人教版初一数学有理数练习题
【绝对经典】初一数学有理数30题含详细答案
30.a、b、c三个数在数轴上位置如图所示,且|a|=|b|
(1)求出a、b、c各数的绝对值;
(2)比较a,﹣a、﹣c的大小;
(3)化简|a+b|+|a﹣b|+|a+c|+|b﹣c|.
参考答案
1.D
【解析】
【分析】
负数小于0,可将各项化简,然后再进行判断.
3.C
【解析】
【分析】
(25±0.2)的字样表明质量最大为25.2,最小为24.8,二者之差为0.4.
【详解】
解:根据题意得:标有质量为(25±0.2)的字样,
(3)如果点A、C表示的数互为相反数,求点B表示的数.
29.数轴上两点之间的距离等于相应两数差的绝对值,如2与3的距离可表示为|2﹣3|=1,2与﹣3的距离可表示为|2﹣(﹣3)|=5
(1)数轴上表示3和8的两点之间的距离是_____;数轴上表示﹣3和﹣9的两点之间的距离是_____;
(2)数轴上表示x和﹣2的两点A和B之间的距离是_____;如果|AB|=4,则x为_____;
2.B
【解析】
【分析】
根据有理数的分类逐一作出判断即可.
【详解】
解:A.0既不是正数也不是负数,故A错误;B.整数和分数统称为有理数;故B正确;C.若|a|=|b|,则a=b或a与b互为相反数.故C错误;D.整数包括正整数、0和负整数,故D错误.
【点睛】
本题考查了有理数的分类,掌握有理数的分类是解题的关键.
A.0.2 kgB.0.3 kgC.0.4 kgD.50.4 kg
4.小丽在纸上画了一条数轴后,折叠纸面,使数轴上表示2的点与表示-4的点重合;若数轴上A、B两点之间的距离为10(A在B的左侧),且A、B两点经上述折叠后重合,则A点表示的数是()
人教版初一数学七年级数学上册练习题【附答案】
人教版七年级数学上册精品练习题七年级有理数一、境空题(每空2分,共38分)1、31-的倒数是____;321的相反数是____. 2、比–3小9的数是____;最小的正整数是____.3、在数轴上,点A 所表示的数为2,那么到点A 的距离等于3个单位长度的点所表示的数是4、两个有理数的和为5,其中一个加数是–7,那么另一个加数是____.5、某旅游景点11月5日的最低气温为 2-,最高气温为8℃,那么该景点此日的温差是6、计算:.______)1()1(101100=-+-7、平方得412的数是____;立方得–64的数是____. 8、+2与2-是一对相反数,请给予它实际的意义:___________________。
9、绝对值大于1而小于4的整数有____________,其和为_________。
10、若a 、b 互为相反数,c 、d 互为倒数,则 3 (a + b) 3-cd =__________。
11、若0|2|)1(2=++-b a ,则b a +=_________。
12、数轴上表示数5-和表示14-的两点之间的距离是__________。
13、在数5-、 1、 3-、 5、 2-中任取三个数相乘,其中最大的积是___________,最小的积是____________。
14、若m ,n 互为相反数,则│m-1+n │=_________.二、选择题(每小题3分,共21分)15、有理数a 、b 在数轴上的对应的位置如图所示:则( )0-11abA .a + b <0B .a + b >0;C .a -b = 0D .a -b >016、下列各式中正确的是( )A .22)(a a -=B .33)(a a -=;C .|| 22a a -=-D .|| 33a a =17、若是0a b +>,且0ab <,那么( )A.0,0a b >> ;B.0,0a b << ;C.a 、b 异号;D. a 、b 异号且负数和绝对值较小18、下列代数式中,值必然是正数的是( )A .x 2 B.|-x+1| C.(-x)2+2 D.-x 2+119、算式(-343)×4可以化为()(A )-3×4-43×4 (B )-3×4+3 (C )-3×4+43×4 (D )-3×3-3 20、小明近期几回数学测试成绩如下:第一次85分,第二次比第一次高8分,第三次比第二次低12分,第四次又比第三次高10分.那么小明第四次考试的成绩是…………()A 、90分B 、75分C 、91分D 、81分21、一家商店一月份把某种商品按进货价提高60%出售,到三月份再宣称以8折(80%)大拍卖,那么该商品三月份的价钱比进货价………………………………………()A 、高%B 、低%C 、高40%D 、高28%三、计算(每小题5分,共15分)22、)1279543(+--÷361; 23、|97|-÷2)4(31)5132(-⨯--24、322)43(6)12(7311-⨯⎥⎦⎤⎢⎣⎡÷-+--四、解答题(共46分)25、已知|a|=7,|b|=3,求a+b 的值。
人教版初一数学《有理数》测试卷(含答案)
有理数测试卷第I 卷(100分)一. 细心选一选(本题有10个小题,每小题3分,满分30分,下面每小题给出的四个选项中,只有一个是正确的。
1、-7的相反数是( )A 、7B 、71C 、71-D 、-72、()23-=( )A 、6B 、9C 、-6D 、-93、舟曲特大泥石流发生后,全国人民踊跃捐款捐物,到8月12日17时止,累计捐款约为3068万元,将 3068用科学记数法表示为( )A 、3.68×310B 、3.068×310C 、30.68×210D 、0.3068×4104、下列各式正确的是( )A 、-8-5=-3B 、4a+3b=7abC 、x 5- x 4=xD 、-2-(-7)=55、下列各组式中是同类项的是( )A 、a 与221a -B 、z y x 32与32y x -C 、2x 与2yD 、249yx 与y x 25- 6、方程2x=x -2的解是( )A 、1B 、-1C 、-2D 、2 7、去括号:-(a - b + c )=( )A 、-a + b+ cB 、-a + b- cC 、-a - b+ cD 、-a – b- c 8、下列说法正确的是( )A 、0.600有4个有效数字B 、5.7万精确到0.1C 、6.610精确到千分位D 、2.708×410有5个有效数字 9、如图,a 、b 两个数在数轴上的位置如图所,则下列各式正确的是( )A 、b a + < 0B 、ab < 0C 、b a - < 0D 、b a > 0 10、若()0122=++-y x ,则y x +等于( )A 、1B 、-1C 、3D 、-3二、耐心填一填(本题有6个小题,每小题3分,满分18分)11、收入853元记作+853元,则支出312元记作________元。
12、单项式2331bc a -次数是_______。
新人教版七年级数学《有理数》课堂同步练习题
新人教版七年级上册数学《有理数》课堂同步练习题一、正数、负数一、【基础平台】1.任意写出5个正数:_______________;任意写出5个负数:_______________.2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________.3.已知下列各数:-51,432,-3.14,+3065,0,-239.则正数有_________________________;负数有__________________.4.向东行进-50m表示的意义是〖〗A.向东行进50m B.向南行进50mC.向北行进50m D.向西行进50m5.下列结论中正确的是〖〗A.0既是正数,又是负数B.O是最小的正数C.0是最大的负数D.0既不是正数,也不是负数6.给出下列各数:-3,0,+5,213,+3.1,-21,-2004,+2008.其中是负数的有〖〗A.2个B.3个C.4个D.5个二、【自主检测】1.零下15℃,表示为_________,比O℃低4℃的温度是_________.2.地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为-5米,其中最高处为_______地,最低处为_______地.3.某天中午11时的温度是11℃,早晨6时气温比中午低7℃,则早晨温度为_____℃,若早晨6时气温比中午低13℃,则早晨温度为_____℃.4.“甲比乙大-3岁”表示的意义是______.5.在下列四组数(1)-3,2.3,41;(2)43,0,212;(3)311,0.3,7;(4) 21,51,2中,三个数都不是负数的组是〖〗A.(1)(2) B.(2)(4)C.(3)(4) D.(2)(3)(4)三、【拓展平台】1.写出比0小4的数,比4小2的数,比-4小2的数.2.如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米处游动,试用正负数分别表示潜水艇和鲨鱼的高度.3、学校对初一男生进行立定跳远的测试,以能跳1.7m及以上为达标,超过1.7m的厘米数用正数表示,不足l.7m的厘米数用负数表示.第一组10名男生成绩如下(单位cm):+2,-4,0,+5,+8,-7,0,+2,+10,-3 问:第一组有百分之几的学生达标?二、有理数、数轴一.填空题1.数轴上原点所表示的数是(),原点右边的点所表示的数是()数,原点左边的点所表示的数是()数.2.数轴上表示-4.5的点到原点的距离是()个单位长度;+4.5的点到原点的距离是()个单位长度;到原点距离4.5个单位长度的数有()个.3.数轴上的点A所对应的数是-2,点B所对应的数是5,那么A、B两点的距离是(),点A、B的中点表示的数是().4.一个点从数轴的原点开始,先向右移动了3个单位长度,再向左移动4个单位长度,则终点表示的数是().5.小于7.5的正整数有(),大于-3小于3的整数有()。
完整版)初一数学有理数专项练习题
完整版)初一数学有理数专项练习题1.选择题(本题满分30分,每题2分)1.下列说法中,正确的个数是()选项:A.1个B.2个C.3个D.4个正确答案:C.3个解析:①一个有理数不是整数就是分数,错误;②一个有理数不是正的,就是负的,错误;③一个整数不是正的,就是负的,正确;④一个分数不是正的,就是负的,错误。
2.在有理数中,绝对值等于它本身的数有()选项:A.1个B.2个C.3个D.无穷多个正确答案:A.1个解析:只有0的绝对值等于它本身。
3.下列说法中正确的是()选项:A.π的相反数是314.B.符号不同的两个数一定是互为相反数C.若x和y互为相反数,则x yD.一个数的相反数一定是负数正确答案:C.若x和y互为相反数,则x+y=0解析:A错误,π的相反数是-π;B错误,符号相反的两个数互为相反数;C正确;D错误,0的相反数是0.4.下列正确的式子是()选项:A.-|﹣|>0 B.-(-4)=-|﹣4| C.-3>-π D.-3.14>-π正确答案:B.-(-4)=-|﹣4|解析:A错误,-|﹣|=-1;B正确;C错误,-3<0<-π;D 错误,-3.14<0<-π。
5.若a+b<0,ab>0,则()选项:A.a>0,b>0 B.a,b两数一正一负,且正数的绝对值大于负数的绝对值C.a,b两数一正一负,且负数的绝对值大于正数的绝对值 D.a<0,b<0正确答案:B.a,b两数一正一负,且正数的绝对值大于负数的绝对值解析:由ab>0可知,a和b符号相同,由a+b<0可知,a和b一正一负,又因为正数的绝对值大于负数的绝对值,故选B。
6.某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg、(25±0.2)kg、(25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()选项:A.0.8kg B.0.6kg C.0.5kg D.0.4kg正确答案:B.0.6kg解析:两袋面粉的质量相差的最大值为0.2+0.3=0.5kg,故选B。
人教初一数学有理数单元检测题10套
人教初一数学有理数单元检测题10套单元检测有理数单元检测001有理数及其运算(综合)(测试5)一、境空题(每空2分,共28分)1、13的倒数是____;123的相反数是____.2、比–3小9的数是____;最小的正整数是____.3、计算:3212____;95_____.4、在数轴上,点A所表示的数为2,那么到点A的距离等于3个单位长度的点所表示的数是5、两个有理数的和为5,其中一个加数是–7,那么另一个加数是____.6、某旅游景点11月5日的最低气温为2,最高气温为8℃,那么该景点这天的温差是____.C7、计算:(1)100(1)101______.8、平方得214的数是____;立方得–64的数是____.9、用计算器计算:95_________.10、观察下面一列数的规律并填空:0,3,8,15,24,_______.二、选择题(每小题3分,共24分)11、–5的绝对值是()A、5B、–5C、15D、1512、在–2,+3.5,0,23,–0.7,11中.负分数有()A、l个B、2个C、3个D、4个13、下列算式中,积为负数的是()A、0(5)B、4(0.5)(10)C、(1.5)(2)D、(2)(1)(253)14、下列各组数中,相等的是()A、–1与(–4)+(–3)B、3与–(–3)C、324与916D、(4)2与–1615、小明近期几次数学测试成绩如下:第一次85分,第二次比第一次高8分,第三次比第二次低12分,第四次又比第三次高10分.那么小明第四次测验的成绩是()A、90分B、75分C、91分D、81分16、l米长的小棒,第1次截止一半,第2次截去剩下的一半,如此下去,第6次后剩下的小棒长为()A、112B、132C、1164D、12817、不超过(32)3的最大整数是()A、–4B–3C、3D、418、一家商店一月份把某种商品按进货价提高60%出售,到三月份再声称以8折(80%)大拍卖,那么该商品三月份的价格比进货价()A、高12.8%B、低12.8%C、高40%D、高28%单元检测三、解答题(共48分)19、(4分)把下面的直线补充成一条数轴,然后在数轴上标出下列各数:–3,+l,21,-l.5,6.2要使这杯酒精冻结,需要几分钟?(精确到0.1分钟)25、(4分)某商店营业员每月的基本工资为300元,奖金制度是:每月完成规定指标10000元营业额的,发奖金300元;若营业额超过规定指标,另奖超额部分营业额的5%,该商店的一名营业员九月份完成营业额13200元,20、(4分)七年级一班某次数学测验的平均成绩为80分,数学老师以平均成绩为基准,记作0,把小龙、小聪、小梅、小莉、小刚这五位同学的成绩简记为+10,–15,0,+20,–2.问这五位同学的实际成绩分别是多少分?21、(8分)比较下列各对数的大小.(1)43525与4(2)45与45(3)52与2(4)23与(23)222、(8分)计算.(1)38715(2)12(1146)(3)236(3)2(4)(4)1(11163)623、(12分)计算.(l)43(2)215(2)1.530.750.53343.40.75(3)(10.5)132(4)2(4)(5)3(35)32(22)(114)24、(4分)已知水结成冰的温度是0C,酒精冻结的温度是–117℃。
人教版初一数学有理数的运算步骤练习题
人教版初一数学有理数的运算步骤练习题下面是一些人教版初一数学有理数运算的练题,帮助学生熟练掌握有理数的运算步骤。
练题一:计算下列有理数的和:1. $(-3) + 5 = ?$2. $(-2) + (-7) = ?$3. $(-6) + 4 = ?$4. $(-1) + (-8) = ?$练题二:计算下列有理数的差:1. $7 - (-2) = ?$2. $(-4) - (-9) = ?$3. $(-1) - 5 = ?$4. $(-8) - 3 = ?$练题三:计算下列有理数的积:1. $3 \times 4 = ?$2. $(-2) \times (-5) = ?$3. $(-3) \times 6 = ?$4. $(-4) \times (-7) = ?$ 练题四:计算下列有理数的商:1. $\frac{16}{8} = ?$2. $\frac{(-10)}{(-2)} = ?$3. $\frac{(-15)}{3} = ?$4. $\frac{(-20)}{(-4)} = ?$练题五:综合运算练题:1. $(-3) + 4 \times (-5) - (-2) = ?$2. $\frac{(-6) - 2 \times (-4)}{2} = ?$3. $(-3) \times 4 + \frac{(-10)}{2} = ?$练题六:写出下列有理数的相反数和绝对值:1. $-7$ 的相反数为:?2. $5$ 的相反数为:?3. $-3$ 的绝对值为:?4. $0$ 的绝对值为:?以上练习题旨在帮助初一学生巩固和熟练掌握有理数的运算步骤,提高数学能力。
希望同学们认真练习,取得良好的成绩。
人教版初一数学《有理数运算》测试卷(含答案)
人教版初一数学《有理数运算》测试卷(含答案)一、选择题(每小题4分,共20分)1. 下列选项中,表示有理数的是()- A. √2- B. -√3- C. π- D. e2. (-3) + (-7)的结果是()- A. 10- B. -10- C. 4- D. -43. 计算:(-5) - (-11)的结果是()- A. -6- B. 6- C. 16- D. -164. 下列各式中,结果为负数的是()- A. 5 - 8- B. -3 + 7- C. -2 - (-5)- D. -4 + (-6)5. 已知a = -3,b = 7,c = -5,求a - b + c的值为()- A. -21- B. 5- C. -15- D. -5二、填空题(每小题4分,共20分)1. 有理数中绝对值最大的数是-8,那么它的相反数是()2. 下列各数中,哪一个是5的倍数:-25,-20,20,-10,03. 把两个相同的数相加,和是0,这两个数是()4. “负负得正”中的“负负”有几个负()5. 下列各组中只含有负有理数的是()三、解答题(共60分)1. 小明家里今年过年准备了2大盒汤圆,第一大盒有126颗汤圆,第二大盒有158颗汤圆。
请问小明家里一共准备了多少颗汤圆?()2. 中国男足在一场比赛中进了10个球,但同时也失去了6个球。
请问中国男足这场比赛的进球数和失球数的差是多少?3. 计算:(-7) + 9 - (-3) - (-16) + 2的结果。
4. 小明手中有一把剪刀,他又借了一把剪刀。
小明现在手中的剪刀数是借之前的两倍,那么小明手中现在有几把剪刀?5. (5 - 2) × (4 + 3) + 6的结果是多少?四、附加题(挑战每小题10分,共20分)1. 请用箭头表示数轴上面的0、5、-3和4这四个数。
2. 小明写下了一个负数,它的绝对值是3,小明还写下了一个正数,它的相反数比小明写下的负数的相反数大2。
新人教版数学七年级上册第一章有理数1.5.3《近似数》课时练习.doc
新人教版数学七年级上册《第一章有理数》【1.5.3 近似数】课时练习一、选择题(共15小题)1.下列各数中,是准确数的是()A、小明身高大约165cmB、天安门广场约44万平方米C、天空中有8只飞鸟D、国庆长假到北京旅游的有60万人答案:C知识点:近似数与有效数字解析:解答: A、小明身高大约165cm, 是近似数;B、天安门广场约44万平方米, 是近似数;C、天空中有8只飞鸟, 是准确数;D、国庆长假到北京旅游的有60万人, 是近似数.分析:本题主要考查学生对近似数和准确数的定义的掌握.生活中的测量数据往往是近似数,如测量的身高等.因此D选项是易错点.准确数往往是能用自然数来表示的物体的个数.2.下列各数中,是近似数的是()A、七(1)班共有65名同学B、足球比赛每方共有11名球员C、光速是300000000米/秒D、小王比小华多2元答案:C知识点:近似数与有效数字解析:解答: A、七(1)班共有65名同学, 是准确数;B、足球比赛每方共有11名球员, 是准确数;C、光速是300000000米/秒, 是近似数;D、小王比小华多2元, 是准确数.分析:本题主要考查学生对近似数和准确数的定义的掌握.准确数是真实准确的数,而近似数与准确数相近(略多或略少),通过估计得到的,因此,此题中的C属于估计得到的数,是近似数.3.用四舍五入法,分别按要求取0.06018的近似值,下列四个结果中错误的是()A、0.1(精确到0.1)B、0.06(精确到0.001)C、0.06(精确到0.01)D、0.0602(精确到0.0001)答案:B知识点:近似数与有效数字解析:解答: A、0.1(精确到0.1), 正确;B、0.06(精确到0.001), 错误, 正确答案应该是0.060;C、0.06(精确到0.01), 正确;D、0.0602(精确到0.0001), 正确.分析:一个近似数的有效数字是从左边第一个不是0的数字起,(到精确的数位止),后面的所有数字都是这个数的有效数字;精确到哪一位(应看末位在哪一位),再对它后边的一位进行四舍五入.4.下列各题中的数是准确数的是( )A.初一年级有400名同学B.月球与地球的距离约为38万千米C.毛毛身高大约158㎝D.今天气温估计30℃答案:A知识点:近似数与准确数解析:解答: A.初一年级有400名同学, 是准确数;B.月球与地球的距离约为38万千米,是近似数;C.毛毛身高大约158㎝, 是近似数;D.今天气温估计30℃, 是近似数.分析:本题主要考查学生对近似数和准确数的定义的掌握.准确数是真实准确的数,而近似数与准确数相近(略多或略少),通过估计得到的,一般会有大约,估计等关键字,因此,此题中的A 属于准确数.5.由四舍五入法得到近似数0.09330,它的有效数字的个数是( )A.3个B.4个C.5个D.6个答案:B知识点:近似数与有效数字解析:解答: 0.09330的有效数字有9,3,3,0;一共有4个.所以选择B分析:一个近似数的有效数字是从左边第一个不是0的数字起,后面的所有数字都是这个数的有效数字.6.把0.0975取近似数,保留两个有效数字的近似值是( )A.0.10 B.0.097 C.0.098 D.0.98答案:C知识点:近似数与有效数字解析:解答: 0.0975≈0.098(保留两个有效数字).所以选择C分析:一个近似数的有效数字是从左边第一个不是0的数字起,后面的所有数字都是这个数的有效数字,再对保留的有效数字后一位进行四舍五入.本题主要考查如何取近似值的问题.7.某种鲸的体重约为1.36×105千克.关于这个近似数,下列说法正确的是().A.精确到百分位,有3个有效数字B.精确到个位,有6个有效数字C.精确到千位,有6个有效数字D.精确到千位,有3个有效数字答案:D知识点:近似数,有效数字,科学记数法解析:解答: 1.36×105最后一位的6表示的是6千,一共有1,3,6三个有效数字.所以选择D分析:此题考查了用科学记数法表示的数的有效数字的确定方法,解此题时要注意:1.10的n次方乘号前面的最后一位数表示数位.2.用科学记数法表示的数的有效数字只与前面的a有关系,与10和n次方无关.8.对于20.55与2.055这两个近似数,下列说法中,正确的是()A.它们的有效数字与精确位数都不相同B.它们的有效数字与精确位数都相同C.它们的精确位数不相同,有效数字相同D.它们的有效数字不相同,精确位数相同答案:C知识点:近似数与有效数字解析:解答: 20.55有四个有效数字,精确到百分位.2.055有四个有效数字,精确到千分位.所以选择C分析:分别把两个数的有效数字与精确位求出来就可以了,本题主要考察对有效数字和精确位的掌握.9.下列各题中的各数是近似数的是()A.初一新生有680名B.圆周率πC.光速约是3.0×108米/秒D.排球比赛每方各有6名队员答案:C知识点:近似数与有效数字解析:解答: A.初一新生有680,, 是准确数;B.圆周率π, 是准确数;C.光速约是3.0×108米/秒, 是近似数;D.排球比赛每方各有6名队员, 是准确数.分析:本题主要考查学生对近似数和准确数的定义的掌握.准确数是真实准确的数,而近似数与准确数相近(略多或略少),通过估计得到的,因此,此题中的C属于估计得到的数,是近似数.10.-31.999精确到百分位的近似数的有效数字的个数是()A.2B.3C.4D.5答案:C知识点:近似数与有效数字解析:解答: -31.999≈-32.00,它有3,2,0,0,四个有效数字.所以选择C.分析:本题主要考查学生对近似数求法和有效数字的意义的掌握.精确位的近似数的求法要看精确位的后一位再四舍五入,关键要看清楚精确到的位数.11.如果由四舍五入得到的近似数为45,那么在下列各题中不可能是( )A .44.49B .44.51C .44.99D .45.01答案:A知识点:近似数解析:解答: 由于B.44.51, C. 44.99 , D.45.01 四舍五入的近似值都可能是45.所以选择A.分析:本题主要考查学生对近似数的掌握程度.找到所给数的十分位,不能四舍五入到5的数就是本题的答案.12.对于6.3×103与6300这两个近似数,下列说法中,正确的是( )A .它们的有效数字与精确位数都不相同B .它们的有效数字与精确位数都相同C .它们的精确位数不相同,有效数字相同D .它们的有效数字不相同,精确位数相同答案:A知识点:近似数,有效数字,科学记数法解析:解答: 6.3×103:精确到百位,有2个有效数字;6300:精确到个位,有四个有效数字.所以选择A分析:分别把两个数的有效数字与精确位求出来就可以了,本题主要考察对有效数字和精确位的掌握,科学记数法求精确位和有效数字时要注意:1.10的n 次方乘号前面的最后一位数表示数位.2.用科学记数法表示的数的有效数字只与前面的a 有关系,与10和n 次方无关.13.毕节地区水能资源丰富,理论蕴藏量达221.21万千瓦,己开发156万千瓦,把已开发水能资源用四舍五入法保留两个有效数字并且用科学记数法表示应记为( )千瓦A .51016⨯B .6106.1⨯C .610160⨯D .71016.0⨯答案:B知识点:近似数,有效数字,科学记数法解析:解答: 156万=1.56×106≈1.6×106.所以选择B分析:此题主要考查了科学记数法的表示方法以及用科学记数法表示的数的有效数字的确定方法,科学记数法的表示方法和有效数字的确定时要注意:1.科学记数法表示形式为:a×10n的形式,其中1≤a<10,n为整数,确定n的值是易错点,因为156万有7位,所以n=7-1=6.2.10的n次方乘号前面的最后一位数表示数位.3.用科学记数法表示的数的有效数字只与前面的a有关系,与10和n次方无关.14.下列说法中,正确的是()A.近似数3.76与3.760表示的意义一样B.近似数13.2亿精确到亿位C.3.0×103精确到百位,有4个有效数字D.近似数30.000有5个有效数字答案:D知识点:近似数,有效数字,科学记数法解析:解答: A.近似数3.76精确度是0.01,有效数学是3个,近似数3.760精确度为0.001,有效数字有4个;所以意义不一样,错误B.近似数13.2亿不是精确到亿位,而是精确到千万位,所以错误;C.3.0×103不是四个有效数字,而是2个,所以错误;D.近似数30.000有5个有效数字,正确.所以选择D分析:此题主要考查了近似数的精确度和有效数字的知识,有一定的综合性,但不是很难,熟练掌握这些知识是解题的关键.15.8708900精确到万位是()A.870万B.8.70×106C.871×104 D.8.71×106答案:D知识点:近似数,科学记数法解析:解答:8708900精确到万位是8.71×106.所以选择D分析:此题主要考查了用科学记数法表示的数的精确度的求法.若要求一个数近似到个位以前的数里,首先要对这个数用科学记数法表示.二、填空题(共5小题)1.下列由四舍五入法得到近似数,各精确到哪一位:⑴0.0233 ;⑵3.10 ;⑶4.50万;⑷3.04×104;答案:⑴万分位;⑵百分位;⑶百位;⑷百位。
1.2.1 人教版七年级上册数学 第一章《有理数》有理数 专题训练含答案及解析
简单1、在−8,2006,,0,−5,+13,−,−7.2中,正整数和负分数共有( )A.3个B.4个C.5个D.6个【分析】根据正整数和负分数的定义找出即可.【解答】正整数有2006,+13,负分数有-,-7.2,所以正整数和负分数共有4个.故选B.2、下列说法:①0是整数;②4.2不是正数;③自然数一定是正数;④-2.5是负分数;⑤负分数一定是负有理数.其中正确的有( )A.1个B.2个C.3个D.4个【分析】根据整数的意义,可判断①;根据大于零的数是正数,可判断②;根据自然数的定义,可判断③;根据小于零的分数是负分数,可判断④;根据有理数的定义,可判断⑤.【解答】①0是整数,故①正确;②4.2是正数,故②错误;③零也是自然数,故③错误;④-2.5是负分数,故④正确;⑤负分数一定是负有理数,故⑤正确;故选C.3、下列说法中正确的是( )A.有最小的正数B.有最大的负数C.有最小的整数D.有最小的正整数【分析】利用正数、负数的定义与性质,以及整数的概念与分类(正整数,0,负整数)即可解答.【解答】①没有最小的正数,也没有最大的正数,因此选项错误;②没有最小的负数,也没有最大的负数,因此选项错误;③整数包括正整数和负整数,没有最小的整数,因此选项错误;④最小的正整数是1,因此选项正确.故选D.4、下列说法中不正确的是( )A.-3.14既是负数,分数,也是有理数B.0既不是正数,也不是负数,但是整数C.-2015既是负数,也是整数,但不是有理数D.0是非正数【分析】本题需先根据有理数的定义,找出不符合题意得数即可求出结果.【解答】根据题意得:-2015既是负数,也是整数,但它也是有理数故选C.5、下列说法中不正确的是( )A.是有理数B.有理数是正数和负数的统称C.-0.3是负分数D.0既不是正数,也不是负数【分析】利用有理数的定义及分类判定即可.【解答】A、是有理数,此选项正确,B、有理数是正数、负数和零的统称,故此项错误,C、-0.3是负分数,此选项正确,D、0既不是正数,也不是负数,此选项正确,故选B.6、学校对初一男生进行立定跳远的测试,以能跳1.7m及以上为达标,超过1.7m的厘米数用正数表示,不足l.7m的厘米数用负数表示.第一组10名男生成绩如下(单位cm):+2-40+5+8-70+2+10-3问:第一组有百分之几的学生达标?【分析】因为以能跳1.7m及以上为达标,超过1.7m的厘米数用正数表示,不足l.7m的厘米数用负数表示,所以成绩是0或正数为达标,一共有7个,再除以总人数即为所求.【解答】达标的有7人,因而达标率是×100%=70%.答:第一组有70%的学生达标.简单题1. -6,8不是( )A. 自然数 B.分数 C.有理数 D.负有理数解答:-6,8这俩个数中有自然数,有理数和负有理数。
初一数学第一章有理数计算题
初一数学第一章有理数计算题一、有理数加法运算(5题)1. 计算:(-3)+5- 解析:异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。
| - 3|=3,|5| = 5,5>3,所以结果为正,5 - 3=2。
- 答案:22. 计算:4+(-7)- 解析:异号两数相加,|4| = 4,| - 7|=7,7>4,取负号,7 - 4 = 3。
- 答案:-33. 计算:(-2)+(-3)- 解析:同号两数相加,取相同的符号,并把绝对值相加。
| - 2|+| - 3|=2 + 3=5,符号为负。
- 答案:-54. 计算:0+(-6)- 解析:0加任何数等于这个数本身,所以0+(-6)=-6。
- 答案:-65. 计算:(-5)+5- 解析:互为相反数的两数相加得0,-5和5互为相反数。
- 答案:0二、有理数减法运算(5题)1. 计算:5-(-3)- 解析:减去一个数等于加上这个数的相反数,所以5-(-3)=5 + 3=8。
- 答案:82. 计算:4 - 7- 解析:4-7=4+(-7),异号两数相加,|4| = 4,| - 7|=7,7>4,取负号,7 - 4=3,结果为-3。
- 答案:-33. 计算:(-3)-(-5)- 解析:(-3)-(-5)=(-3)+5,异号两数相加,| - 3|=3,|5| = 5,5>3,取正号,5 - 3 = 2。
- 答案:24. 计算:0-(-6)- 解析:0-(-6)=0 + 6=6。
- 答案:65. 计算:(-6)-6- 解析:(-6)-6=(-6)+(-6),同号两数相加,| - 6|+| - 6|=6+6 = 12,符号为负。
- 答案:-12三、有理数乘法运算(5题)1. 计算:(-2)×3- 解析:异号两数相乘得负,| - 2|×|3|=2×3 = 6,所以结果为-6。
- 答案:-62. 计算:4×(-5)- 解析:异号两数相乘得负,|4|×| - 5|=4×5 = 20,结果为-20。
人教版七年级数学上册《1.2.1有理数》练习题-有答案
人教版七年级数学上册《1.2.1有理数》练习题-有答案一.选择题 1.0是( )A .正有理数B .负有理数C .整数D .负整数 2.下列说法正确的是( ) A .整数就是正整数和负整数 B .分数包括正分数、负分数C .正有理数和负有理数组成全体有理数D .一个数不是正数就是负数3.在 14 −2 0 −3.4这四个数中 属于负分数的是( )A B .−2 C .0 D .−3.4A .4个B .3个C .2个D .1个5.下列各数中 整数的个数是−11 0 0.5 23 −7( )A .2个B .3个C .4个D .5个6.既是分数又是正有理数的是( )A .+2B .C .0D .2.015二.填空题8.在有理数−23、−5、3.14中 属于分数的个数共有个.9.在“1 −0.3 +13 0 −3.3”这五个数中 非负有理数是 .(写出所有符合题意的数)10.从正有理数集合中去掉正分数集合 得到集合.三.解答题11.把下列各数填在相应的大括号里:1 −45 8.9 −7 56 −3.2 +1 008 −0.06 28 −9.正整数集合:{ …}; 负整数集合:{ …};正分数集合:{ …}; 负分数集合:{…}.12.把下列各数填入它所属的集合内:5.2 0 π2 227 +(−4) −234 −(−3 ) 0.25555… −0.030030003…(1)分数集合:{…} (2)非负整数集合:{…} (3)有理数集合:{…}.答案: 1.C 2.B 3.D4.A 5.B 6.D .7.08.29.1 +1310.正整数11.解:正整数集合:{1 +1008 28 …}; 负整数集合:{−7 −9 …};12.解:(1)分数集合:{5.2227 −2340.25555…} (2)非负整数集合:{0 −(−3 )} (3)有理数集合:{5.2 0 227 +(−4) −234−(−3 ) 0.25555…}.。
人教版数学练习题初一
人教版数学练习题初一一、有理数1. 计算下列各题:(1) (3) + 7(2) 5 (2)(3) 4 × 25(4) 18 ÷ 3(5) (5 3) × 22. 化简下列各题:(1) 3 + 5 7(2) 4 (3) + 6(3) 2 × (5) ÷ 10(4) 8 ÷ (2) × (4)二、整式1. 计算下列各题:(1) 3a 2a(2) 4b + 5b 2b(3) 2x^2 3x^2 + x^2(4) 5m^2n 2m^2n + 3m^2n2. 化简下列各题:(1) 2a + 3b a + 4b(2) 3x^2 2x + 4x x^2(3) 4xy 3yx + 5xy 2xy1. 解下列方程:(1) 3x 7 = 11(2) 5 2y = 1(3) 4a + 9 = a(4) 7b 3 = 2b + 102. 解决实际问题:(1) 某数的3倍减去5等于8,求这个数。
(2) 一个数的2倍加上4等于这个数的5倍减去6,求这个数。
四、图形认识1. 判断下列说法是否正确:(1) 平行线一定在同一平面内。
(2) 两条直线的夹角可以是180度。
(3) 等腰三角形的底角相等。
2. 画图题:(1) 画一个等边三角形。
(2) 画一个长方形,并标出它的对角线。
五、数据初步认识1. 计算下列各题:(1) 求一组数据3, 5, 7, 9, 11的平均数。
(2) 求一组数据4, 6, 8, 10, 12的中位数。
2. 解决实际问题:(1) 某班学生数学成绩的平均分为85分,若加上一个得100分的学生,平均分变为87分,求原来班级的学生人数。
1. 解下列方程组:(1) \(\begin{cases} 2x + 3y = 8 \\ x y = 1\end{cases}\)(2) \(\begin{cases} 4a 2b = 6 \\ 3a + b = 9\end{cases}\)(3) \(\begin{cases} 5m + n = 17 \\ 2m 3n = 1\end{cases}\)(4) \(\begin{cases} 7p 3q = 26 \\ p + 2q = 11\end{cases}\)七、不等式与不等式组1. 解下列不等式:(1) \(3x 7 > 2\)(2) \(5 2y \leq 1\)(3) \(4a + 9 \geq a\)(4) \(7b 3 < 2b + 10\)2. 解下列不等式组:(1) \(\begin{cases} x > 3 \\ x 2 < 5 \end{cases}\)(2) \(\begin{cases} y + 4 \geq 0 \\ 2y 3 < 7\end{cases}\)八、平面几何1. 计算下列图形的面积:(1) 一个长为8cm,宽为6cm的长方形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版初一数学有理数练习题
一、选择题(共4小题)
的相反数是
A.
2. 下列各数中,最小的数是
B. C. D.
3. 如图,数轴上一点向左移动个单位长度到达点,再向右移动个单位长度到达点.若
点表示的数为,则点表示的数为
A. B.
4. 下列说法正确的是
A. 是负数
B. 一个数的绝对值一定是正数
C. 有理数不是正数就是负数
D. 分数都是有理数
二、填空题(共3小题)
5. 把下列各数填在指定的圈内:
,,,,.
6. 若,则.若,且,则
.
7. 如果数轴上表示,两数的点的位置如图所示,那么的计算结果是.
三、解答题(共3小题)
8. 计算:
(1;
(2;
(3.
9. 在数轴上表示下列各数:,,并用“”号连接.
10. 认真阅读下面的材料,完成有关问题.
材料:在学习绝对值时,老师教过我们绝对值的几何含义,如表示,在数轴上对应
,所以表示在数轴上对应的两点之
,所以表示在数轴上对应的点到原点的距离.一般地,点,在数轴上分别表示有理数,,那么,之间的距离可表示为.
(1)点,,在数轴上分别表示有理数,那么到的距离与到的距离
之和可表示为(用含绝对值的式子表示).
(2)利用数轴探究:①找出满足的的所有值是,
②设,当的值取在不小于且不大于的范围时,的值是不
变的,而且是的最小值,这个最小值是;当的值取在的范围时,取得最小值,这个最小值是.
(3)求的最小值为,此时的值为.
(4)求的最小值,求此时的取值范围.
答案
第一部分
1. A
2. A
3. D
4. D 【解析】A、因为当既不是正数,也不是负数,故本选项错误;
B、如的绝对值是,故本选项错误;
C、既不是正数,也不是负数,故本选项错误;
D、有理数包括整数和分数,故分数都是有理数,故本选项正确.
第二部分
5. 自然数:,,,整数:,,
6. ,或
7.
第三部分
8. (1)
(2)
(3)
9.
.
10. (1)
(2),;;不小于且不大于;
(3);
(4),
要使的值最小,取到之间(包括)的任意一个数,
要使的值最小,取到之间(包括,)的任意一个数,
显然当取到之间(包括,)的任意一个数能同时满足要求,不妨取并将其代入原
式,得;
的取值范围为.。