重庆市重庆八中2014届高三数学上学期定时训练(二)试题 理
(完整word版)2014年重庆市高考理科数学试卷及答案解析(word版)
2014年普通高校招生全国统一考试(重庆卷)数学试题卷(理工农医类)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的 1. 在复平面内表示复数(12)i i -的点位于( )A 。
第一象限 B.第二象限 C. 第三象限D 。
第四象限[核心考点]考查复数的运算,复数的几何意义。
[解析] (12)2i i i -=+,其在复平面上对应的点为(2,1)Z ,位于第一象限. [答案]A2. 对任意等比数列{}n a ,下列说法一定正确的是( )A 。
1a 、3a 、9a 成等比数列B 。
2a 、3a 、6a 成等比数列C 。
2a 、4a 、8a 成等比数列D.3a 、6a 、9a 成等比数列[核心考点]考查等比数列的性质应用。
[解析]根据等比数列的性质,2639a a a =,故3a 、6a 、9a 成等比数列。
[答案]D3。
已知变量x 与y 正相关,且由观测数据算得样本的平均数3x =, 3.5y =,则由观测的数据得线性回归方程可能为( ) A.0.4 2.3y x =+B.2 2.4y x =-C.29.5y x =-+D 。
0.3 4.4y x =-+[核心考点]考查两个变量的相关关系以及两个变量间的回归直线方程等知识的应用。
[解析]由变量x 与y 正相关可排除选项C 、D ,由样本中心点()2.5,3.5在回归直线方程上可得回归直线方程可能为0.4 2.3y x =+。
[答案]A4。
已知向量(,3)k =a ,(1,4)=b ,(2,1)=c ,且(23)-⊥a b c ,则实数k =( )A 。
92-B.0C 。
3D 。
152[核心考点]考查向量的坐标运算,以及向量垂直的坐标表示。
[解析]由题知,23(23,6)k -=--a b ,因为(23)-⊥a b c ,所以(23)0-=a b c ,所以(23)2(23)(6)4120k k -=-+-=-=a b c ,解得3k =。
2014年重庆市高考数学试卷(理科)最新修正版
2014年重庆市高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,在每小题给出的四个备选项中,只有一项是符合题目要求的.1.(5分)在复平面内复数Z=i(1﹣2i)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.(5分)对任意等比数列{a n},下列说法一定正确的是()A.a1,a3,a9成等比数列B.a2,a3,a6成等比数列C.a2,a4,a8成等比数列D.a3,a6,a9成等比数列3.(5分)已知变量x与y正相关,且由观测数据算得样本平均数=3,=3.5,则由该观测数据算得的线性回归方程可能是()A.=0.4x+2.3 B.=2x﹣2.4 C.=﹣2x+9.5 D.=﹣0.3x+4.44.(5分)已知向量=(k,3),=(1,4),=(2,1)且(2﹣3)⊥,则实数k=()A.﹣ B.0 C.3 D.5.(5分)执行如图所示的程序框图,若输出k的值为6,则判断框内可填入的条件是()A.s>B.s>C.s>D.s>6.(5分)已知命题p:对任意x∈R,总有2x>0;q:“x>1”是“x>2”的充分不必要条件,则下列命题为真命题的是()A.p∧q B.¬p∧¬q C.¬p∧q D.p∧¬q7.(5分)某几何体的三视图如图所示则该几何体的表面积为()A.54 B.60 C.66 D.728.(5分)设F1,F2分别为双曲线﹣=1(a>0,b>0)的左、右焦点,双曲线上存在一点P使得|PF1|+|PF2|=3b,|PF1|•|PF2|=ab,则该双曲线的离心率为()A.B.C.D.39.(5分)某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()A.72 B.120 C.144 D.16810.(5分)已知△ABC的内角A,B,C满足sin2A+sin(A﹣B+C)=sin(C﹣A﹣B)+,面积S满足1≤S≤2,记a,b,c分别为A,B,C所对的边,在下列不等式一定成立的是()A.bc(b+c)>8 B.ab(a+b)>16C.6≤abc≤12 D.12≤abc≤24二、填空题:本大题共3小题,每小题5分共15分把答案填写在答题卡相应位置上.11.(5分)设全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},则(∁U A)∩B=.12.(5分)函数f(x)=log 2•log(2x)的最小值为.13.(5分)已知直线ax+y﹣2=0与圆心为C的圆(x﹣1)2+(y﹣a)2=4相交于A,B两点,且△ABC为等边三角形,则实数a=.三、选做题:考生注意(14)(15)、(16)三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分14.(5分)过圆外一点P作圆的切线PA(A为切点),再作割线PBC依次交圆于B、C,若PA=6,AC=8,BC=9,则AB=.15.(5分)已知直线l的参数方程为(t为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ﹣4cosθ=0(ρ≥0,0≤θ<2π),则直线l与曲线C的公共点的极径ρ=.16.若不等式|2x﹣1|+|x+2|≥a2+a+2对任意实数x恒成立,则实数a的取值范围是.四、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.17.(13分)已知函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ<)的图象关于直线x=对称,且图象上相邻两个最高点的距离为π.(Ⅰ)求ω和φ的值;(Ⅱ)若f()=(<α<),求cos(α+)的值.18.(13分)一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3,从盒中任取3张卡片.(Ⅰ)求所取3张卡片上的数字完全相同的概率;(Ⅱ)X表示所取3张卡片上的数字的中位数,求X的分布列与数学期望.(注:若三个数字a,b,c满足a≤b≤c,则称b为这三个数的中位数.)19.(13分)如图,四棱锥P﹣ABCD,底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=,M为BC上的一点,且BM=,MP⊥AP.(Ⅰ)求PO的长;(Ⅱ)求二面角A﹣PM﹣C的正弦值.20.(12分)已知函数f(x)=ae2x﹣be﹣2x﹣cx(a,b,c∈R)的导函数f′(x)为偶函数,且曲线y=f(x)在点(0,f(0))处的切线的斜率为4﹣c.(Ⅰ)确定a,b的值;(Ⅱ)若c=3,判断f(x)的单调性;(Ⅲ)若f(x)有极值,求c的取值范围.21.(12分)如图,设椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,点D在椭圆上.DF1⊥F1F2,=2,△DF1F2的面积为.(Ⅰ)求椭圆的标准方程;(Ⅱ)设圆心在y轴上的圆与椭圆在x轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径.22.(12分)设a1=1,a n+1=+b(n∈N*)(Ⅰ)若b=1,求a2,a3及数列{a n}的通项公式;(Ⅱ)若b=﹣1,问:是否存在实数c使得a2n<c<a2n+1对所有的n∈N*成立,证明你的结论.2014年重庆市高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,在每小题给出的四个备选项中,只有一项是符合题目要求的.1.(5分)在复平面内复数Z=i(1﹣2i)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据复数乘法的运算法则,我们可以将复数Z化为a=bi(a,b∈R)的形式,分析实部和虚部的符号,即可得到答案.【解答】解:∵复数Z=i(1﹣2i)=2+i∵复数Z的实部2>0,虚部1>0∴复数Z在复平面内对应的点位于第一象限故选:A.【点评】本题考查的知识是复数的代数表示法及其几何意义,其中根据复数乘法的运算法则,将复数Z化为a=bi(a,b∈R)的形式,是解答本题的关键.2.(5分)对任意等比数列{a n},下列说法一定正确的是()A.a1,a3,a9成等比数列B.a2,a3,a6成等比数列C.a2,a4,a8成等比数列D.a3,a6,a9成等比数列【分析】利用等比中项的性质,对四个选项中的数进行验证即可.【解答】解:A项中a3=a1•q2,a1•a9=•q8,(a3)2≠a1•a9,故A项说法错误,B项中(a3)2=(a1•q2)2≠a2•a6=•q6,故B项说法错误,C项中(a4)2=(a1•q3)2≠a2•a8=•q8,故C项说法错误,D项中(a6)2=(a1•q5)2=a3•a9=•q10,故D项说法正确,故选:D.【点评】本题主要考查了是等比数列的性质.主要是利用了等比中项的性质对等比数列进行判断.3.(5分)已知变量x与y正相关,且由观测数据算得样本平均数=3,=3.5,则由该观测数据算得的线性回归方程可能是()A.=0.4x+2.3 B.=2x﹣2.4 C.=﹣2x+9.5 D.=﹣0.3x+4.4【分析】变量x与y正相关,可以排除C,D;样本平均数代入可求这组样本数据的回归直线方程.【解答】解:∵变量x与y正相关,∴可以排除C,D;样本平均数=3,=3.5,代入A符合,B不符合,故选:A.【点评】本题考查数据的回归直线方程,利用回归直线方程恒过样本中心点是关键.4.(5分)已知向量=(k,3),=(1,4),=(2,1)且(2﹣3)⊥,则实数k=()A.﹣ B.0 C.3 D.【分析】根据两个向量的坐标,写出两个向量的数乘与和的运算结果,根据两个向量的垂直关系,写出两个向量的数量积等于0,得到关于k的方程,解方程即可.【解答】解:∵=(k,3),=(1,4),=(2,1)∴2﹣3=(2k﹣3,﹣6),∵(2﹣3)⊥,∴(2﹣3)•=0'∴2(2k﹣3)+1×(﹣6)=0,解得,k=3.故选:C.【点评】本题考查数量积的坐标表达式,是一个基础题,题目主要考查数量积的坐标形式,注意数字的运算不要出错.5.(5分)执行如图所示的程序框图,若输出k的值为6,则判断框内可填入的条件是()A.s>B.s>C.s>D.s>【分析】程序运行的S=××…×,根据输出k的值,确定S的值,从而可得判断框的条件.【解答】解:由程序框图知:程序运行的S=××…×,∵输出的k=6,∴S=××=,∴判断框的条件是S>,故选:C.【点评】本题考查了当型循环结构的程序框图,根据框图的流程判断程序运行的S值是解题的关键.6.(5分)已知命题p:对任意x∈R,总有2x>0;q:“x>1”是“x>2”的充分不必要条件,则下列命题为真命题的是()A.p∧q B.¬p∧¬q C.¬p∧q D.p∧¬q【分析】由命题p,找到x的范围是x∈R,判断p为真命题.而q:“x>1”是“x >2”的充分不必要条件是假命题,然后根据复合命题的判断方法解答.【解答】解:因为命题p对任意x∈R,总有2x>0,根据指数函数的性质判断是真命题;命题q:“x>1”不能推出“x>2”;但是“x>2”能推出“x>1”所以:“x>1”是“x>2”的必要不充分条件,故q是假命题;所以p∧¬q为真命题;故选:D.【点评】判断复合命题的真假,要先判断每一个命题的真假,然后做出判断.7.(5分)某几何体的三视图如图所示则该几何体的表面积为()A.54 B.60 C.66 D.72【分析】几何体是三棱柱消去一个同底的三棱锥,根据三视图判断各面的形状及相关几何量的数据,把数据代入面积公式计算.【解答】解:由三视图知:几何体是直三棱柱消去一个同底的三棱锥,如图:三棱柱的高为5,消去的三棱锥的高为3,三棱锥与三棱柱的底面为直角边长分别为3和4的直角三角形,∵AB⊥平面BEFC,∴AB⊥BC,BC=5,FC=2,AD=BE=5,DF=5∴几何体的表面积S=×3×4+×3×5+×4+×5+3×5=60.故选:B.【点评】本题考查了由三视图求几何体的表面积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.8.(5分)设F1,F2分别为双曲线﹣=1(a>0,b>0)的左、右焦点,双曲线上存在一点P使得|PF1|+|PF2|=3b,|PF1|•|PF2|=ab,则该双曲线的离心率为()A.B.C.D.3【分析】不妨设右支上P点的横坐标为x,由焦半径公式有|PF1|=ex+a,|PF2|=ex ﹣a,结合条件可得a=b,从而c==b,即可求出双曲线的离心率.【解答】解:不妨设右支上P点的横坐标为x由焦半径公式有|PF1|=ex+a,|PF2|=ex﹣a,∵|PF1|+|PF2|=3b,|PF1|•|PF2|=ab,∴2ex=3b,(ex)2﹣a2=ab∴b2﹣a2=ab,即9b2﹣4a2﹣9ab=0,∴(3b﹣4a)(3b+a)=0∴a=b,∴c==b,∴e==.故选:B.【点评】本题主要考查了双曲线的简单性质,考查了双曲线的第二定义的灵活运用,属于中档题.9.(5分)某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()A.72 B.120 C.144 D.168【分析】根据题意,分2步进行分析:①、先将3个歌舞类节目全排列,②、因为3个歌舞类节目不能相邻,则分2种情况讨论中间2个空位安排情况,由分步计数原理计算每一步的情况数目,进而由分类计数原理计算可得答案.【解答】解:分2步进行分析:1、先将3个歌舞类节目全排列,有A33=6种情况,排好后,有4个空位,2、因为3个歌舞类节目不能相邻,则中间2个空位必须安排2个节目,分2种情况讨论:①将中间2个空位安排1个小品类节目和1个相声类节目,有C21A22=4种情况,排好后,最后1个小品类节目放在2端,有2种情况,此时同类节目不相邻的排法种数是6×4×2=48种;②将中间2个空位安排2个小品类节目,有A22=2种情况,排好后,有6个空位,相声类节目有6个空位可选,即有6种情况,此时同类节目不相邻的排法种数是6×2×6=72种;则同类节目不相邻的排法种数是48+72=120,故选:B.【点评】本题考查计数原理的运用,注意分步方法的运用,既要满足题意的要求,还要计算或分类简便.10.(5分)已知△ABC的内角A,B,C满足sin2A+sin(A﹣B+C)=sin(C﹣A﹣B)+,面积S满足1≤S≤2,记a,b,c分别为A,B,C所对的边,在下列不等式一定成立的是()A.bc(b+c)>8 B.ab(a+b)>16C.6≤abc≤12 D.12≤abc≤24【分析】根据正弦定理和三角形的面积公式,利用不等式的性质进行证明即可得到结论.【解答】解:∵△ABC的内角A,B,C满足sin2A+sin(A﹣B+C)=sin(C﹣A﹣B)+,∴sin2A+sin2B=﹣sin2C+,∴sin2A+sin2B+sin2C=,∴2sinAcosA+2sin(B+C)cos(B﹣C)=,2sinA(cos(B﹣C)﹣cos(B+C))=,化为2sinA[﹣2sinBsin(﹣C)]=,∴sinAsinBsinC=.设外接圆的半径为R,由正弦定理可得:=2R,由S=,及正弦定理得sinAsinBsinC==,即R2=4S,∵面积S满足1≤S≤2,∴4≤R2≤8,即2≤R≤,由sinAsinBsinC=可得,显然选项C,D不一定正确,A.bc(b+c)>abc≥8,即bc(b+c)>8,正确,B.ab(a+b)>abc≥8,即ab(a+b)>8,但ab(a+b)>16,不一定正确,故选:A.【点评】本题考查了两角和差化积公式、正弦定理、三角形的面积计算公式、基本不等式等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题.二、填空题:本大题共3小题,每小题5分共15分把答案填写在答题卡相应位置上.11.(5分)设全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},则(∁U A)∩B={7,9} .【分析】由条件利用补集的定义求得∁U A,再根据两个集合的交集的定义求得(∁U A)∩B.【解答】解:∵全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},∴(∁U A)={4,6,7,9 },∴(∁U A)∩B={7,9},故答案为:{7,9}.【点评】本题主要考查集合的表示方法、集合的补集,两个集合的交集的定义和求法,属于基础题.12.(5分)函数f(x)=log 2•log(2x)的最小值为.【分析】利用对数的运算性质可得f(x)=,即可求得f(x)最小值.【解答】解:∵f(x)=log 2•log(2x)∴f(x)=log()•log(2x)=log x•log(2x)=log x(log x+log2)=log x(log x+2)=,∴当log x+1=0即x=时,函数f(x)的最小值是.故答案为:﹣【点评】本题考查对数不等式的解法,考查等价转化思想与方程思想的综合应用,考查二次函数的配方法,属于中档题.13.(5分)已知直线ax+y﹣2=0与圆心为C的圆(x﹣1)2+(y﹣a)2=4相交于A,B两点,且△ABC为等边三角形,则实数a=4±.【分析】根据圆的标准方程,求出圆心和半径,根据点到直线的距离公式即可得到结论.【解答】解:圆心C(1,a),半径r=2,∵△ABC为等边三角形,∴圆心C到直线AB的距离d=,即d=,平方得a2﹣8a+1=0,解得a=4±,故答案为:4±【点评】本题主要考查点到直线的距离公式的应用,利用条件求出圆心和半径,结合距离公式是解决本题的关键.三、选做题:考生注意(14)(15)、(16)三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分14.(5分)过圆外一点P作圆的切线PA(A为切点),再作割线PBC依次交圆于B、C,若PA=6,AC=8,BC=9,则AB=4.【分析】由题意,∠PAB=∠C,可得△PAB∽△PCA,从而,代入数据可得结论.【解答】解:由题意,∠PAB=∠C,∠APB=∠CPA,∴△PAB∽△PCA,∴,∵PA=6,AC=8,BC=9,∴,∴PB=3,AB=4,故答案为:4.【点评】本题考查圆的切线的性质,考查三角形相似的判断,属于基础题.15.(5分)已知直线l的参数方程为(t为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ﹣4cosθ=0(ρ≥0,0≤θ<2π),则直线l与曲线C的公共点的极径ρ=.【分析】直线l的参数方程化为普通方程、曲线C的极坐标方程化为直角坐标方程,联立求出公共点的坐标,即可求出极径.【解答】解:直线l的参数方程为,普通方程为y=x+1,曲线C的极坐标方程为ρsin2θ﹣4cosθ=0的直角坐标方程为y2=4x,直线l与曲线C联立可得(x﹣1)2=0,∴x=1,y=2,∴直线l与曲线C的公共点的极径ρ==.故答案为:.【点评】本题考查直线l的参数方程、曲线C的极坐标方程,考查学生的计算能力,属于中档题.16.若不等式|2x﹣1|+|x+2|≥a2+a+2对任意实数x恒成立,则实数a的取值范围是[﹣1,] .【分析】利用绝对值的几何意义,确定|2x﹣1|+|x+2|的最小值,然后让a2+a+2小于等于它的最小值即可.【解答】解:|2x﹣1|+|x+2|=,∴x=时,|2x﹣1|+|x+2|的最小值为,∵不等式|2x﹣1|+|x+2|≥a2+a+2对任意实数x恒成立,∴a2+a+2≤,∴a2+a﹣≤0,∴﹣1≤a≤,∴实数a的取值范围是[﹣1,].故答案为:[﹣1,].【点评】本题考查绝对值不等式的解法,突出考查一元二次不等式的解法及恒成立问题,属于中档题.四、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.17.(13分)已知函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ<)的图象关于直线x=对称,且图象上相邻两个最高点的距离为π.(Ⅰ)求ω和φ的值;(Ⅱ)若f()=(<α<),求cos(α+)的值.【分析】(Ⅰ)由题意可得函数f(x)的最小正周期为π 求得ω=2.再根据图象关于直线x=对称,结合﹣≤φ<可得φ 的值.(Ⅱ)由条件求得sin(α﹣)=.再根据α﹣的范围求得cos(α﹣)的值,再根据cos(α+)=sinα=sin[(α﹣)+],利用两角和的正弦公式计算求得结果.【解答】解:(Ⅰ)由题意可得函数f(x)的最小正周期为π,∴=π,∴ω=2.再根据图象关于直线x=对称,可得2×+φ=kπ+,k∈z.结合﹣≤φ<可得φ=﹣.(Ⅱ)∵f()=(<α<),∴sin(α﹣)=,∴sin(α﹣)=.再根据0<α﹣<,∴cos(α﹣)==,∴cos(α+)=sinα=sin[(α﹣)+]=sin(α﹣)cos+cos(α﹣)sin=+=.【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求函数的解析式,两角和差的三角公式、的应用,属于中档题.18.(13分)一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3,从盒中任取3张卡片.(Ⅰ)求所取3张卡片上的数字完全相同的概率;(Ⅱ)X表示所取3张卡片上的数字的中位数,求X的分布列与数学期望.(注:若三个数字a,b,c满足a≤b≤c,则称b为这三个数的中位数.)【分析】第一问是古典概型的问题,要先出基本事件的总数和所研究的事件包含的基本事件个数,然后代入古典概型概率计算公式即可,相对简单些;第二问应先根据题意求出随机变量X的所有可能取值,此处应注意所取三张卡片可能来自于相同数字(如1或2)或不同数字(1和2、1和3、2和3三类)的卡片,因此应按卡片上的数字相同与否进行分类分析,然后计算出每个随机变量所对应事件的概率,最后将分布列以表格形式呈现.【解答】解:(Ⅰ)由古典概型的概率计算公式得所求概率为P=,(Ⅱ)由题意知X的所有可能取值为1,2,3,且P(X=1)=,P(X=2)=,P(X=3)=,所以X的分布列为:X123P所以E(X)=.【点评】本题属于中档题,关键是要弄清涉及的基本事件以及所研究的事件是什么才能解答好第一问;第二问的只要是准确记住了中位数的概念,应该说完成此题基本没有问题.19.(13分)如图,四棱锥P﹣ABCD,底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=,M为BC上的一点,且BM=,MP⊥AP.(Ⅰ)求PO的长;(Ⅱ)求二面角A﹣PM﹣C的正弦值.【分析】(Ⅰ)连接AC,BD,以O为坐标原点,OA,OB,OP方向为x,y,z轴正方向建立空间坐标系O﹣xyz,分别求出向量,的坐标,进而根据MP⊥AP,得到•=0,进而求出PO的长;(Ⅱ)求出平面APM和平面PMC的法向量,代入向量夹角公式,求出二面角的余弦值,进而根据平方关系可得:二面角A﹣PM﹣C的正弦值.【解答】解:(Ⅰ)连接AC,BD,∵底面是以O为中心的菱形,PO⊥底面ABCD,故AC∩BD=O,且AC⊥BD,以O为坐标原点,OA,OB,OP方向为x,y,z轴正方向建立空间坐标系O﹣xyz,∵AB=2,∠BAD=,∴OA=AB•cos(∠BAD)=,OB=AB•sin(∠BAD)=1,∴O(0,0,0),A(,0,0),B(0,1,0),C(﹣,0,0),=(0,1,0),=(﹣,﹣1,0),又∵BM=,∴=(﹣,﹣,0),则=+=(﹣,,0),设P(0,0,a),则=(﹣,0,a),=(,﹣,a),∵MP⊥AP,∴•=﹣a2=0,解得a=,即PO的长为.(Ⅱ)由(Ⅰ)知=(﹣,0,),=(,﹣,),=(,0,),设平面APM的法向量=(x,y,z),平面PMC的法向量为=(a,b,c),由,得,令x=1,则=(1,,2),由,得,令a=1,则=(1,﹣,﹣2),∵平面APM的法向量和平面PMC的法向量夹角θ满足:cosθ===﹣故sinθ==【点评】本题考查的知识点是空间二面角的平面角,建立空间坐标系,将二面角问题转化为向量夹角问题,是解答的关键.20.(12分)已知函数f(x)=ae2x﹣be﹣2x﹣cx(a,b,c∈R)的导函数f′(x)为偶函数,且曲线y=f(x)在点(0,f(0))处的切线的斜率为4﹣c.(Ⅰ)确定a,b的值;(Ⅱ)若c=3,判断f(x)的单调性;(Ⅲ)若f(x)有极值,求c的取值范围.【分析】(Ⅰ)根据函数f(x)=ae2x﹣be﹣2x﹣cx(a,b,c∈R)的导函数f′(x)为偶函数,且曲线y=f(x)在点(0,f(0))处的切线的斜率为4﹣c,构造关于a,b的方程,可得a,b的值;(Ⅱ)将c=3代入,利用基本不等式可得f′(x)≥0恒成立,进而可得f(x)在定义域R为均增函数;(Ⅲ)结合基本不等式,分c≤4时和c>4时两种情况讨论f(x)极值的存在性,最后综合讨论结果,可得答案.【解答】解:(Ⅰ)∵函数f(x)=ae2x﹣be﹣2x﹣cx(a,b,c∈R)∴f′(x)=2ae2x+2be﹣2x﹣c,由f′(x)为偶函数,可得2(a﹣b)(e2x﹣e﹣2x)=0,即a=b,又∵曲线y=f(x)在点(0,f(0))处的切线的斜率为4﹣c,即f′(0)=2a+2b﹣c=4﹣c,故a=b=1;(Ⅱ)当c=3时,f′(x)=2e2x+2e﹣2x﹣3≥2=1>0恒成立,故f(x)在定义域R为均增函数;(Ⅲ)由(Ⅰ)得f′(x)=2e2x+2e﹣2x﹣c,而2e2x+2e﹣2x≥2=4,当且仅当x=0时取等号,当c≤4时,f′(x)≥0恒成立,故f(x)无极值;当c>4时,令t=e2x,方程2t+﹣c=0的两根均为正,即f′(x)=0有两个根x1,x2,当x∈(x1,x2)时,f′(x)<0,当x∈(﹣∞,x1)∪(x2,+∞)时,f′(x)>0,故当x=x1,或x=x2时,f(x)有极值,综上,若f(x)有极值,c的取值范围为(4,+∞).【点评】本题考查的知识点是利用导数研究曲线上某点切线方程,利用导数研究函数的单调性,是导数的综合应用,难度中档.21.(12分)如图,设椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,点D在椭圆上.DF1⊥F1F2,=2,△DF1F2的面积为.(Ⅰ)求椭圆的标准方程;(Ⅱ)设圆心在y轴上的圆与椭圆在x轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径.【分析】(Ⅰ)设F1(﹣c,0),F2(c,0),依题意,可求得c=1,易求得|DF1|==,|DF2|=,从而可得2a=2,于是可求得椭圆的标准方程;(Ⅱ)设圆心在y轴上的圆C与椭圆+y2=1相交,P1(x1,y1),P2(x2,y2)是两个交点,依题意,利用圆和椭圆的对称性,易知x2=﹣x1,y1=y2,|P1P2|=2|x1|,由F1P1⊥F2P2,得x1=﹣或x1=0,分类讨论即可求得圆的半径.【解答】解:(Ⅰ)设F1(﹣c,0),F2(c,0),其中c2=a2﹣b2,由=2,得|DF1|==c,从而=|DF 1||F1F2|=c2=,故c=1.从而|DF1|=,由DF1⊥F1F2,得=+=,因此|DF2|=,所以2a=|DF1|+|DF2|=2,故a=,b2=a2﹣c2=1,因此,所求椭圆的标准方程为+y2=1;(Ⅱ)设圆心在y轴上的圆C与椭圆+y2=1相交,P1(x1,y1),P2(x2,y2)是两个交点,y1>0,y2>0,F1P1,F2P2是圆C的切线,且F1P1⊥F2P2,由圆和椭圆的对称性,易知x2=﹣x1,y1=y2,|P1P2|=2|x1|,由(Ⅰ)知F1(﹣1,0),F2(1,0),所以=(x1+1,y1),=(﹣x1﹣1,y1),再由F1P1⊥F2P2,得﹣+=0,由椭圆方程得1﹣=,即3+4x1=0,解得x1=﹣或x1=0.当x1=0时,P1,P2重合,此时题设要求的圆不存在;当x1=﹣时,过P1,P2,分别与F1P1,F2P2垂直的直线的交点即为圆心C.由F1P1,F2P2是圆C的切线,且F1P1⊥F2P2,知CP1⊥CP2,又|CP1|=|CP2|,故圆C的半径|CP1|=|P1P2|=|x1|=.【点评】本题考查直线与圆锥曲线的综合问题,考查化归思想、方程思想分类讨论思想的综合应用,考查综合分析与运算能力,属于难题.22.(12分)设a1=1,a n+1=+b(n∈N*)(Ⅰ)若b=1,求a2,a3及数列{a n}的通项公式;(Ⅱ)若b=﹣1,问:是否存在实数c使得a2n<c<a2n+1对所有的n∈N*成立,证明你的结论.=+b,可求a2,a3;证明{(a n﹣1)【分析】(Ⅰ)若b=1,利用a n+12}是首项为0,公差为1的等差数列,即可求数列{a n}的通项公式;=f(a n),令c=f(c),即c=﹣(Ⅱ)设f(x)=,则a n+11,解得c=.用数学归纳法证明加强命题a2n<c<a2n+1<1即可.【解答】解:(Ⅰ)∵a1=1,a n+1=+b,b=1,∴a2=2,a3=+1;又(a n﹣1)2=(a n﹣1)2+1,+1∴{(a n﹣1)2}是首项为0,公差为1的等差数列;∴(a n﹣1)2=n﹣1,∴a n=+1(n∈N*);=f(a n),(Ⅱ)设f(x)=,则a n+1令c=f(c),即c=﹣1,解得c=.下面用数学归纳法证明加强命题a2n<c<a2n+1<1.n=1时,a2=f(1)=0,a3=f(0)=﹣1,∴a2<c<a3<1,成立;设n=k时结论成立,即a2k<c<a2k+1<1∵f(x)在(﹣∞,1]上为减函数,)>f(1)=a2,∴c=f(c)>f(a2k+1∴1>c>a2k>a2,+2)<f(a2)=a3<1,∴c=f(c)<f(a2k+2∴c<a2k<1,+3<c<a2(k+1)+1<1,即n=k+1时结论成立,∴a2(k+1)综上,c=使得a2n<c<a2n+1对所有的n∈N*成立.【点评】本题考查数列递推式,考查数列的通项,考查数学归纳法,考查学生分析解决问题的能力,难度大.。
【全国百强校】重庆八中2014届高三第二次月考 数学理
重庆八中高2014级高三上学期第二次月考数学(理科)第I 卷(选择题 共50分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的)1. 在等差数列{}n a 中,若32a =,则{}n a 的前5项和5S = A .5 B .10 C .12 D .15 2.已知0,10a b <-<<,那么下列不等式成立的是 A .2a ab ab >>B .2ab ab a >> C. 2ab a ab >>D .2ab ab a >>3. cos37.5sin 97.5cos52.5sin187.5︒︒-︒︒的值为B.D. 4. 若变量,x y 满足约束条件211y x x y y ≤⎧⎪+≤⎨⎪≥-⎩,则2z x y =+的最大值为A .52-B .0C .53D .525. 在一个数列中,如果对任意n N +∈,都有12(n n n a a a k k ++=为常数),那么这个数列叫做等积数列,k 叫做这个数列的公积.已知数列{}n a 是等积数列,且121,2a a ==,公积 为8,则1212a a a +++=A .24B .28C .32D .366.如果将函数sin 2()y x x x R =+∈的图像向左平移(0)m m >个单位后,所得图像对应的函数为偶函数,那么m 的最小值为A. 12πB. 6πC. 3πD. 23π7. 如图,在矩形OABC 中,点,E F 分别在线段,AB BC 上,且满足3,3AB AE BC CF ==,若(,)OB OE OF R λμλμ=+∈,则λμ+= A. 83 B. 32C. 53D.1 8. 若()f x 为偶函数,且当0x ≥时,()cos f x x =,则()f x 的零点个数为A. 4B. 5C. 6D.无穷多个9. 已知,m n 是单位向量且()(),,,m x y b n x a y =-=-,则()cos sin x y R ααα+∈的最大值为 AB .2 CD10. 若等差数列{}n a 满足22110010a a +≤,则100101199S a a a =+++的最大值为A .600B .500C . 800D .200第Ⅱ卷(非选择题 共100分)二、填空题(本大题共6小题,每小题5分,请按要求作答5小题,共25分,把答案填写在答题卡相应位置上)(一)必做题(11~13题) 11.已知集合2|05x A x x -⎧⎫=<⎨⎬+⎩⎭,{}2|230,B x x x x R =--≥∈,则 =B A .(请用区间表示)12.数列{}n a 的前n 项和为n S ,且21n n S a =-,则{}n a 的通项公式n a =_____.13. 把正整数按一定的规则排成了如图所示的三角形数表. 设(),ij a i j N +∈是位于这个三角形数表中从上往下数第i 行、从左往右数第j 个数,如428a =.若2013ij a =, 则i j += .(二)选做题(14~16题,请从中选做两题,若三题都做,只计前两题分数) 14.如图,半径为4的圆O 中,90AOB ∠=︒,D 为OB 的中点,AD 的延长线交圆O于点E ,则线段DE 的长为 .15.若直线sin 4πρθ⎛⎫+= ⎪⎝⎭与直线31x ky +=垂直,则常数k = . 16.若不等式2373x x a a ++-≥-的解集为R ,则实数a 的取值范围是____.三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.) 17. (本题共13分,第Ⅰ问6分,第Ⅱ问7分)设{}n a 是公比大于1的等比数列,n S 为其前n 项和.已知37S =,且13a +,23a ,34a +构 成等差数列.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)令21221(log )(log )n n n b a a ++=⋅,求数列{}n b 的前n 项和n T .18. (本题共13分,第Ⅰ问6分,第Ⅱ问7分)已知函数()()22222xf x x a x a a e ⎡⎤=-+-++⎣⎦.(Ⅰ)当0a =时,求曲线()y f x =在0x =处的切线方程; (Ⅱ)讨论函数()f x 的单调性.19. (本题共13分,第Ⅰ问6分,第Ⅱ问7分)已知ABC ∆中的内角A 、B 、C 所对的边分别为a 、b 、c ,若(c o s ,c o s )m B C =,(2,)n a c b =+,且m n ⊥.(Ⅰ)求角B 的大小; (Ⅱ)求函数22sin sin y A C =+的取值范围.20. (本题共12分,第Ⅰ问5分,第Ⅱ问7分)AD AB ⊥,CD AB //,3,3CD AB ==,平面SAD ⊥平面ABCD ,E 是线段AD上一点,AE ED ==AD SE ⊥.(Ⅰ)证明:BE ⊥平面SEC ;(Ⅱ)若1=SE ,求直线CE 与平面SBC 所成角的正弦值.12435768101291113151714161820222421. (本题共12分,第Ⅰ问4分,第Ⅱ问8分)已知椭圆的中心为原点O,长轴长为y =(Ⅰ)求该椭圆的标准方程;(Ⅱ)射线x y 22=()0x ≥与椭圆的交点为M ,过M 作倾斜角互补的两条直线,分别与椭圆交于,A B 两点(,A B 两点异于M ).求证:直线AB 的斜率为定值.22. (本题共12分,第Ⅰ问4分,第Ⅱ问8分) 已知数列{}n a 满足递推式:()1121222,,1,3n n n n a a n n N a a a a +--=-≥∈==. (Ⅰ)若11n nb a =+,求1n b +与n b 的递推关系(用n b 表示1n b +); (Ⅱ)求证:()122223n a a a n N +-+-++-<∈.重庆八中高2014级高三上学期第二次月考数学(理科) 参考答案第10题提示:100101199S a a a =+++()100110099100991001009922a d a d d ⨯⨯=+=++ 12993100S d a ⎛⎫⇒=- ⎪⎝⎭,()222222110011111109910103150S a a a a d a a ⎛⎫+≤⇒++≤⇒++≤ ⎪⎝⎭ 2211101009225150S S a a ⎛⎫⇒++-≤ ⎪⎝⎭有解⇒221041002259150S S ⎡⎤⎛⎫⎛⎫∆=-⨯⨯-≥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦500S ⇒≤二、填空题11. (]5,1-- 12. 12n n a -= 13. 109 14.15. 3- 16. []2,5-三、解答题17. (I )1237a a a ++=,21367a a a =++,则22a =,135a a +=.则225q q+=,故12q =或2,又1q >,则2q =,从而12n n a -=.(II )111(1)1n b n n n n ==-++⇒11111111223111n n T n n n n =-+-++-=-=+++.18. (Ⅰ)当0a =时,()()222xf x x x e =-+,则切点为()0,2且()2x f x x e '=⇒()00k f '==,则切线方程为2y =;(Ⅱ)()()()()2222x xf x x ax a e x a x a e '=--=+-当0a =时,()f x 在R 上单调递增;当0a >时,()f x 在(),a -∞-、()2,a +∞上单调递增,在(),2a a -上单调递减; 当0a <时,()f x 在(),2a -∞、(),a -+∞上单调递增,在()2,a a -上单调递减. 19.(Ⅰ)()2cos cos 0m n a c B b C ⊥⇒++=2sin cos sin cos sin cos 0A B C B B C ⇒++=122sin cos sin 0cos 23A B A B B π⇒+=⇒=-⇒=(Ⅱ)方法一:()221cos 21cos 21sin sin 1cos 2cos 1202222A C y A C A A --=+=+=-+︒-⎡⎤⎣⎦ ()11cos 2cos120cos 2sin120sin 22A A A =-+︒+︒111cos 22222A A ⎛⎫=-+ ⎪ ⎪⎝⎭()11sin 2302A =-+︒ ()106030230150sin 230,12A A A ⎛⎤︒<<︒⇒︒<+︒<︒⇒+︒∈ ⎥⎝⎦13,24y ⎡⎫⇒∈⎪⎢⎣⎭.方法二:()2222sin sin sin sin 60y A C A A =+=+︒-22222sin sin 60cos sin 60cos60sin 2cos 60sin A A A A =+︒-︒︒+︒2225331sin cos 2sin 24442A A A A A =+=+311cos 22422A A -=+⋅()1111cos 221sin 2302222A A A ⎛⎫=-+=-+︒ ⎪ ⎪⎝⎭下同方法一.20.(Ⅰ)(Ⅱ)21. (Ⅰ)由准线为7y =知焦点在y 轴上,则可设椭圆方程为:22221y x a b +=.又22a a c ⎧=⎪⎨=⎪⎩知:1a b c ⎧=⎪=⎨⎪=⎩所以椭圆标准方程为:1822=+y x . (Ⅱ)∵ 斜率k 存在,不妨设k >0,求出M (22,2).直线MA 方程为)22(2-=-x k y ,直线MB方程为)22(2--=-x k y .分别与椭圆方程联立,可解出2284222-+-=k k k x A ,2284222-++=k k k x B . ∴ 22)(=--=--BA B A B A B A x x x x k x x y y . ∴ 22=AB k (定值).22. (Ⅰ)1211222321n n n n a a a a a a +--=-==-=-=121n na a +⇒-= ①1111n n n n b a a b =⇒=-+代入①式得1111212111111n n n n n nb b b b b b +++---=⇒-=-- 即11122n n b b +=-+.(Ⅱ)111311132112nn n n a a ⎡⎤⎛⎫=--⇒+=⎢⎥ ⎪+⎝⎭⎛⎫⎢⎥⎣⎦-- ⎪⎝⎭()332312112n n na ⇒-=-=--⎛⎫-- ⎪⎝⎭ 对n 分奇数与偶数讨论:212212332,22121k k k k a a ---=-=+-,则212212************+2=3+=32121221k k k k k k k k a a -----+⎛⎫--⋅ ⎪+-+-⎝⎭21241212221133+222k k k k k ---+⎛⎫<⋅=⋅ ⎪⎝⎭,则 122122211122223222k k k a a a a -⎛⎫-+-++-+-<⋅+++ ⎪⎝⎭213132k ⎛⎫=⋅-< ⎪⎝⎭;又12212122113222231221k k k k a a a a -++⎛⎫-+-++-+-<⋅-+ ⎪+⎝⎭2121131212k k +⎛⎫=⋅+- ⎪+⎝⎭3<.综上所述,原不等式成立.。
重庆市重庆一中2014届高三上学期期中考试 数学理试题 Word版含答案
秘密★启用前2013年重庆一中高2014级高三上期半期考试 数 学 试 题 卷(理科)2013.11一.选择题(每小题5分,共50分)1.已知向量(1,)a x =,(8,4)b =,且a b ⊥,则x =( )A. 12B.2C. 2-D. 2±2. 已知全集U=R ,集合1{|0},2U x A x C A x +=≤-则集合等于( ) A .{|12}x x x <->或 B .{|12}x x x ≤->或 C .{|12}x x x ≤-≥或D .{|12}x x x <-≥或3.(原创)等比数列{}n a 中,10a >,则“13a a <”是“34a a <”的( ) A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要条件4.(原创)已知32()32f x x x x a =-++,若()f x 在R 上的极值点分别为,m n ,则m n +的值为( )A .2B .3C .4D .65.(原创)设,x y 满足约束条件32000,0x y x y x y --≤⎧⎪-≥⎨⎪≥≥⎩,若目标函数(0,0)z ax by a b =+>>的最大值为4,则a b +的值为( )A. 4B.2C.14D. 0 6. 已知三个向量(,cos )2A m a =,(,cos )2B n b =,(,cos )2Cp c =共线,其中C B A c b a ,,,,,分别是ABC ∆的三条边及相对三个角,则ABC ∆的形状是( )A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形7.(原创)设等差数列{}n a 的前n 项和为n S ,且15890,0S a a >+<,则使得0nn S a n +<的最小的n 为( )A .10B . 11C . 12D . 13 8.(原创)2cos10tan 20cos 20-=( )A. 1B.1229. 已知实数,x y 分别满足:3(3)2014(3)1x x -+-=,3(23)2014(23)1y y -+-=-,则2244x y x ++的最小值是( )A .0B .26C . 28D .3010. 定义数列{}n x :32111,32n nn n x x x x x +==++;数列{}n y :23211nn n x x y ++=; 数列{}n z :232132nn nn x x x z +++=;若{}n y 的前n 项的积为P ,{}n z 的前n 项的和为Q ,那么P Q +=( )A. 1B. 2C. 3D.不确定二.填空题(每小题5分,共25分)11.在等比数列{}n a 中,352,8a a ==,则7a = .12. 已知向量,a b 满足2,3a b ==,237a b +=,则,a b 的夹角为 . 13.(原创)关于x 的不等式222(log )log 0x b x c ++≤(,b c 为实常数)的解集为[2,16],则关于x 的不等式22210x x c b ++≤的解集为 .14.(原创)若直线y ax =与函数ln y x =的图象相切于点P ,则切点P 的坐标为 .15.(原创)设等差数列{}n a 有无穷多项,各项均为正数,前n 项和为n S ,,m p N *∈,且20m p +=,104S =,则m p S S ⋅的最大值为 .三.解答题(共75分)16.(13分)设函数),(cos sin 32cos 2)(2R x m m x x x x f ∈+⋅+=. (1)求()f x 的最小正周期;(2)当]2,0[π∈x 时,求实数m 的值,使函数)(x f 的值域恰为17[,],22并求此时()f x 在R 上的对称中心.17.(13分)已知}{n a 是单调递增的等差数列,首项31=a ,前n 项和为n S ;数列}{n b 是等比数列,首项.20,12,123221=+==b S b a b 且 (1)求}{}{n n b a 和的通项公式; (2)令cos()(),3nn n a c S n N π+=∈求{}n c 的前20项和20T .若ABC 的三边为增等差数列,且(g B 19.(12分)已知函数ln ()(0,)axf x a a R x=>∈,e 为自然对数的底, (1)求()f x 的最值;(2)若关于x 方程32ln 2x x ex mx =-+有两个不同解,求m 的范围.20.(12分)已知数列{}n a 的首项1,a a =其中a *∈N ,*1*,3,,31,3,.nn n nn a a l l a a a l l +⎧=∈⎪=⎨⎪+≠∈⎩N N ,令集合*{|,}n A x x a n ==∈N (1)若3a 是数列{}n a 中首次为1的项,请写出所有这样数列的前三项; (2)求证:对,k N *∀∈恒有3123k k a a +≤+成立; (3)求证:{1,2,3}A ⊆.21.(12分) 已知函数2()ln f x x x =+(1)若函数()()g x f x ax =-在定义域内为增函数,求实数a 的取值范围; (2)设2()2()3()F x f x x k x k R =--∈,若函数()F x 存在两个零点,(0)m n m n <<,且实数0x 满足02x m n =+,问:函数()F x 在00(,())x F x 处的切线能否平行于x 轴?若能,求出该切线方程;若不能,请说明理由.2013年重庆一中高2014级高三上期半期考试数 学 答 案(理科)2013.111---10:CDBAA BBCCA11. 32 12. 3π13. [2,0]- 14. (,1)e 15. 1616. (1)m x x x x f ++=cos sin 32cos 2)(2m x x +++=2sin 32cos 11)62sin(2+++=m x π∴函数)(x f 的最小正周期T=π。
重庆市2014届高三考前模拟数学理试卷Word版含解析
重庆市2014届高三考前模拟数学(理)试题满分150分。
考试时间120分钟。
注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。
2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦擦干净后,再选涂其他答案标号。
3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4.所有题目必须在答题卡上作答,在试题卷上答题无效。
5.考试结束后,将试题卷和答题卡一并收回。
【试卷综析】本试卷是高三考前模拟理科数学试卷,命题模式与高考一致,紧扣考纲,考查了高考考纲上的诸多热点问题,突出考查考纲要求的基本能力,重视学生基本数学素养的考查。
知识考查注重基础、注重常规,也有综合性较强的问题。
试题重点考查:函数、三角函数、数列、立体几何、统计与概率、解析几何、不等式、向量、极坐标与参数方程、推理与证明等,涉及到的基本数学思想有函数与方程、转化与化归、分类讨论等,试题题目新颖,导向性强,非常适合备战高考的高三学生使用。
一、选择题:本大题10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的. (1)己知i 为虚数单位,复数的虚部是(A ) (B )一(C )一i(D )i【知识点】复数的代数形式;复数的除法运算 【答案解析】A 解析:i i i i i i 212121)1)(1(111+=+=+-+=-,其虚部为21, 故选:A【思路点拨】根据复数的除法运算把复数化成一般形式,再根据虚部的定义即可得到答案。
(2)设集合A= {-1,0,2),集合,则B=(A ){1} (B ){一2} (C ){-1,-2}(D ){-1,0}【知识点】元素与集合的关系【答案解析】A 解析:当1-=x 时,A ∉=--3)1(2,所以1-=x 满足题意,此时{}{}1=-=x B ;当0=x 时,A ∈=-202,所以0=x 不满足题意;当2=x 时,A ∈=-022,所以2=x 不满足题意,所以={}1, 故选:A【思路点拨】根据已知知集合B 中的元素属于集合A ,因为集合A 中的元素不多,可以把各个元素分别代入检验,从中选出符合条件的元素即可。
数学_2014年某校高考数学八模试卷(理科)(含答案)
2014年某校高考数学八模试卷(理科)一、选择题(本大题共10小题,每小题5分,共50分)1. 集合A ={0, 2, a},B ={1, a 2},若A ∪B ={0, 1, 2, 4, 16},则a 的值为( ) A 0 B 1 C 2 D 42. 命题“对任意x ∈R ,都有x 2−2x +4≤0”的否定为( )A 对任意x ∈R ,都有x 2−2x +4≥0B 对任意x ∈R ,都有x 2−2x +4≤0C 存在x 0∈R ,使得x 02−2x 0+4>0 D 存在x 0∈R ,使x 02−2x 0+4≤0 3. 已知向量a →=(2, 3),b →=(−1, 2),若ma →+4b →与a →−2b →共线,则m 的值为( ) A 12B 2C −12D −24. 对于函数f(x)=sin 2(x +π4)−cos 2(x +π4),下列选项中正确的是( ) A f(x)在(π4, π2)上是递增的 B f(x)的图象关于原点对称 C f(x)的最小正周期为2π D f(x)的最大值为25. 如图,若N =5时,则输出的数等于( )A 54 B 45 C 65 D 566. 某师傅用铁皮制作一封闭的工件,其三视图如图所示(单位:cm ,图中水平线与竖线垂直),则制作该工件用去的铁皮的面积为(制作过程铁皮的损耗和厚度忽略不计)( )A 100(3+√5)cm 2B 200(3+√5)cm 2C 300(3+√5)cm 2D 300cm 2 7.某产品的广告费用x 与销售额y 的统计数据如下表:根据上表可得回归方程y ̂=b 为9.4,据此模型预报广告费用为6万元时销售额为( )A 63.6万元B 65.5万元C 67.7万元D 72.0万元8. 已知等比数列{a n }的公比为q ,则“a 1>0且q >1”是“{a n }为递增数列”的( )A 充分不必要条件B 必要不充分条件C 充要条件D 既不充分也不必要条件 9. 已知“渐升数”是指每一位数字比其左边的数字大的正整数(如236),那么任取一个三位数,它是渐升数的概率为( ) A 1425 B 775 C 760 D 71010. 已知函数f(x)={−x 2+2x ,x ≤0ln(x +1),x >0,若f(x)=ax 有且只有一个实数解,则a 的取值范围是( )A [1, 2]B (−∞, 0]C (−∞, 0]∪[1, 2]D (−∞, 2]二、填空题(本大题共4小题,每小题5分,共25分.考生注意:请在15.16.17三题中任选一题作答,如果多做,则按所做的第一题评分).11. 设复数z 1=1+i ,z 2=x +2i(x ∈R),若z 1z 2为纯虚数,则x =________. 12. 设x ,y 满足{x +y <1y ≤x y ≥0,则z =3x +y 的最大值是________.13. 已知抛物线y 2=2px(p >0)的焦点是双曲线x 216−y 2m =1的右焦点F ,且双曲线的右顶点A 到点F 的距离为1,则p =________.14. 已知f(x)=xe x ,f 1(x)=f ′(x),f 2(x)=[f 1(x)]′,⋯,f n+1(x)=[f n (x)]′,n ∈N ∗,经计算f 1(x)=1−x e x,f 2(x)=x−2e x,f 3(x)=3−x e x,⋯,照此规律,则f n (x)=________.【不等式选做题】15. (不等式选做题) 已知x 、y 均为正数,且x +y =1,则√3x +√4y 的最大值为________.【几何证明选做题】16. 如图,CD 是圆O 的切线,切点为C ,点A 、B 在圆O 上,BC =1,∠BCD =30∘,则圆O 的面积为________.【坐标系与参数方程选做题】17. 在极坐标系中,若过点(1, 0)且与极轴垂直的直线交曲线ρ=4cosθ于A、B两点,则|AB|=________.三、解答题(本大题共6小题,共75分)18. 如图,在梯形ABCD中,AD // BC,AB=5,AC=9,∠BCA=30∘,∠ADB=45∘.(1)求sin∠ABC;(2)求BD的长度.19. 已知{a n}是正数组成的数列,a1=1,且点(√a n, a n+1)(n∈N∗)在函数y=x2+1的图象上.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若列数{b n}满足b1=1,b n+1=b n+2n a,求证:b n⋅b n+2<b n+12.20. 某中学举行了一次“环保知识竞赛”活动.为了了解本次竞赛学生成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为10作为样本(样本容量为n)进行统计.按照[50, 60),[60, 70),[70, 80),[80, 90),[90, 100]的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在[50, 60),[90, 100]的数据).(Ⅰ)求样本容量n和频率分布直方图中x、y的值;(Ⅱ)在选取的样本中,从竞赛成绩是80分以上(含8的同学中随机抽取3名同学到市政广场参加环保知识宣传的志愿者活动,设ξ表示所抽取的3名同学中得分在[80, 90)的学生个数,求ξ的分布列及其数学期望.21. 如图,已知菱形ACSB中,∠ABS=60∘.沿着对角线SA将菱形ACSB折成三棱锥S−ABC,且在三棱锥S−ABC中,∠BAC=90∘,O为BC中点.(1)证明:SO⊥平面ABC;(2)求平面ASC与平面SCB夹角的余弦值.22. 如图,椭圆C:x2a2+y2b2=1(a>b>0)的右焦点为F,右顶点、上顶点分别为点A、B,且|AB|=√52|BF|.(1)求椭圆C的离心率;(2)若点M(−1617, 217)在椭圆C内部,过点M的直线l交椭圆C于P、Q两点,M为线段PQ的中点,且OP⊥OQ.求直线l的方程及椭圆C的方程.23. 已知函数f(x)=e x−x2+a,x∈R的图象在点x=0处的切线为y=bx.(e≈2.71828).(1)求函数f(x)的解析式;(2)g(x)=f(x)x,x∈(0, +∞),讨论函数g(x)的单调性与极值;(3)若k∈Z,且f(x)+12(3x2−5x−2k)≥0对任意x∈R恒成立,求k的最大值.2014年某校高考数学八模试卷(理科)答案1. D2. C3. D4. B5. D6. A7. B8. A9. B10. C11. 212. 313. 1014. (−1)n(x−n)e x15. √716. π17. 2√318. 解:(1)在△ABC中,由正弦定理,得ABsin∠BCA =ACsin∠ABC,∴ sin∠ABC=ACsin∠BCAAB =9sin30∘5=910.(2)∵ AD // BC,∴ ∠BAD=180∘−∠ABC,sin∠BAD=sin(180∘−∠ABC)=sin∠ABC=910,在△ABD中,由正弦定理,得ABsin∠ADB =BDsin∠BAD,∴ BD =ABsin∠BAD sin∠ADB=5×910√22=9√22.19. 解法一:(1)由已知得a n+1=a n +1、即a n+1−a n =1,又a 1=1, 所以数列{a n }是以1为首项,公差为1的等差数列. 故a n =1+(n −1)×1=n .(2)由(Ⅰ)知:a n =n 从而b n+1−b n =2n .b n =(b n −b n−1)+(b n−1−b n−2)+...+(b 2−b 1)+b 1 =2n−1+2n−2+...+2+1=1−2n 1−2=2n −1 ∵ b n ⋅b n+2−b n+12=(2n −1)(2n+2−1)−(2n+1−1)2 =(22n+2−2n −2n+2+1)−(22n+2−2⋅2n+1+1) =−2n <0∴ b n ⋅b n+2<b n+12解法二:(1)同解法一. (2)∵ b 2=1b n ⋅b n+2−b n+12=(b n+1−2n )(b n+1+2n+1)−b n+12=2n+1⋅b n+1−2n ⋅b n+1−2n ⋅2n+1 =2n (b n+1−2n+1) =2n (b n +2n −2n+1) =2n (b n −2n ) =…=2n (b 1−2) =−2n <0∴ b n ⋅b n+2<b n+1220. (1)由题意可知,样本容量n =80.016×10=50,y =250×10=0.004,x =0.1−0.004−0.010−0.016−0.04=0.030.(2)由题意可知,分数在[80, 90)有5人,分数在[90, 100)有2人,共7人. 抽取的3名同学中得分在[80, 90)的学生个数ξ的可能取值为1,2,3,则 P(ξ=1)=C 51C22C 73=535=17,P(ξ=2)=C 52C21C 73=2035=47,P(ξ=3)=C 53C 73=1035=27.所以,ξ的分布列为所以,Eξ=1×17+2×47+3×27=157.21. (本题满分12分)解:(1)证明:由题设AB =AC =SB =SC =SA ,连结OA ,△ABC 为等腰直角三角形, 所以OA =OB =OC =√22SA ,且AO ⊥BC ,又△SBC 为等腰三角形,故SO ⊥BC ,且SO =√22SA , 从而OA 2+SO 2=SA 2.所以△SOA 为直角三角形,SO ⊥AO . 又AO ∩BO =O .所以SO ⊥平面ABC .…(2)以O 为坐标原点,射线OB ,OA 分别为x 轴、y 轴的正半轴, 建立如图的空间直角坐标系O −xyz .设B(1, 0, 0),则C(−1, 0, 0),A(0, 1, 0),S(0, 0, 1). SA →=(0,1,−1),SC →=(−1,0,−1). 设平面SAC 的法向量n →=(x, y, z),由{n →⋅SC →=−x −z =0˙,令x =1,得n →=(1, −1, −1), 由(1)可知AO ⊥平面SCB ,因此取平面SCB 的法向量m →=OA →=(0,1,0).… 设平面ASC 与平面SCB 的夹角为θ, 则cosθ=|cos <n →,m →>|=|−1√3|=√33. ∴ 平面ASC 与平面SCB 夹角的余弦值为√33.… 22. (本题满分13分) 解:(1)由已知|AB|=√52|BF|, 即√a 2+b 2=√52a , 4a 2+4b 2=5a 2,4a 2+4(a 2−c 2)=5a 2, ∴ e =ca =√32.… (2)由(1)知a 2=4b 2, ∴ 椭圆C:x 24b 2+y 2b 2=1. 设P(x 1, y 1),Q(x 2, y 2),由x 124b 2+y 12b 2=1,x 224b 2+y 22b 2=1,得x 12−x 224b 2+y 12−y 22b 2=0,即(x 1+x 2)(x 1−x 2)4b 2+(y 1+y 2)(y 1−y 2)b 2=0,即−3217(x 1−x 2)4+417(y 1−y 2)=0,从而k PQ =y 1−y2x 1−x 2=2,进而直线l 的方程为y −217=2[x −(−1617)], 即2x −y +2=0.…由{2x −y +2=0x 24b 2+y 2b 2=1⇒x 2+4(2x +2)2−4b 2=0,即17x 2+32x +16−4b 2=0. △=322+16×17(b 2−4)>0⇔b >2√1717.x 1+x 2=−3217,x 1x 2=16−4b 217.∵ OP ⊥OQ ,∴ OP →⋅OQ →=0,即x 1x 2+y 1y 2=0,x 1x 2+(2x 1+2)(2x 2+2)=0,5x 1x 2+4(x 1+x 2)+4=0. 从而5(16−4b 2)17−12817+4=0,解得b =1,∴ 椭圆C 的方程为x 24+y 2=1.…23. 解:(1)f(x)=e x −x 2+a ,f ′(x)=e x −2x .由已知{f(0)=1+a =0f′(0)=1=b ⇒{a =−1b =1,f(x)=e x −x 2−1.…(2)由(1)知,g(x)=f(x)x,x >0,则g′(x)=xf′(x)−f(x)x 2=x(e x −2x)−(e x −x 2−1)x 2=(x−1)(e x −x−1)x 2.令y =e x −x −1,y ′=e x −1>0在x ∈(0, +∞)恒成立,从而y =e x −x −1在(0, +∞)上单调递增,y >e 0−0−1=0. 令g ′(x)>0,得x >1;g ′(x)<0,得0<x <1.∴ g(x)的增区间为(1, +∞),减区间为(0, 1).极小值为g(1)=e −2,无极大值.… (3)f(x)+12(3x 2−5x −2k)≥0对任意x ∈R 恒成立,⇔e x +12x 2−52x −1−k ≥0对任意x ∈R 恒成立,⇔k ≤e x +12x 2−52x −1对任意x ∈R 恒成立.…令ℎ(x)=e x +12x 2−52x −1,ℎ′(x)=e x +x −52,易知ℎ′(x)在R 上单调递增, 又ℎ′(0)=−32<0,ℎ′(1)=e −32>0,ℎ′(12)=e 12−2<0,ℎ′(34)=e 34−74>2.5634−74=1.632−74=√512125−74>2−74=14>0,∴ 存在唯一的x0∈(12,34),使得ℎ′(x0)=0,…且当x∈(−∞, x0)时,ℎ′(x)<0,x∈(x0, +∞)时,ℎ′(x)>0.即ℎ(x)在(−∞, x0)单调递减,在(x0, +∞)上单调递增,ℎ(x)min=ℎ(x0)=e x0+12x02−52x0−1,又ℎ′(x0)=0,即e x0+x0−52=0,e x0=52−x0.∴ ℎ(x0)=52−x0+12x02−52x0−1=12(x02−7x0+3),∵ x0∈(12,34),∴ ℎ(x0)∈(−2732,−18).k≤e x+12x2−52x−1对任意x∈R恒成立,⇔k≤ℎ(x0),又k∈Z,∴ k max=−1.…。
2014年重庆市高考理科数学试卷及参考答案与试题解析
2014年重庆市高考理科数学试卷及参考答案与试题解析一、选择题:本大题共10小题,每小题5分,在每小题给出的四个备选项中,只有一项是符合题目要求的.1.(5分)在复平面内复数Z=i(1-2i)对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限2.(5分)对任意等比数列{an},下列说法一定正确的是( )A.a1,a3,a9成等比数列 B.a2,a3,a6成等比数列C.a2,a4,a8成等比数列 D.a3,a6,a9成等比数列3.(5分)已知变量x与y正相关,且由观测数据算得样本平均数=3,=3.5,则由该观测数据算得的线性回归方程可能是( )A.=0.4x+2.3B.=2x-2.4C.=-2x+9.5D.=-0.3x+4.44.(5分)已知向量=(k,3),=(1,4),=(2,1)且(2-3)⊥,则实数k=( )A.-B.0C.3D.5.(5分)执行如图所示的程序框图,若输出k的值为6,则判断框内可填入的条件是( )A.s>B.s>C.s>D.s>6.(5分)已知命题p:对任意x∈R,总有2x>0;q:“x>1”是“x>2”的充分不必要条件,则下列命题为真命题的是( )A.p∧qB.¬p∧¬qC.¬p∧qD.p∧¬q7.(5分)某几何体的三视图如图所示则该几何体的表面积为( )A.54B.60C.66D.728.(5分)设F1,F2分别为双曲线-=1(a>0,b>0)的左、右焦点,双曲线上存在一点P使得|PF1|+|PF2|=3b,|PF1|•|PF2|=ab,则该双曲线的离心率为( )A. B. C. D.39.(5分)某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( )A.72B.120C.144D.16810.(5分)已知△ABC的内角A,B,C满足sin2A+sin(A-B+C)=sin(C-A-B)+,面积S满足1≤S≤2,记a,b,c分别为A,B,C所对的边,在下列不等式一定成立的是( )A.bc(b+c)>8B.ab(a+b)>16C.6≤abc≤12D.12≤abc≤24二、填空题:本大题共3小题,每小题5分共15分把答案填写在答题卡相应位置上.11.(5分)设全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},则(∁UA)∩B=.12.(5分)函数f(x)=log2•log(2x)的最小值为.13.(5分)已知直线ax+y-2=0与圆心为C的圆(x-1)2+(y-a)2=4相交于A,B两点,且△ABC为等边三角形,则实数a=.三、选做题:考生注意(14)(15)、(16)三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分14.(5分)过圆外一点P作圆的切线PA(A为切点),再作割线PBC依次交圆于B、C,若PA=6,AC =8,BC=9,则AB=.15.(5分)已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ-4cosθ=0(ρ≥0,0≤θ<2π),则直线l 与曲线C的公共点的极径ρ=.16.若不等式|2x-1|+|x+2|≥a2+a+2对任意实数x恒成立,则实数a的取值范围是.四、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.17.(13分)已知函数f(x)=sin(ωx+φ)(ω>0,-≤φ<)的图象关于直线x=对称,且图象上相邻两个最高点的距离为π.(Ⅰ)求ω和φ的值;(Ⅱ)若f()=(<α<),求cos(α+)的值.18.(13分)一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3,从盒中任取3张卡片.(Ⅰ)求所取3张卡片上的数字完全相同的概率;(Ⅱ)X表示所取3张卡片上的数字的中位数,求X的分布列与数学期望.(注:若三个数字a,b,c 满足a≤b≤c,则称b为这三个数的中位数.)19.(13分)如图,四棱锥P-ABCD,底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=,M为BC上的一点,且BM=,MP⊥AP.(Ⅰ)求PO的长;(Ⅱ)求二面角A-PM-C的正弦值.20.(12分)已知函数f(x)=ae2x-be-2x-cx(a,b,c∈R)的导函数f′(x)为偶函数,且曲线y=f(x)在点(0,f(0))处的切线的斜率为4-c.(Ⅰ)确定a,b的值;(Ⅱ)若c=3,判断f(x)的单调性;(Ⅲ)若f(x)有极值,求c的取值范围.21.(12分)如图,设椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,点D在椭圆上.DF1⊥F1F2,=2,△DF1F2的面积为.(Ⅰ)求椭圆的标准方程;(Ⅱ)设圆心在y轴上的圆与椭圆在x轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径.22.(12分)设a1=1,an+1=+b(n∈N*)(Ⅰ)若b=1,求a2,a3及数列{an}的通项公式;(Ⅱ)若b=-1,问:是否存在实数c使得a2n <c<a2n+1对所有的n∈N*成立,证明你的结论.2014年重庆市高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,在每小题给出的四个备选项中,只有一项是符合题目要求的.1.(5分)在复平面内复数Z=i(1-2i)对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据复数乘法的运算法则,我们可以将复数Z化为a=bi(a,b∈R)的形式,分析实部和虚部的符号,即可得到答案.【解答】解:∵复数Z=i(1-2i)=2+i∵复数Z的实部2>0,虚部1>0∴复数Z在复平面内对应的点位于第一象限故选:A.【点评】本题考查的知识是复数的代数表示法及其几何意义,其中根据复数乘法的运算法则,将复数Z化为a=bi(a,b∈R)的形式,是解答本题的关键.2.(5分)对任意等比数列{an},下列说法一定正确的是( )A.a1,a3,a9成等比数列 B.a2,a3,a6成等比数列C.a2,a4,a8成等比数列 D.a3,a6,a9成等比数列【分析】利用等比中项的性质,对四个选项中的数进行验证即可.【解答】解:A项中a3=a1•q2,a1•a9=•q8,(a3)2≠a1•a9,故A项说法错误,B项中(a3)2=(a1•q2)2≠a2•a6=•q6,故B项说法错误,C项中(a4)2=(a1•q3)2≠a2•a8=•q8,故C项说法错误,D项中(a6)2=(a1•q5)2=a3•a9=•q10,故D项说法正确,故选:D.【点评】本题主要考查了是等比数列的性质.主要是利用了等比中项的性质对等比数列进行判断.3.(5分)已知变量x与y正相关,且由观测数据算得样本平均数=3,=3.5,则由该观测数据算得的线性回归方程可能是( )A.=0.4x+2.3B.=2x-2.4C.=-2x+9.5D.=-0.3x+4.4【分析】变量x与y正相关,可以排除C,D;样本平均数代入可求这组样本数据的回归直线方程.【解答】解:∵变量x与y正相关,∴可以排除C,D;样本平均数=3,=3.5,代入A符合,B不符合,故选:A.【点评】本题考查数据的回归直线方程,利用回归直线方程恒过样本中心点是关键.4.(5分)已知向量=(k,3),=(1,4),=(2,1)且(2-3)⊥,则实数k=( )A.-B.0C.3D.【分析】根据两个向量的坐标,写出两个向量的数乘与和的运算结果,根据两个向量的垂直关系,写出两个向量的数量积等于0,得到关于k的方程,解方程即可.【解答】解:∵=(k,3),=(1,4),=(2,1)∴2-3=(2k-3,-6),∵(2-3)⊥,∴(2-3)•=0'∴2(2k-3)+1×(-6)=0,解得,k=3.故选:C.【点评】本题考查数量积的坐标表达式,是一个基础题,题目主要考查数量积的坐标形式,注意数字的运算不要出错.5.(5分)执行如图所示的程序框图,若输出k的值为6,则判断框内可填入的条件是( )A.s>B.s>C.s>D.s>【分析】程序运行的S=××…×,根据输出k的值,确定S的值,从而可得判断框的条件.【解答】解:由程序框图知:程序运行的S=××…×,∵输出的k=6,∴S=××=,∴判断框的条件是S>,故选:C.【点评】本题考查了当型循环结构的程序框图,根据框图的流程判断程序运行的S值是解题的关键.6.(5分)已知命题p:对任意x∈R,总有2x>0;q:“x>1”是“x>2”的充分不必要条件,则下列命题为真命题的是( )A.p∧qB.¬p∧¬qC.¬p∧qD.p∧¬q【分析】由命题p,找到x的范围是x∈R,判断p为真命题.而q:“x>1”是“x>2”的充分不必要条件是假命题,然后根据复合命题的判断方法解答.【解答】解:因为命题p对任意x∈R,总有2x>0,根据指数函数的性质判断是真命题;命题q:“x>1”不能推出“x>2”;但是“x>2”能推出“x>1”所以:“x>1”是“x>2”的必要不充分条件,故q是假命题;所以p∧¬q为真命题;故选:D.【点评】判断复合命题的真假,要先判断每一个命题的真假,然后做出判断.7.(5分)某几何体的三视图如图所示则该几何体的表面积为( )A.54B.60C.66D.72【分析】几何体是三棱柱消去一个同底的三棱锥,根据三视图判断各面的形状及相关几何量的数据,把数据代入面积公式计算.【解答】解:由三视图知:几何体是直三棱柱消去一个同底的三棱锥,如图:三棱柱的高为5,消去的三棱锥的高为3,三棱锥与三棱柱的底面为直角边长分别为3和4的直角三角形,∵AB⊥平面BEFC,∴AB⊥BC,BC=5,FC=2,AD=BE=5,DF=5∴几何体的表面积S=×3×4+×3×5+×4+×5+3×5=60.故选:B.【点评】本题考查了由三视图求几何体的表面积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.8.(5分)设F1,F2分别为双曲线-=1(a>0,b>0)的左、右焦点,双曲线上存在一点P使得|PF1|+|PF2|=3b,|PF1|•|PF2|=ab,则该双曲线的离心率为( )A. B. C. D.3【分析】不妨设右支上P点的横坐标为x,由焦半径公式有|PF1|=ex+a,|PF2|=ex-a,结合条件可得a=b,从而c==b,即可求出双曲线的离心率. 【解答】解:不妨设右支上P点的横坐标为x由焦半径公式有|PF1|=ex+a,|PF2|=ex-a,∵|PF1|+|PF2|=3b,|PF1|•|PF2|=ab,∴2ex=3b,(ex)2-a2=ab∴b2-a2=ab,即9b2-4a2-9ab=0,∴(3b-4a)(3b+a)=0∴a=b,∴c==b,∴e==.故选:B.【点评】本题主要考查了双曲线的简单性质,考查了双曲线的第二定义的灵活运用,属于中档题.9.(5分)某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( )A.72B.120C.144D.168【分析】根据题意,分2步进行分析:①、先将3个歌舞类节目全排列,②、因为3个歌舞类节目不能相邻,则分2种情况讨论中间2个空位安排情况,由分步计数原理计算每一步的情况数目,进而由分类计数原理计算可得答案.【解答】解:分2步进行分析:1、先将3个歌舞类节目全排列,有A33=6种情况,排好后,有4个空位,2、因为3个歌舞类节目不能相邻,则中间2个空位必须安排2个节目,分2种情况讨论:①将中间2个空位安排1个小品类节目和1个相声类节目,有C21A22=4种情况,排好后,最后1个小品类节目放在2端,有2种情况,此时同类节目不相邻的排法种数是6×4×2=48种;②将中间2个空位安排2个小品类节目,有A22=2种情况,排好后,有6个空位,相声类节目有6个空位可选,即有6种情况,此时同类节目不相邻的排法种数是6×2×6=72种;则同类节目不相邻的排法种数是48+72=120,故选:B.【点评】本题考查计数原理的运用,注意分步方法的运用,既要满足题意的要求,还要计算或分类简便.10.(5分)已知△ABC的内角A,B,C满足sin2A+sin(A-B+C)=sin(C-A-B)+,面积S满足1≤S≤2,记a,b,c分别为A,B,C所对的边,在下列不等式一定成立的是( )A.bc(b+c)>8B.ab(a+b)>16C.6≤abc≤12D.12≤abc≤24【分析】根据正弦定理和三角形的面积公式,利用不等式的性质进行证明即可得到结论. 【解答】解:∵△ABC的内角A,B,C满足sin2A+sin(A-B+C)=sin(C-A-B)+,∴sin2A+sin2B=-sin2C+,∴sin2A+sin2B+sin2C=,∴2sinAcosA+2sin(B+C)cos(B-C)=,2sinA(cos(B-C)-cos(B+C))=,化为2sinA[-2sinBsin(-C)]=,∴sinAsinBsinC=.设外接圆的半径为R,由正弦定理可得:=2R,由S=,及正弦定理得sinAsinBsinC==,即R2=4S,∵面积S满足1≤S≤2,∴4≤R2≤8,即2≤R≤,由sinAsinBsinC=可得,显然选项C,D不一定正确,A.bc(b+c)>abc≥8,即bc(b+c)>8,正确,B.ab(a+b)>abc≥8,即ab(a+b)>8,但ab(a+b)>16,不一定正确,故选:A.【点评】本题考查了两角和差化积公式、正弦定理、三角形的面积计算公式、基本不等式等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题.二、填空题:本大题共3小题,每小题5分共15分把答案填写在答题卡相应位置上.11.(5分)设全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},则(∁UA)∩B={7,9} .【分析】由条件利用补集的定义求得∁U A,再根据两个集合的交集的定义求得(∁UA)∩B.【解答】解:∵全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},∴(∁U A)={4,6,7,9 },∴(∁UA)∩B={7,9},故答案为:{7,9}.【点评】本题主要考查集合的表示方法、集合的补集,两个集合的交集的定义和求法,属于基础题.12.(5分)函数f(x)=log2•log(2x)的最小值为.【分析】利用对数的运算性质可得f(x)=,即可求得f(x)最小值.【解答】解:∵f(x)=log2•log(2x)∴f(x)=log()•log(2x)=log x•log(2x)=log x(log x+log2)=log x(log x+2)=,∴当log x+1=0即x=时,函数f(x)的最小值是.故答案为:-【点评】本题考查对数不等式的解法,考查等价转化思想与方程思想的综合应用,考查二次函数的配方法,属于中档题.13.(5分)已知直线ax+y-2=0与圆心为C的圆(x-1)2+(y-a)2=4相交于A,B两点,且△ABC为等边三角形,则实数a=4±.【分析】根据圆的标准方程,求出圆心和半径,根据点到直线的距离公式即可得到结论. 【解答】解:圆心C(1,a),半径r=2,∵△ABC为等边三角形,∴圆心C到直线AB的距离d=,即d=,平方得a2-8a+1=0,解得a=4±,故答案为:4±【点评】本题主要考查点到直线的距离公式的应用,利用条件求出圆心和半径,结合距离公式是解决本题的关键.三、选做题:考生注意(14)(15)、(16)三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分14.(5分)过圆外一点P作圆的切线PA(A为切点),再作割线PBC依次交圆于B、C,若PA=6,AC =8,BC=9,则AB= 4 .【分析】由题意,∠PAB=∠C,可得△PAB∽△PCA,从而,代入数据可得结论. 【解答】解:由题意,∠PAB=∠C,∠APB=∠CPA,∴△PAB∽△PCA,∴,∵PA=6,AC=8,BC=9,∴,∴PB=3,AB=4,故答案为:4.【点评】本题考查圆的切线的性质,考查三角形相似的判断,属于基础题.15.(5分)已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ-4cosθ=0(ρ≥0,0≤θ<2π),则直线l与曲线C的公共点的极径ρ=.【分析】直线l的参数方程化为普通方程、曲线C的极坐标方程化为直角坐标方程,联立求出公共点的坐标,即可求出极径.【解答】解:直线l的参数方程为,普通方程为y=x+1,曲线C的极坐标方程为ρsin2θ-4cosθ=0的直角坐标方程为y2=4x,直线l与曲线C联立可得(x-1)2=0,∴x=1,y=2,∴直线l与曲线C的公共点的极径ρ==.故答案为:.【点评】本题考查直线l的参数方程、曲线C的极坐标方程,考查学生的计算能力,属于中档题.16.若不等式|2x-1|+|x+2|≥a2+a+2对任意实数x恒成立,则实数a的取值范围是[-1,] .【分析】利用绝对值的几何意义,确定|2x-1|+|x+2|的最小值,然后让a2+a+2小于等于它的最小值即可.【解答】解:|2x-1|+|x+2|=,∴x=时,|2x-1|+|x+2|的最小值为,∵不等式|2x-1|+|x+2|≥a2+a+2对任意实数x恒成立,∴a2+a+2≤,∴a2+a-≤0,∴-1≤a≤,∴实数a的取值范围是[-1,].故答案为:[-1,].【点评】本题考查绝对值不等式的解法,突出考查一元二次不等式的解法及恒成立问题,属于中档题.四、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.17.(13分)已知函数f(x)=sin(ωx+φ)(ω>0,-≤φ<)的图象关于直线x=对称,且图象上相邻两个最高点的距离为π.(Ⅰ)求ω和φ的值;(Ⅱ)若f()=(<α<),求cos(α+)的值.【分析】(Ⅰ)由题意可得函数f(x)的最小正周期为π 求得ω=2.再根据图象关于直线x=对称,结合-≤φ<可得φ 的值.(Ⅱ)由条件求得sin(α-)=.再根据α-的范围求得cos(α-)的值,再根据cos(α+)=sinα=sin[(α-)+],利用两角和的正弦公式计算求得结果.【解答】解:(Ⅰ)由题意可得函数f(x)的最小正周期为π,∴=π,∴ω=2.再根据图象关于直线x=对称,可得 2×+φ=kπ+,k∈z.结合-≤φ<可得φ=-.(Ⅱ)∵f()=(<α<),∴sin(α-)=,∴sin(α-)=.再根据 0<α-<,∴cos(α-)==,∴cos(α+)=sinα=sin[(α-)+]=sin(α-)cos+cos(α-)sin=+=.【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求函数的解析式,两角和差的三角公式、的应用,属于中档题.18.(13分)一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3,从盒中任取3张卡片.(Ⅰ)求所取3张卡片上的数字完全相同的概率;(Ⅱ)X表示所取3张卡片上的数字的中位数,求X的分布列与数学期望.(注:若三个数字a,b,c 满足a≤b≤c,则称b为这三个数的中位数.)【分析】第一问是古典概型的问题,要先出基本事件的总数和所研究的事件包含的基本事件个数,然后代入古典概型概率计算公式即可,相对简单些;第二问应先根据题意求出随机变量X的所有可能取值,此处应注意所取三张卡片可能来自于相同数字(如1或2)或不同数字(1和2、1和3、2和3三类)的卡片,因此应按卡片上的数字相同与否进行分类分析,然后计算出每个随机变量所对应事件的概率,最后将分布列以表格形式呈现.【解答】解:(Ⅰ)由古典概型的概率计算公式得所求概率为P=,(Ⅱ)由题意知X的所有可能取值为1,2,3,且P(X=1)=,P(X=2)=,P(X=3)=,P所以E(X)=.【点评】本题属于中档题,关键是要弄清涉及的基本事件以及所研究的事件是什么才能解答好第一问;第二问的只要是准确记住了中位数的概念,应该说完成此题基本没有问题.19.(13分)如图,四棱锥P-ABCD,底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=,M为BC上的一点,且BM=,MP⊥AP.(Ⅰ)求PO的长;(Ⅱ)求二面角A-PM-C的正弦值.【分析】(Ⅰ)连接AC,BD,以O为坐标原点,OA,OB,OP方向为x,y,z轴正方向建立空间坐标系O-xyz,分别求出向量,的坐标,进而根据MP⊥AP,得到•=0,进而求出PO的长;(Ⅱ)求出平面APM和平面PMC的法向量,代入向量夹角公式,求出二面角的余弦值,进而根据平方关系可得:二面角A-PM-C的正弦值.【解答】解:(Ⅰ)连接AC,BD,∵底面是以O为中心的菱形,PO⊥底面ABCD,故AC∩BD=O,且AC⊥BD,以O为坐标原点,OA,OB,OP方向为x,y,z轴正方向建立空间坐标系O-xyz,∵AB=2,∠BAD=,∴OA=AB•cos(∠BAD)=,OB=AB•sin(∠BAD)=1,∴O(0,0,0),A(,0,0),B(0,1,0),C(-,0,0),=(0,1,0),=(-,-1,0),又∵BM=,∴=(-,-,0),则=+=(-,,0),设P(0,0,a),则=(-,0,a),=(,-,a),∵MP⊥AP,∴•=-a2=0,解得a=,即PO的长为.(Ⅱ)由(Ⅰ)知=(-,0,),=(,-,),=(,0,), 设平面APM的法向量=(x,y,z),平面PMC的法向量为=(a,b,c),由,得,令x=1,则=(1,,2),由,得,令a=1,则=(1,-,-2),∵平面APM的法向量和平面PMC的法向量夹角θ满足:cosθ===-故sinθ==【点评】本题考查的知识点是空间二面角的平面角,建立空间坐标系,将二面角问题转化为向量夹角问题,是解答的关键.20.(12分)已知函数f(x)=ae2x-be-2x-cx(a,b,c∈R)的导函数f′(x)为偶函数,且曲线y=f(x)在点(0,f(0))处的切线的斜率为4-c.(Ⅰ)确定a,b的值;(Ⅱ)若c=3,判断f(x)的单调性;(Ⅲ)若f(x)有极值,求c的取值范围.【分析】(Ⅰ)根据函数f(x)=ae2x-be-2x-cx(a,b,c∈R)的导函数f′(x)为偶函数,且曲线y =f(x)在点(0,f(0))处的切线的斜率为4-c,构造关于a,b的方程,可得a,b的值;(Ⅱ)将c=3代入,利用基本不等式可得f′(x)≥0恒成立,进而可得f(x)在定义域R为均增函数;(Ⅲ)结合基本不等式,分c≤4时和c>4时两种情况讨论f(x)极值的存在性,最后综合讨论结果,可得答案.【解答】解:(Ⅰ)∵函数f(x)=ae2x-be-2x-cx(a,b,c∈R)∴f′(x)=2ae2x+2be-2x-c,由f′(x)为偶函数,可得2(a-b)(e2x-e-2x)=0,即a=b,又∵曲线y=f(x)在点(0,f(0))处的切线的斜率为4-c,即f′(0)=2a+2b-c=4-c,故a=b=1;(Ⅱ)当c=3时,f′(x)=2e2x+2e-2x-3≥2=1>0恒成立,故f(x)在定义域R为均增函数;(Ⅲ)由(Ⅰ)得f′(x)=2e2x+2e-2x-c,而2e2x+2e-2x≥2=4,当且仅当x=0时取等号, 当c≤4时,f′(x)≥0恒成立,故f(x)无极值;当c>4时,令t=e2x,方程2t+-c=0的两根均为正,即f′(x)=0有两个根x1,x2,当x∈(x1,x2)时,f′(x)<0,当x∈(-∞,x1)∪(x2,+∞)时,f′(x)>0,故当x=x1,或x=x2时,f(x)有极值,综上,若f(x)有极值,c的取值范围为(4,+∞).【点评】本题考查的知识点是利用导数研究曲线上某点切线方程,利用导数研究函数的单调性,是导数的综合应用,难度中档.21.(12分)如图,设椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,点D在椭圆上.DF1⊥F1F2,=2,△DF1F2的面积为.(Ⅰ)求椭圆的标准方程;(Ⅱ)设圆心在y轴上的圆与椭圆在x轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径.【分析】(Ⅰ)设F1(-c,0),F2(c,0),依题意,可求得c=1,易求得|DF1|==,|DF2|=,从而可得2a=2,于是可求得椭圆的标准方程;(Ⅱ)设圆心在y轴上的圆C与椭圆+y2=1相交,P1(x1,y1),P2(x2,y2)是两个交点,依题意,利用圆和椭圆的对称性,易知x2=-x1,y1=y2,|P1P2|=2|x1|,由F1P1⊥F2P2,得x1=-或x1=0,分类讨论即可求得圆的半径.【解答】解:(Ⅰ)设F1(-c,0),F2(c,0),其中c2=a2-b2,由=2,得|DF 1|==c,从而=|DF 1||F 1F 2|=c 2=,故c =1.从而|DF 1|=,由DF 1⊥F 1F 2,得=+=,因此|DF 2|=,所以2a =|DF 1|+|DF 2|=2,故a =,b 2=a 2-c 2=1,因此,所求椭圆的标准方程为+y 2=1;(Ⅱ)设圆心在y 轴上的圆C 与椭圆+y 2=1相交,P 1(x 1,y 1),P 2(x 2,y 2)是两个交点,y 1>0,y 2>0,F 1P 1,F 2P 2是圆C 的切线,且F 1P 1⊥F 2P 2,由圆和椭圆的对称性,易知x 2=-x 1,y 1=y 2,|P 1P 2|=2|x 1|,由(Ⅰ)知F 1(-1,0),F 2(1,0),所以=(x 1+1,y 1),=(-x 1-1,y 1),再由F 1P 1⊥F 2P 2,得-+=0,由椭圆方程得1-=,即3+4x 1=0,解得x 1=-或x 1=0.当x 1=0时,P 1,P 2重合,此时题设要求的圆不存在;当x 1=-时,过P 1,P 2,分别与F 1P 1,F 2P 2垂直的直线的交点即为圆心C. 由F 1P 1,F 2P 2是圆C 的切线,且F 1P 1⊥F 2P 2,知CP 1⊥CP 2,又|CP 1|=|CP 2|,故圆C的半径|CP1|=|P1P2|=|x1|=.【点评】本题考查直线与圆锥曲线的综合问题,考查化归思想、方程思想分类讨论思想的综合应用,考查综合分析与运算能力,属于难题.22.(12分)设a1=1,an+1=+b(n∈N*)(Ⅰ)若b=1,求a2,a3及数列{an}的通项公式;(Ⅱ)若b=-1,问:是否存在实数c使得a2n <c<a2n+1对所有的n∈N*成立,证明你的结论.【分析】(Ⅰ)若b=1,利用an+1=+b,可求a2,a3;证明{(an-1)2}是首项为0,公差为1的等差数列,即可求数列{an}的通项公式;(Ⅱ)设f(x)=,则an+1=f(an),令c=f(c),即c=-1,解得c=.用数学归纳法证明加强命题a2n <c<a2n+1<1即可.【解答】解:(Ⅰ)∵a1=1,an+1=+b,b=1,∴a2=2,a3=+1;又(an+1-1)2=(an-1)2+1,∴{(an-1)2}是首项为0,公差为1的等差数列;∴(an-1)2=n-1,∴an=+1(n∈N*);(Ⅱ)设f(x)=,则an+1=f(an),令c=f(c),即c=-1,解得c=.下面用数学归纳法证明加强命题a2n <c<a2n+1<1.n=1时,a2=f(1)=0,a3=f(0)=-1,∴a2<c<a3<1,成立;设n=k时结论成立,即a2k <c<a2k+1<1∵f(x)在(-∞,1]上为减函数,∴c=f(c)>f(a2k+1)>f(1)=a2,∴1>c>a2k+2>a2,∴c=f(c)<f(a2k+2)<f(a2)=a3<1,∴c<a2k+3<1,∴a2(k+1)<c<a2(k+1)+1<1,即n=k+1时结论成立,综上,c=使得a2n <c<a2n+1对所有的n∈N*成立.【点评】本题考查数列递推式,考查数列的通项,考查数学归纳法,考查学生分析解决问题的能力,难度大.。
重庆八中2014届高三第二次月考 数学文试题 Word版含答案
(18) (本小题满分 13 分, (Ⅰ)小问 6 分, (Ⅱ)小问 7 分) 【解】 (I) 证明: 连结 AC ,交 BD 于 O ,因为底面 ABCD 为正方形, 所以 O 为 AC 的中点.又因为 Q 是 PA 的中点,所 OQ // PC ,因为 OQ 平面 BDQ , PC 平面 BDQ , 所以 PC // 平面 BDQ
2 2 1 (II)由(I)得 sin A ,由面积可得 bc 6 …① 3 3
b2 c2 a 2 b2 c2 9 1 b 2 c 2 13 …② 2bc 12 3
则由余弦定理 cos A
联立①②得
b 3 b 2 或 (舍).综上: b 3, c 2 c 2 c 3
PA 2 , Q 是 PA 的中点.
(I)证明: PC // 平面 BDQ ; (II)求三棱锥 C BDQ 的体积.
(19) (本小题满分 12 分, (Ⅰ)小问 5 分, (Ⅱ)小问 7 分) 已知数列 {an } 为递增等差数列,且 a2 , a5 是方程 x 12 x 27 0 的两根.数列 {bn } 为等比数列,且
1 3 sin x cosx cos2 x ( 0) ,其最小正周期为 ,则 ________. 2 2
(14)球 O 的球面上有三点 A, B, C , BC 3, BAC 30 ,过 A, B, C 三点作球 O 的截面,球心到截面 的距离为 4 ,则该球的体积为_______.
x2 2 y 2 2 2 2 2 得: (2k 1) x 4knx 2n 2 0 y kx n
4kn 2n 2 2 , x x ,由于以 AB 为直径的圆恒过原点 O ,于是 1 2 2k 2 1 2k 2 1
重庆八中2014届高三上学期第一次月考试题 理综试题 Word版含答案.pdf
(3)写出沉淀C所含主要物质的化学式。
(4)写出步骤⑧用A试剂生成红色溶液的离子方程式。
(5)步骤⑨的作用是,猜测步骤⑩的目的是。
(6)称取00g茶叶样品灼烧得灰粉后,加入过量盐酸后过滤,将所得滤液加入过量的(NH4)2C2O4,再过滤、洗涤、干
燥、称量得到512g沉淀,原茶叶中钙元素的质量分数为。
B.硅藻既是生产者,又是分解者
C.磷虾在不同食物链上都属于同一营养级
D.严禁过度捕杀蓝鲸是由于其对该食物网影响最大
2、请选出以下说中说法错误的是
A.转基因作物被动物食用后,目的基因一定会转入动物体的细胞中
B.我国已要求对转基因生物产品及其加工品加贴标注,以方便消费者自主选择
C.生态经济主要是遵循“循环经济”的原则
证明非金属性Cl>C>Si向某溶液中加入稀盐酸,放出无色无味气体,将气体通入澄清石灰水中,石灰水变浑浊证明
该溶液中存在CO已知:常温下,0.01 mol/L MOH溶液的pH为10,MOH(aq)与H2SO4(aq)反应生成1 mol正盐的ΔH=-24.2
kJ·mol-1,强酸与强碱的稀溶液的中和热为ΔH=-57. 3 kJ·mol-1。则MOH在水溶液中电离的ΔH为( )
①下面列举了该实验的几个操作步骤:
A.按照图示的装置安装器件;
B.将打点计时器接到电源上;
C.先释放,再接通电源打出一条纸带;
D.测量纸带上某些点间的距离E.根据测量的结果,分别计算系统减少的重力势能和增加的动能.
其中操作不当的步骤是: (填选项对应的字母).在纸带上打下记数点5时的速度=m/s结果保留两位有效数字
在空中下落过程中重力做的功等于动能的增加量
B该碎片在空中下落过程中重力做的功小于动能的增加量
2014年高考数学重庆卷(理科)答案word版
2014年普通高等学校招生全国统一考试(重庆卷)理科数学试题答案与解析1. 解析 ()2i 12i i 2i 2i -=-=+,对应复平面上的点为()2,1,在第一象限.选A.2. 解析 不妨设公比为q ,则22431a a q =,28191a a a q ⋅=,26261a a a q ⋅=⋅,当1q ≠±时,知A ,B 均不正确;又22641a a q =,28281a a a q ⋅=,同理,C 不正确;由221061a a q =,210391a a a q ⋅=⋅,知D 正确.3. 解析 由变量x 与y 正相关知C ,D 均错,又回归直线经过样本中心()3,3.5,代入验证得A 正确,B 错误.故选A.4. 解析 ()2323,6k -=--a b ,由()23-⊥a b c ,得4660k --=,解得3k =.选C.5. 解析 程序框图的执行过程如下:1s =,9k =;910s =,8k =;98810910s =⨯=,7k =;87710810s =⨯=,6k =,循环结束.故可填入的条件为710s >.故选C.6. 解析 p 为真命题,q 为假命题,故p ⌝为假命题,q ⌝为真命题.从而p q ∧为假,p q ⌝∧⌝为假,p q ⌝∧为假,p q ∧⌝为真.故选D.7. 解析 该几何体的直观图如图所示,易知该几何体的表面是由两个直角三角形,两个直角梯形和一个矩形组成的,则其表面积11252534355435602222S ++=⨯⨯+⨯⨯+⨯+⨯+⨯=.选B.8. 解析 设1PF m =,2PF n =,依题意不妨设0m n >>,于是329.4m n b m n a m n ab ⎧⎪+=⎪-=⎨⎪⎪⋅=⎩所以93432m n m n m n m n +-⋅=⋅⋅⇒=(13m n =-舍去). 4325所以a n =,4533b n c n =⇒=,所以53e =,选B. 评注 本题考查双曲线的定义及性质,依据条件列出关系式后,若直线求ca,则运算量很大,改为利用1PF 与2PF 的关系求解,巧妙转化,降低运算难度.9. 解析 先不考虑小品类节目是否相邻,保证歌舞类节目不相邻的排法共有3334A A 144⋅=种,再剔除小品内节目的相邻的情况,共有322322A A A 24⋅⋅=种,于是符合题意得排法共有14424120-=种.10. 解析 设ABC △的外接圆半径为R ,由三角形内角和定理知πA C B +=-,πA B C +=-,于是()()1sin 2sin sin 2A ABC C A B +-+=--+⇒11sin 2sin 2sin 2sin 2sin 2sin 222A B C A B+C =+=-+⇒+⇒()()()()112sin cos 2sin cos 2sin cos cos 22A B A B C C C A B A B +-+=⇒--+=⇒⎡⎤⎣⎦ 114sin sin sin sin sin sin 28A B C A B C =⇒=.则[]2211sin 2sin sin sin 1,224S ab C R A B C R ==⋅=∈,所以R ⎡∈⎣,所以338sin sin sin abc R A B C R ⎡=⋅=∈⎣,知C ,D 均不正确,()38bc b c bc a R +>⋅=…,所以A 正确.事实上,注意到a ,b ,c 的无序性,并且8>,若B 成立,A 必然成立,排除B.故选A. 11. 解析 因为{}110U n n=∈N 剟,{}1,2,3,5,8A =,所以{}4,6,7,9,10U A =ð, 又因为{}1,3,5,7,9B =,所以(){}7,9U AB =ð.12. 解析 显然0x >,所以()()()22221log 2log log 42f x x x x ==⋅= ()()222222221111log log 42log log log log 2244x x x x x ⎛⎫⋅+=+=+-- ⎪⎝⎭….当且仅当2x =时,有()min 14f x =-.13. 解析 易知ABC △是边长为2的等边三角形,故圆心()1,C a 到直线AB=,解得4a =经检验均符合题意,则4a =评注 本题考查过定点的直线与圆相交的弦长问题,以及数形结合的思想方法,对综合能力要求较高.14. 解析 设PB x =,由切割线定理得()296x x +=,解得3x =或12x =-(舍去).又易知PBC PCA △∽△,于是31462AB PB AB AC PA ===⇒=. 15. 解析 直线l 的普通方程为1y x =+.曲线C 的直角坐标方程为24y x =,故直线l 与曲线C 的交点坐标为()1,2.故改点的极径ρ==16. 解析 令()212f x x x =-++,易求得()min 52f x =, 依题意得215121222a a a ++⇔-剟. 17. 解析 (I )因为()f x 的图像上相邻两个最高点的距离为π,所以()f x 的最小正周期πT =,从而2π2T ω==.又因为()f x 的图像关于直线π3x =对称, 所以ππ2π32k ϕ⋅+=+,0,1,2,k =±±.由ππ22ϕ-<…得0k =,所以π2ππ236ϕ=-=-. (II )由(I )得πn 2226f αα⎛⎫⎛⎫=⋅-=⎪ ⎪⎝⎭⎝⎭,所以π1sin 64α⎛⎫-= ⎪⎝⎭.由π2π63α<<得ππ062α<-<,所以πcos 6α⎛⎫-=== ⎪⎝⎭.因此3πππππππcos sin sin sin cos cos sin 2666666ααααα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+==-+=-+-= ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦1142=18. 解析 (I )由古典概型中的概率计算公式知所求概率为334339C C 5C 84P +==. (II )X 的所有可能值为1,2,3,且()21345439C C C 171C 42P X +===,()11121334236339C C C C C C 432C 84P X ++===,()212739C C 13C 12P X ===,故X 的分布列为从而()12342841228E X =⨯+⨯+⨯=. 评注 本题考查概率的计算,随机变量的分布列及数学期望,其中概率的计算要求较高,不过整体难度不大,属中等偏易题.19. 解析(I )如图,连接AC ,BD ,因为ABCD 为菱形,则ACBD O =,且AC BD ⊥,以O 为坐标原点,OA ,OB ,OP 的方向分别为x轴,y 轴,z 轴的正方形,建立空间直角坐标系O xyz -.因为π3BAD ∠=,故πcos 6OA AB =⋅=πsin 16OB AB =⋅=, 所以()0,0,0O,)A,()0,1,0B ,()C ,()0,1,0OB =,()1,0BC =-.由12BM =,2BC =知,11,044BM BC ⎛⎫==- ⎪ ⎪⎝⎭,从而3,04OM OB BM ⎛⎫=+= ⎪ ⎪⎝⎭,即3,04M ⎛⎫⎪ ⎪⎝⎭.设()0,0,P a ,0a >,则()AP a =,33,4MP a ⎛⎫=-⎪⎪⎝⎭, 因为MP AP ⊥,故0MP AP ⋅=,即234a -+=,所以2a =或2a =-(舍去),即PO =.(II )由(I)知,AP ⎛= ⎝⎭,334MP ⎛=-⎝⎭,3,0,CP ⎛= ⎭. 设平面APM 的法向量为()1111,,x y z =n ,平面PMC 的法向量为()2222,,x y z =n ,由10AP ⋅=n,10MP ⋅=n,得111110304z x yz ⎧=⎪⎪-+=.故可取11,23⎛⎫= ⎪ ⎪⎝⎭n ,由20MP ⋅=n ,20CP ⋅=n,得222223040x y zz -+=⎨=.故可取()21,2=-n ,从而法向量1n ,2n 的夹角的余弦值为121212cos ,⋅==⋅nn n n n n 故所求二面角A PM C --20. 解析 (I )对()f x 求导得()222e 2e x x f x a b c -'=+-,由()f x '为偶函数,知()()f x f x ''-=,即()()222e e0x xa b --+=,因为22e e 0x x -+>,所以a b =. 又()0224f a b c c '=+-=-,故1a =,1b =. (II )当3c =时,()22ee 3x xf x x -=--,那么()222e 2e 3310x x f x -'=+-=>…,故()f x 在R 上为增函数.(III )由(I )知()222e 2e x x f x c -'=+-,而222e 2e4xx-+=…,当0x =时等号成立.下面分三种情况进行讨论.当4c <时,对任意x ∈R ,()222e 2e 0x x f x c -'=+->,此时()f x 无极值; 当4c =时,对任意0x ≠,()222e 2e 40x x f x -'=+->,此时()f x 无极值;当4c >时,令2e xt =,注意到方程220t c t +-=有两根1,20t =>, 即()0f x '=有两个根111ln 2x t =,221ln 2x t =.当12x x x <<时,()0f x '<;又当2x x >时,()0f x '>,从而()f x 在2x x =处取得极小值.综上,若()f x 有极值,则c 的取值范围为()4,+∞.评注 本题考查函数导数的求法,利用导数处理单调性、极值等常规问题,以及基本不等式等.对运算能力要求较高,此外对分类讨论思想也有一定的要求. 21. 解析 (I )设()1,0F c -,()2,0F c ,其中222c a b =-.由121F F DF =1DF ==.从而12211212DF F S DF F F ===△,故1c =.从而1DF =,由112DF F F ⊥得222211292DF DF F F =+=,因此22DF =.所以122a DF DF =+=,故a =2221b a c =-=.因此,所求椭圆的标准方程为2212x y +=. (II )如图,设圆心在y 轴上的圆C 与椭圆2212x y +=相交,()111,,P x y =,()222,,P x y =是两个交点,10y >,20y >,11F P ,22F P 是圆C 的切线,且1122F P F P ⊥. 由圆和椭圆的对称性,易知21x x =-,12y y =,1212PP x =. 由(I )知()11,0F -,()21,0F ,所以()11111,F P x y =+,()22111,F P x y =--. 再由1122F P F P ⊥得()221110x y -++=. 由椭圆方程得()2211112x x -=+,即211340x x +=,解得143x =-或10x =. 当10x =时,1P ,2P 重合,此时题设要求的圆不存在. 当143x =-时,过1P ,2P 分别与11F P ,22F P 垂直的直线的交点即为圆心C .由11F P ,22F P 是圆C 的切线,且1122F P F P ⊥,知12CP CP ⊥. 又12CP CP =,故圆C的半径11213CP ===.22. 解析 (I )解法一:22a =,31a .再由题设条件知()()221111n n a a +-=-+. 从而(){}21n a -是首项为0,公差为1的等差数列,故()211n a n -=-,即()*1n a n =∈N .解法二:22a =,31a =,可写为11a,21a,31a .因此猜想1n a =.下用数学归纳法证明上式:当1n =时结论显然成立. 假设n k =时结论成立,即1k a =, 则1111k a +===.这就是说,当1n k =+时结论成立.所以()*1n a n =∈N .(II )解法一:设()1f x =,则()1n n a f a +=.令()c f c =,即1c =,解得14c =. 下用数学归纳法证明加强命题2211n n a c a +<<<.当1n =时,()210a f ==,()301a f ==,所以23114a a <<<,结论成立. 假设n k =时结论成立,即2211k k a c a +<<<.易知()f x 在(],1-∞上为减函数,从而()()()2121k c f c f a f a +=>>=,即2221k c a a +>>>.再由()f x 在(],1-∞上为减函数得()()()22231k c f c f a f a a +=<<=<. 故231k c a +<<,因此()()212111k k a c a +++<<<. 这就是说,当1n k =+时结论成立. 综上,符合条件的c 存在,其中一个值为14c =.解法二:设()1f x =,则()1n n a f a +=.先证:()*01na n ∈N 剟.①当1n =时,结论明显成立. 假设n k =时结论成立,即01ka 剟.易知()f x 在(],1-∞上为减函数,从而()()()01011k f f a f ==<剟.即101k a +剟.这就是说,当1n k =+时结论成立.故①成立. 再证:()*21n n a a n +<∈N .②当1n =时,()210a f ==,()()3201a f a f ===,有23a a <,即1n =时②成立. 假设n k =时,结论成立,即221k k a a +<.由①及()f x 在(],1-∞上为减函数, 得,()()2122122k k k k a f a f a a +++=>=,()()()()212221211k k k k a f a f a a +++++=<=. 这就是说,当1n k =+时②成立.所以②对一切*n ∈N 成立.由②得21n a <,即()22222122nn n a a a +<-+,因此214n a <.③ 又由①、②及()f x 在(],1-∞上为减函数得()()221n n f a f a +>,即2122n n a a ++>,所以21n a >,解得2114n a +>.④ 综上,由②、③、④知存在14c =使221n n a c a +<<对一切*n ∈N 成立. 评注 本题考查由递推公式求解数列通项公式,数学归纳法,等差数列等内容.用函数的观点解决数列问题是处理本题的关键.。
2015年重庆市高考模拟试题_重庆八中高三第二次模拟测试数学卷(理)
2015-2014学年重庆八中高三上学期第二次模拟测试数学(理科)第I 卷(选择题 共50分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的)1. 在等差数列{}n a 中,若32a =,则{}n a 的前5项和5S = A .5B .10C .12D .152.已知0,10a b <-<<,那么下列不等式成立的是 A .2a ab ab >>B .2ab ab a >> C. 2ab a ab >>D .2ab ab a >>3. cos37.5sin 97.5cos52.5sin187.5︒︒-︒︒的值为A.2B.2-C.2D. 2-4. 若变量,x y 满足约束条件211y x x y y ≤⎧⎪+≤⎨⎪≥-⎩,则2z x y =+的最大值为A .52-B .0C .53D .525. 在一个数列中,如果对任意n N +∈,都有12(n n n a a a k k ++=为常数),那么这个数列叫 做等积数列,k 叫做这个数列的公积.已知数列{}n a 是等积数列,且121,2a a ==,公积 为8,则1212a a a +++=A .24B .28C .32D .366.如果将函数sin 2()y x x x R =+∈的图像向左平移(0)m m >个单位后,所得图像对应的函数为偶函数,那么m 的最小值为 A.12π B. 6π C. 3π D. 23π7. 如图,在矩形OABC 中,点,E F 分别在线段,AB BC 上,且满足3,3AB AE BC CF ==,若(,)OB OE OF R λμλμ=+∈,则λμ+= A. 83 B. 32C. 53D.18. 若()f x 为偶函数,且当0x ≥时,()cos f x x =,则()f x 的零点个数为 A. 4 B. 5 C. 6 D.无穷多个9. 已知,m n 是单位向量且()(),,,m x y b n x a y =-=-,则()cos sin x y R ααα+∈的最大值为AB .2 CD10. 若等差数列{}n a 满足22110010a a +≤,则100101199S a a a =+++的最大值为A .600B .500C . 800D .200第Ⅱ卷(非选择题 共100分)二、填空题(本大题共6小题,每小题5分,请按要求作答5小题,共25分,把答案填写在答题卡相应位置上) (一)必做题(11~13题) 11.已知集合2|05x A x x -⎧⎫=<⎨⎬+⎩⎭,{}2|230,B x x x x R =--≥∈,则 =B A .(请用区间表示)12.数列{}n a 的前n 项和为n S ,且21n n S a =-,则{}n a 的通项公式n a =_____. 13. 把正整数按一定的规则排成了如图所示的三角形数表. 设(),ij a i j N +∈是位于这个三角形数表中从上往下数第i 行、从左往右数第j 个数,如428a =.若2013ij a =, 则i j += .(二)选做题(14~16题,请从中选做两题,若三题都做,只计前两题分数) 14.如图,半径为4的圆O 中,90AOB ∠=︒,D 为OB 的中点,AD 的延长线交圆O 于点E ,则线段DE 的长为 . 15.若直线sin 42πρθ⎛⎫+= ⎪⎝⎭与直线31x ky +=垂直,则常数k = . 16.若不等式2373x x a a ++-≥-的解集为R ,则实数a 的取值范围是____. 三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)12435768101291113151714161820222417. (本题共13分,第Ⅰ问6分,第Ⅱ问7分)设{}n a 是公比大于1的等比数列,n S 为其前n 项和.已知37S =,且13a +,23a ,34a +构 成等差数列.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)令21221(log )(log )n n n b a a ++=⋅,求数列{}n b 的前n 项和n T .18. (本题共13分,第Ⅰ问6分,第Ⅱ问7分)已知函数()()22222xf x x a x a a e ⎡⎤=-+-++⎣⎦.(Ⅰ)当0a =时,求曲线()y f x =在0x =处的切线方程; (Ⅱ)讨论函数()f x 的单调性.19. (本题共13分,第Ⅰ问6分,第Ⅱ问7分)已知ABC ∆中的内角A 、B 、C 所对的边分别为a 、b 、c ,若(cos ,cos )m B C =,(2,)n a c b =+,且m n ⊥.(Ⅰ)求角B 的大小; (Ⅱ)求函数22sin sin y A C =+的取值范围. 20. (本题共12分,第Ⅰ问5分,第Ⅱ问7分)AD AB ⊥,CD AB //,3,3CD AB ==,平面SAD ⊥平面ABCD ,E 是线段AD 上一点,AE ED ==AD SE ⊥.(Ⅰ)证明:BE ⊥平面SEC ;(Ⅱ)若1=SE ,求直线CE 与平面SBC 所成角的正弦值. 21. (本题共12分,第Ⅰ问4分,第Ⅱ问8分)已知椭圆的中心为原点O,长轴长为7y =. (Ⅰ)求该椭圆的标准方程;(Ⅱ)射线x y 22=()0x ≥与椭圆的交点为M ,过M 作倾斜角互补的两条直线,分别与椭圆交于,A B 两点(,A B 两点异于M ).求证:直线AB 的斜率为定值. 22. (本题共12分,第Ⅰ问4分,第Ⅱ问8分) 已知数列{}n a 满足递推式:()1121222,,1,3n n n n a a n n N a a a a +--=-≥∈==. (Ⅰ)若11n nb a =+,求1n b +与n b 的递推关系(用n b 表示1n b +); (Ⅱ)求证:()122223n a a a n N +-+-++-<∈.2013-2014学年重庆八中高三上学期第二次模拟测试数学(理科) 参考答案一、选择题第10题提示:100101199S a a a =+++()100110099100991001009922a d a d d ⨯⨯=+=++ 12993100S d a ⎛⎫⇒=- ⎪⎝⎭,()222222110011111109910103150S a aa a d a a ⎛⎫+≤⇒++≤⇒++≤ ⎪⎝⎭2211101009225150S S a a ⎛⎫⇒++-≤ ⎪⎝⎭有解⇒221041002259150S S ⎡⎤⎛⎫⎛⎫∆=-⨯⨯-≥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦500S ⇒≤ 二、填空题11. (]5,1-- 12. 12n n a -= 13. 10914.15. 3- 16. []2,5- 三、解答题17. (I )1237a a a ++=,21367a a a =++,则22a =,135a a +=. 则225q q+=,故12q =或2,又1q >,则2q =,从而12n n a -=.(II )111(1)1n b n n n n ==-++⇒11111111223111n nT n n n n =-+-++-=-=+++. 18. (Ⅰ)当0a =时,()()222xf x x x e =-+,则切点为()0,2且()2xf x x e '=⇒()00k f '==,则切线方程为2y =; (Ⅱ)()()()()2222x xf x x ax a e x a x a e '=--=+-当0a =时,()f x 在R 上单调递增;当0a >时,()f x 在(),a -∞-、()2,a +∞上单调递增,在(),2a a -上单调递减; 当0a <时,()f x 在(),2a -∞、(),a -+∞上单调递增,在()2,a a -上单调递减. 19.(Ⅰ)()2cos cos 0m n a c B b C ⊥⇒++=2sin cos sin cos sin cos 0A B C B B C ⇒++=122sin cos sin 0cos 23A B A B B π⇒+=⇒=-⇒=(Ⅱ)方法一:()221cos 21cos 21sin sin 1cos 2cos 1202222A C y A C A A --=+=+=-+︒-⎡⎤⎣⎦ ()11cos 2cos120cos 2sin120sin 22A A A =-+︒+︒111cos 2222A A ⎛⎫=-+ ⎪ ⎪⎝⎭()11sin 2302A =-+︒ ()106030230150sin 230,12A A A ⎛⎤︒<<︒⇒︒<+︒<︒⇒+︒∈ ⎥⎝⎦13,24y ⎡⎫⇒∈⎪⎢⎣⎭.方法二:()2222sin sin sin sin60y A C A A =+=+︒-22222sin sin 60cos sin 60cos60sin 2cos 60sin A A A A =+︒-︒︒+︒2225331sin cos 2sin 24442A A A A A =+=+311cos 224224A A -=+⋅-()1111cos 221sin 230222A A A ⎛⎫=-=-+︒ ⎪ ⎪⎝⎭下同方法一.20.(Ⅰ)(Ⅱ)21.(Ⅰ)由准线为7y =知焦点在y 轴上,则可设椭圆方程为:22221y x a b +=.又22a a c ⎧=⎪⎨=⎪⎩知:1a b c ⎧=⎪=⎨⎪=⎩所以椭圆标准方程为:1822=+y x . (Ⅱ)∵ 斜率k 存在,不妨设k >0,求出M (22,2).直线MA 方程为)22(2-=-x k y ,直线MB 方程为)22(2--=-x k y . 分别与椭圆方程联立,可解出2284222-+-=k k k x A ,2284222-++=k k k x B. ∴22)(=--=--BA B A B A B A x x x x k x x y y . ∴ 22=AB k (定值).22. (Ⅰ)1211222321n n n n a a a a a a +--=-==-=-=121n n a a +⇒-= ①1111n n n n b a a b =⇒=-+代入①式得1111212111111n n n n n nb b b b b b +++---=⇒-=-- 即11122n n b b +=-+. (Ⅱ)111311132112nn n n a a ⎡⎤⎛⎫=--⇒+=⎢⎥ ⎪+⎝⎭⎛⎫⎢⎥⎣⎦-- ⎪⎝⎭()332312112n n na ⇒-=-=--⎛⎫-- ⎪⎝⎭ 对n 分奇数与偶数讨论:212212332,22121k k k k a a ---=-=+-,则212212212412111222+2=3+=32121221k k k k k k k k a a -----+⎛⎫--⋅ ⎪+-+-⎝⎭21241212221133+222k k k k k ---+⎛⎫<⋅=⋅ ⎪⎝⎭,则122122211122223222k k k a a a a -⎛⎫-+-++-+-<⋅+++⎪⎝⎭213132k⎛⎫=⋅-< ⎪⎝⎭; 又12212122113222231221k k kk a a a a -++⎛⎫-+-++-+-<⋅-+ ⎪+⎝⎭2121131212k k +⎛⎫=⋅+- ⎪+⎝⎭3<.综上所述,原不等式成立.。
重庆八中2014届高三上学期第一次月考试题 数学理试题 Word版含答案
B.
2 2
C.
3 2
D.
3 2
2.设 x, y R ,向量 a ( x,1) , b (1, y) , c (2, 4) 且 a c , b / / c ,则 x y A. 0 B. 4 3. 下列命题中,是假命题的是 A. x 0, C. 2 D. 4 B. x R,sin x cos x 2 D. 2
-4-
Go the distance
-5-
x 4t 6 L: ( t 为参数)相交的弦长为 4 6 ,则圆的半径 r _______ . y 3t 2
16.已知函数 f x 2 x a a ,若不等式 f x 6 的解集是 x 2 x 3 的真子集,则实数 a 的取值 范围是________. 三、解答题(本大题共 6 小题,共 75 分.解答应写出文字说明、证明过程或演算步骤.) 17. (本题共 13 分,第Ⅰ问 6 分,第Ⅱ问 7 分) 已知函数 f ( x) (sin2x cos2x) 2sin 2x .
2
(Ⅰ)当 a 1 时,求函数 f ( x) 的增区间; (Ⅱ)讨论函数 f ( x) 在区间 [1, e] 上的最小值.
19. (本题共 13 分,第Ⅰ问 6 分,第Ⅱ问 7 分) 在 ABC 中,角 A, B, C 所对的边分别为 a,b,c ,且 cos
(Ⅰ)求 a 的值;
2 sin( A ) sin( B C ) 4 4 的值. (Ⅱ)求 1 cos 2 A
-3-
Go the distance
21. (本题共 12 分,第Ⅰ问 4 分,第Ⅱ问 8 分) 椭圆长轴端点为 A, B , O 为椭圆中心, F 为椭圆的右焦点,且 AF FB 1 , OF 1 . (Ⅰ)求椭圆的标准方程; (Ⅱ)记椭圆的上顶点为 M , 直线 l 交椭圆于 P, Q 两点, 问: 是否存在直线 l , 使点 F 恰为 PQM 的垂心? 若存在,求出直线 l 的方程;若不存在,请说明理由.
重庆八中2024—2025学年度(上)高三年级入学适应性训练 数学试题
重庆八中2024—2025学年度(上)高三年级入学适应性训练数 学 试 题命题:高三命题组 审核:高三审题组 打印:朱俊 校对:伍晓琴 陈超一、单项选择题:本大题共 8 小题,每小题 5 分,共 40 分. 在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.已知集合{}{}2560,ln(3)A x x x B x y x x =−−>==−∈N ∣∣,,则()R A B = A.{}456,, B.{}45, C.{}1234,,, D.{}3456,,, 2.设,x y R ∈,则“0x y +>”的一个充分不必要条件是A.1x yB.0x yC.0xyD.220x y3.函数||1cos ()x x x f x e −=的图象大致为A. B. C. D.4.《中国共产党党旗党徽制作和使用的若干规定》指出,中国共产党党旗为旗面缀有金黄色党徽图案的红旗,通用规格有五种,这五种规格党旗的长12345,,,,a a a a a (单位:cm)成等差数列,对应的宽为12345,,,,b b b b b (单位:cm),且长与宽之比都相等,已知1288a =,596a =,1192b =,则3b =A. 64B. 100C. 128D. 1325.牛顿曾提出:物体在空气中冷却,如果物体的初始温度为1C θ︒,空气温度为0C θ︒,则t分钟后物体的温度θ(单位:C ︒)满足:()010e kt θθθθ−=+−(k 为常数).若0.02k =,空气温度为20C ︒,某物体的温度从80C ︒下降到50C ︒以下,至少大约需要的时间为(参考数据:ln 2069≈.) A.25分钟 B.32分钟 C.35分钟 D.42分钟6.已知()|1|1x f x e =−−,若函数2()[()]()1g x f x af x =−−有三个零点,则a 的取值范围为A.(0,)+∞B.(1,0)(0,)−+∞C.(1,0)(0,1)−D.(1,)+∞7.已知函数()f x 的定义域为(0,)+∞,值域为R ,且1()()2(),(2)2x f xy f f x f y +==, (1)0f =,则1(2)k k nf ==∑A.1n +B.1(1)4n +C.(1)n n +D.1(1)4n n + 8.已知函数32()log 22x g x x x −=−++,若()(1)g x f x =+,则()f x 图象与两坐标轴围成的图形面积为A.2B.4C.6D.38log 2二、多项选择题:本大题共 3 小题,每小题 6 分,共 18 分. 在每小题给出的四个选项中,有多项符合题目要求. 全部选对得 6 分,选对但不全的得部分分,有选错的得0分.9.将一组样本数据的平均数混入到该组样本数据中,由此估计出来的统计量不变的有A.平均数B.中位数C.标准差D.极差10.若0a >,0b >,且22a b ab +=,则A.24a b +≥B.4a b +≥C.2ab ≥D.2248a b +≥ 11.已知函数()2ln 11f x x x =−−−,则下列结论正确的是 A.若0a b <<,则()()f a f b <B.()()20242025log 2025log 20240f f +=C.若()e 1e 1b b f a b +=−−,()0,1a ∈,()0,b ∈+∞,则e 1b a =D.若(1,2)a ∈,则(1)()f a f a −>三、填空题:本大题共 3 小题,每小题 5 分,共 15 分.12.设1F ,2F 为双曲线22142x y −=的两个焦点,点P 是双曲线上的一点,且1290F PF ∠=︒,则12F PF △的面积为 .13.已知直线:(1)l y k x =−是曲线()2x f x e =和()2ln g x x a =+的公切线,则实数a = .14.设函数()y f x =的定义域为R ,()1f x −为奇函数,()1f x +为偶函数,当(1,1]x ∈−时,()21f x x =−,则()20251k f k ==∑ .四、解答题:本题共 5 小题,共 77 分. 解答应写出文字说明、证明过程或演算步骤. 15.(本小题满分13分)已知数列{}n a 的前n 项和为n S ,若14(21)1n n S n a +=−+,且11a =. (1)求数列{}n a 的通项公式;(2)设1(2)n n n c a a =+,数列{}n c 的前n 项和为n T ,求n T .16.(本小题满分15分)已知函数()e 212x f x ax a −=−+.(1)若a ∈R ,讨论()f x 的单调性;(2)若a ∈R ,已知函数()(1)ln(1)g x x x =−−,若()()f x g x ≥恒成立,求a 的取值范围.17.(本小题满分15分)已知椭圆22184:1x y C +=的焦点是椭圆C 的顶点,椭圆222:1912x y C +=的焦点也是椭圆C 的顶点.(1)求椭圆C 的标准方程;(2)已知点00(1,),0P y y >,若,,P A B 三点均在椭圆C 上,且PA PB ⊥,直线,,PA PB AB 的斜率均存在,请问直线AB 是否过定点,若过定点求出定点坐标,若不过定点,说明理由.18.(本小题满分17分)现有n 枚质地不同的游戏币12,,,(3)n a a a n >,向上抛出游戏币ma 后,落下时正面朝上的概率为1(1,2,,)2m n m =.甲、乙两人用这n 枚游戏币玩游戏. (1)甲将游戏币2a 向上抛出10次,用X 表示落下时正面朝上的次数,求X 的期望()E X ,并写出当k 为何值时,()P X k =最大(直接写出结果,不用写过程);(2)甲将游戏币1a ,2a ,3a 向上抛出,用Y 表示落下时正面朝上游戏币的个数,求Y 的分布列;(3)将这n 枚游戏币依次向上抛出,规定若落下时正面朝上的个数为奇数,则甲获胜,否则乙获胜,请判断这个游戏规则是否公平,并说明理由.19.(本小题满分17分)已知函数()()ln 1x f x x −=,()()ln 1g x x x =−+,(1)求()g x 的最大值;(2)求函数()f x 的单调区间;(3)若()11f x ax <−,求实数a 的值.。
2024-2025学年重庆市八中高三上学期入学适应性训练数学试题及答案
重庆八中2024—2025学年度(上)高三年级入学适应性训练数 学 试 题一、单项选择题:本大题共 8 小题,每小题 5 分,共 40 分. 在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上. 1.已知集合{}{}2560,ln(3)A xx x B x y x x =−−>==−∈N ∣∣,,则()R A B = A.{}456,, B.{}45, C.{}1234,,, D.{}3456,,, 2.设,x y R ∈,则“0x y +>”的一个充分不必要条件是A.1x yB.0x yC.0xyD.220x y3.函数||1cos ()x x xf x e −=的图象大致为A. B. C. D.4.《中国共产党党旗党徽制作和使用的若干规定》指出,中国共产党党旗为旗面缀有金黄色党徽图案的红旗,通用规格有五种,这五种规格党旗的长12345,,,,a a a a a (单位:cm)成等差数列,对应的宽为12345,,,,b b b b b (单位:cm),且长与宽之比都相等,已知1288a =,596a =,1192b =,则3b =A. 64B. 100C. 128D. 1325.牛顿曾提出:物体在空气中冷却,如果物体的初始温度为1C θ︒,空气温度为0C θ︒,则t分钟后物体的温度θ(单位:C ︒)满足:()010e ktθθθθ−=+−(k 为常数).若0.02k =,空气温度为20C ︒,某物体的温度从80C ︒下降到50C ︒以下,至少大约需要的时间为(参考数据:ln 2069≈.) A.25分钟 B.32分钟 C.35分钟 D.42分钟6.已知()|1|1x f x e =−−,若函数2()[()]()1g x f x af x =−−有三个零点,则a 的取值范围为 A.(0,)+∞ B.(1,0)(0,)−+∞ C.(1,0)(0,1)− D.(1,)+∞7.已知函数()f x 的定义域为(0,)+∞,值域为R ,且1()()2(),(2)2x f xy f f x f y +==,(1)0f =,则1(2)kk nf ==∑ A.1n + B.1(1)4n + C.(1)n n + D.1(1)4n n +8.已知函数32()log 22xg x x x −=−++,若()(1)g x f x =+,则()f x 图象与两坐标轴围成的图形面积为 A.2 B.4 C.6 D.38log 2二、多项选择题:本大题共 3 小题,每小题 6 分,共 18 分. 在每小题给出的四个选项中,有多项符合题目要求. 全部选对得 6 分,选对但不全的得部分分,有选错的得0分. 9.将一组样本数据的平均数混入到该组样本数据中,由此估计出来的统计量不变的有 A.平均数 B.中位数 C.标准差 D.极差 10.若0a >,0b >,且22a b ab +=,则 A.24a b +≥ B.4a b +≥ C.2ab ≥ D.2248a b +≥ 11.已知函数()2ln 11f x x x =−−−,则下列结论正确的是 A.若0a b <<,则()()f a f b <B.()()20242025log 2025log 20240f f +=C.若()e 1e 1b bf a b +=−−,()0,1a ∈,()0,b ∈+∞,则e 1b a =D.若(1,2)a ∈,则(1)()f a f a −>三、填空题:本大题共 3 小题,每小题 5 分,共 15 分.12.设1F ,2F 为双曲线22142x y −=的两个焦点,点P 是双曲线上的一点,且1290F PF ∠=︒,则12F PF △的面积为 .13.已知直线:(1)l y k x =−是曲线()2xf x e =和()2lng x x a =+的公切线,则实数a = . 14.设函数()y f x =的定义域为R ,()1f x −为奇函数,()1f x +为偶函数,当(1,1]x ∈−时,()21f x x =−,则()20251k f k ==∑ .四、解答题:本题共 5 小题,共 77 分. 解答应写出文字说明、证明过程或演算步骤. 15.(本小题满分13分)已知数列{}n a 的前n 项和为n S ,若14(21)1n n S n a +=−+,且11a =. (1)求数列{}n a 的通项公式;(2)设1(2)n n n c a a =+,数列{}n c 的前n 项和为n T ,求n T .16.(本小题满分15分)已知函数()e 212x f x ax a −=−+. (1)若a ∈R ,讨论()f x 的单调性;(2)若a ∈R ,已知函数()(1)ln(1)g x x x =−−,若()()f x g x ≥恒成立,求a 的取值范围.17.(本小题满分15分)已知椭圆22184:1x y C +=的焦点是椭圆C 的顶点,椭圆222:1912x y C +=的焦点也是椭圆C 的顶点. (1)求椭圆C 的标准方程;(2)已知点00(1,),0P y y >,若,,P A B 三点均在椭圆C 上,且PA PB ⊥,直线,,PA PB AB 的斜率均存在,请问直线AB 是否过定点,若过定点求出定点坐标,若不过定点,说明理由.18.(本小题满分17分)现有n 枚质地不同的游戏币12,,,(3)n a a a n >,向上抛出游戏币ma 后,落下时正面朝上的概率为1(1,2,,)2m n m=.甲、乙两人用这n 枚游戏币玩游戏.(1)甲将游戏币2a 向上抛出10次,用X 表示落下时正面朝上的次数,求X 的期望()E X ,并写出当k 为何值时,()P X k =最大(直接写出结果,不用写过程);(2)甲将游戏币1a ,2a ,3a 向上抛出,用Y 表示落下时正面朝上游戏币的个数,求Y 的分布列;(3)将这n 枚游戏币依次向上抛出,规定若落下时正面朝上的个数为奇数,则甲获胜,否则乙获胜,请判断这个游戏规则是否公平,并说明理由.19.(本小题满分17分)已知函数()()ln 1x f x x−=,()()ln 1g x x x =−+, (1)求()g x 的最大值;(2)求函数()f x 的单调区间;(3)若()11f x ax <−,求实数a 的值.重庆八中2024—2025学年度(上)高三年级入学适应性训练数 学 试 题 参 考 答 案一、单项选择题:本大题共 8 小题,每小题 5 分,共 40 分. 在每小题给出的四个选项【1】{|61}A x x x =><−或,{|3,}{4,5,6,}B x x x N =>∈=,{|16}R A x x =−≤≤【2】1x y +>−不能推出0x y +>,A ∴错误;00x y x y >>⇒+>,当2x =−,3y =时,满足0x y +>,但不满足0x y >>,B ∴正确;当2x =−,3y =−时,满足0xy >,但不满足0x y +>,C ∴错误;当3x =−,2y =−时,满足220x y −>,但不满足0x y +>,D ∴错误,故选:B .【3】()()f x f x −=−⇒函数()y f x =为奇函数,图象关于原点对称,排除CD ;1()0f eπππ−−=<,故选A 【4】由题意可得,1531922a a a +==,313313192288128192a a b b b b ∴=⇒=⇒=,选C . 【5】由题知020θ=,180θ=,50θ=,所以()0.025*******e t−=+−,可得0.021e 2t −=, 所以10.02ln ln 22t −==−,50ln 2345t ∴=≈.,即某物体的温度从80C ︒下降到50C ︒以下,至少大约需要35分钟.故选C.【6】令()f x t =,若函数2()[()]()1g x f x af x =−−有三个零点,则方程2()10h t t at =−−=有一根在(0,)+∞上,一根在(0,)+∞上,则只需(1)0h −>即可,故0a >,选A【7】因为()()2()x f xy f f x y+=,所以()()()()x f xy f x f x f y −=−,所以1(2)(2)k k f f −−=121(2)(2)(2)(1)2k k f f f f −−−==−=,所以(2)2k k f =,所以11(2)(1)4kk nf n n ==+∑.【8】由题可知函数()g x 图象为()f x 图象向左平移一个单位得到,()f x 图象与两坐标轴围成的图形面积即为()g x 图象与10x y =−=,所围成的图象面积,32()log 22xg x x x −=−++,定义域为(2,2)−,32()log 22xg x x x +−=++−+,则有()()4g x g x +−=,函数()g x 的图象关于点(0,2)成中心对称,又(1)4(1)0g g −==,,且点(1,4)−与点(1,0)也关于点(0,2)成中心对称,由基本初等函数的单调性可得函数()g x 在区间(1,1)−上单调递减,因此与坐标轴围成图形的面积是12442⨯⨯=.故选:B .二、多项选择题:本大题共 3 小题,每小题 6 分,共 18 分. 在每小题给出的四个选项详细解答:【9】设原样本为1x ,2x ,⋯,n x ,其平均数为0x ,则10ni i xx n=∑=,混入后为0x ,1x ,2x ,⋯,n x ,平均数为x ,于是0000(1)111nniii i ix x x n x x x n n n ==+∑∑+====+++,则这两组数据的平均数相同,故A 正确;取这组数据为1,2,3,4,10,则其中位数为3,加入平均数4后,中位数变为3.5,于是可得这两组数据的中位数不一定相同,故B 错误;取这组数据为1,2,3,4,5,则其标准差为3,于是可得这两组数据的标准差不同,故C 错误;不妨设12n x x x ≤≤≤,由于10n x x x ≤≤,故这两组数据的极差相同,故D 正确.故选:AD . 【10】由0a >,0b >,22a b ab +=,变形为1112a b +=.A ,由“乘1法”可得:1122(2)()2224222a b a a b a b a b b a b +=++=+++=,当且仅当22a b b a=,即2a =,1b=时取等号,A 正确; B ,由“乘1法”可得:11333()()2222222a b a ab a b a b b ab +=++=+++=,当且仅当2a bb a =,即2a b ==B 错误; C ,222a b ab +,当且仅当2a b =,即2a =,1b =时取等号,∴222ab ab ,化为2ab ,当且仅当2a =,1b =时取等号,C 正确;D ,2244a b ab +,当且仅当2a b =,即2a =,1b =时取等号,由C 知2ab ,当且仅当2a =,1b =时取等号,2248a b ∴+,当且仅当2a =,1b =时取等号,D 正确.【11】()2ln 11f x x x =−−−的定义域为()()0,11,∞+,()()21201f x x x '=+>−在定义域上恒成立,所以()f x 的单调递增区间为()0,1,()1,+∞,故A 错误;1122ln 1ln 1111x f x x x x x⎛⎫=−−=−−+ ⎪−⎝⎭−,所以()122201x f f x x x −⎛⎫+=−+= ⎪−⎝⎭,又202420251log 2025log 2024=,所以()()20242025log 2025log 20240f f +=,故B 正确;()()e 1221ln e ln e 1e e 1e 1e1b b b b bbbf a b f −−−+=−=+−=−−=−−−,因为()0,b ∈+∞,所以0<e 1b −<,又()0,1a ∈,所以e b a −=,即e 1b a =,故C 正确.(1)()f a f a −>即12(1)()ln(1)(2)(1)f a f a a a a −−=−−−−,由1ln 1x x>−,2(1)()101(2)(1)(1)(2)a af a f a a a a a a −−−>−−=>−−−−−,故选:BCD【12】解法一:12F PF △的面积为1222cot 22F PF b b θ=⋅==△S解法二:设12||,||()PF x PF y x y ==>,由定义4x y −=,1290F PF ∠=︒,2224x y ∴+=,2222()8xy x y x y ∴=+−−=,4xy ∴=,12F PF ∴的面积为122xy = 【13】设直线l 与曲线()y f x =相切于点()00,x y ,由()22e xf x '=,得()0202e x k f x '==,因为l 与曲线()2xf x e =相切,所以0002002()2e e 1x x y x y ⎧=⎪⎨=−⎪⎩,消去0y ,解得032x =,32k e =. 设l 与曲线()y g x =相切于点11(,)x y ,由()112g x x '=,得3122k e x ==,即131x e=,331131(1)2(1)22e y k x e e =−=−=−,因为11(,)x y 是l 与曲线()2ln g x x a =+的公共点, 所以331222ln()e a e−=+,解得382a e =−.【14】因为函数()y f x =的定义域为R ,()1f x −为奇函数,()1f x +为偶函数,所以,函数()f x 的图象关于点()1,0−对称,也关于直线1x =对称,所以,()()2f x f x −=+,()()2f x f x −=−−,所以,()()22f x f x +=−−,则()()()84f x f x f x +=−+=,所以,函数()f x 是周期为8的周期函数,当(1,1]x ∈−时,()21f x x =−,则()11f =,()()710f f =−=,()()801f f ==−,()()201f f ==−,()()310f f =−=,()()()4621f f f =−−=−=,()()()5311f f f =−=−=−,()()()6801f f f =−−=−=,所以,()81110111010k f k ==−++−++−=∑,又因为20248253=⨯,所以,()()2025811253(1)253011k k f k f k f ===+=⨯+=∑∑四、解答题:本题共 5 小题,共 77 分. 解答应写出文字说明、证明过程或演算步骤. 【15】(1)在14(21)1n n S n a +=−+中,令1n =,得241a =+,解得23a =,因为14(21)1n n S n a +=−+,所以当2n ≥时,14(23)1n n S n a −=−+,两式相减,得14(21)(23)n n n a n a n a +=−−−,所以1(21)(21)n n n a n a ++=−,即12121n n a n a n ++=−(2n ≥),当1n =时,213a a =符合该式, 所以()13211221212353···121,2232531n n n n n a a a a n n a a n n a a a a n n −−−−−=⋅⋅⋅⋅=⋅⨯⨯=−≥−−, 又因为11a =满足上式,所以数列{}n a 的通项公式为21n a n =−. ……………………6分(2)因为11111()(2)(21)(21)22121n n n c a a n n n n ===−+−+−+,所以12n n T c c c =++⋅⋅⋅+11111111111(1)()()()2323525722121n n =−+−+−+⋅⋅⋅+−−+11(1)22121n n n =−=++,所以21n n T n =+. …13分【16】(1)()e 212x f x ax a −=−+,则()e 2xf x a '=−. ……………………1分 当0a ≤时,()0f x '>,所以()f x 在R 上单调递增; ……………………3分 当0a >时,令()0ln 2,()0ln 2f x x a f x x a ''>⇒><⇒<,所以()f x 在(ln 2,)a +∞上单调递增,在(,ln 2)a −∞上单调递减.综上,当0a ≤时,()f x 在R 上单调递增;当0a >时,()f x 在(ln 2,)a +∞上单调递增,在(,ln 2)a −∞上单调递减. ………………………7分(2)由()()f x g x ≥,得e 212(1)ln(1)x ax a x x −−+≥−−,即e 1(1)ln(1)2(1)xx x a x −≥−−+−,令1t x =−,则1e1ln 2(0)t t t at t +−≥+>,即不等式1e 12ln t a t t+−≤−在(0,)+∞恒成立,…9分 设1e 1()ln (0)t h t t t t+−=−>,则12(1)(e 1)()t t h t t +−−'=, ………………………11分 令()001,()01h t t h t t ''<⇒<<>⇒>,所以()h t 在(0,1)上单调递减,在(1,)+∞上单调递增,则2()(1)e 1h t h ≥=−,所以22e 1a ≤−,即实数a 的取值范围为2e 1(,]2−−∞. …………15分【17】(1)椭圆22184:1x y C +=的焦点(2,0)±,椭圆222:1912x y C +=的焦点(0, 易知椭圆C 的焦点在x轴上,且2a b =⎧⎪⎨⎪⎩2243:1x y C +=. …………6分(2)证明:因为点00(1,),0P y y >在椭圆2243:1x y C +=上,解得032y =. 设()11,A x y ,()22,B x y ,直线:AB y kx m =+.联立22143x y y kx m ⎧+=⎪⎨⎪=+⎩,得222(34)84120k x kmx m +++−=,则()2248340k m ∆=+−>,122834km x x k −+=+,212241234m x x k −=+, 进而()121226234m y y k x x m k +=++=+, ()()()222121212122212334km k m y y kx m kx m k x x x m x k−+++=++=++=…………9分因为PA PB ⊥,所以12123322111PA PBy y k kx x −−−=⋅=⨯−−,即()()12123311022x x y y ⎛⎫⎛⎫−−+−−= ⎪⎪⎝⎭⎝⎭, 即()()12121212391024x x x x y y y y −+++−++=,即2241234m k −−+28134km k −+++2222123369()0243434k m m k k −+−+=++ 即22079894km m k m +−−+= …………12分法一(双十字相乘法)03(7)2)(23m k m k +−+=+法二(待定系数法)0())(am bk c dm f ek +++=+或0(9)()())4(77m k m k m k a k m b ++++−+=+ 法三(主元法)233(89)))027((2m k k m k +−−+=+⇒03(7)2)(23m k m k +−+=+因为PA PB ⊥,所以点P 不在直线AB 上,则032m k +−≠,所以3714k m −−=所以直线13:()714AB y k x =−−过定点13(,)714−. …………15分【18】(1)依题意得:每次抛游戏币2a 落下时正面向上的概率均为为14,故1(,10)4X B ,于是15()1042E X =⨯=,当2k =时,()P X k =最大. …………4分 (2)记事件k A 为“第k a 枚游戏币向上抛出后,正面朝上”,则1()2k P A k=,1,2,3k =,Y 可取0,1,2,3.由事件k A 相互独立,则1231231115(0)()()()()(1)(1)(1)24616P Y P A A A P A P A P A ====−−−=.123123123(1)()P Y P A A A A A A A A A ==++123123123()()()P A A A P A A A P A A A =++111111111(1)(1)(1)(1)(1)(1)246246246=⨯−⨯−+−⨯⨯−+−−⨯135115131246246246=⨯⨯+⨯⨯+⨯⨯2348=. 123123123(2)()()()P Y P A A A P A A A P A A A ==++111111111(1)(1)(1)246246246=⨯⨯−+⨯−⨯+−⨯⨯15131186124224=⨯+⨯+⨯316=.1231111(3)()24648P Y P A A A ===⨯⨯=.(3)不妨假设按照1a ,2a ,,n a 的顺序抛这n 枚游戏币.记抛第k a 枚游戏币后,正面朝上的游戏币个数为奇数的概率为k P ,1k =,2,,n .于是1111(1)(1)22k k k P P P k k−−=⋅−+−⋅1111_222k k k P P P k k k −−−=−+111(1)2k P k k −=−+. …13分即1112k k k P P k k−−=⋅+.即11(1)2k k kP k P −=−+,2k . 记k k b kP =,则112k k b b −−=,2k ,故数列{}n b 为首项是1112P ⨯=,公差为12的等差数列. 故11(1)222k k b k =+−⨯=,则2k k kP =,故12k P =,1k =,2,3,,n .则12n P =.故公平.……………………………17分【19】(1)据题意,()g x 的定义域为(),1−∞,由()1111xg x x x '=+=−−,知()g x 在(),0−∞单调增,在()0,1单调减,所以()()max 00g x g ==. …………4分(2)据题意,()f x 的定义域为()(),00,1−∞,由()()2ln 11x x x f x x−−−'=.令()()ln 11x x x x ϕ=−−−,则()()()2211111x x x x x ϕ'=−−=−−−−,于是知()x ϕ在(),0−∞单调增,在()0,1单调减,所以()()00x ϕϕ≤=,则()()20x f x x ϕ'=≤,即()f x 在(),0−∞单调减,也在()0,1单调减. …………8分【如果回答在定义内单调递减,则需要证明,过程如下:由(1)知:()ln 1x x −<−,则有()()()()1010f x x f x x ⎧<−>⎨>−<⎩,所以对()()12,0,0,1x x ∀∈−∞∀∈,都有()()121f x f x >−>,故()f x 是其定义域上的减函数.若没有以上证明,此处扣1分】(3)令()()ln 11x h x x ax =−−−,则()()()()()2222121111111111a x a ax ax x h x x x x ax ax ax +−−−'=−=+=⋅−−−−−− ①当12a >时,有120a −<,于是对()2210,10,a x a ⎛⎫−∈ ⎪⎝⎭,有()0h x '>,()h x 单调增,存在()12210,10,a x a ⎛⎫−∈ ⎪⎝⎭,使得()()100h x h >=,即()111ln 11x x ax −>−,即()1111f x ax >−,矛盾; …………11分 ②当12a <时,有120a −>,于是对221,0a x a ⎛⎫−∈ ⎪⎝⎭,有()0h x '>,()h x 单调增,存在2221,0a x a ⎛⎫−∈ ⎪⎝⎭使得()()200h x h <=,即()222ln 11x x ax −<−,即()2211f x ax >−,矛盾; …………14分③当12a =时,()()()22012x h x x x '=<−−,则()h x 在(),1−∞单调减,又()0h x =, 所以()()()()0000h x x h x x ><⎧⎨<>⎩,则()0h x x <,即()11f x ax <−,符合题意.综上:12a =.……17分。
重庆八中2014届高三上学期第二次月考理科综合试题.pdf
2.如题2图所示,一运送救灾物资的直升飞机沿水平方向匀速飞行.已知物资的总质量为m,吊运物资的悬索与竖
直方向成θ角.设物资所受的空气阻力为f,悬索对物资的拉力为T,重力加速度为g,则
A. B.
C.D.
3.如题3图所示,一位飞行员驾驶着一架飞机在竖直面内沿环线做匀速圆周飞行.飞机在环线最顶端完全倒挂的瞬
外侧壁有压力D.不能经过管道的最高点
5. 、的质量相等,物体刚好与地面接触. 现剪断,下列说法正确A.的加速度为
B.的速度最大
C.弹簧压缩到最短时,物体的加速度为0
D.、和地球组成的系统机械能守恒
二、非选择题(本大题共4小题,共68分)
6.(19分)
(1)如题6图1为用DIS(位移传感器、数据采集器、计算机)“研究加速度和力的关系”的实验装置.
离子的水。水的硬度过高对生活和生产都有害。
(3)①高氙酸钠(Na4XeO6)Mn2+氧化生成MnO,生成XeO3。请写出高氙酸钠溶液和硫酸酸化的硫酸锰溶液反应的
离子方程式:
。
②在-5 ℃时,高氙酸钠(Na4XeO6)能跟浓硫酸反应生成XeO4气体。请写出该反应的化学方程式:
D.X的分子式为C23H26 N2O7
6.可逆反应 H2 (g)+ I2 (g)2HI(g),温度一定,在1L的密闭容器中加入2molH2(g)和1molI2(g)开始反应,2min末测
知容器中生成了1.2mol消耗速率与I2(g)的生成速率始终相等
b.滑块碰撞发生在第一次闪光后
c设向右为正方向,试分析碰撞前两滑块的质量与速度乘积之和是
,碰撞后两滑块的质量与速度乘积之和是
,说明
7. (15分)随着中国首艘航母“辽宁号”的下水,同学们对舰载机(题7图1)的起降产生了浓厚的兴趣. 从而编制了
2014年全国高考重庆市数学(理)试卷及答案【精校版】
2014年重庆高考数学试题(理)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内表示复数(12)i i -的点位于( ).A 第一象限 .B 第二象限 .C 第三象限 .D 第四象限2.对任意等比数列{}n a ,下列说法一定正确的是( )139.,,A a a a 成等比数列 236.,,B a a a 成等比数列 248.,,C a a a 成等比数列 369.,,D a a a 成等比数列3.已知变量x 与y 正相关,且由观测数据算得样本平均数3x =, 3.5y =,则由观测的数据得线性回归方程可能为( ).0.4 2.3A y x =+ .2 2.4B y x =- .29.5C y x =-+ .0.3 4.4C y x =-+4.已知向量(,3),(1,4),(2,1)a k b c ===,且(23)a b c -⊥,则实数k =( )9.2A - .0B .C 3 D.1525.执行如题(5)图所示的程序框图,学科 网若输出k 的值为6,则判断框内可填入的条件是( ) A.12s >B.35s >C.710s >D.45s >6.已知命题:p 对任意x R ∈,总有20x>; :"1"q x >是"2"x >的充分不必要条件 则下列命题为真命题的是( ).A p q ∧ .B p q⌝∧⌝ .C p q ⌝∧ .D p q ∧⌝ 7.某几何体的三视图如图所示,则该几何体的表面积为( )A.54B.60C.66D.728.设21F F ,分别为双曲线)0,0(12222>>=-b a by a x 的左、右焦点,双曲线上存在一点P 使得,49||||,3||||2121ab PF PF b PF PF =⋅=+则该双曲线的离心率为( ) A.34 B.35 C.49D.3 9.某次联欢会要安排3个歌舞类节目、学科 网2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( ) A.72 B.120 C.144 D.310.已知ABC ∆的内角21)sin()sin(2sin ,+--=+-+B A C C B A A C B A 满足,,面积S 满足C B A c b a S ,,,,21分别为,记≤≤所对的边,则下列不等式成立的是( ) A.8)(>+c b bc B.216b)+ab(a > C.126≤≤abc D.1224abc ≤≤ 二、填空题11.设全集=⋂==≤≤∈=B A C B A n N n U U )(},9,7,5,3,1{},8,5,3,2,1{},101|{则______. 12.函数)2(log log )(2x x x f ⋅=的最小值为_________.13. 已知直线02=-+y ax 与圆心为C 的圆()()4122=-+-a y x 相交于B A ,两点,且 A B C ∆为等边三角形,学 科网则实数=a _________.考生注意:14、15、16三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分.14. 过圆外一点P 作圆的切线PA (A 为切点),再作割线PB ,PC 分别交圆于B ,C , 若6=PA ,AC =8,BC =9,则AB =________. 15. 已知直线l 的参数方程为⎩⎨⎧+=+=t y tx 32(t 为参数),以坐标原点为极点,x 正半轴为极轴线l 与曲线C 的公共点的极经=ρ________. 16. 若不等式2212122++≥++-a a x x 对任意实数x 恒成立,学 科网则实数a 的取值范围是____________.三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算过程. 17. (本小题13分,(I )小问5分,(II )小问8分)已知函数()()⎪⎭⎫⎝⎛<≤->+=220sin 3πϕπωϕω,x x f 的图像关于直线3π=x 对称,且图像上相邻两个最高点的距离为π.(I )求ω和ϕ的值; (II )若⎪⎭⎫ ⎝⎛<<=⎪⎭⎫⎝⎛326432παπαf ,求⎪⎭⎫⎝⎛+23cos πα的值.18.(本小题满分13分)一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字 是2,2张卡片上的数字是3,学 科 网从盒中任取3张卡片. (1)求所取3张卡片上的数字完全相同的概率;(2)X 表示所取3张卡片上的数字的中位数,求X 的分布列(注:若三个数c b a ,,满足 c b a ≤≤,则称b 为这三个数的中位数).19.(本小题满分12分)如图(19),四棱锥ABCD P -,底面是以O 为中心的菱形,⊥PO 底面ABCD ,3,2π=∠=B A DAB ,M 为BC 上一点,且AP MP BM ⊥=,21.(1)求PO 的长;(2)求二面角C PM A --的正弦值。