2018年中考数学备考专题复习: 阅读理解问题(含解析)
(完整版)2018年全国有关中考数学试题分类汇编(阅读理解题)及解析
2018年全国有关中考数学试题分类汇编(阅读理解题)及解析一、选择题1、 (2007四川眉山)为确保信息安全, 信息需加密传翰,发送方将明文加密为密文传输给接收方, 接收方收到密文后解密还原为明文. 己知某种加密规则为:明文a 、b 对应的密文为2a — b 、2a + b.例如,明文1、2对应的密文是一3、4.当接收方收到密文是 1、7时,解密得到的明文是( ).C A .— 1, 1 B . 1, 3 C . 3, ID . 1, I2、 ( 2007湖南长沙)在密码学中,直接可以看到内容为明码,对明码进行某种处理后得到的内容 为密码.有一种密码,将英文26个字母a, b, C ,…,Z (不论大小写)依次对应 1, 2, 3,…,X 126这26个自然数(见表格)•当明码对应的序号X 为奇数时,密码对应的序号 y;当明码2对应的序号X 为偶数时,密码对应的序号 y - 13 .A . gawqB . shxcC . sdriD . love 二、填空题6x 3 0的两实数根,贝U 翌 凶的值为X 1x 22、( 2007四川巴中)先阅读下列材料,然后解答问题:从A, B , C 三张卡片中选两张,有三种不同选法,抽象成数学问题就是从 3个元素中选取2个元素组合,记作C ; 口 3.2 1一般地,从m 个元素中选取n 个元素组合,记作:C :m (m 1儿(m n °n (n 1)L 3 2 17 6 5 4 3例:从7个元素中选5个元素,共有C 5321种不同的选法.5 4 3 2 1问题:从某学习小组 10人中选取3人参加活动,不同的选法共有 _种.120a b3、( 2007广东梅州)将4个数a, b, c, d 排成2行、2列,两边各加一条竖直线记成c d1、( 2007四川德阳)阅读材料:设一元二次方程 2ax bx c 0的两根为X 1, X 2,则两根与方程系数之间有如下关系: x 1 x 2-,X 1gx 2 C .根据该材料填空: a a已知X 1 , x 2是方程x 210定义ad bc ,上述记号就叫做2阶行列式.若6,则x答: .2三、解答题1、( 2007浙江临安)阅读下列题目的解题过程:已知a 、b 、c 为 的三边,且满足解:c 2(a 2 b 2) (a 2 b 2)(a 2 b 2) (B )c 2 a 2 b 2(C )ABC 是直角三角形问:(1) 上述解题过程,从哪一步开始出现错误?请写出该步的代号:______________(2 )错误的原因为: ___________________________________________________________(3)本题正确的结论为: _____________ . 解:(1) C ---------------------- 2 分 (2)没有考虑a 2 b 20 ------- 4分(3) ABC 是直角三角形或等腰三角形 --- 6分 2、( 2007云南双柏)阅读下列材料,并解决后面的问题.材料:一般地,n 个相同的因数a 相乘:a a a 记为a n .如23= 8,此时,3叫做以2为底8n 个的对数,记为log 2 8即log 2 8 3 .一般地,若a n b a 0且a 1,b 0 ,贝U n 叫做以a 为底b 的对数,记为log a b 即log a b n •如34 81,则4叫做以3为底81的对数,记为log 3 81 (即卩log 3 81 4).问题:(1)计算以下各 对数的值:(3分)log 2 4 log 216 log 2 64.(2) 观察(1)中三数4、16、64之间满足怎样的关系式?log 2 4、log 216 > log 2 64之间又满足怎样的关系式? ( 2分)(3) 由(2)的结果,你能归纳出一个一般性的结论吗?(2分)log a M logN __________ a 0且a 1,M 0, N 0(4) 根据幕的运算法则:a n a m a n m 以及对数的含义证明上述结论.(3分)证明:解:(1) log 2 4 2 , log 216 4 , log 2 64 6,log 2 4 + log 216 = log 2 64(3) log a M + log a N = log a (MN),试判断的形状.(2) 4X 16= 64•••从A 点到B 点并禁止经过 C 点的走法数为35- 18= 17种. 10分⑶P(顺利开车到达B 点)=1735则 abiM , a b2 N••• MN a b ia b2a b ib2二 b i + b 2= log a (MN ) 即 log a M + log a N = log a (MN )3、( 2007安徽芜湖)阅读以下材料,并解答以下问题. 完成一件事有两类不同的方案,在第一类方案中有 m 种不同的方法,在第二类方案中有n 种不同的方法•那么完成这件事共有N = m + n 种不同的方法,这是分类加法计数原理;完成一件事需要两个步骤,做第一步有 m 种不同的方法,做第二步有 n 种不同的方法.那么完成这件事共有 N =mxn 种不同的方法,这就是分步乘法计数原理.”如完成沿图1所示的街道从 A 点出发向B 点行进这件事(规定必须向北走,…或向东走,.…),会有多种不同的走法,其中从 A 点出发到某些交叉点 的走法数已在图2填出.(1)根据以上原理和图2 的提示, 算出从A 出发到达其余交叉点的走法数,将数字填入图 2的空圆中,并回答从 A 点出发到B 点的走法共有多少种?种........................... 5 分(1)方法一:可先求从A 点到B 点,并经过交叉点C 的走法数,再用从A 点到B 点总走法数减去 它,即得从A 点到B 点,但不经过交叉点 C 的走法数.完成从A 点出发经C 点到B 点这件事可分两步,先从 A 点到C 点,再从C 点到B 点.使用分类 加法计数原理,算出从 A 点到C 点的走法是3种,见图2;算出从C 点到B 点的走法为6种,见 图3,再运用分步乘法计数原理,得到从A 点经C 点到B 点的走法有3X6= 18种.•••从A 点到B 点但不经过 C 点的走法数为35- 18= 17种.方法二:由于交叉点C 道路施工,禁止通行,故视为相邻道路不通, 可删除与C 点紧相连的线段.运 用分类加法计数原理,算出从 A 点到B 点并禁止通过交叉点 C 的走法有17种.从A 点到各交叉 点的走法数见图4.(4)证明:设 log a M = b ilog a N = b 2(2)运用适当的原理和方法算出从 A 点出发到达B 点,并禁止通过交叉点C 的走法有多少种?(3)现由于交叉点 C 道路施工,禁止通行.求如任选一种走法,点(无返回)概率是多少?解: 解:(1):完 或向东走,••倒达A 点以外 与其相邻的南 之和.故使用分类加 到达其余各交 答:从A 点到B从 A 点出发能顺利开车到达 B成从A 点到B 点必须向北走,的任意交叉点的走法数只能是 10分法计数原理,由此算出从 A 点叉点的走法数,填表如图 1, 点的走法共有 3517答:任选一种走法,顺利开车到达B点的概率是17•35一AC BC4、(2007江苏连云港)如图1,点C将线段AB分成两部分,如果,那么称点AB AC线段AB的黄金分割点.某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线” 的定义:直线I将一个面积为S的图形分成两部分,这两部分的面积分别为S, , S2,如果§S那么称直线I为该图形的黄金分割线.(1)研究小组猜想:在厶ABC中,若点D为AB边上的黄金分割点(如图2),则直线CD是厶ABC 的黄金分割线•你认为对吗?为什么?(2)请你说明:三角形的中线是否也是该三角形的黄金分割线?(3)研究小组在进一步探究中发现:过点C任作一条直线交AB于点E,再过点D作直线DF // CE,交AC于点F ,连接EF (如图3),则直线EF也是△ ABC 的黄金分割线.请你说明理由.(4)如图4,点E是丫ABCD的边AB的黄金分割点,过点E作EF // AD,交DC于点F,显然直线EF是Y ABCD的黄金分割线.请你画一条Y ABCD的黄金分割线,使它不经过Y ABCD 各边黄金分割点.解:(1)直线CD是厶ABC的黄金分割线•理由如下:设厶ABC的边AB上的高为h •1 1SA ADC—AD 6, S A BDC—BD 6 ,2 2所以S A ADC AD S A BDC BDS AABCAB S A ADC AD(2) 因为三角形的中线将三角形分成面积相等的两部分,此时Si s2-—,所以三角形的中线不可能是该三角形的黄金分割线.s q(3)因为DF // CE ,所以△ DEC和△ FCE的公共边CE上的高也相等,所以有S A DEC S A FCE•设直线EF与CD交于点G •所以S A DGE S A FGC •12分S2S i1S A ABC 2ABgh,又因为点D为边AB的黄金分割点,所以有A2■BD•因此AB AD S A ABCS A BDCS AADC所以,直线CD是厶ABC的黄金分割线. ...............1S| S2-所以S A ADC S四边形AFGD S A FGC因此,直线EF 也是△ ABC 的黄金分割线. ............................. 10分 (4)画法不惟一,现提供两种画法; ............................... 12分画法一:如答图1,取EF 的中点G ,再过点G 作一条直线分别交 AB ,DC 于M , N 点,则直线 MN 就是Y ABCD 的黄金分割线.画法二:如答图2,在DF 上取一点N ,连接EN ,再过点F 作FM 连接MN ,则直线MN 就是Y ABCD 的黄金分割线.5、( 2007浙江衢州)请阅读下列材料:问题:如图(2),一圆柱的底面半径为 5dm , BC 是底面直径,求一只蚂蚁从 A 点出发沿圆柱表面 爬行到点C 的最短路线•小明设计了两条路线: 路线1:侧面展开图中的先端 AC •如下图(2)所示: 设路线1的长度为11,则l 12路线2:高线AB +底面直径2设路线2的长度为12,则丨22 211 丨225 25 2252 2• •丨1 1 2 丨1 l 2所以要选择路线2较短.(1)小明对上述结论有些疑惑,于是他把条件改成:“圆柱的底面半径为 继续按前面的路线进行计算•请你帮小明完成下面的计算: 所以应选择路线 ____________ (填1或2)较短.(2)请你帮小明继续研究:在一般情况下,当圆柱的底面半径为 r ,高为h 时,应如何选择上面的两条路线才能使蚂蚁从点 A 出发沿圆柱表面爬行到 C 点的路线最短. 解:(1) lj AC 2 AB 2 AC 252225l 22 (AB AC)2(5 2)249又因为S^ ADCS A ABCS A BDC SA ADC,所以SA AEFABCS四边形BEFCSA AEF// NE 交AB 于点M ,AC 2 AB 2BC .如上图(2(AB AC) 25 2200AC 2 521)所示:2(5 10) 25( 28)路线1: l 12 AC 2;路线2: l 22(AB AC)2.2一 2•-11ll 1I 2 (填〉或v )(第4题答图1) (第4题答图2)1dm ,高AB 为成dm ”l22所以要选择路线1较短.AC 2 AB 22 2AC h (r)2122 (AB AC)2 (h 2r)2 Qlj l 22 h 2 ( r)2 (h 2r)2 = r( 2r 4r 4h) = r[( 24)r 4h]4h 2~时,l 12 I 22; 当 r 4 6、( 2007甘肃白银等3市)阅读下边 方法一:教材中方法2Q ax2Q 配方可a(xa((X bx c o,2rb 得:c)2 o|o 4ac kb ?2a c b <°,40b __ ) __ —2 2O ))2 b4a 4ac ,… b ^a. c b 2o o 4a c ” bba 4a Sac 时,lj > I 22;当 r v4兀二次方程求根公式的两种推导方法:方法二:•/ ax 2 + bx + c = 0,• 4a 2x 2 + 4abx + 4ac = 0, • (2ax + b)2= b 2 — 4ac . 当 b 2 — 4ac >0时,4h时,h 2 v I 22. 42b 22ax + b = ±. b 24ac , ••• 2ax =— b ±. b 24ac . b Vb 24ac…x =2a x bb 2a°24a4ac 请回答下列问题2a b 4a 24ac , (1) 两种方法有什么异4同?你认为哪个方法好?(2) x 说说你有什么感想竺 解:(1)都采用配方法2a 方法一是将二次项的系数化为 式•方法一较好. 7、( 2007江苏无锡)图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面一层有一个 圆圈,以下各层均比上一层多一个圆圈,一共堆了 n 层•将图1倒置后与原图1拼成图2的形状, 这样我们可以算出图1中所有圆圈的个数为1 2 3 L n 世 B . 2 1,方法二是将二次项系数变成一个平方 第“层 ■ 4 * 00—0000—00图1 中的圆圈共有12层, 如果图1 正整数1,2,3,4 ,L ,则最底层最左边这个圆圈中的数是 都按图4的方式填上一串连续的整数 之和.解:(1) 67. ................................... 图2 图3 (1)我们自上往下,在每个圆圈中都按图 3的方式填上一串连续的 _; ( 2)我们自上往下,在每个圆圈中 23, 22 , 21, L ,求图4中所有圆圈中各数的绝对值 (2)图4中所有圆圈中共有12 3 L 12咚378个数,2其中23个负数,1个0, 54个正数, 图4中所有圆圈中各数的绝对值之和| 23| | 22| L | 1| 0 1 2 L 54(1 2 3 L 23) (1 2 3 L 54) 276 1485 1761 .8、( 2007鄂尔多斯)我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.(1)写出你所学过的特殊四边形中是勾股四边形的两种图形的名称 _________ ,________ ;(2)如图16 (1),已知格点(小正方形的顶点)0(0,0) , A(3,0) , B(0,4),请你画出以格点为顶点,OA, OB为勾股边且对角线相等的勾股四边形OAMB ;(3)如图16 (2),将△ABC绕顶点B按顺时针方向旋转60°,得到△DBE,连结AD, DC ,Z DCB 30°•DC 2 BC 2 AC 2,即四边形 ABCD 是勾股四边形求证:DC 2 BC 2 AC 2,即四边形ABCD 是勾股四边形.解:(1) 正方形、长方形、(2) 答案如图所示. fy (3)证明: Q Z CBE 连结EC M .........(填正确一个得1分) 鹫形正确得 1分):Z BCE 60Q Z DCB O o 」 22 2 90o *DC EC DE xC直角梯形•(任选两个均可) 图'16 ■(2) M (3,4)或 M(4,3) •(没有60•A 分(根据图形给分, AC D。
2018年四川达州中考数学试卷(含解析)
2018年四川省达州市初中毕业、升学考试学科(满分120分,考试时间120分钟)一、选择题:本大题共10小题,每小题3分,共30分.不需写出解答过程,请把最后结果填在题后括号内. 1.(2018四川省达州市,1,3分) 2018的相反数是( ). A .2018 B .-2018 C .12018 D .-12018. 【答案】B .【解析】∵a 的相反数是-a ,∴2018的相反数是-2018.故选B. 【知识点】相反数2.(2018四川省达州市,2,3分)二次根式24x 中x 的取值范围是( ). A .x <-2 B .x ≤-2 C .x >-2 D .x ≥-2 【答案】D .【解析】由2x +4≥0,得x ≥-2.故选D. 【知识点】二次根式中被开方数的非负性 3.(2018四川省达州市,3,3分)下列图形中是中心对称图形的是( ).DC.B.A.【答案】B .【解析】在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心 .根据中心对称图形的定义,得图形B 是中心对称图形.故选B. 【知识点】中心对称图形 4.(2018四川省达州市,4,3分)如图,AB ∥CD ,∠1=45°,∠3=80°,则∠2的度数为( ). A .30° B .35° C .40° D .45° 231CADB第4题图 【答案】B .【解析】如图,∵AB ∥CD ,∠1=45°,∴∠4=45°,∵∠3=80°,∴∠2=35°.故选B.4231C ADB【知识点】平行线的性质;三角形的外角 5.(2018四川省达州市,5,3分)下列说法正确的是( ). A .“打开电视机,正在播放《达州》新闻”是必然事件;B .天气预报“明天降水概率50%”是指明天有一半的时间会下雨;C .甲、乙两人在相同的条件下各射击10次,他们成绩的平均数相同,方差分别是2S 甲=0.3,2S 乙=0.4,则甲的成绩更稳定;D .数据6,6,7,7,8的中位数与众数均为7. 【答案】C. 【解析】 判断正误 A “打开电视机,正在播放《达州》新闻”是随机事件错误 B 天气预报“明天降水概率50%”是指明天有一半的可能性会下雨错误C甲、乙两人在相同的条件下各射击10次,他们成绩的平均数相同,方差分别是2S 甲=0.3,2S 乙=0.4,则甲的成绩更稳定正确D 数据6,6,7,7,8的中位数7,众数为6,7 错误故选C.【知识点】随机事件;概率;方差;中位数;众数6.(2018四川省达州市,6,3分)平面直角坐标系中,点P 的坐标为(m ,n ),则向量OP u u u r可以用点P 的坐标表示为OP u u u r=(m ,n ),已知1OA uuu r =(x 1,y 1),2OA u u u u r =(x 2,y 2),若x 1·x 2+y 1·y 2=0,则1OA uuu r 与2OA u u u u r 互相垂直.下列四组向量:①1OB uuu u r =(3,-9),2OB u u u u r =(1,-13);②1OC u u u u r=(2,π°),2OC u u u u r =(12 ,-1);③1OD u u u u r =(cos30°,tan45°),2OD u u u u r =(sin30°,tan45°);④1OE u u u u r =(5+2,2),2OE u u u u r =(5―2,22).其中互相垂直的组有( ).A .1组B .2组C .3组D .4组 【答案】A.【解析】①1OB uuu u r =(3,-9),2OB u u u u r =(1,-13);∵3×1+(―9)×(―13)≠0,∴1OB uuu u r 与2OB u u u u r 互相不垂直.②1OC u u u u r=(2,π°),2OC u u u u r =(12-,-1);∵2×12-+(―9)×(―1)=0,∴1OC u u u u r 与2OC u u u ur 互相垂直.③1OD u u u u r =(cos30°,tan45°),2OD u u u u r =(sin30°,tan45°);∵cos30°·sin30°+tan45°·tan45°≠0,∴1OD u u u u r 与2OD u u u u r互相不垂直. ④1OE u u u u r =(5+2,2),2OE u u u u r =(5―2,22).∵(5+2)×(5―2)+2×22≠0,∴1OE u u u u r 与2OE u u u u r 互相不垂直.故选A.【知识点】阅读理解题;向量 7.(2018四川省达州市,7,3分)如图,在物理课上,老师将挂在弹簧测力计下端的铁块浸没在水中,然后缓慢匀速向上提起,直至铁块完全露出水面一定高度,则下图能反映弹簧测力计的读数y (单位:N ) 与铁块被提起的高度x (单位:cm )之间的函数关系的大致图象是( ).第7题图xyxyxyxyD.C.B.A.OOOO【答案】D.【解析】在铁块未露出水面前,弹簧读数不变(等于铁块的重力减去所受的浮力),当铁块开始露出水面后,随着排开水的体积减小,浮力减小,则弹簧读数将不断增大,直至铁块完全露出水面后,弹簧的读数将等于铁块的重力,之后将保持不变.故选D. 【知识点】变量的表示方法--图象法 8.(2018四川省达州市,8,3分) △ABC 的周长为19,点D 、E 在边BC 上,∠ABC 的平分线垂直于AE ,垂足为N ,∠ACB 的平分线垂直于AD ,垂足为M .若BC =7,则MN 的长为( ) . A .32 B .2 C .52D .3M DN EB A C第8题图 【答案】C ,【解析】∵△ABC 的周长为19,BC =7, ∴AB +AC =12.∵∠ABC 的平分线垂直于AE ,垂足为N ,∴BA =BE ,N 是AE 的中点. ∵∠ACB 的平分线垂直于AD ,垂足为M ,∴AC =DC ,M 是AD 的中点. ∴DE =AB +AC -BC =5. ∵MN 是△ADE 的中位线,∴MN =12DE =52. 故选C.【知识点】三角形的中位线 9.(2018四川省达州市,9,3分)如图,E 、F 是平行四边形ABCD 对角线AC 上两点,AE =CF =14AC ,连接DE 、DF 并延长,分别交AB 、BC 于点G 、H ,连接GH ,则ADGBGHS S V V 的值为( ). A .12 B .23 C .34D .1GH F ECAB D第9题图 【答案】C .【解析】如图,过点H 作HM ∥AB 交AD 于M ,连接MG . 设S 平行四边形ABCD =1.∵AE =CF =14AC , ∴S △ADE =14S △ADC =18S 平行四边形ABCD =18,S △DEC =38. ∴S △AEG =19S △DEC =124.∴S △ADG =S △ADE +S △AEG =18+124=16.∵CH AD =13,∴S △AMG =23S △ADG =19. ∵AG CD =13,∴S △GBH =2 S △AMG =29.∴ADG BGHS S V V =1629=34. 故选C.M GHFE C AB D【知识点】相似三角形的性质;同底等高面积相等 10.(2018四川省达州市,10,3分)如图,二次函数y =ax 2+bx +c 的图象与x 轴交于点A (-1,0),与y 轴的交点B 在(0,2)与(0,3)之间(不包括这两点),对称轴为直线x =2. 下列结论:①abc <0;②9a +3b +c >0;③若点M (12,y 1)、N (52,y 2)是函数图象上的两点,则y 1<y 2; ④-35<a <-25.其中正确结论有( ).A .1个B . 2个C .3个D . 4个xy x =2A–1123B O第10题图 【答案】D【解析】∵抛物线开口向下,∴a <0.∵-2ba>0,∴b >0.∵抛物线交y 轴于正半轴,∴c >0. ∴abc <0,①正确;当x =3时, y =9a +3b +c >0,②正确;∵对称轴为直线x =2,点M (12,y 1)与对称轴的距离大于点N (52,y 2)与对称轴的距离,∴y 1<y 2,③正确; ∵抛物线与x 轴的交点坐标分别为A (-1,0),(5,0), ∴二次函数的解析式为y =a (x +1)(x -5) =a (x 2-4x -5)=ax 2-4ax -5a .∵抛物线与y 轴的交点B 在(0,2)与(0,3)之间(不包括这两点), ∴2<-5a <3.∴-35<a <-25,④正确.故选D.【知识点】二次函数的图象与性质二、填空题:本大题共6小题,每小题3分,共18分.不需写出解答过程,请把最后结果填在题中横线上. 11.(2018四川省达州市,11,3分)受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展,预计达州市2018年快递业务量将达到5.5亿件,数据5.5亿用科学记数法表示为___________. 【答案】5.5×108【解析】数据5.5亿用科学记数法表示为5.5×108. 故答案为:5.5×108 【知识点】科学记数法12.(2018四川省达州市,12,3分)已知a m =3,a n =2,则2m n a -的值为___________.【答案】92.【解析】∵a m =3,a n =2,∴2m n a -=2m n a a ÷()=32÷2=92.故答案为:92. 【知识点】幂的乘方;同底数幂的除法13.(2018四川省达州市,13,3分)若关于x 的分式方程3233x aa x x+=--无解,则a 的值为___________. 【答案】1.【解析】去分母将分式方程转化为整式方程,由分式方程无解,得到x =3,代入整式方程求出a 的值即可.注意:要考虑分母不为0.解:去分母得:x -3a =2a (x -3), 由分式方程无解,得到x =3,把x =3代入整式方程得:3-3a =2a (3-3), 解得:a =1. 故答案为:1.【知识点】分式方程的解14.(2018四川省达州市,14,3分)如图,平面直角坐标系中,矩形OABC 的顶点A (-6,0),C (0,23).将矩形OABC 绕点O 顺时针方向旋转,使点A 恰好落在OB 上的点A 1处,则点B 的对应点B 1的坐标为___________.xyC 1B 1A 1B C AO第14题图 【答案】(-23,6). 【解析】如图,xy DE C 1B 1A 1B C AO∵矩形OABC 的顶点A (-6,0),C (0,23). ∴OA =6, AB =OC =23.∵tan ∠AOB =236,∴∠AOB =30°, 在Rt △DOC 1中,∵∠DOC 1=30°,OC 1=23, ∴OD =4,DC 1=2. ∵B 1C 1=6,∴B 1D =4, 在Rt △DEB 1中,∵∠DB 1E =30°,∴DE =2, B 1E =23. ∴B 1(-23,6). 故答案为:(-23,6).【知识点】平面直角坐标系;锐角三角函数;旋转的性质15.(2018四川省达州市,15,3分)已知:m 2-2m -1=0,n 2+2n -1=0且mn ≠1,则1mn n n++的值为___________. 【答案】3.【解析】∵mn ≠1,∴m ≠1n. 由已知得m 2-2m =n 2+2n , ∴(m +n )(m -n -2)=0. ∴m =-n 或m -n -2=0. ∵n 2+2n -1=0,∴n +2-1n=0. ∴1mn n n ++=m +1+1n =1-n +1n=1+2=3. 【知识点】代数式的值;平方差公式;因式分解; 16.(2018四川省达州市,16,3分)如图,Rt △ABC 中,∠C =90°,AC =2,BC =5,点D 是BC 边上一点且CD =1,点P 是线段DB 上一动 ,连接AP ,以AP 为斜边在AP 的下方作等腰Rt △AOP .当点P 从点D 出发运动至点B 停止时,点O 的运动路径长为___________.ODBACP第16题图 【答案】22【解析】如图,以AC 为斜边在AC 的右下方作等腰Rt △AEC ,以AD 为斜边在AD 的右下方作等腰Rt △AMD ,以AB 为斜边在AB 的下方作等腰Rt △ANB ,连接NM 并延长,则点E 、点C 在NM 的延长线上.NM O DBACPE NM O D BACP∵∠C =90°,∠ANB =90°, ∴A 、C 、B 、N 四点共圆.∴∠ANC =∠ABC .∴△ANE ∽△ABC . ∴NE BC =AEAC. 在等腰Rt △AEC 中,AC =2,∴AE =2.∵5NE=22,∴NE =522.当点P 与点C 重合时,点O 的位于点E 的位置.当点P 从点D 出发运动至点B 停止时,点O 的从点M 出发运动至点N .∵DB BC =45,∴MN NE =45,∴MN =22. 【知识点】圆的基本性质;四点共圆;相似三角形的判定与性质,比例的性质三、解答题(本大题共9小题,满分72分,解答应写出文字说明、证明过程或演算步骤) 17.(2018四川省达州市,17,6分) 计算:2018-1()+-21-2()-|2-12 |+4sin60° 【思路分析】本题考查实数的运算. 计算时, 先分别求出2018-1()、-21-2()、12、sin60°的值 ,再进行实数的混合运算,注意运算顺序.【解题过程】解:原式=1+4-(2-23)+4×32=1+4-2+23+23 =3+23.【知识点】实数的运算;有理数的乘方;负整数指数幂;算术平方根;绝对值;特殊角的三角函数值18.(2018四川省达州市,18,6分) 化简代数式:23-111x x xx x x ÷-+-(),再从不等式组2(x 1)16x 103x 1x --≥⎧⎨+>+⎩①②的解集中取一个合适的整数值代入,求出代数式的值.【思路分析】先求出不等式组的解集,然后化简代数式,根据题意选取合适的整数值代入,求出代数式的值. 【解题过程】解:解不等式①,得x ≤1, 解不等式②,得x >-3, ∴不等式组2(x 1)16x 103x 1x --≥⎧⎨+>+⎩①②的解集为-3<x ≤123-111x x xx x x ÷-+-()=231-111x x x x x x x +--⨯-()()() =31-11111x x x x x x x x x +--+⨯-+()()()()()() =3(x +1)-(x -1) =3x +3-x +1 =2x +4.∵x ≠0,x ≠±1∴当x 取-2时,原式=2×(-2)+4=0. 【知识点】解不等式(组);分式的化简求值 19.(2018四川省达州市,19,7分)为调查达州市民上班时最常用的交通工具的情况,随机抽取了部分市民进行调查,要求被调查者从“A :自行车,B :电动车,C :公交车,D :家庭汽车,E :其他”五个选项中 选择最常用的一项,将所有调查结果整理后绘制成如下不完整的条形统计图和扇形统计图,请结合统计图回答下列问题.选项人数100300500300A B CD 25%EEDCBA20040060080010000第19题图(1)本次调查中,一共调查了___________名市民;扇形统计图中,B 项对应的扇形圆心角是___________度;补全条形统计图;(2)若甲、乙两人上班时从A 、B 、C 、D 四种交通工具中随机选择一种,请用列表法或画树状图的方法,求出甲、乙两人恰好选择同一种交通工具上班的概率.【思路分析】(1)由统计图,得常用交通工具为D 的有500人,占比25%,所以本次调查中,一共调查了市民500÷25%=2000(名); 其它各项如下表: 交通工具 人数 所占的百分比 对应的扇形圆心角 A 100 100÷2000=5% 360°×5%=18° B 300 300÷2000=15%360°×15%=54° C 800 1―5%―15%―25%―15%=40% 360°×40%=144° D50025%360°×25%=90°E 300 300÷2000=15% 360°×15%=54°补全条形统计图(略)(2)用列表法或画树状图法,求甲、乙两人恰好选择同一种交通工具上班的概率. 【解题过程】解:(1)2000, 54°,补全条形统计图: 选项人数1003005003008002004006008001000ABCDE(2)列表法A B C D A (A ,A ) (A ,B ) (A ,C )(A ,D)B (B ,A ) (B ,B ) (B ,C ) (B ,D ) C (C ,A ) (C ,B ) (C ,C ) (C ,D ) D(D ,A )(D ,B )(D ,C )(D ,D )画树状图的方法开始乙甲D C B A A B C DD C B A A B C D DCBA从上面的表格(或树状图)可以看出,所有可能的结果共有16种,且每种结果出现的可能性相同,其中甲、乙两人恰好选择同一种交通工具上班的有4种,即(A ,A ),(B ,B ),(C ,C ),(D ,D ),∴P (甲、乙两人恰好选择同一种交通工具上班)=41164; 【知识点】扇形统计图;条形统计图;概率 20.(2018四川省达州市,20,6分)在数学实验活动课上,老师带领同学们到附近的湿地公园测量园内雕塑的高度.用测角仪在A 处测得雕塑顶端点C 的仰角为30°,再往雕塑方向前进4米至B 处,测得仰角为45°.问:该雕塑有多高?(测角仪高度忽略不计,结果不取近似值.)45°30°CAB第20题图【思路分析】认真审题,找出题中的等量关系,应用锐角三角函数构建关于x 方程,解方程可得答案.【解题过程】解:如图,设雕塑的高CD 为x 米.45°30°xx4DCAB在Rt △ACD 中,AD =tan30x ︒,在Rt △BCD 中,BD =tan 45x︒=x , 根据题意,得AD -BD =4,即tan30x︒-x =4. 解得x =23+2.答:雕塑的高CD 为(23+2)米.【知识点】锐角三角函数的实际应用 21.(2018四川省达州市,21,7分) “绿水青山就是金山银山”的理念已融入人们的日常生活中,因此越来越多的人喜欢骑自行车出行.某自行车店在销售某型号自行车时,以高出进价的50%标价.已知按标价九折销售该型号自行车8辆与将标价直降100元销售7辆获利相同. (1)求该型号自行车的进价与标价分别是多少元?(2)若该型号自行车的进价不变,按(1)中的标价出售,该店平均每月可售出51辆;若每辆自行车每降价20元,每月可多售出3 辆,求该型号自行车降价多少元时,每月获利最大?最大利润是多少? 【思路分析】(1))本小题的等量关系是按标价九折销售该型号自行车8辆与将标价直降100元销售7辆获利相同.根据等量关系列、解方程即可解决问题.(2)本小题的等量关系是每月的利润W =实际售价×销售数量.根据等量关系列、解方程可得. 【解题过程】解:(1)设该型号自行车的进价为x 元,则标价为(1+50%)x 元. 根据题意,得8[(1+50%)x ×0.9-x ]=7[(1+50%)x -100-x ] 整理,得2.8x =3.5x -700 解得x =1000(元),(1+50%)x =1500(元) .答: 该型号自行车的进价为1000元,则标价为1500元.(2)设该型号自行车降价a 元时,每月获利W 最大.根据题意,得 W =(155-1000-a )(51+320x) =-320a 2+48020a +25500 =-320(a 2-160a +802-802)+25500 =-320(a -80)2+26460. 当a =80时,每月获利最大,最大利润是26460元.即该型号自行车降价80元时,每月获利最大,最大利润是26460元. 【知识点】一元一次方程的应用; 一元二次方程的应用;22.(2018四川省达州市,22,8分)已知,如图,以等边△ABC 的边BC 为直径作⊙O ,分别交AB 、AC 于点D 、E ,过点D 作DF ⊥AC 于点F . (1)求证:DF 是⊙O 的切线;(2)若等边△ABC 的边长为8,求由»DE、DF 、EF 围成的阴影部分的面积. E F D O A BC第22题图【思路分析】(1)先根据等腰三角形的三线合一性质证点D 是AB 的中点,然后根据三角形中位线定理得OD ∥AC ,又DF ⊥AC ,所以OD ⊥DF ,所以DF 是⊙O 的切线;(2)根据阴影部分的面积=△DEF 的面积-»DE所含的弓形面积列式计算可得. 【解题过程】解:(1)连接OD ,CD .E F D O A BC∵BC 是直径,∴∠BDC =90°.∵等边△ABC ,∴点D 是AB 的中点.∵点O 是BC 的中点,∴根据三角形中位线定理得OD ∥AC ,∵DF ⊥AC ,∴OD ⊥DF ,∴DF 是⊙O 的切线; (2)连接OD ,OE ,DE .E F D O A BC∵点D 是AB 的中点,点E 是AC 的中点,∴DE 是△ADE 的中位线. ∵等边△ABC 的边长为8,∴等边△ADE 的边长为4. ∵DF ⊥AC ,∴EF =2,DF =23. ∴△DEF 的面积=12·EF ·DF =12×2×23=23. ∴△ADE 的面积=△ODE 的面积=43.∴扇形ODE 的面积=2604360π⋅⋅=83π.∴阴影部分的面积=△DEF 的面积-»DE所含的弓形面积=23-(83π-43)=63-83π. 【知识点】三角形中位线定理;切线的判定;扇形面积公式 23.(2018四川省达州市,23,9分) 矩形中,OB =4,OA =3,分别以OB 、OA 为x 轴、y 轴,建立如图1所示的平面直角坐标系,F 是BC 边上一个动点(不与B 、C 重合),过点F 的反比例函数y =kx(k >0)的图象与边AC 交于点E .xy xy 图2图1G EF FEC ABOC A BO第23题图(1)当点F 运动到边BC 的中点时,求点E 的坐标; (2)连接EF ,求∠EFC 的正切值;(3)如图2,将△CEF 沿EF 折叠,点C 恰好落在OB 边上的点G 处,求此时反比例函数的解析. 【思路分析】(1)先根据题意求出点F 的坐标,然后求得反比例函数解析式,最后求出点E 的坐标;(2)根据正切的定义,得tan ∠EFC =EC FC =43; (3)过点E 作ED ⊥OB 于D ,利用相似三角形的性质构建关于m 的方程,由m 的值,求得点F 的坐标,进而求得k 值,反比例函数解析式可求. 【解题过程】解:(1)∵矩形中,OB =4,OA =3,当点F 是BC 的中点时,F 的坐标为(4,1.5),此时,反比例函数的解析式为y =6x.当y =3,x =2,∴点E 的坐标(2,3); (2)在Rt △EFC 中,tan ∠EFC =EC CF =43; (3)过点E 作ED ⊥OB 于D ,则∠EGD +∠DEG =90°.∵∠EGF =90°,∴∠EGD +∠BGF =90°,∴∠DEG =∠BGF . ∵∠GBF =90°,∴△DEG ∽△BGF . ∴DE EG =GBGF. ∴22DE EG =22GB GF . ∵EC CF =43,∴EG GF=43.设EG =4m ,GF =3m ,则BF =3-3m .∴2916m =2229(33m)(3m)m --. ∴m =2532.3-3m =2132∴点E 的坐标(4,2132);设反比例函数的解析式为y =k x ,即2132=4k,∴k =218. ∴反比例函数的解析式为y =218x. xy D GE FC ABO【知识点】反比例函数;相似三角形的判定与性质 24.(2018四川省达州市,24,11分)阅读材料:已知:如图1,等边△A 1A 2A 3内接于⊙O ,点P 是¼12A A 上的任意一点,连接P A 1,P A 2,P A 3,可证:P A 1+P A 2=P A 3,从而得到12123PA PA PA PA PA +++=12是定值.(1)以下是小红的一种证明方法,请在方框内将证明过程补充完整:MOA 3A 1A 2P第24题图1证明:如图1,作∠P A 1M =60°,A 1M 交A 2P 的延长线于点M . ∵△A 1A 2A 3是等边三角形, ∴∠A 3A 1A 2=60°.∴∠A 3A 1P =∠A 2A 1M ,又A 3 A 1=A 2A 1,∠A 1A 3P =∠A 1A 2P , ∴△A 1A 3P ≌△A 1A 2M .∴P A 3=MA 2=P A 2+PM =P A 2+P A 1 ∴12123PA PA PA PA PA +++=12,是定值.(2)延伸:如图2,把(1)中条件“等边△A 1A 2A 3”改为“正方形A 1A 2A 3A 4”,其余条件不变,请问121234PA PA PA PA PA PA ++++还是定值吗?为什么?O A 1A 2P第24题图2(3)拓展:如图3,把(1)中条件“等边△A 1A 2A 3”改为“正五边形A 1A 2A 3A 4 A 5”,其余条件不变,则1212345PA PA PA PA PA PA PA +++++=___________(只写出结果).OA 3A 4A 5A 1A 2P第24题图3参考数据:如图,等腰△ABC 中,若顶角∠A =108°,则BC =152+ AC ;若顶角∠A =36°,则BC =152-+ AC .36°108°36°72°72°36°A ABBC【思路分析】(1)阅读材料,得出方框内的内容.先根据全等三角形的性质得P A 3=MA 2,P A 1=MA 1,然后根据全等三角形的判定和性质得P A 1=PM .(2)用类比的方法证得121234PA PA PA PA PA PA ++++还是定值.(3)用类比的方法证得1212345PA PA PA PA PA PA PA +++++还是定值.【解题过程】解:(1)方框内的内容为: ∴P A 3=MA 2,P A 1=MA 1, ∵∠P A 1M =60°, ∴△P A 1M 是等边三角形. ∴P A 1=PM . (2)是定值.理由:如图2,作∠P A 1M =90°,A 1M 交A 2P 的延长线于点M .NMO A 1A 2P∵A 1A 2A 3A 4是正方形, ∴∠A 4A 1A 2=90°.∴∠A 4A 1P =∠A 2A 1M ,又A 4 A 1=A 2A 1,∠A 1A 4P =∠A 1A 2P , ∴△A 1A 4P ≌△A 1A 2M . ∴P A 4=MA 2,P A 1=MA 1, ∵∠P A 1M =90°, ∴PM =2P A 1.∴P A 4=MA 2=P A 2+PM =P A 2+2P A 1,作∠P A 2MN =90°,A 2N 交A 1P 的延长线于点MN . 同理可得P A 3=P A 1+2P A 2, ∴P A 3+P A 4=(1+2) (P A 1+P A 2) ∴121234PA PA PA PA PA PA ++++=12+2=1-22,是定值.(3)1212345PA PA PA PA PA PA PA +++++=13+5=354-,是定值.【知识点】全等三角形的判定和性质;等边三角形的判定和性质;勾股定理;分母有理化;多边形内角和;类比的思想方法25.(2018四川省达州市,25,12分)如图,抛物线经过原点 O (0,0),点A (1,1),点B (72,0). (1)求抛物线解析式;(2)连接OA ,过点A 作AC ⊥OA 交抛物线于C ,连接OC ,求△AOC 的面积;(3) 点M 是y 轴右侧抛物线上一动点,连接OM ,过点M 作MN ⊥OM 交x 轴于点N .问:是否存在点M ,使以点O 、M 、N 为顶点的三角形与(2)中的△AOC 相似,若存在,求出点M 的坐标;若不存在,说明理由.x y xy 第25题图备用图72721CBA O11CBAO【思路分析】(1)设抛物线解析式为y =ax (x -72),用待定系数法求得a 的值即可; (2)延长CA 交y 轴于点E .先求出点E 的坐标,再求出AC 所在直线的解析式,之后求出抛物线与AC 所在直线的交点C 的坐标. △AOC 的面积可求. (3)存在. 过点M 作MF ⊥x 轴于点F ,因为MNO ∽△FMO ,MNO ∽△AOC ,所以△FMO ∽△AOC . 设点M (a ,|-25 a 2+75a|),利用相似构建关于a 的方程,解之可得点M 的坐标. 【解题过程】解:(1)设抛物线解析式为y =ax (x -72).∵点A (1,1),∴1=a (1-72),∴a =-25. ∴抛物线解析式为y =-25x (x -72)=-25x 2+75x . ①(2)如图,延长CA 交y 轴于点E.xy 72E D11C B A O∵点A (1,1),∴点A 在坐标轴夹角的平分线上. ∴∠AOE =45°.∵AC ⊥OA ,∴E (0,2).设AC 所在直线的解析式为y =k x +b . 根据题意,得1,2,k b b =+⎧⎨=⎩解得1,2,k b =-⎧⎨=⎩∴AC 所在直线的解析式为y =-x +2. ②联立①②,得 227,55y x 2,y x x ⎧=-+⎪⎨⎪=-+⎩解得111,1,x y =⎧⎨=⎩(舍去)或225,-3,x y =⎧⎨=⎩∴点C (5,-3).∴OD =5,CD =3.∴△AOC 的面积=12·OD ·(1+CD )=12×5×4=10. (3)存在点M ,使以点O 、M 、N 为顶点的三角形与(2)中的△AOC 相似. 如图,过点M 作MF ⊥x 轴于点F ,则MNO ∽△FMO .xy F 1NCA B OMxy F N1CBAOM∵MNO ∽△AOC , ∴△FMO ∽△AOC . ∴MF FO =OAAC. ∵点A (1,1),∴OA =2.∵点C (5,-3),∴AC =42. ∴OA AC =14. 设点M (a ,|-25 a 2+75a|), ∴227|55a a a -+|=14. ∴|-25 a 2+75a|=4a . 当-25 a 2+75a ≥0时,-25 a 2+75a =4a .整理,得8a 2-23a =0解得a 1=238,a 2=0(不合题意,舍去), 当a =238时,-25 a 2+75a =2332,∴点M (238,2332);当-25 a 2+75a <0时,-25 a 2+75a =-4a .整理,得8a 2-33a =0解得a1=338,a2=0(不合题意,舍去),当a=338时,-25a 2+75a=3332,∴点M(338,3332).综上,满足条件的点有两个,分别是M(238,2332),M(338,3332).【知识点】待定系数法求函数解析式;二元一次方程组;相似三角形的判定与性质;一元二次方程。
2018年中考数学复习 题型研究题型四新定义与阅读理解题类型二新概念学习型针对演练
第二部分题型研究题型四新定义与阅读理解题类型二新概念学习型针对演练1.若x 1,x 2是关于x 的方程x 2+bx +c =0的两个实数根,且|x 1|+|x 2|=2|k |(k 是整数),则称方程x2+bx +c =0为“偶系二次方程”.如方程x 2-6x -27=0,x 2-2x -8=0,x 2+3x -274=0,x 2+6x -27=0,x 2+4x +4=0都是“偶系二次方程”.(1)判断方程x 2+x -12=0是否是“偶系二次方程”,并说明理由;(2)对于任意一个整数b ,是否存在实数c ,使得关于x 的方程x 2+bx +c =0是“偶系二次方程”,并说明理由.2.设二次函数y 1,y 2的图象的顶点分别为(a,b )、(c,d ),当a =-c ,b =2d ,且开口方向相同时,则称y 1是y 2的“反倍顶二次函数”.(1)请写出二次函数y =x 2+x +1的一个“反倍顶二次函数”;(2)已知关于x 的二次函数y 1=x 2+nx 和二次函数y 2=nx 2+x ;函数y 1+y 2恰是y 1-y 2的“反倍顶二次函数”,求n .3.函数y =k x 和y =-k x (k ≠0)的图象关于y 轴对称,我们定义函数y =k x 和y =-kx(k ≠0)相互为“影像”函数:(1)请写出函数y =2x -3的“影像”函数:________;(2)函数________的“影像”函数是y =x 2-3x -5;(3)若一条直线与一对“影像”函数y =2x (x >0)和y =-2x(x <0)的图象分别交于点A、B、C (点A、B 在第一象限),如图,如果CB ∶BA =1∶2,点C 在函数y =-2x(x <0)的“影像”函数上的对应点的横坐标是1,求点B 的坐标.第3题图4.如图,在平面直角坐标系中,已知点P 0的坐标为(1,0),将线段OP 0按逆时针方向旋转45°,再将其长度伸长为OP 0的2倍,得到线段OP 1,又将线段OP 1按逆时针方向旋转45°,长度伸长为OP 1的2倍,得到线段OP 2,如此下去,得到线段OP 3,OP 4…,OP n (为正整数).(1)求点P 3的坐标;(2)我们规定:把点P n (x n ,y n )(n =0,1,2,3…)的横坐标x n 、纵坐标y n 都取绝对值后得到的新坐标(|x n |,|y n |)称为点P n 的“绝对坐标”,根据图中P n 的分布规律,求出点P n 的“绝对坐标”.第4题图考向2)几何类(杭州:2015.19;台州:2016.23,2015、2013.24;绍兴:2017.22,2013.22,2012.21)针对训练1.(2017绍兴)定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1)如图①,等腰直角四边形ABCD ,AB=BC ,∠ABC =90°.①若AB =CD =1,AB ∥CD ,求对角线BD 的长;②若AC ⊥BD ,求证:AD=CD .(2)如图②,在矩形ABCD 中,AB =5,BC =9,点P 是对角线BD 上一点,且BP =2PD ,过点P 作直线分别交边AD ,BC 于点E ,F ,使四边形ABFE 是等腰直角四边形.求AE 的长.。
(济宁专版)2018届中考数学复习 专题三 阅读理解问题
(1)证明:对任意一个完全平方数m, 设m=n2(n为正整数). ∵|n-n|=0为最小,∴n×n是m的最佳分解. ∴对任意一个完全平方数m,总有F(m)= =1.
n n
(2)解:设交换t的个位上的数与十位上的数得到的新数为 t′,则t′=10y+x.∵t为“吉祥数”, ∴t′-t=(10y+x)-(10x+y)=9(y-x)=36, ∴y=x+4. ∵1≤x≤y≤9,x,y为自然数, ∴满足条件的“吉祥数”有:15,26,37,48,59.
请你运用所学知识,结合上述材料,解决下列问题:
在平面直角坐标系中,点M是曲线y= 3 3 (x>0)上的任意一 点,点N是x轴正半轴上的任意一点. x
(1)如图2,点P是OM上一点,∠ONP=∠M,试说明点P是
△MON的自相似点;当点M的坐标是( ,3),点N的坐标
是( ,0)时,求点P的坐标;
2.我们知道,三角形的内心是三条角平分线的交点.过三 角形内心的一条直线与两边相交,两交点之间的线段把这 个三角形分成两个图形,若有一个图形与原三角形相似, 则把这条线段叫做这个三角形的“内似线”.
(1)等边三角形“内似线”的条数为 ; (2)如图1,△ABC中,AB=AC,点D在AC上,且BD=BC=AD. 求证:BD是△ABC的“内似线”; (3)如图在Rt△ABC中,∠C=90°,AC=4,BC=3,E, F分别在边AC,BC上,且EF是△ABC的“内似线”,求EF的 长.
专题三 阅读理解问题
阅读理解型问题是通过阅读材料,理解其实质,揭示其 方法规律从而解决新问题.既考查学生的阅读能力、自学能 力,又考查学生的解题能力和数学应用能力.这类题目能够 帮助学生实现从模仿到创造的思维过程,符合学生的认知规 律. 阅读理解题一般是提供一定的材料,或介绍一个概念, 或给出一种解法等,让你在理解材料的基础上,获得探索解 决问题的途径,用于解决后面的问题.基本思路是“阅读→ 分析→理解→解决问题”.
2018年全国中考数学试题分类汇编25阅读理解(含解析)
专题二十五:阅读理解、图表信息一、选择题1. ( 2018•广西贺州,第12题3分)张华在一次数学活动中,利用“在面积一定的矩形中,正方形的周长最短”的结论,推导出“式子x+(x>0)的最小值是2”.其推导方法如下:在面积是1的矩形中设矩形的一边长为x,则另一边长是,矩形的周长是2(x+);当矩形成为正方形时,就有x=(0>0),解得x=1,这时矩形的周长2(x+)=4最小,因此x+(x>0)的最小值是2.模仿张华的推导,你求得式子(x>0)的最小值是()A.2B.1C.6D.10考分式的混合运算;完全平方公式.点:计算题.专题:分根据题意求出所求式子的最小值即可.析:解解:得到x>0,得到=x +≥2=6,答:则原式的最小值为6.故选C此题考查了分式的混合运算,弄清题意是解本题的关键.点评:2. (2018•泰州,第6题,3分)如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是()=二.填空题三.解答题1. ( 2018•安徽省,第22题12分)若两个二次函数图象的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”.(1)请写出两个为“同簇二次函数”的函数;(2)已知关于x的二次函数y1=2x2﹣4mx+2m2+1和y2=ax2+bx+5,其中y1的图象经过点A(1,1),若y1+y2与y1为“同簇二次函数”,求函数y2的表达式,并求出当0≤x≤3时,y2的最大值.考点:二次函数的性质;二次函数的最值.菁优网专题:新定义.分析:(1)只需任选一个点作为顶点,同号两数作为二次项的系数,用顶点式表示两个为“同簇二次函数”的函数表达式即可.(2)由y1的图象经过点A(1,1)可以求出m的值,然后根据y1+y2与y1为“同簇二次函数”就可以求出函数y2的表达式,然后将函数y2的表达式转化为顶点式,在利用二次函数的性质就可以解决问题.解答:解:(1)设顶点为(h,k)的二次函数的关系式为y=a(x﹣h)2+k,当a=2,h=3,k=4时,二次函数的关系式为y=2(x﹣3)2+4.∵2>0,∴该二次函数图象的开口向上.当a=3,h=3,k=4时,二次函数的关系式为y=3(x﹣3)2+4.∵3>0,∴该二次函数图象的开口向上.∵两个函数y=2(x﹣3)2+4与y=3(x﹣3)2+4顶点相同,开口都向上,∴两个函数y=2(x﹣3)2+4与y=3(x﹣3)2+4是“同簇二次函数”.∴符合要求的两个“同簇二次函数”可以为:y=2(x﹣3)2+4与y=3(x﹣3)2+4.(2)∵y1的图象经过点A(1,1),∴2×12﹣4×m×1+2m2+1=1.整理得:m2﹣2m+1=0.解得:m1=m2=1.∴y1=2x2﹣4x+3=2(x﹣1)2+1.∴y1+y2=2x2﹣4x+3+ax2+bx+5=(a+2)x2+(b﹣4)x+8∵y1+y2与y1为“同簇二次函数”,∴y1+y2=(a+2)(x﹣1)2+1=(a+2)x2﹣2(a+2)x+(a+2)+1.其中a+2>0,即a>﹣2.∴.解得:.∴函数y2的表达式为:y2=5x2﹣10x+5.∴y2=5x2﹣10x+5=5(x﹣1)2.∴函数y2的图象的对称轴为x=1.∵5>0,∴函数y2的图象开口向上.①当0≤x≤1时,∵函数y2的图象开口向上,∴y2随x的增大而减小.∴当x=0时,y2取最大值,最大值为5(0﹣1)2=5.②当1<x≤3时,∵函数y2的图象开口向上,∴y2随x的增大而增大.∴当x=3时,y2取最大值,最大值为5(3﹣1)2=20.综上所述:当0≤x≤3时,y2的最大值为20.点评:本题考查了求二次函数表达式以及二次函数一般式与顶点式之间相互转化,考查了二次函数的性质(开口方向、增减性),考查了分类讨论的思想,考查了阅读理解能力.而对新定义的正确理解和分类讨论是解决第二小题的关键.2. ( 2018•珠海,第20题9分)阅读下列材料:解答“已知x﹣y=2,且x>1,y<0,试确定x+y的取值范围”有如下解法:解∵x﹣y=2,∴x=y+2又∵x>1,∵y+2>1.∴y>﹣1.又∵y<0,∴﹣1<y<0.…①同理得:1<x<2.…②由①+②得﹣1+1<y+x<0+2∴x+y的取值范围是0<x+y<2请按照上述方法,完成下列问题:(1)已知x﹣y=3,且x>2,y<1,则x+y的取值范围是1<x+y<5 .(2)已知y>1,x<﹣1,若x﹣y=a成立,求x+y的取值范围(结果用含a的式子表示).3.(2018•四川自贡,第23题12分)阅读理解:如图①,在四边形ABCD的边AB上任取一点E(点E不与A、B重合),分别连接ED、EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,我们就把E叫做四边形ABCD的边AB上的“相似点”;如果这三个三角形都相似,我们就把E叫做四边形ABCD的边AB上的“强相似点”.解决问题:(1)如图①,∠A=∠B=∠DEC=45°,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由;(2)如图②,在矩形ABCD中,A、B、C、D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图②中画出矩形ABCD的边AB上的强相似点;(3)如图③,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处,若点E恰好是四边形ABCM的边AB上的一个强相似点,试探究AB与BC的数量关系.=.4.(2018·浙江金华,第22题10分)(1)阅读合作学习内容,请解答其中的问题.(2)小亮进一步研究四边形的特征后提出问题:“当AE >EG 时,矩形AEGF 与矩形DOHE 能否全等?能否相似?”针对小亮提出的问题,请你判断这两个矩形能否全等?直接写出结论即可;这两个矩形能否相似?若能相似,求出相似比;若不能相似,试说明理由. 【答案】(1)①()6y x >0x=;②()3,2 ;(2)这两个矩形不能全等,这两个矩形的相似比为56. 【解析】∴6n m m 23n⎧=⎪⎨⎪-=-⎩,解得m 3n 2=⎧⎨=⎩或m 2n 3=⎧⎨=⎩. ∴点F 的坐标为()3,2 .(2)这两个矩形不能全等,理由如下:设点F 的坐标为()m,n ,则AE m 2,AF 3n =-=- ,考点:1. 阅读理解型问题;2.待定系数法的应用;3.曲线上点的坐标与方程的关系;4.正方形的和矩形性质;5.全等、相似多边形的判定和性质;6.反证法的应用.5. (2018年江苏南京,第27题)【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.(第1题图)【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据HL,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若∠B≥∠A,则△ABC≌△DEF.考点:全等三角形的判定与性质分析:(1)根据直角三角形全等的方法“HL”证明;(2)过点C作CG⊥AB交AB的延长线于G,过点F作DH⊥DE交DE的延长线于H,根据等角的补角相等求出∠CBG=∠FEH,再利用“角角边”证明△CBG 和△FEH全等,根据全等三角形对应边相等可得CG=FH,再利用“HL”证明Rt△ACG和Rt△DFH全等,根据全等三角形对应角相等可得∠A=∠D,然后利用“角角边”证明△ABC和△DEF全等;(3)以点C为圆心,以AC长为半径画弧,与AB相交于点D,E与B重合,F 与C重合,得到△DEF与△ABC不全等;(4)根据三种情况结论,∠B不小于∠A即可.解答:(1)解:HL;(2)证明:如图,过点C作CG⊥AB交AB的延长线于G,过点F作DH⊥DE 交DE的延长线于H,∵∠B=∠E,且∠B、∠E都是钝角,∴180°﹣∠B=180°﹣∠E,即∠CBG=∠FEH,在△CBG和△FEH中,,∴△CBG≌△FEH(AAS),∴CG=FH,在Rt△ACG和Rt△DFH中,,∴Rt△ACG≌Rt△DFH(HL),∴∠A=∠D,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS);(3)解:如图,△DEF和△ABC不全等;(4)解:若∠B≥∠A,则△ABC≌△DEF.故答案为:(1)HL;(4)∠B≥∠A.点评:本题考查了全等三角形的判定与性质,应用与设计作图,熟练掌握三角形全等的判定方法是解题的关键,阅读量较大,审题要认真仔细.6. (2018•扬州,第26题,10分)对x,y定义一种新运算T,规定:T(x,y)=(其中a、b均为非零常数),这里等式右边是通常的四则运算,例如:T (0,1)==B.(1)已知T(1,﹣1)=﹣2,T(4,2)=1.①求a,b的值;②若关于m 的不等式组恰好有3个整数解,求实数p的取值范围;(2)若T(x,y)=T(y,x)对任意实数x,y都成立(这里T(x,y)和T(y,x)均有意义),则a,b应满足怎样的关系式?=1;,≤<;=,.7.(2018•济宁第21题9分)阅读材料:已知,如图(1),在面积为S 的△ABC 中,BC =a ,AC =b ,AB =c ,内切圆O 的半径为r .连接OA 、OB 、OC ,△ABC 被划分为三个小三角形.∵S =S △OBC +S △OAC +S △OAB =BC •r +AC •r +AB •r =(a +b +c )r .∴r =.(1)类比推理:若面积为S 的四边形ABCD 存在内切圆(与各边都相切的圆),如图(2),各边长分别为AB =a ,BC =b ,CD =c ,AD =d ,求四边形的内切圆半径r ;(2)理解应用:如图(3),在等腰梯形ABCD 中,AB ∥DC ,AB =21,CD =11,AD =13,⊙O 1与⊙O 2分别为△ABD 与△BCD 的内切圆,设它们的半径分别为r 1和r 2,求的值.+=.=5====。
中考数学复习攻略 专题2 阅读理解与类比推理(含答案)
专题二 阅读理解与类比推理两类事物具有相同的结构、特征,当我们了解其中一类事物的某些属性后,往往可去认识、猜测另一类事物是否也有类似的属性,这种思考问题的方法,称作类比.类比和归纳一样,也是科学研究中常用的方法.阅读理解型问题一般篇幅比较长,由“阅读”和“问题”两部分构成,其阅读部分往往为考生提供一段自学材料,其内容多以“定义一个新概念(法则),或展示一个解题过程,或给出一种新颖的解题方法”为主.阅读理解型问题按解题方法不同在百色中考考查的题型可能有:(1)新定义概念或法则;(2)新知模仿;(3)迁移探究与应用.解答阅读理解型问题的基本模式:阅读→理解→应用,即重点是阅读,难点是理解,关键是应用.一般有以下几个步骤:(1)阅读给定材料,提取有用信息;(2)分析、归纳信息,建立数学模型;(3)解决数学模型,回顾检查.在解题过程中要避免以下几个问题:(1)缺乏仔细审题意识,审题片面;(2)受思维定式影响,用“想当然”代替现实的片面意识;(3)忽略题中关键词语、条件,理解题意有偏差;(4)缺乏回顾反思意识.中考重难点突破新定义概念或法则新定义概念或法则类以纯文字、符号或图形的形式定义一种全新的概念、公式或法则等,解答时要在阅读理解的基础上解答问题.解答这类问题时,要善于挖掘定义的内涵和本质,要能够用已学的知识对新定义进行合理解释,进而将陌生的定义转化为熟悉的已学知识去理解和解答.【例1】对于两个非零实数x ,y ,定义一种新的运算:x *y =a x +by.若1*(-1)=2,则(-2)*2的值是__-1__.【解析】所给新定义的运算中,有a ,b 两个字母,而题中只给了1*(-1)=2一个条件,就不能把a ,b 两个值都求出来,但能求得a 与b 的数量关系,将a 与b 的数量等式代入到(-2)*2中即可得出结果.【例2】对于实数a ,b ,我们定义符号max{a ,b }的意义为:当a ≥b 时,max{a ,b }=a ;当a <b 时,max{a ,b }=b .例如,max{4,-2}=4,max{3,3}=3.若关于x 的函数为y =max{x +3,-x +1},则该函数的最小值是( B )A .0B .2C .3D .4【解析】可分x ≥-1和x <-1两种情况进行讨论.①当x +3≥-x +1,即x ≥-1时,y =x +3,此时y 最小值=2;②当x +3<-x +1,即x <-1时,y =-x +1,此时y >2.∴y 最小值=2.也可以通过图象很直观地求出最小值(如图,该函数图象为实线部分),即为直线y =x +3与直线y =-x +1的交点的纵坐标.1.(2021·包头中考)定义新运算“⊗”,规定:a ⊗b =a -2b .若关于x 的不等式x ⊗m >3的解集为x >-1,则m 的值是( B )A .-1B .-2C .1D .2 2.(2018·百色中考)对任意实数a ,b 定义运算“∅”:a ∅b =⎩⎪⎨⎪⎧a (a >b ),b (a ≤b ), 则函数y =x 2∅(2-x )的最小值是( C )A .-1B .0C .1D .4新知模仿新知模仿类以范例的形式给出,并在求解的过程中暗示解决问题的思路和技巧,再以此为载体设置类似的问题.解决这类问题的常用方法是类比、模仿和转化,主要是通过对数学公式、法则、方法和数学思想的准确掌握,运用其进行解答问题.【例3】(2017·百色中考)阅读理解:用“十字相乘法”分解因式2x 2-x -3的方法. (1)二次项系数2=1×2;(2)常数项-3=-1×3=1×(-3),验算:“交叉相乘之和”;(3)发现第③个“交叉相乘之和”的结果1×(-3)+2×1=-1,等于一次项系数-1. 即(x +1)(2x -3)=2x 2-3x +2x -3=2x 2-x -3,则2x 2-x -3=(x +1)(2x -3).像这样,通过十字交叉线帮助,把二次三项式分解因式的方法,叫做十字相乘法.仿照以上方法,分解因式:3x 2+5x -12=__(x +3)(3x -4)__.【解析】如图,验算:1×(-4)+3×3=5,根据“十字相乘法”分解因式得出3x 2+5x -12=(x +3)(3x -4)即可.3.(2019·百色中考)阅读理解:已知两点M (x 1,y 1),N (x 2,y 2),则线段MN 的中点K (x ,y )的坐标公式为:x =x 1+x 22 ,y =y 1+y 22.如图,已知点O 为坐标原点,点A (-3,0),⊙O 经过点A ,点B 为弦P A 的中点.若点P (a ,b ),则有a ,b 满足等式:a 2+b 2=9.设B (m ,n ),则m ,n 满足的等式是( D )A .m 2+n 2=9B .⎝⎛⎭⎫m -32 2+⎝⎛⎭⎫n 2 2=9 C .(2m +3)2+(2n )2=3 D .(2m +3)2+4n 2=9 迁移探究与应用迁移探究与应用类,即阅读新问题并运用新知识探究问题或解决问题.解答这类题的关键是认真阅读其内容,理解其实质,把握其方法、规律,然后加以解决.【例4】(2018·百色一模)材料:对于式子2+31+x 2,利用换元法,令t =1+x2,y =3t .则由于t =1+x 2≥1,所以反比例函数y =3t 有最大值,且为3.因此分式2+31+x 2的最大值为5.根据上述材料,解决下列问题:当x 的值变化时,分式x 2-2x +6x 2-2x +3的最大(或最小)值为__2.5__.【解析】根据题意将分式变形,即可确定出最大值或最小值.4.在Rt △ABC 中,以下是小亮探究a sin A 与bsin B之间关系的方法(如图①):∵sin A =a c ,sin B =b c ,∴c =a sin A ,c =bsin B .∴a sin A =b sin B. 根据你掌握的三角函数知识,在图②的锐角△ABC 中,探究 a sin A ,b sin B ,c sin C 之间的大小关系是__a sin A=b sin B =csin C __(用“>”“<”或“=”连起来). 5.(2021·广东中考)我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,此公式与古希腊几何学家海伦提出的公式如出一辙,即三角形的三边长分别为a ,b ,c ,记p =a +b +c2,则其面积S =p (p -a )(p -b )(p -c ) .这个公式也被称为海伦-秦九韶公式.若p =5,c =4,则此三角形面积的最大值为( C )A .5B .4C .25D .5中考专题过关1.(2021·张家界中考)对于实数a ,b 定义运算“☆”如下:a ☆b =ab 2-ab ,例如3☆2=3×22-3×2=6,则方程1☆x =2的根的情况为(D)A .没有实数根B .只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根2.我们根据指数运算,得出了一种新的运算,如下表是两种运算对应关系的一组实例.指数运算 21=2 22=4 23=8 … 新运算 log 22=1 log 24=2 log 28=3 … 指数运算 31=3 32=9 33=27 … 新运算 log 33=1 log 39=2 log 327=3 …①log 216=4;②log 525=5;③log 212=-1.其中正确的是( B )A .①②B .①③C .②③D .①②③3.(2021·甘肃中考)对于任意的有理数a ,b ,如果满足a 2 +b 3 =a +b2+3,那么我们称这一对数a ,b 为“相随数对”,记为(a ,b ).若(m ,n )是“相随数对”,则3m +2[3m +(2n -1)]等于( A )A .-2B .-1C .2D .3 4.(2020·百色二模)阅读材料:在平面直角坐标系xOy 中,点P (x 0,y 0)到直线Ax +By +C =0的距离公式为:d =|Ax 0+By 0+C |A 2+B 2.例如,求点P (1,3)到直线4x +3y -3=0的距离.解:由直线4x +3y -3=0知,A =4,B =3,C =-3,∴点P (1,3)到直线4x +3y -3=0的距离为d =|4×1+3×3-3|42+32=2.根据以上材料,求点P 1(0,2)到直线y =512 x -16的距离为____2__. 5.先阅读理解下面的例题,再按要求解答下列问题:解一元二次不等式:x 2-4>0.解:不等式x 2-4>0可化为 (x +2)(x -2)>0.由有理数的乘法法则“两数相乘,同号得正”,得 ①⎩⎪⎨⎪⎧x +2>0,x -2>0 或②⎩⎪⎨⎪⎧x +2<0,x -2<0.解不等式组①,得x >2;解不等式组②,得x <-2.∴(x +2)(x -2)>0的解集为x >2或x <-2,即x 2-4>0的解集为x >2或x <-2. (1)一元二次不等式x 2-16>0的解集为__x >4或x <-4__;(2)分式不等式x -1x -3>0的解集为__x >3或x <1__.6.阅读下列运算过程: 13 =33×3 =33 , 25 =255×5 =255 ,12+1 =1×(2-1)(2+1)(2-1)=2-12-1 =2 -1,13-2 =1×(3+2)(3-2)(3+2)=3+23-2 =3 +2 .数学上将这种把分母的根号去掉的过程称作“分母有理化”.通过分母有理化,可以把不是最简的二次根式化成最简二次根式.请参考上述方法,解决下列问题:(1)化简:26 =__63 __,25-3 =,1n +1+n=;(2)计算:11+3 +13+5 +15+7 +…+12 021+ 2 023=___ 2 023-12 ___.。
中考数学备考专题复习: 阅读理解问题(含解析)
中考数学备考专题复习:阅读理解问题(含解析)中考备考专题复习:阅读理解问题一、单选题1、对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b,如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是()A、0B、2C、3D、42、对于实数a、b,定义一种新运算“⊗”为:a⊗b= ,这里等式右边是实数运算.例如:1⊗3=.则方程x⊗(﹣2)= ﹣1的解是()A、x=4B、x=5C、x=6D、x=73、设a,b是实数,定义@的一种运算如下:a@b=(a+b)2﹣(a﹣b)2,则下列结论:①若a@b=0,则a=0或b=0②a@(b+c)=a@b+a@c③不存在实数a,b,满足a@b=a2+5b2④设a,b是矩形的长和宽,若矩形的周长固定,则当a=b时,a@b最大.其中正确的是()A、②③④B、①③④C、①②④D、①②③4、定义:点A(x,y)为平面直角坐标系内的点,若满足x=y,则把点A叫做“平衡点”.例如:M(1,1),N(﹣2,﹣2)都是“平衡点”.当﹣1≤x≤3时,直线y=2x+m上有“平衡点”,则m的取值范围是()A、0≤m≤1B、﹣3≤m≤1C、﹣3≤m≤3D、﹣1≤m≤0二、填空题5、州)阅读材料并解决问题:求1+2+22+23+…+22014的值,令S=1+2+22+23+…+22014等式两边同时乘以2,则2S=2+22+23+…+22014+22015两式相减:得2S﹣S=22015﹣1所以,S=22015﹣1依据以上计算方法,计算1+3+32+33+…+32015=________.三、解答题6、自学下面材料后,解答问题.分母中含有未知数的不等式叫分式不等式.如:等.那么如何求出它们的解集呢?根据我们学过的有理数除法法则可知:两数相除,同号得正,异号得负.其字母表达式为:(1)若a>0,b>0,则>0;若a<0,b<0,则>0;(2)若a>0,b<0,则<0;若a<0,b>0,则<0.反之:(1)若>0,则或(2)<0,则____________ .根据上述规律,求不等式>0的解集.7、阅读与计算:请阅读以下材料,并完成相应的任务.斐波那契(约1170﹣1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用.斐波那契数列中的第n个数可以用[()n﹣()n]表示(其中,n≥1).这是用无理数表示有理数的一个范例.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.8、先阅读下列材料,然后解答问题:材料1 从3张不同的卡片中选取2张排成一列,有6种不同的排法,抽象成数学问题就是从3个不同元素中选取2个元素的排列,排列数记为A32=3×2=6.一般地,从n个不同元素中选取m个元素的排列数记作A n m,A n m=n(n-1)(n-2)…(n-m+1)(m≤n).例:从5个不同元素中选3个元素排成一列的排列数为:A53=5×4×3=60.材料2 从3张不同的卡片中选取2张,有3种不同的选法,抽象成数学问题就是从3个元素中选取2个元素的组合,组合数记为C32==3.一般地,从n个不同元素中选取m个元素的组合数记作C n m,C n m=(m≤n).例:从6个不同元素中选3个元素的组合数为:C63==20.问:(1)从7个人中选取4人排成一排,有多少种不同的排法?(2)从某个学习小组8人中选取3人参加活动,有多少种不同的选法?9、定义新运算:对于任意实数m、n都有m☆n=m2n+n,等式右边是常用的加法、减法、乘法及乘方运算.例如:﹣3☆2=(﹣3)2×2+2=20.根据以上知识解决问题:若2☆a的值小于0,请判断方程:2x2﹣bx+a=0的根的情况.四、综合题10、阅读材料:在一个三角形中,各边和它所对角的正弦的比相等,==,利用上述结论可以求解如下题目:在△ABC中,∠A、∠B、∠C的对边分别为a,b,c.若∠A=45°,∠B=30°,a=6,求b.解:在△ABC中,∵=∴b====3.理解应用:如图,甲船以每小时30海里的速度向正北方向航行,当甲船位于A1处时,乙船位于甲船的北偏西105°方向的B1处,且乙船从B1处按北偏东15°方向匀速直线航行,当甲船航行20分钟到达A2时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距10海里.(1)判断△A1A2B2的形状,并给出证明(2)求乙船每小时航行多少海里?11、阅读下列材料:2015年清明小长假,北京市属公园开展以“清明踏青,春色满园”为主题的游园活动,虽然气温小幅走低,但游客踏青赏花的热情很高,市属公园游客接待量约为190万人次.其中,玉渊潭公园的樱花、北京植物园的桃花受到了游客的热捧,两公园的游客接待量分别为38万人次、21.75万人次;颐和园、天坛公园、北海公园因皇家园林的厚重文化底蕴与满园春色成为游客的重要目的地,游客接待量分别为26万人次、20万人次、17.6万人次;北京动物园游客接待量为18万人次,熊猫馆的游客密集度较高.2014年清明小长假,天气晴好,北京市属公园游客接待量约为200万人次,其中,玉渊潭公园游客接待量比2013 年清明小长假增长了25%;颐和园游客接待量为26.2万人次,2013 年清明小长假增加了4.6万人次;北京动物园游客接待量为22万人次.2013年清明小长假,玉渊潭公园、陶然亭公园、北京动物园游客接待量分别为32万人次、13万人次、14.9 万人次.根据以上材料解答下列问题:(1)2014年清明小长假,玉渊潭公园游客接待量为________ 万人次(2)选择统计表或统计图,将2013﹣2015年清明小长假玉渊潭公园、颐和园和北京动物园的游客接待量表示出来.12、阅读下列材料,并用相关的思想方法解决问题.计算:(1﹣﹣﹣)×(+++)﹣(1﹣﹣﹣﹣)×(++).令++=t,则原式=(1﹣t)(t+)﹣(1﹣t﹣)t=t+﹣t2﹣t﹣t+t2=问题:(1)计算(1﹣﹣﹣﹣…﹣)×(++++…++)﹣(1﹣﹣﹣﹣﹣…﹣﹣)×(+++…+);(2)解方程(x2+5x+1)(x2+5x+7)=7.13、)阅读下列材料,并解决相关的问题.按照一定顺序排列着的一列数称为数列,排在第一位的数称为第1项,记为a1,依此类推,排在第n位的数称为第n项,记为an.一般地,如果一个数列从第二项起,每一项与它前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0).如:数列1,3,9,27,…为等比数列,其中a1=1,公比为q=3.(1)等比数列3,6,12,…的公比q为________ ,第4项是________(2)如果一个数列a1, a2, a3, a4,…是等比数列,且公比为q,那么根据定义可得到:=q,=q,=q,…=q.所以:a2=a1•q,a3=a2•q=(a1•q)•q=a1•q2, a4=a3•q=(a1•q2)•q=a1•q3,…由此可得:an =________(用a1和q的代数式表示).(3)若一等比数列的公比q=2,第2项是10,请求它的第1项与第4项.14、阅读材料:善于思考的小军在解方程组时,采用了一种“整体代换”的解法:解:将方程②变形:4x+10y+y=5 即2(2x+5y)+y=5③把方程①带入③得:2×3+y=5,∴y=﹣1把y=﹣1代入①得x=4,∴方程组的解为.请你解决以下问题:(1)模仿小军的“整体代换”法解方程组;(2)已知x,y满足方程组(i)求x2+4y2的值;(ii)求+的值.15、)阅读理解材料一:一组对边平行,另一组对边不平行的四边形叫梯形,其中平行的两边叫梯形的底边,不平行的两边叫梯形的腰,连接梯形两腰中点的线段叫梯形的中位线.梯形的中位线具有以下性质:梯形的中位线平行于两底,并且等于两底和的一半.如图(1):在梯形ABCD中:AD∥BC∵E、F是AB、CD的中点∴EF∥AD∥BCEF=(AD+BC)材料二:经过三角形一边的中点与另一边平行的直线必平分第三边如图(2):在△ABC中:∵E是AB的中点,EF∥BC∴F是AC的中点如图(3)在梯形ABCD中,AD∥BC,AC⊥BD于O,E、F分别为AB、CD的中点,∠DBC=30°请你运用所学知识,结合上述材料,解答下列问题.(1)求证:EF=AC;(2)若OD=,OC=5,求MN的长.16、我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)17、已知点P(x0, y)和直线y=kx+b,则点P到直线y=kx+b的距离证明可用公式d= 计算.例如:求点P(﹣1,2)到直线y=3x+7的距离.解:因为直线y=3x+7,其中k=3,b=7.所以点P(﹣1,2)到直线y=3x+7的距离为:d= = = = .根据以上材料,解答下列问题:(1)求点P(1,﹣1)到直线y=x﹣1的距离;(2)已知⊙Q的圆心Q坐标为(0,5),半径r为2,判断⊙Q与直线y= x+9的位置关系并说明理由;(3)已知直线y=﹣2x+4与y=﹣2x﹣6平行,求这两条直线之间的距离.18、定义:有三个内角相等的四边形叫三等角四边形.(1)三等角四边形ABCD中,∠A=∠B=∠C,求∠A的取值范围;(2)如图,折叠平行四边形纸片DEBF,使顶点E,F分别落在边BE,BF上的点A,C处,折痕分别为DG,DH.求证:四边形ABCD是三等角四边形.(3)三等角四边形ABCD中,∠A=∠B=∠C,若CB=CD=4,则当AD的长为何值时,AB的长最大,其最大值是多少?并求此时对角线AC的长.19、我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”(1)概念理解:请你根据上述定义举一个等邻角四边形的例子;(2)问题探究;如图1,在等邻角四边形ABCD中,∠DAB=∠ABC,AD,BC的中垂线恰好交于AB边上一点P,连结AC,BD,试探究AC与BD的数量关系,并说明理由;(3)应用拓展;如图2,在Rt△ABC与Rt△ABD中,∠C=∠D=90°,BC=BD=3,AB=5,将Rt△ABD绕着点A顺时针旋转角α(0°<∠α<∠BAC)得到Rt△AB′D′(如图3),当凸四边形AD′BC为等邻角四边形时,求出它的面积.20、阅读下列材料:北京市正围绕着“政治中心、文化中心、国际交往中心、科技创新中心”的定位,深入实施“人文北京、科技北京、绿色北京”的发展战略.“十二五”期间,北京市文化创意产业展现了良好的发展基础和巨大的发展潜力,已经成为首都经济增长的支柱产业.2011年,北京市文化创意产业实现增加值1938.6亿元,占地区生产总值的12.2%.2012年,北京市文化创意产业继续呈现平稳发展态势,实现产业增加值2189.2亿元,占地区生产总值的12.3%,是第三产业中仅次于金融业、批发和零售业的第三大支柱产业.2013年,北京市文化产业实现增加值2406.7亿元,比上年增长9.1%,文化创意产业作为北京市支柱产业已经排到了第二位.2014年,北京市文化创意产业实现增加值2749.3亿元,占地区生产总值的13.1%,创历史新高,2015年,北京市文化创意产业发展总体平稳,实现产业增加值3072.3亿元,占地区生产总值的13.4%.根据以上材料解答下列问题:(1)用折线图将2011﹣2015年北京市文化创意产业实现增加值表示出来,并在图中标明相应数据;(2)根据绘制的折线图中提供的信息,预估2016年北京市文化创意产业实现增加值约________亿元,你的预估理由________.21、)阅读材料:关于三角函数还有如下的公式:sin(α±β)=sinαcosβ±cosαsinβtan(α±β)=利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值.例:tan75°=tan(45°+30°)= = =2+根据以上阅读材料,请选择适当的公式解答下面问题(1)计算:sin15°;(2)某校在开展爱国主义教育活动中,来到烈士纪念碑前缅怀和纪念为国捐躯的红军战士.李三同学想用所学知识来测量如图纪念碑的高度.已知李三站在离纪念碑底7米的C处,在D点测得纪念碑碑顶的仰角为75°,DC为米,请你帮助李三求出纪念碑的高度.22、阅读下面材料:小明遇到这样一个问题:如图1,△ABC中,AB=AC,点D在BC边上,∠DAB=∠ABD,BE⊥AD,垂足为E,求证:BC=2AE.小明经探究发现,过点A作AF⊥BC,垂足为F,得到∠AFB=∠BEA,从而可证△ABF≌△BAE(如图2),使问题得到解决.(1)根据阅读材料回答:△ABF与△BAE全等的条件是 AAS(填“SSS”、“SAS”、“ASA”、“AAS”或“HL”中的一个)参考小明思考问题的方法,解答下列问题:(2)如图3,△ABC中,AB=AC,∠BAC=90°,D为BC的中点,E为DC的中点,点F在AC的延长线上,且∠CDF=∠EAC,若CF=2,求AB的长;(3)如图4,△ABC中,AB=AC,∠BAC=120°,点D、E分别在AB、AC边上,且AD=kDB(其中0<k<),∠AED=∠BCD,求的值(用含k的式子表示).答案解析部分一、单选题1、【答案】B【考点】分段函数【解析】【解答】解:当x+3≥﹣x+1,即:x≥﹣1时,y=x+3,∴当x=﹣1时,y min=2,当x+3<﹣x+1,即:x<﹣1时,y=﹣x+1,∵x<﹣1,∴﹣x>1,∴﹣x+1>2,∴y>2,∴y min=2,故选B【分析】分x≥﹣1和x<﹣1两种情况进行讨论计算,此题是分段函数题,主要考查了新定义,解本题的关键是分段.2、【答案】B【考点】分式方程的解,定义新运算【解析】【解答】解:根据题意,得= ﹣1,去分母得:1=2﹣(x﹣4),解得:x=5,经检验x=5是分式方程的解.故选B.【分析】所求方程利用题中的新定义化简,求出解即可.此题考查了解分式方程,弄清题中的新定义是解本题的关键.3、【答案】C【考点】整式的混合运算,因式分解的应用,二次函数的最值【解析】【解答】解:①根据题意得:a@b=(a+b)2﹣(a﹣b)2∴(a+b)2﹣(a﹣b)2=0,整理得:(a+b+a﹣b)(a+b﹣a+b)=0,即4ab=0,解得:a=0或b=0,正确;②∵a@(b+c)=(a+b+c)2﹣(a﹣b﹣c)2=4ab+4aca@b+a@c=(a+b)2﹣(a﹣b)2+(a+c)2﹣(a﹣c)2=4ab+4ac,∴a@(b+c)=a@b+a@c正确;③a@b=a2+5b2, a@b=(a+b)2﹣(a﹣b)2,令a2+5b2=(a+b)2﹣(a﹣b)2,解得,a=0,b=0,故错误;④∵a@b=(a+b)2﹣(a﹣b)2=4ab,(a﹣b)2≥0,则a2﹣2ab+b2≥0,即a2+b2≥2ab,∴a2+b2+2ab≥4ab,∴4ab的最大值是a2+b2+2ab,此时a2+b2+2ab=4ab,解得,a=b,∴a@b最大时,a=b,故④正确,故选C.【分析】根据新定义可以计算出啊各个小题中的结论是否成立,从而可以判断各个小题中的说法是否正确,从而可以得到哪个选项是正确的.本题考查因式分解的应用、整式的混合运算、二次函数的最值,解题的关键是明确题意,找出所求问题需要的条件.4、【答案】 B【考点】一元一次不等式组的应用【解析】【解答】解:∵x=y,∴x=2x+m,即x=﹣m.∵﹣1≤x≤3,∴﹣1≤﹣m≤3,∴﹣3≤m≤1.故选B.【分析】根据x=y,﹣1≤x≤3可得出关于m的不等式,求出m的取值范围即可.本题考查的是一次函数图象上点的坐标特点,根据题意得出关于m的不等式是解答此题的关键.二、填空题5、【答案】【考点】探索数与式的规律【解析】【解答】解:令s=1+3+32+33+ (32015)等式两边同时乘以3得:3s=3+32+33+ (32016)两式相减得:2s=32016﹣1.所以S= .【分析】令s=1+3+32+33+…+32015,然后再等式的两边同时乘以2,接下来,依据材料中的方程进行计算即可.本题主要考查的是数字的变化规律,依据材料找出解决问题的方法和步骤是解题的关键.三、解答题6、【答案】解:(2)若<0,则或;故答案为:或;由上述规律可知,不等式转化为或,所以,x>2或x<﹣1.【考点】一元一次不等式组的应用【解析】【分析】根据两数相除,异号得负解答;先根据同号得正把不等式转化成不等式组,然后根据一元一次不等式组的解法求解即可.7、【答案】【解答】解:第1个数,当n=1时,[()n﹣()n]=(﹣)=×=1.第2个数,当n=2时,[()n﹣()n]=[()2﹣()2]=×(+)(﹣)=×1×=1.【考点】二次根式的应用【解析】【分析】分别把1、2代入式子化简求得答案即可.8、【答案】解:(1)A74=7×6×5×4=840(种).(2)C83==56(种)【考点】探索数与式的规律【解析】【分析】探索数与式的规律。
2018年中考数学重庆专版专题突破课件专题二 阅读理解问题
专题二丨阅读理解问题
专题二丨阅读理解问题
|针对训练| 1.对于一个两位正整数 xy(0≤y≤x≤9,且 x、y 为正整数),我 们把十位上的数与个位上的数的平方和叫做 t 的“平方和数”, 把十位上的数与个位上的数的平方差叫做 t 的“平方差数”.例 2 2 2 2 如:对数 62 来说,6 +2 =40,6 -2 =32,所以 40 和 32 就分 别是 62 的“平方和数”与“平方差数”. 74 (1)75 的“平方和数”是________ ,5 可以是________ 的“平方 32 差数”; 若一个数的“平方和数” 为 10, 它的“平方差数”为 8, 31 . 则这个数是________ (2)求证:当 x≤9,y≤8 时,t 的 2 倍减去 t 的“平方差数”再 减去 99 所得结果也是另一个数的“平方差数”. (3)将数 t 的十位上的数与个位上的数交换得到数 t′,若 t 与 t 的“平方和数”之和等于 t′与 t′的“平方差数”之和,求 t.
专题二丨阅读理解问题
解:(2)证明:令 t =10x+y, 2 2 2(10x+y)-(x -y )-99 2 2 2 2 = 20x + 2y - x + y - 99 = ( y + 2 y + 1) - ( x - 20 x + 2 2 100)=(y+1) -(x-10) , ∴t 的 2 倍减去 t 的“平方差数”再减去 99 所得结果 是另一个数的“平方差”数. (3) 令 t=xy,t ′=yx, 由题意知:10x+y +x2+y2=10 y+x+y2-x 2, 所以 9 x-9y+2x2 =0,9(x- y)+2x2=0 , ∵x- y≥0,2x2≥ 0,∴x=y= 0. 故 t= 0.
专题二丨阅读理解问题
解:(1)F(243)=(423+342+234)÷111=9, F(617)=(167+716+671)÷111=14. (2)∵s,t 都是“相异数”, ∴F(s)=(302+10x+230+x+100x+23)÷111=x+5, F(t)=(510+y+100y+51+105+10y)÷111=y+6, ∵F(s)+F(t)=18, ∴x+5+y+6=x+y+11=18, ∴ x+ y =7 , x=1, x=2, ∵1≤x≤9,1≤y≤9,x,y 都是正整数,∴ 或 或 y=6 y= 5 x=3, x=4, x=5, x=6, 或 或 或 y= 4 y= 3 y=2 y=1.
中考数学专题复习(阅读理解)
中考数学专题复习:阅读理解题【知识梳理】阅读理解型问题以内容丰富、构思新颖别致、题样多变为特点.知识的覆盖面较大,它可以是阅读课本原文,也可以是设计一个新的数学情境,让学生在阅读的基础上,理解其中的内容、方法和思想,然后在把握本质,理解实质的基础上作出回答.这类问题的主要题型有:阅读特殊范例,推出一般结论;阅读解题过程,总结解题思路和方法;阅读新知识,研究新问题等.这类试题要求考生能透彻理解课本中的所学内容,善于总结解题规律,并能准确阐述自己的思想和观点,考查学生对数学知识的理解水平、数学方法的运用水平及分析推理能力、数据处理能力、文字概括能力、书面表达能力、随机应变能力和知识的迁移能力等.因此,在平时的学习和复习中应透彻理解所学内容.搞清楚知识的来龙去脉,不仅要学会数学知识,更要掌握在研究知识的过程中体现出的数学思想和方法.【课前预习】1、计算机是将信息转换成二进制数进行处理的,二进制即“逢二进一”,如(1101)表示二进制数,转换为十进制形式是,那么将二进制(1111)转换为十进制形式是数( )A、8B、15C、20D、302、阅读下面材料并完成填空。
你能比较两个数和的大小吗?为了解决这个问题,先把问题一般化,即比较的大小(n≥1的整数)。
然后,从分析n=1,n=2,n=3,……,从这些简单情形入手,从中发现规律,经过归纳,猜想出结论。
⑴通过计算,比较下列①~③各组两个数的大小(在横线上填“>”“<”或“=” )1 ____2 ②____3 ③____④> ⑤ ⑥ ⑦⑵从第⑴小题的结果经过归纳,可以猜想出的大小关系是______________________________________⑶根据上面归纳猜想得到的一般结论,可以得到____(填“>”、“=”或“<”3、阅读下列材料:FEDCBA(图1) (图2) (图3) (图4)如图1,把△ABC沿直线BC平行移动线段BC的长度,可以变到△ECD的位置;如图2,以BC为轴把△ABC翻折180°,可以变到△DBC的位置;如图3,以点A为中心,把△ABC旋转180°,可以变到△AED的位置。
2018年中考数学阅读理解、图表信息(包括新定义,新运算)试题
阅读理解、图表信息(包括新定义,新运算)一、选择题1.(2018·湖南省常德·3分)阅读理解:a,b,c,d是实数,我们把符号称为2×2阶行列式,并且规定:=a×d﹣b×c,例如:=3×(﹣2)﹣2×(﹣1)=﹣6+2=﹣4.二元一次方程组的解可以利用2×2阶行列式表示为:;其中D=,D x=,D y=.问题:对于用上面的方法解二元一次方程组时,下面说法错误的是()A.D==﹣7 B.D x=﹣14C.D y=27 D.方程组的解为【分析】分别根据行列式的定义计算可得结论.【解答】解:A、D==﹣7,正确;B、D x==﹣2﹣1×12=﹣14,正确;C、D y==2×12﹣1×3=21,不正确;D、方程组的解:x===2,y===﹣3,正确;故选:C.【点评】本题是阅读理解问题,考查了2×2阶行列式和方程组的解的关系,理解题意,直接运用公式计算是本题的关键.2.(2018·山东潍坊·3分)在平面内由极点、极轴和极径组成的坐标系叫做极坐标系.如图,在平面上取定一点O称为极点;从点O出发引一条射线Ox称为极轴;线段OP的长度称为极径.点P的极坐标就可以用线段OP的长度以及从Ox转动到OP的角度(规定逆时针方向转动角度为正)来确定,即P(3,60°)或P(3,﹣300°)或P(3,420°)等,则点P关于点O成中心对称的点Q的极坐标表示不正确的是()A.Q(3,240°)B.Q(3,﹣120°)C.Q(3,600°)D.Q(3,﹣500°)【分析】根据中心对称的性质解答即可.【解答】解:∵P(3,60°)或P(3,﹣300°)或P(3,420°),由点P关于点O成中心对称的点Q可得:点Q的极坐标为(3,240°),(3,﹣120°),(3,600°),故选:D.【点评】此题考查中心对称的问题,关键是根据中心对称的性质解答.二.填空题1.(2018·浙江衢州·4分)定义:在平面直角坐标系中,一个图形先向右平移a个单位,再绕原点按顺时针方向旋转θ角度,这样的图形运动叫作图形的γ(a,θ)变换.如图,等边△ABC的边长为1,点A在第一象限,点B与原点O重合,点C在x轴的正半轴上.△A1B1C1就是△ABC经γ(1,180°)变换后所得的图形.若△ABC经γ(1,180°)变换后得△A1B1C1,△A1B1C1经γ(2,180°)变换后得△A2B2C2,△A2B2C2经γ(3,180°)变换后得△A3B3C3,依此类推……△A n﹣1B n﹣1C n﹣1经γ(n,180°)变换后得△A n B n C n,则点A1的坐标是(﹣,﹣),点A2018的坐标是(﹣,).【考点】阅读理解、坐标的变化规律.【分析】分析图形的γ(a,θ)变换的定义可知:对图形γ(n,180°)变换,就是先进行向右平移n个单位变换,再进行关于原点作中心对称变换.向右平移n个单位变换就是横坐标加n,纵坐标不变,关于原点作中心对称变换就是横纵坐标都变为相反数.写出几次变换后的坐标可以发现其中规律.【解答】解:根据图形的γ(a,θ)变换的定义可知:对图形γ(n,180°)变换,就是先进行向右平移n个单位变换,再进行关于原点作中心对称变换.△ABC经γ(1,180°)变换后得△A1B1C1,A1 坐标(﹣,﹣)△A1B1C1经γ(2,180°)变换后得△A2B2C2,A2坐标(﹣,)△A2B2C2经γ(3,180°)变换后得△A3B3C3,A3坐标(﹣,﹣)△A3B3C3经γ(3,180°)变换后得△A4B4C4,A4坐标(﹣,)依此类推……可以发现规律:A n横坐标存在周期性,每3次变换为一个周期,纵坐标为当n=2018时,有2018÷3=672余2所以,A2018横坐标是﹣,纵坐标为故答案为:(﹣,﹣),(﹣,).【点评】本题是规律探究题,又是材料阅读理解题,关键是能正确理解图形的γ(a,θ)变换的定义后运用,关键是能发现连续变换后出现的规律,该题难点在于点的横纵坐标各自存在不同的规律,需要分别来研究.2. (2018•湖北恩施•3分)我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为1946 个.【分析】由于从右到左依次排列的绳子上打结,满六进一,所以从右到左的数分别为2、0×6、3×6×6、2×6×6×6、1×6×6×6×6,然后把它们相加即可.【解答】解:2+0×6+3×6×6+2×6×6×6+1×6×6×6×6=1946,故答案为:1946.【点评】本题是以古代“结绳计数”为背景,按满六进一计数,运用了类比的方法,根据图中的数学列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力.3. (2018•湖南省永州市•4分)对于任意大于0的实数x、y,满足:log2(x•y)=log2x+log2y,若log22=1,则log216= 4 .【分析】利用log2(x•y)=log2x+log2y得到log216=log22+log22+log22+log22,然后根据log22=1进行计算.【解答】解:log216=log2(2•2•2•2)=log22+log22+log22+log22=1+1+1+1=4.故答案为4.【点评】本题考查了规律型:认真观察、仔细思考,善用联想是解决这类问题的方法.4. 1.(2018·湖南省常德·3分)5个人围成一个圆圈做游戏,游戏的规则是:每个人心里都想好一个实数,并把自己想好的数如实地告诉他相邻的两个人,然后每个人将他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图所示,则报4的人心里想的数是9 .【分析】设报4的人心想的数是x,则可以分别表示报1,3,5,2的人心想的数,最后通过平均数列出方程,解方程即可.【解答】解:设报4的人心想的数是x,报1的人心想的数是10﹣x,报3的人心想的数是x﹣6,报5的人心想的数是14﹣x,报2的人心想的数是x﹣12,所以有x﹣12+x=2×3,解得x=9.故答案为9.【点评】本题属于阅读理解和探索规律题,考查的知识点有平均数的相关计算及方程思想的运用.规律与趋势:这道题的解决方法有点奥数题的思维,题意理解起来比较容易,但从哪下手却不容易想到,一般地,当数字比较多时,方程是首选的方法,而且,多设几个未知数,把题中的等量关系全部展示出来,再结合题意进行整合,问题即可解决.本题还可以根据报2的人心想的数可以是6﹣x,从而列出方程x﹣12=6﹣x求解.三.解答题1. (2018•江苏扬州•8分)对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a+b.例如3⊗4=2×3+4=10.(1)求2⊗(﹣5)的值;(2)若x⊗(﹣y)=2,且2y⊗x=﹣1,求x+y的值.【分析】(1)依据关于“⊗”的一种运算:a⊗b=2a+b,即可得到2⊗(﹣5)的值;(2)依据x⊗(﹣y)=2,且2y⊗x=﹣1,可得方程组,即可得到x+y的值.【解答】解:(1)∵a⊗b=2a+b,∴2⊗(﹣5)=2×2+(﹣5)=4﹣5=﹣1;(2)∵x⊗(﹣y)=2,且2y⊗x=﹣1,∴,解得,∴x+y=﹣=.【点评】本题主要考查解一元一次方程组以及有理数的混合运算的运用,根据题意列出方程组是解题的关键.2. (2018·天津·10分)某游泳馆每年夏季推出两种游泳付费方式.方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元.设小明计划今年夏季游泳次数为(为正整数).(Ⅰ)根据题意,填写下表:游泳次数10 15 20 …方式一的总费用(元)150 175 …方式二的总费用(元)90 135 …(Ⅱ)若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多?(Ⅲ)当时,小明选择哪种付费方式更合算?并说明理由.【答案】(Ⅰ)200,,180,.(Ⅱ)小明选择方式一游泳次数比较多. (Ⅲ)当时,有,小明选择方式二更合算;当时,有,小明选择方式一更合算.【解析】分析:(Ⅰ)根据题意得两种付费方式,进行填表即可;(Ⅱ)根据(1)知两种方式的关系,列出方程求解即可;(Ⅲ)当时,作差比较即可得解.详解:(Ⅰ)200,,180,.(Ⅱ)方式一:,解得.方式二:,解得.∵,∴小明选择方式一游泳次数比较多.(Ⅲ)设方式一与方式二的总费用的差为元.则,即.当时,即,得.∴当时,小明选择这两种方式一样合算.∵,∴随的增大而减小.∴当时,有,小明选择方式二更合算;当时,有,小明选择方式一更合算.点睛:本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.3. (2018·四川自贡·10分)阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(J.Nplcr,1550﹣1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evlcr,1707﹣1783年)才发现指数与对数之间的联系.对数的定义:一般地,若a x=N(a>0,a≠1),那么x叫做以a为底N的对数,记作:x=log a N.比如指数式24=16可以转化为4=log216,对数式2=log525可以转化为52=25.我们根据对数的定义可得到对数的一个性质:log a(M•N)=log a M+log a N(a>0,a≠1,M>0,N>0);理由如下:设log a M=m,log a N=n,则M=a m,N=a n∴M•N=a m•a n=a m+n,由对数的定义得m+n=log a(M•N)又∵m+n=log a M+log a N∴log a(M•N)=log a M+log a N解决以下问题:(1)将指数43=64转化为对数式3=log464 ;(2)证明log a=log a M﹣log a N(a>0,a≠1,M>0,N>0)(3)拓展运用:计算log32+log36﹣log34= 1 .【分析】(1)根据题意可以把指数式43=64写成对数式;(2)先设log a M=m,log a N=n,根据对数的定义可表示为指数式为:M=a m,N=a n,计算的结果,同理由所给材料的证明过程可得结论;(3)根据公式:log a(M•N)=log a M+log a N和log a=log a M﹣log a N的逆用,将所求式子表示为:log3(2×6÷4),计算可得结论.【解答】解:(1)由题意可得,指数式43=64写成对数式为:3=log464,故答案为:3=log464;(2)设log a M=m,log a N=n,则M=a m,N=a n,∴==a m﹣n,由对数的定义得m﹣n=log a,又∵m﹣n=log a M﹣log a N,∴log a=log a M﹣log a N(a>0,a≠1,M>0,N>0);(3)log32+log36﹣log34,=log3(2×6÷4),=log33,=1,故答案为:1.【点评】本题考查整式的混合运算、对数与指数之间的关系与相互转化的关系,解题的关键是明确新定义,明白指数与对数之间的关系与相互转化关系.4.(2018·浙江临安·6分)阅读下列题目的解题过程:已知a、b、c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状.解:∵a2c2﹣b2c2=a4﹣b4(A)∴c2(a2﹣b2)=(a2+b2)(a2﹣b2)(B)∴c2=a2+b2(C)∴△ABC是直角三角形问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号: C ;(2)错误的原因为:没有考虑a=b的情况;(3)本题正确的结论为:△ABC是等腰三角形或直角三角形.【考点】因式分解的应用、勾股定理的逆定理【分析】(1)根据题目中的书写步骤可以解答本题;(2)根据题目中B到C可知没有考虑a=b的情况;(3)根据题意可以写出正确的结论.【解答】解:(1)由题目中的解答步骤可得,错误步骤的代号为:C,故答案为:C;(2)错误的原因为:没有考虑a=b的情况,故答案为:没有考虑a=b的情况;(3)本题正确的结论为:△ABC是等腰三角形或直角三角形,故答案为:△ABC是等腰三角形或直角三角形.【点评】本题考查因式分解的应用、勾股定理的逆定理,解答本题的关键是明确题意,写出相应的结论,注意考虑问题要全面.5 (2018·浙江舟山·8分)某厂为了检验甲、乙两车间生产的同一款新产品的合格情况(尺寸范围为176mm-185mm的产品为合格),随机各轴取了20个样品进行测,过程如下:收集数据(单位:mm):甲车间:168,175,180,185,172,189,185,182,185,174,192,180,185,178,173,185,169,187,176,180。
人教版数学2018年中考专题复习 阅读理解问题重点精讲 (共21张PPT)
阅读下面的材料: 小敏在数学课外小组活动中遇到这样一个问题:
如果α,β都为锐角,且 tan
1 1 , tan , 求α+β的度数. 2 3
小敏是这样解决问题的:如图1, 把α,β放在正方形网格中,使得 ∠ABD=α,∠CBE=β,且BA,BC在 直线BD的两侧,连接AC,可证得 △ABC是等腰直角三角形,因此可求 得α+β=∠ABC =
请写出你的画图步骤,并在答题卡上完成相应的画图过程.(画 出一个即可,保留画图痕迹,不要求证明) 方法1:以点N为圆心,ON为半 径作圆,交直线l于点P1,P2, 则点P1,P2为符合题意的点.
(2)受以上解答过程的启发,小明设计了如下的画图题: 在Rt△OMN中,∠MON=90º ,OM<ON,OQ⊥MN于点Q,直线l
使图形G’’与图形G对应线段的比为k,并且图形G上的任一点P,它
的对应点P’’在线段OP’或其延长线上;我们把这种图形变换叫做旋 转相似变换,记为O(θ,k),其中点O叫做旋转相似中心,θ叫做旋转
角,k叫做相似比. 如图1中的线段OA’’便是由线段OA经过O(30°,2)
得到的.
图1
(1)如图2,将△ABC经过 ☆ (90°,1)后得到△A’B’C’,则横线上 “☆”应填下列四个点O(0,0)、D(0,1)、E(0,-1)、C(1,2)中的点 .
思维拓展: (2)如果△MNP三边的长分别为 10,2 5, 26, 请利用图2的正方
形网格(每个小正方形的边长为1)画出相应的格点△MNP,并直接
写出△MNP的面积.
图2
思维拓展: (2)如果△MNP三边的长分别为 10,2 5, 26, 请利用图2的正方
形网格(每个小正方形的边长为1)画出相应的格点△MNቤተ መጻሕፍቲ ባይዱ,并直接
2018重庆中考数学阅读创新25题专题训练(含答案)
2019重庆中考数学第25题专题训练25.已知,我们把任意形如:t abcba =的五位自然数(其中c a b =+,19a ≤≤,08b ≤≤)称之为喜马拉雅数,例如:在自然数32523中,325+=,所以32523就是一个喜马拉雅数.并规定:能被自然数n 整除的最大的喜马拉雅数记为()F n ,能被自然数n 整除的最小的喜马拉雅数记为()I n .(1)求证:任意一个喜马拉雅数都能被3整除; (2)求()3+(8)F I 的值.解析:(1)各数位数字之和2222()3()a b c b a a b c a b a b a b ++++=++=+++=+ ∵a b 、是整数 ∴a b +是整数 ∴任意一个喜马拉雅数都能被3整除(2)(3)90909F =, ()101011110321263139888ab a b ba a b a b a b +++==+- ∵喜马拉雅数能被8整除∴32a b +能被8整除19,08,1933227a b a b a b ≤≤≤≤≤+≤∴≤+≤,,328,1624a b ∴+=或可得:(8)21312I = ∴(3)(8)9090921312112221F I +=+=25.一个正偶数k 去掉个位数字得到一个新数,如果原数的个位数字的2倍与新数之和与19的商是一个整数,则称正偶数k 为“魅力数”,把这个商叫做k 的魅力系数,记这个商为()F k .如:722去掉个位数字是72,2的2倍与72的和是76,76÷19=4,4是整数,所以722是“魅力数”,722的魅力系数是4,记(722)4F =.(1)计算:(304)(2052)F F +;(2)若m 、n 都是“魅力数”,其中3030101m a =+,40010n b c =++(09,09,09a b c ≤≤≤≤≤≤,a 、b 、c 是整数),规定:(,)a c G m n b-=.当()()24F m F n +=时,求(,)G m n 的值..解:(1)189962808062)8062(=-=F ……(1分) 设abcd n = ∴99)10101000(101001000)(b a d c d c b a n F +++-+++=d c b a --+=1010 ∵d c b a 、、、是整数, ∴d c b a --+1010也为整数,即:结论成立.……(4分)(2)设“平衡数”mnpq N = 由题可得:12,-=+=+n p q p n m∴q p n m N +++=101001000p n m 91011001++= 91191001-+=n m (5分)∵N 能被11整除∴119910911191191001-++=-+n n m n m ∴1199-n 为整数 又∵90≤≤n 且n 为整数 ∴1=n∴112=-=n p ……(7分)∴1101001+=m N∵N 能被3整除∴3223633*********+++=+a m m ∴322+a 为整数 又∵91≤≤a ∴852或或=a∴N=2112或5115或8118……(9分)∵63)8118(,36)5115(,9)2112(===F F F∴9)(的最小值为N F ……(10分)25.阅读下列材料,解决问题:一个能被17整除的自然数我们称“灵动数”,“灵动数”的特征是;若把一个整数的个位数字截去,在从余下的数中,减去个位数的5倍,如果差是17的整数倍(包括0),则原数能被17整除,如果差太大或心算不易看出是否是17的倍数,就继续上述的“截尾,倍大,相减,验差”的过程,直到能清楚判断为止.例如:判断1675282是不是“灵动数”,判断过程:16752825167518-⨯=,167518516711-⨯=,1671151666-⨯=,16665136-⨯=,到这里如果你仍然观察不出来,就继续…65=30⨯,现在个位5=30>⨯剩下的13,就用大数减去小数,301317-=,17是17的1倍,所以1675282能被17整除,所以1675282是“灵动数”.(1)请用上述方法判断7242和2098754是否是“灵动数”,并说明理由;(2)已知一个四位整数可表示为27mn ,其中个位上的数字为n ,十位上的数字为m ,且m 、n 为整数,若这个数能被51整除,请求出这个数.解:(1)5154-71,71452-724=⨯=⨯51是17的3倍,7242∴是“灵动数”;1827-5927956-209,209650-20962096055-20985,20985554-209875=⨯=⨯=⨯=⨯=⨯18不能被17整除,2098754∴不是“灵动数”.(2)由题可知:2700+10m+n=5153+10m+n-3能被51整除10m+n-3能被51整除96310390,90≤-+≤-∴≤≤≤≤n m n m 10m+n-3=0或51,即10m+n=3或54⎩⎨⎧==⎩⎨⎧==∴4530n m n m 或 ∴这个数为2703或275425、一个多位自然数分解为末三位与末三位以前的数,让末三位数减去末三位以前的数,所得的差能被13整除,则原多位数一定能被13整除.(1)判断266357 (能/不能)被13整除,证明任意一个多位自然数都满足上述规律;(2)一个自然数t 可以表示为22q p t -=的形式,(其中q p >且为正整数),这样的数叫做“佛系数”,在t 的所有表示结果中,当q p -最小时,称22q p -是t 的“佛系分解”,并规定qp q p t F -+=2)(.例如:22227-92-632==,267-9-<,则79729)32(-⨯+=F 223=. 已知一个五位自然数,末三位数4210800++=y m ,末三位以前的数为y x n ++=)(110(其中81≤≤x ,91≤≤y 且为整数),n 为“佛系数”,交换这个五位自然数的十位和百位上的数字后所得的新数能被13整除,求)(n F 的最大值.解析:(1)能;…………………………………(1分)设末三位数为B ,末三位以前的数为A ,则这个数为1000A+B.)1377(13131001)131000100013,13+=+=++=+∴+=∴=-A k A k A A B A k A B k k A B (是整数是整数是整数1377,+∴A k A所以:任意一个多位自然数都满足上述规律…………………………………(4分)(2)当51≤≤y 时,这个五位数万位、千位、百位、各位数字为(1+x )、y 、8、(4+y )、2; 1345336813472991013)1(10824100+-+++-=++-=-+-++∴y x y x y x y x y )( 13453+-∴y x 是整数 93,85,32,243,5,2,48,7,2,113,0,13453234531851,81=∴⎩⎨⎧==∴-=+-∴≤+-≤-∴≤≤≤≤n y x y x y x y x …………………………………(6分)当96≤≤y 时,这个五位数万位、千位、百位、各位数字为(1+x )、y 、9、(6-y )、2;1324340-813518-991013)1(10926-100+-++-=+-=-+-+∴y x y x y x y x y )( 13243+-∴y x 是整数 ⎩⎨⎧==∴---=+-∴-≤+-≤-∴≤≤≤≤6,85,413,26,3924342434096,81y x y x y x y x66,58=∴n …………………………………(7分)由))((22q p q p q p n -+=-=,)()(q p q p -+,奇偶性相同139)93(127)85(223)32(,217)24(====F F F F ,, 139127223217<<< )(n F ∴最大值是139.…………………………………(10分)25.一个数的后三位数加上前边的数之和能被37整除,那么这个数就能够被37整除,如果前边的数超过三位,那么三个数字为一组,相加能够被37整除,这个数就能被37整除.例如:6549 ,549+6=555,555÷37=15,所以6549能被37整除;12360146, 146+360+12=518,518÷37=14,所以12360146能被37整除.(1)判断:333444 (能、不能)被37整除;证明:若四位数abcd (其中91≤≤a ,91≤≤b ,9c 1≤≤,9d 1≤≤,a 、b 、c 、d 为整数)能被37整除,求证:将abcd 的个位截去,再用余下的数减去个位数的11倍也能被37整除.(2)一个四位数abcd (其中91≤≤a ,91≤≤b ,9c 1≤≤,9d 1≤≤,a 、b 、c 、d 为整数),其个位数字与千位数字的和等于十位数字与百位数字的和,此四位数能被37整除,且百位数字加上个位数字再与十位数字的差是一个完全平方数,求此四位数.25.(1) 能 .........................1分证明:由题可知,k a d c b 3710100=+++.........................1分其中91≤≤a ,91≤≤b ,9c 1≤≤,9d 1≤≤,a 、b 、c 、d 、k 为整数∴a c b k d ---=1010037)()(c b a k cb a k ac b k c b a dc b a 330311371111110111407101003711101001110100+++-=+++-=----++=-++...................3分∴abcd 的个位截去,再用余下的数减去个位的11倍也能被37整除(2)由题可知,c b d a +=+,k a d c b 3710100=+++2m c d b =-+.........................1分其中91≤≤a ,91≤≤b ,9c 1≤≤,9d 1≤≤,a 、b 、c 、d 、k 、m 为整数∴kc b b k c b kc b c b 37111011137111013710100=+-=+=+++1371110k c b =+- (1k 为整数).........................1分 ∵89111079≤+-≤-c b∴7437037741110、、、、--=+-c b .........................1分 ∴⎩⎨⎧==3711c b 或⎩⎨⎧==7422c b当⎩⎨⎧==3711c b 时,满足条件2m c d b =-+的5=d ,此时5=a 当⎩⎨⎧==7422c b 时,满足条件2m c d b =-+的⎪⎩⎪⎨⎧===743321d d d ,此时对应的⎪⎩⎪⎨⎧===478321a a a 综上所述,此四位数为5735、8473、7474、4477.........................2分25.一个两位正整数n ,如果n 满足各数位上的数字互不相同且均不为0,那么称n 为“启航数”,将n 的两个数位上的数字对调得到一个新数'n 。
2018年浙江省中考数学《第38讲:阅读理解型问题》课后练习含答案
课后练习38 阅读理解型问题A 组1.若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a +b +c 就是完全对称式.下列三个代数式:①(a -b )2;②ab +bc +ca ;③a 2b +b 2c +c 2a .其中是完全对称式的是( )A .①②B .①③C .②③D .①②③2.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是( )A .1,2,3B .1,1, 2C .1,1, 3D .1,2, 33.对点(x ,y )的一次操作变换记为P 1(x ,y ),定义其变换法则如下:P 1(x ,y )=(x +y ,x -y );且规定P n (x ,y )=P 1(P n -1(x ,y ))(n 为大于1的整数).如P 1(1,2)=(3,-1),P 2(1,2)=P 1(P 1(1,2))=P 1(3,-1)=(2,4),P 3(1,2)=P 1(P 2(1,2))=P 1(2,4)=(6,-2).则P 2017(1,-1)=( )A .(0,21008)B .(0,-21008)C .(0,-21009)D .(0,21009)4.张华在一次数学活动中,利用“在面积一定的矩形中,正方形的周长最短”的结论,推导出“式子x +1x(x >0)的最小值是2”.其推导方法如下:在面积是1的矩形中设矩形的一边长为x ,则另一边长是1x ,矩形的周长是2(x +1x );当矩形成为正方形时,就有x =1x(x >0),解得x =1,这时矩形的周长2(x +1x )=4最小,因此x +1x(x >0)的最小值是2.模仿张华的推导,你求得式子x 2+9x(x >0)的最小值是( ) A .2 B .1 C .6 D .105.定义[]p ,q 为一次函数y =px +q 的特征数.(1)若特征数是[]2,m +1的一次函数为正比例函数,求m 的值;(2)已知抛物线y =(x +n )(x -2)与x 轴交于点A 、B ,其中n >0,点A 在点B 的左侧,与y 轴交于点C ,且△OAC 的面积为4,O 为原点,求图象过A 、C 两点的一次函数的特征数.6.(2015·杭州)如图1,⊙O 的半径为r (r >0),若点P ′在射线OP 上,满足OP ′·OP =r 2,则称点P ′是点P 关于⊙O 的“反演点”,如图2,⊙O 的半径为4,点B 在⊙O 上,∠BOA =60°,OA =8,若点A ′、B ′分别是点A ,B 关于⊙O 的反演点,求A ′B ′的长.第6题图7.点P 是双曲线y =k x(x >0)上一点,以点P 为圆心,2为半径的圆与直线y =x 的交点为A 、B ,则称线段AB 是双曲线y =k x (x >0)的径长.如图,线段AB 是双曲线y =k x(x >0)的径长.(1)当⊙P 与x 轴和y 轴都相切时,求双曲线y =k x(x >0)的径长及k 的值; (2)若点P 在双曲线y =4x(x >0)上运动,当径长等于23时,求点P 的坐标.第7题图8.通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似地,可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图1在△ABC 中,AB =AC ,顶角A 的正对记作sad A ,这时sad A =底边腰=BC AB .容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解下列问题:(1)sad 60°=____________________;(2)对于0°<A <180°,∠A 的正对值sad A 的取值范围是____________________;(3)如图2,已知sin A =35,其中∠A 为锐角,试求sad A 的值.第8题图B 组9.若一个矩形的一边是另一边的两倍,则称这个矩形为方形,如图1,矩形ABCD 中,BC =2AB ,则称矩形ABCD 为方形.(1)设a ,b 是方形的一组邻边长,写出a ,b 的值(一组即可);(2)在△ABC 中,将AB ,AC 分别五等分,连结两边对应的等分点,以这些连结线为一边作矩形,使这些矩形的边B 1C 1,B 2C 2,B 3C 3,B 4C 4的对边分别在B 2C 2,B 3C 3,B 4C 4,BC 上,如图2所示.①若BC =25,BC 边上的高为20,判断以B 1C 1为一边的矩形是不是方形?为什么? ②若以B 3C 3为一边的矩形为方形,求BC 与BC 边上的高之比.第9题图10.将△ABC 绕点A 按逆时针方向旋转θ度,并使各边长变为原来的n 倍,得△AB ′C ′,即如图1,∠BAB ′ =θ,AB ′AB =B ′C ′BC =AC ′AC=n ,我们将这种变换记为[θ,n ]. (1)如图1,对△ABC 作变换[60°,3]得△AB ′C ′,则S △AB ′C ′∶S △ABC =____________________;直线BC 与直线B ′C ′所夹的锐角为____________________度;(2)如图2,△ABC 中,∠BAC =30°,∠ACB =90°,对△ABC 作变换[θ,n ]得△AB ′C ′,使点B 、C 、C ′在同一直线上,且四边形ABB ′C ′为矩形,求θ和n 的值;(3)如图3,△ABC 中,AB =AC ,∠BAC =36°,BC =1,对△ABC 作变换[θ,n ]得△AB ′C ′,使点B 、C 、B ′在同一直线上,且四边形ABB ′C ′为平行四边形,求θ和n 的值.第10题图11.(2016·绍兴)对于坐标平面内的点,现将该点向右平移1个单位,再向上平移2个单位,这种点的运动称为点A 的斜平移,如点P (2,3)经1次斜平移后的点的坐标为(3,5),已知点A 的坐标为(1,0).(1)分别写出点A 经1次,2次斜平移后得到的点的坐标;(2)如图,点M 是直线l 上的一点,点A 关于点M 对称的点为点B ,点B 关于直线l 对称的点为点C .①若A、B、C三点不在同一条直线上,判断△ABC是否是直角三角形?请说明理由;②若点B由点A经n次斜平移后得到,且点C的坐标为(7,6),求出点B的坐标及n 的值.第11题图12.(2017·衢州)定义:如图1,抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,点P在该抛物线上(P点与A、B两点不重合),如果△ABP的三边满足AP2+BP2=AB2,则称点P为抛物线y=ax2+bx+c(a≠0)的勾股点.第12题图(1)直接写出抛物线y=-x2+1的勾股点的坐标;(2)如图2,已知抛物线C∶y=ax2+bx(a≠0)与x轴交于A,B两点,点P(1,3)是抛物线C的勾股点,求抛物线C的函数表达式;(3)在(2)的条件下,点Q在抛物线C上,求满足条件S△ABQ=S△ABP的Q点(异于点P)的坐标.C组13.(2016·广东模拟)定义:数学活动课上,乐老师给出如下定义:有一组对边相等而另一组对边不相等的凸四边形叫做对等四边形.理解:(1)如图1,已知A 、B 、C 在格点(小正方形的顶点)上,请在方格图中画出以格点为顶点,AB 、BC 为边的两个对等四边形ABCD ;(2)如图2,在圆内接四边形ABCD 中,AB 是⊙O 的直径,AC =BD .求证:四边形ABCD 是对等四边形;(3)如图3,在Rt △PBC 中,∠PCB =90°,BC =11,tan ∠PBC =125,点A 在BP 边上,且AB =13.用圆规在PC 上找到符合条件的点D ,使四边形ABCD 为对等四边形,并求出CD 的长.第13题图参考答案课后练习38 阅读理解型问题A 组1.A 2.D 3.D 4.C5. (1)由题意得 m +1=0.∴ m =-1. (2)由题意得点A 的坐标为(-n ,0),点C 的坐标为(0,-2n ).∵ △OAC 的面积为4,∴ 12×n ·2n =4,∴ n =2.∴ 点A 的坐标为(-2,0),点C 的坐标为(0,-4).设直线AC 的解析式为 y =kx +b .∴ ⎩⎪⎨⎪⎧0=-2k +b ,-4=b .∴ ⎩⎪⎨⎪⎧k =-2,b =-4.∴ 直线AC 的解析式为 y =-2x -4. ∴ 图象过A 、C 两点的一次函数的特征数为[]-2,-4.6.∵OA ′·OA =16,OA =8,∴OA ′=2,同理可得OB ′=4,即B 点的反演点B ′与B 重合,设OA 交圆于点M ,连结B ′M ,∵∠BOA =60°,OM =OB ′,∴△OB ′M 为正三角形,又∵点A ′为OM 的中点,∴A ′B ′⊥OM ,根据勾股定理,得:OB ′2=OA ′2+A ′B ′2,即16=4+A ′B ′2,解得:A ′B ′=2 3.7.(1)∵⊙P 与x 轴和y 轴都相切,半径为2,∴点P 到x 轴和y 轴的距离都是2,∴点P (2,2),∴线段AB 经过圆心,2=k 2,∴径长AB =4,k =4. (2)设点P (m ,n ),点P 在直线l 上方时,如图,作PC ⊥AB 于点C ,作PD ⊥x 轴于点D ,PD 与AB 交于点E ,连结PB ,∴C 是AB 中点, ∴BC =3,∴PC =PB 2-BC 2=4-3=1,∵点E 在直线y =x 上, ∴OD =ED =m ,∴∠OED =45°,∴∠PEC =45°,∴PE =2PC =2,∴n =PD =DE +PE=m +2,∵点P 在双曲线y =4x上,∴mn =4,∴m (m +2)=4,解得m 1=2,m 2=-22,∵点P 在第一象限,∴m =2,∴n =22,∴点P (2,22),类似地求出点P 在直线l 下方时坐标为(22,2),∴点P 的坐标为(2,22)或(22,2).第7题图 第8题图8.(1)1 (2)0<sad A <2(3)设AB =5a ,BC =3a ,则AC =4a .如图,在AC 延长线上取点D 使AD =AB =5a ,连结BD .则CD =a .BD =CD 2+BC 2=a 2+(3a )2=10a .∴sad A =BD AD =105. B 组9.(1)答案不唯一,如a =2,b =4; (2)①以B 1C 1为一边的矩形不是方形.理由是:过A 作AM ⊥BC 于M ,交B 1C 1于E ,交B 2C 2于H ,交B 3C 3于G ,交B 4C 4于N ,则AM ⊥B 4C 4,AM ⊥B 3C 3,AM ⊥B 2C 2,AM ⊥B 1C 1,∵由矩形的性质得:BC ∥B 1C 1∥B 2C 2∥B 3C 3∥B 4C 4,∴△ABC ∽△AB 1C 1∽△AB 2C 2∽△AB 3C 3∽△AB 4C 4,∴B 1C 1BC =AE AM ,B 2C 2BC =AH AM ,B 3C 3BC =AG AM ,B 4C 4BC =AN AM,∵AM =20,BC =25,∴B 1C 1=5,B 2C 2=10,B 3C 3=15,B 4C 4=20,AE =4,AH =8,AG =12,AN =16,∴MN =GN =GH =HE =4,∴B 1Q =B 2O =B 3Z =B 4K =4,即B 1C 1≠2B 1Q ,B 1Q ≠2B 1C 1,∴以B 1C 1为一边的矩形不是方形; ②∵以B 3C 3为一边的矩形为方形,设AM =h ,∴△ABC ∽△AB 3C 3,∴B 3C 3BC =AG AM =35,则AG =35h ,∴MN =GN =GH =HE =15h ,当B 3C 3=2×15h 时,BC AM =23;当B 3C 3=12×15h 时,BC AM =16.综合上述:BC 与BC 边上的高之比是23或16.第9题图10.(1)3 60 (2)∵四边形ABB ′C ′是矩形,∴∠BAC ′=90°.∴θ=∠CAC ′=∠BAC ′-∠BAC =90°-30°=60°.在Rt △ABB ′中,∠ABB ′=90°, ∠BAB ′=60°,∴n =AB ′AB=2. (3)∵四边形ABB ′C ′是平行四边形,∴AC ′∥BB ′,又∵∠BAC =36°,∴θ=∠CAC ′=∠ACB =72°∴∠C ′AB ′=∠AB ′B =∠BAC =36°,而∠B =∠B ,∴△ABC ∽△B ′BA ,∴AB 2=CB ·B ′B =CB ·(BC +CB ′),而CB ′=AC =AB =B ′C ′, BC =1, ∴AB 2=1·(1+AB ),∴AB =1±52,∵AB >0,∴n =B ′C ′BC =1+52. 11.(1)∵点P (2,3)经1次斜平移后的点的坐标为(3,5),点A 的坐标为(1,0),∴点A 经1次斜平移后得到的点的坐标为(2,2),点A 经2次斜平移后得到的点的坐标为(3,4);(2)①连结CM ,如图1:由中心对称可知,AM =BM ,由轴对称可知:BM =CM ,∴AM =CM =BM ,∴∠MAC =∠ACM ,∠MBC =∠MCB ,∵∠MAC +∠ACM +∠MBC +∠MCB =180°,∴∠ACM +∠MCB =90°,∴∠ACB =90°,∴△ABC 是直角三角形;②延长BC 交x 轴于点E ,过C 点作CF ⊥AE 于点F ,如图2:∵A (1,0),C (7,6),∴AF =CF =6,∴△ACF 是等腰直角三角形,由①得∠ACE =90°,∴∠AEC =45°,∴E 点坐标为(13,0),设直线BE 的解析式为y =kx +b ,∵C ,E 点在直线上,可得:⎩⎪⎨⎪⎧13k +b =0,7k +b =6,解得:⎩⎪⎨⎪⎧k =-1,b =13,∴y =-x +13,∵点B 由点A 经n 次斜平移得到,∴点B (n +1,2n ),由2n =-n -1+13,解得:n =4,∴B (5,8).第11题图12.(1)抛物线y =-x 2+1的勾股点的坐标为(0,1); (2)抛物线y =ax 2+bx 过原点,即点A (0,0),如图,作PG ⊥x 轴于点G ,∵点P 的坐标为(1,3),∴AG =1,PG =3,P A =AG 2+PG 2=12+(3)2=2,∵tan ∠P AB =PG AG=3,∴∠P AG =60°,在Rt △P AB 中,AB =P A cos ∠P AB =212=4,∴点B 坐标为(4,0),设y =ax (x -4),将点P (1,3)代入得:a =-33,∴y =-33x (x -4)=-33x 2+433x ; (3)当点Q 在x 轴上方时,由S △ABQ =S △ABP 知点Q 的纵坐标为3,则有-33x 2+433x =3,解得:x 1=3,x 2=1(不符合题意,舍去),∴点Q 的坐标为(3,3);当点Q 在x 轴下方时,由S △ABQ =S △ABP 知点Q 的纵坐标为-3,则有-33x 2+433x =-3,解得:x 1=2+7,x 2=2-7,∴点Q 的坐标为(2+7,-3)或(2-7,-3);综上,满足条件的点Q 有3个:(3,3)或(2+7,-3)或(2-7,-3).第12题图C 组13.(1)如图1所示(画2个即可).第13题图(2)如图2,连结AC ,BD ,∵AB 是⊙O 的直径,∴∠ADB =∠ACB =90°,在Rt △ADB 和Rt △ACB 中,⎩⎪⎨⎪⎧AB =BA ,BD =AC ,∴Rt △ADB ≌Rt △BCA ,∴AD =BC ,又∵AB 是⊙O 的直径,∴AB ≠CD ,∴四边形ABCD 是对等四边形. (3)如图3,点D 的位置如图所示:①若CD =AB ,此时点D 在D 1的位置,CD 1=AB =13;②若AD =BC =11,此时点D 在D 2、D 3的位置,AD 2=AD 3=BC =11,过点A 分别作AE ⊥BC ,AF ⊥PC ,垂足为E ,F ,设BE =x ,∵tan ∠PBC =125,∴AE =125x ,在Rt △ABE 中,AE 2+BE 2=AB 2,即x 2+⎝⎛⎭⎫125x 2=132,解得:x 1=5,x 2=-5(舍去),∴BE =5,AE =12,∴CE =BC -BE =6,由四边形AECF 为矩形,可得AF=CE =6,CF =AE =12,在Rt △AFD 2中,FD 2=AD 22-AF 2=112-62=85,∴CD 2=CF -FD 2=12-85,CD 3=CF +FD 3=12+85,综上所述,CD 的长度为13,12-85或12+85.。
2018届中考数学复习专题三阅读理解问题课件
∴y=x+4.
∵1≤x≤y≤9,x,y为自然数, ∴满足条件的“吉祥数”有:15,26,37,48,59.
2.我们知道,三角形的内心是三条角平分线的交点.过三 角形内心的一条直线与两边相交,两交点之间的线段把这 个三角形分成两个图形,若有一个图形与原三角形相似,
则把这条线段叫做这个三角形的“内似线”.
专题三 阅读理解问题
阅读理解型问题是通过阅读材料,理解其实质,揭示其
方法规律从而解决新问题.既考查学生的阅读能力、自学能
力,又考查学生的解题能力和数学应用能力.这类题目能够 帮助学生实现从模仿到创造的思维过程,符合学生的认知规 律. 阅读理解题一般是提供一定的材料,或介绍一个概念, 或给出一种解法等,让你在理解材料的基础上,获得探索解 决问题的途径,用于解决后面的问题.基本思路是“阅读→ 分析→理解→解决问题”.
识解决题目中提出的数学问题.解决这类问题,一是要所运
用的思想方法、数学公式、性质、运算法则或解题思路与阅 读材料保持一致;二是要创造条件,准确、规范、灵活地解 答.
例2
根据以上材料,解答下列问题: (1)求点P(1,-1)到直线y=x-1的距离; (2)已知⊙Q的圆心Q坐标为(0,5),半径r为2,判断⊙Q
4 (1)如果一个正整数m是另一个正整数n的平方,我们称正整
数m是完全平方数.求证:对任意一个完全平方数m,总有
F(m)=1;
(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y 为自然数),交换其个位上的数与十位上的数得到的新数减 去原来的两位正整数所得的差为36,那么我们称这个数t为
(1)等边三角形“内似线”的条数为
;
(2)如图1,△ABC中,AB=AC,点D在AC上,且BD=BC=AD. 求证:BD是△ABC的“内似线”;
2018年中考数学选择填空压轴题专题9阅读理解问题
专题09 阅读理解问题例1.我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧⌒P 1P 2 ,⌒P 2P 3 ,⌒P 3P 4 ,…得到斐波那契螺旋线,然后顺次连结P 1P 2 ,P 2P 3 ,P 3P 4 ,…得到螺旋折线(如图),已知点P 1 (0,1),P 2 (-1,0),P 3 (0,-1),则该折线上的点P 9 的坐标为( ) A .(-6,24) B .(-6,25) C .(-5,24) D .(-5,25)同类题型1.1 定义[x ]表示不超过实数x 的最大整数,如[1.8]=1,[-1.4]=-2,[-3]=-3.函数y=[x ]的图象如图所示,则方程[x ]= 12x 2的解为( )A .0或 2B .0或2C .1或- 2D . 2 或- 2同类题型1.2 对于函数y =x n +x m ,我们定义y '=nx n ﹣1+mx m ﹣1(m 、n 为常数).例如y =x 4+x 2,则y '=4x 3+2x .已知:y =13x 3+(m ﹣1)x 2+m 2x .(1)若方程y ′=0有两个相等实数根,则m 的值为 ;(2)若方程y ′=m ﹣14有两个正数根,则m 的取值范围为 .例2.将一枚六个面的编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷两次,记第一次掷出的点数为a ,第二次掷出的点数为b ,则使关于x ,y 的方程组⎩⎨⎧ax +by =3x +2y =2有正数解的概率为___.同类题型2.1 六个面上分别标有1,1,2,3,4,5六个数字的均匀立方体的表面展开图如图所示,掷这个立方体一次,记朝上一面的数为平面直角坐标系中某个点的横坐标,朝下一面的数为该点的纵坐标.则得到的坐标落在抛物线y =2x 2-x 上的概率是( ) A .23 B .16 C .13 D .19同类题型2.2 把一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷2次,若两个正面朝上的编号分别为m 、n ,则二次函数y =x 2+mx +n 的图象与x 轴没有公共点的概率是________.同类题型2.3 如图,正方形ABCD 的边长为2,将长为2的线段QR 的两端放在正方形的相邻的两边上同时滑动.如果点Q 从点A 出发,沿图中所示方向按A →B →C →D →A 滑动到A 止,同时点R 从点B 出发,沿图中所示方向按B →C →D →A →B 滑动到B 止.点N 是正方形ABCD 内任一点,把N 点落在线段QR 的中点M 所经过的路线围成的图形内的概率记为P ,则P =( )A .4-π4B .π4C .14D .π-14同类题型2.4 从-1,1,2这三个数字中,随机抽取一个数,记为a ,那么,使关于x 的一次函数y =2x+a 的图象与x 轴、y 轴围成的三角形的面积为14 ,且使关于x 的不等式组⎩⎨⎧x +2≤a 1-x ≤2a有解的概率为_________.例3.若f (n )为n 2+1(n 是任意正整数)的各位数字之和,如142+1=197,1+9+7=17,则f (14)=17,记f 1 (n )=f (n ),f 2=f (f 1(n ))…f k +1=f k (f (n )),k 是任意正整数则f 2016 (8)=( ) A .3 B .5 C .8 D .11同类题型3.1 将1,2,3,…,100这100个自然数,任意分为50组,每组两个数,现将每组的两个数中任一数值记作a ,另一个记作b ,代入代数式12(|a -b |+a +b )中进行计算,求出其结果,50组数代入后可求得50个值,则这50个值的和的最大值是____________. 同类题型3.2 规定:[x ]表示不大于x 的最大整数,(x )表示不小于x 的最小整数,[x )表示最接近x 的整数(x ≠n +0.5,n 为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.则下列说法正确的是________.(写出所有正确说法的序号)①当x =1.7时,[x ]+(x )+[x )=6;②当x =-2.1时,[x ]+(x )+[x )=-7;③方程4[x ]+3(x )+[x )=11的解为1<x <1.5;④当-1<x <1时,函数y =[x ]+(x )+x 的图象与正比例函数y =4x 的图象有两个交点.同类题型3.3 设[x ]表示不大于x 的最大整数,{x }表示不小于x 的最小整数,<x >表示最接近x 的整数(x ≠n +0.5,n 为整数).例如[3.4]=3,{3.4}=4,<3.4≥3.则方程3[x ]+2{x }+<x ≥22( ) A .没有解 B .恰好有1个解 C .有2个或3个解 D .有无数个解同类题型3.4对于实数p ,q ,我们用符号min {p ,q }表示p ,q 两数中较小的数,如min {1,2}=1,因此,min {-2,-3}=______;若min {(x -1)2,x 2}=1,则x =____________.例4.已知点A 在函数y 1=-1x(x >0)的图象上,点B 在直线y 2 =kx +1+k (k 为常数,且k ≥0)上.若A ,B 两点关于原点对称,则称点A ,B 为函数y 1 ,y 2 图象上的一对“友好点”.请问这两个函数图象上的“友好点”对数的情况为( ) A .有1对或2对 B .只有1对 C .只有2对 D .有2对或3对 同类题型4.1 在平面直角坐标内A ,B 两点满足: ①点A ,B 都在函数y =f (x )的图象上;②点A ,B 关于原点对称,则称A ,B 为函数y =f (x )的一个“黄金点对”.则函数f (x )= ⎩⎪⎨⎪⎧|x +4|,x ≤0- 1x,x >0的“黄金点对”的个数为( )A .0个B .1个C .2个D .3个同类题型4.2 定义:在平面直角坐标系xOy 中,把从点P 出发沿纵或横方向到达点Q (至多拐一次弯)的路径长称为P ,Q 的“实际距离”.如图,若P (-1,1),Q (2,3),则P ,Q 的“实际距离”为5,即PS +SQ =5或PT +TQ =5.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A ,B ,C 三个小区的坐标分别为A (3,1),B (5,-3),C (-1,-5),若点M 表示单车停放点,且满足M 到A ,B ,C 的“实际距离”相等,则点M 的坐标为____________.同类题型4.3 经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD 是△ABC 的“和谐分割线”,△ACD 为等腰三角形,△CBD 和△ABC 相似,∠A =46°,则∠ACB 的度数为__________.专题09 阅读理解问题例1.我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧⌒P 1P 2 ,⌒P 2P 3 ,⌒P 3P 4 ,…得到斐波那契螺旋线,然后顺次连结P 1P 2 ,P 2P 3 ,P 3P 4 ,…得到螺旋折线(如图),已知点P 1 (0,1),P 2 (-1,0),P 3 (0,-1),则该折线上的点P 9 的坐标为( ) A .(-6,24) B .(-6,25) C .(-5,24) D .(-5,25)解:由题意,P 5 在P 2 的正上方,推出P 9 在P 6 的正上方,且到P 6 的距离=21+5=26, 所以P 9 的坐标为(-6,25), 选B .同类题型1.1 定义[x ]表示不超过实数x 的最大整数,如[1.8]=1,[-1.4]=-2,[-3]=-3.函数y=[x ]的图象如图所示,则方程[x ]= 12x 2的解为( )A .0或 2B .0或2C .1或- 2D . 2 或- 2解:当1≤x <2时,12x 2=1,解得x 1= 2 ,x 2=- 2 ;当x =0,12x 2=0,x =0;当-1≤x <0时,12x 2=-1,方程没有实数解;当-2≤x <-1时,12x 2=-2,方程没有实数解;所以方程[x ]=12x 2的解为0或 2 .选A .同类题型1.2 对于函数y =x n +x m ,我们定义y '=nx n ﹣1+mxm ﹣1(m 、n 为常数).例如y =x 4+x 2,则y '=4x 3+2x . 已知:y =13x 3+(m ﹣1)x 2+m 2x .(1)若方程y ′=0有两个相等实数根,则m 的值为 ;(2)若方程y ′=m ﹣14有两个正数根,则m 的取值范围为 .解:根据题意得y ′=x 2+2(m ﹣1)x +m 2,(1)∵方程x 2﹣2(m ﹣1)x +m 2=0有两个相等实数根, ∴△=[﹣2(m ﹣1)]2﹣4m 2=0, 解得:m =12;(2)y ′=m ﹣14,即x 2+2(m ﹣1)x +m 2=m ﹣14,化简得:x 2+2(m ﹣1)x +m 2﹣m +14=0,∵方程有两个正数根,∴⎩⎪⎨⎪⎧2(m -1)<0m 2-m +14>0[-2(m -1)]2-4(m 2-m +14)≥0,解得:m ≤34且m ≠12.例2.将一枚六个面的编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷两次,记第一次掷出的点数为a ,第二次掷出的点数为b ,则使关于x ,y 的方程组⎩⎨⎧ax +by =3x +2y =2有正数解的概率为___.解:①当2a -b =0时,方程组无解;②当2a -b ≠0时,方程组的解为由a 、b 的实际意义为1,2,3,4,5,6可得.易知a ,b 都为大于0的整数,则两式联合求解可得x =6-2b 2a -b ,y =2a -32a -b,∵使x 、y 都大于0则有x =6-2b 2a -b >0,y =2a -32a -b>0,∴解得a <1.5,b >3或者a >1.5,b <3, ∵a ,b 都为1到6的整数,∴可知当a 为1时b 只能是4,5,6;或者a 为2,3,4,5,6时b 为1或2, 这两种情况的总出现可能有3+10=13种; (1,4)(1,5)(1,6)(2,1)(3,1)(4,1)(5,1)(6,1)(2,2)(3,2)(4,2)(5,2)(6,2)又掷两次骰子出现的基本事件共6×6=36种情况,故所求概率为=1336.同类题型2.1 六个面上分别标有1,1,2,3,4,5六个数字的均匀立方体的表面展开图如图所示,掷这个立方体一次,记朝上一面的数为平面直角坐标系中某个点的横坐标,朝下一面的数为该点的纵坐标.则得到的坐标落在抛物线y =2x 2-x 上的概率是( ) A .23 B .16 C .13 D .19解:掷一次共出现6种情况,根据图形可知1,2,3所对应的数分别是1,5,4,在抛物线上的点为:(1,1),只有两种情况,因此概率为:26=13.选C .同类题型2.2 把一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷2次,若两个正面朝上的编号分别为m 、n ,则二次函数y =x 2+mx +n 的图象与x 轴没有公共点的概率是________.解:∵二次函数y =x 2+mx +n 的图象与x 轴没有公共点,∴△<0,即m 2-4n <0,∴m 2<4n , m 、 n 1 2 3 4 5 6 1 1,1 1,2 1,3 1,4 1,5 1,6 2 2,1 2,2 2,3 2,4 2,5 2,6 3 3,1 3,2 3,3 3,4 3,5 3,6 4 4,1 4,2 4,3 4,4 4,5 4,6 5 5,1 5,2 5,3 5,4 5,5 5,6 6 6,1 6,2 6,3 6,4 6,5 6,6共有36种等可能的结果,其中满足m <4n 占17种,所以二次函数y =x 2+mx +n 的图象与x 轴没有公共点的概率=1736.同类题型2.3 如图,正方形ABCD 的边长为2,将长为2的线段QR 的两端放在正方形的相邻的两边上同时滑动.如果点Q 从点A 出发,沿图中所示方向按A →B →C →D →A 滑动到A 止,同时点R 从点B 出发,沿图中所示方向按B →C →D →A →B 滑动到B 止.点N 是正方形ABCD 内任一点,把N 点落在线段QR 的中点M 所经过的路线围成的图形内的概率记为P ,则P =( ) A .4-π4 B .π4 C .14 D .π-14解:根据题意得点M 到正方形各顶点的距离都为1,点M 所走的运动轨迹为以正方形各顶点为圆心,以1为半径的四个扇形,∴点M 所经过的路线围成的图形的面积为正方形ABCD 的面积减去4个扇形的面积.而正方形ABCD 的面积为2×2=4,4个扇形的面积为4×90π×12360=π,∴点M 所经过的路线围成的图形的面积为4-π,∴把N 点落在线段QR 的中点M 所经过的路线围成的图形内的概率记为P ,则P =4-π4.选A .同类题型2.4 从-1,1,2这三个数字中,随机抽取一个数,记为a ,那么,使关于x 的一次函数y =2x+a 的图象与x 轴、y 轴围成的三角形的面积为14 ,且使关于x 的不等式组⎩⎨⎧x +2≤a 1-x ≤2a有解的概率为_________.解:当a =-1时,y =2x +a 可化为y =2x -1,与x 轴交点为(12,0),与y 轴交点为(0,-1),三角形面积为12×12×1=14;当a =1时,y =2x +a 可化为y =2x +1,与x 轴交点为(-12,0),与y 轴交点为(0,1),三角形的面积为12×12×1=14;当a =2时,y =2x +2可化为y =2x +2,与x 轴交点为(-1,0),与y 轴交点为(0,2),三角形的面积为12×2×1=1(舍去);当a =-1时,不等式组⎩⎨⎧x +2≤a 1-x ≤2a 可化为⎩⎨⎧x +2≤-11-x ≤-2 ,不等式组的解集为⎩⎨⎧x ≤-3x ≥3 ,无解;当a =1时,不等式组⎩⎨⎧x +2≤a 1-x ≤2a 可化为⎩⎨⎧x +2≤11-x ≤2 ,解得⎩⎨⎧x ≤-1-x ≤1 ,解集为⎩⎨⎧x ≤-1x ≥-1,解得x =-1.使关于x 的一次函数y =2x +a 的图象与x 轴、y 轴围成的三角形的面积为14,且使关于x 的不等式组⎩⎨⎧x +2≤a 1-x ≤2a有解的概率为P =13 .例3.若f (n )为n 2+1(n 是任意正整数)的各位数字之和,如142+1=197,1+9+7=17,则f (14)=17,记f 1 (n )=f (n ),f 2=f (f 1(n ))…f k +1=f k (f (n )),k 是任意正整数则f 2016 (8)=( ) A .3 B .5 C .8 D .11解:∵82+1=65,∴f 1 (8)=f (8)=6+5=11,同理,由112 +1=122得f 2 (8)=1+2+2=5;由52+1=26,得f 3 (8)=2+6=8, 可得f 4(8)=6+5=11=f 1 (8),f 5(8)=f 2 (8),…,∴f k +3(8)=f k (8)对任意k ∈N *成立 又∵2016=3×672,∴f 2016(8)=f 2013(8)=f 2000(8)=…=f 3 (8)=8. 选C .同类题型3.1 将1,2,3,…,100这100个自然数,任意分为50组,每组两个数,现将每组的两个数中任一数值记作a ,另一个记作b ,代入代数式12(|a -b |+a +b )中进行计算,求出其结果,50组数代入后可求得50个值,则这50个值的和的最大值是____________.解:①若a ≥b ,则代数式中绝对值符号可直接去掉, ∴代数式等于a ,②若b >a 则绝对值内符号相反, ∴代数式等于b由此可见输入一对数字,可以得到这对数字中大的那个数(这跟谁是a 谁是b 无关) 既然是求和,那就要把这五十个数加起来还要最大, 我们可以枚举几组数,找找规律,如果100和99一组,那么99就被浪费了,因为输入100和99这组数字,得到的只是100, 如果我们取两组数字100和1一组,99和2一组, 则这两组数字代入再求和是199, 如果我们这样取100和99 2和1, 则这两组数字代入再求和是102,这样,可以很明显的看出,应避免大的数字和大的数字相遇这样就可以使最后的和最大, 由此一来,只要100个自然数里面最大的五十个数字从51到100任意俩个数字不同组, 这样最终求得五十个数之和最大值就是五十个数字从51到100的和, 51+52+53+…+100=3775.同类题型3.2 规定:[x ]表示不大于x 的最大整数,(x )表示不小于x 的最小整数,[x )表示最接近x 的整数(x ≠n +0.5,n 为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.则下列说法正确的是________.(写出所有正确说法的序号)①当x =1.7时,[x ]+(x )+[x )=6;②当x =-2.1时,[x ]+(x )+[x )=-7;③方程4[x ]+3(x )+[x )=11的解为1<x <1.5;④当-1<x <1时,函数y =[x ]+(x )+x 的图象与正比例函数y =4x 的图象有两个交点.解:①当x =1.7时, [x ]+(x )+[x )=[1.7]+(1.7)+[1.7) =1+2+2=5,故①错误; ②当x =-2.1时, [x ]+(x )+[x )=[-2.1]+(-2.1)+[-2.1)=(-3)+(-2)+(-2)=-7,故②正确; ③4[x ]+3(x )+[x )=11, 7[x ]+3+[x )=11, 7[x ]+[x )=8,1<x <1.5,故③正确; ④∵-1<x <1时,∴当-1<x <-0.5时,y =[x ]+(x )+x =-1+0+x =x -1, 当-0.5<x <0时,y =[x ]+(x )+x =-1+0+x =x -1, 当x =0时,y =[x ]+(x )+x =0+0+0=0,当0<x <0.5时,y =[x ]+(x )+x =0+1+x =x +1, 当0.5<x <1时,y =[x ]+(x )+x =0+1+x =x +1,∵y =4x ,则x -1=4x 时,得x =-13 ;x +1=4x 时,得x =13;当x =0时,y =4x =0,∴当-1<x <1时,函数y =[x ]+(x )+x 的图象与正比例函数y =4x 的图象有三个交点,故④错误, 答案为②③.同类题型3.3 设[x ]表示不大于x 的最大整数,{x }表示不小于x 的最小整数,<x >表示最接近x 的整数(x ≠n +0.5,n 为整数).例如[3.4]=3,{3.4}=4,<3.4≥3.则方程3[x ]+2{x }+<x ≥22( ) A .没有解 B .恰好有1个解C .有2个或3个解D .有无数个解】解:当x =3时,3[x ]+2{x }+<x ≥3×3+2×3+3=18,当x =4时,3[x ]+2{x }+<x ≥3×4+2×4+4=24,∴可得x 的大致范围为3<x <4,①3<x <3.5时,3[x ]+2{x }+<x ≥3×3+2×4+3=20,不符合方程; ②当3.5<x <4时,3[x ]+2{x }+<x ≥3×3+2×4+4=21,不符合方程. 选A .同类题型3.4对于实数p ,q ,我们用符号min {p ,q }表示p ,q 两数中较小的数,如min {1,2}=1,因此,min {-2,-3}=______;若min {(x -1)2,x 2}=1,则x =____________. 解:min {-2,-3}=-3,∵min {(x -1)2,x 2}=1,当x =0.5时,x 2=(x -1)2,不可能得出,最小值为1,∴当x >0.5时,(x -1)2<x 2,则(x -1)2=1, x -1=±1,x -1=1,x -1=-1,解得:x 1 =2,x 2 =0(不合题意,舍去),当x <0.5时,(x -1)2>x 2,则x 2=1,解得:x 1 =1(不合题意,舍去),x 2 =-1, 综上所述:x 的值为:2或-1.例4.已知点A 在函数y 1=-1x(x >0)的图象上,点B 在直线y 2 =kx +1+k (k 为常数,且k ≥0)上.若A ,B 两点关于原点对称,则称点A ,B 为函数y 1 ,y 2 图象上的一对“友好点”.请问这两个函数图象上的“友好点”对数的情况为( ) A .有1对或2对 B .只有1对 C .只有2对D .有2对或3对解:设A (a ,-1a),由题意知,点A 关于原点的对称点B (-a ,1a)在直线y 2 =kx +1+k 上,则1a=-ak +1+k ,整理,得:ka 2-(k +1)a +1=0 ①, 即(a -1)(ka -1)=0, ∴a -1=0或ka -1=0, 则a =1或ka -1=0,若k =0,则a =1,此时方程①只有1个实数根,即两个函数图象上的“友好点”只有1对;若k ≠0,则a =1或a =1k,此时方程①有2个实数根,即两个函数图象上的“友好点”有2对,综上,这两个函数图象上的“友好点”对数情况为1对或2对, 选A .同类题型4.1 在平面直角坐标内A ,B 两点满足: ①点A ,B 都在函数y =f (x )的图象上;②点A ,B 关于原点对称,则称A ,B 为函数y =f (x )的一个“黄金点对”.则函数f (x )= ⎩⎪⎨⎪⎧|x +4|,x ≤0- 1x,x >0的“黄金点对”的个数为( )A .0个B .1个C .2个D .3个解:根据题意:“黄金点对”,可知,作出函数y =-1x(x >0)的图象关于原点对称的图象,同一坐标系里作出函数y =|x +4|,x ≤0的图象如右图: 观察图象可得,它们在x ≤0时的交点个数是3. 即f (x )的“黄金点对”有:3个. 选D .同类题型4.2 定义:在平面直角坐标系xOy 中,把从点P 出发沿纵或横方向到达点Q (至多拐一次弯)的路径长称为P ,Q 的“实际距离”.如图,若P (-1,1),Q (2,3),则P ,Q 的“实际距离”为5,即PS +SQ =5或PT +TQ =5.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A ,B ,C 三个小区的坐标分别为A (3,1),B (5,-3),C (-1,-5),若点M 表示单车停放点,且满足M 到A ,B ,C 的“实际距离”相等,则点M 的坐标为____________.解:若设M (x ,y ),则由题目中对“实际距离”的定义可得方程组:3-x +1-y =y +5+x +1=5-x +3+y ,解得,x =1,y =-2,则M (1,-2).同类题型4.3 经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD 是△ABC 的“和谐分割线”,△ACD 为等腰三角形,△CBD 和△ABC 相似,∠A =46°,则∠ACB 的度数为__________.解:∵△BCD ∽△BAC ,∴∠BCD =∠A =46°,∵△ACD 是等腰三角形,∵∠ADC >∠BCD , ∴∠ADC >∠A ,即AC ≠CD ,①当AC =AD 时,∠ACD =∠ADC =12(180°-46°)=67°,∴∠ACB =67°+46°=113°,②当DA =DC 时,∠ACD =∠A =46°, ∴∠ACB =46°+46°=92°, 故答案为113°或92°.。
2018版中考数学:专题(5)阅读理解问题(含答案)
C .底边上的高是 ⎛ 3⎫2 12- ⎪ = ,可知是顶角 120°,底角 30°的等腰三 (专题五阅读理解问题一、选择题1.(原创题)如果三角形满足一个角是另一个角的 3 倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是( )A .1,2,3C .1,1, 3B .1,1, 2D .1,2, 3解析 A .∵1+2=3,不能构成三角形,故选项错误;B .∵12+12=( 2)2,是等腰直角三角形,故选项错误;1 ⎝2 ⎭ 2角形,故选项错误;D .解直角三角形可知是三个角分别是 90°,60°,30°的直角三角形,其中 90°÷30°=3,符合“智慧三角形”的定义,故选项正确.答案 D2.改编题)若一个 n 位数中各数字的 n 次幂之和等于该数本身,这个数叫做“自恋数”.下面四个数中是“自恋数”的是 ( )A .66C .225B .153D .250解析 ∵62+62=36+36=72≠66,13+53+33=1+125+27=153,23+23+ 53=8+8+125=141≠225,23+53+03=8+125+0=133≠250,故 66,225, 250 都不是自恋数,153 是自恋数.故选 B.答案 B二、填空题3.(改编题)定义新运算:对任意实数 a ,b ,都有 a ⊗b =a 2-b 2,例如,3⊗2=32(-22=5,那么 2⊗1=________.解析 根据题意,得 2⊗1=22-12=4-1=3.答案 34. 改编题)若规定一种运算为:a ★b = 2(b -a ),如 3★5= 2(5-3)=2 2.则 2★ 3=________.解析答案2★ 3= 2( 3- 2)= 6-2.6-2三、解答题⎪a b ⎪ ⎪a b ⎪5.(改编题)阅读材料:对于任何实数,我们规定符号 ⎪ ⎪的意义是 ⎪ ⎪=⎪c d ⎪ ⎪c d ⎪⎪1 ad -bc .例如:⎪ ⎪3 2⎪ ⎪-2 4⎪⎪=1×4-2×3=-2,⎪ ⎪=(-2)×5-4×3=-22.4⎪ ⎪ 3 5⎪⎪5 (1)按照这个规定请你计算⎪⎪7 6⎪⎪的值; 8⎪⎪x +12x ⎪ (2)按照这个规定请你计算:当 x 2-4x +4=0 时,⎪ ⎪的值.⎪x -1 2x -3⎪⎪5 6⎪ 解(1)⎪ ⎪=5×8-6×7=-2.⎪7 8⎪(2)由 x 2-4x +4=0,得 x 1=x 2=2,⎪x +12x ⎪ ⎪3 ⎪ ⎪=⎪ ⎪x -1 2x -3⎪ ⎪1 4⎪ ⎪=3×1-4×1=-1. 1⎪6.(原创题△)若 ABC 所在的平面内的一条直线,其上任意一点与△ABC 构成的四边形(或三角形△)面积是 ABC 面积的 n 倍,则称这条直线为△ABC 的 n 倍线.如图 1,点 P 为直线 l 上任意一点,S 四边形 P ABC =3 △S ABC ,则称直线 l 为△ABC的三倍线.(1)在如图 2 的网格中画出△ABC 的一条 2 倍线;(2)在△ABC 所在的平面内,这样的 2 倍线有________条.解(1)如图所示:(2)在△ABC所在的平面内,这样的2倍线有3条.。
2018中考数学真题分类汇编解析版-33.数学阅读理解及新定义
3 2 113 2 1 13 2 113 2 1 1下列四组向量:① OB =(3,-9), OB =(1,- );3答案:A ,解析:① OB =(3,-9), OB =(1,- );3 ∵3×1+(―9)×(― )≠0,∴ OB 与 OB 互相不垂直.3一、选择题1.(2018 滨州,12,3 分)如果规定 [x ]表示不大于 x 的最大整数,例如 [2.3] = 2 ,那么函数 y = x - [x ] 的图象为()1– – ––y1O 1 2 3 x – – – –yO 12 3 xA .B .1– – ––y1O 1 2 3 x – – – –yO 1 2 3 xC .D .答案.A ,解析:根据题中的新定义,分x 为正整数,负整数两种情况进行验证,即可排除B ,C ,D ,故选A.2.(2018·达州市,6,3 分)平面直角坐标系中,点 P 的坐标为(m ,n ),则向量 OP 可以用点 P 的坐标表示为 OP =(m ,n ),已知 OA 1 =(x 1,y 1), OA 2 =(x 2,y 2),若 x 1·x 2+y 1·y 2=0,则 OA 1 与 OA 2互相垂直.11 2② OC =(2,π°), OC =( 2-1 ,-1);12③ OD =(cos30°,tan45°), OD =(sin30°,tan45°);12④ OE =( 5 +2, 2 ), OE =( 5 ―2,12其中互相垂直的组有( ). A .1 组B .2 组C .3 组D .4 组11 211 2② OC =(2,π°), OC =( 2-1 ,-1);2 2).2x4.(2018·常德,8,3 分)阅读理解,a ,b ,c ,d 是实数,我们把符号 a b=a ×d -b ×c ,例如 3 =3×(-2)-2×(-1)=-6+2=-4.二元一次方程组 ⎨ 1⎩ a x + b y = cx = x ⎪⎪ D 利用利用 2×2 阶行列式表示为 ⎨ :其中 D = ,D x = ,D y = .⎪ y = 问题:对于用上面的方法解二元一次方程组 ⎨⎧2 x + y = 1 3x -2 y = 123 - 2 =-7B .D x =-14⎧ x = 2A .D = 2C .D y =27D .方程组的解为 ⎨∵2× 2 -1 +(―9)×(―1)=0,∴ OC 与 OC 互相垂直.12③ OD =(cos30°,tan45°), OD =(sin30°,tan45°);12∵cos30°·sin30°+tan45°·tan45°≠0,∴ OD 与 OD 互相不垂直.12④ OE =( 5 +2, 2 ), OE =( 5 ―2,2 ). 12∵( 5 +2)×( 5 ―2)+ 2 ×2 2≠0,∴ OE 与 OE 互相不垂直. 1 2故选 A.3.(2018·临沂,19,3 分)任何一个无限循环小数都可以写成分数的形式,应该怎样写呢?我们以无限循环小数 0.7 ,为例进行说明:设 0.7 = x .由 0.7 =0.7777 ... 可知,10x =7.7777.... 所以 10x -x =7,解方程得:= 7 9 7,于是,得 0.7 = .将 0.36 写成分数的形式是 .919. 4 11,解析:设 0.36 =x ,由 0.36 =0.363636……,可知 100x=36.3636……,所以 100x -x =36,解方程得 x = 36 4= .99 11a b称为 2×2 行列式,并且规定:c d c d2⎧a x + b y = c1 1 -1 -2 222⎧D a b c b a c1 1 1 1 1 1 Da b c b a c y 2 2 2 2 2 2⎪⎩ D的解可以⎩ 时,下面说法错误的是1⎩ y = -3⎧2 x + y = 18.C ,解析:因为 ⎨ ,所以 D = = =2×(-2)-3×1=-7, ⎩3x - 2 y = 12= 1 = 2 ⎪⎪ D -7 因为 ⎨ ,所以方程组的解为 ⎨ ,所以说法错误的是 C ,故选 C . ⎩ y = -3 ⎪ y = y = 21 = -3 ⎩y .若1 * (-1) = 2 ,1* (-1) = a + = 2 ,可得 a-b =2, (-2)* 2 = + = - (a - b ) = -1 ..(所以 ◇4 3= 42 + 32 = 5 .若 x ,y 满足方程组 ⎨⎧4x - y = 8 x + 2 y = 29 ⎩ y=12a b 2 1 1 1 a b 3 - 2 2 2D x =c 1 c2b 1 b 21 12 - 2 =1×(-2)-1×12=-14,D y = a a 1 2c 1 c 213 12 =2×12-1×3=21,⎧D -14 x = x = = 2 ⎧ x = 2 D ⎪ D -7二、填空题1.(2018·金华市,14,4 分) 对于两个非零实数 x,y ,定义一种新的运算:x * y =则 (-2)* 2 的值是▲.a x + b答案.-1,解析:根据新定义运算,将数值代入公式即可计算,注意符号不要出错即可 由ba b 1 1 -1 -2 22⎧⎪ a 2 + b 2 , a ≥ b ,2. 2018·德州,17,4)对于实数 a ,b 定义运算“ ◇” :◇a b = ⎨ 例如,4 ◇3,因为 4>3,⎪⎩ab, a <b .⎩,则 ◇x y = .⎧x=5 答案.60 解析:解方程组得: ⎨,∵5<12,∴◇x y =5×12=60.3.(2018·聊城市,17,3 分)若 x 为实数, 则[x ]表示不大于 x 的最大整数, 例如[1.6] =1,[π] =3, [﹣2.82] =﹣3 等.[x ] +1是大于 x 的最小整数, 对任意的实数 x 都满足不等式[x ] ≤x <[x ] +1.2 x < 2 x - 1 + 1,的比为一定值,即 1 =q (常数),那么这一列数 a 1,a 2,a 3,…,a n ,…成等比数列,这一常数 q 叫1 ⎧2 x -1 ≤ x ,答案:1 或 解析:把[x ] =2x ﹣1代入不等式[x ] ≤x <[x ] +1,得 ⎨ 解不等式组,得⎩0<x ≤1,当 x=1 时,[x ]= 2x ﹣1=1,解得 x=1;当 0<x <1 时,[x ]= 2x ﹣1=0,解得 x=12,综合起来,满足[x ] =2x ﹣1的所有解是 1 或12.4.(2018·怀化市,16,4 分)根据下列材料,解答问题.等比数列求和:概念:对于一列数 a 1,a 2,a 3,…,a n ,…(n 为正整数),若从第二个数开始,每一个数与前一个数aa2做该数列的公比.例:求等比数列 1,3,32,33,…,3100 的和.解:令 S =1+3+32+33+ (3100)则 3S =3+32+33+…+3100+3101,3101 - 1因此,3S-S =3101-1,所以 S = ,23101 - 1即 1+3+32+33+…+3100= .2仿照例题,等比数列 1,5,52,53,…,52018 的和为 .52019 - 1答案: ,解析:令 S =1+5+52+53+…+52018,则 5S =5+52+53+…+52018+52019,因此,5S-S =52019-1,所以452019 - 1 52019 - 1S = ,即 1+5+52+53+ (52018)4 4.5.(2018·永州市,17,4 分) 对于任意大于 0 的实数 x 、y ,满足 log 2(x ·y)= log 2x +log 2y ,若 log 22=1,则log 216=____________.答案.4,解析:log 216=log 2(2×8)= log 22 +log 28=1+l og 2(2×4)=1+ log 22 +log 24=1+1+ log 2(2×2)=1+1+ log 22+log 22=1+1+1+1=4.x)≥0,所以x-2a+≥0,从而x+≥2a(当x=a时已知函数y=x(x>0)与函数y=(x>0),则当x=4=2时,y+y=x+有最小值x x2有最分析:(1)将y2表示成(x+3)+1x+3用成本的代数式,再转化成0.001(+x)+200利用“知识背景”求解.2==(x+3)+≥2(x+3)⨯.1x+3x+3三、解答题1.(2018·济宁,21,9分)知识背景当a>0且x>0时,因为(x-取等号).a2a ax x设函数y=x+ax(a>0,x>0),由上述结论可知,当x=a时,该函数有最小值为2a.应用举例44 1212为24=4.解决问题(1)已知函数y=x+3(x>-3)与函数y=(x+3)2+9(x>-3),当x限何值时,12y y 1小值?最小值是多少?(2)已知某设备租赁使用成本包含以下三部分:一是设备的安装调试费用,共490元;二是设备的租赁使用费用,每天200元;三是设备的折旧费用,它与使用天数的平方成正比,比例系数为0.001.若设该设备的租赁使用天数为x天,则当x取何值时,该设备平均每天的租赁使用成本最低?最低是多少元?y9,利用“知识背景”求解;(2)列出该设备平均每天的租赁使490+200x+0.001x2490000x x解:(1)∵x>-3,∴x+3>0,∴y(x+3)2+999 y x+32的最小值 6,此时x + 3 = 9 =3,解得 x =0. 根据题意,得w =. ∴ w = 0.001( 对数的定义:一般地,若 a x =N (a >0,a ≠1),那么数 x 叫做以 a 为底 N 的对数,记作x = log N .比如设 l og M = m , l og N = n ,则 M = a m , N = a n ,∴ M ⋅ N = a m ⋅ a n = a m + n ,由对数的定义得: m + n = log (M ⋅ N )即 y 2≥6.y1∴ y y 1(2)设该设备平均每天的租赁使用成本为 w .490 + 200x + 0.001x 2x∵ x >0,490 000x+ x) + 200 .∴ w ≥ 0.001⨯ 2 490 000x⋅ x + 200 .即 w ≥201.4.∴ w 的最小值为 201.4.此时 x = 490 000 =700.答:当 x 取 700 时,该设备平均每天的租赁使用成本最低?最低是 201.4 元.2.(2018·自贡,24,10 分)阅读下列材料;对数的创始人是苏格兰数学家纳皮尔(j.Napier ,1550 年~1617 年).纳皮尔发明对数是在指数书写方式之前, 直到 18 世纪瑞士数学家欧拉 (Euler ,1707 年~1783 年),才发现指数和对数的联系.a指数式 24=16 可转化为对数式 4 = log 16 ,对数式 2 = log 25 ,可转化为 52=252 5我们根据对数的定义可得到对数的一个性质:log (M ⋅ N ) = log M + log N (a >0,a ≠1,M >0,N >0)理由如下:aaaaaa又∵ m + n = log M + log N ,aa∴ l og (M ⋅ N ) = log M + log Naaa解决以下问题:= a m -n ,由对数的定义得 m -n = log(2)证明log a MN= log M - log N ( a > 0 , a ≠ 1 ,M >0,N >0);.a a(3)拓展应用:计算log 2 + log 6 - log 4 =.333思路分析:(1)读懂新定义,明白指数与对数之间的关系与相互转化关系;(2)阅读题目,明确对数的定义、特别是题目中提供的 “根据对数的定义推出的对数的性质:log (M ⋅ N ) = log M + log N ”,模仿解决新问题;a aa(3)阅读题目,明确对数的定义、积的对数和商的对数的运算法则,可逐步推出结果.解: (1) log 64 = 3 ;4(2)设 log M = m , log N = n ,则 a m = M , a n = N ,aa∴ M a mM =N a n a N,又∵m -n = log M - log N ,aa∴ loga M N = log M - log N ( a > 0 , a ≠ 1 ,M >0,N >0).a a(3) log 2 + log 6 - log 4 = log 33332 ⨯ 6 4= log 3 = 1 .33.(2018·德州,24,12) 再读教材:宽与长的比是(约为 0.618)的矩形叫做黄金矩形,黄金矩形给我们以协调、匀称的美各国许多著名的建筑,为了取得最佳的视觉效果,都采用了黄金矩形的设计.下面,我们用宽为2 的矩形纸片折叠黄金矩形.(提示:MN =2)第一步,在矩形纸片的一端,利用图①的方法折出一个正方形,然后把纸片展平. 第二步,如图②,把这个正方形折成两个相等的矩形,再把纸片展平.第三步,折出内侧矩形的对角线 AB ,并把它折到图③中所示的 AD 处.第四步,展平纸片,按照所得的 D 点折出 DE ,使 DE ⊥ND ,则图④中就会出现黄金矩形.问题解决:(1)图③中AB=cm(保留根号);(2)如图③,判断四边形BADQ的形状,并说明理由;(3)请写出图④中所有的黄金矩形,并选择其中一个说明理由.实际操作:(4)结合图④,请在矩形BCDE中添加一条线段,设计一个新的黄金矩形,用字母表示出来,并写出它的长和宽.思路分析:(1)连接AB,由折叠的性质,可得AC=2,在△Rt ABC中,利用勾股定理可求出AB的长度.(2)先证明四边形BADQ是平行四边形,再进而证明它是菱形.选择其中一个给出证明.(3)通过计算,观察图④客户哪个矩形的宽与长的比是,(4)的矩形BCDE中,已知CD=BE=5-1,添加宽,使矩形的宽与长的比是.解答过程:(1)由折叠知,四边形MNCB是正方形,∴BC=MN=2,AC=1,∴AB=AC2+BC2=12+22=5.答案:5(2)∵矩形纸片,∴∠BQA=∠QAD,由折叠,得∠BAQ=∠QAD,AB=AD,∴∠BQA=∠BAQ,∴CDP A2=P A3,从而得到P A+P A=是定值.∴BQ=AB,∴BQ=AD.∵BQ∥AD,∴四边形BADQ是平行四边形,∵AB=AD,∴四边形BADQ是菱形.(3)图④中的黄金矩形有矩形BCDE,矩形MNDE.矩形BCDE是黄金矩形,理由如下:∵AD=AB=5,AN=AC=1,∴CD=AD-AC=5-1,又∵BC=2,5-1=,BC2∴矩形BCDE是黄金矩形.(4)如图,在矩形BCDE上添加线段GH,使四边形GCDH为正方形,则矩形BGHE为所要作的黄金矩形.矩形较长的边GH=5-1,宽HE=3-5.4.(2018·达州市,24,11分)阅读材料:已知:如图1,等边△A1A2A3内接于⊙O,点P是A1A2上的任意一点,连接P A1,PA2,P A3,可证:P A1+12P A+P A+P A12312(1)以下是小红的一种证明方法,请在方框内将证明过程补充完整:= ,是定值. 11A 1 A 3OA 2MP第 24 题图 1证明:如图 1,作∠PA 1M =60°,A 1M 交 A 2P 的延长线于点 M .∵ △A 1A 2A 3 是等边三角形,∴∠A 3A 1A 2=60°.∴∠A 3A 1P =∠A 2A 1M ,又 A 3 A 1=A 2A 1,∠A 1A 3P =∠A 1A 2P ,∴ △A 1A 3△P ≌ A 1A 2M .∴PA 3=MA 2=PA 2+PM =PA 2+P A 1∴ P A + P A 2 P A + P A + P A12312(2)延伸:如图 2,把(△1)中条件“等边 A 1A 2A 3”改为“正方形 A 1A 2A 3A 4”,其余条件不变,请问 P A + P A2 P A + P A + P A + PA1234还是定值吗?为什么?A 4A 3OA 1A 2P第 24 题图 2(3)拓展:如图 3,把(△1)中条件“等边 A 1A 2A 3”改为“正五边形 A 1A 2A 3A 4 A 5”,其余条件不变,则AC ;若顶角∠A =36°,则 BC =1P A + P A1 2P A + P A + P A + PA + P A12 3 4 5A 4A 5A 3O=___________(只写出结果).A 1PA 2第 24 题图 3参考数据:如图,等腰△ABC 中,若顶角∠A =108°,则 BC =AC.A1 + 5 -1 + 52 2A108°36°B36°36°C B72° 72°思路分析:(1)阅读材料,得出方框内的内容.先根据全等三角形的性质得 P A 3=MA 2,PA 1=MA 1,然后根据全等三角形的判定和性质得 P A 1=PM .(2)用类比的方法证得 P A + P A2 P A + P A + P A + PA1234还是定值.(3)用类比的方法证得 P A + P A1 2P A + P A + P A + P A + P A1 2 3 4 5还是定值.解答过程:解:(1)方框内的内容为:∴PA 3=MA 2,PA 1=MA 1,∵∠P A 1M =60°,∴ △PA 1M 是等边三角形.∴PA 1=PM .(2)是定值.理由:如图 2,作∠PA 1M =90°,A 1M 交 A 2P 的延长线于点 M .= =1- ,是定值. 1= = ,是定值.A 4OA 1 MPA 3A 2N∵A 1A 2A 3A 4 是正方形,∴∠A 4A 1A 2=90°.∴∠A 4A 1P =∠A 2A 1M ,又 A 4 A 1=A 2A 1,∠A 1A 4P =∠A 1A 2P ,∴ △A 1A 4△P ≌ A 1A 2M .∴PA 4=MA 2,PA 1=MA 1,∵∠P A 1M =90°,∴PM = 2 P A 1.∴PA 4=MA 2=PA 2+PM =PA 2+ 2 P A 1,作∠P A 2MN =90°,A 2N 交 A 1P 的延长线于点 MN .同理可得 P A 3=P A 1+ 2 PA 2,∴PA 3+PA 4=(1+ 2 ) (PA 1+P A 2)∴ P A + P A 2 P A + P A + P A + PA12341 2 2+ 2 2(3)P A + P A 1 2P A + P A + P A + PA + P A1 2 3 4 51 3 - 53+ 5 45.(2018·重庆 B 卷,25,10)对任意一个四位数 n ,如果千位与十位上的数字之和为 9,百位与个位上的数字之和也为 9,则称 n 为“极数”.(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是 99 的倍数,请说明理由;(2)如果一个正整数 a 是另一个正整数 b 的平方,则称正整数 a 是完全平方数.若四位数 m 为“极数”,⎩t + 1 = 2 ⎩t + 1 = 7 ⎩t + 1 = 8 ⎩t + 1 = 5⊗记 D(m )=m33,求满足 D(m )是完全平方数的所有 m .【思路分析】(1)先根据“极数”的定义,较易写出千位与十位上的数字之和为9 且百位与个位上的数字之和为 9 的四位数三个,答案不唯一;再设 n 的千位数字为 s ,百位数字为 t (1≤s ≤9,0≤t ≤9 且 s 、t均为整数),用代数式表示出 n ,化简后因式分解,即可证明 n 是 99 的倍数;(2)先求出 D(m )=m33,其中 m =1000s +100t +10(9-s)+9-t ,化简后得 D(m )=m33=3(10s +t +1);再根据 D(m )是完全平方数,且10s +t +1 是一个两位数,从而 10s +t +1=3×22、3×32、3×42、3×52,即 10s +t +1=12 或 27 或 48 或⎧ s = 1 ⎧ s = 2 ⎧ s = 4 ⎧ s = 775,于是得到方程组 ⎨或 ⎨ 或 ⎨ 或 ⎨ ,解方程组即可锁定符合条件的所有 m . 【解题过程】解:(1)答案不唯一,如 5346,1782,9405,等.任意一个“极数”都是 99 的倍数,理由如下:设 n 的千位数字为 s ,百位数字为 t (1≤s ≤9,0≤t ≤9 且 s 、t 均为整数),则 n =1000s +100t +10(9-s)+9-t =990s +99t +99=99(10s +t +1),而 10s +t +1 是整数,故 n 是 99 的倍数.(2)易由(1)设 m =1000s +100t +10(9-s)+9-t =990s +99t +99=99(10s +t +1),其中 1≤s ≤9,0≤t ≤9 且 s 、t 均为整数,从而 D(m )= m 33=3(10s +t +1),而 D(m )是完全平方数,故 3(10s +t +1)是完全平方数.∵10<10s +t +1<100,∴30<3(10s +t +1)<300.∴10s +t +1=3×22、3×32、3×42、3×52. ∴(s ,t)=(1,1),(2,6),(4,7),(7,4). ∴m =1188,2673,4752,7425.【知识点】整式的运算 完全平方数 不等式的解法 新定义运算题 二元一次方程的特殊解6.(2018· 扬州市,20,8 分)对于任意实数 a ,b ,定义关于“ ⊗ ”的一种运算如下: a ⊗ b = 2a + b .例如 3 ⊗ 4 = 2 ⨯ 3 + 4 = 10.(1)求 2 (- 5)的值;⎪⎪ ⎧ 2x - y = 2 (2)由题意,得: ⎨ ,解方程组,得: ⎨ ,则 x +y = - = .⎩4 y + x = -1 ⎪ y = - 4 ⎩a, M {-2, -1,0}=-1, max {-2, -1,0}=0, max {-2, -1,a }= ⎨ { }{ } { }︒ {}= ⎧⎪⎨ ⎫ ⎩ ⎭(2)∵ 2 ⋅ M {2, x + 2, x + 4}= ⎨2, -2 < x < 0 ⎩(2)若 x ⊗ (- y) = 2, 且 2 y ⊗ x = -1, 求 x +y 的值.思路分析:(1)直接运用新定义的运算规则进行计算;(2)根据新定义的运算规则列出两个方程,联立成方程组,解出 x 、y 的值,再求出 x +y 的值.解答过程:(1)2 ⊗ (-5)=2×2+(-5)=4-5=-1;⎧7 x = 9 7 4 1 9 9 3⎪97 (2018·内江市,27,12 分)对于三个数 a 、b 、c ,用 M {a, b , c }表示这三个数的中位数,用 max {&b , c }表示这三个数最大数,例如 ⎧ a(a ≥ -1)⎩ -1(a < -1) .解决问题:(1)填空: M sin 45︒ ,cos60 ︒ , tan 60 =,如果 max {3,5 - 3x,2 x - 6}=3,则 x 的取值范围为;(2)如果 2 ⋅ M {2, x + 2, x + 4}= max {2, x + 2, x + 4},求 x 的值;(3)如果 M 9, x 2 ,3 x - 2 = max 9, x 2,3 x - 2 ,求 x 的值.思路分析:(1)分别求出三个特殊角的三角函数值即可求出中位数,分两种情况:5-3x ≤3 与 2x-6≤3 构造不等式组求解;(2)结合题意运用分类讨论加以求解.解答过程:(1) M sin45 ︒ ,cos60 ︒ ,tan60 ︒2 1 ⎪ 1, , 3 ⎬ = , ⎪ 2 2 ⎪ 2由题意得,当 5-3x ≤3 且 2x-6≤3 时, max {3,5 - 3 x ,2 x - 6}=3,解得 23⎧ x + 4, x ≤ -2 ⎪⎪ x + 2, x ≥ 0≤x ≤4.5.由图可知:max2,x2,x4=2,x2x4,x2①若x≤-2,根据题意得2(x+4)=2,解得x=-3,②若-2<x<0,根据题意得x+4=2,解得x=-2(不合题意,舍去),③若x≥0,根据题意得x+2≠x+4(不合题意,舍去),所以,满足题意的x的值为-3.(3)M9,x2,3x2=max9,x2,3x2①由图可知,当x<-3时,M9,x2,3x2=9,max9,x2,3x2=x2,解得x=±3(不合题意,舍去)②由图可知,当-3≤x<1时,M9,x2,3x2=x2,max9,x2,3x2=9,解得x=-3,③由图可知,当1≤x<2时,M9,x2,3x2=3x-2,max9,x2,3x2=9,解得x=113(不合题意,舍去),④由图可知,当2≤x<3时,M9,x2,3x2=x2,max9,x2,3x2=9,解得x=±3(不合题意,舍去)⑤由图可知,当3≤x<113时,M9,x2,3x2=9,max9,x2,3x2=x2,解得x=3,⑥由图可知,当113≤x时,M9,x2,3x2=3x-2,max9,x2,3x2=x2,解得x=1,x=2(不合题意,舍去)所以,满足题意的x的值为±3.。
2018年全国中考数学真题汇编:阅读理解、图表信息
阅读理解、图表信息一、选择题1.(2018·湖南省常德·3分)阅读理解:a,b,c,d是实数,我们把符号称为 2×2阶行列式,并且规定:=a×d﹣b×c,例如:=3×(﹣2)﹣2×(﹣1)=﹣6+2=﹣4.二元一次方程组的解可以利用 2×2阶行列式表示为:;其中 D= ,D x= ,D y= .问题:对于用上面的方法解二元一次方程组时,下面说法错误的是()A.D= =﹣7 B.D x=﹣14C.D y=27 D.方程组的解为【分析】分别根据行列式的定义计算可得结论.【解答】解:A、D= =﹣7,正确;B、D x= =﹣2﹣1×12=﹣14,正确;C、D y= =2×12﹣1×3=21,不正确;D、方程组的解:x= = =2,y= = =﹣3,正确;故选:C.【点评】本题是阅读理解问题,考查了 2×2阶行列式和方程组的解的关系,理解题意,直接运用公式计算是本题的关键.2.(2018·山东潍坊·3分)在平面内由极点、极轴和极径组成的坐标系叫做极坐标系.如图,在平面上取定一点 O称为极点;从点 O出发引一条射线 Ox称为极轴;线段 OP的长度称为极径.点 P的极坐标就可以用线段 OP的长度以及从 Ox转动到 OP的角度(规定逆时针方向转动角度为正)来确定,即 P(3,60°)或 P(3,﹣300°)或 P(3,420°)等,则点 P关于点 O成中心对称的点 Q的极坐标表示不正确的是()A.Q(3,240°)B.Q(3,﹣120°)C.Q(3,600°)D.Q(3,﹣500°)【分析】根据中心对称的性质解答即可.【解答】解:∵P(3,60°)或 P(3,﹣300°)或 P(3,420°),由点 P关于点 O成中心对称的点 Q可得:点 Q的极坐标为(3,240°),(3,﹣120°),(3,600°),故选:D.【点评】此题考查中心对称的问题,关键是根据中心对称的性质解答.二.填空题1. (2018·浙江衢州·4分)定义:在平面直角坐标系中,一个图形先向右平移 a个单位,再绕原点按顺时针方向旋转θ角度,这样的图形运动叫作图形的γ(a,θ)变换.如图,等边△ABC的边长为 1,点 A在第一象限,点 B与原点 O重合,点 C在 x轴的正半轴上.△A1B1C1就是△ABC经γ(1,180°)变换后所得的图形.若△ABC经γ(1,180°)变换后得△A1B1C1,△A1B1C1经γ(2,180°)变换后得△A2B2C2,△A2B2C2经γ(3,180°)变换后得△A3B3C3,依此类推……△A n﹣1B n﹣1C n﹣1经γ(n,180°)变换后得△A n B n C n,则点 A1的坐标是(﹣,﹣),点 A2018的坐标是(﹣,).【考点】阅读理解、坐标的变化规律.【分析】分析图形的γ(a,θ)变换的定义可知:对图形γ(n,180°)变换,就是先进行向右平移 n 个单位变换,再进行关于原点作中心对称变换.向右平移 n个单位变换就是横坐标加 n,纵坐标不变,关于原点作中心对称变换就是横纵坐标都变为相反数.写出几次变换后的坐标可以发现其中规律.【解答】解:根据图形的γ(a,θ)变换的定义可知:对图形γ(n,180°)变换,就是先进行向右平移 n个单位变换,再进行关于原点作中心对称变换.△ABC经γ(1,180°)变换后得△A1B1C1,A1 坐标(﹣,﹣)△A1B1C1经γ(2,180°)变换后得△A2B2C2,A2坐标(﹣,)△A2B2C2经γ(3,180°)变换后得△A3B3C3,A3坐标(﹣,﹣)△A3B3C3经γ(3,180°)变换后得△A4B4C4,A4坐标(﹣,)依此类推……可以发现规律:A n横坐标存在周期性,每 3次变换为一个周期,纵坐标为当 n=2018时,有 2018÷3=672余 2所以,A2018横坐标是﹣,纵坐标为故答案为:(﹣,﹣),(﹣,).【点评】本题是规律探究题,又是材料阅读理解题,关键是能正确理解图形的γ(a,θ)变换的定义后运用,关键是能发现连续变换后出现的规律,该题难点在于点的横纵坐标各自存在不同的规律,需要分别来研究.2. (2018?湖北恩施?3 分)我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,。
7.3阅读理解型问题(第3部分)-2018年中考数学试题分类汇编(word解析版)
第七部分专题拓展7.3 阅读理解型问题【一】知识点清单阅读理解题是近几年新出现的一种新题型,这种题型特点鲜明、内容丰富、超越常规,源于课本,高于课本,不仅考查学生的阅读能力,而且综合考查学生的数学意识和数学综合应用能力,尤其侧重于考查学生的数学思维能力和创新意识,此类题目能够帮助学生实现从模仿到创造的思维过程,符合学生的认知规律。
阅读理解题一般由两部分组成:一是阅读材料;•二是考查内容.它要求学生根据阅读获取的信息回答问题.提供的阅读材料主要包括:•一个新的数学概念的形成和应用过程,或一个新数学公式的推导与应用,或提供新闻背景材料等.考查内容既有考查基础的,又有考查自学能力和探索能力等综合素质的.这类题目的结构一般为:给出一段阅读材料,学生通过阅读,将材料所给的信息加以搜集整理,在此基础上,按照题目的要求进行推理解答。
涉及到的数学知识很多,几乎涉及所有中考内容。
阅读理解题是近几年频频出现在中考试卷中的一类新题型,不仅考查学生的阅读能力,而且综合考查学生的数学意识和数学综合应用能力,尤其是侧重于考查学生的数学思维能力和创新意识,此类题目能够帮助考生实现从模仿到创造的思想过程,符合学生的认知规律,是中考的热点题目之一,今后的中考试题有进一步加强的趋势。
题型1考查解题思维过程的阅读理解题言之有据,言必有据,这是正确解题的关键所在,是提高数学素质的前提。
数学中的基本定理、公式、法则和数学思想方法都是理解数学、学习数学和应用数学的基础,这类试题就是为检测解题者理解解题过程、掌握基本数学思想方法和辨别是非的能力而设置的。
题型2考查纠正错误挖病根能力的阅读理解题理解基本概念不是拘泥于形式的死记硬背,而是要把握概念的内涵或实质,理解概念间的相互联系,形成知识脉络,从而整体地获取知识。
这类试题意在检测解题者对知识的理解以及认识问题和解决问题的能力。
题型3考查归纳、探索规律能力的阅读理解题对材料信息的加工提练和运用,对规律的归纳和发现能反映出一个人的应用数学、发展数学和进行数学创新的意识和能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年中考备考专题复习:阅读理解问题
一、单选题
1、(2016•岳阳)对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b,如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是()
A、0
B、2
C、3
D、4
2、(2016•梅州)对于实数a、b,定义一种新运算“⊗”为:a⊗b= ,这里等式右
边是实数运算.例如:1⊗3= .则方程x⊗(﹣2)= ﹣1的解是()
A、x=4
B、x=5
C、x=6
D、x=7
3、(2016•杭州)设a,b是实数,定义@的一种运算如下:a@b=(a+b)2﹣(a﹣b)2,则下列结论:
①若a@b=0,则a=0或b=0
②a@(b+c)=a@b+a@c
③不存在实数a,b,满足a@b=a2+5b2
④设a,b是矩形的长和宽,若矩形的周长固定,则当a=b时,a@b最大.
其中正确的是()
A、②③④
B、①③④
C、①②④
D、①②③
4、(2016•济南)定义:点A(x,y)为平面直角坐标系内的点,若满足x=y,则把点A叫做“平衡点”.例如:M(1,1),N(﹣2,﹣2)都是“平衡点”.当﹣1≤x≤3时,直线y=2x+m 上有“平衡点”,则m的取值范围是()
A、0≤m≤1
B、﹣3≤m≤1
C、﹣3≤m≤3
D、﹣1≤m≤0
二、填空题
5、(2016•黔西南州)阅读材料并解决问题:
求1+2+22+23+…+22014的值,令S=1+2+22+23+…+22014
等式两边同时乘以2,则
2S=2+22+23+…+22014+22015
两式相减:得2S﹣S=22015﹣1
所以,S=22015﹣1
依据以上计算方法,计算1+3+32+33+…+32015=________.
三、解答题
6、(2015•绥化)自学下面材料后,解答问题.
分母中含有未知数的不等式叫分式不等式.如:等.那么如何求出它们的解集呢?
根据我们学过的有理数除法法则可知:两数相除,同号得正,异号得负.其字母表达式为:
(1)若a>0,b>0,则>0;若a<0,b<0,则>0;
(2)若a>0,b<0,则<0;若a<0,b>0,则<0.
反之:(1)若>0,则或
(2)<0,则____________ .
根据上述规律,求不等式>0的解集.
7、(2015•山西)阅读与计算:请阅读以下材料,并完成相应的任务.
斐波那契(约1170﹣1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用.
斐波那契数列中的第n个数可以用[()n﹣()n]表示(其中,n≥1).这是用无理数表示有理数的一个范例.
任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.
8、先阅读下列材料,然后解答问题:
材料1 从3张不同的卡片中选取2张排成一列,有6种不同的排法,抽象成数学问题就是从3个不同元素中选取2个元素的排列,排列数记为A32=3×2=6.
一般地,从n个不同元素中选取m个元素的排列数记作A n m,
A n m=n(n-1)(n-2)…(n-m+1)(m≤n).
例:从5个不同元素中选3个元素排成一列的排列数为:A53=5×4×3=60.
材料2 从3张不同的卡片中选取2张,有3种不同的选法,抽象成数学问题就是从3个元素中选取2个元素的组合,组合数记为C32==3.
一般地,从n个不同元素中选取m个元素的组合数记作C n m,
C n m=(m≤n).
例:从6个不同元素中选3个元素的组合数为:
C63==20.
问:(1)从7个人中选取4人排成一排,有多少种不同的排法?
(2)从某个学习小组8人中选取3人参加活动,有多少种不同的选法?
9、(2016•巴中)定义新运算:对于任意实数m、n都有m☆n=m2n+n,等式右边是常用的加法、减法、乘法及乘方运算.例如:﹣3☆2=(﹣3)2×2+2=20.根据以上知识解决问题:若2☆a的值小于0,请判断方程:2x2﹣bx+a=0的根的情况.
四、综合题
10、(2015•济宁)阅读材料:
在一个三角形中,各边和它所对角的正弦的比相等,==,利用上述结论可以求解如下题目:
在△ABC中,∠A、∠B、∠C的对边分别为a,b,c.若∠A=45°,∠B=30°,a=6,求b.
解:在△ABC中,∵=∴b====3.。