1.4.1有理数乘法(第一课时)

合集下载

1.4.1有理数的乘法(1)_人教版_2012_新编教材

1.4.1有理数的乘法(1)_人教版_2012_新编教材

思考 观察下面的乘法算式,你能发现什么规律吗? 3×3=9, 3×2=6, 3×1=3, 3×0=0.
可以发现,上述算式有如下规律:随着 后 一乘数逐次 递减1 ,积逐次 递减3 . 要使这个规律在引入负数后仍然成立,那么应有:
3×(-1)=-3, 3×(-2)= -6 3×(-3)= -9
从符号和绝对值两个角度观察上述所有算式,可以归纳如下:
4 1 (4 ) 4
=1 ;
=1 ;
3 8 (5) ( ) ( ); 8 3 3 8 ( ) 8 3
1 (6) (3) ( ); 3 1 ( 3 × ) 3
=1 ;
=1 ;
3 8 ( )与( )的乘积等于 1 , 8 3
1 (3)与( )的乘积等于 1 3
例1 计算: (1) 9×6 ; (2) (−9)×6 ; (4)(-3)×(-4) (3) 3 ×(-4)
求解中的
第一步是
确定积的符号
解:(1) 9×6 =+(9×6) =54 ;
(2) (−9)×6 = −(9×6) = − 54;
第二步是 (3) 3 × (-4) (4)(-3) × (-4) = −(3 ×4) =-12 ; = +( 3× 4) =12 ;
7×4=28
(异号两数相乘)

(得负) (把绝对值相乘)
所以(-7)×4= -28
注意:有理数相乘,先确定积的符号,在确定绝对值的乘积。
法则的应用:
例1:计算; (1)(-3)×9 (2) (- 1 )×(-2) 2 解:(1)(-3)×9= -27 (2) 8 ×( — 1 )
-8 ( 2 ) 8× (-1) = 1 ( 3 )(- )×(-2)= 2

1-4-1 有理数的乘法(第一课时)(教学设计)-(人教版)

1-4-1 有理数的乘法(第一课时)(教学设计)-(人教版)

1.4.1有理数的乘法(第一课时)教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级上册(以下统称“教材”)第一章“有理数”1.4.1有理数的乘法(第一课时),内容包括:有理数的乘法法则、运用法则进行运算、多个有理数相乘的积的符号法则.2.内容解析有理数的乘法是在学生学完有理数的加法后学习的,它与有理数的加法运算一样,也是建立在小学算术的基础上.因此,有理数的乘法运算,在确定“积”的符号后,实质上是小学算术数的乘法运算,思维过程就是如何把中学有理数的乘法运算化归为小学算术数的乘法运算.有理数的乘法是有理数最基本的运算之一,它是进一步学习有理数运算的基础,也为今后学习实数运算、代数式的运算、解方程以及函数知识奠定基础.学好这部分内容,对增强学习代数的信心具有十分重要的意义.基于以上分析,确定本节课的教学重点为:掌握有理数的乘法法则并能进行熟练地运算;掌握多个有理数相乘的积的符号法则.二、目标和目标解析1.目标(1)掌握有理数的乘法法则并能进行熟练地运算.(运算能力)(2)掌握多个有理数相乘的积的符号法则. (分类讨论)2.目标解析教材是利用合情推理,通过比较数字算式蕴含的规律性,类比发现有理数乘法法则的.教学中,应该让学生推敲与比较这些算式,发现其中存在的规律,并会从符号、绝对值两个方面来描述这种规律,体会有理数乘法法则的合理性.有理数乘法法则涉及运算结果的符号与绝对值两个方面.因此,学生在初期进行有理数乘法运算时,要求他们从这两个方面分层次、有步骤地思考,即先考虑两个乘数的符号,然后决定积的符号,再考虑两个乘数的绝对值,进而决定积的绝对值大小.三、教学问题诊断分析本节课是学生在小学本已学过正有理数的乘法,在中学已引进了负有理数以及学过有理数的加减运算之后进行的.因此,教材首先对照小学乘法的意义和负有理数的意义,结合在一条直线上运动的实例,得出不同情况下两个有理数相乘的结果,进而归纳出两个有理数相乘的乘法法则.然后通过具体例子说明如何具体运用法则进行计算.接下来,从含有几个正数与负数相乘的具体实例出发,归纳出积的符号与各因数的符号的关系.同时,指出了“几个数相乘,有一个因数是0,积为0”的规律.最后,通过具体实例,说明了在含有加、减、乘的算式中,没有括号时的运算顺序.本节课的重点是有理数乘法运算法则.在实际教学中,要通过讲、练使学生能熟练地、准确地按照法则进行乘法运算.基于以上学情分析,确定本节课的教学难点为:含有负因数的乘法.四、教学过程设计(一)情境引入甲水库的水位每天升高3厘米,乙水库的水位每天下降3厘米,4天后甲、乙水库水位的总的变化量各是多少?如果用正号表示水位上升,用负号表示水位下降,那么4天后甲水库的水位变化量为:3+3+3+3=3×4=12(厘米)乙水库的水位变化量为:(-3)+(-3)+(-3)+(-3)=(-3)×4=___(厘米)(二)自学导航思考:观察下面的乘法算式,你能发现什么规律吗?3×3=9 3×2=6 3×1=3 3×0=0随着后一乘数逐次递减1,积逐次递减3.要使这个规律在引入负数后仍然成立,那么应有:3×(-1)=___ 3×(-2)=___ 3×(-3)=___观察下面的算式,你又能发现什么规律吗?3×3=9 2×3=6 1×3=3 0×3=0随着前一乘数逐次递减1,积逐次递减3.要使这个规律在引入负数后仍然成立,那么应有:(-1)×3=___ (-2)×3=___ (-3)×3=___3×3=9 3×3=93×2=6 2×3=63×1=3 1×3=33×(-1)=-3 (-1)×3=-33×(-2)=-6 (-2)×3=-63×(-3)=-9 (-3)×3=-9从符号和绝对值两个角度观察以上算式,可以归纳如下:正数乘正数,积为正数;正数乘负数,积是负数;负数乘正数,积也是负数. 积的绝对值等于各乘数绝对值的积.思考:利用刚才归纳的结论计算下面的算式,你发现有什么规律吗?(-3)×3=____ (-3)×2=____ (-3)×1=____ (-3)×0=____随着后一乘数逐次递减1,积逐次增加3.按照上述规律,下面的空格可以各填什么数?从中可以归纳出什么结论?(-3)×(-1)=___ (-3)×(-2)=___ (-3)×(-3)=___可归纳出如下结论:负数乘负数,积为正数,乘积的绝对值等于各乘数绝对值的积.有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘.任何数与0相乘,都得0.例如,(-5)×(-3),……………同号两数相乘(-5)×(-3)=+( ),………………得正5×3=15,………………把绝对值相乘所以,(-5)×(-3)=15.又如,(-7)×4,……………_______________(-7)×4=-( ),……_______________7×4=28,……………______________所以,(-7)×4=____有理数相乘,可以先确定积的_______,再确定积的________.(三)考点解析例1.计算:(1)(-7)×3; (2)35×(-1); (3)-76×0; (4)(-115)×(-123).解:(1)原式=-(7×3)=-21;(2)原式=-(35×1)=-35; (3)原式=0;(4)原式=+(115×53)=19. 【点睛】有理数乘法的求解步骤:先确定积的符号,再确定积的绝对值.【迁移应用】计算:(1)(-6)×4; (2)(-910)×56; (3)|−3|×(- 23); (4)(-0.24)×(-5); (5)-413×(-313). 解:(1)原式=-(6×4)=-24; (2)原式=-(910×56)=-34; (3)原式=3×(-23)=-(3×23)= -2;(4)原式=+(0.24×5)=1.2; (5)原式=+(133×313)=1. 【总结提升】想一想倒数和相反数有什么异同?相同点:它们都是成对出现的.不同点:①互为相反数的两个数和为0;互为倒数的两个数积为1.②正数的相反数是负数,正数的倒数是正数;负数的相反数是正数,负数的倒数是负数;零的相反数是零,零没有倒数.例2.写出下列各数的倒数:1,-8,25,-234,1.8. 解:因为1×1=1,所以1的倒数是1;因为-8×(-18)=1,所以-8的倒数是-18; 因为25×52=1,所以25的倒数是52;因为-234=-114,-114×(-411)=1,所以-234的倒数是-411; 因为1.8=95,95×59=1,所以1.8的倒数是59. 【迁移应用】1.下列说法正确的是( )A.负数没有倒数B.正数的倒数比自身小C.任何有理数都有倒数D.倒数等于本身的数是1和-12.下列互为倒数的是( )A.3和13B.-2和2C.3和-13D.-2和123.若a ,b 互为倒数,则3-4ab 的结果是_______.例3.已知a ,b 互为相反数,c ,d 互为倒数,m 的绝对值是5,则a+b+cd+m 的值是多少?解:因为a ,b 互为相反数,所以a+b=0.因为c ,d 互为倒数,所以cd=1.因为m 的绝对值是5,所以m=5或m=-5.当m=5时,原式=0+1+5=6;当m=-5时,原式=0+1+(-5)=-4.所以a+b+cd+m 的值是6或-4.【迁移应用】1.已知a ,b 互为倒数,c ,d 互为相反数,m 为最大的负整数,则ab+c+d+m 的值为______.2.已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值是2,求a+b-cd-x 的值.解:因为a ,b 互为相反数,所以a+b=0.因为c ,d 互为倒数,所以cd=1.因为x 的绝对值是2,所以x=2或x=-2.当x=2时,原式=0-1-2=-3;当x=-2时,原式=0-1-(-2)=1.所以a+b-cd-x 的值是-3或1.例4.甲便利店平均每天可盈利120元,那么一周的利润是多少元?乙便利店平均每天亏损30元,那么一周的利润是多少元?分析:本题中既有盈利又有亏损,需要规定一个为正,另一个为负,再利用有理数的乘法列式计算. 解:根据正负数的意义,我们可以规定盈利为正,亏损为负.甲便利店一周的利润是(+120)×7=840(元).乙便利店一周的利润是(-30)×7=-210(元).答:甲便利店一周的利润是840元,乙便利店一周的利润是-210元.【迁移应用】1.某种商品由于库存积压,现要降价促销,如果每件降价8元,一天售出52件,那么与按原价出售同样数量的商品相比,销售额的变化是____________________________.2.甲水库的水位每天上涨2.5cm,乙水库的水位每天下降1.5cm,6天后甲、乙两水库的水位总变化量各是多少?解:根据题意,可以规定上涨为正,下降为负,则6天后甲水库的水位总变化量为(+2.5)×6=15(cm),乙水库的水位总变化量为(-1.5)×6=-9(cm). 答:6天后甲水库的水位总变化量是上涨15cm,乙水库的水位总变化量是下降9cm(或上涨-9cm).例5.【教材P39习题1.4T12变式题】根据下列条件,判断a,b的符号.(1)a+b<0,且ab>0; (2)a-b<0,且ab<0.解:(1)因为ab>0,所以a,b同为正数或同为负数.又a+b<0,所以a,b同为负数.(2)因为ab<0,所以a,b一个是正数,一个是负数.又a-b<<0,所以a<b.所以a为负数,b为正数.【迁移应用】1.如果xy>0,x+y>0,那么有( )A.x>0,y>0B.x<0,y<0C.x>0,y<0D.x<0,y>02.已知两个有理数a,b,如果ab<0,且a+b<0,那么( )A.a>0,b>0B.a<0,b>0C.a,b异号,且正数的绝对值较大D.a ,b 异号,且负数的绝对值较大(四)合作探究思考1:观察下列各式,它们的积是正的还是负的?2×3×4×(-5) ___2×3×(-4)×(-5) ___2×(-3)×(-4)×(-5) ___(-2)×(-3)×(-4)×(-5) ___(-1)×(-2)×(-3)×(-4)×(-5) ___(-1)×(-2)×(-3)×(-4)×(-5)×(-6) ___几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?【归纳】几个不是0的数相乘,当负因数的个数是_____时,积是正数;当负因数的个数是_____时,积是负数.思考2:你能看出下式的结果吗?如果能,请说明理由.7.8×(-8.1)×0×(-19.6) -3.5×0×213×(-13.5)-16×(-23.6)×1.58×0×6 5×(-3.1)×(-2.8)×0.65×0【归纳】几个数相乘,如果其中有因数为0,那么积等于0.(五)考点解析例6.计算:(1)(-2)×5×(-4)×(-3); (2)(-5)×(-43)×(-145)×(-1.75); (3)(-1)×(-2)×(-3)×(-4)×(-5)×0×(-6).分析:先观察因数中是否有0,有0则积为0;无0则根据负因数个数确定积的符号,再计算积的绝对值.解:(1)原式=-(2×5×4×3)=-120;(2)原式=5×43×95×74=21; (3)原式=0.【迁移应用】1.下列计算中,积为负数的是( )A.5×4×(-7)×(-8)B.-6×(-4)×(-1)×(-9)C.(-4)×0×(-2)×(-3)D.(-5)×4×(-3)×(-2)2.若abc>0,则a,b,c中负数的个数为( )A.3B.1C.1或3D.0或23.绝对值小于5的所有整数的和是_____,积是______. (六)小结梳理五、教学反思。

1.4.1 有理数乘法(第一课时)教案

1.4.1 有理数乘法(第一课时)教案

1.4.1 有理数的乘法(第1课时)新疆温泉县初级中学:汪锦飞一、内容和内容解析1.内容有理数乘法法则2.内容解析有理数的乘法是继有理数的加减法之后的又一种基本运算.有理数乘法既是有理数运算的深入,又是进一步学习有理数的除法、乘法的基础,对后续代数学习是至关重要的。

与有理数加法法则类似,有理数乘法法则也是一种规定,给出这种规定要遵循的原则是“使原有的运算律保持不变”。

本节课在小学已掌握的乘法运算的基础上,通过合理推理的方式,得到要使正数乘正数(或0)的规律在正数乘负数、负数乘负数时仍然成立,那么运算结果应该是什么的结论,从而使学生体会乘法法则的合理性。

与加法法则一样,正数乘负数、负数乘负数的法则,也要从符号和绝对值来分析。

由于绝对值相乘就是非负数相乘,因此,这里关键是要规定好含负数的两数相乘之积的符号,这里有理数乘法的本质特征,也是乘法法则的核心。

基于以上分析,确定本节课的教学重点:两个有理数相乘的符号法则。

二、目标和目标解析1.目标(1)理解有理数乘法法则,能利用有理数乘法法则计算两个数乘法。

(2)能说出有理数乘法符号法则,能利用例子说明法则的合理性。

2.目标解析达成目标(1)的标志是:学生在进行两个有理数乘法运算时,能按照乘法法则,先考虑两乘法的符号,再考虑两乘数的绝对值,并得出正确的结果。

达成目标(2)的标志是:学生能通过具体例子说明有理数乘法的符号法则的归纳过程。

三、教学问题诊断分析有理数的乘法与小学学习的乘法的区别在于负数参与了运算,本节课要以正数、0之间的运算为基础,构造一组有规律的算式,先让学生从算式左右各数的符号和绝对值两个角度观察这些算式的共同特点并得出规律,再以问题“要使这个规律在引入负数后仍然成立,那么应有......”为引导,让学生思考在这样的规律下,正数乘负数、负数乘正数两个负数相乘各应有什么运算结果。

上诉过程中,学生对于为什么要讨论这些问题、什么叫“观察下面的乘法算式”、从哪些角度概括算式的规律等,都会出现困难。

《1.4.1有理数的乘法》教学设计(第一课时)

《1.4.1有理数的乘法》教学设计(第一课时)

1.4.1 有理数的乘法(第一课时)教学目标:1.知识与技能①经历探索有理数乘法法则的过程,发展观察、归纳、猜想、验证的能力.②会进行有理数的乘法运算.2.过程与方法:通过对问题的变式探索,培养观察、分析、抽象的能力.3.情感、态度与价值观:通过观察、归纳、类比、推断获得数学猜想,体验数学活动中的探索性和创造性.教学重点、难点:重点:能按有理数乘法法则进行有理数乘法运算.难点:含有负因数的乘法.教学方法:引导探究发现法学习方法:探究发现法教学准备:常规教具课时安排:1课时教学过程:(一)复习1.符号化简原则、有理数加法法则2.计算:(1)(-20)+3-(-5)-(+7)(2)111 1()()()236 +----+(二)新课1.(课本28-29页)计算并观察下列各式,它们因数和积有什么特点,找出它们的规律.(1)3×2=_______; (2)(-3)×2=________3×1=________; (-3)×1=________3×0=________; (-3)×0=________3×(-1)=________; (-3)×(-1)=________3×(-2)=________ (-3)×(-2)=________3×(-3)=________ (-3)×(-3)=________说明:(1)观察发现积的符号与因数的符号之间的关系如何?(2)积的绝对值与两因数的绝对值有什么关系?正数乘正数积为____数,负数乘负数积为____ 数。

正数乘负数积为____数,负数乘正数积为____ 数。

乘积的绝对值等于各乘数绝对值的2.教师引导学生总结法则内容:两数相乘,同号得正,异号得负,并把绝对值相乘。

0与任何数相乘,都得0.3.例1 计算(1)(-3)×9 (2)8×(-1) (3)1()(2) 2-⨯-(4)(-114)×(-45)(5)(-15)×(-13)(6)0×(-4)说明:根据(3)(4),指出:乘积是1的两个数互为倒数(先做完4,在进行)4.完成课本30页练习15.完成课本30页练习36.判断题(1)两数相乘,若积为正数,则这两个因数都是正数.(×)(2)两数相乘,若积为负数,则这两个数异号.(∨)(3)两个数的积为0,则两个数都是0.(×)(4)互为相反的数之积一定是负数.(×)(5)正数的倒数是正数,负数的倒数是负数.(∨)(三)本课小结两数相乘,同号得正,异号得负,并把绝对值相乘。

人教版数学七年级上册1.4.1 第1课时 有理数的乘法法则1-课件

人教版数学七年级上册1.4.1 第1课时 有理数的乘法法则1-课件
乙水库水位的总变化 量是: (-3)+(-3)+(-3)+(-3) = (-3)×4 = -12 (cm) ;
首页
二、合作探究
探究点一 有理数的运算法则
(−3)×4 = −12 (−3)×3 = −9 ,
(−3)×2 = −6 , (−3)×1 = −3 ,
(−3)×0 = 0 ,
?猜 一 猜
(−3)×(−1) = 3 (−3)×(−2) = 6
=(−20)×(−0.25) =+(20×0.25)
56 1 (2)
2
=5.
=−1 .
多个有理数相乘时,先确定积的符号(偶数个负号得正, 奇数个负号得负),再将绝对值相乘
首页
巩固训练
见《学练优》第23页第1~4题。
首页
三、课堂小结
1.有理数乘法法则: 两数相乘,同号得正,异号得负,并把绝对值相乘,任何数同0
见《学练优》第25页 第1~8题
首页
探究点二 多个有理数相乘符号的确定
观察:
2×3×4×(-5)= -120 2×3×4×(-4)×(-5)= 480 2×(-3)×(-4)×(-5)= -120 (-2)×-3)×(-4)×(-5)= 120 7.8×(-8.1)×0×(-19.6) = 0
上面各式的积是正的还是负的?
1.4.1(1) 有理数的乘法法则
一、情景引入 二、合作探究 三、课堂小结 四、课后作业
探究点一 有理数的乘法法则
提出 问题
知识 要点
典例 精析
巩固 训练
提出 问题
知识 要点
典例 精析
巩固 训练
探究点二 多个有理数相乘符号的确定
学习目标
1.理解有理数的运算法则;能根据有理数乘法运 算法则进行有理的简单运算; 2.掌握有理数乘法中几个不等于0数相乘,积的 符号由负因数的个数确定的规律,并能准确运 用到运算中去。

1.4.1有理数的乘法(一)

1.4.1有理数的乘法(一)

o
-2 0
2ห้องสมุดไป่ตู้
4
6
8
3分钟前蜗牛应在o点的右边6cm处。 可以表示为:(-2)×(-3) =+6
观察这四个式子:
(+2)×(+3)=+6
(-2)×(+3)=-6
(-2)×(-3)=+6
(+2)×(-3)=-6
根据你对有理数乘法的思考,总结填空:
(同号得正) 正 正 正数乘正数积为__数:负数乘负数积为__数: 负 负 负数乘正数积为__数:正数乘负数积为__数: (异号得负 积 乘积的绝对值等于各乘数绝对值的_____。 )
能力提升
1)如果a×b=0,则这两个数
A 都等于0,
(C )
B 有一个等于0,另一个不等于0; D 互为相反数 (A ) Da≤0 ( D) B. a<0,b<0 D. a,b同号
C 至少有一个等于0, 2)已知-3a是一个负数,则 A a>0 B a<0 C a≥0
3)若ab>0 ,则a,b的符号 A. a>0,b>0 C. a,b异号
计算 (1)-2006 x1 解(1)-2006 x1=-2006
1 1 (2)(-8) x(-1)(3) (13)(2 4)
(2)(-8)x(-1)=8x1=8
1 1 49 1) ( 2 ) 3 (3)( 3 4 34
(1)、1乘以一个数仍得这个数,-1乘以一个数得这个 数的相反数。 (2)、两个带分数相乘,一般要化成假分数以便约分。
1、不是井里没有水,而是你挖的不够深。不是成功来得慢,而是你努力的不够多。 2、孤单一人的时间使自己变得优秀,给来的人一个惊喜,也给自己一个好的交代。 3、命运给你一个比别人低的起点是想告诉你,让你用你的一生去奋斗出一个绝地反击的故事,所以有什么理由不努力! 4、心中没有过分的贪求,自然苦就少。口里不说多余的话,自然祸就少。腹内的食物能减少,自然病就少。思绪中没有过分欲,自然忧就少。大悲是无泪的,同样大悟无言。缘来尽量要惜,缘尽就放。人生本来就空,对人家笑笑,对自己笑笑,笑着看天下,看日出日落, 花谢花开,岂不自在,哪里来的尘埃! 5、心情就像衣服,脏了就拿去洗洗,晒晒,阳光自然就会蔓延开来。阳光那么好,何必自寻烦恼,过好每一个当下,一万个美丽的未来抵不过一个温暖的现在。 6、无论你正遭遇着什么,你都要从落魄中站起来重振旗鼓,要继续保持热忱,要继续保持微笑,就像从未受伤过一样。 7、生命的美丽,永远展现在她的进取之中;就像大树的美丽,是展现在它负势向上高耸入云的蓬勃生机中;像雄鹰的美丽,是展现在它搏风击雨如苍天之魂的翱翔中;像江河的美丽,是展现在它波涛汹涌一泻千里的奔流中。 8、有些事,不可避免地发生,阴晴圆缺皆有规律,我们只能坦然地接受;有些事,只要你愿意努力,矢志不渝地付出,就能慢慢改变它的轨迹。 9、与其埋怨世界,不如改变自己。管好自己的心,做好自己的事,比什么都强。人生无完美,曲折亦风景。别把失去看得过重,放弃是另一种拥有;不要经常艳羡他人,人做到了,心悟到了,相信属于你的风景就在下一个拐弯处。 10、有些事想开了,你就会明白,在世上,你就是你,你痛痛你自己,你累累你自己,就算有人同情你,那又怎样,最后收拾残局的还是要靠你自己。 11、花开不是为了花落,而是为了开的更加灿烂。 12、随随便便浪费的时间,再也不能赢回来。 13、不管从什么时候开始,重要的是开始以后不要停止;不管在什么时候结束,重要的是结束以后不要后悔。 14、当你决定坚持一件事情,全世界都会为你让路。 15、只有在开水里,茶叶才能展开生命浓郁的香气。 15、如果没有人为你遮风挡雨,那就学会自己披荆斩棘,面对一切,用倔强的骄傲,活出无人能及的精彩。 16、成功的秘诀在于永不改变既定的目标。若不给自己设限,则人生中就没有限制你发挥的藩篱。幸福不会遗漏任何人,迟早有一天它会找到你。 17、一个人只要强烈地坚持不懈地追求,他就能达到目的。你在希望中享受到的乐趣,比将来实际享受的乐趣要大得多。 18、无论是对事还是对人,我们只需要做好自己的本分,不与过多人建立亲密的关系,也不要因为关系亲密便掏心掏肺,切莫交浅言深,应适可而止。 19、大家常说一句话,认真你就输了,可是不认真的话,这辈子你就废了,自己的人生都不认真面对的话,那谁要认真对待你。 20、没有收拾残局的能力,就别放纵善变的情绪。 16、成功的反义词不是失败,而是从未行动。有一天你总会明白,遗憾比失败更让你难以面对。 17、没有一件事情可以一下子把你打垮,也不会有一件事情可以让你一步登天,慢慢走,慢慢看,生命是一个慢慢累积的过程。 18、努力也许不等于成功,可是那段追逐梦想的努力,会让你找到一个更好的自己,一个沉默努力充实安静的自己。 19、你相信梦想,梦想才会相信你。有一种落差是,你配不上自己的野心,也辜负了所受的苦难。 20、生活不会按你想要的方式进行,它会给你一段时间,让你孤独、迷茫又沉默忧郁。但如果靠这段时间跟自己独处,多看一本书,去做可以做的事,放下过去的人,等你度过低潮,那些独处的时光必定能照亮你的路,也是这些不堪陪你成熟。所以,现在没那么糟,看似 生活对你的亏欠,其实都是祝愿。 10、放手如拔牙。牙被拔掉的那一刻,你会觉得解脱。但舌头总会不由自主地往那个空空的牙洞里舔,一天数次。不痛了不代表你能完全无视,留下的那个空缺永远都在,偶尔甚至会异常挂念。适应是需要时间的,但牙总是要拔,因为太痛,所以终归还是要放手,随它去。 11、这个世界其实很公平,你想要比别人强,你就必须去做别人不想做的事,你想要过更好的生活,你就必须去承受更多的困难,承受别人不能承受的压力。 12、逆境给人宝贵的磨炼机会。只有经得起环境考验的人,才能算是真正的强者。自古以来的伟人,大多是抱着不屈不挠的精神,从逆境中挣扎奋斗过来的。 13、不同的人生,有不同的幸福。去发现你所拥有幸运,少抱怨上苍的不公,把握属于自己的幸福。你,我,我们大家都可以经历幸福的人生。 14、给自己一份坚强,擦干眼泪;给自己一份自信,不卑不亢;给自己一份洒脱,悠然前行。轻轻品,静静藏。为了看阳光,我来到这世上;为了与阳光同行,我笑对忧伤。 15、总不能流血就喊痛,怕黑就开灯,想念就联系,疲惫就放空,被孤立就讨好,脆弱就想家,不要被现在而蒙蔽双眼,终究是要长大,最漆黑的那段路终要自己走完。 16、在路上,我们生命得到了肯定,一路上,我们有失败也有成功,有泪水也有感动,有曲折也有坦途,有机遇也有梦想。一路走来,我们熟悉了陌生的世界,我们熟悉了陌生的面孔,遇人无数,匆匆又匆匆,有些成了我们忘不掉的背影,有些成了我们一生的风景。我笑, 便面如春花,定是能感动人的,任他是谁。 17、努力是一种生活态度,与年龄无关。所以,无论什么时候,千万不可放纵自己,给自己找懒散和拖延的借口,对自己严格一点儿,时间长了,努力便成为一种心理习惯,一种生活方式! 18、自己想要的东西,要么奋力直追,要么干脆放弃。别总是逢人就喋喋不休的表决心或者哀怨不断,做别人茶余饭后的笑点。 19、即使不能像依米花那样画上完美的感叹号,但我们可以歌咏最感人的诗篇;即使不能阻挡暴风雨的肆虐,但我们可以左右自己的心情;即使无法预料失败的打击,但我们可以把它当作成功的一个个驿站。 20、能力配不上野心,是所有烦扰的根源。这个世界是公平的,你要想得到,就得学会付出和坚持。每个人都是通过自己的努力,去决定生活的样子。

1.4.1有理数乘法(第一课时)

1.4.1有理数乘法(第一课时)

所以
把绝对值相乘 7 4 28 , …………________________ -28 . (7) 4 ————
思考:通过上题,你认为:非零两数相乘, 关键是什么?
Hale Waihona Puke 有理数乘法的步骤:符号, 两个有理数相乘,先确定积的_____ 绝对值 . 再确定积的______
基础训练,巩固应用
从符号和绝对值两个角度观察,可归纳积的特点: 正数乘正数,积为正数; 负数乘负数,积为正数; 正数乘负数,积为负数;负数乘正数,积为负数; 积的绝对值等于各乘数绝对值的积.
有理数乘法法则:
两数相乘,同号得正,异号得负, 并把绝对值相乘. 任何数同0相乘,都得0.
阅读,填空:
(1)( 5) ( 3) ……………………同号两数相乘
课堂小结 1.两数相乘,同号得正,异号得负, 并把绝对值相乘. 任何数同0相乘,都得0. 2.乘积是1的两个数互为倒数 3.一个数与1相乘,结果是原数,一 个数与-1相乘,结果是原数的相反数。
义务教育教科书
数学
七年级
上册
1.4 有理数的乘除法(第1课时) 1.4.1 有理数的乘法(1)
教学目标
学习目标: 掌握有理数的乘法法则,能利用乘法法则正确进行 有理数乘法运算.
学习重难点: 掌握有理数乘法法则的运算.
自主预习课本第28、29、30页的知识
思考下列问题: 1有理数的乘法法则。 2乘积是1的两个数有什么关系?
计算:
1 (1) ( ) ( 2) 2
3 8 ;(2) ( ) ( ). 8 3
观察两式有什么特点?
结论:乘积是1的两个数互为倒数.
思考:数 a(a 0) 的倒数是什么?

1.4.1 有理数的乘法(1)课件人教版七年级上册 数学

1.4.1 有理数的乘法(1)课件人教版七年级上册 数学

想一想,0有没 有倒数?
1 3
的倒数是
1 3
, 1 的倒数是 1 ,
3
3
5的倒数是
1 5

-5的倒数是
1

5
2 3
的倒数是
3 2
, 2 的倒数是 3 ,
3
2
0没有的倒数.
例2:用正数表示气温的变化量,上升为正,下降为负. 登山队攀登一座山峰,每登高1km的变化量为-6℃,攀 登3 km后,气温有什么变化?
解:(-6)×3= -18
答:气温下降18 ℃.
归纳概念
1.一个数和它的倒数符号相同,即正数的倒数是正数,负数 的倒数是负数. 2.倒数等于它本身的数有1或-1; 3.当ab=1, a叫做b的倒数,b叫做 a的倒数,倒数是相互的; 4.注意0没有倒数 5.求分数的倒数,只要把这个分数的分子,分母颠倒位置即可.
;倒 ;绝
.
4.计算题.
(1)8 7
பைடு நூலகம்(3)
1 4
8
9
(2)2.9 0.4
(4) 0.3
10 7
解:(1) 56 (3) 2 9
(2)-1.16 (4) 3
7
5.商店降价销售某种商品,每件降5元,售出60件后,与按原 价销售同样数量的商品相比,销售额有什么变化?
解:-5×60 =-300 答:销售额下降300元.
课堂总结
一.有理数的乘法法则: 1.两数相乘,同号得正,异号得负并把绝对值相乘. 2.任何数同0相乘,都得0. 注意事项: 1.法则只针对有两个因数相乘的情况. 2. 乘法运算的步骤是:观察两数的符号,然后确定积的符 号,再确定积的绝对值. 二.1乘以一个数仍得这个数,-1乘以一个数得这个数的相反数. 三.乘积是1的两个数互为倒数.

1.4.1_有理数的乘法1

1.4.1_有理数的乘法1

用正负数表示气温的变化量,上升为正, 例4 用正负数表示气温的变化量,上升为正,下降为 登山队攀登一座山峰,每登高1千米 千米, 负。登山队攀登一座山峰,每登高 千米,气温的变 化量为-6℃ 攀登3千米后 气温有什么变化? 千米后, 化量为 ℃,攀登 千米后,气温有什么变化? 解:(-6)×3=-18 :( ) 答:气温下降18℃。 气温下降 ℃
o
3分钟前蜗牛应在 点的右边 分钟前蜗牛应在o点的右边 分钟前蜗牛应在 点的右边6cm处。 处 可以表示为:(-2 可以表示为:(-2)×(-3) =+6 (-3 =+6
观察这四个式子: 观察这四个式子: (+2 (+2)×(+3)=+6 (+3)=+6 (-2 (-2)×(+3)=-6 (+3)=-6 (-2 (-2)×(-3)=+6 (-3)=+6 (+2 (+2)×(-3)=-6 (-3)=-6
o
3分钟前蜗牛应在 点的左边 分钟前蜗牛应在o点的左边 分钟前蜗牛应在 点的左边6cm处。 处 可以表示为:(+2 可以表示为:(+2)×(-3) =-6 (-3 =-6
问题4 如果蜗牛一直以每分钟2 的速度向左爬行 的速度向左爬行, 问题4:如果蜗牛一直以每分钟2cm的速度向左爬行, 那么3分钟前蜗牛在什么位置? 那么3分钟前蜗牛在什么位置? 规定:向右为正,现在之后为正。 规定:向右为正,现在之后为正。
计算: 例3 计算:
1 1 (1) 2 ×2 ; ) (2) (- ) × ( -2 ) 。 ) 2 1 :(1) 解:( ) ×2 = 1 2
1 )((2)( )×(-2)=1 )( ) 2 观察上面两题有何特点? 观察上面两题有何特点
总结:有理数中仍然有 乘积是 的两个数互为倒数. 总结 有理数中仍然有:乘积是 的两个数互为倒数 有理数中仍然有 乘积是1的两个数互为倒数

七年级数学上册 有理数的乘法(1)

七年级数学上册 有理数的乘法(1)

同号
把绝对值相乘 (-2)×(-3)=6 得负
异号
把绝对值相乘 (-2)×3= -6 得零
任何数与零
得任何数
变为相反数
3 x 2= 6
(- 3) x 2 = -6
变为相反数 变为相反数
(-3) x 2= -6
(-3) x (-2)= 6
变为相反数
两数相乘,把一个因数替换成他的相反数, 所得的积是原来的积的相反数
1、已知a、b互为相反数,c、d互为倒数,e是绝
1 对值最小的数,计算:(a+b)+ cd - (a+b)e
2、已知|x|=2,|y|=3,且xy<0,则x-y=
3、下列运算错误的是_____ D A.(-2)×(-3)=6 C.(-5)×(-2)×(-4)=-40
.
B.(-3)×(-2)×(-4)=-24
互为倒数. 1 数a(a≠0)的倒数是____ a ;
3,写出下列各数的倒数:
4 1 1 1,1, ,2,0,0.3,1 , 7 3 2
注意:带分数或小数先化成假分数或分数, 0没有倒数; ±1 4,倒数等于它本身的数有_________;
例题解析
• • • 例2 计算: 3 5 (1) (−4)×5×(−0.25); (2) ( ) ( ) ( 2).
5
6
解:(1) (−4)×5 ×(−0.25) = [−(4×5)]×(−0.25) =(−20)×(−0.25) =+(20×0.25) =5.
方法提示
三个有理数相乘, 先把前两个相乘,
再把 所得结果与 另一数相乘。

3 5 • (1) (−4)×5×(−0.25); (2) ( ) ( ) ( 2). 5 6 • 3 5 (2) ( 5 ) ( 6 ) ( 2) 解:(1) (−4)×5 ×(−0.25) 3 5 = [−(4×5)]×(−0.25) [ ( )] ( 2) 5 6 =(−20)×(−0.25) 1 (2) =+(20×0.25) 2 = −1 . =5.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

答: 气温下降18 0C
再试牛刀
商店降价销售某种商品,每件降5元, 售出60件后,与按原价销售同样数量 的商品相比,销售额有什么变化?
解:(-5)×60 =-300
答:销售额减少300元。
三思而行
(1) 若 ab>0,则必有 ( A. a>0,b>0 C. a>0,b<0 D )
B. a<0,b<0 D. a>0,b>0或a<0,b<0 B )
O 2 4 6 8
结论: 2×0= 0 问题六:如果蜗牛一直以每分钟0cm的速 度向左爬行,3分钟前它在什么位置?
-8 -6 -4 -2
O
结论: 0×(-3)= 0
规律呈现:
(+2)×(+3) = +6 (-2)×(+3)= -6 (+2)×(-3)= -6 (-2)×(-3)= +6 正数乘以正数积为 正 数 负数乘以正数积为 负 数 正数乘以负数积为 负 数 负数乘以负数积为正 数
活动二:想一想
有理数乘法分几种情况?
同号两数相乘;
异号两数相乘;
与零相乘.
1、如果一只蜗牛向右爬行2cm记为+2cm,那 么向左爬行2cm应该记为 -2cm。
2、如果3分钟以后记为+3分钟,那么3分钟 以前应该记为 。 -3分钟
如图,有一只蜗牛沿直线 l 爬行,它现 在的位置恰好在l 上的一点O。
(2)若ab=0,则一定有( A. a=b=0 C. a=0
B. a,b至少有一个为0 D. a,b最多有一个为0
三思而行
(3)一个有理数和它的相反数之积( C ) A. 必为正数 C. 一定不大于零 B. 必为负数 D. 一定等于1
(4)若ab=|ab|,则必有( D ) A. a与b同号 C. a与b中至少有一个等于0 B. a与b异号 D. 以上都不对
数学游戏:
1、在整数-5、-3、-1、2、4、6中任取两个 数相乘,所得积的最大值与最小值分别是多 少?
2、如果桌子上有三枚硬币,正面全部向上, 现在让你每次翻转其中两枚,试问能否经过 若干次翻转,使三枚硬币背面全部向上?
通过本节课的学习,大家有
什么收获呢?
O
l
问题一:如果蜗牛一直以每分2cm的速度从O 6 点向右爬行,3分钟后它在点O的 右边 cm处?
O 2 4 6 8
每分钟2cm的速度向右记为 +2 ; 3分钟 以后记为 _____ +3 其结果可表示为 (+2)×( 。 +3)=+6
问题二:如果蜗牛一直以每分2cm的速度从O 6 点向左爬行,3分钟后它在点O的 左 边 cm处?
(1) 同号两数相乘,符号不变. ( F) (2) 异号两数相乘,取绝对值较大的因数的符号( F ) (3) 两数相乘,如果积为正数,则这两个因数都为正数( F ) (4) 两数相乘,如果积为0,则这两个数全为0.( F ) (5) 两个数相乘,积比每一个因数都大.( F ) (6) 两数相乘,如果积为负数,则这两个因数异号( T ) (7) 如果ab>0,且a+b<0,则a<0,b<0. ( T) (8) 如果ab<0,则a>0,b<0. ( F) (9) 如果ab=0,则a,b中至少有一个为0. (T)
+
2 ; 3分钟
)=-6 其结果可表为(+2)×(-3 。
问题四: 如果蜗牛一直以每分2cm的速度向 左爬行,现在蜗牛在点O处, 3分钟前它在点 右 6 O 边 cm处?
O246源自8每分钟2cm的速度向左记为 以前记为 。 -3

2 ; 3分钟
3)=+6 其结果可表示为(-2)×(- 。
问题五:如果蜗牛一直以每分钟2cm的速 度向右爬行,0分钟后它在什么位置?
有理数相乘,先确定积的符号,再确 定积的绝对值。
例1 计算:
1 (2)(- )×(-2) 2
解: (1)(-3) × 9 = -(3 × 9 ) = -27
1 1 (2)(- )×(-2)= +(2× 2 )= 1 2
(1)(-3) × 9
小试牛刀
1 (1) 6 × (- 9) (2)(- 15) × 3 (3)(- 6)×(- 1) (4)(- 6)× 0 2 7 1 (6) × (5) 4 × 7 2 4 1 4 1 (7)(- 12)×(- ) (8)(- 2 )×(- ) 4 9 12
O
-8
-6
-4
-2
每分钟2cm的速度向左记为 -2 以后记为 。 +3
; 3分钟
其结果可表为 (-2)×(+3 。 )=-6
问题三:如果蜗牛一直以每分2cm的速度向 右爬行,现在蜗牛在点O处, 3分钟前它在 点O的 边 cm处? 左 6
-8
-6
-4
-2
O
每分钟2cm的速度向右记为 以前记为 。-3
结论:乘积是1的两个数互为倒数
1的倒数为 1 -1的倒数为 -1
1 的倒数为 3 3
5的倒数为
1 5
1 - 的倒数为 -3 3 1 -5的倒数为 5 2 - 的倒数为 3
3 2 的倒数为 2 3
3 2
例2: 用正负数表示气温的变化量,上升为正, 下降为负,登山队攀登一座山峰,每登高 1km气温的变化量为-6 0C,攀登3km后, 气温有什么变化? 解: (-6)×3 =-18
乘积的绝对值等于各因数绝对值的 积 。
2 X 0 = 0 } 0 x (-3) =0 零与任何数相乘或任何数 与零相乘结果是 0 。
有理数乘法法则 两数相乘,同号得正,异号得 负,并把绝对值相乘。任何数 同0相乘,都得0。
法则的应用:
(-5)×(-3)
= + ( 5 × 3) = 15
(-7)×4 =- ( 7 × 4) = -28
百尺竿头
2 4 (1) [ ( ) ×( 1.5 ) ] (2) | 2.5| ×[ ( )] 25 3 2 4 3 ) ×( ) ] 解:原式= 2.5 × 解:原式= [ ( 25 3 2 5 2 4 3 × = = ( × ) 2 25 3 2
= -2
=
1 5
练习:判断题(对的入“T”,错的入“F”)
相关文档
最新文档