2020届云南师范大学附属中学高三毕业班高考适应性月考卷(一)数学(理)试题及答案

合集下载

云南师大附中2020届高考数学适应性月考试题(一)理(含解析)新人教A版

云南师大附中2020届高考数学适应性月考试题(一)理(含解析)新人教A版

云南师大附中2020届高考适应性月考卷(一)理科数学【试卷综析】本试卷是高三理科试卷,以基础知识和基本技能为载体,以能力测试为主导,在注重考查学科核心知识的同时,突出考查考纲要求的基本能力,重视学生科学素养的考查.知识考查注重基础、注重常规、注重主干知识,兼顾覆盖面.试题重点考查:不等式、复数、向量、三视图、导数、简单的线性规划、直线与圆、圆锥曲线、立体几何、数列、函数的性质及图象、三角函数的性质、三角恒等变换与解三角形、命题、程序框图、排列组合、概率与随机变量分布列与期望、不等式选讲、几何证明选讲、参数方程极坐标等;考查学生解决实际问题的综合能力,是份较好的试卷.选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)【题文】1、已知全集U 和集合A 如图1所示,则()U C A B ⋂=A.{3}B.{5,6}C.{3,5,6}D.{0,4,5,6,7,8}【知识点】集合及其运算A1【答案解析】B 解析:由图易知()U A B =I ð{5,6}.则选B. 【思路点拨】本题主要考查的是利用韦恩图表示集合之间的关系,理解集合的补集与交集的含义是解题的关键. 【题文】2、设复数12,z z 在复平面内对应的点关于原点对称,11z i=+,则12z z =A.-2iB.2iC.-2D.2 【知识点】复数的概念与运算L4【答案解析】A 解析:11i z =+在复平面内的对应点为(1,1),它关于原点对称的点为(1,1)--,故21i z =--,所以212(1i)2i.z z =-+=-则选A.【思路点拨】通过复数的几何意义先得出2z ,再利用复数的代数运算法则进行计算.【题文】3、已知向量,a b r r 满足6a b -=r r 1a b •=r r,则a b +r r =6210【知识点】向量的数量积及其应用F3 【答案解析】C 解析:由已知得222222()226-=-=+-⋅=+-=a b a b a b a b a b ,即228+=a b ,所以2+=a b 222()210+=++⋅=a b a b a b ,即10.+=a b 则选C.【思路点拨】遇到求向量的模时,一般利用向量的模的平方等于向量的平方转化求解.【题文】4、曲线11ax y e x =++在点(0,2)处的切线与直线y=x+3平行,则a=A.1B.2C.3D.4 【知识点】导数的应用B12【答案解析】B 解析:21e (1)ax y a x '=-+,由题意得011x y a ='=-=,所以 2.a =则选B.【思路点拨】理解导数与其切线的关系是解题的关键.【题文】5、在△ABC 中,若sinC=2sinAcosB,则此三角形一定是A.等腰直角三角形B.直角三角形C.等腰三角形D.等边三角形 【知识点】解三角形C8【答案解析】C 解析:由已知及正、余弦定理得,22222a c b c a ac +-=,所以22a b =,即a b =.则选C.【思路点拨】判断三角形形状,可以用正弦定理及余弦定理把角的关系转化为边的关系,也可利用三角形内角和的关系进行转化求解.【题文】6、函数()2sin 3sin cos f x x x x =在区间,42ππ⎡⎤⎢⎥⎣⎦上的最大值是 A.1 B.13+ C.32 D.13【知识点】函数sin()y A x ωϕ=+的图象与性质C4【答案解析】C 解析:函21cos 231π()sin 3cos 2sin 2226x f x x x x x x -⎛⎫=+==+- ⎪⎝⎭, ππππ5π,,2,42636x x ⎡⎤⎡⎤∈-∈⎢⎥⎢⎥⎣⎦⎣⎦∵∴, ()f x 的最大值是32.则选C. 【思路点拨】一般研究三角函数的性质,通常先化成一个角的三角函数再进行解答.【题文】7、已知实数x,y 满足约束条件0024030220x y x y x y x y ≥⎧⎪≥⎪⎪+-≤⎨⎪+-≤⎪⎪+-≥⎩,则z=x+3y 的取值范围是A.[1,9]B.[2,9]C.[3,7]D.[3,9]【知识点】简单的线性规划问题E5【答案解析】B 解析:根据线性约束条件作出可行域, 如图1所示阴影部分.作出直线l :30x y +=,将直线l 向上平移至过点(0,3)M和(2,0)N位置时,max 0339z=+⨯=,min 230 2.z=+⨯=则选B.【思路点拨】本题先正确的作出不等式组表示的平面区域,再结合目标函数的几何意义进行解答.【题文】8、如图,网格纸上小方格的边长为1(表示1cm),图中粗线和虚线是某零件的三视图,该零件是由一个底面半径为4cm,高为3cm的圆锥毛坯切割得到,则毛坯表面积与切削得的零件表面积的比值为A.3 10B.510 C.710 D.910【知识点】三视图G2【答案解析】D解析:圆锥毛坯的底面半径为4cmr=,高为3cmh=,则母线长5cml=,所以圆锥毛坯的表面积2ππ36πS rl r=+=原表,切削得的零件表面积2π2140πS S=+⨯⨯=零件表原表,所以所求比值为910.则选D.【思路点拨】由三视图求几何体的表面积,关键是正确的分析原几何体的特征.【题文】9、若任取x,y∈[0,1],则点P(x,y)满足2y x>的概率为A.23 B.13 C.12 D.34【知识点】定积分几何概型K3 B13【答案解析】A解析:该题属几何概型,由积分知识易得点(,)P x y满足2y x>的面积为123112(1)33x dx x x⎛⎫-=-=⎪⎝⎭⎰,所以所求的概率为23.则选A.【思路点拨】当总体个数有无限多时的概率问题为几何概型,若事件与两个变量有关时,可归结为面积问题进行解答.【题文】10、已知椭圆()222210x y a b a b +=>>的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF ⊥x 轴,直线AB 交y 轴于点P ,若2AP PB =u u u r u u u r,则椭圆的离心率是 A.3 B.22 C.13 D.12【知识点】椭圆的几何性质H5【答案解析】D 解析:因为2AP PB =u u u r u u u r ,则12,2,2OA OF a c e ===∴∴.则选D. 【思路点拨】求椭圆的离心率一般先结合条件寻求a,b,c 关系,再结合离心率的定义解答即可.【题文】11、把边长为2的正三角形ABC 沿BC 边上的高AD 折成直二面角,设折叠后BC 中点为M ,则AC 与DM 所成角的余弦值为A.23B.24C.3D.3【知识点】异面直线所成的角G11【答案解析】B 解析:建立如图2所示的空间直角坐标系D xyz -, 则(0,0,3),(1,0,0),(0,1,0),A B C11,,0,(0,0,0),2211(0,1,3),,,0,222cos ,M D AC DM AC DM AC DM AC DM⎛⎫⎪⎝⎭⎛⎫== ⎪⎝⎭⋅〈〉==u u u r u u u u r u u u r u u u u r u u u r u u u u ru u u r u u u u r ∴∴则AC 与DM 所成角的余弦值为24.所以选C. 本题也可用几何法:在△ABC 中过点M 作AC的平行线,再解三角形即得.【思路点拨】求异面直线所成角时,可先考虑用定义法作出其平面角,再利用三角形解答,若作其平面角不方便时,可采取向量法求解.【题文】12、函数()()3f x x x x R =+∈当02πθ<<时,()()sin 10f a f a θ+->恒成立,则实数a 的取值范围是A.(﹣∞,1]B.(﹣∞,1)C.(1, +∞)D.(1, +∞) 【知识点】奇函数 函数的单调性B3 B4【答案解析】A 解析:2()130f x x '=+>,故3()()f x x x x =+∈R 在R 上单调递增,且为奇函数,所以由(sin )(1)0f a f a θ+->得(sin )(1)f a f a θ>-,从而sin 1a a θ>-,即当π02θ<<时,1sin 1a θ<--恒成立,所以1a ≤.则选A. 【思路点拨】本题可先利用奇函数及函数的单调性进行转化,再把不等式恒成立问题转化为函数的最值问题进行解答.二、填空题(本大题共4小题,每小题5分,共20分)【题文】13、定义一种新运算“⊗”:S a b =⊗,其运算原理如图3的程序框图所示,则3654⊗-⊗=_______.【知识点】程序框图L1【答案解析】﹣3解析:由框图可知(1),,(1),.a b a b S b a a b ->⎧=⎨-⎩≤ 从而得36546(31)5(41)3⊗-⊗=---=-.【思路点拨】读懂程序框图,理解所定义的新运算,即可解答. 【题文】14、等比数列{}n a 的前n 项和为nS ,且1234,2,a a a 成等差数列,若11a =,则4S =_____.【知识点】等比数列与等差数列D2 D3 【答案解析】15解析:1234,2,a a a ∵成等差数列,2213211144,44,440,a a a a a q a q q q +=+=-+=∴即∴42,15q S ==∴.【思路点拨】遇到等差数列与等比数列,若无性质特征,则用其公式转化为首项与公比关系进行解答.【题文】15、关于sinx 的二项式()1sin nx +的展开式中,末尾两项的系数之和为7,且系数最大的一项的值为52,当x ∈[0, π]时,x=___________.【知识点】二项式定理J3【答案解析】π6或5π6.解析:1C C 17n n nnn -+=+=,故6n =,所以第4项的系数最大,于是3365C sin 2x =,所以,31sin 8x =,即1sin 2x =,又[0,π]x ∈,所以π6x =或5π6.【思路点拨】一般遇到二项展开式某项或某项的系数问题,通常结合展开式的通项公式进行解答.【题文】16、已知函数()3232a b f x x x cx d =+++(a <b)在R 上单调递增,则a b c b a ++-的最小值为______.【知识点】导数的应用 基本不等式B12 E6【答案解析】3解析:由题意2()0f x ax bx c '=++≥在R 上恒成立,故0b a >>,24b c a ≥,于是a b c b a ++-≥2211441b b b a b a a a b b a a ⎛⎫++++ ⎪⎝⎭=--,设b ta =(1)t >,则问题等价于求函数244()4(1)t t g t t ++=-(1)t >的最小值,又()()244191()166634(1)414t t g t t t t ++⎡⎤==-++≥+=⎢⎥--⎣⎦,由此可得min ()(4)3g t g ==.【思路点拨】先由函数的单调性结合导数得到abc 的关系,再通过换元法转化为熟悉函数的最小值问题.三、解答题(共70分,解答应写出文字说明,证明过程或演算步骤) 【题文】17、(本小题满分12分)一个口袋内有5个大小相同的球,其中有3个红球和2个白球.(1)若有放回的从口袋中连续的取3次球(每次只取一个球),求在3次摸球中恰好取到两次红球的概率;(2)若不放回地从口袋中随机取出3个球,求取到白球的个数ξ的分布列和数学期望E(ξ). 【知识点】概率 离散随机变量的分布列和数学期望K6 K7【答案解析】(1) 54125(2)6()5E ξ=解析:(1)设在3次有放回的摸球中恰好取到两次红球的概率为P ,由题设知, 21233354C 155125P ⎛⎫⎛⎫=-=⎪⎪⎝⎭⎝⎭.(2)白球的个数ξ可取0,1,2,3211233232333555C C C C C 133(0),(1),(2)C 10C 5C 10P P P ξξξ=========.所以ξ的分布列如下表:ξ 0 1 2P110 35 310()012105105E ξ=⨯+⨯+⨯=.【思路点拨】求离散随机变量的分布列一般先确定随机变量的所有取值,再计算各个取值的概率,最后得分布列并计算期望. 【题文】18、(本小题满分12分) 如图4,在斜三棱柱111ABC A B C -中,点O 、E 分别是111,A C AA 的中点,111AO A B C ⊥平面,已知∠BCA=90°,12AA AC BC ===.(1)证明:OE ∥平面11AB C ;(2)求直线11A C 与平面11AA B 所成角的正弦值.【知识点】直线与平面平行,线面所成的角G4 G11【答案解析】(1) 略(2) 21解析:方法一:(1)证明:∵点O 、E 分别是11A C 、1AA 的中点,∴1OE AC ∥,又∵OE ⊄平面11AB C ,1AC ⊂平面11AB C , ∴OE ∥平面11AB C .(2)解:设点1C 到平面11AA B 的距离为d ,∵111111A ABC C AA B V V --=,即1111111323AC B C AO ⋅⋅⋅⋅=⋅11AA B S d ⋅△.又∵在11AA B △中,1112A B AB ==,∴11AA B S △7=217d =,∴11A C 与平面11AA B 所成角的正弦值为217.方法二:建立如图3所示的空间直角坐标系O xyz -,则(0,0,3)A ,113(0,1,0),0,,2A E ⎛-- ⎝⎭,1(0,1,0)C ,1(2,1,0)B ,(0,2,3)C .(1)证明:∵OE =u u u r 130,,2⎛- ⎝⎭, 1(0,1,3)AC =u u u u r,∴112OE AC =-u u u r u u u u r ,∴1OE AC ∥,又∵OE ⊄平面11AB C ,1AC ⊂平面11AB C ,∴OE ∥平面11AB C .(2)解:设11A C 与平面11AA B 所成角为θ,∵11(0,2,0)A C =u u u u r ,11(2,2,0)A B =u u u u r,1(0,1,3)A A =u u u r.设平面11AA B 的一个法向量为(,,)n x y z =r,111220,0,30,0,x y A B n y z A A n ⎧+=⎧⋅=⎪⎪⎨⎨+=⎪⋅=⎪⎩⎩u u u u r r u u u r r 则即 不妨令1x =,可得31,1,n ⎛=- ⎝⎭r , ∴1121sin cos ,723AC n θ=〈〉==⋅u u u u r r,∴11A C 与平面11AA B 所成角的正弦值为21.【思路点拨】证明直线与平面平行通常利用线面平行的判定定理,求线面所成角可以先作出其平面角,再利用三角形求解,若直接作角不方便时可考虑用向量的方法求解.【题文】19、设数列{}n a 满足10a =且*11.2n na n N a +=∈-.(1)求证数列11n a ⎧⎫⎨⎬-⎩⎭是等差数列,并求数列{}n a 的通项公式;(2)设n nb S =为数列{}n b 的前n 项和,证明:n S <1.【知识点】等差数列 数列求和D2 D4【答案解析】(1)11n a n =-.(2)略 解析:(1)解:将112n na a +=-代入11111n na a +---可得111111n na a +-=--,即数列11n a ⎧⎫⎨⎬-⎩⎭是公差为1的等差数列.又1111,,11nn a a ==--故所以11n a n =-.(2)证明:由(Ⅰ)得n b ===1111nnn k k k S b ====-=-<∑∑.【思路点拨】证明数列为等差数列通常利用等差数列的定义证明,遇到与数列的和有关的不等式可先考虑能否求和再证明. 【题文】20、已知函数()()1ln f x ax x a R =--∈.(1)讨论函数f(x)在定义域内的极值点的个数; (2)若函数f(x)在x=1处取得极值,对()()0,,2x f x bx ∀∈+∞≥-恒成立,求实数b 的取值范围.【知识点】导数的应用B12【答案解析】(1) 当0a ≤时,没有极值点;当0a >时,有一个极值点. (2)211e b -≤解析:(1)11()ax f x a x x -'=-=, 当0a ≤时,()0f x '<在(0,)+∞上恒成立,函数()f x 在(0,)+∞上单调递减,∴()f x 在(0,)+∞上没有极值点; 当0a >时,由()0f x '<得10x a <<,由()0f x '>得1x a >,∴()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a⎛+∞⎫⎪⎝⎭上单调递增,即()f x 在1x a =处有极小值. ∴当0a ≤时,()f x 在(0,)+∞上没有极值点;当0a >时,()f x 在(0,)+∞上有一个极值点.(2)∵函数()f x 在1x =处取得极值,∴1a =,∴1ln ()21x f x bx b x x -⇔+-≥≥,令1ln ()1x g x x x =+-,可得()g x 在2(0,e ]上递减,在2[e ,)+∞上递增,∴2min 21()(e )1e g x g ==-,即211e b -≤. 【思路点拨】一般遇到不等式恒成立求参数范围问题,通常分离参数转化为函数的最值问题进行解答.【题文】21、如图5,已知抛物线C:()220y px p =>和圆M :()2241x y -+=,过抛物线C 上一点H()00,x y ()01y ≥作两条直线与圆M 相切于A,B 两点,圆心M 到抛物线准线的距离为174.(1)求抛物线C 的方程;(2)若直线AB 在y 轴上的截距为t ,求t 的最小值.【知识点】抛物线 直线与圆锥曲线H8 H7【答案解析】(1) 2y x = (2) min 11t =-解析:(1)∵点M 到抛物线准线的距离为42p +=174,∴12p =,即抛物线C 的方程为2y x =.(2)方法一:设1122(,),(,)A x y B x y ,∵114MA y k x =-,∴114HA x k y -=,可得,直线HA 的方程为111(4)4150x x y y x --+-=,同理,直线HB 的方程为222(4)4150x x y y x --+-=,∴210101(4)4150x y y y x --+-=,220202(4)4150x y y y x --+-=,∴直线AB 的方程为22000(4)4150y x y y y --+-=,令0x =,可得000154(1)t y y y =-≥,∵t 关于0y 的函数在[1,)+∞上单调递增,∴min 11t =-.方法二:设点2(,)(1)H m m m ≥,242716HM m m =-+,242715HA m m =-+.以H 为圆心,HA 为半径的圆方程为22242()()715x m y m m m -+-=-+,① ⊙M 方程为22(4)1x y -+=.② ①-②整理得直线AB 的方程为:2242(24)(4)(2)714x m m y m m m m -----=-+.当0x =时,直线AB 在y 轴上的截距154t m m =-(1)m ≥,∵t 关于m 的函数在[1,)+∞上单调递增,∴min 11t =-.【思路点拨】求抛物线的方程关键是利用圆心到其准线的距离求p ,求两切点所在直线方程,可利用两圆的公共弦所在直线方程的方法进行解答.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.【题文】22、(本小题10分)[选修4-1:几何证明选讲]如图6,直线AB 经过圆O 上一点C ,且OA=OB,CA=CB,圆O 交直线OB 于E,D.(1)求证:直线AB 是圆O 的切线;(2)若1tan 2CED ∠=,圆O 的半径为3,求OA 的长.【知识点】几何证明选讲N1【答案解析】(1)略; (2)5解析:(1)证明:如图4,连接OC ,∵,,OA OB CA CB ==∴OC AB ⊥,∴AB 是⊙O 的切线.(2)解:∵ED 是直径,∴90ECD ∠=︒,在Rt△ECD 中,∵1tan 2CED ∠=, ∴12CD EC =.∵AB 是⊙O 的切线, ∴BCD E ∠=∠,又∵CBD EBC ∠=∠,∴ △BCD∽△BEC, ∴BD BC =CD EC =12,设,BD x =则2BC x =,又2BC BD BE =⋅,∴2(2)(6)x x x =⋅+, 解得:120,2x x ==, ∵0BD x =>, ∴2BD =,∴235OA OB BD OD ==+=+=.【思路点拨】证明直线是圆的切线,只需证明圆心到直线的距离等于圆的半径,若直线与圆有公共点,则公共点为切点;第二问利用三角形相似解答即可.【题文】23、(本小题10分)[选修4-4:坐标系与参数方程]在直角坐标系xOy 中,直线l 的参数方程为232252x t y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为5ρθ=.(1)求圆C 的圆心到直线l 的距离;(2)设圆C 与直线l 交于点A,B ,若点P 的坐标为(5,求PA PB +.【知识点】坐标系与参数方程N3【答案解析】(1)32(2)32解析:(1)由5ρθ=,可得22250x y +-=, 即圆C 的方程为22(5)5x y +-=. 由23,25,x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数)可得直线l 的方程为530x y +=. 所以,圆C 的圆心到直线l 0553322+--.(2)将l 的参数方程代入圆C的直角坐标方程,得2235⎛⎫⎫+= ⎪⎪ ⎪⎪⎝⎭⎝⎭,即240t -+=.由于24420∆=-⨯=>.故可设12t t 、是上述方程的两个实根,所以12124t t t t ⎧+=⎪⎨⋅=⎪⎩.又直线l过点(3P , 故由上式及t的几何意义得1212||||||||PA PB t t t t +=+=+=.【思路点拨】一般由参数方程或极坐标方程研究曲线之间的位置关系不方便时,可转化为直角坐标方程进行解答;第二问可利用直线参数的几何意义进行解答.【题文】24、(本小题10分)[选修4-5:不等式选讲]已知一次函数f(x)=ax -2.(1)解关于x 的不等式()4f x <; (2)若不等式()3f x ≤对任意的x ∈[0,1]恒成立,求实数a 的范围.【知识点】不等式选讲N4【答案解析】(1) 当0a >时,不等式的解集为26x x a a ⎧⎫-<<⎨⎬⎩⎭;当0a <时,不等式的解集为62x x a a ⎧⎫<<-⎨⎬⎩⎭.(2) 15a -≤≤且a ≠0.解析:(1)()4f x <⇔24ax -<⇔424ax -<-<⇔26ax -<<,当0a >时,不等式的解集为26x x a a ⎧⎫-<<⎨⎬⎩⎭;当0a <时,不等式的解集为62x x a a ⎧⎫<<-⎨⎬⎩⎭.(2)()3f x ≤⇔23ax -≤⇔323ax --≤≤⇔15ax -≤≤⇔5,1,ax ax ⎧⎨-⎩≤≥∵[0,1]x ∈,∴当x =0时,不等式组恒成立;当x≠0时,不等式组转化为5,1, axax ⎧⎪⎪⎨⎪-⎪⎩≤≥又∵515,1x x--≥≤,所以15a-≤≤且a≠0.【思路点拨】解绝对值不等式的关键是去绝对值,可利用性质、分段讨论等方法,对于不等式恒成立求参数范围问题,通常分离参数转化为函数的最值问题进行解答.。

云南师大附中2020届高考适应性月考卷及其答案(理数)

云南师大附中2020届高考适应性月考卷及其答案(理数)
2
0
.
3 1 ,
17.(云南师大附中 2020 届高考适应性月考卷(一)理数)某调研机构,对本地 22,50 岁的人群随
机抽取 200 人进行了一次生活习惯是否符合低碳观念的调查,将生活习惯符合低碳观念的称为“低 碳族”,否则称为“非低碳族”,结果显示,有100 人为“低碳族”,该100 人的年龄情况对应的频率 分布直方图如图. (1)根据频率分布直方图,估计这100 名“低碳族”年龄的平均值、中位数;
NO
2
所以 N 的轨迹是以底面 ABCD 的中心 O 为圆心,以 1 为半径的圆, 2
则 N 的轨迹围成的封闭图象的面积为 S π . 4
16.(云南师大附中
2020
届高考适应性月考卷(一)理数)设
F1
,
F2
为椭圆 C
:
x2 4
y2
1 的两个焦
点, M 为 C 上一点,且 △MF1F2 的内心 I 的纵坐标为 2 3 ,则 F1MF2 的余弦值为____________. 答案:0. 解析:(黑龙江七台河)
(2)若在“低碳族”且年龄在 30,34 ,34,38 的两组人群中,用分层抽样的方法抽取 30 人,试估
算每个年龄段应各抽取多少人?
答案:见解析. 解析:(黑龙江七台河)
第一套 - 3
(1)100 位“低碳族”的年龄平均值 x 为 x 24 0.04 28 0.08 32 0.16 36 0.44 40 0.16 44 0.1 48 0.0 2 35.92 36 ,
正切值为 2 ,则点 N 的轨迹围成的封闭图像的面积为
.
答案: π . 4
解析:(湖北十堰)
如图,由题意知,M 在底面 ABCD 内的投影为底面 ABCD 的中心 O ,连接 ON ,

云南省2020届高三适应性考试数学试题(A卷)(理)

云南省2020届高三适应性考试数学试题(A卷)(理)

云南省2020届高三适应性考试数学试题(A 卷)(理)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有 一项是符合题目要求的。

1.已知集合2{|0}A x x x =+≤,{|ln(21)}B x y x ==+,则A B =( )A .1(,0]2-B .1[,0]2-C .1[0,)2D .1[1,]2--2.已知i 是虚数单位,复数2(12i)-的共轭复数虚部为( ) A .4iB .3C .4D .4-3.已知向量(3,2)=a ,(1,1)=-b ,若()λ+⊥a b b ,则实数λ=( ) A .12-B .12C .1-D .14.已知(1)n x +的展开式的各项系数和为32,则展开式中4x 的系数为( ) A .5B .10C .15D .205.已知命题:0p x ∀≥,1x e ≥或sin 1x ≤,则p ⌝为( ) A .0x ∃<,1x e <且sin 1x > B .0x ∃<,1x e ≥或sin 1x ≤ C .0x ∃≥,1x e <且sin 1x >D .0x ∃≥,1x e <或sin 1x >6.已知函数()f x 满足(1)(1)f x f x -=+,当(,1]x ∈-∞时,函数()f x 单调递减,设41lo ()g 2a f =,13lo ()g 3b f =,3lo (9)gc f =,则a ,b ,c 的大小关系是( )A .a b c <<B .c a b <<C .a c b <<D .c b a <<7.已知一个几何体的三视图如右图所示,则该几何体的表面积为( )A.4+12π 12π+ D.4+ 8.受新冠肺炎疫情影响,某学校按上级文件指示,要求错峰放学,错峰有序吃饭。

高三年 级一层楼六个班排队,甲班必须排在前三位,且丙班、丁班必须排在一起,则这六个班排队 吃饭的不同安排方案共有( ) A .240种B .188种C .120种D .156种9.如图,在正方体1111ABCD A B C D -中,点P 在线段1BC 上运动,则下列判断中正确的是( )①平面1PB D ⊥平面1ACD ②.1A P ∥平面1ACD③异面直线1A P 与1AD 所成角的取值范围是π(0,]3④.三棱锥1D APC -的体积不变 A. ①③ B. ①②④ C. ①③④ D. ③④ 10.若函数)2,0)(sin(2)(πθπωθω<<>+=x x f 的图象过点)(,30x f ),(在 ),(π0 只有两个零点,则ω的最值情况为 A .最小值为31,最大值为34B .无最小值,最大值为34C .无最小值,最大值为37D .最小值为31,最大值为37 11.数学上有很多著名的猜想,角谷猜想就是其中之一,它是指对于任意一个正整数,如果 是奇数,则乘3加1,如果是偶数,则除以2,得到的结果再按照上述规则重复处理,最终 总能够得到1。

2020届云南师大附中高考适应性月考数学(理)试题Word版含答案

2020届云南师大附中高考适应性月考数学(理)试题Word版含答案

2020届云南师大附中高考适应性月考数学(理)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{1,}A y y x x R ==+∈,集合2{1,}B y y x x R ==-+∈,则A B =( )A .{(0,1)}B .{1}C .φD .{0} 2. 已知复数11iz i+=-,则z =( ) A .2 BC .4 D3.已知平面向量,a b 的夹角为045,(1,1)a =,1b =,则a b +=( ) A .2 B .3 C .4 D 4.将函数()sin(2)3f x x π=+的图象向左平移6π个单位,所得的图象所对应的函数解析式是( )A .sin 2y x =B .cos 2y x = C. 2sin(2)3y x π=+D .sin(2)6y x π=- 5.等差数列{}n a 的前n 项和为n S ,且2813a a +=,735S =,则8a =( ) A .8 B .9 C.10 D .116.已知点(,)P x y 在不等式组20020x y x y y -≥⎧⎪-≤⎨⎪-≤⎩,表示的平面区域上运动,则z x y =+的最大值是( )A .4B .3 C.2 D .17.从某社区随机选取5名女士,其身高和体重的数据如下表所示:根据上表可得回归直线方程0.6y x a =+,据此得出a 的值为( ) A .43.6 B .-43.6 C.33.6 D .-33.68.若直线20ax by +-=(0,0a b >>)始终平分圆22222x y x y +--=的周长,则112a b+的最小值为( ) A .3224- B .3222- C. 3222+ D .3224+ 9.函数()sin lg f x x x =-的零点个数是( ) A .2 B .3 C.4 D .510.已知,,,,,a b c A B C 分别是ABC ∆的三条边及相对三个角,满足::cos :cos :cos a b c A B C =,则ABC ∆的形状是( )A .等腰三角形B .等边三角形 C.直角三角形 D .等腰直角三角形 11.已知正三棱锥S ABC -及其正视图如图 所示,则其外接球的半径为( )A .33 B .433 C. 536 D .73612.定义在R 上的偶函数()f x ,当0x ≥时,32()ln(1)xf x e x x =+++,且()()f x t f x +>在(1,)x ∈-+∞上恒成立,则关于x 的方程(21)f x t +=的根的个数叙述正确的是( ) A .有两个 B .有一个 C.没有 D .上述情况都有可能第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 121()x x+展开式中常数项是 .14.执行如图所示的程序框图后,输出的结果是 .(结果用分数表示)15.已知双曲线22221x y a b-=(0,0a b >>)的右焦点为F ,过F 作x 轴的垂线,与双曲线在第一象限内的交点为M ,与双曲线的渐近线在第一象限的交点为N ,满足MN MF =,则双曲线离心率的值是 .16.设O 是ABC ∆的三边垂直平分线的交点,H 是ABC ∆的三边中线的交点,,,a b c 分别为角,,A B C 的对应的边,已知22240b b c -+=,则AH AO •的取值范围是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知数列{}n a 满足11a =,123n n a a +=+(*n N ∈). (1)求证:数列{3}n a +是等比数列;(2)若{}n b 满足(21)(3)n n b n a =-+,求数列{}n b 的前n 项和n S .18. 某班级体育课举行了一次“投篮比赛”活动,为了了解本次投篮比赛学生总体情况,从中抽取了甲乙两个小组样本分数的茎叶图如图所示.甲 乙(1)分别求出甲乙两个小组成绩的平均数与方差,并判断哪一个小组的成绩更稳定:(2)从甲组成绩不低于60分的同学中,任意抽取3名同学,设ξ表示所抽取的3名同学中得分在[60,70)的学生个数,求ξ的分布列及其数学期望.19. 如图,在长方体1111ABCD A B C D -中,1AC 与平面11A ADD 及平面ABCD 所成角分别为030,045,,M N 分别为1AC 与1A D 的中点,且1MN =. (1)求证:MN ⊥平面11A ADD ;(2)求二面角1A AC D --的平面角的正弦值.20. 已知椭圆:C 22221x y a b+=(0,0a b >>)的两个顶点分别为(,0)A a -,(,0)B a ,点P 为椭圆上异于,A B 的点,设直线PA 的斜率为1k ,直线PB 的斜率为2k ,1212k k =-. (1)求椭圆C 的离心率;(2)若1b =,设直线l 与x 轴交于点(1,0)D -,与椭圆交于,M N 两点,求OMN ∆的面积的最大值.21. 设函数2()ln f x x x b x =++(1)若函数()f x 在1[,)2+∞上单调递增,求b 的取值范围; (2)求证:当1n ≥时,5ln ln(1)ln 24n n -+<-请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程已知曲线C 的参数方程为:2cos 3sin x y θθ=⎧⎪⎨=⎪⎩(θ为参数),直线l 的参数方程为:13x ty t =+⎧⎪⎨=⎪⎩(t 为参数),点(1,0)P ,直线l 与曲线C 交于,A B 两点.(1)分别写出曲线C 在直角坐标系下的标准方程和直线l 在直角坐标系下的一般方程; (2)求11PA PB+的值. 23.选修4-5:不等式选讲 已知函数()12f x x x =++-.(1)请写出函数()f x 在每段区间上的解析式,并在图中的直角坐标系中作出函数()f x 的图象; (2)若不等式2122x x a a ++-≥+对任意的实数x 恒成立,求实数a 的取值范围.2020届云南师大附中高考适应性月考数学(理)试题答案一、选择题(本大题共12小题,每小题5分,共60分)11.由三视图知:三棱锥S ABC-是底面边长为的正三棱锥,设其外接球的半径为R,则有:22)4R R=-+,解得:R=,故选D.12.由题意知:32()e ln(1)xf x x x=+++在(0)+∞,上单调递增,()()f x t f x+>在(1)x∈-+∞,上恒成立,必有2t≥,则(21)f x t+=的根有2个,故选A.13.36122112121C Crrr r rrT xx--+⎛⎫==⎪⎝⎭,3602r-=,解得:4r=,代入得常数项为495.14.该程序执行的是11111111112913248102132481045S⎛⎫=+++=-+-++-=⎪⨯⨯⨯⎝⎭.15.由已知:22||||b bc bFM MNa a a==-,,由||||FM MN=知:22bc ba a=,2c b e==∴,∴.16.2211()3322b cAH AO AB AC AO⎛⎫=+=+⎪⎝⎭,又22240b b c-+=,代入得:AH AO=2221421(4)3226b b bb b⎛⎫-+=-⎪⎝⎭,又22240c b b=-+>,所以02b<<,代入得AH AO的取值范围为23⎛⎫⎪⎝⎭,.三、解答题(共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)(Ⅰ)证明:因为123n n a a +=+,所以132(3)n n a a ++=+, 而11a =,故数列{3}n a +是首项为4,公比为2的等比数列.(Ⅱ)解:由(Ⅰ)得数列{3}n a +是首项为4,公比为2的等比数列,即132n n a ++=,因此123n n a +=-. 所以1(21)2n n b n +=-,2311232(21)2n n S n +=⨯+⨯++-⨯,① 34221232(21)2n n S n +=⨯+⨯++-⨯,②①−②有231222(22)(21)2n n n S n ++-=+++--⨯,所以2(23)212n n S n +=-+.18.(本小题满分12分)解:(Ⅰ)5160626371748182688x +++++++==甲, 5862646669717381688x +++++++==乙,222222222(5168)(6068)(6268)(6368)(7168)(7468)(8168)(8268)8s -+-+-+-+-+-+-+-=甲103=,222222222(5868)(6268)(6468)(6668)(6968)(7168)(7368)(8168)8s -+-+-+-+-+-+-+-=乙45=,所以乙组的成绩更稳定.(Ⅱ)由题意知ξ服从参数为3,3,7的超几何分布,即(337)H ξ,,,ξ的取值可能为:0,1,2,3, 3437C 4(0)C 35P ξ===,214337C C 18(1)C 35P ξ===,124337C C 12(2)C 35P ξ===,3337C 1(3)C 35P ξ===,ξ的分布列为:ξ0 1 2 3 P43518351235135ξ的数学期望:339()77E ξ⨯==. 19.(本小题满分12分)(Ⅰ)证明:在长方体1111ABCD A B C D -中,因为11M N A C A D ,分别为,的中点,所以MN 为1A CD △的中位线, 所以MN ∥CD ,又因为CD ⊥平面11A ADD , 所以MN ⊥平面11A ADD .(Ⅱ)解:在长方体1111ABCD A B C D -中,因为CD ⊥平面11A ADD , 所以1CA D ∠为1A C 与平面11A ADD 所成的角, 即1CA D ∠=30︒,又因为1A A ⊥平面ABCD ,所以1A CA ∠为1A C 与平面ABCD 所成的角, 即145A CA ∠=︒,所以1MN =,2CD =,14A C =,1A A =AC =,如图2,分别以AB ,AD ,1AA 所在直线为x ,y ,z 轴建立空间直角坐标系A xyz -,∴A(0,0,0),D(0,2,0),1(22C ,,,1(00A ,,,C(2,2,0),B(2,0,0), 在正方形ABCD 中,BD ⊥AC ,∴BD 是平面1A AC 的法向量,(220)BD =-,,. 设平面1A CD 的法向量为()n x y z =,,,由(200)DC =,,,1(02DA =-,,,所以有202220x y z =⎧⎪⎨-+=⎪⎩,, ∴02x y z =⎧⎪⎨=⎪⎩,,取z=1,得平面1A CD 的一个法向量为(021)n =,,. 设二面角1A A C D --的大小为α,则223|cos |3223α==.∴36sin =α.20.解:(Ⅰ)00()P x y 设,,代入椭圆的方程有:2200221x y a b +=,整理得:2222002()b y x a a =--,又10y k x a=+,20y k x a=-,所以201222012y k k x a ==--,212212b k k a =-=-联立两个方程有,22c e a =解得:.(Ⅱ)由(Ⅰ)知222a b =,又1b =,所以椭圆C 的方程为22121x y +=.设直线l 的方程为:1x my =-,代入椭圆的方程有:22(2)210m y my +--=,设1122()()M x y N x y ,,,, 1212222122m y y y y m m -+==++由韦达定理:,,121||||2OMNS OD y y =-===△所以,(1)t t =≥,则有221m t =-,代入上式有1OMNS t ==△,当且仅当1t =,即0m =时等号成立, 所以OMN △.21.(Ⅰ)解:22()21b x x bf x x x x ++'=++=,当0b ≥时,在12⎡⎫+∞⎪⎢⎣⎭,上()0f x '≥恒成立,所以()f x 在12⎡⎫+∞⎪⎢⎣⎭,上单调递增成立, 当0b <时,由220x x b ++=,解得x =易知,()f x在0⎛ ⎝上单调递减,在⎫+∞⎪⎪⎭上单调递增,12≤,解得1b -≥. 综上所述,1b -≥.(Ⅱ)证明:由(Ⅰ)知,当1b =-时,()f x 在12⎡⎫+∞⎪⎢⎣⎭,上单调递增, 对任意1n ≥,有112n n +≥成立,所以112n f f n ⎛⎫⎛⎫⎪ ⎪+⎝⎭⎝⎭≥,代入()f x 有23ln ln 21114n n n n n n ⎛⎫⎛⎫+-+ ⎪ ⎪+++⎝⎭⎝⎭≥,整理得:2223ln 2ln (1)41n n n n n +⎛⎫-- ⎪++⎝⎭≥. 22.解:(Ⅰ)曲线C 的标准方程为:22143x y +=, 直线l0y -=.(Ⅱ)将直线l的参数方程化为标准方程:112()x t t y ⎧=+⎪⎪⎨⎪=⎪⎩,为参数,, 代入椭圆方程得:254120t t +-=,解得12625t t ==-,,所以12114||11||||||3PA PB t t +=+=.23.解:(Ⅰ)12(1)()3(12)21(2)x x f x x x x -<-⎧⎪=-⎨⎪->⎩,≤≤,,函数的图象如图所示.(Ⅱ)由(Ⅰ)知()f x 的最小值是min ()3f x =,所以要使不等式2|1||2|2x x a a ++-+≥恒 成立,有232a a +≥,解之得[31]a ∈-,.。

2020届云南省名校高考适应性月考统一考试数学(理)试题Word版含解析

2020届云南省名校高考适应性月考统一考试数学(理)试题Word版含解析

2020届云南省名校高考适应性月考统一考试数学(理)试题一、单选题1.已知集合{}2=680A x N x x ∈-+≤,集合{}=28x B x ≥,则A ∩B =()A .{3,4}B .{2,3,4}C .{2,3}D .{4} 【答案】A【解析】直接计算出A 、B 两集合,就能求出答案【详解】集合{}2,3,4A =,{|B x x =≥}3,所以{}3,4A B =I .选A .【点睛】集合的交集运算.属于简单题2.设复数z 满足()1+2i z =,则复平面内z 表示的点位于()A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D【解析】由复数的四则运算求出z ,就能判别相应选项.【详解】因为(1i)2z +=,所以22(1i)1i 1i (1i)(1i)z -===-++-,则复平面内表示z 的点位于第四象限.选D . 【点睛】复数四则运算,属于简单题.3.已知正项等比数列{}n a 中,234a a a ⋅=,若331S =,则n a =()A .2•5nB .2•-15nC .5nD .-15n 【答案】D【解析】考查等比数列的定义,通过234a a a ⋅=,331S =就可以求出数列通项公式.【详解】 由234·a a a =得23111·a q a q a q =,即211a a =,解得11a =.又因为3S =12331a a a ++=,即2131q q ++=,解得5q =,所以15n n a -=.选D .考查等比数列定义,属于简单题.4.设a =0.60.6,b =log 0.61.5,c =1.50.6,则a ,b ,c 的大小关系是()A .a <b <cB .a <c <bC .b <a <cD .b <c <a【答案】C【解析】这是三个不同类型的数字,所以和中间值0和1比较大小,从而得到,,a b c 的大小关系.【详解】解析:因为0.6000.60.61a <=<<,0.60.6log 1.5log 10b =<<,0.601.5 1.51c =>>,所以b a c <<,选C .【点睛】本题考查了指数和对数比较大小,一般同类型的数按单调性比较大小,或是和中间值0,1比较大小. 5.若平面单位向量a r ,b r ,c r 不共线且两两所成角相等,则a b c ++r r r =()AB .3C .0D .1 【答案】C【解析】首先判断向量两两所成的角为120o ,再根据a b c ++=r r r .【详解】 解析:设向量,a b r r 两两所成的角为θ ,则平面不共线向量a r ,b r ,c r 的位置关系只有一种,即两两所成的角为120o ,所以120θ=o .a b c ++===r r r 当120θ=o 时,0a b c ++=r r ,选C .【点睛】本题考查了向量数量积的运算,本题的关键是确定向量两两所成的角是120o ,意在考查向量数量积求模的基本知识.6.棱长为4的正方体的所有棱与球O 相切,则球的半径为()A .B .C .D .【答案】C【解析】考查几何体与球相切的问题,常见的有外接、内切和本题的棱相切.因为球O 与正方体的所有棱相切,所以该球的直径等于正方体的面对角线长.设球的半径为R ,则2R =R =选C .【点睛】考查几何体与球相切的问题,常见的有外接、内切和本题的棱相切.多画图找关系.7.函数()2cos f x x x =⋅在22ππ⎡⎤-⎢⎥⎣⎦,的图象大致是()n n A. B.C. D.【答案】C【解析】分析:利用函数的奇偶性,排除选项,再取特殊值判断即可.详解:由于()()f x f x -=,故函数为偶函数,排除,A B 两个选项. 当0,2x π⎛⎫∈ ⎪⎝⎭时,()22cos sin f x x x x x -'=,令22cos sin 0x x x x -=,可得tan 2x x =,方程的解4x π>,即函数的极大值点4x π>,排除D.故选C :.点睛:函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的周期性,判断图象的循环往复;(5)从函数的特征点,排除不合要求的图象.8.为计算11111123499100S =-+-++-…,设计了下面的程序框图,则在空白框中应填入A .1i i =+B .2i i =+C .3i i =+D .4i i =+【答案】B【解析】分析:根据程序框图可知先对奇数项累加,偶数项累加,最后再相减.因此累加量为隔项. 详解:由11111123499100S =-+-+⋯+-得程序框图先对奇数项累加,偶数项累加,最后再相减.因此在空白框中应填入2i i =+,选B.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.9.下边茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中有一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率是( )A .45B .25C .910D .710【答案】A【解析】试题分析:记其中被污损的数字为x ,由题知甲的5次综合测评的平均成绩是1(80290389210)905⨯⨯+⨯+++++=,乙的5次综合测评的平均成绩是1442(8039023379)55x x +⨯⨯+⨯+++++=,令442905x +>,解得8x <,即x 的取值可以是07~,因此甲的平均成绩超过乙的平均成绩的概率是84105=. 【考点】茎叶图和古典概型的求法.10.古希腊数学家阿波罗尼奧斯(约公元前262~公元前190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,他证明过这样一个命题:平面内与两定点距离的比为常数k (k >0,k ≠1)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.在平面直角坐标系中,设A (﹣3,0),B (3,0),动点M 满足MA MB ||||=2,则动点M 的轨迹方程为() A .(x ﹣5)2+y 2=16B .x 2+(y ﹣5)2=9C .(x +5)2+y 2=16D .x 2+(y +5)2=9 【答案】A【解析】首先设(),M x y ,代入两点间的距离求MA 和MB ,最后整理方程.【详解】解析:设(),M x y ,由2MA MB =,得()()2222343x y x y ++=-+,可得:(x +3)2+y 2=4(x ﹣3)2+4y 2,即x 2﹣10x +y 2+9=0整理得()22516x y -+=,故动点M 的轨迹方程为()22516x y -+=.选A .【点睛】本题考查了轨迹方程的求解方法,其中属于直接法,一般轨迹方程的求解有1.直接法,2.代入法,3.定义法,4.参数法. 11.设函数222cos ()2()x x e f x x e ππ⎛⎫-++ ⎪⎝⎭=+的最大值为M ,最小值为m ,则()20191M m +-的值是() A .1B .2C .22019D .32019【答案】A【解析】将函数()f x 构造为()f x =奇函数+常数形函数.【详解】22222cos (e)sin 2e 2()1e e x x x x f x x x πππ⎛⎫-++ ⎪+⎝⎭==+++,设22sin 2e ()e x x g x x π+=+,则()g x 为奇函数,故max min ()()0g x g x +=,则2M m +=,所以2019(1)1M m +-=.选A .【点睛】一般像这种较为复杂函数求最大值与最小值和相关问题,常会考虑函数本身或者能否构建成奇偶函数相关问题.12.棱长为2的正方体ABCD ﹣A 1B 1C 1D 1中,E ,F ,G 分别是AB ,AD ,B 1C 1的中点,那么正方体内过E ,F ,G 的截面面积为()A .B .C .D .【答案】B【解析】正方体截面的考查,可以通过正方体的结构画图可以完成【详解】的正六边形,其面积为26=.选B .【点睛】通过正方体的机构特征,多画图,将三点所构成的平面去和正方体的棱判断交点位置.二、填空题13.曲线y =x 2+lnx 在点(1,1)处的切线方程为_____.【答案】320x y --=【解析】首先求1x =处的导数,再根据切线公式()()000y y f x x x '-=-求切线方程.【详解】 解析:12y x x'=+,在点(1,1)处的切线斜率为3,所以切线方程为320x y --=. 【点睛】本题考查了导数的几何意义求切线方程,属于简单题型.14.在公差为3的等差数列{a n }中,a 1,a 3,a 11成等比数列,则数列{a n }的前n 项和S n =_____ 【答案】232n n + 【解析】考查等差数列的定义,通过指定的三项的等量关系及公差的值求出1a ,从而能完成本题.【详解】由题意得23111·a a a =,即()()21116?30a a a +=+,解得12a =,所以31n a n =-,所以()21322n n a a n n n S ++==. 【点睛】考查利用等差数列的定义求其通项公式,进而求前n 项和.15.甲队和乙队进行乒乓球决赛,采取七局四胜制(当一队贏得四局胜利时,该队获胜,决赛结束)根据前期比赛成绩,甲队每局取胜的概率为0.8.且各局比赛结果相互独立,则甲队以4:1获胜的概率是_____ 【答案】10243125【解析】直接利用二项分布公式的,但是要注意实际问题4:1不能简单的二项分布.【详解】甲队以4∶1获胜时共进行了5局比赛,其中甲队在前4局中获胜3局,第5局必胜,则概率314144C 555P ⎛⎫=⨯⨯⨯ ⎪⎝⎭=10243125. 【点睛】本题属于易错题,高考中就出现过,4:1获胜是需要前4场3胜一负,并且第五场赢下.16.已知双曲线2222:1?(0,0)x y C a b a b-=>>的右焦点为F ,双曲线C 与过原点的直线相交于A 、B 两点,连接AF ,BF .若6AF =,8BF =,3cos 5BAF ∠=,则该双曲线的离心率为 . 【答案】5e =【解析】试题分析:6AF =,8BF =,3cos 5BAF ∠=,由余弦定理可求得10AB =,90BFA ∠=︒,将A ,B 两点分别与双曲线另一焦点连接,可以得到矩形,结合矩形性质可知,210c =,利用双曲线定义,2862a =-=,所以离心率5e =.【考点】双曲线的定义,双曲线的离心率,余弦定理.三、解答题17.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若23cos 3cos cos 0a B b B A c +-=(1)求cos B ;(2)若2,3sin 2sin AB A B ==,求△ABC 的面积.【答案】(1)1cos 3B =(2)9【解析】本题考查了三角形中正余弦定理的应用.(1)通过条件用正弦定理,将所有边的形式化成角的形式.(2)将条件中3sin 2sin A B =化成边的关系,最后选择余弦定理求另外边,最后再用面积公式.【详解】解:(1)23cos 3cos cos 3cos (cos cos )0a B b B A c B a B b A c +-=+-=,由正弦定理,有3cos (sin cos cos sin )sin 0B A B A B C +-=,即3cos sin sin 0B C C -=,所以1cos 3B =.(2)因为1cos 3B =,所以sin 3B =.又3sin 2sin A B =,所以32a b =.根据余弦定理2222cos b a c ac B =+-,得43a =,2b =,所以ABC △的面积为1sin 2S ac B ==. 【点睛】 本题单一的考查了正余弦定理,属于简单题.18.如图,在△ABC 中,∠B =90°,AB =BC =2,P 为AB 边上一动点,PD ∥BC 交AC 于点D ,现将△PDA 沿PD 翻折至△PDA 1,E 是A 1C 的中点.(1)若P 为AB 的中点证明:DE ∥平面PBA 1.(2)若平面PDA 1⊥平面PDA ,且DE ⊥平面CBA 1,求二面角P ﹣A 1D ﹣C 的正弦值.【答案】(1)详见解析(2)3【解析】(1)通过线线平行去得到线面平行,这也是线面平行证明中十分重要的手段.(2)利用空间向量求二面角的平面角的正弦值,向量法做题,一定要细心运算.【详解】(1)证明:取1A B 的中点F ,连接EF ,PF .因为P 为AB 的中点且//PD BC ,所以PD 是△ABC 的中位线.所以PD //BC ,且PD =12BC . 又因为E 是1A C 的中点,且1A B 的中点为F ,所以EF 是△1A BC 的中位线,所以EF //BC ,且EF =12BC ,所以PD 与EF 平行且相等, 所以四边形PDEF 是平行四边形,所以//DE PF .因为PF ⊂平面1PBA ,DE ⊄平面1PBA ,所以//DE 平面1PBA .(2)解:因为DE ⊥平面1CBA ,所以1DE A C ⊥.又因为E 是1A C 的中点,所以1A D DC DA ==,即D 是AC 的中点.由//PD BC 可得,P 是AB 的中点.在ABC △中,90B =o ∠,//PD BC ,PDA V 沿PD 翻折至1PDA V ,且平面1PDA ⊥平面PDA , 利用面面垂直的性质可得1PA ⊥平面PBCD ,以点P 为原点建立坐标系如图所示,则1(0,0,1)A ,(0,1,0)D ,(1,2,0)C -,1(0,1,1)A D =-u u u u r ,(1,1,0)CD =-u u u r . 设平面1A DC 的法向量为(,,)n x y z =r, 有10,·0,(1,1,1)0·0x y n CD n y z n A D ⎧-==⎧⎪⇒⇒=⎨⎨-==⎪⎩⎩u u u v r r u u u u v r , 容易得到平面1A PD 的法向量(1,0,0)m =r,设二面角1P A D C --的大小为θ,有cos cos ,n m θ===r r ,所以sin 3θ=. 【点睛】证明线面平行,一般三种途径:找线线平行、找面面平行、利用空间向量,第一种方法用的较多. 利用空间向量求相关夹角或者距离问题,运算要格外注意.19.某公司为招聘新员工设计了一个面试方案:应聘者从6道备选题中一次性随机抽取3道题,按照题目要求独立完成.规定:至少正确完成其中2道题的便可通过.已知6道备选题中应聘者甲有4道题能正确完成,2道题不能完成;应聘者乙每题正确完成的概率都是23,且每题正确完成与否互不影响. (1)分别求甲、乙两人正确完成面试题数的分布列及数学期望;(2)请分析比较甲、乙两人谁面试通过的可能性大?【答案】(1)详见解析;(2)甲获得面试通过的可能性大【解析】试题分析:(1)确定甲、乙两人正确完成面试题数的取值,求出相应的概率,即可得到分布列,并计算其数学期望;(2)确定Dξ<Dη,即可比较甲、乙两人谁的面试通过的可能性大.试题解析:(1)设甲正确完成面试的题数为ξ,则ξ的取值分别为1,2,3()124236115C C P c ξ===;()214236325C C P c ξ===;()304236135C C P c ξ===;应聘者甲正确完成题数ξ的分布列为()1311232555E ξ=⨯+⨯+⨯=设乙正确完成面试的题数为η,则η取值分别为0,1,2,3()()3120133112160;13273327P C P C ηη⎛⎫⎛⎫⎛⎫====== ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭, ()()2323332112282,33327327P C P C ηη⎛⎫⎛⎫⎛⎫====== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 应聘者乙正确完成题数η的分布列为:()161280123227272727E η=⨯+⨯+⨯+⨯=. (或∵23,3B η⎛⎫~ ⎪⎝⎭∴()2323E η=⨯=) (2)因为()()()()22213121222325555D ξ=-⨯+-⨯+-⨯=, ()()213D np p η=-=所以()()D D ξη<综上所述,从做对题数的数学期望考查,两人水平相当;从做对题数的方差考查,甲较稳定;从至少完成2道题的概率考查,甲获得面试通过的可能性大 20.已知点M (x ,y=(1)求点M 的轨迹E 的方程;(2)设过点N (﹣1,0)的直线l 与曲线E 交于A ,B 两点,若△OAB 的面积为23(O 为坐标原点).求直线l 的方程.【答案】(1)2212x y +=(2)10x y -+=或10x y ++=【解析】(1)根据几何意义可知,点M 满足动点M 到定点()()1,0,1,0-的距离和为2>,所以点M 满足椭圆的定义,写出轨迹方程;(2)首先分直线l 与x 轴垂直和x 轴不垂直两种情况讨论,当斜率存在时,()1y k x =+与椭圆方程联立,设交点()11,A x y ,()22,B x y ,根据条件可知1212123S y y =⨯⨯-=43=,利用根与系数的关系求k ,即得直线l 的方程. 【详解】解:(1)由已知,动点M 到点()1,0P -,()1,0Q 的距离之和为且PQ <M 的轨迹为椭圆.而a =1c =,所以1b =,所以动点M 的轨迹E 的方程为2212x y +=.(2)当直线l与x 轴垂直时,1,A ⎛-⎝⎭,B ⎛- ⎝⎭,此时AB =则112OAB S ==V ,不满足条件. 当直线l 与x 轴不垂直时,设直线l 的方程为()1y k x =+,由()221,12y k x x y ⎧=+⎪⎨+=⎪⎩得()2222124220k x k x k +++-=, 所以2122412k x x k +=-+,21222212k x x k -=+.而121211·22OAB S ON y y y y =-=-V , 由23OABS =V 得1243y y -=.12y y -=又所以()22222441612912k k k k +=++,则4220k k +-=,所以1k =±, 所以直线l 的方程为10x y -+=或10x y ++=. 【点睛】本题考查了定义法求曲线方程和直线与圆锥曲线的位置关系的综合问题,意在考查转化与化归和逻辑推理和计算能力的考查, 直线与椭圆相交时,时常把两个曲线方程联立,消去x 或y 建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系. 21.已知函数f (x )=ax ﹣cosx ,a ≠0.(1)若函数f (x )为单调函数,求a 的取值范围; (2)若x ∈[0,2π],求:当a ≥23π时,函数f (x )仅有一个零点. 【答案】(1)1a ≤-或1a ≥(2)详见解析【解析】(1)首先求函数的导数,()sin f x a x '=+,当函数单调递增时()0f x '≥恒成立,当函数单调递减时,()0f x '≤恒成立;(2)根据(1)可知当1a ≥时,函数单调递增,根据零点存在性定理可知只有一个交点,当01a <<时,可得函数存在两个极值点,1233,22x x ππππ<<<<,根据单调性可判断,()111cos f x ax x =-是极大值,()222cos f x ax x =-是极小值,因为()010f =-<,()10f x >,若函数只有一个零点,只需满足()20f x >,即可求得a 的取值范围. 【详解】(1)解:由()cos f x ax x =-,可得()sin f x a x =+',x R ∈. 因为1sin 1x -≤≤,所以当1a ≥时,()sin 0f x a x '=+≥,()f x 为R 上的单调增函数; 当1a ≤-时,()sin 0f x a x '=+≤,()f x 为R 上的单调减函数. 综上,若函数()f x 为单调函数,则1a ≤-或1a ≥.(2)证明:当1a ≥时,由(1)可知()f x 为R 上的单调增函数. 又()01f =-,022a f ππ⎛⎫=>⎪⎝⎭所以函数()f x 在π0,2⎛⎫⎪⎝⎭有且仅有一个零点,满足题意. 当01a <<时,令()sin 0f x a x '=+=,则sin x a =-.由于02πx ≤≤,所以1sin 1x -≤≤, 从而必有1x ,[]20,2πx ∈,使1sin x a =-,且2sin x a =-. 不妨设12x x <,且有13ππ2x <<,23π2π2x <<, 所以当()10,x x ∈时,()sin 0f x a x '=+>,()f x 为增函数; 当()12,x x x ∈时,()sin 0f x a x '=+<,()f x 为减函数; 当()2,2πx x ∈时,()sin 0f x a x '=+>,()f x 为增函数.从而函数()f x 的极大值为()111cos f x ax x =-,极小值为()222cos f x ax x =-. 因为13ππ2x <<,所以1cos 0x <,从而极大值()111cos 0f x ax x =->. 又()01f =-,要使函数()f x 仅有一个零点,则极小值()222cos 0f x ax x =->, 所以()22222cos 0f x ax x ax ax =-==>,即a >.21x <,23π2π2x <<, 所以当23πa ≥时,函数()f x 仅有一个零点. 【点睛】本题考查了利用函数的单调性和零点问题求参数的取值范围,利用导数研究函数的单调性,极值和最值,以及零点存在的问题,考查学生逻辑推理和转化的思想,本题的第二问是一个证明题,可转化为已知函数有一个零点求参数的取值范围.22.在直角坐标系xOy 中,曲线C的参数方程为sin x y θθ⎧=⎪⎨=⎪⎩(θ为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.直线l 的极坐标方程为ρcosθρsinθ=3. (1)求直线l 的直角坐标方程;(2)求曲线C 上的点到直线l 距离的最大值. 【答案】(1)30x +-=(2)3【解析】(1)根据转化公式可知cos ,sin x y ρθρθ==,代入求得直线的直角坐标方程;(2)设曲线上的任意一点的坐标为),sin θθ,代入点到直线的距离d =,利用三角函数的范围求得d 的最大值. 【详解】解:(1)直线l的直角坐标方程为30x +-=. (2)设曲线C上点的坐标为),sin θθ,则曲线C 上的点到直线l 的距离d ==sin 14πθ⎛⎫+=- ⎪⎝⎭时,d 取得最大值,所以max d = 【点睛】本题考查了直线的极坐标方程和直角坐标方程的转化,以及考查坐标变换和点到直线的距离公式,利用三角函数求函数的最值,属于简单题型.23.已知a ,b ,c ,d 为正数,且满足abcd =1,证明: (1)(a +b )(b +c )(c +d )(d +a )≥16; (2)22221111a b c d ab bc cd ad+++≤+++. 【答案】(1)详见解析(2)详见解析【解析】(1)利用基本不等式,a b +≥,b c +≥,c d +≥,d a +≥四个式子相乘即可得到正确结果;(2)首先等式左边变形为1111abcd cd ad ab bc ab bc cd ad ⎛⎫+++=+++ ⎪⎝⎭,再利用基本不等式证明. 【详解】证明:(1)因为a b c d ,,,为正数,所以a b +≥,b c +≥,c d +≥d a +≥(当且仅当a b c d ===时等号同时成立),所以()()()()16a b b c c d d a abcd ++++≥=. 又1abcd =,所以()()()()16a b b c c d d a ++++≥(当且仅当a =b =c =d 时等号成立). (2)因为1abcd =,所以11111111abcd cd ad ab bc ab bc cd ad ab bc cd ad ⎛⎫+++=+++=+++ ⎪⎝⎭. 又()()()()()22222222222222222a b c da b b c c d d a ab bc cd da +++=+++++++≥+++(当且仅当a b c d ===时等号成立),所以()2222111122a b c d ab bc cd ad ⎛⎫+++≥+++⎪⎝⎭, 即22221111a b c d ab bc cd ad+++≤+++(当且仅当a =b =c =d 时等号成立). 【点睛】本题考查了不等式的证明,重点考查了基本不等式的应用,意在考查等价转化思想和逻辑推理能力.。

2020年云师大附中高三下期高考适应性月考理科数学试题及答案(解析版)

2020年云师大附中高三下期高考适应性月考理科数学试题及答案(解析版)
【详解】
如图,在 中,
设 ,则 ,取 的中点分别为 则 分别为 和 的外接圆的圆心,连接 ,又直三棱柱 的外接球的球心为O,则O为 的中点,连接OB,则OB为三核柱外接球的半径。设半径为R,因为直三棱柱 ,所以 ,所以三棱锥 的高为2,即 ,又三棱锥 体积为2,所以 .在 中, ,
所以 ,当且仅当 时取“=”,所以球O的表面积的最小值是 ,故选B.
【点睛】
本题主要考查了双曲线的渐近线以及离心率的概念,掌握 是解题的关键,属于中档题.
4.下图的程序框图的算法思路源于我国数学名著《九章算术》中的“中国剩余定理”.若正整数N除以正整数m后得余数r,则记为 ,如: ,则执行该程序框图输出的n等于()
A.7B.6C.5D.8
【答案】A
【解析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.
等级
珍品
特级
优级
一级
箱数
40
30
10
20
(1)若将频率改为概率,从这100箱橙子中有放回地随机抽取4箱,求恰好抽到2箱是一级品的概率:
(2)利用样本估计总体,庄园老板提出两种购销方案供采购商参考:
方案一:不分等级卖出,价格为27元/kg;
方案二:分等级卖出,分等级的橙子价格如下:
等级
珍品
特级
优级
一级
【详解】
根据给定的程序框图,可知:
第一次执行循环体得 , ,此时 ,不满足第一个条件;
第二次执行循环体得 , ,此时 ,不满足第一个条件;
第三次执行循环体得 , ,此时 且 ,既满足第一个条件又满足第二个条件,退出循环,输出7,故选A.

云南师大附中2020届高考数学适应性月考试题(一)文(含解析)新人教A版

云南师大附中2020届高考数学适应性月考试题(一)文(含解析)新人教A版

云南师大附中2020届高考适应性月考卷(一)文科数学【试卷综析】本试卷是高三文科试卷,以基础知识和基本技能为载体,以能力测试为主导,在注重考查学科核心知识的同时,突出考查考纲要求的基本能力,重视学生科学素养的考查.知识考查注重基础、注重常规、注重主干知识,兼顾覆盖面.试题重点考查:集合、不等式、复数、向量、三视图、导数、圆锥曲线、立体几何、数列、三角函数的性质、解三角形、命题、程序框图、概率、不等式选讲、几何证明选讲、参数方程极坐标等;考查学生解决实际问题的综合能力,是份较好的试卷.选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)【题文】1、已知全集U 和集合A 如图1所示,则()U C A B ⋂=A.{3}B.{5,6}C.{3,5,6}D.{0,4,5,6,7,8}【知识点】集合及其运算A1【答案解析】B 解析:由图易知()U A B =I ð{5,6}.则选B. 【思路点拨】本题主要考查的是利用韦恩图表示集合之间的关系,理解集合的补集与交集的含义是解题的关键.【题文】2、11ii-+=A. ﹣2iB. ﹣iC.1﹣iD.1+i 【知识点】复数的代数运算L4【答案解析】B 解析:21i (1i)2ii.1i 22---===-+则选B.【思路点拨】复数的代数运算是常考知识点之一,熟记运算法则是解题的关键. 【题文】3、在如下的四个电路图中,记:条件M:“开关1S ”闭合;条件N :“灯泡L 亮”,则满足M 是N 的必要不充分条件的图为【知识点】充要条件A2【答案解析】C 解析:对于图A ,M 是N 的充分不必要条件.对于图B ,M 是N 的充要条件.对于图C ,M 是N 的必要不充分条件.对于图D ,M 是N 的既不充分也不必要条件.则选C. 【思路点拨】判断充分必要条件一般先明确条件与结论,若由条件能推出结论,则充分性成立,若由结论能推出条件,则必要性成立. 【题文】4、下列命题为真命题的是 A 、命题“若x >y ,则x >y”的逆命题B 、命题“若x >1,则21x >”的否命题C 、命题“若x=1,则220x x +-=”的否命题D 、命题“若x(x ﹣1) >0,则x >1”的逆否命题【知识点】命题及其关系A2【答案解析】A 解析:命题“若x y >,则x y>”的逆命题是“若x y>,则x y >”无论y是正数、负数、0都成立.则选A.【思路点拨】可先写出逆命题与否命题,再判断真假,判断逆否命题真假只需判断原命题真假.【题文】5、等差数列{}n a 的公差为2,前n 项和为n S ,若1361,,a a a +成等比数列,则n S =A 、()1n n + B 、2n C 、()1n n - D 、2n【知识点】等差数列与等比数列D2 D3【答案解析】A 解析:依题意得2316(1)a a a =+,即2111(4)(1)(10)a a a +=++,解得12a =,所以(1)n S n n =+.则选A.【思路点拨】可直接利用等差数列与等比数列的通项公式及前n 项和公式解答.【题文】6、已知向量,a b r r满足a b -=r r 1a b •=r r,则a b +r r =【知识点】向量的数量积及其应用F3 【答案解析】C 解析:由已知得222222()226-=-=+-⋅=+-=a b a b a b a b a b ,即228+=a b ,所以2+=a b 222()210+=++⋅=a b a b a b,即+=a b 则选C.【思路点拨】遇到求向量的模时,一般利用向量的模的平方等于向量的平方转化求解.【题文】7、在区间[0,1]内任取两个实数,则这两个实数的和大于13的概率为 A 、29 B 、79 C 、118 D 、1718【知识点】几何概型K3【答案解析】D 解析:设,[0,1]x y ∈,作出不等式组01,01,13x y x y ⎧⎪⎪⎨⎪⎪+>⎩≤≤≤≤ 所表示的平面区域,由几何概型知,所求概率111117233.1118P -⨯⨯==⨯ 则选D.【思路点拨】当总体个数有无限多时的概率问题为几何概型,若事件与两个变量有关时,可归结为面积问题进行解答.【题文】8、在△ABC 中,若sinC=2sinAcosB,则此三角形一定是A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形 【知识点】解三角形C8【答案解析】A 解析:由已知及正、余弦定理得,22222a c b c a ac +-=,所以22a b =,即a b =.则选A.【思路点拨】判断三角形形状,可以用正弦定理及余弦定理把角的关系转化为边的关系,也可利用三角形内角和的关系进行转化求解. 【题文】9、已知函数f(x)及其导数()'f x ,若存在x ,使得()()00'f x f x =,则称x 是f(x)的一个“和谐点”,下列函数中①()2f x x=;②()1x f x e =;③()ln f x x =;④()1f x x x =+,存在“和谐点”的是A 、①②B 、①④C 、①③④D 、②③④ 【知识点】导数的应用B11【答案解析】C 解析:①显然成立,②显然不成立,对于③④作出()y f x =与()y f x '=的图象可知成立.则选C.【思路点拨】对于新定义问题,关键是理解其含义,本题的本质是方程有无实根问题. 【题文】10、将边长为a 的正方形ABCD 沿对角线AC 折起,使得BD=a ,则三棱锥D-ABC 的体积为A 、36aB 、312a C、312a D、312a【知识点】棱锥的体积G7【答案解析】D 解析:设正方形ABCD 的对角线AC 、BD 相交于点E ,沿AC 折起后,依题意得:当BD =a 时, DE ⊥BE ,又DE ⊥AC , ∴DE ⊥平面ABC ,∴三棱锥D −ABC 的高为DE=a ,∴VD−ABC=13·12a2·22a=3212a.则选D.【思路点拨】对于翻折问题,应注意结合翻折前后的垂直关系及线段的对应关系进行解答. 【题文】11、如图,网格纸上小方格的边长为1(表示1cm),图中粗线和虚线是某零件的三视图,该零件是由一个底面半径为4cm,高为3cm的圆锥毛坯切割得到,则毛坯表面积与切削得的零件表面积的比值为A.310 B.510 C.710 D.910【知识点】三视图G2【答案解析】D解析:圆锥毛坯的底面半径为4cmr=,高为3cmh=,则母线长5cml=,所以圆锥毛坯的表面积2ππ36πS rl r=+=原表,切削得的零件表面积2π2140πS S=+⨯⨯=零件表原表,所以所求比值为910.则选D.【思路点拨】由三视图求几何体的表面积,关键是正确的分析原几何体的特征.【题文】12、若函数()1lnf x a xx=+在区间(1, +∞)上单调递增,则实数a的取值范围是A.( ﹣∞, ﹣2]B. ( ﹣∞, ﹣1]C.[1,+∞)D. [2,+∞)【知识点】导数的应用B12【答案解析】C解析:因为()f x在区间(1,)+∞上单调递增,所以1x>时,21()0af xx x'=-≥恒成立,即1ax≥在区间(1,)+∞上恒成立,因为1x>,所以101x<<,所以 1.a≥则选C. 【思路点拨】先由函数的单调性转化为导数的符号问题,再由不等式恒成立求参数范围即可.二、填空题(本大题共4小题,每小题5分,共20分)【题文】13设A、B分别是椭圆22221x ya b+=(a>b>0)的左、右顶点,点P在C上且异于A、B两点,若直线AP与BP的斜率之积为﹣13,则C的离心率为__________.【知识点】椭圆的几何性质H5【答案解析】63解析:由题意知(,0),(,0)A aB a-,取(0,)P b,则13AP BPb bk ka a⎛⎫⋅=⨯-=-⎪⎝⎭,故223a b=,所以,222223a bea-==,即6e=.【思路点拨】利用已知条件得到椭圆中的量a,b,c的关系,再求离心率即可.【题文】14、定义一种新运算“⊗”:S a b=⊗,其运算原理如图3的程序框图所示,则3654⊗-⊗=_______.【知识点】程序框图L1【答案解析】﹣3解析:由框图可知(1),,(1),.a b a bSb a a b->⎧=⎨-⎩≤从而得36546(31)5(41)3⊗-⊗=---=-.【思路点拨】读懂程序框图,理解所定义的新运算,即可解答.【题文】15、设奇函数f(x)在(0, +∞)上为单调递增函数,且f(2)=0,则不等式()()2f x f xx--≥的解集为__________.【知识点】奇函数函数的单调性B3 B4【答案解析】[﹣2,0) ∪(0,2]解析:原不等式可化为()0x f x⋅≤且0x≠,作出奇函数()f x 的简图,可知其解集为[2,0)(0,2]-U.【思路点拨】先由奇函数的性质对不等式转化,再结合奇函数及函数的单调性解答即可.【题文】16、已知数列{}n a 中,11a =,前n 项和为nS ,且()*121n n S S n N +=+∈,则na =_______.【知识点】等比数列D3 【答案解析】12n -解析:由121n n S S +=+得,当2n ≥时,121n n S S -=+,∴112()n n n n S S S S +--=-,即12n n a a +=,∴12n na a +=,又11a =,得2112213S a a a =+==+,∴22a =,∴212a a =,∴数列{}n a 是首项为1,公比为2的等比数列,∴12n n a -=.【思路点拨】一般遇到数列的前n 项和之间的递推公式,经常利用1n n n a S S -=-进行转化求解.三、解答题(共70分,解答应写出文字说明,证明过程或演算步骤)【题文】17、(12分)已知函数()221cos cos 2sin 2f x x x x x =+-(1)求函数f(x)的最小正周期;(2)若0,2x π⎡⎤∈⎢⎥⎣⎦,求函数f(x)的值域. 【知识点】函数sin()y A x ωϕ=+的图象与性质C4 【答案解析】(1) π (2) 30,2⎡⎤⎢⎥⎣⎦ 解析:(1)1cos21cos21()22222x x f x x +-=+⨯-Q11cos222x x=-π1sin 26x ⎛⎫=-+ ⎪⎝⎭.所以其最小正周期为2ππ2T ==. (2)由(Ⅰ)知π()1sin 26f x x ⎛⎫=-+ ⎪⎝⎭, 又Q πππ7π0,,2,2666x x ⎡⎤⎡⎤∈∴+∈⎢⎥⎢⎥⎣⎦⎣⎦,π1sin 2,162x ⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦∴.所以函数()f x 的值域为30,2⎡⎤⎢⎥⎣⎦.【思路点拨】一般研究与三角有关的函数的性质通常先化成sin()y A x ωϕ=+形式再进行解答.【题文】18、(12分)某种产品按质量标准分成五个等级,等级编号x 依次为1,2,3,4,5,现从一批产品中随机抽取20件,对其等级编号进行统计分析,得频率分布表如下:(1)若所抽取的20件产品中,等级编号为4的恰有3件,等级编号为5的恰有2件,求a,b,c 的值;(2)在(1)的条件下,将等级编号为4的3件产品记为123,,x x x ,等级编号为5的2件产品记为12,y y ,现从123,,x x x ,12,y y 这5件产品中任取两件(假定每件产品被取出的可能性相同),写出所有可能的结果,并求这两件产品的等级编号恰好相同的概率.【知识点】频率分布表 概率I2 K2【答案解析】(1) 0.1a =,0.15b =,0.1c = (2) 1213{,},{,},x x x x1112232122313212{,},{,},{,},{,},{,},{,},{,},{,}x y x y x x x y x y x y x y y y ()0.4P A =解析:(1)由频率分布表得0.20.451a b c ++++=,即0.35a b c ++=.因为抽取的20件产品中,等级编号为4的恰有3件,所以30.1520b ==.等级编号为5的恰有2件,所以20.120c ==.从而0.350.1a b c =--=. 所以0.1a =,0.15b =,0.1c =.(2)从12312,,,,x x x y y 这5件产品中任取两件,所有可能的结果为:1213{,},{,},x x x x 1112232122313212{,},{,},{,},{,},{,},{,},{,},{,}x y x y x x x y x y x y x y y y .设事件A 表示“从12312,,,,x x x y y 这5件产品中任取两件,其等级编号相同”,则A 包含的基本事件为:12132312{,},{,},{,},{,}x x x x x x y y 共4个.又基本事件的总数为10,故所求的概率4()0.410P A ==.【思路点拨】一般求古典概型的概率问题,通常利用列举法计算事件的个数进行解答.【题文】19、(12分)如图4,在四棱锥P-ABCD 中,PA ⊥底面ABCD ,四边形ABCD 为长方形,AD=2AB ,点E 、F 分别是线段PD 、PC 的中点.(1)证明:EF ∥平面PAB ;(2)在线段AD 上是否存在一点O ,使得BO ⊥平面PAC ,若存在,请指出点O 的位置,并证明BO ⊥平面PAC ;若不存在,请说明理由.【知识点】直线与平面平行的判定 线面垂直的判定G4 G5【答案解析】(1)略 (2) 在线段AD 上存在一点O 为线段AD 的四等分点 解析:(1)∵EF CD ∥,CD AB ∥,∴EF AB ∥, 又∵EF ⊄平面PAB ,AB ⊂平面PAB , ∴EF ∥平面PAB .(2)在线段AD 上存在一点O ,使得BO ⊥平面PAC , 此时点O 为线段AD 的四等分点,且14AO AD =.∵PA ⊥底面ABCD ,∴PA BO ⊥,又∵长方形ABCD 中,△ABO ∽△DAC ,∴AC BO ⊥, 又∵PA AC A =I ,∴BO ⊥平面PAC .【思路点拨】一般遇到判定直线与平面平行或垂直问题,通常利用其判定定理解答. 【题文】20、(12分)如图5,已知抛物线C:()220y px p =>和圆M :()2241x y -+=,过抛物线C 上一点H()00,x y ()00y >作两条直线与圆M 相切于A,B 两点,分别交抛物线于E 、F 两点,圆心M 到抛物线准线的距离为174.(1)求抛物线C 的方程;(2)当∠AHB 的角平分线垂直x 轴时,求直线EF 的斜率..【知识点】抛物线 直线与圆锥曲线H8 H7【答案解析】(1) 2y x = (2)14EF k =- 解析:(1)∵点M 到抛物线准线的距离为42p +=174,∴12p =,即抛物线C 的方程为2y x =.(2)方法一:∵当AHB ∠的角平分线垂直x 轴时,点(4,2)H ,∴HE HF k k =-, 设11(,)E x y ,22(,)F x y ,∴12122244y y x x --=---,即1222122244y y y y --=---, ∴124y y +=-. 212122212121114EF y y y y k x x y y y y --====---+.方法二:∵当AHB ∠的角平分线垂直x 轴时,点(4,2)H ,∴60AHB ∠=︒, 可得3HA k =3HB k =-∴直线HA 的方程为3432y x =-,联立方程组23432,,y x y x ⎧-⎪⎨=⎪⎩ 234320y --=,∵32Ey +=,∴E y =,E x .分)同理可得F y =,F x =,∴14EF k =-. 【思路点拨】求抛物线的方程关键是利用圆心到其准线的距离求p ,第二问抓住当∠AHB 的角平分线垂直x 轴时,两切线的斜率互为相反数进行解答. 【题文】21、(12分)已知函数()()1ln f x ax x a R =--∈.(1)讨论函数f(x)的单调性;(2)若函数f(x)在x=1处取得极值,且对()()0,,2x f x bx ∀∈+∞≥-恒成立,求实数b 的取值范围.【知识点】导数的应用B12【答案解析】(1) 当0a ≤时,在(0,)+∞上单调递减,;当0a >时在10,a ⎛⎤ ⎥⎝⎦上递减,在1,a⎡⎫+∞⎪⎢⎣⎭上递增;(2) 211e b -≤解析:(1)()f x 的定义域为(0,)+∞,11()ax f x a x x -'=-=,∴当0a ≤时,()0f x '<在(0,)+∞上恒成立,函数()f x 在(0,)+∞上单调递减. 当0a >时,由()0f x '≤,得10x a <≤;由()0f x '≥,得1x a ≥,∴函数()f x 在10,a ⎛⎤ ⎥⎝⎦上递减,在1,a ⎡⎫+∞⎪⎢⎣⎭上递增.(2)∵函数()f x 在1x =处取得极值,∴1a =,∴1ln ()21xf x bx b x x -⇔+-≥≥,令1ln ()1x g x x x =+-,可得()g x 在2(0,e ]上递减,在2[e ,)+∞上递增, ………(10分)∴2min21()(e )1e g x g ==-,即211e b -≤.【思路点拨】一般遇到不等式恒成立求参数范围问题,通常分离参数转化为函数的最值问题进行解答.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.【题文】22、(本小题10分)[选修4-1:几何证明选讲]如图6,直线AB 经过圆O 上一点C ,且OA=OB,CA=CB,圆O 交直线OB 于E,D.(1)求证:直线AB 是圆O 的切线;(2)若1tan 2CED ∠=,圆O 的半径为3,求OA 的长.【知识点】几何证明选讲N1【答案解析】(1)略; (2)5解析:(1)证明:如图4,连接OC ,∵,,OA OB CA CB ==∴OC AB ⊥,∴AB 是⊙O 的切线.(2)解:∵ED 是直径,∴90ECD ∠=︒,在Rt△ECD 中,∵1tan 2CED ∠=, ∴12CD EC =.∵AB 是⊙O 的切线, ∴BCD E ∠=∠,又∵CBD EBC ∠=∠,∴ △BCD∽△BEC,∴BD BC =CD EC =12,设,BD x =则2BC x =,又2BC BD BE =⋅,∴2(2)(6)x x x =⋅+, 解得:120,2x x ==, ∵0BD x =>, ∴2BD =,∴235OA OB BD OD ==+=+=.【思路点拨】证明直线是圆的切线,只需证明圆心到直线的距离等于圆的半径,若直线与圆有公共点,则公共点为切点;第二问利用三角形相似解答即可.【题文】23、(本小题10分)[选修4-4:坐标系与参数方程]在直角坐标系xOy 中,直线l 的参数方程为232252x t y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为5ρθ=.(1)求圆C 的圆心到直线l 的距离;(2)设圆C 与直线l 交于点A,B ,若点P的坐标为(,求PA PB +.【知识点】坐标系与参数方程N3【答案解析】(1)(2)解析:(1)由ρθ=,可得220x y +-=,即圆C的方程为22(5x y +-=.由3,,x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数)可得直线l的方程为30x y +=. 所以,圆C 的圆心到直线l.(2)将l 的参数方程代入圆C的直角坐标方程,得223522⎛⎫⎛⎫-+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,即240t -+=.由于24420∆=-⨯=>.故可设12t t 、是上述方程的两个实根,所以12124t t t t ⎧+=⎪⎨⋅=⎪⎩.又直线l过点(3P , 故由上式及t的几何意义得1212||||||||PA PB t t t t +=+=+=.【思路点拨】一般由参数方程或极坐标方程研究曲线之间的位置关系不方便时,可转化为直角坐标方程进行解答;第二问可利用直线参数的几何意义进行解答.【题文】24、(本小题10分)[选修4-5:不等式选讲]已知一次函数f(x)=ax -2.(1)解关于x 的不等式()4f x <; (2)若不等式()3f x ≤对任意的x ∈[0,1]恒成立,求实数a 的范围.【知识点】不等式选讲N4【答案解析】(1) 当0a >时,不等式的解集为26x x a a ⎧⎫-<<⎨⎬⎩⎭;当0a <时,不等式的解集为62x x a a ⎧⎫<<-⎨⎬⎩⎭.(2) 15a -≤≤且a ≠0.解析:(1)()4f x <⇔24ax -<⇔424ax -<-<⇔26ax -<<,当0a >时,不等式的解集为26x x a a ⎧⎫-<<⎨⎬⎩⎭;当0a <时,不等式的解集为62x x a a ⎧⎫<<-⎨⎬⎩⎭.(2)()3f x ≤⇔23ax -≤⇔323ax --≤≤⇔15ax -≤≤⇔5,1,ax ax ⎧⎨-⎩≤≥∵[0,1]x ∈,∴当x =0时,不等式组恒成立;当x ≠0时,不等式组转化为5,1,a x a x ⎧⎪⎪⎨⎪-⎪⎩≤≥ 又∵515,1x x --≥≤,所以15a -≤≤且a ≠0.【思路点拨】解绝对值不等式的关键是去绝对值,可利用性质、分段讨论等方法,对于不等式恒成立求参数范围问题,通常分离参数转化为函数的最值问题进行解答.。

2020届云南师大附中高考适应性月考卷(一)数学试题

2020届云南师大附中高考适应性月考卷(一)数学试题

及圆(2)16-+=的实线部分上运动,且AB始终平行于轴,则x y∆的周长的取值范围是()ABF⋅=,NM NF可以求出点N到原点的最短距离【详解】由0⋅=,得点NM NF117.设变量,x y 满足约束条件2202402x y x y y --≤⎧⎪+-≥⎨⎪≤⎩,则2u x y =+的最小值为_______.ABC ∆的三个内角A ,)0BC BA cCA CB ⋅+⋅=.)若23b =,试求AB CB ⋅的最小值.关于斜坐标系的斜坐标是这样定义的:若me ne +,2e 分别为与(1)若点P 在斜坐标系XOY 中的坐标为()2,2-,求点P 到原点O 的距离.(2)求以原点O 为圆心且半径为1的圆在斜坐标系XOY 中的方程. (3)在斜坐标系XOY 中,若直线()01x t t =<<交(2)中的圆于,A B 两点,则当t 为何值时,AOB ∆的面积取得最大值?并求此最大值.12.(1)在直角坐标系中,已知三点(5,4),(,10),(12,2)A B k C -,当k 为何值时,向量AB 与BC 共线?(2)在直角坐标系中,已知O为坐标原点,(7,6),(3,)OA OB k=-=,(5,7)OC=,当k为何值时,向量AB与BC垂直?评卷23BACπ∠=,由正弦定理可得1122AO AO===得AE=16,22DBCS DE BC DE∆=⨯⨯=∴=,1AD ∴===,在四边形1OO AD 中,11//,90OO AD OO A ∠=,OA OD =,计算可得(2222149+=24R OA ⎛⎫== ⎪⎝⎭,则球O 的表面积是494=494ππ⨯,故选D.【方法点晴】本题主要考查球的性质及圆内接三角形的性质、正弦定理与余弦定理法应用及球的表面积公式,属于难题.球内接多面体问题是将多面体和旋转体相结合的题型,既能考查旋转体的对称形又能考查多面体的各种位置关系,做题过程中主要注意以下两点:①多面体每个面都分别在一个圆面上,圆心是多边形外接圆圆心;②注意运用性质2221R r OO =+.2.C 解析:C 【解析】 【分析】将已知转化为1a q ,的形式,解方程求得q 的值. 【详解】依题意1113a a q a +=,解得2q =,故选C.【点睛】本小题主要考查利用基本元的思想求等比数列的基本量1a q ,,属于基础题.基本元的思想是在等比数列中有5个基本量1,,,,n n a q a S n ,利用等比数列的通项公式或前n 项和公式,结合已知条件列出方程组,通过解方程组即可求得数列1a q ,,进而求得数列其它的一些量的值. 3.D 解析:D 【解析】 【分析】将22()z a bi =+,再和2i -的实部和虚部对比,得出结果.【详解】因为2222()()22z a bi a b abi i =+=-+=-,所以220a b -=,22ab =-,解得11a b =⎧⎨=-⎩或11a b =-⎧⎨=⎩,所以0=+b a ,故选D.【点睛】此题考查了复数的乘法运算,属于基础题。

云南师大附中2020届高考适应性月考卷(一)理综-答案

云南师大附中2020届高考适应性月考卷(一)理综-答案

理科综合参考答案·第1页(共10页)云南师大附中2020届高考适应性月考卷(一)理科综合参考答案一、选择题:本题共13小题,每小题6分。

二、选择题:本题共8小题,每小题6分。

在每小题给出的四个选项中,第14~18题只有一项符合题目要求;第19~21题有多项符合题目要求,全部选对的给6分,选对但不全的给3分,有选错的给0分。

【解析】1.细胞膜表面还有糖类和脂质分子结合成的糖脂;好氧细菌没有线粒体,其有氧呼吸发生在细胞质基质中;有些细胞器不具有膜结构,不能形成囊泡。

2.氧气浓度和主动运输速率之间、光照强度和绿色植物O 2释放速率之间、种群数量和K 值之间均不存在反馈调节。

3.血浆蛋白含量降低,导致血浆渗透压降低,进而引起组织水肿;不会引起尿量减少。

4.观察线粒体时,使用健那绿染色。

健那绿是活细胞中线粒体染色的专一性染料,不需要盐酸处理口腔上皮细胞。

5.基因W 可能是抑癌基因,该基因会存在于同一个生物体的所有体细胞中。

6.噬菌体侵染细菌的实验,只能证明DNA 是遗传物质,不能证明DNA 是主要的遗传物质。

7.聚氯乙烯塑料中的增塑剂和防老化剂都有毒,不能用于食品包装,故A 错误。

理科综合参考答案·第2页(共10页)8.苯乙烯分子的结构如下图所示,可以通过①号键的旋转让所有原子共面,故D 正确。

9.依题可知W 、X 、Y 、Z 分别是H 、N 、O 、Na 。

简单离子半径:N 3−>O 2−>Na +>H +,故A 错误。

二者均属于分子晶体,且都没有分子间氢键,而N 2分子间范德华力比H 2的强,沸点N 2>H 2,故B 正确。

H 2O 2中含极性和非极性键,而Na 2O 2中含离子键和非极性键,故C 错误。

H 、N 、O 组成的常见化合物有HNO 3、HNO 2、NH 4NO 3、NH 3·H 2O ,其中氨水是碱性的,故D 错误。

10.pH=2的H 2C 2O 4溶液中,c (H +)=0.01mol/L ,1L 溶液中n (H +)=0.01mol ,故A 错误。

云南省2020届高三适应性考试数学(理)试题(A卷)Word版含解析

云南省2020届高三适应性考试数学(理)试题(A卷)Word版含解析
〔3〕甲班排在第三位,丙班和丁班排在一起的情况有 种,将剩下的三个班全排列,安排到剩下的三个位置,有 种情况,此时有 种安排方案;
由加法计数原理可知共有 种方案,
应选:B
【点睛】此题考查排列组合的应用,涉及分类、分步计数原理的应用,属于根底题.
9.如图,在正方体 中,点 在线段 上运动,那么以下判断中正确的选项是〔〕
A.
B.
C.
D.
【答案】D
【解析】
【分析】
根据三视图知几何体是一个四分子一圆锥与一个三棱锥的组合体,分别计算其外表积得解.
详解】
四分子一圆锥外表积
,
所以组合体外表积为
应选:D
【点睛】此题考查三视图复原几何体求外表积问题.
几何体三视图复原其直观图时,要熟悉柱、锥、球、台的三视图,结合空间想象将三视图复原为直观图.
【详解】解:〔1〕因为 ,
所以
所以
所以 成等比,首项 ,公比q
所以
由题意知 ,设 公差为d
那么 ,即 ,
解得 或 〔舍〕
所以
〔2〕
所以
两式相减得
所以
所以
【点睛】此题考查了数列的通项与求和,对等差乘等比的数列进行求和采用错位相减法求和,分列乘减算四步进行.
18.如图甲,E是边长等于2的正方形的边CD的中点,以AE、BE为折痕将△ADE与△BCE折起,使D,C重合(仍记为D),如图乙.
三、解答题:共7017〜2122、23题为选考题,考生根据要求作答.
17.数列 的前 项和为 ,且满足 .数列 是首项为 ,公差不为零的等差数列,且 成等比数列.
〔1〕求数列 与 的通项公式.
〔2〕假设 ,数列 的前项和为 恒成立,求 的范围.

【理数】云南师大附中2020届高考适应性月考试卷及答案(3月)

【理数】云南师大附中2020届高考适应性月考试卷及答案(3月)

x > sin x ,而 x(1 − cos x) ≥ 0 显然成立,故 f ′(x) > 0 ,故 f (x) 在 x ∈ (0,+ ∞) 上单调递
= 增 . a f= (log0.2 3) f (l= og5 3),b f = (log3 0.2) f (log3 5) , 0.23 < 0.2 < log5 5 < log5 3 < 1
|PB|− | PA |=2a =185.2 × 0.3 =30 海里,故 a = 15 ,又 c = 17 ,故 b = 8 ,故由船 P 到 B 台和 1.852

A
台的距离差所确定的双曲线为
x2 225

y2 64
=
1(x
>
15), 联立
(x − 27)2
36 x2 − 225
y2 64
高和跳远的同学,故选 D.
2 . z2 =(−1 +
3i)2 =1 − 2
3i + 3i2 =−2 − 2
3i
,= 故 8 z2
= 8 −2 − 2 3i
8(−2 + 2 3i) (−2 − 2 3i)(−2 + 2 3i)
=16(−1 + 3i) =−1 + 3i ,故选 A. 16
3.|
a
+
2b
之后,最后结果一定是 495.对于输入的 325,第一次循环:重新排列后,最大数为 532, 最小数为 235,相减得 297,然后 i = 1 ;第二次循环:重新排列后,最大数为 972,最小 数为 279,相减得 693,然后 i = 2;第三次循环:重新排列后,最大数为 963,最小数为 369, 相减得 594,然后 i = 3;第四次循环:重新排列后,最大数为 954,最小数为 459,相减得 495,然后 i = 4 ,结束循环,故选 B. 11.f (−x) =(−x)2 − (−x)sin(−x) =x2 − x sin x =f (x) ,故 f (x) 为偶函数,故只需考虑 x ∈ (0,+ ∞) 的单调性即可. f ′(x) = 2x − sin x − x cos x =x − sin x + x(1 − cos x),当 x ∈ (0,+ ∞) 时,易证

【第十六套】云南师范大学附属中学2020届高三上学期第三次月考数学(理)试题(教师版)

【第十六套】云南师范大学附属中学2020届高三上学期第三次月考数学(理)试题(教师版)

A
B
D
C
A' O
B
D
C
BC CD 1 , BD 2 ,知CD ⊥ BC , 所以, AC ⊥ BC , 所以,OC OA OB OD ,即点O 就是过 A , B ,C , D 四点的球的球心,
所以,球的直径 2R AB AD2 DC 2 CB2 3 ,所以 S 4πR2 3π ,故选A. 【解析点评】折叠问题处理关键是折叠前后位置关系与数量的关系变化情况,本题通 过对一个折叠问题解答,考查了球的性质,解答几何体的外接球问题,常见的处理方式
5.(云南师大附中2020届高考适应性月考卷(三)理数)已知 △ABC 的内角 A , B , C 的对边分别为a ,b ,c ,C π ,a 4 ,b c 5 ,则 △ABC 的面积为( )
3
3
A. 2 答案:D.
3
B. 2
C. 3 3
33
D. 2
云南师范大学附属中学2020届高三上学期第三次月考 数学(理) 教师版 第 1 页 共 23 页
7.(云南师大附中2020届高考适应性月考卷(三)理数)函数y sinx 0
的图象向左平移 π 个单位长度,所得图象关于y 轴对称,则 的一个可能取值是( )
3
A. 2 答案:B.
3
B. 2
2
C. 3
1
D. 2
8.(云南师大附中2020届高考适应性月考卷(三)理数
1
1
)执行如图1所示的程序框图,若 a 0.52 , b 0.94 ,
为侧棱补作正方体,则该正方体的外接球就是经过 A , B ,C , D
A'
四点的球, 易知球的直径 2R 3 ,所以 S 4πR2 3π ,故选A.

2020届云南省名校高考适应性月考统一考试数学(理)试题(解析版)

2020届云南省名校高考适应性月考统一考试数学(理)试题(解析版)
A.第一象限B.第二象限C.第三象限D.第四象限
【答案】D
【解析】由复数的四则运算求出 ,就能判别相应选项.
【详解】
因为 ,所以 ,则复平面内表示 的点位于第四象限.选D.
【点睛】
复数四则运算,属于简单题.
3.已知正项等比数列 中, ,若 ,则 =()
A.2•5nB.2• C.5nD.
【答案】D
【解析】考查等比数列的定义,通过 , 就可以求出数列通项公式.
【详解】
由 得 ,即 ,解得 .又因为 ,即 ,解得 ,所以 .选D.
【点睛】
考查等比数列定义,属于简单题.
4.设a=0.60.6,b=log0.61.5,c=1.50.6,则a,b,c的大小关系是()
A.a<b<cB.a<c<bC.b<a<cD.b<c<a
【答案】C
【解析】这是三个不同类型的数字,所以和中间值0和1比较大小,从而得到 的大小关系.
【答案】C
【解析】考查几何体与球相切的问题,常见的有外接、内切和本题的棱相切.
【详解】
因为球O与正方体的所有棱相切,所以该球的直径等于正方体的面对角线长.设球的半径为R,则 , .选C.
【点睛】
考查几何体与球相切的问题,常见的有外接、内切和本题的棱相切.多画图找关系.
7.函数 在 的图象大致是
A. B.
【详解】
解析: ,在点(1,1)处的切线斜率为 ,所以切线方程为 .
【点睛】
本题考查了导数的几何意义求切线方程,属于简单题型.
14.在公差为3的等差数列{an}中,a1,a3,a11成等比数列,则数列{an}的前n项和Sn=_____
【答案】
【解析】考查等差数列的定义,通过指定的三项的等量关系及公差的值求出 ,从而能完成本题.

2020届云南省昆明市云南师范大学附属中学高三适应性月考卷(五) 数学(理)试题(解析版)

2020届云南省昆明市云南师范大学附属中学高三适应性月考卷(五) 数学(理)试题(解析版)
3.设复数 , , 在复平面内所对应的向量分别为 , ( 为原点),则 ()
A. B.
C. D.
【答案】B
【解析】化简得到 ,再计算 得到答案.
【详解】
故选:B
【点睛】
本题考查了复平面对应向量的运算,掌握复数和向量的对应关系是解题的关键.
4.已知数列 为等差数列, 为前 项和,若 , ,则 ()
A. B.
故选:D
【点睛】
本题考查了函数图像的判断,根据奇偶性和特殊点可以快速得到答案是解题的关键.
7.在高中阶段,我们学习的数学教材有必修1~5,选修2系列3册,选修4系列2册,某天晚自习小明准备从上述书中随机取两册进行复习,则他今晚复习的两本均是必修教材的概率是()
A. B. C. D.
【答案】B
【解析】先求“两本均是必修教材”包含的基本事件个数,再求“从上述书中随机取两册”包含的基本事件总数,然后根据概率计算公式即可求出.
设平面ABE与平面BDE的法向量分别为 , ,
则 , , , ,
令 、 ,得 , ,则 .
∴ ,则 ,则 ,
∴ .
【点睛】
本题主要考查线面平行的判定与线线平行的判定,考查二面角的应用,属于中档题.
20.设椭圆 : , , 分别是椭圆的左、右焦点, 在椭圆 上.求证:
(1)直线 : 是椭圆在点 处的切线;
一、单选题
1.已知集合 , .则 ()
A. B.
C. D.
【答案】B
【解析】先计算得到 ,再计算 得到答案.
【详解】
故选:B
【点睛】
本题考查了交集的运算,属于简单题.
2. ()
A. B.
C. D.
【答案】C
【解析】直接利用诱导公式和辅助角公式化简得到答案.

云南2020年上学期师范大学附属中学高三数学理高考适应性月考试题

云南2020年上学期师范大学附属中学高三数学理高考适应性月考试题

云南2020年上学期师范大学附属中学高三数学理高考适应性月考试题注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.3.考试结束后,请将本试卷和答题卡一并交回,满分150分,考试用时120分钟.一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}{}221,(,)1M x y x N x y y x ==+==-+, 则M N=A.{}1B. (0, 1)C. φD. {}(0,1)2.在复平面内,复数21i i-+ (i 为复数单位)对应的点在 A.第一象限 B.第二象限 C.第三象限. D.第四象限3.若随机变量x ~N(1, 4),P(x≤0)=0.2, 则P(0<x<2)=A.0.6B.0.4C.0.3D. 0.84.已知tan 2α=,则sin(2)2πα+= A. 35 B. 45 C. 35- D. 45- 5.电影《达.芬奇密码》中,有这样一个情节:故事女主人公的祖父雅克.索尼埃为了告诉孙女一个惊天的秘密又不被他人所知,就留下了一串奇异的数字13-3-2-21-1-1-8-5,将这串数字从小到大排列,就成为1-1-2-3-5-8-13-21, 其特点是从第3个数字起,任何一个数字都是前面两个数字的和,它来自斐波那契数列,斐波那契数列与黄金分割有紧密的联系,苹果公司的logo(如图1乙和丙)就是利用半径成斐波那契数列(1, 1, 2, 3, 5, 8, 13)的圆切割而成,在图甲的矩形ABCD 中,任取一点,则该点落在阴影部分的概率是A. 731092πB. 891092π C 1621092π. D. 161092π 6.双曲线C: 22221(0,0)x y a b a b-=>>的右焦点为F(3, 0),且点F 到双曲线C 的一条渐近线的距离为1,则双曲线C 的离心率为A. 2B. 32 23 D. 37.如图2,在∆ABC 中, AC=3, AB=2, ∠CAB=60°, 点D 是BC 边上靠近B 的三等分点,则AD =A. 37B. 97C. 43D. 43 8.在正项等比数列{}n a 中, 11a =,前三项的和为7,若存在,m n N *∈使得14m n a a a =,则19m n +的最小值为 A. 23 B. 43 C. 83 D. 1149.如图3,某几何体的三视图均为边长为2的正方形,则该几何体的体积是A. 56B. 83C.1D. 16310.已知函数2212cos ()2cos 2x xx x e x e f x x -+-+=+, 则122019()()()202020202020f f f +++= A.2019 B.2020 C.4038 D.4040 11.设动直线x=t 与曲线x y e =以及曲线ln y x =分别交于P, Q 两点,min PQ 表示PQ 的最小值, 则下列描述正确的是A. min 2PQ =B. min 52PQ <<C. min 2PQ <<D. min 3PQ > 12.过抛物线22(0)y px p =>的焦点F 作抛物线的弦,与抛物线交于A, B 两点,M 为AB 的中点,分别过A, B 两点作抛物线的切线l 1,l 2相交于点P.,∆PAB 又常被称作阿基米德三角形.下面关于∆PAB 的描述:①P 点必在抛物线的准线上; ②AP ⊥PB; ③设A(x 1,y 1), B(x 2, y 2),则∆PAB 的面积S 的最小值为22p ④PF ⊥AB; ⑤PM 平行于x 轴.其中正确的个数是A. 2B.3C.4D.5二、填空题(本大题共4小题,每小题5分,共20分)13.设实数x , y 满足0210210x y y x x y -≤⎧⎪--≤⎨⎪+-≥⎩,则z =x +y 的最小值为_________ 14.在9(x x+的展开式中,则x 2的系数为_____________ 15.已知P 是直线l : 260x y ++= 上一动点,过点P 作圆C: 22230x y x ++-=的两条切线,切点分别为A 、B.则四边形PACB 面积的最小值为___________。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档