实验三++555定时器的应用仿真实验
555定时器 实验报告
555定时器实验报告555定时器实验报告引言:555定时器是一种常用的集成电路,具有广泛的应用领域。
本实验旨在通过对555定时器的实验研究,探索其工作原理和特性,并进一步了解其在电子电路中的应用。
一、实验目的本实验的主要目的是:1. 了解555定时器的基本结构和工作原理;2. 掌握555定时器的基本参数和特性;3. 学习使用555定时器设计和实现简单的定时器电路。
二、实验原理555定时器是一种集成电路,由比较器、RS触发器和输出驱动器组成。
它可以工作在单稳态、多稳态和振荡器模式下,具有广泛的应用。
555定时器的主要参数有供电电压、触发电平、输出电流等。
三、实验步骤1. 实验前准备:准备好实验所需的555定时器芯片、电源、电阻、电容等器件。
2. 搭建电路:按照实验指导书上的电路图搭建555定时器电路。
3. 调试电路:根据实验指导书上的调试步骤,逐步调整电路参数,确保电路正常工作。
4. 测量参数:使用万用表等仪器,测量电路中的电压、电流等参数,并记录下来。
5. 分析结果:根据实验数据,分析555定时器的工作特性和参数变化规律。
6. 总结实验:总结实验过程中遇到的问题和解决方法,总结实验结果和心得体会。
四、实验结果与分析在实验过程中,我们观察到555定时器在不同电路条件下的稳定工作。
通过调整电路参数,我们成功实现了定时器电路的设计和实现。
根据测量数据和分析结果,我们得出以下结论:1. 555定时器的稳定工作与供电电压、触发电平等参数密切相关;2. 555定时器的输出电流能力有一定限制,需要根据具体应用场景选择合适的驱动电路;3. 555定时器可以通过改变电阻和电容值来调整输出波形的频率和占空比。
五、实验应用555定时器具有广泛的应用领域,常见的应用包括:1. 交通信号灯控制:通过555定时器实现交通信号灯的定时控制,实现交通流畅和安全;2. 脉冲发生器:利用555定时器的振荡特性,设计和实现各种脉冲发生器电路;3. 声音发生器:通过555定时器产生不同频率的方波,实现声音发生器电路;4. 脉宽调制:利用555定时器的占空比可调特性,实现脉宽调制电路。
555定时器的应用实验研究
555定时器的应用实验研究摘要:通过用示波器和配合调可变电阻验证555定时器的三个应用———单稳态电路、多谐振荡器、施密特触发器,根据555定时器的应用原理,我用4电阻、2个led灯、两个电容一个555定时器设计了简单电路,在验证单稳态电路时可见示波器上有一定时间宽度的脉冲信号,验证谐振荡器时可见在示波器上有方波输出,体现在两个led灯的闪烁,施密特触发器的验证在示波器上可见整形电路。
本研究是为了加强大三学生的动手能力和对555定时器的应用深刻的认识,在学院组织下,开展的为时一周的实训课程。
为了做好实验研究,我所做的前期工作有:一、网上搜素关于555定时器的应用,二、用AlT2um Designer 做实验电路图,三、同学间交流,共同探讨。
555定时器成本低,性能可靠,只需要外接几个电阻、电容,就可以实现多谐振荡器、单稳态触发器及施密特触发器等脉冲产生与变换电路。
它也常作为定时器广泛应用于仪器仪表、家用电器、电子测量及自动控制等方面。
它内部包括两个电压比较器,三个等值串联电阻,一个RS 触发器,一个放电管T 及功率输出级。
它提供两个基准电压VCC /3 和2VCC /3555 定时器的功能主要由两个比较器决定。
两个比较器的输出电压控制RS 触发器和放电管的状态。
在电源与地之间加上电压,当 5 脚悬空时,则电压比较器C1 的反相输入端的电压为2VCC /3,C2 的同相输入端的电压为VCC /3。
若触发输入端TR 的电压小于VCC /3,则比较器C2 的输出为0,可使RS 触发器置1,使输出端OUT=1。
如果阈值输入端TH 的电压大于2VCC/3,同时TR 端的电压大于VCC /3,则C1 的输出为0,C2 的输出为1,可将RS 触发器置0,使输出为0 电平。
它的各个引脚功能如下:1脚:外接电源负端VSS或接地,一般情况下接地。
2脚:低触发端3脚:输出端Vo4脚:是直接清零端。
当此端接低电平,则时基电路不工作,此时不论TR、TH处于何电平,时基电路输出为“0”,该端不用时应接高电平。
555定时器典型应用实验
5.4555定时器典型应用实验
1.构成单稳态触发器构成单稳态触发器::按图5-4-2接线接线,C=0.1,C=0.1µF,F,输入端加输入端加1kHz 的脉冲信号的脉冲信号,,用示波器观察U i ,U c ,
U o 的波形。
改变电位器Rw 的阻值,测量输出脉冲宽度tw 的变化范围,并与理论值相比较。
2.构成多谐振荡器构成多谐振荡器::按图5-4-4连接电路连接电路,,其中其中,,R A 为10k Ω电阻电阻,
,R B 由100k Ω电位器和10k Ω电阻串联构成,电容C 为0.01µF 。
调节R B 使输出Uo 的频率f=1kHz,f=1kHz,记录此时的记录此时的Uo,Uc 的波形的波形和
和R B 的实际阻值。
3.占空比可调的脉冲信号发生器占空比可调的脉冲信号发生器::按图5-4-5连接电路连接电路,
,其中R1=R2=10k Ω,Rw=100k Ω。
改变电位器Rw 值,组成一个占空比为50%的脉冲信号发生器的脉冲信号发生器,,用示波器记录Uo,Uc 的波形的波形。
Rw 变化时变化时,
,记录占空比的变化范围记录占空比的变化范围。
(C=0.01µF )Ucc DISC TH CO
GND
TR
OUT
Rd
555
图5-4-1555引脚排列图
图5-4-2单稳态触发器
10100R w 图5-4-4多谐振荡器图5-4-5占空比可调的脉冲信号发生器。
实验报告555集成定时器的应用
实验报告555集成定时器的应用
555集成定时器是一种很方便的定时器芯片,它将电子计时和一些基本的功能融合在
一起,拥有实用的应用,可以起到控制时间的作用,具有实用的属性。
555集成定时器可以实现多功能的计时,用较少的零件实现精确的定时,被广泛应用
于时控装置、家用电器、短信提醒、售货机、安全门等场景。
555集成定时器应用于家用电器,实现自动定时关机,比如对于目前电视市场上许多
涉及节目订购的节目,可以通过555集成定时器实现定时功能,当订购的节目时间到达时,自动开机观看节目;同理,可以用来实现电暖自动定时启动和关闭,便于家庭节能。
555集成定时器也能应用于安全门,具有延时关门、多按钮控制开关门等功能,保证
安全性。
此外,将它应用于短信提醒,能实现当实现时间到达条件时,集成定时器自动发
出提醒,发出报警信息,以实现人们的时效跟踪管理。
另外,555集成定时器也可以被应用于售货机,实现定时发放物品和打印发票等功能,保证售货机的安全性。
总之,555集成定时器由于其节省零件、高可靠性和精准控制时间的优点,凝聚着许
多实用的功能,被广泛应用于各种场景。
(555应用电路仿真实验)
logo信息与工程系555应用电路实训报告姓名:学号:专业:班级:实训指导教师:实训地点:实训时间:555应用电路实训报告一、实验要求与目的1.用555定时器设计一个施密特触发器,观察电路的输入、输出波形,并分析其电压传输特性。
2. 用555定时器设计一个单稳态触发器,观察在输入脉冲的作用下电路状态的变化。
3.用555定时器设计一个多谐振荡器,观察输出信号波形。
4. 掌握由555定时器构成的各种应用电路。
二、实验原理以555定时器为核心的各种应用电路具有结构简单、性能可靠、外接元件少等优点。
典型的应用电路有多谐振荡器、单稳态触发器、施密特触发器等。
三、实验内容1. 555定时器构成施密特触发器原理图测试输入、输出信号波形U1LM555CNGND 1DIS 7OUT3RST 4VCC8THR 6CON5TRI 2C110nFXSC1ABG TVCC5VXFG1测试结果:总结:当输入电压增加到(2/3)VCC ,即(2/3)× 5≈3.3 V 时,输出波形从高电平翻转为低电平;当输入电压减小到(1/3)VCC ,即(1/3)× 5≈1.67 V 时,输出波形从低电平翻转为高电平。
2. 单稳态触发器实验U1LM555CNGND1DIS 7OUT3RST 4VCC8THR 6CON5TRI 2C110nFR16.8kXSC1ABCDG TVCC5VC21.0uFXFG1测试结果:总结:当输出信号翻转为高电平时,电容C 2开始充电,当充到(2/3)VCC 时,输出由高电平翻转为低电平,直到下一次输入负脉冲时为止。
所以,电路的高电平状态是暂态,维持的时间由电容的充电时间决定;低电平状态是稳态,如果没有输入负脉冲触发,则会一直持续下去。
3.多谐振荡器实验U1LM555CNGND1DIS7OUT3RST4VCC8THR6CON5TRI2C110nFC22.2uFXSC1A BGTR15.1kR22.2kVCC5V测试结果:总结:移动数轴,读取数据,可以测得输出信号周期为87.164\6=14.53 ms,理论公式计算为T=0.7(R1+2R2)C2=0.7(5.1+2×2.2) ×103×1×10-6=14.51×10-3=14 .51ms当R1=10K R2=-5K C1=0.033uF C2=1uF测试波形图如下:总结:移动数轴,读取数据,可以测得输出信号周期为13.8 ms,理论公式计算为T=0.7(R1+2R2)C2=0.7(10+2×5) ×103×1×10-6=14×10-3=14 ms四、实验结论以555定时器为核心的各种应用电路具有结构简单、性能可靠、外接元件少等优点。
555定时器应用实验报告
555定时器应用实验报告555定时器应用实验报告引言:555定时器是一种经典的集成电路,具有广泛的应用。
本实验旨在通过实际操作,探索555定时器的基本原理和应用。
一、实验目的本实验的目的是通过555定时器的应用实验,了解555定时器的基本工作原理、特性和应用场景。
二、实验器材1. 555定时器芯片2. 电源3. 电阻、电容、电感等元件4. 示波器5. 连线电缆等三、实验步骤1. 搭建基本的555定时器电路,包括电源、555芯片、电阻、电容等元件。
2. 连接示波器,观察输入和输出信号的波形。
3. 调节电阻和电容的数值,观察波形的变化。
4. 尝试不同的输入信号,如方波、正弦波等,观察输出信号的响应。
5. 探索不同的应用场景,如脉冲发生器、频率分频器等,观察555定时器的工作情况。
四、实验结果与分析在实验过程中,我们观察到了以下现象和结果:1. 通过调节电阻和电容的数值,可以改变555定时器的输出频率和占空比。
2. 输入信号的不同波形对输出信号的响应也有影响,方波信号能够得到更稳定的输出。
3. 在不同的应用场景中,555定时器表现出了良好的性能,如在脉冲发生器中能够产生稳定的脉冲信号,在频率分频器中能够实现精确的频率分频。
通过对实验结果的分析,我们可以得出以下结论:1. 555定时器是一种非常实用的集成电路,具有广泛的应用前景。
2. 通过调节电阻和电容的数值,可以实现对555定时器的频率和占空比的精确控制。
3. 在不同的应用场景中,555定时器表现出了良好的稳定性和可靠性。
五、实验总结通过本次实验,我们深入了解了555定时器的基本原理和应用。
通过实际操作,我们掌握了555定时器的调节方法和应用技巧。
同时,我们也发现了555定时器在不同应用场景中的优势和局限性。
通过对实验结果的分析和总结,我们对555定时器有了更深入的理解。
总之,555定时器作为一种经典的集成电路,在电子领域有着广泛的应用。
通过实验,我们对555定时器的工作原理和应用场景有了更深入的了解。
555定时器的应用实验报告
555定时器的应用实验报告引言555定时器是一种广泛应用于电子电路中的集成电路,它具有稳定性高、成本低、可靠性强等特点。
在本次实验中,我们将通过实际操作,探索555定时器的应用。
实验材料•555定时器芯片•电阻•电容•LED灯•面包板•杜邦线•电源实验步骤第一步:搭建电路1.将555定时器芯片插入面包板中。
2.连接电阻和电容,以及其他所需元件。
具体连接方式如下所示:–将一个电阻的一端连接到芯片的引脚1(GND),另一端连接到引脚8(VCC)。
–将一个电阻的一端连接到引脚7(DIS),另一端连接到引脚8(VCC)。
–将一个电容的负极连接到引脚2(TRIG),正极连接到引脚6(THRES)。
–将一个电容的负极连接到引脚6(THRES),正极连接到引脚2(TRIG)。
–将一个电阻的一端连接到引脚6(THRES),另一端连接到引脚7(DIS)。
–连接LED灯,将正极连接到引脚3(OUT),负极连接到引脚1(GND)。
第二步:设置参数1.将电源连接到面包板上的合适位置,并打开电源。
2.调节电源电压为合适的数值,一般为5V。
3.根据实际需求,选择合适的电阻和电容值,并将其连接到电路中。
第三步:测试实验结果1.完成电路搭建后,按下555定时器芯片上的复位按钮,开始实验。
2.观察LED灯的亮灭情况,并记录下来。
3.根据实验结果,可以对555定时器的工作原理进行分析和解释。
结果分析根据实验结果,我们可以得出以下结论:1.当电容充电至阈值电压时,引脚3(OUT)输出高电平,LED灯亮起。
2.当电容放电至触发电压时,引脚3(OUT)输出低电平,LED灯熄灭。
3.通过调节电阻和电容的数值,可以改变LED灯亮灭的时间间隔。
结论通过本次实验,我们深入了解了555定时器的工作原理和应用。
通过调节电阻和电容的数值,我们可以实现不同的定时功能。
在实际应用中,555定时器被广泛用于计时器、脉冲发生器、频率分频器等电子电路中,具有重要的实际意义。
555定时器及其应用实验报告
555定时器及其应用实验报告实验报告:555定时器及其应用一、实验目的1.了解555定时器的结构和工作原理;2.学会使用555定时器搭建基本的定时电路;3.掌握555定时器的应用。
二、实验材料1.电源;2.555定时器芯片;3.电阻、电容等元器件;4.示波器、万用表等实验仪器;5.连接线等实验辅助器材。
三、实验原理555定时器是一种广泛应用于定时电路中的集成电路。
它具有三个功能引脚:触发引脚(TRIG)、控制引脚(CON)和复位引脚(RES)。
在定时工作模式下,555定时器可通过选择不同的电阻和电容值,实现不同的定时效果。
四、实验步骤1.搭建555定时器的基本电路。
将555定时器芯片插入实验板上,并根据电路图连接相应的元器件和电源。
2.测量电路的参数。
使用万用表测量电路中各个元器件的电阻、电容值,并记录下来。
3.调试电路并观察现象。
根据实验板上的示波器,调整电路,观察波形的变化,并记录下观察到的现象。
五、实验结果与分析通过调试和观察,实验发现在555定时器基本电路中,当输入信号触发引脚(TRIG)的电压高于比较引脚(THRESH)的电压时,输出引脚会输出高电平信号,反之输出引脚则输出低电平信号。
通过调整电压和触发条件,可以实现不同的定时效果。
六、实验应用1.交通信号灯。
通过555定时器的输出信号控制灯光的切换,实现交通信号灯的闪烁效果,提醒行人和车辆注意交通状况。
2.蜂鸣器报警器。
通过555定时器的输出信号控制蜂鸣器的频率,实现报警器的报警效果,用于安防应用中。
3.继电器控制。
通过555定时器的输出信号控制继电器的通断,实现对电器设备的定时自动控制。
七、实验总结本实验通过对555定时器的学习和实验应用,深入理解了555定时器的结构、工作原理和应用场景。
通过实验,掌握了555定时器的基本使用方法,并在实验中成功搭建了基本的定时电路,同时也了解了其应用于交通信号灯、报警器和继电器控制等方面。
通过本次实验,对电子学的学习和实践经验也得到了提升。
555定时器仿真实验报告
555定时器仿真实验报告
实验目的:
1. 了解555定时器的工作原理;
2. 掌握555定时器的基本应用;
3. 掌握使用仿真软件进行实验的方法。
实验器材:
1. 电脑;
2. 仿真软件(如Proteus);
3. 555定时器集成电路。
实验步骤:
1. 打开仿真软件,并创建新的电路图;
2. 在电路图中添加一个555定时器;
3. 为555定时器的引脚添加合适的元件,如电阻、电容等;
4. 设置555定时器的工作模式,如单稳态模式或多谐振荡模式;
5. 设置元件的参数,如电阻和电容的数值;
6. 运行仿真,观察555定时器的输出信号。
实验结果:
根据实验中设置的参数和工作模式,555定时器应该能够正确输出相应的信号。
通过仿真软件可以实时观察到555定时器的输出波形,并可以调整参数进行实时仿真。
实验分析:
通过实验可以发现,555定时器具有较高的稳定性和精确性,能够根据设置的参数生成稳定的时间延迟或者频率信号。
在实际应用中,555定时器常用于计时、频率分频、脉冲调制等电路中。
实验总结:
通过本次实验,我们了解了555定时器的基本工作原理和应用,在仿真软件的帮助下,我们能够更加直观地观察和分析555定时器的输出波形,加深了对555定时器的理解。
在实际应用中,我们需要根据具体的需求选择合适的参数和工作模式,以达到预期的效果。
555定时器及其应用实验报告
555定时器及其应用实验报告实验报告:555定时器及其应用摘要:本次实验主要介绍了555定时器的基本原理和应用。
通过实验,深入了解了555定时器的工作原理,并熟悉了其在电子电路中的应用。
1.引言2.原理555定时器的基本原理是通过耦合电容和电阻的组合产生不同的输出脉冲信号,实现定时功能。
其内部结构主要由电源控制电路、比较器、RS 触发器和输出级组成。
它有3个触发方式:1)单稳触发器(Monostable);2)双稳触发器(Bistable);3)多稳触发器(Astable)。
3.单稳触发器实验3.1实验目的通过实验,了解并验证单稳触发器的工作原理,以及555定时器的基本连接方式。
3.2实验材料与设备-555定时器芯片-电解电容-电阻-集成电路插座-万用表-示波器-示教电源3.3实验步骤3.3.1连接电路:按照实验指导书上的电路图,将555定时器、电解电容和电阻按照正确的连接方式连接在面包板上。
3.3.2验证实验:给555定时器上电,用示教电源调整输入电平,观察输出脉冲信号。
4.双稳触发器实验4.1实验目的通过实验,了解并验证双稳触发器的工作原理,以及555定时器的基本连接方式。
4.2实验材料与设备-555定时器芯片-电解电容-电阻-集成电路插座-万用表-示波器-示教电源4.3实验步骤4.3.1连接电路:按照实验指导书上的电路图,将555定时器、电解电容和电阻按照正确的连接方式连接在面包板上。
4.3.2验证实验:给555定时器上电,用示教电源调整输入电平,观察输出脉冲信号。
5.多稳触发器实验5.1实验目的通过实验,了解并验证多稳触发器的工作原理,以及555定时器的基本连接方式。
5.2实验材料与设备-555定时器芯片-电解电容-电阻-集成电路插座-万用表-示波器-示教电源5.3实验步骤5.3.1连接电路:按照实验指导书上的电路图,将555定时器、电解电容和电阻按照正确的连接方式连接在面包板上。
5.3.2验证实验:给555定时器上电,用示教电源调整输入电平,观察输出脉冲信号。
555定时器的应用及其仿真
1 设计要求该集成运放综合参数测试仪是以凌阳公司SPCE061A单片机为控制核心,由检测电路、信号源、自动测试控制电路、键盘和LED显示器等组成。
它能对LM741及与之引脚兼容的其他集成运放(例如μA741、F007、F741)的基本参数UIO、IIO、AVD、KCMR及BWG进行测试和数字显示,并具有语音播报、自动打印功能。
利用DDS芯片AD9835产生40kHz~4MHz扫频信号以及测试仪中的5Hz信号。
程序设计采用C语言与汇编语言相结合的方式,在unSP IDE 1.16.1软件环境中编程实现。
2 总体方案设计与选择2.1 主控制器的方案选择方案一:采用89C51单片机。
89C51 I/O端口较少,与微型打印机、信号源、键盘与显示电路、A/D转换电路的接口电路比较复杂;若需要语音功能,还需增加专门的语音芯片,外围电路比较烦琐。
方案二:采用凌阳SPCE061A单片机。
该单片机内置A/D转换模块,在32个I/O口中,有8个端口可以作为模拟量输入端口(其中1路为音频信号输入口),能满足对模拟信号输入的要求,简化外围电路设计;具有两路DAC、14个中断源等丰富的硬件资源;其集成开发环境中还配有语音播放函数,实现语音播放功能极为简单。
另外,该芯片内置了在线仿真、编程接口,可方便地实现在线调试。
经过比较后采用方案二。
2.2 信号源的方案选择根据题目要求,测试用的信号源应输出5Hz、有效值为4V的正弦波信号,频率与电压误差绝对值均小于1%。
要求扫频信号源输出频率范围是40kHz~4MHz,频率误差绝对值小于1%,输出电压的有效值为2V±0.2V。
方案一:利用单片集成的函数发生器MAX038可产生正弦波﹑方波﹑三角波,通过调整外部元件可改变输出频率。
但采用该芯片,其参数与外部元件相关,在外接电阻、电容等的影响下,产生的频率信号稳定度差﹑精度低,且低频信号失真较大。
由于其采用模拟控制方式,如果要实现扫频信号输出,不但需要加高精度D/A转换电路,而且由于频率变化范围宽,还需要增加量程切换电路和相应控制电路和软件;步长精度难以保证;制作成本较高。
555定时器的应用仿真分析
保 持 不 允 许
RS Qn 00 01 11 10 0 × 0 0 1 1 × 0 1 1
Q n1 S R Q n
(约束条件) S R 1
6
在基本RS触发器中,只要输入信号有变化,就可 能直接引起触发器动作,使触发器的状态改变,这就 是基本RS触发器的动作特点。
(3) 时序图(波形图)
C1输出为1,C2输出为0 Q为0,T截止,输出为1 Q 反相器 1 0 G Q 1 0 1 3
输出端
1 0 R
放电端 (DIS) 7
放电晶体管 GND
2 当V6> — VCC, 1 3 V2> — 3 VCC时
C1输出为0,C2输出为1 Q为1,T导通,输出为0
1
+VCC
控制端(CON) 5 阈值端(THR) 6
∞
ui
●
R +
-
RD SD
Q Q
1 0 1 0
1
1 0 1 + C2 R
∞
1 0
uo
0
uo
R
t
C
●
当无触发信号时,触发器处于其输出u0 = “0”的稳定状态 1U 输出矩形脉冲宽度 W =— RC In3≈ 1.1 RC 0”,Q = “1”, 当有输入信号时, t u i< DD ,C 2输出为“ 3 2U Qu = “0”, TDD 截止, C 充电 当 c≥— 时 , 使 C 1输出为“0” ,Q = “0”,Q = “1” 3 2 UDD , ui>— 1 UDD ,C1为“1”,C2为“1”, uc 上升Uc <— T导通,u3 c 放电 ,回到无触发信号时稳态 3 输出保持不变
1 2 V u 当 3 CC i 3 VCC 时,
555定时器及其应用实验报告
555定时器及其应用实验报告引言:555定时器是一种集成电路,广泛应用于定时、脉冲、频率调制、频率分割和频率测量等领域。
本文将介绍555定时器的基本原理和实验过程,并探讨其在电子领域中的应用。
一、555定时器的基本原理555定时器是一种多功能集成电路,由比较器、RS触发器、RS锁存器和电压比较器等组成。
它的工作基于门电路的触发与复位过程,实现了不同的定时功能。
二、555定时器的工作模式555定时器有三种基本工作模式:单稳态、自由运行和串接。
在单稳态模式下,555定时器输出一个脉冲宽度可调的方波信号;在自由运行模式下,它输出一个连续变化的方波信号;在串接模式下,多个555定时器可以通过级联实现更复杂的定时功能。
三、实验过程为了验证555定时器的工作原理,我们进行了以下实验:1. 准备实验所需材料:555定时器芯片、电容、电阻等。
2. 连接电路:按照电路图将555定时器与其他元件连接起来。
3. 设置参数:根据实验要求调整电容和电阻的数值。
4. 运行实验:给电路通电,观察555定时器输出的信号波形。
5. 记录实验结果:记录实验过程中观察到的波形变化和参数调整情况。
四、实验结果与分析通过实验,我们观察到555定时器的输出信号波形随着电容和电阻数值的变化而改变。
通过调整电容和电阻的数值,我们可以控制输出信号的频率和占空比。
这证明了555定时器的可靠性和灵活性。
五、555定时器的应用555定时器在电子领域中有广泛的应用,以下是一些典型的应用场景:1. 脉冲生成:通过调整电容和电阻的数值,可以产生不同频率的脉冲信号,用于驱动其他电路或触发器件。
2. 方波发生器:通过在555定时器中添加元件,如电容和电阻,可以实现方波信号的产生和调节。
3. 时钟电路:555定时器可以用作时钟电路的基础元件,用于控制其他电子设备的定时功能。
4. 脉宽调制:通过调整电容和电阻的数值,可以实现脉宽调制功能,用于控制电子设备的输出功率。
555定时器的应用实验报告
555定时器的应用实验报告一、实验目的本实验旨在掌握555定时器的基本原理,学习555定时器的应用,掌握555定时器在电路中的工作原理及应用方法。
二、实验仪器和材料1. 555计时器模块2. 电源3. 电阻4. 电容5. 多用万用表三、实验原理555定时器是一种集成电路芯片,由于其具有精度高、可靠性好、应用范围广等特点,被广泛应用于各种电子设备中。
其主要特点是可以通过改变外部元件的参数来改变其输出频率与占空比。
同时,它还具有单稳态触发、多谐振荡等功能。
555定时器主要由比较器、RS触发器和输出级组成。
其中比较器是将输入信号与参考信号进行比较,并输出相应的脉冲信号;RS触发器则是根据输入脉冲信号进行状态转换;输出级则是将RS触发器的输出转换为可供外部使用的高低电平信号。
四、实验步骤1.连接电路:将555计时器模块连接到电源上,并连接所需的外部元件(如电阻、电容等)。
2.调整参数:通过改变外部元件的参数来调整555定时器的输出频率与占空比。
3.测量结果:使用多用万用表测量电路中各元件的电压、电流等参数,并记录下来。
五、实验结果经过实验,我们成功地掌握了555定时器的基本原理和应用方法。
通过改变外部元件的参数,我们成功地调整了555定时器的输出频率与占空比,并得到了相应的测量结果。
六、实验结论本实验证明了555定时器在电子设备中具有广泛的应用价值,可以通过改变外部元件的参数来实现不同的功能。
同时,我们还发现,在进行电路设计时,需要考虑到各个元件之间的相互作用,以确保电路能够正常工作。
七、实验心得通过本次实验,我深刻认识到了学习理论知识和进行实践操作之间的重要性。
只有将理论知识与实践操作相结合,才能真正掌握所学知识。
同时,在进行实验过程中,我还学会了如何正确使用多用万用表进行测量,并且对于电路设计和组装也有了更深入的认识。
实验五555定时器的应用仿真实验_学生_
实验五 555定时器的应用仿真实验一、实验目的:1、熟悉555定时器的工作原理。
2、掌握555定时器的典型应用。
3、掌握基于multisim 的555定时器应用仿真。
二、实验原理:555定时器是一种常见的集数字与模拟功能于一体的集成电路。
通常只要外接少量的外围元件就可以很方便地构成施密特触发器、单稳态触发器和多谐振荡器等多种电路。
其中:(1) 构成施密特触发器,用于TTL 系统的接口,整形电路或脉冲鉴幅等; (2)构成多谐振荡器,组成信号产生电路;(3)构成单稳态触发器,用于定时延时整形及一些定时开关中。
555应用电路采用这3种方式中的1种或多种组合起来可以组成各种实用的电子电路。
U1LM555CM GND 1DIS 7OUT3RST 4VCC8THR 6CON5TRI 2GND——1脚,接地;TRI——2脚,触发输入;OUT——3脚,输出;RES——4脚,复位(低电平有效);CON——5脚,控制电压(不用时一般通过一个0.01F μ的电容接地);THR ——6脚,阈值输入;DIS——7脚,放电端;VCC——8脚,+电源555定时器功能表输 入输 出阈值输入(THR)触发输入(TRI)复位(RES)输出(OUT)放电端(DIS )× × 0 0 导通1 1 截止1 0 导通1 不变 不变1、 555组成时基振荡电路:图5.1.1是555振荡电路,从理论上我们可以得出: 振荡周期: C R R T ⋅+=)2(7.021 高电平宽度: C R R t W ⋅+=)(7.021 占空比: q =21212R R R R ++图5.1.1 时基振荡 图5.1.2单稳态触发2、 555组成单稳触发电路:图5.1.2为555单稳触发电路,我们可以得出(3)脚输出高电平宽度为:RC t W 1.1=3、 555定时器构成多谐振荡器:矩形波信号的周期取决于电容器充、放电回路的时间常数,输出矩形脉冲信号的周期C R R T )2(7.021+≈三、实验内容:1. 时基振荡发生器:(1). 单击电子仿真软件Multisim 基本界面左侧左列真实元件工具条“Mixed ”按钮,如图3.12.4所示,从弹出的对话框“Family ”栏中选“TIMER ”,再在“Component ”栏中选“LM555CM ”,如图5.3.2所示,点击对话框右上角“OK ” 按钮将555电路调出放置在电子平台上。
实验3555时基电路及其应用
LCD显示屏
垂直放大系统
示波器信号输入线(探头)
示波器探头结构
信号输入
10:1位
信号接地端 示波器信号输入线
五 实验报告要求
➢画出实验原理图,用直角坐标纸定量绘 出观测的波形; ➢分析总结实验结果。
呵呵呵
六
思考题
1、在实验中555定时器5脚所接的电容起什么作用?
2、多谐振荡器的振荡频率主要由哪些元件决定?单稳 态触发器输出脉冲宽度和重复频率各与什么有关?
VCC
Vi
V+=
2/3vcc
Vs
Vi
8
4
V-= 1/3vcc
t
6
555 3
V0
0
2 15
V0
10k R 0.01u
t
0
三 实验原理(续)
(3)单稳态触发器
此电路有一个稳态,在输入信号触发下进入暂稳态。经 过时间Tw自动回到稳态。它常用于对脉冲信号的延迟与 定时。电路的主要参数输出的脉冲宽度TW约为1.1RC。
3、单稳态触发器实验内容波形的每个周期,电压VC为 什么都是从0V开始上升,然后又回到0V?在什么情 况下电压不会回到0V?
4、施密特触发器电路图中,对Vi的幅值有没有要求, 为什么?
均由多谐振荡器作为时钟源。由555构成的多谐振荡器
的电路参数为: T=0.7(R1+2R2)C
+5V
R1 5.1K
4
8
RD
Vcc
7
R2 5.1K
vc
C 0.01u
2 TL 555
3
VO
6 TH
1
5
C 0.01u
三 实验原理(续)
555定时器的仿真实验
555定时器的应用仿真实验
1、 使用555定时器构成施密特触发器仿真实验
施密特触发器是脉冲波形整形和变换电路中经常使用的一种电路。
仿真电路如下图所示
信号发生器的设置参数如下:
施密特触发器工作波形如下图所示:
2、 使用555定时器构成单稳态触发器仿真实验
单稳态触发器是在脉冲波形的变换和延迟中经常使用的一种电路,它具有稳态和暂稳态两种不同的工作状态,仿真电路如下所示:
信号发生器的参数设置如下
单稳态触发器的工作波形如下所示:
3、使用555定时器构成多谐振荡器
多谐振荡器是一种自激振荡电路,不需要外加输入触发信号就能自动产生一定频率和幅值的矩形脉冲信号。
多谐振荡器在工作过程中不存在稳定状态,只有两个暂稳态。
仿真电路如下所示:
多谐振荡器工作波形如下所示:。
555集成定时器的应用试验报告.doc
555集成定时器的应用试验报告.doc555集成定时器广泛应用于电路的计时、频率分频、波形发生、触发延迟、稳幅调制、电压控制振荡器等领域,是电子技术领域中使用最为广泛的集成电路之一。
本文通过实验验证了555定时器在不同工作模式下的应用。
一、实验目的1、了解555定时器的基本结构和工作原理;2、实现555定时器在单稳态触发器、多谐振荡器、方波振荡器、脉冲发生器等不同工作模式下的应用。
二、实验器材1、555集成定时器芯片;2、电阻和电容器;3、数字万用表;4、示波器;5、电源。
三、实验步骤1、单稳态触发器将555芯片的控制端(TRIG)和复位端(RESET)分别通过电阻连接到正电源VCC,将电容器C1放在电阻R1和GND之间,将555的输出端(Q)连接到LED灯和电阻R2上,电源VCC接入电阻R3和LED;利用数字万用表测量电容器充电时间和放电时间,并测量LED闪烁的频率。
2、多谐振荡器将电容器C1、电阻R1、电阻R2和555芯片组成的多谐振荡器电路,电容器C1连接到555芯片的引脚6和2上,电阻R1、电阻R2连接到引脚7和6上,通电后用示波器测量输出波形。
3、方波振荡器4、脉冲发生器四、实验结果本次实验,我们测得电容器充电时间为4.6ms,放电时间为16.0ms。
LED闪烁频率约为31Hz。
本次实验,我们测得输出波形频率为1.26 KHz,波形持续时间为0.7ms。
1、555定时器应用广泛,能够实现不同的工作功能;2、555定时器在多谐振荡器和方波振荡器中能够发挥稳定的输出作用;3、555定时器在脉冲发生器中能够实现精确的脉冲控制。
总之,555定时器的应用十分灵活,能够满足不同电路的需要。
同时,在实践中,我们需要根据具体情况合理地选择电容器、电阻等元器件,以达到更好的实验效果。
2021年555定时器及其应用实验报告
555定时器及其应用【试验目】(1) 掌握555工作原理及其性能特点 (2) 掌握555组成基础电路及应用。
【试验要求】(1) 用555组成一个时钟脉冲信号发生器, 要求输出: 标准秒脉冲,20Hz~20kHz 范围内任意频率可调、 占空比可调脉冲信号。
(2) 设计一个触摸开关, 要求每触发一次其输出端维持10秒钟高电平。
(3) 用555设计一个分频器, 要求输入时钟脉冲频率为1KHz, 其输出为100Hz 。
【试验器材】面包板, 555芯片一片, 函数发生器, 直流稳压电源, 万用表, 示波器, 电阻、 电容、 导线若干。
【试验原理】 (1) 时钟脉冲产生器555组成多谱振器能够用作多种时钟脉冲发生器, 如图1所表示, 经过D1, D2两个二极管将电路充电支路与放电支路分开, 则由RC 电路充放电时间公式得, 充电时间为: 110.7t R C = , 放电时间为230.7t R C =, 所以输出脉冲频率为131.43()f R R C=+ , 占空比为111213t R t t R R =++ 。
经过调整R1和R3阻值便可实现输出不一样频率与占空比脉冲信号。
图 1 时钟脉冲发生器(2) 触摸开关555组成单稳态触发器能够用作触摸开关, 电路如图2所表示, 其中M 为触摸金属片(或导线)。
静态时无触发脉冲输入, 555输出为低电平即U O =0, 发光二极管不亮, 当用手触摸金属片M 时, 相当于2端输入一负脉冲, 555内部比较器A2翻转, 使输出变为高电平即U O =1, 发光二极管亮, 直到电容C 上电压充电23C DD U U = 。
发光二极管亮时间为 1.1tp RC = 。
图 2 触摸开关电路(3) 分频电路由555组成单稳态触发器能够组成份频比率很大分频电路, 如图3所表示。
设输入信号Ui 为一列脉冲串, 第一个负脉冲触发2端后, 555输出Uo 变为高电平, 电容C 开始充电, 因为Uc 未达成23DD U , Uo 将一直保持为高电平, 在这段时间里, 输入负脉冲再出发也不起作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电子技术仿真实验报告实验题目: 3 555定时器的应用仿真实验
班级:
姓名:
学号:
实验日期:
实验成绩:
实验三 555定时器的应用仿真实验
一、实验目的:
1、熟悉555定时器的工作原理。
2、掌握555定时器的典型应用。
3、掌握基于multisim 10.0的555定时器应用仿真。
二、实验原理:
555定时器是一种常见的集数字与模拟功能于一体的集成电路。
通常只要外接少量的外围元件就可以很方便地构成施密特触发器、单稳态触发器和多谐振荡器等多种电路。
其中:
(1) 构成施密特触发器,用于TTL 系统的接口,整形电路或脉冲鉴幅等; (2)构成多谐振荡器,组成信号产生电路;
(3)构成单稳态触发器,用于定时延时整形及一些定时开关中。
555应用电路采用这3种方式中的1种或多种组合起来可以组成各种实用的电子电路。
U1
LM555CM GND 1DIS 7OUT
3
RST 4VCC
8THR 6CON
5
TRI 2
GND ——1脚,接地;TRI ——2脚,触发输入;OUT
——3脚,输出;RES ——4脚,复
位(低电平有效);CON ——5脚,控制电压(不用时一般通过一个0.01F 的电容接地);THR ——6脚,阈值输入;DIS ——7脚,放电端;VCC ——8脚,+电源
1、 由555定时器构成多谐振荡器
(1) 接通电源时,设电容的初始电压0=c V ,此时TR V \TH V 均小于1/3Vcc ,放电截止,
输出端电压为高电平,Vcc 通过1R 和2R 对C 充电,Vc 按照指数规律逐步上升。
(2) 当Vc 上升到2/3Vcc 时,放电管导通,输出端电压为低电平,电容C 通过2R 放电,Vc 按照指数规律逐步下降。
(3) 当Vc 下降到1/3Vcc 时,放电管截止,输出端电压由低电平翻转为高电平,电容C
又开始充电。
当电容C 充到Vc=2/3Vcc 时,又开始放电,如此周而复始,在输出端即可产生矩形波信号。
矩形波信号的周期取决于电容器充、放电回路的时间常数,输出矩形脉冲信号的周期
C R R T )2(7.021+≈
2、 施密特触发器是脉冲波形整形和变换电路中经常使用的一种电路。
其具有两个稳定
状态,两个稳定状态的维持和相互转换取决于输入电压的高低和,属于电平触发,具有两个不同的触发电平,存在回差电压。
由555定时器构成的施密特触发器将555定时器的THR 和TRI 两个输入端连在一起作为信号输入端即可得到施密特触发器。
(1) 当Vi<1/3Vcc 时,输出Vo 为高电平。
随着Vi 的上升,只要Vi<2/3Vcc ,输出
信号将维持原状态不变,设此状态为第一稳定状态。
(2) 当Vi 上升到Vi ≥2/3Vcc 时,输出Vo 为低电平。
电路由第一稳定状态翻转为第
二稳定状态,电路的正向阈值电压为+T V =2/3Vcc 。
随着Vi 上升后又下降的情况,只要Vi 〉1/3Vcc ,电路将维持在第二稳定状态不变。
(3) 当Vi 下降到Vi ≤1/3Vcc 时,电路又翻转到第一稳态,电路的负向阈值电压为
-T V =1/3Vcc 。
三、实验内容:
1、555定时器构成多谐振荡器仿真实验
(1)在实验工作区搭建一个由555定时器构成的多谐振荡器如图所示,从示波器面板
上观测电容C1上的充放电波形和与之对应的矩形波输出波形并记录波形。
(2)根据波形,分析验证多谐振荡器的功能,比较电路的理论计算周期和仿真周期。
2、555定时器构成施密特触发器仿真实验
记录示波器的两路输出波形,分析验证施密特触发器的功能。