高三数学寒假作业(2)及答案.

合集下载

高三寒假作业数学(二)Word版含答案

高三寒假作业数学(二)Word版含答案

【原创】高三数学寒假作业(二)一、选择题,每题只有一项为哪一项正确的。

1.设会合Ax x 12, B x log2x 2,则 A B =A.1,3B.1,4C.0,3D.,42.已知函数f ( x)sin x,x0,2)的值为f ( x1),x那么 f (0,31B.3C.13A.22D.223.已知函数 f (x)x26x7,x0,则 f (0)+f (1) =()=x0,10x,(A) 9(B)71(C) 3(D)11 10104.已知函数f (x)2x 2 ,则函数 y|f ( x) |的图像可能是..()5.若互不相等的实数a, b, c 成等差数列,c, a, b 成等比数列,且 a 3b c10 ,则a ()A.4B.2C.-2D.-46.以下各式中值为的是()A. sin45 ° cos15 °+cos45 °sin15 °B. sin45 ° cos15 °﹣ cos45 ° sin15 °C. cos75 ° cos30 °+sin75 °sin30 °D.4x y 10 07. 设实数 x , y 知足条件x 2 y 8 0 , 若目标函数 z = ax + by(a > 0, b > 0) 的最大值为12,x0, y则23 的最小值为 ( )a b8.已知函数 f ( x) 知足 f ( x)f (1) , 当 x 1, 3 时 , f ( x) ln x , 若在区间 1 内, 曲线 , 3x3 g(x) f ( x) ax 与 x 轴有三个不一样的交点 , 则实数 a 的取值范围是( )1B.1C.ln 3 1D.ln 31A. 0,0,3 ,,2ee2ee39. 圆心在直线 y =x 上,经过原点,且在 x 轴上截得弦长为 2 的圆的方程为 ()A .(x -1) 2+(y -1) 2=2B .(x -1) 2+(y +1) 2=2C .(x -1) 2+(y -1) 2=2 或 (x +1) 2+(y +1) 2=2D .(x -1) 2+(y +1) 2=或 (x +1) 2+(y -1) 2 =2二、填空题10.已知会合 A x | x1 , Bx | xa,且 AB R ,则实数 a 的取值范围是__________ .11.理:已知会合My y2x, x 0, Nx ylg( 2xx 2 ) ,则MN.12.已知等差数列a n的前n 项和为 S n ,且a 1a 53a 3 , a 1014 ,则 S 12 =13.抛物线y1 x2 上的动点M到两定点(0, -1)、( 1, -3)的距离之和的最小值为4三、计算题14.(本小题满分 13 分)已知函数f ( x)log1 ( ax 2) x 12(a 为常数 ).(1) 若常数a 2 且 a 0,求f ( x)的定义域;(2)若 f ( x) 在区间(2,4)上是减函数,求 a 的取值范围.15.(本小题满分 12 分)已知直三棱柱 ABC A1B1C1中,△ABC为等腰直角三角形,∠BAC =90°,且 AB =1,D、E、F分别为1A 、 C1C 、 BC 的中点.AA B(1)求证:DE∥平面ABC;(2)求证:B1F⊥平面AEF;(3)求二面角B1AE F的余弦值.16.(本小题满分12 分)x2y23已知椭圆 C :22 1 a b 0 的离心率为,短轴端点到焦点的距离为2。

[VIP专享]高三数学寒假作业(完整答案)

[VIP专享]高三数学寒假作业(完整答案)
6.已知数列{an}中 a1=1,a2=2,当整数 n>1 时,Sn+1+Sn-1=2(Sn+S1)都成立,则 S15 等于( )
答案 A
于是,该数列是周期为 6 的数列,a2 013=a3=a1=3.
a2
解析 由已知得 an+1=an-1,an+3=an+1= an ×an+1=an,故 an+6=an+3=an,
答案 C
D.729
C.243
B.81
A.27
则 a6=( )
4.已知等比数列{an}的前 n 项和为 Sn,若 S2n=4(a1+a3+a5+…+a2n-1),a1a2a3=27,
int level(BinTreeNodlesevt}r*Beutsl,icnBt(rtrTuiontrcaoTetgtert,_eyapNnpetg)oy;oeN_pddinoeeodtd;fde*esreafc*ttrphsB*au{l)ti;cilrn/duh/tT;ciB/lr/tdo1eiTt;u1ea//NcnrNgoto_loiu(fdn(dtnbe*oetpivdlt{(roe(e}TbidpEititrcfrl(ero!-pbmu>tintrTvritgaey-l(>hlpbulteeie,rtrf=xdt)e,=apr{xkextta,)rt;ru{;k,kr)sd+n;tra+;u1t;ac}0txyBpieTNxv},ooidi{ndet&m*lkac)hi}nil(de)}l;s/e/ js+tr}+uj;cBf+BtoB.+Bid.r.L(;+adikTe+taanN=;t[agojB]e[tdkh=l.se+L+eA1e*+]nr.i;dfc=g(d.-[d;{aiB]1a/it;f/a.;t(dkaA[}ia[]>.kBtdB<}=a];aii.T[BLjt+;aNke.+d[Loni;-]aed-g>t)netahg,B[jt*]+h.)wBd+]{avhi;T=otilareiAedi[n(Be.i{dtm;.<Laive=etAoarngi.0[dLgie],e;jt2Ch=n(o{Sg-0ut9q1h,n/kAL])/t)/iL/[;2s1/e1AtA…aABBmf"…,.S(h+Bq"mniLT6m+irsnet8]e&mhBTen),amidn+dtn&a2Ot*acx(7o10u)n+t)0x{11*ixf=0( nT+o1)d*{ex2i_1f c(+(o!uT2/xn/-*10>tx+l2+cxh=1il;+dnx)o&2/d/h&e=tt_(pn!c:To0o//-duw>1enrw*_c2t/wchx-oi0.1ldu;xon)/)1c*t;cinx6o42.1ucleonfmtt+d/+5ap;t-a5//r7iLg9Cihs4ot8lNuet5nmof9ttdreLp4iegme.=h*ap3tMfAmBol(a[aTrTlit]ex(-;(><i2)nAlccetl[ha0i]}ise=l=ds1,0}A…Tc;[yoine2pu<-nT6ein=-yH>12tp)(]Te;v;enn[Co1-A-ti1o3m1d[u]nA)pHin-[/;in(tv-kL21]ene;]1reyais=A+)nef=[+(t-nm(k1Ta])eAT-p){y>nyA;r-p%c2eh…1iAld3e[2,1]3c,2e1oi20Vn0(u3e=bt×n4i{)n3t1a5)B0);,5b20A}{7,B(2ce[2a150,(l0)ds0cn(a20e,a)]×ie[13j1)1cnr2,a17Af2e0A4,i58g2jtB]b1u(B03}(a5r4,21[En)]06a1B;=07A51([}{0]b937S<A/3)56/HaL([06C0c,sT1b3)]uo[A.>81A0c5u,493]cBn<B0.]=taC5H[L8(0,A1De(4g]k/,Aa5>2EBef0,[)Fy,<]*4C[G)G]b[=2B1,,DHk)g+[]e>,I1AEJy,/[<(,81%C1c]-[8,a5bD1)]C>3C]B,D1<[D1]2Bd62,GFc3E>=41A,V5</1I5EdH475,Gf1231>01+0*J5,91<420G4+0e*30G241,7W1d+*787>13P031,4*9<1L74=41f=0+,515a24953>**/546,17<5+15=0g37413,2*0c5572>/4+517,5<6451*g524,0d+3>956,*5<0315f9+2,3e5W12>14P,12*<3L157g+=56,52f13053>105*693}64*1,{73+80217+9596510*77046873+1*71249264+*9503182+79012*176208590=*2092+8123169831731237*793}W2+531P352L5*0313173+s3T3125158*,21T2052=5,2…915W063…303P5,LTS Tini k1i(2i={a1b,2c,d…e…fg}S0)1,1k10in1i011k11k10n+1kk1Pn21>r+0ikm…00…11+1k0s1=0n11+n21K…ru…snkas1l ns,s=nk,nk a11a121a02K1)aru2s2kaa=2l203*:9(a1i+03/1jA2-03aB(3a131+Aa12=3B+42[…0+]3A…+a3aij1+n3inn149-+iH10-41au+jnfi84+fnm4+16a5B8n+58F1544):52=5706305306.986,2T76:0150,D811:00148110683171,F10ST6:06D413S024H515,1H12:007412101402H*1291u60+22f{f7m4*63a2+n58307*71836+21102*72306+722774*0674128+493}*()4+86*312=513219 5:13/5671(130+7822+6261+p03a1+341352+401143,41)p0=83,21a.8425,913,,p66331:121,0A1a24B13G,,CP4pJ9AD3KG21EHD12AFDaJ3GBH,EPaDHKBApGIBM3J2HEKIF1AJMCKCAEFCMFIIM

2023年高三数学寒假作业02(Word含答案解析)

2023年高三数学寒假作业02(Word含答案解析)

2023年高三数学寒假作业二(时间:45分钟分值:80分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,把正确选项填在答题卡的相应位置)1.已知集合A={x|-5<x<1},B={x|x2≤4},则A∪B=()A.[-2,1)B.(-5,1)C.(-5,2]D.(-5,2)2.已知复数z满足(1-i)(3+z)=1+i(i为虚数单位),则z的共轭复数为()A.3-iB.3+iC.-3-iD.-3+i3.中国的5G技术领先世界,5G技术的数学原理之一便是著名的香农公式:C=W log21+S,它N表示:在受噪音干扰的信道中,最大信息传递速度C取决于信道带宽W,信道内信号的平均功叫作信噪比.当信噪比比较大时,公式中真数里率S,信道内部的高斯噪声功率N的大小,其中SN从1000提升到面的1可以忽略不计.按照香农公式,若带宽W增大到原来的1.1倍,信噪比SN16 000,则C大约增加了(附:lg 2≈0.3) ()A.21%B.32%C.43%D.54%4.“m=-1”是“直线x+my-2m+2=0与直线mx+y-m+1=0平行”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件=32,则S9=()5.已知{a n}是等比数列,S n是其前n项积,若S7S2A.1024B.512C.256D.1286.在一次科普知识竞赛中共有200名同学参赛,经过评判,这200名参赛者的得分都在[40,90]之间,其得分的频率分布直方图如图X3-1,则下列结论错误的是()图X3-1A.可求得a=0.005B.这200名参赛者得分的中位数为65C.得分在[60,80)内的频率为0.5D.得分在[40,60)内的共有80人7.将函数f (x )=cos(2x+φ)(0<φ<π)的图像向右平移π4个单位长度后得到函数g (x )=cos 2x+π6的图像,则函数f (x )在0,π2上的取值范围为 ( )A .(-12,12)B .[-1,-12)C .[-1,12)D .[-1,1]8.已知函数f (x )={e 2-x ,x ≤1,lg (x +2),x >1,则不等式f (x )<1的解集为( )A .(1,7)B .(0,8)C .(1,8)D .(-∞,8)9.已知正三角形ABC 的边长为2,点M 满足CM ⃗⃗⃗⃗⃗⃗ =13CA ⃗⃗⃗⃗⃗ +32CB ⃗⃗⃗⃗⃗ ,则MA ⃗⃗⃗⃗⃗⃗ ·MB ⃗⃗⃗⃗⃗⃗ 的值为 ( )A .53 B .169 C .229D .11310.中国传统扇文化有着极其深厚的底蕴.按如下方法剪裁,扇面形状较为美观.如图X3-2①,从半径为R 的圆面中剪下扇形AOB ,使剪下扇形AOB 后所剩扇形的弧长与圆周长的比值为√5-12,再从扇形AOB 中剪下扇环形ABDC 制作扇面,使扇环形ABDC 的面积与扇形AOB 的面积的比值为√5-12.则一个按照上述方法制作的扇环形装饰品(如图X3-2②)的面积与其所在圆的面积的比值为 ( )图X3-2A .√5-12B .√5-14C .3-√52D .√5-211.已知M 是正方体ABCD-A 1B 1C 1D 1的棱DD 1的中点,则下列说法中错误的是 ( ) A .过点M 有且只有一条直线与直线AB ,B 1C 1都相交 B .过点M 有且只有一条直线与直线AB ,B 1C 1都垂直 C .过点M 有且只有一个平面与直线AB ,B 1C 1都相交 D .过点M 有且只有一个平面与直线AB ,B 1C 1都平行12.已知函数f (x )=e x -a sin x 在区间0,π3上有极值,则实数a 的取值范围是 ( )A .(0,1)B .(1,e)C .(1,2e)D .1,2e π3二、填空题(本大题共4小题,每小题5分,共20分)13.某圆台下底面半径为2,上底面半径为1,母线长为2,则该圆台的表面积为 . 14.利用计算机产生0~1之间的均匀随机数a ,则事件“4a-1<0”发生的概率为 . 15.已知抛物线C :x 2=2py (p>0)的焦点为圆x 2+(y-1)2=2的圆心,又经过抛物线C 的焦点且倾斜角为60°的直线交抛物线C 于A ,B 两点,则|AB|= .16.费马点是指位于三角形内且到三角形三个顶点距离之和最小的点.当三角形三个内角都小于2π3时,费马点与三角形三个顶点的连线构成的三个角都为2π3.已知点P 为△ABC 的费马点,内角A ,B ,C 的对边分别为a ,b ,c ,若cos A=2sin C-π6cos B ,且b 2=(a-c )2+6,则PA ·PB+PB ·PC+PA ·PC 的值为 .答案1.C [解析] ∵A={x|-5<x<1},B={x|-2≤x ≤2},∴A ∪B=(-5,2].故选C .2.C [解析] 因为(1-i)(3+z )=1+i,所以3+z=1+i1-i =(1+i )2(1-i )(1+i )=2i2=i,所以z=-3+i,所以z 的共轭复数为-3-i .故选C . 3.D [解析] 由题意知1.1Wlog 216 000Wlog 21000-1=1.1×lg16 000lg1000-1=1.1×3+4lg23-1≈0.54,所以C 大约增加了54%.故选D .4.A [解析] 若直线x+my-2m+2=0与直线mx+y-m+1=0平行,则m 2-1=0,即m=±1.当m=1时,两条直线都为x+y=0,即重合,舍去;当m=-1时,两条直线分别为x-y+4=0,x-y-2=0,符合题意.故“m=-1”是“直线x+my-2m+2=0与直线mx+y-m+1=0平行”的充要条件.故选A .5.B [解析] S7S 2=a 3a 4a 5a 6a 7=a 55=32,则a 5=2,则S 9=a 1a 2a 3a 4a 5a 6a 7a 8a 9=a 59=512,故选B .6.B [解析] 由频率之和为1,可得a×10=1-(0.035+0.030+0.020+0.010)×10=0.05,故a=0.005,故选项A 中结论正确;得分在[40,60)内的频率为(0.005+0.035)×10=0.4,得分在[60,70)内的频率为0.030×10=0.3,所以这200名参赛者得分的中位数为60+0.5-0.40.3×10≈63.3,故选项B 中结论错误;得分在[60,80)内的频率为(0.030+0.020)×10=0.5,故选项C 中结论正确;得分在[40,60)内的人数为(0.005+0.035)×10×200=80,故选项D 中结论正确.故选B .7.C [解析] 将函数f (x )=cos(2x+φ)(0<φ<π)的图像向右平移π4个单位长度后得到函数g (x )=cos 2x+π6的图像,所以cos 2x-π4+φ=cos 2x-π2+φ=cos 2x+π6,因为0<φ<π,所以-π2+φ∈-π2,π2,所以-π2+φ=π6,即φ=2π3,所以f (x )=cos 2x+2π3.当x ∈0,π2时,2x+2π3∈2π3,5π3,故cos 2x+2π3∈-1,12,故选C .8.C [解析] 当x ≤1时,令e 2-x <1,得2-x<0,解得x>2,所以无解;当x>1时,令lg(x+2)<1,得0<x+2<10,解得-2<x<8,所以1<x<8.综上,不等式f (x )<1的解集为(1,8),故选C . 9.C [解析] ∵MA ⃗⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ -CM⃗⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ -13CA ⃗⃗⃗⃗⃗ +32CB ⃗⃗⃗⃗⃗ =23CA ⃗⃗⃗⃗⃗ -32CB ⃗⃗⃗⃗⃗ ,MB ⃗⃗⃗⃗⃗⃗ =CB⃗⃗⃗⃗⃗ -CM ⃗⃗⃗⃗⃗⃗ =CB ⃗⃗⃗⃗⃗ -13CA⃗⃗⃗⃗⃗ +32CB ⃗⃗⃗⃗⃗ =-13CA ⃗⃗⃗⃗⃗ -12CB ⃗⃗⃗⃗⃗ ,∴MA ⃗⃗⃗⃗⃗⃗ ·MB ⃗⃗⃗⃗⃗⃗ =23CA ⃗⃗⃗⃗⃗ -32CB ⃗⃗⃗⃗⃗ ·-13CA ⃗⃗⃗⃗⃗ -12CB ⃗⃗⃗⃗⃗ =-29CA ⃗⃗⃗⃗⃗ 2+16CB ⃗⃗⃗⃗⃗ ·CA⃗⃗⃗⃗⃗ +34CB ⃗⃗⃗⃗⃗ 2=-29×4+16×2×2×12+34×4=229.故选C . 10.D [解析] 设扇形AOB 的圆心角为α,OC 的长为r ,R=OA=20,由题意可得2πR -αR 2πR =√5-12,得α=(3-√5)π.由12αR 2-12αr 212αR 2=√5-12,得r=10(√5-1),故扇形装饰品的面积S=12R 2α-12r 2α=12α(R 2-r 2)=12×(3-√5)π×[202-(10√5-10)2]=400(√5-2)π,则扇环形装饰品的面积与其所在圆的面积的比值为400(√5-2)ππ×202=√5-2.11.C [解析] 直线AB 与B 1C 1是两条互相垂直的异面直线,点M 不在这两条异面直线中的任何一条上.如图所示,取C 1C 的中点N ,连接MN ,则MN ∥AB ,且MN=AB ,连接BN 并延长,交B 1C 1的延长线于点H ,连接HM 并延长,交BA 的延长线于点O ,由图可知过点M 有且只有一条直线HO 与直线AB ,B 1C 1都相交,故A 中说法正确;过点M 有且只有一条直线与直线AB ,B 1C 1都垂直,此直线就是直线DD 1,故B 中说法正确;凡是过OH 的平面均和AB ,B 1C 1都相交,即过点M 有无数个平面与直线AB ,B 1C 1都相交,故C 中说法错误;过点M 有且只有一个平面与直线AB ,B 1C 1都平行,此平面就是过点M 与正方体的上、下底面都平行的平面,故D 中说法正确.故选C .12.D [解析] f'(x )=e x-a cos x ,由题意知e x-a cos x=0在0,π3上有解,即a=e xcosx 在0,π3上有解.记g (x )=e x cosx,g'(x )=e x (cosx+sinx )cos 2x,当x ∈0,π3时,g'(x )>0,g (x )单调递增,g (0)=1,gπ3=e π3cosπ3=2e π3,所以1<a<2e π3.故选D .13.11π [解析] 由题意知,该圆台的表面积S=π×22+π×12+π×(2+1)×2=11π.14.14[解析] 4a-1<0,即a<14,又a 为计算机产生的0~1之间的均匀随机数,所以a ∈(0,1),所以所求概率P=14.15.16 [解析] 由圆x 2+(y-1)2=2的圆心为(0,1),可得p2=1,解得p=2,所以抛物线C :x 2=4y.因为直线AB 的倾斜角为60°,所以直线AB 的斜率k=√3,故直线AB 的方程为y=√3x+1.联立{x 2=4y ,y =√3x +1,可得x 2-4√3x-4=0,设A (x 1,y 1),B (x 2,y 2),则有x 1+x 2=4√3,x 1x 2=-4,则|AB|=√1+3×√(4√3)2-4×(-4)=16.16.6 [解析] ∵cos A=2sin C-π6cos B ,∴cos A=2√32sin C-12cos C cos B ,即cos A=√3sin C cosB-cos C cos B ,又A+B+C=π,∴cos A=-cos(B+C )=-cos B cos C+sin B sin C ,∴-cos B cos C+sin B sin C=√3sin C cos B-cos C cos B ,即sin B sin C=√3sin C cos B.∵sin C ≠0,∴tan B=sinBcosB =√3,又B ∈(0,π),∴B=π3.由余弦定理知,cos B=a 2+c 2-b 22ac=12,∵b 2=(a-c )2+6,∴ac=6,∴S △ABC =12PA ·PB sin 2π3+12PB ·PC sin 2π3+12PA ·PC sin 2π3=12ac sin B=12×6×sin π3=3√32,∴PA ·PB+PB ·PC+PA ·PC=6.。

2013届高三数学(理)寒假作业(2)向量运算与复数运算、算法、合情推理

2013届高三数学(理)寒假作业(2)向量运算与复数运算、算法、合情推理

高三数学寒假作业(二)向量运算与复数运算、算法、合情推理一、选择题1.(2012²哈尔滨模拟)已知复数12z 1z 2i,==则12z z ∙等 于( )(A)8 (B)-8 (C)8i (D)-8i2.如图所示的程序框图,执行后的结果是( )(A)34 (B)45 (C)56 (D)673.若复数21a i z i-= (i 是虚数单位)为纯虚数,则实数a 的值为( )(A)1 (B)-1 (C)0 (D)±14.已知非零向量a ,b 满足向量a +b 与向量a -b 的夹角为,2π那么下列结论中一定成立的是( )(A)|a |=|b | (B)a =b (C)a ⊥b (D)a ∥b5.阅读下面的程序框图,执行相应的程序,则输出的结果是( )(A)2 (B)-2 (C)3 (D)-36.设复数2z 1i=+ (其中i 为虚数单位),则2z 3z +的虚部为( )(A)2i (B)0 (C)-10 (D)27.已知i 与j 为互相垂直的单位向量,a =i +2j ,b =-i +λj , 且a 与b 夹角为钝角,则λ的取值范围是( )(A)1()2-∞, (B)1()2+∞,(C)1(2)(2)2-∞-- ,, (D)22(2)()33-+∞ ,,8.(2012²青岛模拟)执行如图所示的程序框图,若输出的b 的值为31,则图中判断框内①处应填( )(A)3? (B)4? (C)5? (D)6?9.定义:|a ³b |=|a |²|b |²sin θ,其中θ为向量a 与b 的夹角,若|a |=2, |b |=5,a ²b =-6,则|a ³b |等于( )(A)-8 (B)8 (C)-8或8 (D)6 10.已知结论:在正三角形ABC 中,若D 是边BC 的中点,G 是三角形ABC 的重心,则AG 2.GD=若把该结论推广到空间中,则有结论:在棱长都相等的四面体ABCD 中,若△BCD 的中心为M ,四面体内部一点O 到四面体各面的距离都相等,则AOOM等于( )(A)1 (B)2 (C)3 (D)4 二、填空题11.(2012²新课标全国卷)已知向量a ,b 夹角为45°,且|a |=1,2-=a b 则|b |=____________.12.(2012²日照模拟)设命题p :非零向量a ,b ,|a |=|b |是(a +b )⊥(a -b )的充要条件;命题q :平面上M 为一动点,A ,B ,C 三点共线的充要条件是存在角α,使22MA sin MB cos MC =α+α ,下列命题①p ∧q ;②p ∨q ;p q;p q.⌝∧⌝∨③④ 其中假命题的序号是_____________.(将所有假命题的序号都填上) 13.如果执行下面的程序框图,那么输出的S=__________.14.(2012²潍坊模拟)已知22334424,39,416,,33881515+=⨯+=⨯+=⨯⋯观察以上等式,若999k m n+=⨯ (m,n,k 均为实数),则m+n-k=____________.高三数学寒假作业(二)1. C.2.C.3.C.4. A5. D6. D.7.C.8. B.9. B. 10. C.设四面体内部一点O 到四面体各面都相等的距离为d,则由题意知d=OM,设各个面的面积为S ,则由等体积法得:114S OM S AM 33∙⨯⨯=, 4OM= AM=AO+OM ,从而AO 33.OM 1==11.【解析】2-=a b (2a -b )2=10⇔4+|b |2-4|b |cos 45°=10⇔=b 答案:12.【解析】(a +b )⊥(a -b )⇔(a +b )²(a -b )=a 2-b 2=|a |2-|b |2=0⇔|a |=|b |, 故p 是真命题.若A ,B ,C 三点共线,则存在x ,y ∈R ,使()MA xMB yMC x y 1=++=;若22MA sin MB cos MC =α+α ,则A ,B ,C 三点共线.故q 是假命题.故p ∧q ,p q,p q ⌝∧⌝∨为假命题.答案:①③④13.【解析】第一次循环:S=0+2=2,k=2;第二次循环:S=2+4=6,k=3;第三次循环:S=6+6=12,k=4;第四次循环:S=12+8=20,k=5;k=5>4,循环结束,输出S=20.答案:2014.【解析】观察所给等式知,m=92-1=80,k=92=81,n=m=80,故m+n-k=79.答案:79。

首发吉林省高三寒假作业 数学2含答案

首发吉林省高三寒假作业 数学2含答案

高三数学寒假作业(函数与导数)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共22小题,共150分,考试时间120分钟,考生作答时将答案答在答题卡上,在本试卷上答题无效。

第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求。

) 1.)()()(0000limx f xx f x x f x '=∆-∆+→∆,其中x ∆( )(A )恒取正值或恒取负值 (B )有时可以取0(C )恒取正值 (D )可以取正值和负值,但不能取02.设函数()y f x =在(0,+∞)内有定义,对于给定的正数K ,定义函数(),()(),()K f x f x K f x K f x K≤⎧=⎨>⎩,取函数ln 1()xx f x e +=,恒有()()K f x f x =,则 A .K 的最大值为1e B .K 的最小值为1eC .K 的最大值为2D .K 的最小值为23.双曲线221y x m-=的离心率大于2的充分必要条件是 ( )A .12m > B .1m ≥ C .1m > D .2m >4.函数32()f x x bx cx d =+++的大致图象如图所示,则2212x x +等于( )(A )89(B )109(C )169(D )2895.“使lg 1m <”成立的一个充分不必要条件是( )A. 0m >B. {}1,2m ∈C. 010m <<D. 1m <6.已知a ,b ,c ,d 为实数,且c>d ,则“a>b ”是“a+c>b +d”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件7.已知复数z =,则“3πθ=”是“z 是纯虚数”的( )A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件8.对12,(0,)2x x π∀∈,若21x x >,且1111sin x y x +=,2221sin x y x +=,则( ) (A )y 1=y 2 (B )y 1>y 2(C )y 1<y 2 (D )y 1,y 2的大小关系不能确定9.已知复数i i z 1)3(tan --=θ,则“3πθ=”是“z 是纯虚数”的( )A.充要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件10.设函数()f x 为偶函数,且当0x ≥时,()14xf x ⎛⎫= ⎪⎝⎭,又函数()sin g x x x π=,则函数()()()h x f x g x =-在1,22⎡⎤-⎢⎥⎣⎦上的零点的个数为( )个。

高三数学寒假作业(完整答案)

高三数学寒假作业(完整答案)

高三数学寒假作业—数列答案一、选择题:1.在等差数列{a n }中,a 1=2,a 3+a 5=10,则a 7=()A .5B .8C .10D .14解析 解法一:设等差数列的公差为d ,则a 3+a 5=2a 1+6d =4+6d =10,所以d =1,a 7=a 1+6d =2+6=8.解法二:由等差数列的性质可得a 1+a 7=a 3+a 5=10,又a 1=2,所以a 7=8. 答案 B2.设等比数列{a n }的前n 项和为S n ,若S 2=3,S 4=15,则S 6=( ) A .31 B .32 C .63 D .64解析 在等比数列{a n }中,S 2,S 4-S 2,S 6-S 4也成等比数列,故(S 4-S 2)2=S 2(S 6-S 4),则(15-3)2=3(S 6-15),解得S 6=63. 答案 C3.设S n 为等差数列{a n }的前n 项和,若a 1=1,a 3=5,S k +2-S k =36,则k 的值为( ) A .8 B .7 C .6 D .5解析 设等差数列的公差为d ,由等差数列的性质可得2d =a 3-a 1=4,得d =2,所以a n =1+2(n -1)=2n -1.S k +2-S k =a k +2+a k +1=2(k +2)-1+2(k +1)-1=4k +4=36,解得k =8.4.已知等比数列{a n }的前n 项和为S n ,若S 2n =4(a 1+a 3+a 5+…+a 2n -1),a 1a 2a 3=27,则a 6=( )A .27B .81C .243D .729 解析 设数列{a n }的公比为q ,∵S 2n =4×a 1-q 2n1-q2=a 1-q 2n1-q,∴q =3,又a 1a 2a 3=27,∴a 32=27,∴a 2=3,∴a 6=a 2q 4=35=243,故选C. 答案 C5.已知数列{a n }满足a 1=1,a 2=3,a n +1·a n -1=a n (n ≥2),则a 2 013的值等于( ) A .3 B .1 C.13 D .32 013解析 由已知得a n +1=a n a n -1,a n +3=a n +2a n +1=a n +1a n ×1a n +1=1a n ,故a n +6=1a n +3=a n , 于是,该数列是周期为6的数列,a 2 013=a 3=a 2a 1=3. 答案 A6.已知数列{a n }中a 1=1,a 2=2,当整数n >1时,S n +1+S n -1=2(S n +S 1)都成立,则S 15等于( )A .201B .210C .211D .212解析 由S n +1+S n -1=2(S n +S 1),得(S n +1-S n )-(S n -S n -1)=2S 1=2,即a n +1-a n =2(n ≥2),数列{a n }从第二项起构成等差数列,S 15=1+2+4+6+8+…+28=211. 答案 C7.在等比数列{a n }中,a 1+a n =34,a 2a n -1=64,且前n 项和S n =62,则项数n 等于( ) A .4 B .5 C .6 D .7解析 在等比数列中,a 2a n -1=a 1a n =64,又a 1+a n =34,解得a 1=2,a n =32或a 1=32,a n =2.当a 1=2,a n =32时,S n =a 1-qn1-q=a 1-qa n 1-q =2-32q 1-q=62,解得q =2,又a n =a 1q n -1,所以2×2n -1=2n=32,解得n =5.同理当a 1=32,a n =2时,由S n =62解得q =12,由a n=a 1qn -1=32×⎝ ⎛⎭⎪⎫12n -1=2,得⎝ ⎛⎭⎪⎫12n -1=116=⎝ ⎛⎭⎪⎫124,即n -1=4,n =5,综上项数n 等于5,选B.答案 B8.设等差数列{a n }的前n 项和为S n ,且a 1>0,a 3+a 10>0,a 6a 7<0,则满足S n >0的最大自然数n 的值为( )A .6B .7C .12D .13解析 ∵a 1>0,a 6a 7<0,∴a 6>0,a 7<0,等差数列的公差小于零,又a 3+a 10=a 1+a 12>0,a 1+a 13=2a 7<0,∴S 12>0,S 13<0,∴满足S n >0的最大自然数n 的值为12. 答案 C9.设等差数列{a n }的前n 项和是S n ,若-a m <a 1<-a m +1(m ∈N *,且m ≥2),则必定有( ) A .S m >0,且S m +1<0 B .S m <0,且S m +1>0 C .S m >0,且S m +1>0 D .S m <0,且S m +1<0解析 由题意,得:-a m <a 1<-a m +1⇔⎩⎪⎨⎪⎧a 1+a m >0,a 1+a m +1<0.显然,易得S m =a 1+a m2·m >0,S m +1=a 1+a m +12·(m +1)<0.答案 A10.已知数列{a n }满足a n +1=a n -a n -1(n ≥2),a 1=1,a 2=3,记S n =a 1+a 2+…+a n ,则下列结论正确的是( ) A .a 2 014=-1,S 2 014=2 B .a 2 014=-3,S 2 014=5 C .a 2 014=-3,S 2 014=2D .a 2 014=-1,S 2 014=5解析 由已知数列{a n }满足a n +1=a n -a n -1(n ≥2),知a n +2=a n +1-a n ,a n +2=-a n -1(n ≥2),a n +3=-a n ,a n +6=a n ,又a 1=1,a 2=3,a 3=2,a 4=-1,a 5=-3,a 6=-2,所以当k ∈N时,a k +1+a k +2+a k +3+a k +4+a k +5+a k +6=a 1+a 2+a 3+a 4+a 5+a 6=0,a 2 014=a 4=-1,S 2 014=a 1+a 2+a 3+a 4=1+3+2+(-1)=5.答案 D10(理)已知定义在R 上的函数f(x)和g(x)满足g(x)≠0,f'(x)·g(x)<f(x)·g'(x),f(x)=a x ·g(x),+=.令a n =,则使数列{a n }的前n 项和S n 超过的最小自然数n 的值为二、填空题:13.(2014·江西卷)在等差数列{a n }中,a 1=7,公差为d ,前n 项和为S n ,当且仅当n =8时S n 取最大值,则d 的取值范围________.解析 当且仅当n =8时,S n 取得最大值,说明⎩⎪⎨⎪⎧a 8>0,a 9<0.∴⎩⎪⎨⎪⎧7+7d >0,7+8d <0.∴-1<d <-78.答案 ⎝⎛⎭⎪⎫-1,-78 12.已知函数f (x )=x +sin x ,项数为19的等差数列{a n }满足a n ∈⎝ ⎛⎭⎪⎫-π2,π2,且公差d ≠0.若f (a 1)+f (a 2)+…+f (a 18)+f (a 19)=0,则当k =________时,f (a k )=0.解析 因为函数f (x )=x +sin x 是奇函数,所以图象关于原点对称,图象过原点.而(1)(1)f g (-1)(-1)f g 52()()f n g n 1516等差数列{a n }有19项,a n ∈⎝ ⎛⎭⎪⎫-π2,π2,若f (a 1)+f (a 2)+…+f (a 18)+f (a 19)=0,则必有f (a 10)=0,所以k =10. 答案 1011.(2013·湖南)设S n 为数列{a n }的前n 项和,S n =(-1)n a n -12n ,n ∈N *,则:(1)a 3=________;(2)S 1+S 2+…+S 100=________. 解析 ∵a n =S n -S n -1=(-1)n a n -12n -(-1)n -1a n -1+12n -1(n ≥2),∴a n =(-1)na n -(-1)n -1a n -1+12n (n ≥2).当n 为偶数时,a n -1=-12n (n ≥2),当n 为奇数时,2a n +a n -1=12n (n ≥2),∴当n =4时,a 3=-124=-116.根据以上{a n }的关系式及递推式可求.a 1=-122,a 3=-124,a 5=-126,a 7=-128,…, a 2=12,a 4=12,a 6=12,a 8=12,….∴a 2-a 1=12,a 4-a 3=123,a 6-a 5=125,…,∴S 1+S 2+…+S 100=(a 2-a 1)+(a 4-a 3)+…+(a 100-a 99)-⎝ ⎛⎭⎪⎫12+122+123+…+12100=⎝ ⎛⎭⎪⎫12+123+…+1299-⎝ ⎛⎭⎪⎫12+122+…+12100=13⎝ ⎛⎭⎪⎫12100-1.答案 (1)-116 (2)13⎝ ⎛⎭⎪⎫12100-114.已知对于任意的自然数n ,抛物线y =(n 2+n )x 2-(2n +1)x +1与x 轴相交于A n ,B n 两点,则|A 1B 1|+|A 2B 2|+…+|A 2 014B 2 014|=________.解析 令(n 2+n )x 2-(2n +1)x +1=0,则x 1+x 2=2n +1n 2+n ,x 1x 2=1n 2+n ,由题意得|A n B n |=|x 2-x 1|,所以|A n B n |=x 1+x 22-4x 1x 2=⎝ ⎛⎭⎪⎫2n+1n 2+n 2-4·1n 2+n =1n 2+n =1n -1n +1,因此|A 1B 1|+|A 2B 2|+…+|A 2 014B 2 014|=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫12 014-12 015=1-12 015=2 0142 015. 答案2 0142 01515.(文) 设S n 为数列{a n }的前n 项和,若S 2n S n(n ∈N *)是非零常数,则称该数列为“和等比数列”;若数列{c n }是首项为2,公差为d (d ≠0)的等差数列,且数列{c n }是“和等比数列”,则d =________.解析 由题意可知,数列{c n }的前n 项和为S n =n c 1+c n2,前2n 项和为S 2n =2nc 1+c 2n2,所以S 2nS n =2nc 1+c 2n2n c 1+c n2=2+2nd 4+nd -d =2+21+4-d nd.因为数列{c n }是“和等比数列”,即S 2nS n为非零常数,所以d =4. 答案 415.(理)在正项等比数列{a n }中,a 5=12,a 6+a 7=3,则满足a 1+a 2+…+a n >a 1a 2…a n 的最大正整数n 的值为________.解析 设正项等比数列{a n }的首项为a 1,公比为q (q >0),则由a 5=12得a 6+a 7=a 5q +a 5q 2=12(q +q 2)=3,即q +q 2=6,解得q =2,代入a 5=a 1q 4=a 124=12⇒a 1=125,式子a 1+a 2+…+a n >a 1a 2…a n 变为a 1-qn1-q>答案 12三、解答题:.16.(2014·北京卷)已知{a n }是等差数列,满足a 1=3,a 4=12,数列{b n }满足b 1=4,b 4=20且{b n -a n }是等比数列. (1)求数列{a n }和{b n }的通项公式; (2)求数列{b n }的前n 项和.解 (1)设等差数列{a n }的公差为d ,由题意得d =a 4-a 13=12-33=3.所以a n =a 1+(n -1)d =3n (n =1,2,…). 设等比数列{b n -a n }的公比为q , 由题意得q 3=b 4-a 4b 1-a 1=20-124-3=8,解得q =2. 所以b n -a n =(b 1-a 1)q n -1=2n -1,从而b n =3n +2n -1(n =1,2,…).(2)由(1)知b n =3n +2n -1(n =1,2,…).数列{3n }的前n 项和为32n (n +1),数列{2n -1}的前n 项和为1×1-2n1-2=2n-1.所以,数列{b n }的前n 项和为32n (n +1)+2n-1.17.(2014·安徽卷)数列{a n }满足a 1=1,na n +1=(n +1)a n +n (n +1),n ∈N *. (1)证明:数列⎩⎨⎧⎭⎬⎫a n n 是等差数列;(2)设b n =3n·a n ,求数列{b n }的前n 项和S n . 解 (1)证明:由已知可得a n +1n +1=a n n +1,即a n +1n +1-a nn=1,所以⎩⎨⎧⎭⎬⎫a n n 是以a 11=1为首项,1为公差的等差数列.(2)由(1)得a n n=1+(n -1)·1=n , 所以a n =n 2,从而b n =n ·3nS n =1×31+2×32+3×33+…+n ·3n ①3S n =1×32+2×33+3×34+…+(n -1)·3n +n ·3n +1②①-②得:-2S n =31+32+33+…+3n -n ·3n +1=-3n1-3-n ·3n +1=-2nn +1-32所以S n =n -n +1+3418.已知单调递增的等比数列{a n }满足:a 2+a 3+a 4=28,且a 3+2是a 2和a 4的等差中项. (1)求数列{a n }的通项公式a n ;(2)令b n =a n log 12 a n ,S n =b 1+b 2+…+b n ,求使S n +n ·2n +1>50成立的最小的正整数n .解 (1)设{a n }的公比为q ,由已知, 得⎩⎪⎨⎪⎧a 2+a 3+a 4=28,a 3+=a 2+a 4,∴⎩⎪⎨⎪⎧a 3=8,a 2+a 4=20,即⎩⎪⎨⎪⎧a 1q 2=8,a 1q +a 1q 3=20,解得⎩⎪⎨⎪⎧a 1=2q =2或⎩⎪⎨⎪⎧a 1=32q =12(舍去)∴a n =a 1qn -1=2n.(2)b n =2nlog 122n=-n ·2n , 设T n =1×2+2×22+3×23+…+n ×2n,① 则2T n =1×22+2×23+…+(n -1)×2n +n ×2n +1,②①-②得-T n =(2+22+…+2n )-n ×2n +1=-(n -1)·2n +1-2,∴S n =-T n =-(n -1)×2n +1-2.由S n +n ·2n +1>50,得-(n -1)·2n +1-2+n ·2n +1>50,则2n>26,故满足不等式的最小的正整数n =5.19.(2014·山东)已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列. (1)求数列{a n }的通项公式;(2)令b n =(-1)n-14na n a n +1,求数列{b n }的前n 项和T n . 解 (1)因为S 1=a 1,S 2=2a 1+2×12×2=2a 1+2,S 4=4a 1+4×32×2=4a 1+12,由题意,得(2a 1+2)2=a 1(4a 1+12),解得a 1=1, 所以a n =2n -1. (2)b n =(-1)n-14n a n a n +1=(-1)n -14n (2n -1)(2n +1)=(-1)n -1(12n -1+12n +1).当n 为偶数时,T n =(1+13)-(13+15)+…+(12n -3+12n -1)-(12n -1+12n +1)=1-12n +1=2n2n +1.当n 为奇数时,T n =(1+13)-(13+15)+…-(12n -3+12n -1)+(12n -1+12n +1)=1+12n +1=2n +22n +1.所以T n=⎩⎪⎨⎪⎧2n +22n +1,n 为奇数,2n2n +1,n 为偶数.(或T n =2n +1+(-1)n -12n +1)20.已知数列{a n }满足a 1=1,a 1+a 2+…+a n -1-a n =-1(n ≥2且n ∈N *). (1)求数列{a n }的通项公式a n ; (2)令d n =1+log aa 2n +1+a 2n +25(a >0,a ≠1),记数列{d n }的前n 项和为S n ,若S 2nS n恒为一个与n 无关的常数λ,试求常数a 和λ.解 (1)由题知a 1+a 2+…+a n -1-a n =-1(n ∈N *),① 所以a 1+a 2+…+a n -a n +1=-1,② 由①-②得:a n +1-2a n =0,即a n +1a n=2(n ≥2). 当n =2时,a 1-a 2=-1, 因为a 1=1,所以a 2=2,a 2a 1=2,所以,数列{a n }是首项为1,公比为2的等比数列. 故a n =2n -1(n ∈N *).(2)因为a n =2n -1,所以d n =1+log aa 2n +1+a 2n +25=1+2n log a 2.因为d n +1-d n =2log a 2,所以{d n }是以d 1=1+2log a 2为首项,以2log a 2为公差的等差数列,所以S 2nS n=2n +2log a +2n n -2×2log a 2n+2log a+nn -2×2log a 2=2+n +a21+n +a 2=λ ⇒(λ-4)n log a 2+(λ-2)(1+log a 2)=0, 因为S 2nS n恒为一个与n 无关的常数λ, 所以⎩⎪⎨⎪⎧λ-a2=0,λ-+log a=0,解得λ=4,a =12.21.(文)数列{a n }的前n 项和为S n ,a 1=1,且对任意正整数n ,点(a n +1,S n )在直线2x +y -2=0上.(1)求数列{a n }的通项公式;(2)是否存在实数λ,使得数列⎩⎨⎧⎭⎬⎫S n +λn +λ2n 为等差数列?若存在,求出λ的值;若不存在,请说明理由.解(1)由题意,可得2a n +1+S n -2=0.① 当n ≥2时,2a n +S n -1-2=0.② ①-②,得2a n +1-2a n +a n =0,所以a n +1a n =12(n ≥2). 因为a 1=1,2a 2+a 1=2,所以a 2=12.所以{a n }是首项为1,公比为12的等比数列.所以数列{a n }的通项公式为a n =⎝ ⎛⎭⎪⎫12n -1.(2)由(1)知,S n =1-12n1-12=2-12.若⎩⎨⎧⎭⎬⎫S n +λn +λ2n 为等差数列,则S 1+λ+λ2,S 2+2λ+λ22,S 3+3λ+λ23成等差数列,则2⎝ ⎛⎭⎪⎫S 2+9λ4=S 1+3λ2+S 3+25λ8,即2⎝ ⎛⎭⎪⎫32+9λ4=1+3λ2+74+25λ8,解得λ=2.又λ=2时,S n +2n +22n =2n +2,显然{2n +2}成等差数列,故存在实数λ=2, 使得数列{S n +λn +λ2n }成等差数列.21.(理)(2014·江苏卷)设数列{a n }的前n 项和为S n .若对任意的正整数n ,总存在正整数m ,使得S n =a m ,则称{a n }是“H 数列”.(1)若数列{a n }的前n 项和S n =2n (n ∈N *),证明:{a n }是“H 数列”;(2)设{a n }是等差数列,其首项a 1=1,公差d <0.若{a n }是“H 数列”,求d 的值; (3)证明:对任意的等差数列{a n },总存在两个“H 数列”{b n }和{c n },使得a n =b n +c n (n ∈N *)成立.解 (1)证明:由已知,当n ≥1时,a n +1=S n +1-S n =2n +1-2n =2n.于是对任意的正整数n ,总存在正整数m =n +1,使得S n =2n=a m .所以{a n }是“H 数列”. (2)由已知,得S 2=2a 1+d =2+d . 因为{a n }是“H 数列”, 所以存在正整数m ,使得S 2=a m , 即2+d =1+(m -1)d ,于是(m -2)d =1. 因为d <0,所以m -2<0,故m =1.从而d =-1. 当d =-1时,a n =2-n ,S n =n-n 2是小于2的整数,n ∈N *.于是对任意的正整数n ,总存在正整数m =2-S n =2-n-n2,使得S n =2-m =a m , 所以{a n }是“H 数列”.因此d 的值为-1. (3)证明:设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d =na 1+(n -1)(d -a 1)(n ∈N *). 令b n =na 1,c n =(n -1)(d -a 1), 则a n =b n +c n (n ∈N *). 下证{b n }是“H 数列”. 设{b n }的前n 项和为T n ,则T n =n n +2a 1(n ∈N *).于是对任意的正整数n ,总存在正整数m =n n +2,使得T n =b m ,所以{b n }是“H 数列”. 同理可证{c n }也是“H 数列”. 所以,对任意的等差数列{a n },总存在两个“H 数列”{ b n }和{c n },使得a n =b n +c n (n ∈N *)成立.。

寒假作业及答案大全

寒假作业及答案大全

寒假作业及答案大全寒假作业及答案大全(700字)一、数学作业1. 计算下列各题:(1)3×5-2×4+6=17(2)13÷2+5×3=23.5(3)(4+3)×5-8÷4=37(4)2×(4-1)=62. 解下列方程:(1)3x+2=23解:3x=23-2=21x=7(2)5x/4-2=3解:5x/4=3+2=55x=4×5=20x=43. 计算下列各题中的面积:(1)三角形的底长为6cm,高为4cm解:三角形的面积=1/2×6×4=12cm²(2)矩形的长为8cm,宽为5cm解:矩形的面积=长×宽=8×5=40cm²二、语文作业1. 根据提示,写出含有所给成语的句子。

(1)故人西辞黄鹤楼,烟花三月下扬州。

(成语:黄鹤楼)(2)睡觉前电视绝对不能开得太大声,免得吵到隔壁的老人。

(成语:绝对)2. 解释下列词语的意思:(1)和平:国内外没有战争和冲突,人民生活安定、幸福。

(2)自由:人民有言论、新闻、信仰、出行等方面的自主权利。

3. 写一篇作文,题目为“我的寒假生活”。

我的寒假生活寒假是我一年中最喜欢的假期,因为在寒假里,我可以尽情享受自由、快乐的时光。

首先,我可以睡个懒觉。

平时上学很早起床,所以每天早上都很困。

但是在寒假里,我可以一觉睡到自然醒,不用为了上学而提前起床,感觉真是太好了!其次,我可以和朋友们一起玩乐。

寒假里,我和朋友们经常相约出门,一起去郊外游玩或者去电影院看电影。

这样的时刻总是令人开心和快乐的。

最后,我还可以安排时间进行一些自己感兴趣的活动,比如看书、画画、弹钢琴等等。

这些活动都是平时学习繁忙时很难有时间去做的,所以在寒假里我可以尽情享受这些活动带来的乐趣。

总之,我的寒假生活丰富多彩,充满了快乐和自由。

我通过睡个懒觉、和朋友们一起玩乐以及进行自己感兴趣的活动,度过了一个难忘的寒假。

2019-2020寒假高三数学寒假作业二.doc

2019-2020寒假高三数学寒假作业二.doc

高三数学寒假作业二1. 设全集是(){}(){},2|,,,|,+==∈=x y y x A R y x y x U (),124|,⎭⎬⎫⎩⎨⎧=--=x y y x B 则=B C A U IA. φB. (2,4)C. BD. (){}4,22. 函数()2)1(22+-+=x a x x f 在区间(4,∞-)上是减函数,那么实数a 的取值范围是A. )[+∞,3B. (]3,-∞-C. {}3-D. (5,∞-)3. 已知不等式012≥--bx ax 的解集是⎥⎦⎤⎢⎣⎡--31,21,则不等式02<--a bx x 的解集是A. (2,3)B. ()(),32,+∞∞-YC. (21,31) D. () ⎝⎛∞+⎪⎭⎫∞-,2131,Y4. 关于函数),(33)(R x x f xx ∈-=-下列三个结论正确的是 ( )(1) )(x f 的值域为R; (2) )(x f 是R 上的增函数; (3) 0)()(,=+-∈∀x f x f R x 成立.A. (1)(2)(3)B. (1)(3)C. (1)(2)D. (2)(3)5. 若数列{}n a 满足),0(*N n q q a n n ∈>=,以下命题正确的是 ( )(1) {}n a 2是等比数列; (2) ⎭⎬⎫⎩⎨⎧n a 1是等比数列; (3) {}n a lg 是等差数列; (4) {}2lg n a 是等差数列;A. (1)(3)B. (3)(4)C. (1)(2)(3)(4)D.(2)(3)(4)6. 已知=+++=)2007()2()1(,3sin)(f f f n n f Λπ( ) A. 3 B. 23 C. 0 D. --237. 设βα,为钝角,=+-==βαβα,10103cos ,55sin ( ) A . π43 B. π45 C. π47 D. π45或π478. 已知函数)0)(3sin()(>+=ωπωx x f 的最小正周期为π,则该函数图象( )A. 关于点)0,3(π对称; B. 关于直线4π=x 对称; C. 关于点)0,4(π对称; D. 关于直线3π=x 对称;9. 已知向量b a ,夹角为︒60,=-⊥+==m b a m b a b a ),()53(,2,3 ( )A.2332B. 4229C. 4223D. 294210.编辑一个运算程序:1&1=2,m &n =k ,m &(n +1)=k +3(m 、n 、k *N ∈),1&2004的输出结果为( )A.2004B.2006C.4008D.601111. 已知点A(2,3),B(--3,--2).若直线l 过点P(1,1)且与线段AB 相交,则直线l 的斜率k 的取值范围是A. 43≥k B.243≤≤k C. 2≥k 或43≤k D. 2≤k 12. 设21,F F 分别是双曲线1922=-y x 的左右焦点。

高三数学寒假作业(2)及答案

高三数学寒假作业(2)及答案

有一项是符合题目要求的)1.已知集合(){}|30M x x x =-<,{}|2N x x =<,则MN =( )A .()0,2-B .()2,0C .()3,2D .()3,2- 2.已知命题2:,210,p x R x ∀∈+>则( ) A .2:,210p x R x ⌝∃∈+≤ B .2:,210p x R x ⌝∀∈+≤ C .2:,210p x R x ⌝∃∈+<D .2:,210p x R x ⌝∀∈+<3.向量a =(1,-2),b =(6,3),则a 与b 的夹角为( ) A .60︒ B .90︒ C .120︒ D .150︒ 4.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c , 已知A =3π, a =3, b =1,则c = ( )A .1B .2C .3—1D .3 5.已知两条直线,m n ,两个平面,αβ,给出下面四个命题: ①//,m n m n αα⊥⇒⊥ ②//,,//m n m n αβαβ⊂⊂⇒ ③//,////m n m n αα⇒ ④//,//,m n m n αβαβ⊥⇒⊥其中正确命题的序号是( ) A .①③ B .②④ C .①④ D .②③6.函数)sin()(ϕω+=x x f (,0,02)x R ωϕπ∈>≤<的部分图象如图,则 ( )A .ω=2π,ϕ=4πB .ω=3π,ϕ=6πC .ω=4π,ϕ=4πD .ω=4π,ϕ=45π131oy x7.三个学校分别有1名、2名、3 名学生获奖,这6名学生排成一排合影,要求同校的任两名学生不能相邻,那么不同的排法有( ) A .36种B .72种C .108种D .120种8.如图,设点P 为△ABC 内一点,且AP →= 25 AB → + 15AC → ,则△ABP 的面积与△ABC 的面积之比是( ) A .2:5 B . 1:5C . 1:4D . 1:39.已知{(,)|6,0,0}x y x y x y Ω=+≤≥≥,{(,)|4,0,20}A x y x y x y =≤≥-≥,若向区域Ω上随机投一点P , 则点P 落入区域A 的概率为( ) A .31 B .32 C .91 D .92 10.已知双曲线12222=-y ax 的一条准线与抛物线x y 42-=的准线重合,则该双曲线的离心率为 ( ) A.22B.2C.2D.21二、填空题:本大题共7个小题,把答案填在题中横线上.11.若a =)1,8(-,b =)4,3(,则a 在b 方向上的投影是 ; 12.复数ii++12的共轭复数是 . 13.已知x 、y 满足y x z k y x x y x 420,305+=⎪⎩⎪⎨⎧≥++≤≥+-且的最小值为-6,则常数k= . 14.若)2,0(,135)4sin(πααπ∈=-且,则)4cos(2cos αα+值为 .15.如图,函数)(x f y =的图象在点P 处的切线方程是8+-=x y ,则)5()5(f f '+= .16.若1)2(33)(23++++=x a ax x x f 有极大值和极小值,则a 的取值 范围是____________17.下列程序执行后输出的结果是 . i =11 s=1 DO s=s* i i = i -1 LOOP UNTIL i <9 PRINTs END三、解答题:本大题共4小题,解答应写出文字说明、证明过程或推演步骤.18.已知函数f(x)=2cosx(sinx-cosx)+1,x ∈R. (1)求函数f(x)的最小正周期T ; (2)求函数f(x)的单调增区间;(3)求函数f(x)在区间⎥⎦⎤⎢⎣⎡43,8ππ上的最小值和最大值.19.已知函数)1(log )()()1(>==+a x f x g y x a与的图象关于原点对称.(1)写出)(x g y =的解析式;(2)若函数m x g x f x F ++=)()()(为奇函数,试确定实数m 的值; (3)当)1,0[∈x 时,总有n x g x f ≥+)()(成立,求实数n 的取值范围.21.如图,在正方体1111D C B A ABCD -中,E 、F 分别是BB 1的中点. (1)证明F D AD 1⊥; (2)求AE 与F D 1所成的角; (3)证明:面⊥AED 面11FD AA 1寒假作业3答案一、选择题1-5 BABBC 6-10 CDBDB二、填空题11.-4 12.2123+i 13.0 14.132415.211 16.12-<>a a 或 17.990 三、解答题18(1)T=π (2))(83,8Z k k k ∈⎥⎦⎤⎢⎣⎡++-ππππ(3)最小值-1…,最大值2…19.解:(1)设M (x ,y )是函数)(x g y =图象上任意一点, 则M (x ,y )关于原点的对称点为N (-x ,-y )N 在函数)1(log )(+=x x f a 的图象上,)1(log +-=-∴x y a)1(log x y a --=∴ (2)m x F x ax a+-=-+)1()1(log log )( 为奇函数.mm x F x F x ax ax ax a-+-=+-∴-=-∴-++-)1()1()1()1(log log log log )()(00log log log 211111=∴==+=∴+--+m m a xx a xxa(3)由n n x g x f xx a ≥≥+-+11log ,)()(得设)1,0[,11log )(∈-+=x x xa x Q ,即可只要由题意知n ≥min Q(x),,)121(log )(xax F -+-= 在[0,1)上是增函数.0)0()(min ==∴Q x Q 即0≤n 即为所求.20.解:(I)将事件“第一次、第三次均抽到白球”记作A ,则P (A ) = 16 ⨯16 =136A1(II)设 ξ 是三次抽取中抽到白球的次数,则 ξ~ B (3,16 )ξ 的分布列为E ξ = 3·P (A ) = 3·16 = 1221.(1)证明:因为AC 1是正方体,所以AD ⊥面DC 1。

高三数学寒假作业2理(2021学年)

高三数学寒假作业2理(2021学年)

福建省永春县2017届高三数学寒假作业2理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(福建省永春县2017届高三数学寒假作业2理)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为福建省永春县2017届高三数学寒假作业2 理的全部内容。

高三理科数学寒假过关测试二(考试时间:120分钟 满分150分)第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若集合}{1-==x y x A ,且B B A = ,则集合B 可能是( ) A.{}1,0-ﻩB .{}1,2C.{}1x x ≥-D .R2。

函数x x x x f 221ln )(2-+=的极值点的个数为( ) A .0ﻩB.1ﻩC .2D .33。

已知函数xx xx ee e e xf --+-=)(满足41)(-=a f ,则=-)(a f ( ) A .41ﻩB.43ﻩ C.1ﻩ D.04.已知具有性质:)()1(x f xf =的函数)(x f 称为满足“倒正”变换的函数。

下列函数①x x y 1-=,②x x y 1+=,③⎪⎪⎩⎪⎪⎨⎧<<=>=10,11,01,x xx x x y ④x y ln -=,其中满足“倒正"变换的函数是( ) A.①③B.①④ C .②③ D.②④5.函数x x y cos -=的部分图象是( )A B C D6。

给定函数①12y x =,②12log (1)y x =+,③|1|y x =-,④12x y +=,其中在区间(0,1)上单调递减的函数个数为( ) A.1B.2C .3ﻩD.47。

高三数学寒假作业

高三数学寒假作业

高三数学寒假作业2参考答案1、2±;2、240x y --=;3、)2i ±+;4、m=-1;5、π;6、12e =;7、③;8、2;9 、060 或0120 ;10、11(,)917--;11、35 ;12、 n ;13、π4121-; 14、y e =- 15、(1)312cos =θ, (2)由312cos =θ得31sin 2=θ,32cos 2=θ,1214(,),(,1),sin ,2335P Q α∴-∴=3cos ,cos 5in αββ=== s ()sin cos cos sinin αβαβαβ∴+=+=16、(1)在011160,1,A AC A AC AA AC ∆∠===中,11,AC ∴=111,1,A BC AC ∆==中,BC 11BC AC ∴⊥A B ,又 1111,,AA BC BC ACC A BC A BC ⊥∴⊥⊂平面平面,.111A BC ACC A ∴⊥平面平面.(2)连接11,AC AC O 交于,连接DO, 则由D 为AB 中点,O 为1AC 中点得:OD ∥1BC ,⊂OD 平面⊄11,BC DC A 平面DC A 1,∴1BC ∥平面DC A 117、(1)依题意,设()(1)(3)f x ax x x =+-∵072)(=++a x xx f 有两个相等实根, 即2(22)40ax a x a --+=有两个相等实根,∴044)22(2=⋅--=∆a a a , 即31=a 或1-=a 。

(2)32()(22)3x ax a x ax λ=---在)3,(a -∞内单调递减,2()32(22)30x ax a x a λ'=---≤在)3,(a-∞恒成立,20001()3()2(22)()30333a a a a a a aa a a λ<⎧⎪∴=⇔=≤-⎨'=---≤⎪⎩或或 222221(23)22022224,12230223223(3)4b a a a a bc b c a a b c a a a b c b c a b c a c a ⎧=--⎪⎧⎧⎧---=+=-+=-⎪∴⎨⎨⎨⎨+-+=-=---=--⎩⎩⎩⎪=+⎪⎩①即即②由①211(23)(1)(3)0,344b a a a a a =--=+->∴> 211(3)(1)(3)044c a a a a a -=+-=--> 22111(3)(23)(26)0444c b a a a a -=+---=+>, (2)由已知22222220(2)2(2)43,(2)23a b c a a b c a a b c ⎧++=∴+-=-∴∠⎨+-=-⎩即a +b -c +ab=0,C=120 19.(1)点(1,0)A -关于直线:230l x y -+=的对称点为)52,59('-A , ∴22)520())59(1(|'|222=-+--==B A a ,21,1c b =∴=,所以,所求椭圆方程为:1222=+y x . (2) 设直线l :1,()x my m R =+∈,1122(,),(,)P x y Q x y联立方程组22121x my x y =+⎧⎨+=⎩,消去x 得:22(1)22my y ++=,即22(2)210m y my ++-=2121212222224,()22222m m y y x x m y y m m m ∴+=-+=++=-+=+++11221212(1,)(1,)(2,)AR AP AQ x y x y x x y y =+=+++=+++2222212122222224425||(2)()(2)4(1)2(2)(2)(2)m AR x x y y m m m m ∴=++++=++=++++++令211(0),22t t m =<≤+则222||8204,4||16,2|| 4.AR t t AR AR =++∴<≤<≤20.证明:(1)∵{S n }为∂-数列,∴存在M>0, 使1121||||||n n n n S S S S S S M +--+-++-≤18.∴12||||||n n a a a M -+++≤,又1121||||||n n n n a a a a a a +--+-++-≤121||2||2||||n n a a a a -++++≤12||M a +. ∴{a n }也是∂-数列.(2) ∵数列{a n }{b n }都是∂-数列,∴存在M, M'使得: 1121||||||n n n n a a a a a a M +--+-++-≤,'1121||||||n n n n b b b b b b M +--+-++-≤对任意n N ∈都成立.考虑11111111|||()()|||||||||i i i i i i i i i i i i i i i i a b a b a b b b a a a b b b a a ++++++++-=-+-≤-+-111221|||()()()|i i i i i a a a a a a a a ----=-+-++-11221||||||i i i i a a a a a a ---≤-+-++-M < ∴11||||i a a M M <+=同理,11||||''i b b M M <+= ∴1111111111||||'||''nni i i i i i i i i i a b a b M bb M a a M M M M ++++==-≤-+-<+∑∑∴{a n b n }也是∂-数列.高三数学质量检测附加题参考答案 2011.121.解:由题意,得旋转变换矩阵2cos 45sin 452[]sin 45cos 452⎡⎢-⎢⎥==⎢⎥⎢⎥⎦M ,设1=xy 上的任意点x P (')','y 在变换矩阵M 作用下为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-22222222),,(y x P ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡y x y x '',∴⎪⎪⎩⎪⎪⎨⎧+=-='22'22,'22'22y x y y x x ,得12222=-x y将曲线1xy =绕坐标原点按逆时针方向旋转45°,所得曲线的方程为12222=-x y .2.解:由4cos ρθ=,得24cos ρρθ=,224x y x ∴+=,即圆C 的方程为()2224x y -+=,又由,,x m y ⎧+⎪⎪⎨⎪⎪⎩消t ,得0x y m --=,直线l 与圆C相切,2=,2m ∴=±3.解:(Ⅰ)记甲、乙两人同时参加A 岗位服务为事件A E ,那么3324541()40A A P E C A ==,即甲、乙两人同时参加A 岗位服务的概率是140. (Ⅱ)随机变量ξ可能取的值为1,2,事件“2ξ=”是指有两人同时参加A 岗位服务,则235334541(2)4C A P C A ξ===,所以3(1)1(2)4P P ξξ==-==,即ξ的分布列如下表所示4.(Ⅰ)解:对函数()f x 求导数:22()(log )[(1)log (1)]f x x x x x '''=+-- 2211log log (1)ln 2ln 2x x =--+- 22log log (1)x x =-- 于是1()02f '=,当12x <时,22()log log (1)0f x x x '=--<,()f x 在区间1(0,)2是减函数, 当12x >时,22()log log (1)0f x x x '=-->,()f x 在区间1(,1)2是增函数,所以21)(=x x f 在时取得最小值,1)21(-=f ,(II )用数学归纳法证明(ⅰ)当n=1时,由(Ⅰ)知命题成立 (ⅱ)假设当n=k 时命题成立 即若正数1232,,,,k p p p p 满足12321k p p p p ++++=,则121222323222log log log log k k p p p p p p p p k ++++≥-当n=k+1时,若正数11232,,,,k p p p p +满足112321k p p p p +++++=,令1232k x p p p p =++++11p q x =,22p q x =,……,22k k p q x=则1232,,,,k q q q q 为正数,且12321k q q q q ++++=,由归纳假定知121222323222log log log log k k q q q q q q q q k ++++≥-121222323222log log log log k kp p p p p p p p ++++1212223232222(log log log log log )k k x q q q q q q q q x =+++++2()log x k x x ≥-+ ① 同理,由1212221k k k p p p x ++++++=-,可得112222*********log log log k k k k k k p p p p p p +++++++++2(1)()(1)log (1)x k x x ≥--+-- ②综合①、②两式11121222323222log log log log k k p p p p p p p p ++++++22()log (1)()(1)log (1)x k x x x k x x ≥-++--+-- 22()log (1)log (1)k x x x x =-++-- 1(1)k k ≥--=-+即当n=k+1时命题也成立根据(ⅰ)、(ⅱ)可知对一切正整数n 命题成立高三数学质量检测参考答案 2011.121、2±;2、240x y --=;3、)2i ±+;4、m=-1;5、π;6、12e =;7、③;8、2;9 、060 或0120 ;10、11(,)917--;11、35 ;12、 n ;13、π4121-; 14、y e =- 15、(1)312cos =θ, (2)由312cos =θ得31sin 2=θ,32cos 2=θ,1214(,),(,1),sin ,2335P Q α∴-∴=3cos ,cos 5in αββ===s ()sin cos cos sin in αβαβαβ∴+=+=16、(1)在011160,1,A AC A AC AA AC ∆∠===中,11,AC ∴= 111,1,A BC AC ∆==中,BC 11BC AC ∴⊥A B ,又 1111,,AA BC BC ACC A BC A BC ⊥∴⊥⊂平面平面,.111A BC ACC A ∴⊥平面平面.(2)连接11,AC AC O 交于,连接DO, 则由D 为AB 中点,O 为1AC 中点得:OD ∥1BC ,⊂OD 平面⊄11,BC DC A 平面DC A 1,∴1BC ∥平面DC A 117、(1)依题意,设()(1)(3)f x ax x x =+-∵072)(=++a x xx f 有两个相等实根, 即2(22)40ax a x a --+=有两个相等实根,∴044)22(2=⋅--=∆a a a , 即31=a 或1-=a 。

南昌二中高三数学寒假作业参考解析

南昌二中高三数学寒假作业参考解析

南昌二中高三数学寒假作业参考解析南昌二中2021届高三数学寒假作业参考答案【】复习的重点一是要把握所有的知识点,二确实是要大量的做题,查字典数学网的编辑就为各位考生带来了南昌二中2021届高三数学寒假作业参考答案【解析】试题分析:由题知,,,,.,又故选B.考点:1、函数的零点;2、指数运算;3、函数的最值.10.D【解析】因为. ,由题意可得. .因此.由于两个函数的对称轴分别为或.因此图象的走向为选项D所示.【考点】1.立几中的线面关系.2.函数的图象近似判定.3.函数关系式的建立.11.12.2413.14.①②③④【解析】关于四面体,如下图:当光线垂直于底面时,主视图为,其面积为,③正确;当光线平行于底面,沿方向时,主视图为以为底,正四面体的高为高的三角形,则其面积为,②正确;当光线平行于底面,沿方向时,主视图为图中△,则其面积为,①正确;将正四面体放入正方体中,如上右图,光线垂直于正方体正对我们的面时,主视图是正方形,其面积为,同时现在主视图面积最大,故④正确,⑤不正确.【考点】1.几何体的三视图;2.几何图形的面积.15.①②(2)因为[-1,1],因此关于任意恒成立,即5-2 ,而5-2 最小值为3,因此3 ,解得,实数a的取值范畴是。

考点:本题要紧考查简单曲线的极坐标方程,绝对值不等式的性质,三角函数的图象和性质。

16.(1) ;(2) 的取值范畴为【解析】试题分析:(1) 为单调递增的等比数列,说明,又依照,,列出关于的方程组,解出,最后依照等比数列的性质,求出(2)由题意是首项为2,公差为的等差数列,写出的表达式,代入,整理得,按照当且仅当,,列出不等式组,求出的取值范畴.试题解析:(1)因为为等比数列,因此因此因此为方程的两根;又因为为递增的等比数列,因此从而,因此;(2)由题意可知:,,由已知可得:,因此,当且仅当,且时,上式成立,设,则,因此因此的取值范畴为.考点:等比数列的性质,等差数列的前n项和公式,整系数二次函数的性质.17.(1) ;(2)当时,取得最大值3.【解析】试题分析:本题要紧考查解三角形中正弦定理、余弦定理的应用、倍角公式、两角和与差的正弦公式、三角函数最值等数学知识,考查学生分析问题解决问题的能力、转化能力和运算能力.第一问,利用余弦定理直截了当求,在三角形内解角C的大小;第二问,在三角形BCD中利用余弦定理先得到的表达式也确实是,再在三角形ABC中利用正弦定理得到a的表达式,代入到中,利用倍角公式、两角和的正弦公式化简,由题意,,求函数的最大值.试题解析:⑴在中,4分⑵由正弦定理知6分10分由于,故仅当时,取得最大值3. 12分考点:1.余弦定理;2.正弦定理;3.倍角公式;4.两角和的正弦公式;5.三角函数最值.18.(1)三个易堵塞点最多有一个被堵塞的概率为;(2)选择巷道为抢险路线为好,该巷道平均堵塞点少.【解析】试题分析:(1) 巷道中,三个易堵塞点最多有一个被堵塞的概率;“师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有一项是符合题目要求的
1.已知集合({}|30M x x x =-<,{}
|2N x x =<,则M
N =(
A .(0,2-
B .(2,0
C .(3,2
D .(3,2- 2.已知命题2:,210,p x R x ∀∈+>则( A .2:,210p x R x ⌝∃∈+≤ B .2:,210p x R x ⌝∀∈+≤ C .2:,210p x R x ⌝∃∈+<
D .2:,210p x R x ⌝∀∈+<
3.向量a =(1,-2,b =(6,3,则a 与b 的夹角为( A .60︒ B .90︒ C .120︒ D .150︒
4.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c , 已知A =3
π
, a =3, b =1,则c = (
A .1
B .2
C .3—1
D .3 5.已知两条直线,m n ,两个平面,αβ,给出下面四个命题: ①//,m n m n
αα⊥⇒⊥②//,,//m n m n αβαβ⊂⊂⇒③//,////m n m n αα⇒④//,//,m n m n αβαβ⊥⇒⊥其中正确命题的序号是( A .①③ B .②④ C .①④ D .②③
6.函数sin((ϕω+=x x f (,0,02x R ωϕπ∈>≤<的部分图象如图,则 (
A .ω=2π,ϕ=4π
B .ω=3π,ϕ=6π
C .ω=4π,ϕ=4π
D .ω=4π,ϕ=4

1
3
1o
y x
7.三个学校分别有1名、2名、3 名学生获奖,这6名学生排成一排合影,要求同校的任两名学生不能相邻,那么不同的排法有( A .36种
B .72种
C .108种
D .120种
8.如图,设点P 为△ABC 内一点,且
AP →
= 25 AB → + 15
AC → ,则△ABP 的
面积与△ABC 的面积之比是( A .2:5 B . 1:5
C . 1:4
D . 1:3
9.已知{(,|6,0,0}x y x y x y Ω=+≤≥≥,{(,|4,0,20}A x y x y x y =≤≥-≥,若向区域Ω上随机投一点P , 则点P 落入区域A 的概率为( A .
31 B .32 C .9
1 D .9
2 10.已知双曲线122
22=-y a
x 的一条准线与抛物线x y 42-=的准线重合,则该双曲线的离心率为 ( A.
2
2
B.2
C.2
D.21
二、填空题:本大题共7个小题,把答案填在题中横线上.
11.若a =1,8(-,b =4,3(,则a 在b 方向上的投影是 ; 12.复数
i
i
++12的共轭复数是 . 13.已知x 、y 满足y x z k y x x y x 420,30 5+=⎪⎩
⎪⎨
⎧≥++≤≥+-且的最小值为-6,则常数k= . 14.若2
,0(,1354
sin(
π
ααπ
∈=
-且,则
4
cos(2cos αα+值为 .
15.如图,函数(x f y =的图象在点P 处的切线方程是
8+-=x y ,则5(5(f f '+= .
16.若12(33(23++++=x a ax x x f 有极大值和极小值,则a 的取值范围是
____________
17.下列程序执行后输出的结果是 . i =11 s=1 DO s=s* i i = i -1 LOOP UNTIL i <9 PRINTs END
三、解答题:本大题共4小题,解答应写出文字说明、证明过程或推演步骤.
18.已知函数f(x=2cosx(sinx-cosx+1,x ∈R. (1求函数f(x的最小正周期T ; (2求函数f(x的单调增区间;
(3求函数f(x在区间⎥⎦
⎤⎢⎣
⎡43,8ππ上的最小值和最大值.
19.已知函数1(log ((
1(>==+a x f x g y x a
与的图象关于原点对称.
(1写出(x g y =的解析式;
(2若函数m x g x f x F ++=(((为奇函数,试确定实数m 的值; (3当1,0[∈x 时,总有n x g x f ≥+((成立,求实数n 的取值范围.
21.如图,在正方体1111D C B A ABCD -中,E 、F 分别是BB 1的中点. (1证明F
D AD 1⊥; (2求A
E 与
F D 1所成的角; (3证明:面⊥AED 面11FD A
A 1
寒假作业3答案
一、选择题
1-5 BABBC 6-10 CDBDB
二、填空题
11.-4 12.2
1
23+
i 13.0 14.
13
24
15.211 16.12-<>a a 或 17.990 三、解答题
18(1T=π (2(83,8Z k k k ∈⎥⎦
⎤⎢⎣⎡++-
ππππ(3最小值-1…,最大值2…
19.解:(1设M (x ,y 是函数(x g y =图象上任意一点, 则M (x ,y 关于原点的对称点为N (-x ,-y
N 在函数1(log (+=x x f a 的图象上,1(log +-=-∴x y a
1(log x y a --=∴ (2m x F x a
x a
+-=-+
1(
1(log log ( 为奇函数.
m
m x F x F x a
x a
x a
x a
-+-=+-∴-=-∴-++-
1(
1(
1(
1(log log log log ((
00
log log log 21
1111=∴==+=∴+--+m m a x
x a x
x
a
(3由n n x g x f x
x a ≥≥+-+11log ,((得
设1,0[,11log (∈-+=x x x
a x Q ,即可只要由题意知n ≥min Q(x,,
12
1(log (x
a
x F -+
-= 在[0,1上是增函数
.00((min ==∴Q x Q 即0≤n 即为所求.
20.解:(I将事件“第一次、第三次均抽到白球”记作A ,则P (A = 16 ⨯1
6 =
136
(II设是三次抽取中抽到白球的次数,则的分布列为
125 216 1 25 72 2 5 72 (1)证明:因为
AC1 是正方体,所以 AD⊥面 DC1。

又, D1 所以 AD⊥D1F. (2)取 AB 中点 G,连结 A1G,FG,因 A 1 为 F 是 CD 的中点,所以 GF∥AD,又
A1D1∥AD,所以 GF∥A1D1,故四边形 GFD1A1 是平行四边形,A1G∥D1F。

D 设 A1G 与 A
E 相交于 H,则∠A1HA 是 AE 与 D1
F 所成的角。

因为 E 是 BB1 的中点,所以 Rt△A1AG≌△ABE, ∠GA1A=∠GAH,从而 A ∠A1HA=90°, 即直线 AE 与 D1F 所成的角为直角。

(3)证明:由(1)、(2)知 D1F⊥AD,D1F⊥AE, 而AD∩AE=A,∴D1F⊥平面 AED,∵平面 A1FD1,∴平面 AED⊥平面A1FD1. C1 B1 E F B C 6。

相关文档
最新文档