等比数列前n项和性质

合集下载

等比数列前n项和的性质及应用 课件

等比数列前n项和的性质及应用 课件
3.将实际问题转化为数列问题时应注意:①分清是等差数 列还是等比数列;②分清是求 an 还是求 Sn,特别是要准确确定 项数 n;③递推关系的发现是数列建模的关键.
4.解数列应用题的思路方法如图所示.
公比为 q,显然 q≠1,则a111--qq20=30. 两式相除得 1+q10=3,∴q10=2. ∴S30=a111--qq30=a111--qq10(1+q10+q20) =10×(1+2+4)=70.
法二 ∵S10,S20-S10,S30-S20 仍成等比数列, 又∵S10=10,S20=30, ∴S30-30=30-10102, 即 S30=70.
12a1+212a2+…+2n1-1an-1=2(n-1)+5,

①-②得,21nan=2(n≥2). 所以 an=2·2n=2n+1(n≥2). 在①中令 n=1,可得12a1=2+5=7,即 a1=14.
所以 an=124n+,1,
n=1, n≥2.
1.形如 an+1=an+f(n)的递推式,可用叠加法求通项公式. 2.形如 an+1=f(n)an 的递推式,可用叠乘法求通项公式.3. 形如 an+1=kan+b(k、b 为常数)的递推式,可变形为 an+1+λ= k(an+λ)构造等比数列求解,其中 λ 可用待定系数法确定. 4.由ห้องสมุดไป่ตู้式求通项公式,可把和式看做一个数列的前 n 项和,
在等比数列{an}中,Sn,S2n-Sn, S3n-S2n 数列,其公比是 qn .
,…成等比
等比数列前n项和Sn与函数的关系
【问题导思】 1.等比数列前 n 项和公式 Sn=a111--qqn(q≠1),是否可以 写成 Sn=A(qn-1)(Aq≠0 且 q≠1)的形式?若可以,A 等于什 么? 【提示】 可以,A=-1-a1q.

等比数列的前n项和数列总结

等比数列的前n项和数列总结

等比数列的前n 项和 一、等比数列的前n 项和公式 1.乘法运算公式法∵S n =a 1+a 2+a 3+…+a n =a 1+a 1q +a 1q 2+…+a 1q n -1=a 1(1+q +q 2+…+q n -1)=a 1·1-q 1+q +q 2+…+q n -11-q =a 11-q n1-q, ∴S n =a 11-q n1-q. 2.方程法 ∵S n =a 1+a 1q +a 1q 2+…+a 1q n -1=a 1+q (a 1+a 1q +…+a 1q n -2)=a 1+q (a 1+a 1q +…+a 1q n -1-a 1q n -1)=a 1+q (S n -a 1q n -1),∴(1-q )S n =a 1-a 1q n .∴S n =a 11-q n1-q. 3.等比性质法∵{a n }是等比数列,∴a 2a 1=a 3a 2=a 4a 3=…=a n a n -1=q . ∴a 2+a 3+…+a n a 1+a 2+…+a n -1=q , 即S n -a 1S n -a n =q 于是S n =a 1-a n q 1-q =a 11-q n1-q. 二、等比数列前n 项和公式的理解(1)在等比数列的通项公式及前n 项和公式中共有a 1,a n ,n ,q ,S n 五个量,知道其中任意三个量,都可求出其余两个量.(2)当公比q ≠1时,等比数列的前n 项和公式是S n =a 11-q n 1-q ,它可以变形为S n =-a 11-q ·q n +a 11-q ,设A =a 11-q,上式可写成S n =-Aq n +A .由此可见,非常数列的等比数列的前n 项和S n 是由关于n 的一个指数式与一个常数的和构成的,而指数式的系数与常数项互为相反数.当公比q =1时,因为a 1≠0,所以S n =na 1是n 的正比例函数(常数项为0的一次函数).等比数列前n 项和性质(1)在等比数列{a n }中,连续相同项数和也成等比数列,即:S k ,S 2k -S k ,S 3k -S 2k ,…仍成等比数列.(2)当n 为偶数时,偶数项之和与奇数项之和的比等于等比数列的公比,即S 偶S 奇=q . (3)若一个非常数列{a n }的前n 项和S n =-Aq n +A (A ≠0,q ≠0,n ∈N *),则数列{a n }为等比数列,即S n =-Aq n +A ⇔数列{a n }为等比数列.题型一 等比数列前n 项和公式的基本运算(在等比数列{a n }的五个量a 1,q ,a n ,n ,S n 中,a 1与q 是最基本的元素,当条件与结论间的联系不明显时,均可以用a 1和q 表示a n 与S n ,从而列方程组求解,在解方程组时经常用到两式相除达到整体消元的目的,这是方程思想与整体思想在数列中的具体应用;在解决与前n 项和有关的问题时,首先要对公比q=1或q≠1进行判断,若两种情况都有可能,则要分类讨论.)1、在等比数列{a n}中,(1)若S n=189,q=2,a n=96,求a1和n;(2)若q=2,S4=1,求S8.2、设等比数列{a n}的前n项和为S n,若S3+S6=2S9,求数列的公比q.题型二等比数列前n项和性质的应用3、一个等比数列的首项为1,项数是偶数,其奇数项的和为85,偶数项和为170,求出数列的公比和项数.4、等比数列{a n}中,若S2=7,S6=91,求S4.题型三等比数列前n项和的实际应用5、借贷10 000元,以月利率为1%,每月以复利计息借贷,王老师从借贷后第二个月开始等额还贷,分6个月付清,试问每月应支付多少元?(1.016≈1.061,1.015≈1.051)[规范解答] 方法一设每个月还贷a元,第1个月后欠款为a0元,以后第n个月还贷a元后,还剩下欠款a n元(1≤n≤6),则a0=10 000,a1=1.01a0-a,a2=1.01a1-a=1.012a0-(1+1.01)a,……a6=1.01a5-a=……=1.016a0-[1+1.01+…+1.015]a.由题意,可知a6=0,即1.016a0-[1+1.01+…+1.015]a=0,a=1.016×1021.016-1.因为1.016=1.061,所以a=1.061×1021.061-1≈1 739.故每月应支付1 739元.方法二一方面,借款10 000元,将此借款以相同的条件存储6个月,则它的本利和为S1=104(1+0.01)6=104×(1.01)6(元).另一方面,设每个月还贷a元,分6个月还清,到贷款还清时,其本利和为S2=a(1+0.01)5+a(1+0.01)4+…+a=a[1+0.016-1]1.01-1=a[1.016-1]×102(元).由S1=S2,得a=1.016×1021.016-1. 以下解法同法一,得a≈1 739.故每月应支付1 739元.方法技巧错位相减法求数列的和若数列{a n}为等差数列,数列{b n}为等比数列,由这两个数列的对应项乘积组成的新数列为{a n b n},当求该数列的前n项的和时,常常采用将{a n b n}的各项乘以公比q,并向后错位一项与{a n b n}的同次项对应相减,即可转化为特殊数列的求和,所以这种数列求和的方法称为错位相减法.6、已知等差数列{a n}的前3项和为6,前8项和为-4.(1)求数列{a n}的通项公式;(2)设b n =(4-a n )q n -1(q ≠0,n ∈N *),求数列{b n }的前n 项和S n .数列归纳整合一、数列的概念及表示方法(1)定义:按照一定顺序排列着的一列数.(2)表示方法:列表法、图象法、通项公式法和递推公式法.(3)分类:按项数有限还是无限分为有穷数列和无穷数列;按项与项之间的大小关系可分为递增数列、递减数列、摆动数列和常数列.(4)a n 与S n 的关系:a n =⎩⎪⎨⎪⎧ S 1n =1,S n -S n -1n ≥2. 等差数列 等比数列性质 ①设{a n }是等差数列,若s +t =m +n ,则a s+a t =a m +a n ;②从等差数列中抽取等距离的项组成的数列是一个等差数列;③等差数列中连续m 项的和组成的新数列是等差数列,即:S m ,S 2m -S m ,S 3m -S 2m ,…是等差数列 ①设{a n }是等比数列,若s +t =m +n ,则a s ·a t =a m ·a n ; ②从等比数列中抽取等距离的项组成的数列是一个等比数列; ③等比数列中连续m 项的和组成的新数列是等比数列,即:S m ,S 2m -S m ,S 3m -S 2m ,…是等比数列(注意:当q =-1且m 为偶数时,不是等比数列)函数特性 ①等差数列{an}的通项公式是n 的一次函数,即an =an +b(a≠0,a =d ,b =a1-d); ②等差数列{an}的前n 项和公式是一个不含常数项的n 的二次函数,即Sn =an2+bn(d≠0) ①等比数列{an}的通项公式是n 的指数型函数,即an =c·qn ,其中c≠0,c =a1q ; ②等比数列{an}的前n 项和公式是一个关于n 的指数型函数,即Sn =aqn -a(a≠0,q≠0,q≠1)三、等差数列、等比数列的判断方法(1)定义法:a n +1-a n =d (常数)⇔{a n }是等差数列;a n +1a n=q (q 为常数,q ≠0)⇔{a n }是等比数列. (2)中项公式法:2a n +1=a n +a n +2⇔{a n }是等差数列;a n +12=a n ·a n +2(a n ≠0)⇔{a n }是等比数列.(3)通项公式法:a n =an +b (a ,b 是常数)⇔{a n }是等差数列;a n =c ·q n (c ,q 为非零常数)⇔{a n }是等比数列.(4)前n 项和公式法:S n =an 2+bn (a ,b 为常数,n ∈N *)⇔{a n }是等差数列;S n =aq n -a (a ,q 为常数,且a ≠0,q ≠0,q ≠1,n ∈N *)⇔{a n }是等比数列.专题一 数列通项公式的求法数列的通项公式是数列的核心之一,它如同函数中的解析式一样,有解析式便可研究函数的性质,而有了数列的通项公式,便可求出数列中的任何一项及前n 项和.常见的数列通项公式的求法有以下几种:(1)观察归纳法求数列的通项公式就是观察数列的特征,横向看各项之间的关系结构,纵向看各项与序号n 的内在联系,结合常见数列的通项公式,归纳出所求数列的通项公式.(2)利用公式法求数列的通项公式数列符合等差数列或等比数列的定义,求通项时,只需求出a 1与d 或a 1与q ,再代入公式a n =a 1+(n -1)d 或a n =a 1q n -1中即可.(3)利用a n 与S n 的关系求数列的通项公式如果给出的条件是a n 与S n 的关系式,可利用a n =⎩⎪⎨⎪⎧ S 1n =1,S n -S n -1n ≥2,先求出a 1=S 1,再通过计算求出a n (n ≥2)的关系式,检验当n =1时,a 1是否满足该式,若不满足该式,则a n 要分段表示.(4)利用累加法、累乘法求数列的通项公式形如:已知a 1,且a n +1-a n =f (n )(f (n )是可求和数列)的形式均可用累加法;形如:已知a 1,且a n +1a n=f (n )(f (n )是可求积数列)的形式均可用累乘法. (5)构造法(利用数列的递推公式研究数列的通项公式)若由已知条件直接求a n 较难,可以通过整理变形等,从中构造出一个等差数列或等比数列,从而求出通项公式.1、已知数列{a n }满足a n +1=a n +3n +2且a 1=2,求a n .2、数列{a n }中,若a 1=1,a n +1=n +1n +2a n (n ∈N *),求通项公式a n . 3、已知数列{a n }满足a n +1=3a n +2(n ∈N *),a 1=1,求通项公式.4、设S n 为数列{a n }的前n 项的和,且S n =32(a n -1)(n ∈N *),求数列{a n }的通项公式. 专题二 数列求和求数列的前n 项和S n 通常要掌握以下方法:1、公式法:直接由等差、等比数列的求和公式求和,注意对等比数列q ≠1的讨论.2、错位相减法:主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广.3、分组转化法:把数列的每一项分成两项,使其转化为几个等差、等比数列再求和.4、裂项相消法:把数列的通项拆成两项之差求和,正负相消剩下首尾若干项.5、倒序相加法:把数列正着写和倒着写再相加(即等差数列求和公式的推导过程的推广).1、求数列214,418,6116,…,2n +12n +1的前n 项和S n . 2、在数列{a n }中,a n =1n +1+2n +1+…+n n +1,又b n =2a n ·a n +1,求数列{b n }的前n 项的和. 3、求和S n =x +2x 2+3x 3+…+nx n .专题三 数列的交汇问题数列是高中代数的重点内容之一,也是高考的必考内容及重点考查的范围,它始终处在知识的交汇点上,如数列与函数、方程、不等式等其他知识交汇进行命题.1、已知单调递增的等比数列{a n }满足a 2+a 3+a 4=28,且 a 3+2是a 2,a 4的等差中项.(1)求数列{a n }的通项公式;(2)若b n =a n log 12a n ,S n =b 1+b 2+…+b n ,对任意正整数n ,S n +(n +m )a n +1<0恒成立,试求m 的取值范围. 2、数列{a n }的前n 项和S n =2n 2+2n ,数列{b n }的前n 项和T n =2-b n .(1)求数列{a n }与{b n }的通项公式;(2)设c n =a n 2·b n ,证明:当且仅当n ≥3时,c n +1<c n .。

等比数列前n项和公式和性质

等比数列前n项和公式和性质
(1 273020多2 亿2吨3。根2据4 统…计资料26显3)
示,全世界小麦的年产量约为
S64

264
1 168亿4吨46,7就4是40说7全37世0界9都55要1615 1000多年才能生产这么多小麦,
1.国84王无1论01如9 何是不能实现发明 者的要求的。
如何求等比数列的Sn:
例3.某商场今年销售计算机5000台,如果平均每年 的销售量比上一年的销售量增加10%,那么从今 起,大约几年可使总销售量达到30000台(结果保 留到个位)?
分析:第1年产量为 5000台 第2年产量为 5000×(1+10%)=5000×1.1台
第3年产量为5000×(1+10%) ×(1+10%)
当q 1时,S 1 (1) 说明: 解 (3: ) (当将 代 12as因 解 )qq55入 a3为 2得 14aq11aa时 a1: 2n1112n11q,即 1.n,21.并作 在 在 4a1a,数an1a且 qn五 为 利2q311(列12q1要2个0n第 用n5为 n551根 变一 公 1q,,212常 25a1s据量 ,要 式14an所 1)1数12q具(a2素 , 111以 .列 ,解 体,q81q来 2一Saqn2,1题2)得 n考 定n15,1,52意a虑 要 , : 12n22q,1,q,。 注 [11qS3nn选((中 , 4意1得 311择12,))所 q1n代 2: 的 适(]只以 当 取 入 2知S)的值nn三S公, 1n可n式应 求a1。把二a1n1它,2aqnnq 可得
• 3.已知等比数列{an}中,an>0,n=1,2,3, …,a2=2,a4=8,则前5项和S5的值为 ________.

等比数列前n项和性质,

等比数列前n项和性质,
如 a n 果 为等 , 则 差 Sk,S2 数 kSk,S 列 3 kS2k也成等差数
新的等差数列 Sk, 首 公项 差k为 为 2d。
那么,在等比数列重,也有类似的性质吗?
等比数列前n项和的性质二:
如 a n 果 为等 , 比 Sk,则 S2 数 kSk,S 列 3 kS2k也成等比
S5, S10-S5, S15-S1成 0 等比数列
即 ( (3 S 1 k- - 0 1 : S 3 5) k 2 )2 2 S 3 5( k S 2 1 (S - 5 1 S 1 - 5 3 )0k )1 解得S: 1593923k
S15 993 S10 992
变式训练
Y20
即S1 : 0 0XY80
变,所有偶数项和是170,求此数列的公比和项数?
提示: q S偶 170 2 S奇 85
SnS偶 S 奇 17 8 0 5255
由等比数列n前 项和公式得:
255 1 2n 1-2
解: q10 s20s10 3 s10
s 30 s2 0 10 s20 q 2s 0 10
或 s 30 s 1 0 20 s 10 q 1s 0 20
等比数列前n项和的性质四:
若等比 an共 数 2n 有 项 列,则: 怎么
证明?
S偶 q S奇
例题讲解
2、等{a 比 n}的 数 n项 前 列 和 Sn , 为 S1若 0 2, 0 S2 08, 0S3 则 0 260 。
等比数列前n项和的性质三:
如 a n 为 果公 q 的比 等 , 对 为 m 比 、 p N 数 有 : 列
Smp SmqmSp
变式训练
2、等{a 比 n}的 数 n项 前 列 和 Sn , 为 S1若 0 2, 0 S2 08, 0S3 则 0 260 。

等比数列的前n项和定律

等比数列的前n项和定律
等比数列的前n项和
复习:等比数列 {an}
(1) 等比数列ห้องสมุดไป่ตู้ aann+1=q (非零常数) (2) 通项公式: an=a1• q n-1 (a1 0, q 0).
(3)a, G, b 成等比数列
G 2 ab, (ab 0)
(4) 重要性质:
an= am• qn-m m+n=p+q an •am = ap •aq
Sn
a1
1 qn 1 q
a1 anq ; 1 q
当 q 1时, 即{an}是一个常数列
Sn na1.
例:写出等比数列1,−3,9,−27,…的前 n项和公式, 并求出数列的8项的和.
刚才学习 了等比数列求 和公式哦
Sn
a1
1 qn 1 q
求等比数列 1 , 1 , 1 ,
248
的前8项的和.

两边同时乘以2,
2S64 2 22 23 263 264 ②
由①-②得,
S64 1 264 即 S64 264 1 1.84 1019.
国王无法实现他对大臣的承诺
对于一般的等比数列我们又将怎样求得它的前n项和呢?
设{an}为等比数列, a1为首项, q为公比,它的前n项和
Sn a1 a1q a1q2
注:以上 m, n, p, q 均为自然数
探究
等差数列 {an}的前n项和
Sn
n(a1 2
an )
a1n
n(n 1) 2
d
它能用首项和末项表示,那么对于 S64 是否也能用
首项和末项表示?
如果可以用首项和
末项表示,那我们
该怎么办呢?
S64
1 2 22 262 ~~~~~~~~~~~

等比数列前n项和公式的推导及性质

等比数列前n项和公式的推导及性质

公式评价:简洁明了,易于理解和 记忆,对于等比数列的求和问题具 有重要意义
对未来研究的展望与建议
探索等比数列前n项和公式 的应用领域
拓展等比数列前n项和公式 的推导方法
深入研究等比数列前n项和 公式的推导及性质
建立等比数列前n项和公式 的数学模型
感谢您的观看
汇报人:
第一章
引言
第二章
介绍等比数列的概念
等比数列的定义:从第二项起,每一项与它的前一项的比等于同一个常数的一种数列。
等比数列的通项公式:an=a1*q^(n-1),其中an是第n项,a1是第一项,q是公比。
等比数列的分类:根据公比q的不同,等比数列可以分为常数列(q=1)、递增数列 (q>1)、递减数列(0<q<1)和摆动数列(q<-1或q>1)。 等比数列的应用:等比数列在数学、物理、化学、生物、经济等领域都有广泛的应用, 如等比级数求和、等比序列的生成、遗传学中的基因突变等。
● 两种推导方法各有特点,错位相减法适用于等比数列的首项不为0的情况,而递推式法适用于等比数列的 首项为0的情况。两种方法在推导过程中也存在联系,可以相互补充和印证。
等比数列前n项和公式的性 质
第四章
公式的形式与特点
等比数列前n项和 公式的一般形式
公式中的参数说 明
公式的推导过程 及证明
公式的应用举例 及注意事项
● 错位相减法:通过错位相减的方式,将等比数列前n项和公式转化为等差数列求和的形式,进而 推推式的方式逐步推导出前n项和公式。 两种推导方法各 有特点,错位相减法适用于等比数列的首项不为0的情况,而递推式法适用于等比数列的首项为0 的情况。两种方法在推导过程中也存在联系,可以相互补充和印证。

等比数列公式前n项和公式性质

等比数列公式前n项和公式性质

等比数列公式前n项和公式性质
等比数列公式前n项和公式,又叫等比级数,是一个按首项和公比构成的无穷数列的总和的表达式,它具有独特的特性和性质,下面我们就来看看它的表达式及其特性和性质。

一、等比数列前n项和公式
等比数列的前n项和的计算公式是:Sn=a1(1-rn)/(1-r),其中,a1是等比数列的首项,r是等比数列的公比,Sn是等比数列前n项的和。

二、等比数列公式特性和性质
以上就是等比数列公式前n项和公式及它的特性和性质,希望大家能够从中有所收获。

等比数列前n项和

等比数列前n项和

人教A版· 数学· 必修5
进入导航
第二章 2.5 第2课时
系列丛书
在等比数列{an}中,公比 q=-2,S5=22,则 a1 的值等于 ( ) A.-2 C.1 [ 答案] [ 解析] B.-1 D.2
D a1[1--25] ∵S5=22,q=-2,∴ =22, 1--2
∴a1=2.
人教A版· 数学· 必修5
人教A版· 数学· 必修5
进入导航
第二章 2.5 第2课时
系列丛书
[例3]
在等比数列{an}中,公比q=2,前99项的和S99
=56,求a3+a6+a9+„+a99的值. [分析] 考虑通过基本量a1和q来处理或通过a3+a6+a9
+„+a99是前99项中的一组,与另两组联系在一起进行求 值.
人教A版· 数学· 必修5
进入导航
第二章 2.5 第2课时
系列丛书
等比数列前n项和的性质
设{an}是任意等比数列,它的前 n 项和、前 2n 项和与前 3n 项和分别为 X、Y、Z,则下列等式中恒成立的是 ( ) A.X+Z=2Y C.Y2=XZ B.Y(Y-X)=Z(Z-X) D.Y(Y-X)=X(Z-X)
[ 答案]
D
人教A版· 数学· 必修5
第二章 2.5 第2课时
系列丛书
思考感悟
1.若一个数列是等比数列,它的前n项和写成Sn=Aqn +B(q≠1),则A与B有何关系?
提示:A+B=0, a11-qn a1 a1 n ∵Sn= = - · q ,则常数项与qn的系数 1-q 1-q 1-q 互为相反数.
人教A版· 数学· 必修5
进入导航
人教A版· 数学· 必修5
进入导航
第二章 2.5 第2课时

等比数列前N项和的性质知识讲解

等比数列前N项和的性质知识讲解

例题讲解
4、若等 {an}的 比公 数 1 3, 比 列 a1且 为 a3a99 6,0
则 {an}的1前 0 项 0 和 80 为 。
解: 令 S 奇 a 1 a 3 a 9 9 60
S 偶 a 2a 4 a 100
由则 等 S100比 S奇 数 nS项 偶列 和前 性S质 偶知 q1:
化简S到 n1 3: 3n2a
1 3
2a
0
a 1 6
探究二:
我们知道,等差数列有这样的性质:
如 a n 果 为等 , 则 差 S k,S 2 数 kSk,S 列 3 kS 2 k也成等
新的等差数列 Sk, 首 公项 差k为 为 2d。
那么,在等比数列中,也有类似的性质吗? 怎么证 明?
等比数列前n项和的性质二:



根据题意S10,S20-S10,S30-S20成等比数列 → S10=10,S20=30 → S30
例题讲解
【解】 法一:设公比为 q,则
a111--qq10=10 a111--qq20=30 ② ② ①得 1+q10=3,∴q10=2,

a1 10 1 q
例题讲解
∴S30=a111--qq30=70. 法二:∵S10,S20-S10,S30-S20 仍成等比数列, 又 S10=10,S20=30, ∴S30-S20=S30-30=30-10102, 即 S30=70.
课后作业
书上第62页,习题2.5 B组,第2题、第5题。
5 、在{a 等 n} 中 a 比 1 , a n 数 6, 6 a 2列 a n 1 1, 2 前 n 项 S n 和 1, 2n 6 及 求 q 公 。比
解: a1ana2an 1128

等比数列前n项和公式

等比数列前n项和公式

等比数列前n 项和公式本节课主要学习等比数列前n 项和公式的有关内容. (一)等比数列前n 项和公式111(1)11n n n a qS a q q q =⎧⎪=-⎨≠⎪-⎩(二)等比数列前n 项和的性质 1、S n +m =S n +q n S m 2、若项数为2n ,则S q S =偶奇3、S n , S 2n -S n , S 3n -S 2n 成等比数列.例1、在等比数列{a n }的前n 项中,a 1最小,且a 1+a n =66, a 2a n -1=128,前n 项和S n =126,求n 和公式q .例2、已知等比数列{a n }中,S 10=10, S 20=30,求S 30.例3、已知数列{a n }是等比数列,S n 是其前n 项的和,a 1, a 7,a 4成等差数列,求证:2S 3, S 6, S 12-S 6成等比数列.例4、已知数列{a n }是等差数列,公差d ≠0, {a n }中的部分项组成的数列12,,,,n k k k a a a 恰为等比数列,其k 1=1, k 2=5, k 3=17, (Ⅰ)求k n ;(Ⅱ)求证:k 1+k 2+…+k n =3n -n -1.例5、某市2003年共有1万辆燃油型公交车.有关部门计划于2004年投入128辆电力型公交车,随后电力型公交车每年的投入比上一年增加50%,试问:(1)该市在2010年应该投入多少辆电力型公交车?(2)到哪一年后,电力型公交车的数量开始超过该市公交车总量的13?演练与检测一、选择题1、等比数列{a n }的首项为1,公比为q ,前n 项之和为S,则数列1n a ⎧⎫⎨⎬⎩⎭的前n 项之和是( ) 1111A. B. C. D.n n S S S q S q-- 2、数列1、2、4、8、…、2n -1、…的前n 项和S n 满足100<S n <200,那么n 等于( )A .9B .8C .7D .63、在公比为整数的等比数列{a n }中,如果a 1+a 4=18,a 2+a 3=12,那么该数列的前8项之和是( )A .513B .512C .510D .22584、等比数列{a n }中,a 1+a 2=20,a 3+a 4=40,则S 6等于( ) A .80B .120C .140D .1805、若数列{a n }的前n 项和S n =5n +m ,那么使{a n }为等比数列的实数m 的值为( ) A .可取一些实数B .只能取0C .只能取-1D .不存在6、设等比数列{a n }的前n 项和为S n ,若a 2002=2S 2001+6,a 2003=2S 2002+6,则数列{a n }的公比q 为( )A .2B .4C .5D .37、在等比数列{a n }中,设前n 项和为S n ,则22223,()n n n n n x S S y S S S =+=+的大小关系是( ) A .x >yB .x =yC .x <yD .不确定8、设数列{a n }是公比为a (a ≠1)首项为b 的等比数列,S n 是前n 项和,对任意的n ∈N ﹡,点(S n , S n +1)( )A .在直线y =ax -b 上B .在直线y =bx +a 上C .在直线y =bx -a 上D .在直线y =ax +b 上 二、填空题9、数列1234,,,,24816…的前n 项和S n =_________. 10、在等比数列{a n }中,如果a 1=4,q =5,使S n >102的最小值n =________.11、在等比数列{a n }中,a 1+a 2+a 3=18,a 2+a 3+a 4=-9,S n =a 1+a 2+…+a n ,则S n =_______.12、某科研单位,欲拿出一定的经费奖励科研人员,第一名得全部奖金的一半多一万元,第二名得剩下的一半多一万元,以名次类推都得到剩下的一半多一万元,到第七名恰好将奖金分完,则需拿出奖金_______万元. 三、解答题13、已知等比数列{a n }的前n 项和为10,前3n 项的和为70,求其前2n 项的和.14、设数列{a n }的首项a 1=1,前n 项和S n 满足关系式,3tS n -(2t +3)S n -1=3t (t >0,n =2,3,4,…). (1)求证:数列{a n }是等比数列,并求出a n ;(2)设数列{a n }的公比为f (t ),作数列{b n },使b 1=1,11(2,3,4,),n n b f n b -⎛⎫== ⎪⎝⎭求b n .15、设数列{a n }是以a 为首项,t 为公比的等比数列,令b n =1+a 1+a 2+…+a n ;c n =2+b 1+b 2+…+b n ,n ∈N ﹡.(Ⅰ)试用a ,t 表示b n 和c n ;(Ⅱ)若a >0,t >0且t ≠1,试比较c n 与c n +1(n ∈N ﹡)的大小;(Ⅲ)是否存在实数对(a ,t ),其中t ≠1,使{c n }成等比数列,若存在,求出实数对(a ,t )和{c n },若不存在说明理由.等差数列与等比数列、例题剖析例1、(1)等比数列中q =2,S 99=77,求a 3+a 6+…+a 99; (2)等差数列中a 9+a 10=a ,a 19+a 20=b ,求a 99+a 100.例2、设{a n }是等差数列,1231231211(),,,288n an b b b b b b b =++==已知求通项公式a n .例3、有一等差数列{a n }和等比数列{b n },已知a 1=b 1=a >0,a 2n +1=b 2n +1,比较a n +1与b n +1的大小.例4、已知数列{a n }中,S n 是它的前n 项和,并且S n +1=4a n +2(n =1,2,…),a 1=1. (1)设b n =a n +1-2a n (n =1,2,…),求证数列{b n }是等比数列; (2)设(1,2,)2nn na c n == ,求证:数列{c n }是等差数列; (3)求数列{a n }的通项公式及前n 项和公式.例5、设各项均为正数的数列{a n }和{b n }满足15,5,5n n n a b a+成等比数列,lg b n ,lg a n +1,lg b n+1成等差数列,且a 1=1,b 1=2,a 2=3,求通项a n ,b n .一、选择题1、等差数列{a n }的首项a 1=1,公差d ≠0,若a 1,a 2,a 5成等比数列,则d 等于( )A .3B .2C .-2D .2或-22、等差数列{a n }中的公差d ≠0,若a 1,a 3,a 9成等比数列,则1392410a a a a a a ++++的值等于( )7101613A.B. C. D.10713163、已知下列命题,其中正确命题的个数为( )①等差数列{a n }有如下性质:若m +n =p +q ,则a m +a n =a p +a q ;②等比数列{a n }有如下性质:若m +n =p +q ,则a m ·a n =a p ·a q ; ③如果a ,b ,c 成等比数列,那么lg a ,lg b ,lg c 成等差数列;④首项为a 1,公比为q 的等比数列的前n 项和1(1).1n n a q S q-=-A .1B .2C .3D .44、各项都是正数的等比数列{a n }的公比q ≠1,且a 2,31,2a a 1成等差数列,则3445a a a a ++的值是( ) 5151155151A.B. C. D.22222+--+-或5、数列{a n }中,a 1, a 2, a 3成等差数列,a 2, a 3, a 4成等比数列,a 3, a 4, a 5的倒数成等差数列.若a 1≠a 3,则下列命题中真命题的个数是( )①a 1, a 3, a 5成等差数列 ②a 1, a 3, a 5成等比数列 ③135111,,a a a 成等差数列 ④135111,,a a a 成等比数列 A .1个 B .2个C .3个D .4个答案:B6、已知x >0,y >0,且x ,a ,b ,y 成等差数列,x ,c ,d ,y 成等比数列,2(),a b cdα+=则α的取值范围是( )A .(0,+∞)B .(0,4]C .[4, +∞)D .(4, +∞)答案:C7、若S n 是数列{a n }的前n 项和,且S n =n 2,则{a n }是( )A .等比数列,但不是等差数列B .等差数列,但不是等比数列C .等差数列,而且也是等比数列D .既非等比数列又非等差数列 答案:B8、根据市场调查结果,预测某种家用商品从年初开始的12个月内累积的需求量S n (万件)近似的满足2(215)(1,2,3,,12)90n nS n n n =--= 按此预测,在本年度内需求量超过1.5万件的月份是( )A .5月,6月B .6月,7月C .7月,8月D .8月,9月二、填空题9、设{a n }是公比为q 的等比数列,S n 是它的前n 项和,若{S n }是等差数列,则q =_____. 10、互不相等的三个正数a ,b ,c 成等比数列,且lg c a ,lg b c ,lg a b 成等差数列,则公差d=_____.11、数列{a n }中,当n 为奇数时,a n =4n -1,当n 为偶数时,23,nn a =则a 1+a 2+…+a 2n = ______.12、设{a n }是公比为q 的等比数列,S n 是它的前n 项和,若{S n }是等差数列,则q =____. 三、解答题13、三个数成等比数列,若第二个数加4,它们就成等差数列,再把这个等差数列的第三项加32,它们又成等比数列,求这三个数.14、在等比数列{a n }中,a 1=1000,11,10n q b n==又设(lg a 1+lg a 2+…+lg a n ),求数列{b n }的前n 项和的最大值.15、设数列{a n }和{b n }满足a 1= b 1=6,a 2= b 2=4,a 3= b 3=3,且数列{ a n +1-a n }(n ∈N ﹡)是等差数列,数列{b n -2}(n ∈N ﹡)是等比数列. (Ⅰ)求数列{a n }和{b n }的通项公式; (Ⅱ)是否存在k ∈N ﹡,使a k -b k ∈(0,12)?若存在,求出k ;若不存在,说明理由.。

2.5 等比数列前n项和的性质及应用(2)

2.5 等比数列前n项和的性质及应用(2)

能使问题的解决过程变得简洁明快.
跟踪训练3 设数列{an}是以2为首项,1为公差的等差数列;数列{bn} 是以1为首项,2为公比的等比数列,则ba1 ba2 ba3 … ba6=_1_2_6_.ຫໍສະໝຸດ 解析ban1 ban

b qan11 1
b1 qan 1
qan1an
规律与方法
1.在利用等比数列前n项和公式时,一定要对公比q=1或q≠1作出判 断;若{an}是等比数列,且an>0,则{lg an}构成等差数列. 2.等比数列前n项和中用到的数学思想 (1)分类讨论思想: ①利用等比数列前n项和公式时要分公比q=1和q≠1两种情况讨论; ②研究等比数列的单调性时应进行讨论:当a1>0,q>1或a1<0,0<q<1 时为递增数列;当a1<0,q>1或a1>0,0<q<1时为递减数列;当q<0时为 摆动数列;当q=1时为常数列.
Sn (S3n

S2n
)
∴S2n+S22n=Sn(S2n+S3n).
反思与感悟 处理等比数列前n项和有关问题的常用方法 (1)运用等比数列的前n项和公式,要注意公比q=1和q≠1两种情形, 在解有关的方程(组)时,通常用约分或两式相除的方法进行消元. (2)灵活运用等比数列前n项和的有关性质.
跟踪训练2 在等比数列{an}中,已知Sn=48,S2n=60,求S3n.
类型二 等比数列前n项和的性质 命题角度 1 连续 n 项之和问题
例 2 已知等比数列前 n 项,前 2n 项,前 3n 项的和分别为 Sn,S2n,S3n, 求证:S2n+S22n=Sn(S2n+S3n).
证明 方法二 因为Sn,S2n-Sn,S3n-S2n 成等比数列

等比数列前N项和的性质

等比数列前N项和的性质

法三:∵{an}为等比数列,
∴S2,S4-S2,S6-S4也为等比数列. 即7,S4-7,91-S4成等比数列, ∴(S4-7)2=7(91-S4). 解得S4=28或-21.
∵S4=a1+a2+a3+a4=a1+a2+a1q2+a2q2
=(a1+a2)(1+q2)=7(1+q2)>0, ∴S4=28.
q
S偶 S奇
170 2 85
ห้องสมุดไป่ตู้
Sn S偶 S奇 170 85 255
由等比数列前 n项和公式得:
1 2 255 1-2
n
n8
等差数列前n项和的性质: ① 数列 {an }是等比数列

S n Aq - A( A 0)
n
② an 为等比数列 S k , S 2k S k , S3k S 2k 也成等比数列。
[解 ]
法一:∵S2=7,S6=91,易知q≠1,
a11+q=7, ∴a11-q6 =91. 1 - q a11+q1-q1+q2+q4 ∴ =91. 1- q ∴q4+q2-12=0.∴q2=3. a11-q4 ∴S4= =a1(1+q)(1+q2)=7×(1+3)=28. 1- q ∴S4=28.
前20项和S20=30,求S30.
【 思 路 点 拨 】 法 二 法 一 : 设公比为q :
→ 根据条件列方程组 → 解出q → 代入求S30 根据题意S10,S20-S10,S30-S20成等比数列 → S10=10,S20=30 → S30
【解】
法一:设公比为 q,则 ① ②
a11-q10 =10 1-q 20 a 1 - q 1 1-q =30
这个形式和等比 数列等价吗? 相反 数

等比数列前n项和性质

等比数列前n项和性质

实数m= -1
S练2、n习已:x知1 3等、n比已1 数知116列等,比则an数x的的列前值ann为项的和前12为n项S和n 为3n2 2a,
则a的值为
18
3、已知等比数列an的前n项和为 Sn 4 3n2 5a,
则a的值为

4 45
等差数列中依次每k项的和,仍成等差数列。 在等比数列中,是否也有类似的性质?
f(12)=1·12+3·(12)2+5·(12)3+…+(2n-1)·(12)n,
12f(12)=1·(12)2+3·(12)3+…+(2n-3)·(12)n+22nn-+11.
把两式相减,得:
(1-12)f(12)=12-22nn-+11+2[(12)2+(12)3+…+(12)n]
=12-22nn-+11+2·122[11--1212n-1].
等比数列的前n项和(二)
有关的性质
复习回顾 引入新课
等比数列前n项和公式:
na1
Sn

a1
a1q n
1-q

Sn

na1 a1 anq
1-q
q 1, q 1。
q 1, q 1。
例3已知数列an前n项和Sn 2n 1,求此数列的
通项an,并证明它是一个等比数列。
由于 an1 an

2n 2n1

2(n N*)

an
是一个等比数列
探究:由Sn

a1
(1 qn 1 q
)
得Sn是形如Sn

Aqn

B的式子,
且A B 0反,之,若一个数列an的前n项和为
Sn Aqn B,A 0, q 1,则数列an是等比数列吗?

2.5.2 等比数列前n项和的性质

2.5.2 等比数列前n项和的性质
数为 n.
∵等比数列的项数为偶数,Sn=S 奇+S 偶, 则 S 奇=a1+a3+a5+…+an-1, S

= a2 + a4 + a6 +…+ an = a1q + a3q + a5q +…+ an - 1q =
q(a1+a3+a5+…+an-1)=q· S 奇,∴85q=170,∴q=2, a11-qn 又∵Sn=85+170=255,∴ =255. 1-q 1-2n ∴ =255,∴2n=256, 1-2 ∴n=8,故公比 q=2,项数 n=8.
S偶 等比数列的公比,即 =q. S奇 (3)若一个非常数列{an}的前n项和Sn=-Aqn+A(A≠0, q≠0,n∈N*),则数列{an}为等比数列,即Sn=-Aqn+ A⇔数列{an}为等比数列.
课前探究学习
课堂讲练互动
【例1】 (1)在等比数列{an}中,若S10=10,S20=30,求S30. (2)一个等比数列的首项为1,项数是偶数, 其奇数项的和为85,偶数项和为170, 求出数列的公比和项数.
nqn+1-n+1qn+1 于是 Sn= . q-12
课前探究学习 课堂讲练互动
nn+1 ②若 q=1,则 Sn=1+2+3+…+n= . 2
n+1 n nq - n + 1 q +1 ,q≠1, q-12 所以,Sn= nn+1 ,q=1. 2
2.5.2 等比数列前n项和的性质
课前探究学习
课堂讲练互动
等比数列的前n项和公式
课前探究学习
课堂讲练互动
等比数列前n项和性质 (1)在等比数列{an}中,连续相同项数和也成等比数列, 即:Sk,S2k-Sk,S3k-S2k,…仍成等比数列. (2)当 n 为偶数时, 偶数项之和与奇数项之和的比等于

高中数学《等比数列前n项和性质》课件

高中数学《等比数列前n项和性质》课件

A.24
√B.12
C.18
D.22
解析 设a1+a3+…+a99=S,则a2+a4+…+a100=2S.
∵S100=36,∴3S=36,∴S=12,∴a1+a3+a5+…+a99=12.
规律与方法
1.在利用等比数列前n项和公式时,一定要对公比q=1或q≠1作出判 断;若{an}是等比数列,且an>0,则{lg an}构成等差数列. 2.等比数列前n项和中用到的数学思想 (1)分类讨论思想: ①利用等比数列前n项和公式时要分公比q=1和q≠1两种情况讨论; ②研究等比数列的单调性时应进行讨论:当a1>0,q>1或a1<0,0<q<1 时为递增数列;当a1<0,q>1或a1>0,0<q<1时为递减数列;当q<0时为 摆动数列;当q=1时为常数列.
反思与感悟 处理等比数列前n项和有关问题的常用方法 (1)运用等比数列的前n项和公式,要注意公比q=1和q≠1两种情形, 在解有关的方程(组)时,通常用约分或两式相除的方法进行消元. (2)灵活运用等比数列前n项和的有关性质.
跟踪训练2 在等比数列{an}中,已知Sn=48,S2n=60,求S3n.
第二章 §2.5 等比数列的前n项和 第2课时 等比数列前n项和的性质及应用
学习目标
1.理解等比数列前n项和公式的函数特征. 2.熟练应用等比数列前n项和公式的有关性质解题. 3.会用错位相减法求和.
知识点一 等比数列前n项和公式的函数特征
思考 若数列{an}的前n项和Sn=2n-1,那么数列{an}是不是等比数列?
若数列{an}的前n项和Sn=2n+1-1呢?
答案 当Sn=2n-1时,
an=SS1n,-nS=n-11,,n≥2 当Sn=2n+1-1时,

等比数列前n项和公式和性质

等比数列前n项和公式和性质

练习2:
(1) 等比数列中,S10=10,S20=30,则 S30=___7_0___.
(2) 等比数列中,Sn=48,S2n=60,则 S3n=____6_3__.
例:等比数列{an}的前n项和为Sn,a1
1,若 S10 S5
31, 32
求 S15 的值。
S10
解: S10 31
S5 32
设S10 31k, S5 32k(k 0)
∵S10,S20-S10,S30-S20 仍成等比数列, 又 S10=10,S20=30,
30-102 ∴S30-S20=S30-30= 10 , 即 S30=70.
2、等比数列{an }的前n项和为Sn,若Sm 10,S2m 30,
求S
的值。
3m
解: Sm,S2m - Sm,S3m - S2m成等比数列 (S2m - Sm )2 Sm (S3m - S2m )
• ②÷①,得q=2,代入①得22n=256, • 解得2n=8,所以这个数列共8项,公比为2.
于是当n 8时
Sn
3 1640
1 ( 1)
81
3
例2、在等比数列an中,求满足下列条件的 量 :
(1)a1 a3 2, 求sn
(2)q
2, n
5, a1
1 2
.求a
n
和sn
(3)a1 1,an 512 ,sn 341 .求q和n
当q 1时,S 1 (1) 说明: 解 (3: ) (当将 代 12as因 解 )qq55入 a3为 2得 14aq11aa时 a1: 2n1112n11q, .即 1.n,21并作 在 在 4a1a,数an1a且 qn五 为 利2q311(列12q1要2个0n第 用n5为 n551根 变一 公 1q,,212常 25a1s据量 ,要 式14an所 1)1数12q具(a2素 , 111以 .列 ,解 体,q81q来 2一Saqn2,1题2)得 n考 定n15,1,52意a虑 要 , : 12n22q,1,q,。 注 [11qS3nn选((中 , 4意1得 311择12,))所 q1n代 2: 的 适(]只以 当 取 入 2知S)的值nn三S公, 1n可n式应 求a1。把二a1n1它,2aqnnq 可得
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。



例:求数列{ }的前n项和Sn。 1 (2n - 1) 例:求和Sn=x+2x22n 3+……+nxn +3x
小心啦! 本题可没有说x是否一定不为0或不为1。
总结二


等比数列也有类似等差数列的等距和性质、奇 偶项和的性质,而且,同样运用的是整体思想。 常见的数列求和方法有四种:倒序相加法、错 位相减法、拆项(分组求和)法、裂项相消法 等。请注意领会各种方法的适用特征。


等比数列之奇偶项和

在等比数列中,若项数为偶数(设2n),则S偶: S奇=q

例:已知一个等比数列其首项是1,项数数是?
错位相减法的运用

若数列{an}是等差数列、{bn}是等比数列,则数 列{anbn}的前n项和可以用错位相减法进行求和。
课前小测验

C

D

D
等比数列前n项和性质
人生的奔跑,不在于瞬间的爆发,而在 于途中的坚持。
等比数列和的性质

若Sn是等比数列{an}的前n项和,则数列 Sn,S2n-Sn,S3n-S2n……也构成等比数列。 例:等比数列前n项和为54,前2n项和为60, 则前3n项和为? 类:正项等比数列中,S2=7,S6=91则S4?
相关文档
最新文档