全国2014年4月自考高等数学(工专)真题
2014年普通高等学校招生全国统一考试数学理试题(四川卷,解析版)
2014年普通高等学校招生全国统一考试理科参考答案〔四川卷〕一.选择题:本大题共10小题,每一小题5分,共50分.在每一小题给出的四个选项中,只有一个是符合题目要求的。
1.集合2{|20}A x x x =--≤,集合B 为整数集,如此A B ⋂= A .{1,0,1,2}- B .{2,1,0,1}-- C .{0,1} D .{1,0}- 【答案】A【解析】{|12}A x x =-≤≤,B Z =,故A B ⋂={1,0,1,2}- 2.在6(1)x x +的展开式中,含3x 项的系数为A .30B .20C .15D .10 【答案】C【解析】含3x 项为24236(1)15x C x x ⋅=3.为了得到函数sin(21)y x =+的图象,只需把函数sin 2y x =的图象上 所有的点A .向左平行移动12个单位长度B .向右平行移动12个单位长度C .向左平行移动1个单位长度D .向右平行移动1个单位长度 【答案】A【解析】因为,故可由函数sin 2y x =的图象上所有的点向左平行移动12个单位长度得到4.假设0a b >>,0c d <<,如此一定有A .a b c d >B .a b c d <C .a b d c >D .a b d c < 【答案】D【解析】由1100c d d c <<⇒->->,又0a b >>,由不等式性质知:0a b d c ->->,所以a bd c <5.执行如图1所示的程序框图,如果输入的,x y R ∈,如此输出的S 的最大值为A .0B .1C .2D .3 【答案】C【解析】当001x y x y ≥⎧⎪≥⎨⎪+≤⎩时,函数2S x y =+的最大值为2,否如此,S 的值为1.6.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能拍甲,如此不同的排法共有 A .192种 B .216种 C .240种 D .288种 【答案】B【解析】当最左端为甲时,不同的排法共有55A 种;当最左端为乙时,不同的排法共有14C 44A 种。
成考数学2014年理工类试题和答案(1--21题有详细答案)
,
,选 B
D
乙:a������ 2 + ������������+c=0 有实根,则
甲是乙的必要条件,但不是乙的充分条件 甲是乙的充分的条件,但不是乙的必要条件 甲既不是乙的充分的条件,也不是乙的必要条件
D 甲是乙的充分必要条件 解:显然甲是乙的充分条件,且有实数根,也必须������ 2 − 4������������ > 0, 即甲是乙的充分必要条件。应选择 D 8、二次函数y = ������ 2 + ������ − 2 的图像与x 轴的交点坐标为 A: −2, 0 和 1, 0 C 2, 0 和 1, 0 B −2, 0 和 −1, 0 D 2, 0 和 −1, 0 A
解方程������ 2 + ������ − 2 = 0,其根为������1 = −2,������2 = 1, 所以交点坐标选 A 9、设z = 1 + A
1+ 3������ 4
3 i i 是虚数单位,则 z = B
B
1− 3������ 4
1
C
2+ 3������ 4 1 ������
D
1
2− 3������ 4 1− 3������ 4
3 2
3,0 ,其长轴长为 4,
������ + ������与椭圆有两个不同的交点,求m的取值范围
解:1、长轴长为 4,则a = 2 由焦点坐标知c = 3 所以b = ������2 − ������ 2 = 4 − 3 = 1 所以本椭圆的方程为: 4 + ������ 2 = 1 2、 将y =
3 2 x2
������ + ������ 代入椭圆方程 4 + ������ 2 = 1 可得
全国2014年4月自考高等数学(工专)试题和答案
11.连续函数 在区间[1,2]上的平均值为2,则 ________.
正确答案:2(3分)
12.设由参数方程 所确定的函数为 ,则 =________.
正确答案: (3分)
13.线性方程组 的解 =________.
正确答案: (3分)
14. ________.
正确答案: (3分)
正确答案:
20.设 是由方程 确定的隐函数,求 .
正确答案:
21.计算定积分 .
正确答案:
22.设 求 .
正确答案:
23.求解线性方程组
正确答案:
四、综合题(本大题共2小题,每小题6分,共12分)
24.设 ,求f(x)在[0,3]上的最大值与最小值.
正确答案:
25.求由 与y=2所围成的图形绕y轴旋转一周所得的旋转体的体积.
一、单项选择题(本大题共5小题,每小题2分,共10分)
在每小题列出Байду номын сангаас四个选项中只有一个是符合题目要求的,请将其选出并将“答题纸”的相应代码涂黑。错涂、多涂或未涂均无分。
1.下列函数中属于基本初等函数的是
A. B.
C. D.
正确答案:B(2分)
2.级数
A.收敛性不能确定B.收敛
C.收敛于eD.发散
正确答案:D(2分)
全国
高等数学(工专)试题和答案
课程代码:
请考生按规定用笔将所有试题的答案涂、写在答题纸上。
选择题部分
注意事项:
1.答题前,考生务必将自己的考试课程名称、姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。
2.每小题选出答案后,用2B铅笔把答题纸上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。不能答在试题卷上。
2014成人高等学校招生全国统一考试数学真题(理工类)
附录 2014年成人高等学校招生全国统一考试(高起点)数学试题(理工农医类)第Ⅰ卷(选择题,共85分)一、选择题(本大题共17小题,每小题5分,共85分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合{}21|<≤-=x x M ,{}1|≤=x x N ,则集合=N MA . {}1|->x xB .{}1|>x xC .{}11|≤≤-x xD .{}21|≤≤x x 2.函数51-=x y 的定义域为 A . ()5,∞- B . ()+∞∞-, C . ()+∞,5 D .()()+∞∞-,55, 3.函数x y 6sin 2=的最小正周期为A . 3πB .2πC . π2D .π34.下列函数为奇函数的是A . x y 2log =B . x y sin =C . 2x y =D .x y 3=5.过点()1,2 且与直线x y =垂直的直线方程为A . 2+=x yB . 1-=x yC . 3+-=x yD .2+-=x y6.函数12+=x y 的反函数为A .21+=x yB .21-=x y C .12-=x y D .x y 21-= 7.若c b a ,,为实数,且0≠a .设甲:042≥-ac b ,乙:02=++c bx ax 有实数根,则A .甲是乙的必要条件,但不是乙的充分条件B .甲是乙的充分条件,但不是乙的必要条件C .甲既不是乙的充分条件,也不是乙的必要条件D .甲是乙的充分必要条件8. 二次函数22-+=x x y 的图像与x 轴的交点坐标为A . ()0,2- 和()0,1B .()0,2- 和()0,1-C .()0,2 和()0,1D .()0,2 和()0,1-9.设i z 31+=,i 是虚数单位,则=z 1 A .431i + B .431i - C .232i + D .232i - 10.设1>>b a ,则A .44b a ≤B .4log 4log b a >C .22--<b aD .b a 44<11.已知平面向量()1,1=a ,()1,1-=b ,则两向量的夹角为A . 6πB .4πC . 3πD .2π 12.3)1(xx -的展开式中的常数项为A .3B .2C .2-D .3-13.每次射击时,甲击中目标的概率为8.0,乙击中目标的概率为6.0,甲、乙各自独立地向目标射击一次,则恰有一人击中的概率为A .44.0B .6.0C .8.0D .1 14.已知一个球的体积为π332,则它的表面积为 A . π4 B .π8 C .π16 D .π2415.在等腰三角形ABC 中,A 是顶角,且21cos -=A ,则=B cos A .23 B .21 C . 21- D .23- 16. 四棱锥ABCD P -的底面为矩形,且4=AB ,3=BC ,⊥PD 底面ABCD ,5=PD ,则PB与底面所成角为A .︒30B .︒455.1C .︒60D .︒7517.将5本不同的历史书和2本不同的数学书排成一行,则2本数学书恰好在两端的概率为A .101 B .141 C .201 D .211第Ⅱ卷(非选择题,共65分)二、填空题(本大题共4小题,每小题4分,共16分) 18.已知空间向量()3,2,1=a ,()3,2,1-=b ,则=+b a 2 .19.曲线x x y 23-=在点()1,1-处的切线方程为 .20.设函数()11+=+x x x f ,则()=3f . 21.某运动员射击10次,成绩(单位:环)如下8 10 9 9 10 8 9 9 8 7则该运动员的平均成绩是 环.三、解答题(本大题共4小题,共49分.解答应写出推理、演算步骤)22.(本小题满分12分)已知ABC ∆中,︒=110A ,5=AB ,6=AC ,求BC .(精确到01.0)23.(本小题满分12分)已知数列{}n a 的前n 项和n n S 211-=,求 (Ⅰ) {}n a 的前三项;(Ⅱ) {}n a 的通项公式. 24.(本小题满分12分)设函数()x x x x f 9323--=,求(Ⅰ)函数()x f 的导数;(Ⅱ)函数()x f 在区间[]4,1的最大值与最小值.25.(本小题满分13分) 设椭圆的焦点为()0,31-F ,()0,32F ,其长轴长为4. (Ⅰ)求椭圆的方程;(Ⅱ) 若直线m x y +=23与椭圆有两个不同的交点,求m 的取值范围.参考答案一、 选择题(每小题5分,共85分)1 . C 2.D 3.A 4.B 5.C 6.B 7.D 8.A 9.B 10.C 11.D 12.D 13.A 14.C 15.A 16.B 17.D二、填空题(每小题4分,共16分,)18. ()9,2,3 19. 2-=x y 20.32 21. 7.8 三、解答题(共49分.)22.解:根据余玄定理 A AC AB AC AB BC cos 222∙∙-+=︒∙∙∙-+=110cos 652652203.9≈23.解:(Ⅰ)因为n n S 211-=,则 2121111=-==S a 41212112122=--=-=a S a 8141218112133=---=--=a a S a (Ⅱ)当2≥n 时,1--=n n n S S a⎪⎭⎫ ⎝⎛---=-1211211n n ⎪⎭⎫ ⎝⎛-=-211211n n 21=当1=n 时,211=a ,满足公式n n a 21= 所以数列的通项公式为n n a 21=. 24.解:(Ⅰ) 因为函数()x x x x f 9323--=,所以963)(2'--=x x x f(Ⅱ) 令0)('=x f ,解得3=x 或1-=x ,比较()1f ,()3f ,()4f 的大小,()111-=f ,()273-=f ,()204-=f所以函数()x x x x f 9323--=在区间[]4,1的最大值为11-,最小值为27-. 25.解:(Ⅰ)由已知,椭圆的长轴长42=a ,焦距322=c ,设其短半轴长为b ,则 13422=-=-=c a b所以椭圆的方程为1422=+y x (Ⅱ) 将直线方程m x y +=23代入椭圆方程可得01322=-++m mx x因为直线与椭圆有两个不同交点,所以()014322>--=∆m m解得 22<<-m所以m 的取值范围为()2,2-.。
2010-2014年高等数学(工本)00023历年精彩试题及参考问题详解
2010-2014年高等数学(工本)00023历年试题及参考答案 全国2010年10月自学考试高等数学(工本)试题一、单项选择题(本大题共5小题,每小题3分,共15分) 1.在空间直角坐标系下,方程2x 2+3y 2=6表示的图形为( ) A .椭圆 B .柱面 C .旋转抛物面D .球面2.极限021lim →→y x arcsin(x +y 2)=( )A .6πB .3π C .2π D .π3.设积分区域22:y x Ω+≤R 2,0≤z ≤1,则三重积分⎰⎰⎰=+Ωdxdydz y xf )(22( )A .⎰⎰⎰π200102)(Rdz r f drd θ B .⎰⎰⎰π20012)(Rdz r f rdrd θC .⎰⎰⎰+π201022)(Rrdz y x f dr d θD .⎰⎰⎰π102)(Rdz r f rdrd θ4.以y =sin 3x 为特解的微分方程为( ) A .0=+''y y B .0=-''y y C .09=+''y y D .09=-''y y5.设正项级数∑∞=1n nu收敛,则下列无穷级数中一定发散的是( )A .∑∞=+1100n nuB .∑∞=++11)(n n n u uC .∑∞=1)3(n nuD .∑∞=+1)1(n nu二、填空题(本大题共5小题,每小题2分,共10分)请在每小题的空格中填上正确答案。
错填、不填均无分。
6.向量a ={1,1,2}与x 轴的夹角=α__________. 7.设函数22),(y x xy y x f -=,则=)1,(x yf __________.8.设∑是上半球面z =221y x --的上侧,则对坐标的曲面积分⎰⎰∑=dxdy y 3__________.9.微分方程x y y sin 3='+'''的阶数是__________.10.设)(x f 是周期为2π的函数,)(x f 在[)ππ,-上的表达式为[)[)⎪⎩⎪⎨⎧∈-∈=.π,0,23sin .0,π,0)(x x x x f )(x S 是)(x f 的傅里叶级数的和函数,则S (0) =__________.三、计算题(本大题共12小题,每小题5分,共60分)11.设平面π过点P 1(1,2,-1)和点P 2(-5,2,7),且平行于y 轴,求平面π的方程. 12.设函数22ln y x z +=,求yx z∂∂∂2.13.设函数232y x e z -=,求全微分dz .14.设函数)2,(22xy y x f z -=,其中f (u , v )具有一阶连续偏导数,求xz ∂∂和y z ∂∂. 15.求曲面x 2+y 2+2z 2=23在点(1,2,3)处的切平面方程. 16.计算二重积分⎰⎰+D dxdy y x )sin(22,其中积分区域D :x 2+y 2≤a 2.17.计算三重积分⎰⎰⎰Ωzdxdydz ,其中Ω是由曲面z =x 2+y 2,z =0及x 2+y 2=1所围区域.18.计算对弧长的曲线积分⎰Cds x 2,其中C 是圆周x 2+y 2=4的上半圆.19.计算对坐标的曲线积分⎰+-+-Cdy y x dx y )21()31(,其中C 为区域D :| x |≤1,| y |≤1 的正向边界曲线.20.求微分方程02=-+-dy e dx e y x y x 的通解. 21.判断无穷级数∑∞=--+1212)1(1n n n 的敛散性. 22.将函数51)(+=x x f 展开为x +1的幂级数. 四、综合题(本大题共3小题,每小题5分,共15分)23.设函数)(x yz ϕ=,其中)(u ϕ为可微函数.证明:0=∂∂+∂∂y zy x z x24.设曲线y =y (x )在其上点(x , y )处的切线斜率为xyx -24,且曲线过点(1,1),求该曲线的方程. 25.证明:无穷级数∑∞=-=++-+121)122(n n n n .全国2011年1月自学考试高等数学(工本)试题一、单项选择题(本大题共5小题。
全国2014年4月自学考试00020高等数学(一)试题答案
全国2014年4月高等教育自学考试高等数学(一)试题课程代码:00020一、单项选择题(本大题共10小题,每小题3分,30分)在每小题列出的四个知识点。
备选项中只有一个知识点。
是符合题目要求的,请将其选出并将“答题纸”的相应代码涂黑。
错涂、多涂或未涂均无分。
1.下列运算正确的是(B )A.ln6+ln3=ln9B.ln6-ln3=ln2C.(1n6)•(ln3)=ln18D.ln6ln2ln3= 【解析】A :ln6+ln3=ln18B :6ln6ln3ln ln23-== C :(1n6)•(ln3)≠ln18D :ln6ln2ln3≠ 2.设函数f(x)可导,且1f x x ⎛⎫= ⎪⎝⎭,则导数f'(x)=(D ) A.1x B.-1xC.21xD.-21x第1章(上)第6个知识点。
【解析】1()f x x =,令1u x =,则有1()f u u=, 因为函数与自变量的符号无关, 所以1()f u u =跟1()f x x=表示的是同一个函数, 211()()f x x x''==- 3.设函数f (x ,y )=xy x y -,则11,f y x ⎛⎫ ⎪⎝⎭=(C )A.1y x -B.x y yx- C.1x y - D.22x y x y- 第1章(下)第2个知识点。
【解析】因为函数与自变量的符号无关, 所以(,)xy f x y x y =-跟(,)uv f u v u v=-表示的是同一个函数, 题目要求的是11(,)f y x ,则有11,u v y x ==, 1111111(,)11y x xy xy f x y x y y x x y y x xy xy xy⨯====----4.函数f(x)=sin x +cos x 是(C )A.奇函数B.偶函数C.非奇非偶函数D.既是奇函数又是偶函数 第1章(下)第3个知识点。
【解析】f (-x)=sin(-x)+cos(-x)=-sinx+cosx 。
000201404 高等数学(一)00020 高等数学(一)自考历年真题
2014年4月高等教育自学考试《高等数学(一)》试题课程代码:00020一、单项选择题1.下列运算正确的是( )A .9ln 3ln 6ln =+B .2ln 3ln 6ln =-C .18ln )3(ln )6(ln =⋅D .2ln 3ln 6ln = 2.设函数)(x f 可导,且x x f =⎪⎭⎫ ⎝⎛1,则导数=)('x f ( ) A .x1 B .x 1- C .21x D .21x - 3.设函数y x xy y x f -=),(,则=⎪⎪⎭⎫ ⎝⎛x y f 1,1( )A .x y -1B .yx y x -C .yx -1 D .y x y x -22 4. 函数x x x f cos sin )(+=是( ) A .奇函数 B .偶函数 C .非奇非偶函数 D .既是奇函数又是偶函数5.下列各对函数中,为同一函数的是( )A .)ln(2x y =与x y ln 2=B .)2tan(x y =与x y tan 2=C .x y =与⎪⎭⎫ ⎝⎛=2x yD .1-=x y 与112+-=x x y 6.设函数22)(x x f =,x x g sin )(=,则当0→x 时( ) A .)(x f 是比)(x g 高阶的无穷小量 B .)(x f 是比)(x g 低阶的无穷小量 C .)(x f 与)(x g 是同阶但非等价的无穷小量 D .)(x f 与)(x g 是等价无穷小量7.设函数⎪⎩⎪⎨⎧>+=<+-=2,22,243)(2x x x b x a x x x f 在2=x 处连续,则( ) A .1=a ,4=b B .0=a ,4=bC .1=a ,5=bD .0=a ,5=b8.设)(x y y =是由方程设函数13-=y xy 所确定的隐函数,则导数==0'x y ( )A .-1B .0C .1D .29.已知函数x x a y 2cos 21cos +=(其中a 为常数)在2π=x 处取得极值,则=a ( ) A .0 B .1 C .2 D .3 10.设函数x x x f ln )(=,则下列结论正确的是( ) A .)(x f 在),0(+∞内单调减少 B .)(x f 在),0(e 内单调减少 C .)(x f 在),0(+∞内单调增加 D .)(x f 在),0(e 内单调增加二、简单计算题11.求极限1523lim 323+++∞→x x x x 。
2014专升本高等数学真题及答案
河南省2014年普通高校等学校选拔优秀本科毕业生本科阶段学习考试高等数学一.选择题(每小题2分,共60分)1.函数2()sin 9ln(1)f x x x =-+-的定义域是()A.(1,3] B.(1,)+∞ C.()3,+∞ D.[3,1)-2.已知2(2)2f x x x =-,则()f x =()A.2114x + B.2114x - C.214x x - D.114x +3.设()f x 的定义域为R ,则()()()g x f x f x =--.()A.是偶函数 B.是奇函数C.不是奇函数也不是偶函数D.是奇函数也是偶函数4.已知224lim 42x ax x →+=--,则()A.1a =- B.0a = C.1a = D.2a =5.1x =-是函数2212x y x x -=--的()A.跳跃间断点B.可去间断点C.连续点D.第二类间断点6.当x→0时,比1cos x -高阶的无穷小是()A.211x +- B.2ln(1)x +C.sin xD.3arctan x7.已知()ln f x x =,则220()()lim 2h f x h f x h→+-=()A.2ln xx -Bln x x C.-21xD.1x8.曲线sin 2cos y t x t=⎧⎨=⎩(t 为参数)。
在2t=对应点处切线的方程为()A.1x =B.1y =C.1y x =+ D.1y x =-9.函数()(1)(2)(3)(4)f x x x x x x =----,则方程'()0f x =实根的个数为()A.2B.3C.4D.510.设()y y x =是由方程xy xy e =+确定的隐函数。
则dy dx=A.11x y x +-- B.21y xy x --C.11y x+- D.12x x xy---11.已知函数()f x 在区间[]0,a (a>0)上连实,(0)f >0且在(0,a)上恒有'()f x >0,设10()aS f x dx =⎰,2(0)S af =,1S 与2S 的关系是()A.1S <2SB.1S =2SC.1S >2S D.不确定12.曲线31y x =+()A.无拐点B 有一个拐点C.有两个拐点D.有三个拐点13.曲线y=12x -的渐近线的方程为()A.0,1x y ==B1,0x y ==C.2,1x y == D.2,0x y ==14.设()F x 是()f x 的一个原函数则()xx e f e dx --⎰=()A.()xF e c -+ B.()xF e c --+C.()x F e c+ D.()xF e c-+15.设()f x 在[],a b 上连续,则由曲线()y f x =与直线x=a,x=b,y=0所围成平面图形的面积为()A ()baf x dx⎰B.()baf x dx⎰C.()b af x dx ⎰D.()()()f b f a b a --16.设()f x 是连实函数,满足()f x =21sin 1x x ++_11(),f x dx -⎰则lim ()x f x →∞=()A.B.-6πC.3πD6π17.设()f x =(1)sin ,xt tdt -⎰则'()f x =()A.sin cos x x x +B.(1)cos x x- C.sin cos x x x- D.(1)sin x x-18.下列广义积分收敛的是()A.2ln xdx x+∞⎰B.11dx x+∞⎰C.2111dx x -⎰D.1cos xdx+∞⎰19.微方程0dx dy y x+=的通解是()A.2225x y += B.34x y c+= C.22x y c+= D.227y x -=20解常微方程''2'xy y y xe -+=的过程中,特解一般应设为()A.2=)xy Ax Bx e+半( B.=xy Axe半 C.=xy Ae半 D.2=()xy x e Ax B +半21.已知a,b,c 为非零向量,且0a b ⋅=,0b c ⨯=则()A.a b ⊥ 且b cB.a b b c⊥ 且 C.a c b c⊥ 且 D.a c b c⊥ 且22、直线L:==3-25x y z与平面π:641010x y z -+-=的位置关系是()A、L 在π上B、L 与π平行但无公共点C、L 与π相交但不垂直D、L 与π垂直23、在空间直角坐标系内,方程222-y =1x 表示的二次曲面是()A、球面B、双曲抛物面C、圆锥面D、双曲柱面24、极限0y 02lim+1-1x xyxy →→=()A、0B、4C、14D、-1425、点(0,0)是函数z xy =的()A、驻点B、极值点C、最大值点D、间断点26、设{}(,)21D x y x y =≤≤,则()+Dxy y dxdy ⎰⎰=()A、0B、-1C、2D、127、设(),f x y 为连续函数,()()122-01,+,x xdx f x y dy dx f x y dy ⎰⎰⎰⎰交换积分次序后得到()A、()212,yy dy f x y dx⎰⎰B、()2,ydy f x y dx⎰⎰C、()12-0,y ydy f x y dx⎰⎰D、()2022,yy dy f x y dx⎰⎰28、L 为从(0,0)经点(0,1)到点(1,1)的折线,则2+Lx dy ydx ⎰=()A、1B、2C、0D、-113.下列级数条件中收敛的是()A、2n=12n-1n +1∞∑B、n nn=11-3∞∑(1)C、22n=1n +n+1n -n+1∞∑D、nn=11-n∞∑(1)30、级数2n=114n -1∞∑的和是()A、1B、2C、12D、14二、填空题(每题2分,共20分)31、设-1=-1x x f x x x ⎛⎫≠⎪⎝⎭(0,1),则()f x =______.32、设连续函数()f x 满足22()()f x x f x dx =-⎰,则2()f x dx ⎰=______.33、已知(){,1ln 1x a x x x f x -<≥=,,若函数()f x 在1x =连续,则a=______.34、设33'(1)12f x x +=+是()01f =-,则()f x =______.35、不定积分cos 2xdx ⎰=______.36、若向量{}{}{}0,1,1;1,0,1;1,1,0a b c ===则()a b c ⨯ =______.37、微分方程"4'40y y y -+=的通解()y x =______.38、设arctan222(,)ln()cos y xf x y ex y xy =+,则'(1,0)x f =______.39、函数()222,,f x y z x y z =++在点(1,1,1)处方向导数的最大值为______.40、函数()112f x x=-的幂级数展开式是______.三、计算题(每题5分,共50分)41、求极限20(1)lim1tan -1x x x e x x→-++42、设n a 为曲线ny x =与1(1,2,3,4...)n y xn +==所围的面积,判定级数1n n na ∞-∑的敛散性43.求不定积分21xdx x -⎰.44.计算定积分402x dx -⎰.45.解方程3xy y x '-=.46.已知函数(,)z f x y =由方程20xyz ez e --+=所确定,求dz .47.已知点(4,1,2),(1,2,2),(2,0,1)A B C --求ΔABC 的面积.48.计算二重积分22lnDx y dxdy +⎰⎰,其中22{(,)14}D x y x y =≤+≤.49.计算曲线积分22(1)(1)y x dx x y dy <++-⎰其中L 是圆221x y +=(逆时针方向).50.试确定幂级数01nn x n ∞=+∑的收敛域并求出和函数.四.应用题(每小题7分,共14分)51.欲围一个面积150平方米的矩形场地,所用材料的造价其正面每平方米6元,其余三面是每平方3元,问场地的长,宽各为多少时,才能使造价最低?52.已知D 是抛物线L:22y x =和直线12x =所围成的平面区域,试求:(1)区域D 的面积(2)区域D 绕Ox 轴旋转所形成空间旋转体体积.五.证明题(6分)53.设2e a b e <<<证明2224ln ln ()b a b a e ->-2014专升本真题答案一.选择题1-10A C B A B D B B C B 11-20C B D B C B D C C D 21-30B D D B A A C A D C 二.填空题31.1x 32.8933.134.21x x --35.1sin 22x c=36.237.2212xx x c ec e+38.239.2340.2n nn x ∞=∑,11(,)22x ∈-41.2030303030320220220(1)1tan 11tan 1(1tan 1)1tan (1)(1tan 1)tan 2tan 6sec 16tan 66lim limlimlimlimlim lim lim x x x x x x x x x x e x x x x x x x x x x x x x x x x x x x x x x x x →→→→→→→→-+-+=+-++++=+-++++=-=-=-===42.解:由题意知112110111(1212(1)(2)n n n n n x x a x x dx n n n n n n +++⎡⎤=-=-=-=⎢⎥++++++⎣⎦⎰)1131123231112(1)(2)(1)(2)1(1)(2)lim 101(1)(2)1(1)(2)n n n n n n n n n n n n nna n n n n nn n n n n n n n a n n n∞∞==∞∞→∞==∞∞∞=====++++++=>++++∑∑∑∑∑∑∑故此级数为正项级数且u 由正项级数比较判别法的极限形式知故与级数的敛散性相同且为收敛级数,故为收敛级数即级数收敛43.22212221122211(1)2111(1)(1)21(1)11212xdx d x x x x d x x c x c--+=---=---=+=-+-+⎰⎰⎰44.42x dx-⎰4422422022(2)2222224x dx x dxx x x x =-+-⎡⎤⎡⎤=-+-⎢⎥⎢⎥⎣⎦⎣⎦=+=⎰⎰45.原方程可化为21'y y x x-=为一阶线性齐次微分方程,由公式知,其通解为112ln 2ln 2231(+c)2=2x xx xdx x e dx c e x e dx c x x dx c x x xdx c x x x cx ----⎡⎤⎰⎰⋅+⎢⎥⎣⎦⎡⎤=+⎣⎦⎡⎤=+⎢⎥⎣⎦⎡⎤=+⎣⎦=+⎰⎰⎰⎰y=e 46..'''''''2,,22222xy z xy xy z x y Z xy x zz xy y zz xy xyz z z e F ye F xe F e F zye x F e F z xe y F e z zdz dx dy x yye xe dx dy e e --------+=-=-=-∂=-=∂-∂=-=∂-∂∂=+∂∂=+--解:令F(x,y,z)=e 则故所以47.解:{}AB=3,34-- ,,{}AC=2,11-- ,{}AB*AC=3341,5,3211i j k--=--AB ×AC=22215335++=ABC 的面积等于12AB ×AC =35248.在极坐标下22221221222211222122122212lnln .2ln 22.ln ln 22122ln .224ln 224ln 2434ln 2x r rr r x y dxdy d rdrr dr r l d r dr rdrr l θπππππππππ+==⎡⎤=-⎢⎥⎣⎦⎡⎤=-⎢⎥⎣⎦=-=-=-⎰⎰⎰⎰⎰⎰⎰⎰49.由格林公式知2222222222212013410(1)(1)(1)(1)1(1)(1)()(2242x oy x dx x y dy x y y x dxdy y x y y x dxdy x y dxdyd r rdr r drr l θπππ++-⎧⎫⎡⎤⎡⎤∂-∂+⎪⎪⎣⎦⎣⎦=-+=⎨⎬∂∂⎪⎪⎩⎭⎡⎤=--+⎣⎦=-+=--=-=-=-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰,其中D:x 用极坐标计算)50.解:幂级数01n n x n ∞=+∑中11n a n =+有公式知112limlim 111n n n na n a n ρ+→∞→∞+===+故收敛半径11R ρ==,收敛区间为(1,1)-1x =-时,幂级数为0(1)1nn n ∞=-+∑收敛;1x =时,幂级数为011n n ∞=+∑发散;故幂级数01nn x n ∞=+∑的收敛域为[1,1)-设幂级数01n n x n ∞=+∑的和函数为()s x ,即0()1nn x s x n ∞==+∑则10()1n n x xs x n +∞==+∑由100111n n n n x x n x +∞∞=='⎛⎫== ⎪+-⎝⎭∑∑则1(1)00011(1)ln 111n x x x n x dx d x n x x +∞-===--=-+--∑⎰⎰故(1)()ln x xs x -=-即(1)1()ln x s x x-=-51.解:设场地的长为x ,宽为y ,高为h 。
2014年4月全国自考线性代数(经管类)试题及答案(3)
绝密★考试结束前全国2014年4月高等教育自学考试线性代数(经管类)试题课程代码:04184请考生按规定用笔将所有试题的答案涂、写在答题纸上。
说明:在本卷中,A T 表示矩阵A 的转置矩阵,A *表示矩阵A 的伴随矩阵,E 表示 单位矩阵,|A |表示方阵A 的行列式,r(A )表示矩阵A 的秩。
选择题部分注意事项:1.答题前,考生务必将自己的考试课程名称、姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。
2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
不能答在试题卷上。
一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题纸”的相应代码涂黑。
错涂、多涂或未涂均无分。
1.设行列式11122122a a a a =3,则行列式111211212221a 2a 5a a 2a 5a ++= CA .-15B .-62.设A ,B 为4阶非零矩阵,且AB=0,若r(A )=3,则r(B)= A A .1 B .2 C .3 D .4设A 为s×m 矩阵,B 为m×n 矩阵,则r(AB)≥r(A)+r(B)-m 。
本题 0≥3+r(B)-4 则r(B)≤1 ,又因为A 为非零矩阵,所以r(B)≥1 所以 r(B)=13.设向量组=(1,0,0)T ,=(0,1,0)T ,则下列向量中可由1α2α1α,2α线性表出的是 B A .(0,-1,2)T B .(-1,2,0)T C .(-1,0,2)T D .(1,2,-1)T设β由,α线性表出,则β=k 1α1+k 2α2=(k 1,k 2,0)Tα4.设A 为3阶矩阵,且r(A )=2,若1α,2α为齐次线性方程组Ax=0的两个不同的解。
k 为任意常数,则方程组Ax=0的通解为 D A .k B .k 1α2αC .1k2α+αD .12k2α-α P112 定理4.1Ax=0的基础解系包含1个解向量。
高等数学(工专)考试试题及答案
1全国2010年10月自学考试高等数学(工专)试题课程代码:00022一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.函数y=ln x 1在(0,1)内( )A.是无界的B.是有界的C.是常数D.是小于零的2.极限=-+∞→x x e lim ( )A.∞B.0C.e -1D.-∞3.设f (x )=1+x xsin ,则以下说法正确的是( )A.x =0是f (x )的连续点B.x =0是f (x )的可去间断点C.x =0是f (x )的跳跃间断点D.x =0是f (x )的第二类间断点 4.[]⎰+dx x x dx d)sin (cos =( )A.cos x +sin x +CB.cos x -sin xC.cos x +sin xD.cos x -sin x +C5.矩阵⎥⎦⎤⎢⎣⎡=1021A 的逆矩阵是( )A.⎥⎦⎤⎢⎣⎡--1021 B.⎥⎦⎤⎢⎣⎡-1021 C.⎥⎦⎤⎢⎣⎡-1021 D.⎥⎦⎤⎢⎣⎡-1021 二、填空题(本大题共10小题,每小题3分,共30分)请在每小题的空格中填上正确答案。
错填、不填均无分。
26.如果级数的一般项恒大于0.06,则该级数的敛散性为__________.7.若20)(lim x x f x →=2,则x x f x cos 1)(lim 0-→=____________.8.设f (x )=e x +ln4,则)(x f '=____________.9.函数f (x )=(x +2)(x -1)2的极小值点是________________。
10.行列式10011y x yx =_________________________.11.设⎪⎩⎪⎨⎧==3232t y t x ,则=dx dy___________________.12.如果在[a ,b ]上f (x )≡2,则⎰ba dx x f )(2=_______________________.13.若F (x )为f (x )在区间I 上的一个原函数,则在区间I 上,⎰dx x f )(=_______.14.无穷限反常积分⎰+∞e x x dx2ln =_____________________.15.设A 是一个3阶方阵,且|A |=3,则|-2A |_________________.三、计算题(本大题共8小题,每小题6分,共48分)16.求极限200coslim x tdtt xx ⎰→.17.求微分方程y xdx dy=的通解.18.设y =y (x )是由方程e y +xy =e 确定的隐函数,求0=x dx dy.19.求不定积分⎰dx xe x .20.求曲线y =ln(1+x 2)的凹凸区间和拐点.21.设f (x )=x arctan x -)1ln(212x +,求)1(f '.22.计算定积分dx x x x ⎰-+++012241133.23.求解线性方程组3⎪⎩⎪⎨⎧=++-=++=++.02315,9426,323321321321x x x x x x x x x四、综合题(本大题共2小题,每小题6分,共12分)24.求函数f (x )=x 4-8x 2+5在闭区间[0,3]上的最大值和最小值.25.计算由曲线y =x 2,y =0及x =1所围成的图形绕x 轴旋转而成的旋转体的体积.2010年10月自考高等数学(工专)参考答案45678。
全国2011年4月自学考试高等数学工专试题_真题-无答案
全国2011年4月自学考试高等数学(工专)试题
(总分100,考试时间150分钟)
课程代码:00022一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.
2.
3.
4.
5.
二、填空题(本大题共10小题,每小题3分,共30分)请在每小题的空格中填上正确答案。
错填、不填均无分。
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
三、计算题(本大题共8小题,每小题6分,共48分)
16.
17.
18.
19.
20.
21.
22.
23.
四、综合题(本大题共2小题,每小题6分,共12分)
24.
25. 欲围一个高度一定,面积为150平方米的矩形场地,所用材料的造价其正面是每平方米6元,其余三面是每平方米3元.问场地的长、宽各为多少米时,才能使所用材料费最少?。
全国2019年4月高等教育(工专)自学考试试题、详细答案及考点分析
5.
矩阵 A
5 6
6 7
的逆矩阵是
A.
7 6
6
5
B.
7
6
6 5
C.
7 6
6 5
D.
7 6
6 5
解:矩阵
A
5 6
6 7
,其
A
5 6
6 35 36 1 0 ,因此 7
2 答案整理:郭慧敏 广州大学松田学院
加。故函数 f x ex x 1的单调减少区间是 ,0 .
考核知识点:函数单调性的判断(简单应用);
考核要求:会确定函数的单调区间和判别函数在给定区间上的单调性.
312
11. 行列式 3 5 1
.
332
解:使用行列式的性质计算,可得
lim
x1
f
x
lim
x1
1 x2 1
故选 C.
考核知识点:无穷小量及其性质和无穷大量(简单应用);
考核要求:会判断比较简单的变量是否为无穷小量或无穷大量.
1 答案整理:郭慧敏 广州大学松田学院
2019 年 4 月 高等数学(工专)
3. 对于级数
n 1 n ,其前 n 项和 sn
橡皮擦干净后,再选涂其他答案标号。不能答在试题卷上。
一、单项选择题:本大题共 5 小题,每小题 3 分,共 15 分。在每小题列出的四个备选项中
只有一个是最符合题目要求的,请将其选出。
1.
设
f
x
ln1
cos x,
x,
x0 x0
,则
(整理)年4月全国自考高等数学(工本)试题和参考答案.
精品文档全国2011年4月高等教育自学考试高等数学(工本)试题课程代码:00023一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.已知a ={-1,1,-2),b =(1,2,3},则a ×b =( )A.{-7,-1,3}B.{7,-1,-3}C.{-7,1,3}D.{7,1,-3)2.极限222200)(3sin lim y x y x y x ++→→( ) A.等于0B.等于31C.等于3D.不存在3.设∑是球面x 2+y 2+z 2=4的外侧,则对坐标的曲面积分⎰⎰∑x 2dxdy =( ) A.-2B.0C.2D.4 4.微分方程22y x xy dx dy +=是( ) A.齐次微分方程 B.可分离变量的微分方程C.一阶线性齐次微分方程D.一阶线性非齐次微分方程 5.无穷级数∑∞=023n n n的前三项和S 3=( )A.-2B.419C.827D.865精品文档 二、填空题(本大题共5小题,每小题2分,共10分)请在每小题的空格中填上正确答案。
错填、不填均无分。
6.已知向量a ={2,2,-1),则与a 反方向的单位向量是_________.7.设函数f (x ,y )=yx y x +-,则f (1-x ,1+x )=_________. 8.设积分区域D :x 2+y 2≤2,则二重积分⎰⎰Df (x ,y )dxdy 在极坐标中的二次积分为________. 9.微分方程y 〞+y =2e x 的一个特解是y *=_________.10.设f (x )是周期为2π的函数,f (x )在[-π, π],上的表达式为f (x )=⎩⎨⎧∈-∈),0[,)0,[,0ππx e x x S (x )为f (x )的傅里叶级数的和函数,则S (0)=_________.三、计算题(本大题共12小题,每小题5分,共60分)11.求过点P (-1,2,-3),并且与直线x =3+t ,y =t ,z =1-t 垂直的平面方程.12.设函数z =,求全微分dz |(2,1).13.设函数z=f (cos (xy ),2x-y ),其中f (u ,v )具有连续偏导数,求x z ∂∂和dyz ∂. 14.已知方程e xy -2z +x 2-y 2+e z =1确定函数z=z (x,y ),求x z ∂∂和y z ∂∂. 15.设函数z=e x (x 2+2xy ),求梯度grad f (x ,y ).16.计算二重积分⎰⎰D y 22x e -dxdy .其中积分区域D 是由直线y=x , x =1及x 轴所围成的区域. 17.计算三重积分⎰⎰⎰Ω(1-x 2-y 2)dxdydz ,其中积分区域Ω是由x 2+y 2=a 2,z =0及z =2所围成的区域.18.计算对弧长的曲线积分⎰C xds ,其中C 是抛物线y=x 2上由点A (0,0)到点B (2,4)的一段弧.精品文档19.验证对坐标的曲线积分⎰C (x+y )dx +(x-y )dy 与路径无关, 并计算I=⎰-++)3,2()1,1()()(dy y x dx y x20.求微分方程x 2y 〞=2ln x 的通解.21.判断无穷级数∑∞=+1)11ln(n n 的敛散性. 22.将函数f (x )=x arctan x 展开为x 的幂级数.四、综合题(本大题共3小题,每小题5分,共15分)23.设函数z =arctan yx ,证明.02222=∂∂+∂∂y z x z 24.求由曲面z =xy ,x 2+y 2=1及z =0所围在第一卦限的立体的体积.25.证明无穷级数∑∞==+1.1)!1(n n n精品文档精品文档精品文档。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
π 4 π 4
1 xe x dx . cos 2 x
2
e 2 x , x ≥ 0, 22.设 f ( x) 求 f (0) . 2 x 1, x 0 x3 1, x1 23.求解线性方程组 4 x1 x2 2 x3 3, 6 x x 4 x 5. 2 3 1
x 1
1 1 1 1 收敛于________. 3 32 33 34
x2 x 1 ________. ( x 1) 2
9.设 f ( x) 可导, y f (sin x) ,则 y =________. 10.不定积分 cos(1 2 x)dx ________. 11.连续函数 f ( x) 在区间[1,2]上的平均值为 2,则 f ( x)dx ________.
14.
d x2 t e dt ________. dx 0
1 3 1 3 1 0 15.设矩阵___. 5 2 5 2 0 1
三、计算题(本大题共 8 小题,每小题 6 分,共 48 分) n 2 n 1 16.求极限 lim( ) . n n 1 17.一曲线过(0,0)点,曲线上任意一点(x,y)处的切线斜率为该点横坐标的两倍,求 00022 高等数学(工专)试题 第 2 页 共 3 页
四、综合题(本大题共 2 小题,每小题 6 分,共 12 分)
2 2 24.设 f ( x) 1 ( x 2) 3 ,求 f (x)在[0,3]上的最大值与最小值. 3
25.求由 y x 2 与 y=2 所围成的图形绕 y 轴旋转一周所得的旋转体的体积.
00022 高等数学(工专)试题
第 3 页 共 3 页
1 5.设 A 是三阶方阵, | A | , 则 | 3 A1 | 3
A.-81 C. 1 B.-9 D.3
非选择题部分
注意事项: 用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。
二、填空题(本大题共 10 小题,每小题 3 分,共 30 分) 1 6.函数 y 1 x 2 的定义域为________. x 7.级数 1 8. lim
这曲线的方程. 18.求不定积分
dx . x 5x 6
2
19.设 a 0 ,确定曲线 y 3
a3 的凹凸区间. ( x 1) 2 dy . dx x 0
20.设 y y ( x) 是由方程 xy ln( x y ) 0 确定的隐函数,求
21.计算定积分
绝密★考试结束前
全国 2014 年 4 月高等教育自学考试
高等数学(工专)试题
课程代码:00022
请考生按规定用笔将所有试题的答案涂、写在答题纸上。
选择题部分
注意事项: 1.答题前,考生务必将自己的考试课程名称、姓名、准考证号用黑色字迹的签字笔或钢 笔填写在答题纸规定的位置上。 2.每小题选出答案后,用 2B 铅笔把答题纸上对应题目的答案标号涂黑。如需改动,用 橡皮擦干净后,再选涂其他答案标号。不能答在试题卷上。
1 2
x cos dy 12.设由参数方程 所确定的函数为 y y ( x) ,则 =________. dx y 2sin x 2 x2 3, x 13.线性方程组 1 的解 x 1 =________. 3x1 x2 1 x2
一、单项选择题(本大题共 5 小题,每小题 2 分,共 10 分) 在每小题列出的四个选项中只有一个是符合题目要求的,请将其选出并将“答题纸” 的相应代码涂黑。错涂、多涂或未涂均无分。 1.下列函数中属于基本初等函数的是 A. y cos x C. y 2 x 1
1 2.级数 (1 ) n n n 1
B. y x
3
D. y ( x 3) 2
A.收敛性不能确定 C.收敛于 e 3.函数 f ( x) A.±3 C. 1
B.收敛 D.发散
x 9 的间断点为 x= x 1
2
B. 3 D.-3
4.设函数 f ( x) 在 (, ) 内可导且 f ( x) 0 ,则 f ( x) 在 (, ) 内 A.单调减少 C.是个常数 B.单调增加 D.有极值 00022 高等数学(工专)试题 第 1 页 共 3 页