I )由题意得,1cos 21cos 22222A B A B ++-=,112cos 22cos 222A AB B -=-, sin(2)sin(2)66A B ππ-=-,由a b ≠得,A B ≠,又()0,A B π+∈,得2266A B πππ-+-=,即23A B π+=,所以3C π=;(II )由c =4sin 5A =,sin sin a c A C=得85a =, 由a c <,得A C <,从而3cos 5A =,故()4sin sin sin cos cos sin 10B AC A C A C +=+=+=,所以ABC ∆的面积为118sin 225S ac B ==. 19. 本题主要考查等差数列与等比数列的概念、通项公式、求和公式、不等式性质等基础EA知识,同时考查运算求解能力。
满分14分。
(I )由题意,()()*∈=N n a aa nb n 221Λ,326b b-=,知3238b b a -==,又由12a =,得公比2q =(2q =-舍去),所以数列{}n a 的通项公式为2()n n a n N *=∈,所以()()1121232n n n n n a a a a ++==L ,故数列{}n b 的通项公式为,()1()n b n n n N *=+∈;(II )(i )由(I )知,11111()21n n n n c n N a b n n *⎛⎫=-=--∈ ⎪+⎝⎭,所以11()12n n S n N n *=-∈+; (ii )因为12340,0,0,0c c c c =>>>;当5n ≥时,()()11112n n n n c n n +⎡⎤=-⎢⎥+⎣⎦,而()()()()()11112120222n n n n n n n n n ++++++--=>,得()()51551122n n n ++≤<,所以当5n ≥时,0n c <,综上对任意n N *∈恒有4n S S ≥,故4k =.20.本题主要考查空间点、线、面位置关系,二面角等基础知识,空间向量的应用,同时考查空间想象能力、推理论证和运算求解能力。
浙江版(第03期)-2014届高三名校数学(理)试题分省分项汇编:4.三角函数与三角形 Word版含解析[ 高考]
一.基础题组1. 【2014年温州市高三第一次适应性测试数学】已知1sin 23α=,则2c o s ()4πα-=( )A .13 B .13- C .23D .23-2. 【2014年温州市高三第一次适应性测试数学】在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,且sin cos 0a B b A +=.(Ⅰ)求角A 的大小;(Ⅱ)若a =1b =,求ABC ∆的面积.3. 【2014年温州市高三第一次适应性测试数学】已知角α的终边与单位圆交于点4(5-,3)5,则tan α=( )A .43-B .45-C .35-D .34-4. 【杭州二中2012学年第一学期高一年级期末考数学试卷】已知角α的正弦线和余弦线长度相等,且α的终边在第二象限,则 αtan =( )A . 0B . 1C . 1-D .35. 【高三年级数学(理科)试题】【题文】已知全集U R =,{22}M x x =-≤≤,{1}N x x =<,那么M N =( )A .{21}x x -≤<B .{21}x x -<<C .{2}x x <-D .{|2}x x ≤6. 【2013学年第一学期期中杭州地区七校联考】【题文】已知3(,),sin ,25παπα∈=则tan α= .【答案】43-.【解析】试题分析:由题意易知4sin 3cos ,tan 5cos 4αααα=-==-. 考点:三角函数定义.7. 【2013学年第一学期期中杭州地区七校联考】【题文】在△ABC 中,角,,A B C 所对的边分别为,,a b c,4a A π==,3B π=,则△ABC 的面积为________S =.8. 【浙江省湖州中学2013学年第一学期高三期中考试】【题文】函数()cos 22sin f x x x =+的最小值和最大值分别为( ) A.-3,1 B.-2,2 C.-3,32 D.-2,329. 【浙江省湖州中学2013学年第一学期高三期中考试】 【题文】若(0,)2πα∈,且21cos sin(2)22παα++=,则tan α=________.【答案】1. 【解析】 试题分析:由2221cossin(2)=cos cos 23cos 122πααααα+++=-=,又有(0,)2πα∈,则cos tan 1αα==. 考点:三角函数运算.10. 【浙江省湖州中学2013学年第一学期高三期中考试】【题文】已知锐角α、β满足sin α=,cos β=,则αβ+=________.11. 【浙江省湖州中学2013学年第一学期高三期中考试】 【题文】在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,a =2b =,1cos 2A =. (1)求角B 的大小; (2)若2()cos 2sin ()2c f x x x B =++,求函数()f x 的单调递增区间.12. 【浙江省湖州中学2013学年第一学期高三期中考试】 【题文】在ABC ∆中,,,a b c 分别是内角,,A B C 的对边,已知16,4,cos 3a c B ===,则____b =. 【答案】6. 【解析】试题分析:由余弦定理222cos 2a c b B ac+-=代入数据解得6b =.考点:余弦定理.13. 【浙江省湖州中学2013学年第一学期高三期中考试】 【题文】已知41)4sin(=+πθ,),23(ππθ--∈,则)127cos(πθ+的值为________.14. 【浙江省建人高复2014届高三上学期第二次月考】【题文】已知ABC ∆满足:3B π∠=,3,AB AC ==BC 的长( )A.2B.1C.1或2D.无解15. 【浙江省建人高复2014届高三上学期第二次月考】【题文】已知==-∈x x x 2tan ,54cos ),0,2(则π( )A .247B .-247C .724D .-724【答案】D . 【解析】试题分析:由题意易知33sin ,tan 54x x =-=-,则22tan 24tan 21tan 7x x x ==--. 考点:正切函数的二倍角公式.16. 【浙江省建人高复2014届高三上学期第二次月考】【题文】若31)6sin(=-απ,则=+)232cos(απ__________.17. 【浙江省建人高复2014届高三上学期第二次月考】【题文】设函数)32sin(2π-x y =的图象关于点P )0,(0x 成中心对称,若]0,2[0π-∈x ,则0x =________.18. 【浙江省建人高复2014届高三上学期第二次月考】 【题文】已知=-=-ααααcos sin ,45cos sin 则( )A .47B .169-C .329-D .32919.【浙江省建人高复2014届高三上学期第二次月考】【题文】50tan 70tan 350tan 70tan -+的值等于( )A .3B .33C .33-D .3-20. 【浙江省建人高复2014届高三上学期第二次月考】【【题文】已知3sin()45x π-=,则s i n 2x的值为 .21. 【浙江省建人高复2014届高三上学期第二次月考】 【题文】函数x x y 2cos )23cos(--=π的最小正周期为 __________.22. 【浙江省建人高复2014届高三上学期第二次月考】【题文】在ABC ∆中,若120A ∠=,5AB =,7BC =,则ABC ∆的面积S =_________.【答案】4315.23. 【浙江省建人高复2014届高三上学期第二次月考】【题文】(本小题满分12分) 已知函数()sin()(00||)2f x A x x R A πωϕωϕ=+∈>><,,,的图象(部分)如图所示.(1)试确定()f x 的解析式;(2)若[01]x ∈,,求函数()f x 的值域.24. 【浙江省建人高复2014届高三上学期第二次月考】 在∆ABC 中,a b c ,,分别是∠∠∠A B C ,,的对边长,已知a b c ,,成等比数列,且a c ac bc 22-=-,求∠A 的大小及b Bcsin 的值. 解析:(1) a b c ,,成等比数列∴=b ac 2又a c ac bc 22-=-∴+-=b c a bc 222,25. 【浙江省考试院抽学校2014届高三11月抽测测试】【题文】(本题满分14分) 在△ABC 中,内角A ,B ,C 满足4 sin A sin C -2 cos (A -C )=1. (Ⅰ) 求角B 的大小;(Ⅱ) 求sin A +2 sin C 的取值范围.26. 【浙江省丽水市2013-2014学年度高一上学期普通高中教学质量监控】200︒是( ) A. 第一象限角 B. 第二象限角 C . 第三象限角 D. 第四象限角 【答案】C 【解析】试题分析:因为第一象限角α的范围为36036090,k k k z α⋅<<⋅+∈; 第二象限角α的范围为36090360180,k k k z α⋅+<<⋅+∈;第三象限角α的范围为360180360270,k k k z α⋅+<<⋅+∈; 第四象限角α的范围为360270360360,k k k z α⋅+<<⋅+∈;200∴︒是第三象限角,故选C.考点:象限角的概念.27. 【浙江省丽水市2013-2014学年度高一上学期普通高中教学质量监控】已知角3π的终边上有一点),1(a P ,则a 的值是( )A .3-B .3±C .33D .328. 【浙江省丽水市2013-2014学年度高一上学期普通高中教学质量监控】已知1sin 2α=,则cos()2πα-=( )A. 2-B. 12-C. 12D. 229. 【浙江省丽水市2013-2014学年度高一上学期普通高中教学质量监控】为了得到函数R x x y ∈+=),42sin(π的图像,只需将函数R x x y ∈=,2sin 图像上所有的点( )A .向左平行移动8π个单位长度B .向右平行移动8π个单位长度C .向左平行移动4π个单位长度 D .向右平行移动4π个单位长度【答案】A30. 【浙江省丽水市2013-2014学年度高一上学期普通高中教学质量监控】.若54cos -=α,且α为第二象限角,则=αsin .30. 【浙江省丽水市2013-2014学年度高一上学期普通高中教学质量监控】 已知弧长为πcm 的弧所对的圆心角为4π,则这条弧所在的扇形面积为 2cm .31.【浙江省丽水市2013-2014学年度高一上学期普通高中教学质量监控】 已知函数()sin(2)f x x ϕ=+(其中20πϕ<<),满足1(0)2f =. (Ⅰ)求函数()y f x =的最小正周期T 及ϕ的值; (Ⅱ)当[0,]2x π∈时,求函数()y f x =的最小值,并且求使函数取得最小值的x 的值.解析:(Ⅰ)ππ==22T ……………………………………………………3分()21sin 0==ϕf ,20πϕ<<………………………………5分6πϕ=∴………………………………………………………7分32. 【题文】(本小题满分14分)ABC ∆中内角,,A B C 的对边分别为,,a b c ,已知2a =,cos C =(1)求sin B 的值;(2)若D 为AC 中点,且ABD ∆的面积为8,求BD 的长度.二.能力题组1. 【杭州二中2012学年第一学期高一年级期末考数学试卷】图象向左平移(0)ϕϕ>个单位,所得图象关于轴对称,则ϕ的最小值为( )yA.2. 【杭州二中2012学年第一学期高一年级期末考数学试卷】已知x x f 2sin )(cos =,则)30(sin 0f 的值为( )A .21 B . 21- C .23- D . 23 3. 【杭州二中2012学年第一学期高一年级期末考数学试卷】=+000047sin 13sin 133cos 13cos .考点:1.互补的三角函数的诱导关系.2.和差的余弦公式.4. 【杭州二中2012-3013学年第一学期高一年级期末考数学试卷】 已知α∈(,π),.5. 【杭州二中2012-3013学年第一学期高一年级期末考数学试卷】 已知角θ的终边经过点)52,5(P(Ⅰ)求θsin 和θcos 的值; 求ϕcos 的值.6. 【杭州二中2012-3013学年第一学期高一年级期末考数学试卷】 设函数()2sin cos cos(2)6f x x x x π=--.(Ⅰ)求函数()f x 的最小正周期;(Ⅱ)画出函数)(x f 在区间],0[π上的图象;(Ⅲ)当2[0,]3x π∈时,求函数()f x 的最大值及取得最大值时的x 的值.7. 【2013学年第一学期期中杭州地区七校联考】【题文】已知22)4sin()2cos(-=--πααπ,则cos sin αα+等于( )A.2-B.2 C .12 D .12-8. 【2013学年第一学期期中杭州地区七校联考】已知函数()sin()(0)3f x x πωω=+>,若()()63f f ππ=且()f x 在区间(,)63ππ上有最小值,无最大值,则ω的值为( )A .23B .53C .143 D . 3839. 【浙江省湖州中学2013学年第一学期高三期中考试】【题文】将函数1()sin()26f x x π=+的图像向左平移ϕ(0)ϕπ<<个单位,再将所得图像上各点的横坐标缩短为原来的1ω(0)ω>倍,纵坐标不变,得到函数()y g x =的图像,已知函数()y g x =是周期为π的偶函数,则ω,ϕ的值分别为( ) A.4,3π B.4,23π C.2,3π D.2,23π 【答案】B . 【解析】 试题分析:函数111()=sin()sin()26226f x x y x ϕωπϕπ+−−−−−−→=++−−−−−−−−→横坐标缩短为原来的倍向左平移个单位1()=sin()226y g x x ϕπω=++,2,412T ππωω==∴=,又因()y g x =是偶函数,所以(0)=sin()=126g ϕπ+±,则23πϕ=. 考点:三角函数的平移变换.10. 【浙江省湖州中学2013学年第一学期高三期中考试】【题文】下列函数中,图像的一部分如右图所示的是( ) A .sin()6y x π=+B . sin(2)6y x π=-C .cos(2)6y x π=-D .cos(4)3y x π=-11. 【浙江省湖州中学2013学年第一学期高三期中考试】 若)4sin(3)4sin()(ππ-++=x x a x f 是偶函数,则=a .12. 【浙江省湖州中学2013学年第一学期高三期中考试】【题文】已知函数2()sin 2cos 24x xf x =+.(1)写出如何由函数sin y x =的图像变换得到()f x 的图像;(2)在ABC ∆中,角A B C 、、所对的边分别是a b c 、、,若C b B c a cos cos )2(=-,求)(A f 的取值范围.13. 【浙江省建人高复2014届高三上学期第二次月考】【题文】关于函数x x y 2sin 2sin +=下列说法正确的是( )A .是周期函数,周期为πB .关于直线4π=x 对称 C .在⎥⎦⎤⎢⎣⎡-67,3ππ上最大值为3 D .在⎥⎦⎤⎢⎣⎡--4,2ππ上是单调递增的 【答案】D . 【解析】试题分析:由题意的函数的图像如下图所示:由图像可知,此函数不是周期函数,关于0x =对称,在⎥⎦⎤⎢⎣⎡-67,3ππ上最大值为2,在⎥⎦⎤⎢⎣⎡--4,2ππ上是单调递增的. 考点:函数的图像及性质.14. 【浙江省建人高复2014届高三上学期第二次月考】【题文】已知()()5sin 3sin αβαβ-=+,且tan tan x αβ=,则实数x 的值为 .15. 【浙江省建人高复2014届高三上学期第二次月考】【题文】如图,在直角坐标系xOy 中,锐角△ABC 内接于圆.122=+y x 已知BC 平行于x 轴,AB 所在直线方程为)0(>+=k m kx y ,记角A ,B ,C 所对的边分别是a ,b ,c.(1)若B C A b c a ac k 2sin 2cos ,232222++-+=求的值;(2)若)sin(),23(),20(,2βαπβπβπαα+<<=∠<<=∠=求记xOB xOA k 的值.16. 【浙江省建人高复2014届高三上学期第二次月考】【题文】已知,1)cos(,31sin -=+=βαα则=+)2sin(βα _______.17. 【浙江省建人高复2014届高三上学期第二次月考】【 题文】已知函数)4cos()4sin(2)32cos()(πππ--+-=x x x x f (R x ∈).(1)求函数()f x 的最小正周期; (2)求函数()f x 在区间]2,12[ππ-上的值域.18. 【浙江省建人高复2014届高三上学期第二次月考】【题文】设函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值.(1)求a 、b 的值;(2)若对于任意的[03]x ∈,,都有2()f x c <成立,求c 的取值范围. 解析:(1)2()663f x x ax b '=++,因为函数()f x 在1x =及2x =取得极值,则有(1)0f '=,(2)0f '=.即6630241230a b a b ++=⎧⎨++=⎩,.解得3a =-,4b =.(6分)19.【浙江省丽水市2013-2014学年度高一上学期普通高中教学质量监控】已知幂函数2()(1)m f x m m x =--在(0,)x ∈+∞上单调递减,则实数m =.三.拔高题组1. 【杭州二中2012-2013学年第一学期高一年级期末考数学试卷】已知函数)0)(4sin(2)(>-=ωπωx x f ,)(x f y =的图像与直线2=y 的两个相邻交点的距离等于π,则满足不等式0)8(>+πx f 的x 取值范围是 . 【答案】Z k k x k ∈+<<,2πππ【解析】2. 【杭州二中2012-2013学年第一学期高一年级期末考数学试卷】 已知(Ⅱ)若函数)(x g 和函数)(x f 的图象关于原点对称, (ⅰ)求函数)(x g 的解析式;(ⅱ)若1)()()(+-=x f x g x h λ在区间λ的取值范围.3. 【浙江省建人高复2014届高三上学期第二次月考】【题文】设3x =是函数),0(,)()(23R x a e b ax x e x f x∈>++=的一个极值点. (1)求a 与b 的关系式(用a 表示b ),并求()f x 的单调递增区间;(2)设225()()4x g x a e =+,若存在]4,0[,21∈x x 使得1|)()(|21<-x g x f 成立,求实数a 的取值范围.考点:1、利用导数求函数的单调区间;2、利用导数求函数的最值;3、解绝对值不等式.4. 【浙江省丽水市2013-2014学年度高一上学期普通高中教学质量监控】 已知函数|1|1()()2x f x -=,x R ∈,若关于x 的方程0)()1()(2=++-a x f a x f 有3个不同的实数解,则实数a 的取值范围是 .【答案】(0,1)【解析】 试题分析:作出函数|1|1()()2x f x -=的图像。
浙江版(第01期)-2014届高三数学(理)试题分省分项汇编:专题15 复数原卷版 Word版缺答案
▃ ▄ ▅ ▆ ▇ █ █ ■ ▓点亮心灯 ~~~///(^v^)\\\~~~ 照亮人生 ▃ ▄ ▅▆ ▇ █ █ ■ ▓一.基础题组1.【浙江省2013届高三高考密破仿真预测卷理】复数432ii+-=( ) A .1-2iB .1+2iC .-1+2iD .-1-2i2.【浙江省嘉兴市2014届高三上学期9月月考理】计算:复数522ii i-+=+____________. 3.【温州市十校联合体2014届高三10月测试理】复数1ii-的共轭复数为( ) A .1122i -+B .1122i + C .1122i - D .1122i -- 4.【浙江省2013届高三高考密破仿真预测卷(四)数学理】已知i 为虚数单位,则复数ii Z +-=331的虚部为( )A 、1B 、1-C 、iD 、i -5.【浙江省2013学年第一学期十校联合体高三期初联考】若复数iiz -+=13(i 为虚数单位),z 为其共轭复数,则=z ( )A .i 21-B .i 22-C .i 21+-D .i 22+-6.【浙江省绍兴市第一中学2014届高三上学期回头考理】已知i 为虚数单位,复数ii -25的虚部是______.7.【浙江省2013学年第一学期温州八校高三期初联考】设复数z 满足i 2)i 1(=-z ,则=z ( ) A .i 1+-B .i 1--C .i 1+D .i 1-8.【浙江省2013届高三高考密破仿真预测(三)卷理】已知2()2a i i -=-,其中i 是虚数单位,则实数a =( ) A .-2 B .-1C .1D .2二.能力题组1.【浙江省嘉兴一中2014届高三上学期入学摸底测试】若复数ii a 213-+(i R a ,∈为虚数单▃ ▄ ▅ ▆ ▇ █ █ ■ ▓点亮心灯 ~~~///(^v^)\\\~~~ 照亮人生 ▃ ▄ ▅▆ ▇ █ █ ■ ▓位)是纯虚数,则实数a 的值为 ( )A .2-B .4C .6-D .6三.拔高题组1.【2013学年浙江省五校联考理】已知复数122,34,z m i z i =+=-若12z z 为实数,则实数m 的值为( ) A .83 B .32 C .83- D . 32-。
2014年浙江高考试卷理科数学试题word版
2014年普通高等学校招生全国统一考试(浙江卷)理科数学选择题部分(共50分)一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,吸有一项是符合题目要求的。
1.设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则C U A=A.∅B.{2}C.{5}D.{2,5}2.已知i是虚数单位,a,b∈R,则“a=b=1”是“(a+bi)2=2i”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是A.90cm2B.129 cm2C.132 cm2D.138 cm24.为了得到函数y=sin3x+cos3x的图象,可以将函数y=cos3x的图象A.向右平移个单位B. 向左平移个单位C. 向右平移个单位D. 向左平移个单位5.在(1+x)6(1+y)4的展开式中,记x m y n项的系数为f(m,n),则f(3,0)+f(2,1)+f(1,2)+f(0,3)=A.45B.60C.120D.2106.已知函数f(x)= x3+ax2+bx+c,且0<f(-1)=f(-2)=f(-3)≤3,则A.c≤3B.3<c≤6C.6<c≤9D.c≥97.在同一直角坐标系中,函数f(x)=x a(x>0),g(x)=log a x的图象可能是8.记max{x,y}=,min{x,y}=,设a,b为平面向量,则A.min{|a+b|,|a-b|}≤min{|a|,|b|}B. min{|a+b|,|a-b|}≥min{|a|,|b|}C.max{|a+b|2,|a-b|2}≤|a|2+|b|2D. max{|a+b|2,|a-b|2}≥|a|2+|b|29.已知甲盒中仅有1个球且为红球,乙盒中有m个红球和n个蓝球(m≥3,n≥3),从乙盒中随机抽取i(i=1,2)个球放入甲盒中。
浙江版(第01期)-2014届高三数学(理)试题分省分项汇编:专题13 算法原卷版 Word版缺答案
一.基础题组1.【浙江省2013学年第一学期温州八校高三期初联考】某程序框图如图所示,则该程序运行后的输出结果是()A.1112B.16C.34D.25242.【浙江省嘉兴市2014届高三上学期9月月考理】如图,运行该程序后输出的s值为()A. 66B. 55C. 11D. 103.【浙江省温州市十校联合体2014届高三10月测试理】若某程序框图如图所示,则该程序运行后输出的值是_____________.4.【浙江省嘉兴一中2014届高三上学期入学摸底测试】如图是一个算法流程图,则输出的S的值是.5.【浙江省2013学年第一学期十校联合体高三期初联考】阅读右边的程序框图,若输入100N,则输出的结果为()A.50 B.1012C.51 D.10326.【浙江省绍兴市第一中学2014届高三上学期回头考理】某程序框图如图所示,该程序运行后输出S的值是()A. 10B. 12C. 100D. 1027.【浙江省2013届高三高考密破仿真预测二卷理】7执行右面的程序框图,如果输入的N 是6,那么输出的p是( )A.120B.720C.1440D.50408.【浙江省2013届高三高考密破仿真预测三卷理】下面是一个算法的程序框图,当输入的值x为5时,则其输出的结果( )A.1B.2C.3D.4二.能力题组1.【浙江省2013届高三高考密破仿真预五测卷理】给出计算 201614121++++ 的值的一个程序框图如右图,其中判断框内应填入的条件是( ).A .10>iB .10<iC .20>iD .20<i2.【2013学年浙江省五校联考理】程序框图如图所示,其输出结果是111,则判断框中所填的条件是( )A .5n ≥B .6n ≥C .7n ≥D .8n ≥三.拔高题组1.【浙江省2013届高三高考密破仿真预测一卷理】如右图所示的程序框图,输出S的结果的值为( )A. 0B.1C.12D.12。
2014年浙江高考理科数学试题含答案(Word版)
2014年普通高等学校招生全国统一考试(浙江卷)数学(理科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设全集{}2|≥∈=x N x U ,集合{}5|2≥∈=x N x A ,则=A C U ( )A. ∅B. }2{C. }5{D. }5,2{(2)已知i 是虚数单位,R b a ∈,,则“1==b a ”是“i bi a 2)(2=+”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件(3)某几何体的三视图(单位:cm )如图所示,则此几何体的表面积是 A. 902cm B. 1292cm C. 1322cm D. 1382cm4.为了得到函数x x y 3cos 3sin +=的图像,可以将函数x y 3sin 2=的图像( )A.向右平移4π个单位B.向左平移4π个单位 C.向右平移12π个单位 D.向左平移12π个单位5.在46)1()1(y x ++的展开式中,记nm yx 项的系数为),(n m f ,则=+++)3,0(2,1()1,2()0,3(f f f f ) ( )A.45B.60C.120D. 2106.已知函数则且,3)3()2()1(0,)(23≤-=-=-≤+++=f f f c bx ax x x f ( )A.3≤cB.63≤<cC.96≤<cD. 9>c 7.在同意直角坐标系中,函数x x g x x x f a alog )(),0()(=≥=的图像可能是( )8.记,max{,},x x y x y y x y ≥⎧=⎨<⎩,,min{,},y x yx y x x y ≥⎧=⎨<⎩,设,a b 为平面向量,则( )A.min{||,||}min{||,||}a b a b a b +-≤B.min{||,||}min{||,||}a b a b a b +-≥C.2222min{||,||}||||a b a b a b +-≥+D.2222min{||,||}||||a b a b a b +-≤+9.已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个篮球()3,3m n ≥≥,从乙盒中随机抽取()1,2i i =个球放入甲盒中.(a )放入i 个球后,甲盒中含有红球的个数记为()1,2ii ξ=;(b )放入i 个球后,从甲盒中取1个球是红球的概率记为()1,2i p i =.则A.()()1212,p p E E ξξ><B.()()1212,p p E E ξξ<>C.()()1212,p p E E ξξ>>D.()()1212,p p E E ξξ<<10.设函数21)(x x f =,),(2)(22x x x f -=|2sin |31)(3x x f π=,99,,2,1,0,99==i ia i ,记|)()(||)()(||)()(|98991201a f a f a f a f a f a f I k k k k k k k -++-+-= ,.3,2,1=k 则 A.321I I I << B. 312I I I << C. 231I I I << D. 123I I I <<二、填空题:本大题共7小题,每小题4分,共28分.11.若某程序框图如图所示,当输入50时,则该程序运算后输出的结果是________.12.随机变量ξ的取值为0,1,2,若()105P ξ==,()1E ξ=,则()D ξ=________. 13.当实数x ,y 满足240,10,1,x y x y x +-≤⎧⎪--≤⎨⎪≥⎩时,14ax y ≤+≤恒成立,则实数a 的取值范围是________.14.、在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有_____种(用数字作答).15.设函数()⎪⎩⎪⎨⎧≥-<+=0,0,22x x x x x x f 若()()2≤a f f ,则实数a 的取值范围是______16.设直线)0(03≠=+-m m y x 与双曲线12222=-by a x ()两条渐近线分别交于点B A ,,若点)0,(m P 满足PB PA =,则该双曲线的离心率是__________17、如图,某人在垂直于水平地面的墙面前的点处进行射击训练.已知点到墙面的距离为,某目标点沿墙面的射击线移动,此人为了准确瞄准目标点,需计算由点观察点的仰角的大小.若则的最大值0a b >>19(本题满分14分)已知数列{}n a 和{}n b 满足()()*∈=N n a a a nb n 221 .若{}n a 为等比数列,且.6,2231b b a +== (1)求n a 与n b ;(2)设()*∈-=N n b a c nn n 11。
2014年高考数学浙江卷(理科)答案word版
2014年普通高等学校招生全国统一考试(浙江卷)理科数学试题答案与解析1. 解析 因为{}{}5A x x x x =∈=∈N N 厖3,所以{}{}2232U a A x x =∈<=N …ð,故选B.2. 解析 当1a b ==时,有()21i 2i +=,即充分性成立.当()2i 2i a b +=时,有222i 2i a b ab -+=,得220,1,a b ab ⎧-=⎨=⎩解得1a b ==或1a b ==-,即必要性不成立,故选A.评注 本题考查复数的运算,复数相等的概念,充分条件与必要条件的判定,属于容易题. 3. 解析 由三视图可知该几何体由一个直三棱柱与一个长方体组合而成(如图),其表面积为()2135243433324324636138cm 2S =⨯+⨯⨯⨯+⨯+⨯+⨯⨯+⨯⨯+⨯=.评注 本题考查三视图的概念和性质,空间几何体的直观图和表面积的计算,考查运算求解能力和空间想象能力.由三视图得几何体的直观图是解题的关键.4. 解析因为πsin3cos334y x x x ⎛⎫=+=- ⎪⎝⎭,要得到函数π34y x ⎛⎫=- ⎪⎝⎭的图像,可以将函数y x =的图像向右平移π12个单位,故选C. 5. 解析 在的展开式中,的系数为,在的展开式中,的系数为,故.从而,,,,故选C.6. 解析 由得解得则有,由得.33434()61x +m x 6C m()41y +n y 4C n ()64,C C mnf m n =⋅()363,0C 20f ==()21642,1C C 60f =⋅=()12641,2C C 36f =⋅=()340,3C 4f ==()()()()12,13f f f f -=-⎧⎪⎨-=-⎪⎩37,413,a b a b -=⎧⎨-=⎩6,11.a b =⎧⎨=⎩()()12f f -=-=()3f -6c =-()013,f <-…69c <…7. 解析 因为0a >,所以()a f x x =在()0,+∞上为增函数,故A 错.在B 中,由()f x 的图像知1a >,由()g x 的图像知01a <<,矛盾,故B 错.在C 中,由()f x 的图像知01a <<,由()g x 的图像知1a >,矛盾,故C 错.在D 中,由()f x 的图像知01a <<,由()g x 的图像知01a <<,相符,故选D.评注 本题考查幂函数和对数函数的图像与单调性,考查分类讨论思想和逻辑推理能力. 8. 解析 在A 中,取()1,0=a ,0=b ,则{}min ,1+-=a b a b ,而{}min ,0=a b ,不符合,即A 错.在B 中,设0=≠a b ,则{}mi n ,0+-=a b a b ,而{}mi n ,0=>a b a 不符合,即B 错.因为2222+=++⋅a b a b a b ,2222-=+-⋅a b a b a b <,则当0⋅a b …,时{}222222max ,2+-=++⋅+a b a b a b a b a b ?;当0⋅<a b <时{}222222max ,2+-=+-⋅+a b a b a b a b a b ?即总有{}2222max ,+-+a b a ba b ….故选D.9. 解析 当1i =时,若从乙盒中抽取的1个球为红球,记从甲盒中取1个球是红球的事件为1A ,则()1mP A m n=+.若从乙盒中抽取的1个球为蓝球,记从甲盒中取1个球是红球的事件为2A ,则()()2122m n P A m n m n =⨯=++,而1A 与2A 互斥, 则()()()()1121222n m p P A A P A P A m n +=+=+=+.此时,1ξ的取值为1或2,()11nP m nξ==+,()12m P m n ξ==+,则()1212n m n mE m n m n m nξ+=⨯+⨯=+++.当2i =时,若从乙盒中抽取的2个球为红球,记从甲盒中取1个球是红球的事件为1B ,则()212C C m m nP B +=. 若从乙盒中抽取的2个球为1个红球和1个蓝球,记从甲盒中取1个球是红球的事件为2B ,则()1122C C 23C m nm nP B +=⨯. 若从乙盒中抽取的2个球都是蓝球,记从甲盒中取1个球是红球的事件为3B ,则()232C 13C n m nP B +=⨯.因为1B ,2B ,3B 互斥,则()()()()()221123212312322C 3C 2C C C 13C 3C n m m n nm n m nP B p P B B B P B P B P B ++++=⨯=++=++==()()()()()()()2231334331313n m m n m m mn n n n mm n m n m n m n m n ++--++-+==++-++-+.则()1206n p p m n -=>+, 即有12p p >.此时,2ξ的取值为1,2,3,则()222C 1C n m n P ξ+==,()1122C C 2C m nm nP ξ+==,()222C 3C mm nP ξ+==则()21122112222222C C C C C 2C C 3C 1233C C C C n m n m n m n mm n m n m n m nE p ξ++++++=⨯+⨯+⨯===3n mn m++,则有()()12E E ξξ<,综上,12p p >,()()12E E ξξ<,故选A.10. 解析 []0,1i a ∈ ,且0199a a a <<<,而()1f x 在[]0,1上为增函数,故有()()()1011199f a f a f a <<<,则()()()()111101211I f a f a f a f a =⎡-⎤+⎡-⎤++⎣⎦⎣⎦()()()()()()1991981991011101f a f a f a f a f f ⎡-⎤=-=-=⎣⎦. ()2f x 在10,2⎡⎤⎢⎥⎣⎦上为增函数,在1,12⎡⎤⎢⎥⎣⎦上为减函数,而495012a a <<,且49501a a +=,即有()()249250f a f a =,故()()()()()()22120250249250251I f a f a f a f a f a f a =⎡-⎤++⎡-⎤+⎡-⎤++⎣⎦⎣⎦⎣⎦()()()()()()29829925020250299f a f a f a f a f a f a ⎡-⎤=-+-=⎣⎦()()2225020199f f f ⎛⎫--= ⎪⎝⎭()224950*********,199999999⨯⨯⨯==-∈. ()3f x 在10,4⎡⎤⎢⎥⎣⎦上为增函数,在11,42⎡⎤⎢⎥⎣⎦上为减函数,在13,24⎡⎤⎢⎥⎣⎦上为增函数,在3,14⎡⎤⎢⎥⎣⎦上为减函数,即()3f x 在[]024,a a 上为增函数,在[]2549,a a 上为减函数. 在[]5074,a a 上为增函数,在[]7599,a a 上为减函数.又()324148148sin πsin π399399f a =⋅=,()325150149sin πsin π399399f a =⋅=,则()()()3253243491981πsin πsin 399399f a f a f a >=⋅=,()35011001πsinπsin 399399f a =⋅=,即有()()349350f a f a =. ()3741148149sin πsin π399399f a =⋅=,()()3753741150151148πsin πsin π=sin 399399399f a f a =⋅=<.故有()()()()3031324325f a f a f a f a <<<<,()()()()325326349350f a f a f a f a >>>=,()()()350351374f a f a f a <<<,()()()374375399f a f a f a >>>.从而3I =()()()(){}()()()(){}3130325324325326349350fa f a f a f a f afa fa fa ⎡-⎤++⎡-⎤+⎡-⎤++⎡-⎤+⎣⎦⎣⎦⎣⎦⎣⎦ ()()()(){}374375398399fa f a f a f a ⎡-⎤++⎡-⎤=⎣⎦⎣⎦()()()()()()()()32530325350374350374399f a f a f a f a f a f a f a f a ⎡-⎤+⎡-⎤+⎡-⎤+⎡-⎤=⎣⎦⎣⎦⎣⎦⎣⎦()()()()()3253503743039923f a f a f a f a f a -+--=250π2100π2148πsin sin sin 399399399-+= 2492π249249πsin πsin sin π2sin π-sin 39939939939999⎛⎫-+= ⎪⎝⎭.而495πsinπsin 9912>=,ππsin sin 9912<=,则3213I >>⎝⎭.所以213I I I <<. 11. 解析 第一次循环,1S =,2i =;第二次循环,224S =+=,3i =;第三次循环,8311S =+=,4i =;第四次循环,22426S =+=,5i =;第五次循环,52557S =+=,6i =,5750>,退出循环,故输出结果为6. 12. 解析 设()1P p ξ==,则()425P p ξ==-,从而由()14012155E p p ξ⎛⎫=⨯+⨯+⨯-= ⎪⎝⎭,得35p =.故()()()()22213120111215555D ξ=-⨯+-⨯+-⨯=. 13. 解析 不等式组构成以,,为顶点的三角形区域(包含边界). 又,所以转化为恒成立.而表示可行区域点与定点连接的斜率,其最大值为.同理,表示可行区()1,0A 31,2B ⎛⎫⎪⎝⎭()2,1C 12x剟14ax y+剟41y y a xx ---剟14y k x -=(),P x y ()0,432-21y k x-=域内点与定点连接的斜率,其最小值为,故有,即.14. 解析 不同的获奖情况可分为以下两类:(1)有一个人获得两张有奖奖券,另外还有一个人获得一张有奖奖券,有2234C A 36=种获奖情况.(2)有三个人各获得一张有奖奖券,有34A 24=种获奖情况.故不同的获奖情况有362460+=种.15. 解析 当0a …时,()20f a a =-…,又()00f =,故由()()()2422f f a f a a a =-=-…,得22a …,所以0a剟当10a -<<时,()()210f a a a a a =+=+<,则由()()()()()22222f f a f a a a a aa =+=+++…,得210a a +-…,得a ,则有10a -<<.当1a -…时,()()210f a a a a a =+=+…,则由,()()()()2222f f a f a a a a =+=-+…,得a ∈R ,故1a -….综上,a的取值范围为(-∞.16. 解析 由得,由 得,则线段的中点为.由题意 得,所以,得,故,所以17. 解析 过点P 作PN BC ⊥于N ,连接AN ,则PAN θ∠=,如图.(),Px y ()0,11-312a ---剟312a剟30,x y m b y x a -+=⎧⎪⎨=⎪⎩,33am bm A b a b a ⎛⎫ ⎪--⎝⎭30,x y m b y x a -+=⎧⎪⎨=-⎪⎩,33ambm B b a b a ⎛⎫- ⎪++⎝⎭AB 2222223,99a m b m M b a b a ⎛⎫ ⎪--⎝⎭PM AB ⊥3PM k =-2222444a b c a ==-254e =2e =设PN x =m ,由30BCM ∠=,得CN =m .在直角ABC △中,AB =15m , 25AC =m ,则20BC =m,故()20BN =-m .从而()222215203625AN x =+=-+,故2222tan PN AN θ=.当1x ==时,2tan θ取最大值2527,即当x =tan θ.18. 解析 (I)由题意得1cos 21cos 22222A B A B ++-=,112cos 22cos 222A A B B -=-,ππsin 2sin 266A B ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭. 由a b ≠,得A B ≠,又()0,πA B +∈,得ππ22π66A B -+-=,即2π3A B +=,所以π3C =. (II )由c =4sin 5A =,sin sin a c A C =,得85a =,由a c <,得A C <.从而3cos 5A =,故()sin sin sin cos cos sin B A C A C A C =+=+=,所以,ABC △的面积为1sin 2S ac B =.评注 本题主要考查诱导公式、两角和差公式、二倍角公式、正弦定理、三角形面积公式等基础知识,同时考查运算求解能力. 19. 解析 (I )由题意(1232nb n a a a a=,326b b -=,知3238b b a -==.又由12a =,得公比2q =(2q =-舍去),所以数列{}n a 的通项为()*2n n a n =∈N ,所以,123n a a a a =NMCB APθ()()1122n n n n ++=.故数列{}n b 的通项为()()*1n b n n n =+∈N .(II )(i )由(I )知1111121n n n n c a b n n ⎛⎫=-=-- ⎪+⎝⎭()*n ∈N ,所以1112n n S n =-+. (ii )因为10c =,20c >,30c >,40c >;当5n …时,()()115112n n n n c n n ⎡+⎤=-⎢⎥+⎣⎦, 而()()()1112022nn n n n n ++++->,得()()51551122nn n +⋅+<…,所以,当5n …时,0n c <.综上,对任意*n ∈N ,恒有4n S S >,故4k =.评注 本题主要考查等差数列与等比数列的概念、通项公式、求和公式、不等式性质等基础知识,同时考查运算求解能力.20. 解析 (I )在直角梯形BCDE 中,由1DE BE ==,2CD =,得BD BC ==,由AC =2AB =,得222AB AC BC =+,即AC BC ⊥,又平面ABC ⊥平面BCDE ,从而AC ⊥平面BCDE ,所以AC DE ⊥.又DE DC ⊥,从而DE ⊥平面ACD .(II )解法一:作BF AD ⊥,与AD 交于点F ,过点F 作//FG DE ,与AE 交于点G ,连接BG ,由(I )知D E AD ⊥,则FG AD ⊥.所以BFG ∠是二面角B AD E --的平面角.在直角梯形BCDE 中,由222CD BC BD =+,得BD BC ⊥,又平面ABC ⊥平面BCDE ,得BD ⊥平面ABC ,从而BD AB ⊥.由于AC ⊥平面BCDE ,得AC CD ⊥.在Rt ACD △中,由DC =2,AC得AD 在Rt AED △中,由1ED =,AD =得AE 在Rt ABD △中,由BD 2AB =,AD =BF =,23AF AD =.从而23GF =.在ABE △,ABG △中,利用余弦定理分别可得cos BAE ∠=23BC =.在BFG △中,2222GF BF BG cos BFG BF GF +-∠==⋅.所以π6BFG ∠=,,即二面角的大小是π6.GFEDCBA解法二:以D 为原点,分别以射线DE ,DC 为x 轴,y 轴的正半轴,建立空间直角坐标系,D xyz -如图所示.由题意知各点坐标如下:()0,0,0D ,()1,0,0E ,()0,2,0C,(A ,()1,1,0B .设平面ADE 的法向量为()111,,=x y zm ,平面ABD 的法向量为()222,,=x y zn ,可算得(0,22AD =-,(1,2,AE =-,()1,1,0DB =,由0,0,AD AE ⎧⋅=⎪⎨⋅=⎪⎩m m即1111120,20,y x y ⎧--=⎪⎨--=⎪⎩可取(0,2=m . 由0,0,AD BD ⎧⋅=⎪⎨⋅=⎪⎩n n即222220,0,y x y ⎧-=⎪⎨+=⎪⎩可取(1,=-n .于是cos ,⋅===⋅m n m n m n 所求二面角是锐角,故二面角B AD E --的大小是π6. 评注 本题主要考查空间点、线、面位置关系,二面角等基础知识,空间向量的应用,同时考查空间想象能力、推理论证和运算求解能力.21. 解析 (I )设直线的方程为,由消去得.由于与只有一个公共点,故,即,解得点的坐标为.又点在第一象限,xl ()0y kx m k =+<2222,1y kx m x y a b=+⎧⎪⎨+=⎪⎩y ()22222222220b a k mx a kmx a m a b +++-=l C 0∆=22220b m a k -+=P 22222222,a km b m b a k b a k ⎛⎫- ⎪++⎝⎭P故点的坐标为. (II)由于直线过原点且与垂直,故直线的方程为,所以点到直线的距离,整理得因为,所以,当且仅当时等号成立.所以,点到直线的距离最大值为. 评注 本题主要考查椭圆的几何性质、点到直线的距离、直线与椭圆的位置关系等基础知识,同时考查解析几何的基本思想方法、基本不等式应用等综合解题能力.22. 解析 (I )因为()3333, ,33, ,x x a x a f x x x a x a ⎧+-⎪=⎨-+<⎪⎩…所以()2233, ,33, ,x x a f x x x a ⎧+⎪'=⎨-<⎪⎩…由于11x-剟,(i )当1a -…时,有x a …,故()333f x x x a =+-.此时()f x 在()1,1-上是增函数,因此,()()143M a f a ==-,()()143m a f a =-=--,故()()()()43438M a m a a a -=----=.(ii )当11a -<<时,若(),1x a ∈,则()333f x x x a =+-,在(),1a 上是增函数;若()1,a -,则()333f x x x a =-+在()1,a -上是减函数,所以,()()(){}max 1,1M a f f =-,()()3m a f a a ==,由于()()1162f f a --=-+,因此,当113a <…时,()()334M a m a a a -=--+;当113a <<时,()()332M a m a a a -=-++.(iii )当1a …时,有x a …,故()333f x x x a =-+,此时()f x ,在()1,1-上是减函数,因此,()()123M a f a =-=+,()()123m a f a ===-+,P 22P ⎛⎫1l O l 1l 0x ky +=P 1l d =22d =22222b a k ab k+ (22)22a b =-…2bk a=P 1l a b -故()()()()23234M a m a a a -=+--+=.综上,()()338, 1,134, 1, 3132, 1,34, 1,a a a a M a m a a a a a -⎧⎪⎪--+-<⎪-=⎨⎪-++<<⎪⎪⎩………(II )令()()h x f x b =+,则()3333, ,33, ,x x a b x a h x x x a b x a ⎧+-+⎪=⎨-++<⎪⎩…()2233,,33,.x x a h x x x a ⎧+⎪'=⎨-<⎪⎩卆因为()4f x b ⎡+⎤⎣⎦…对[]1,1x ∈-恒成立,即()22h x -剟对[]1,1x ∈-恒成立,所以由(I )知,(i )当1a -…时,()h x 在()1,1-上是增函数,()h x 在[]1,1-上的最大值是()143h a b =-+,最小值是()143h a b -=--+,则432a b -+-…且432a b -+…,矛盾.(ii )当113a -<…时,()h x 在[]1,1-上的最小值是()3h a a b =+,最大值是()143h a b =-+,所以32a b +-…且432a b -+…,从而323362a a a b a --++-剟且103a 剟.令()323t a a =--+,则()2330t a a '=->,()t a 在10,3⎛⎫⎪⎝⎭上是增函数,故()()02t a t =-…,因此230a b -+剟.(iii )当113a <<时,()h x 在[]1,1-上的最小值是()3h a a b =+,最大值是()132h a b -=++,所以32a b +-…且322a b ++…,解得283027a b -<+….(iv )当1a …时,()h x 在[]1,1-上的最大值是()123h a b -=++,最小值是()123h a b =-++,所以322a b ++…且322a b +--…,解得30a b +=.综上,得3a b +的取值范围是230a b -+剟.评注 本题主要考查函数最大(最小)值的概念,利用导数研究函数的单调性等基础知识,同时考查推理论证、分类讨论、分析问题和解决问题等综合解题能力.。
2014年浙江高考理科数学试题含答案(Word版)
2014年普通高等学校招生全国统一考试(浙江卷)数学(理科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设全集{}2|≥∈=x N x U ,集合{}5|2≥∈=x N x A ,则=A C U ( ) A. ∅ B. }2{ C. }5{ D. }5,2{(2)已知i 是虚数单位,R b a ∈,,则“1==b a ”是“i bi a 2)(2=+”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件(3)某几何体的三视图(单位:cm )如图所示,则此几何体的表面积是 A. 902cm B. 1292cm C. 1322cm D. 1382cm4.为了得到函数x x y 3cos 3sin +=的图像,可以将函数x y 3sin 2=的图像( ) A.向右平移4π个单位 B.向左平移4π个单位 C.向右平移12π个单位 D.向左平移12π个单位5.在46)1()1(y x ++的展开式中,记n m y x 项的系数为),(n m f ,则=+++)3,0(2,1()1,2()0,3(f f f f ) ( )A.45B.60C.120D. 2106.已知函数则且,3)3()2()1(0,)(23≤-=-=-≤+++=f f f c bx ax x x f ( )A.3≤cB.63≤<cC.96≤<cD. 9>c 7.在同意直角坐标系中,函数x x g x x x f a a log )(),0()(=≥=的图像可能是( )8.记,max{,},x x y x y y x y ≥⎧=⎨<⎩,,min{,},y x yx y x x y ≥⎧=⎨<⎩,设,a b 为平面向量,则( ) A.min{||,||}min{||,||}a b a b a b +-≤ B.min{||,||}min{||,||}a b a b a b +-≥C.2222min{||,||}||||a b a b a b +-≥+D.2222min{||,||}||||a b a b a b +-≤+9.已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个篮球()3,3m n ≥≥,从乙盒中随机抽取()1,2i i =个球放入甲盒中.(a )放入i 个球后,甲盒中含有红球的个数记为()1,2ii ξ=;(b )放入i 个球后,从甲盒中取1个球是红球的概率记为()1,2i p i =.则A.()()1212,p p E E ξξ><B.()()1212,p p E E ξξ<>C.()()1212,p p E E ξξ>>D.()()1212,p p E E ξξ<<10.设函数21)(x x f =,),(2)(22x x x f -=|2sin |31)(3x x f π=,99,,2,1,0,99==i ia i ,记|)()(||)()(||)()(|98991201a f a f a f a f a f a f I k k k k k k k -++-+-= ,.3,2,1=k 则A.321I I I <<B. 312I I I <<C. 231I I I <<D. 123I I I << 二、填空题:本大题共7小题,每小题4分,共28分.11.若某程序框图如图所示,当输入50时,则该程序运算后输出的结果是________.12.随机变量ξ的取值为0,1,2,若()105P ξ==,()1E ξ=,则()D ξ=________. 13.当实数x ,y 满足240,10,1,x y x y x +-≤⎧⎪--≤⎨⎪≥⎩时,14ax y ≤+≤恒成立,则实数a 的取值范围是________.14.、在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有_____种(用数字作答).15.设函数()⎪⎩⎪⎨⎧≥-<+=0,0,22x x x x x x f 若()()2≤a f f ,则实数a 的取值范围是______16.设直线)0(03≠=+-m m y x 与双曲线12222=-by a x (0a b >>)两条渐近线分别交于点B A ,,若点)0,(m P 满足PB PA =,则该双曲线的离心率是__________17、如图,某人在垂直于水平地面的墙面前的点处进行射击训练.已知点到墙面的距离为,某目标点沿墙面的射击线移动,此人为了准确瞄准目标点,需计算由点观察点的仰角的大小.若则的最大值19(本题满分14分)已知数列{}n a 和{}n b 满足()()*∈=N n a a a nb n 221 .若{}n a 为等比数列,且.6,2231b b a +== (1)求n a 与n b ;(2)设()*∈-=N n b a c nn n 11。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.基础题组
1.【2013学年浙江省五校联考理】已知[,],sin 2
π
απα∈=
,则sin 2α=_______.
2.【浙江省嘉兴一中2014届高三上学期入学摸底测试】函数)22
sin(
2x y -=π
是 ( ) A .最小正周期为π的奇函数
B . 最小正周期为
2
π
的奇函数
C .最小正周期为π的偶函数
D .最小正周期为
2
π
的偶函数
3.【浙江省绍兴市第一中学2014届高三上学期回头考理】已知cos 2θ=
44sin cos θθ-的值为 ( )
A
B C 1811
D 29-
4.【温州市十校联合体2014届高三10月测试理】函数)
sin()(ϕω+=x A x f (0,0>>ωA )的图象如右图所示,为了得到x A x g ωsin )(=的图象,可以将)(x f 的图象( ) A .向右平移
6
π
个单位长度 B .向左平移
3
π
个单位长度
C .向左平移
6
π
个单位长度 D .向右平移
3
π
个单位长度
5.【浙江省2014届金华一中高三9月月考数学试卷】已知cos 23
θ=
,则44
sin cos θθ-的值为( )
A . 3
B. 3-
C. 1811
D. 29-
【答案】B
6.【浙江省嘉兴一中2014届高三上学期入学摸底测试】ABC ∆的内角C B A ,,的对边分别
为c b a ,,,且B b C a C c A a sin sin 2sin sin =-+. 则=∠B ( ) A .
6
π
B .
4
π
C .
3
π
D .
4
3π
7.【浙江省2013学年第一学期十校联合体高三期初联考】25
242sin =a ,2
0π
α<
<,则
cos()4π
α-的值为( )
A .51
B .51-
C .51±
D .
57
8.【浙江省2013学年第一学期温州八校高三期初联考】在△ABC 中,内角C B A 、、的
对边分别为c b a 、、,已知cos sin a b C c B =+. (Ⅰ)求B ;
(Ⅱ)若2=b ,求△ABC 面积的最大值
.
9(1)求角的大小;
(2)若,求的最大值. 【答案】(1) 3
A π
=;(2) max ()4b c +=.
【解析】
试题分析:(1
)利用两角和与差的公式展开得tan A =再求角;(2)利用正弦定理进行边角互化,转化成一角一函数,结合6
B π
+
的范围求解其最值.
A 2a =b c +4sin()6
b c B π
+=+
所以 当且仅当,即时,取得最大值,……… 13分
故 . ……… 14分
(法二)由余弦定理得,即, ……… 6分
则 ,
又
则 ……… 12分 得 , 故 ,
6
2
B π
π
+
=
3
B π
=
sin()6
B π
+
1max ()4b c +=222
22cos
3
b c bc π
=+-22
4b c bc =+-2
4()3b c bc =+-2()2b c bc +≤22
()()434b c b c ++-≤⋅2
()16b c +≤4b c +≤
当且仅当时,. ……… 14分 考点:1.两角和与差公式;2.正余弦定理;3.基本不等式.
二.能力题组
1.【浙江省2013学年第一学期温州八校高三期初联考】设当x θ=时,函数
x x x f cos 2sin )(+=取得最大值,则cos θ= .
2.【浙江省2013学年第一学期温州八校高三期初联考】将函数x x y sin cos 3+=的图
像向左平移()0m m >个长度单位后,所得到的图像关于y 轴对称,则m 的最小值是( ) A.
12π B.6π C.3π D.6
5π
3.【浙江省嘉兴市2014届高三上学期9月月考理】已知()22cos 6sin cos f x x x x =-,
则函数()f x 的最大值是( )
b c =max ()4b c +=
11
4.【浙江省2013学年第一学期十校联合体高三期初联考】将函数
()
sin y x x x R =+∈的图像向左平移()0m m >个长度单位后,所得到的图像关于
y 轴对称,则m 的最小值是___________________.
5.【温州市十校联合体2014届高三10月测试理】(本题满分14分)
设)2
(
cos )cos sin (cos )(,2
x x x x x f R -+-=∈π
λλ满足)0()3(f f =-π
.
(1)求函数)(x f 的对称轴和单调递减区间; (2)设△ABC 三内角A,B,C 所对边分别为a,b,c 且
c
b a B A 2cos cos +-=,求)(x f 在(]A ,0上的值域.
三.拔高题组
1.【浙江省嘉兴一中2014届高三上学期入学摸底测试】已知x ,y 均为正数,)2
,4(ππθ∈,
且满足y x θθcos sin =,)
(310sin cos 222222y x y x +=+θθ,则y x
的值为 ____ .
2.【2013学年浙江省五校联考理】(本题满分14分)
已知向量(2sin ,1)m x =,2(3cos ,2cos )n x x =,函数()f x m n t =⋅-.
(Ⅰ)若方程()0f x =在[0,
]2
x π
∈上有解,求t 的取值范围;
(Ⅱ)在ABC ∆中,,,a b c 分别是A ,B ,C 所对的边,当(Ⅰ)中的t 取最大值且
()1,2f A b c =-+=时,求a 的最小值.
试题解析:。