2012年中考数学方案设计问题试题整理汇集解析
2012年全国中考数学试题分类解析汇编(159套63专题)专题3_整式2(教师篇)
2012年全国中考数学试题分类解析汇编(159套63专题)专题3_整式2(教师篇)2012年全国中考数学试题分类解析汇编(159套63专题)专题3:整式⼀、选择题1. (2012上海市4分)在下列代数式中,次数为3的单项式是【】A . xy 2B .x 3+y 3C ..x 3yD .3xy 【答案】A 。
2. (2012重庆市4分)计算)2ab 的结果是【】 A .2ab B .2a b C .22a b D .2ab 【答案】C 。
3. (2012安徽省4分)计算32)2(x -的结果是【】A.52x -B. 68x -C.62x -D.58x -【答案】B 。
4. (2012安徽省4分)某企业今年3⽉份产值为a 万元,4⽉份⽐3⽉份减少了10%,5⽉份⽐4⽉份增加了15%,则5⽉份的产值是【】A.(a -10%)(a +15%)万元B. a (1-10%)(1+15%)万元C.(a -10%+15%)万元D. a (1-10%+15%)万元【答案】B 。
5. (2012⼭西省2分)下列运算正确的是【】A .B .C .a 2a 4=a 8D .(﹣a 3)2=a 6【答案】D 。
6. (2012海南省3分)计算23x x ?,正确结果是【】A .6xB .5xC .9xD .8x 【答案】B 。
7. (2012海南省3分)当x 2=-时,代数式x +3的值是【】A .1B .-1C .5D .-5【答案】A 。
8. (2012陕西省3分)计算32(5a )-的结果是【】A .510a -B .610aC .525a -D .625a 【答案】D 。
9. (2012宁夏区3分)下列运算正确的是【】A .223a a =3-B .235(a )=aC .369a a =a ?D .222(2a )=4a 【答案】C 。
10. (2012⼴东佛⼭3分)23a a ?等于【】A .5aB .6aC .8aD .9a 【答案】A 。
2012中考数学之方案设计决策类问题
2012中考数学之方案设计决策类问题将数学知识与实际生活紧密相连,通过设置情境,进行方案设计、选择最佳方案的一类问题,是中考常出现的题型,而同学们对这种题型不大适应。
为此,现以有关中考题为例说明如下,供同学们参考。
●购买型方案设计购买型方案设计问题,往往与方程、不等式相结合,考查同学解决实际问题的能力。
【例1】某超市销售甲、乙两种商品。
甲商品每件进价10元,售价15元;乙商品每件进价30元,售价40元。
⑴若该超市同时一次购进甲、乙两种商品共80件,恰好用去1600元,求能购进甲、乙两种商品各多少件?⑵该超市为使甲、乙两种商品共80件的总利润(利润=售价-进价)不少于600元,但又不超过610元。
请你帮助该超市设计相应的进货方案。
【解析】⑴问是考查一元一次方程的应用,根据等量关系列出方程。
⑵问主要是考查一元一次不等式组的应用,根据不等关系列出不等式,不等式的解符合实际意义。
⑴设甲商品购进了x件,则乙商品购进了80-x件,依据题意得10x+(80-x)×30=1600,解得:x=40。
即甲种商品购进了40件,乙种商品购进了80-40=40件。
⑵设购买甲种商品为x件,依题意可列出:600≤(15-10)x+(40-30)( 80-x)≤610,解得:38≤x≤40。
即有三种方案,分别为甲38件,乙42件;甲39件,乙41件;甲40件,乙40件。
●运输型方案设计解运输型方案设计问题,不仅要求同学有扎实的数学双基知识,而且要能够把实际问题中所涉及到的数学问题转化、抽象成具体的数学问题。
解决此类问题要抓住题中提供的关键条件、关键字眼,建立关系。
【例2】惊闻5月12日四川汶川发生强烈地震后,某地民政局迅速组织了30吨食物和13吨衣物的救灾物资,准备于当晚用甲、乙两种型号的货车将它们快速地运往灾区。
已知甲型货车每辆可装食物5吨和衣物1吨,乙型货车每辆可装食物3吨和衣物2吨,但由于时间仓促,只招募到9名长途驾驶员志愿者。
2012年全国中考数学试题分类解析汇编
2012年全国中考数学试题分类解析汇编专题11:方程(组)的应用一、选择题1. (2012宁夏区3分)小颖家离学校1200米3千米/时,下坡路的平均速度是5千米/时.若设小颖上坡用了x分钟,下坡用了y分钟,根据题意可列方程组为【】A.3x5y1200x y16+=⎧⎨+=⎩B.35x y 1.26060x y16⎧+=⎪⎨⎪+=⎩C.3x5y 1.2x y16+=⎧⎨+=⎩D.35x y12006060x y16⎧+=⎪⎨⎪+=⎩【答案】B。
【考点】由实际问题抽象出二元一次方程组。
【分析】要列方程,首先要根据题意找出存在的等量关系。
本题等量关系为:上坡用的时间×上坡的速度+下坡用的时间×下坡速度=1200,上坡用的时间+下坡用的时间=16。
把相关数值代入(注意单位的通一),得35x y 1.26060x y16⎧+=⎪⎨⎪+=⎩。
故选B。
2. (2012宁夏区3分)运动会上,初二(3)班啦啦队,买了两种价格的雪糕,其中甲种雪糕共花费40元,乙种雪糕共花费30元,甲种雪糕比乙种雪糕多20根.乙种雪糕价格是甲种雪糕价格的1.5倍,若设甲种雪糕的价格为x元,根据题意可列方程为【】.A.4030201.5x x-=B.403020x 1.5x-=C.304020x 1.5x-=D.3040201.5x x-=【答案】B。
【考点】由实际问题抽象出分式方程。
【分析】要列方程,首先要根据题意找出存在的等量关系。
本题等量关系为:甲种雪糕数量比乙种雪糕数量多20根。
而甲种雪糕数量为40x,乙种雪糕数量为301.5x。
(数量=金额÷价格)从而得方程:403020x 1.5x-=。
故选B。
3. (2012广东湛江4分)湛江市2009年平均房价为每平方米4000元.连续两年增长后,2011年平均房价达到每平方米5500元,设这两年平均房价年平均增长率为x,根据题意,下面所列方程正确的是【】A.5500(1+x)2=4000 B.5500(1﹣x)2=4000 C.4000(1﹣x)2=5500 D.4000(1+x)2=5500【答案】D。
史上最全2012年全国中考数学试题分类解析汇编160套60专题专题2实数的运算
【史上最全】2012年全国中考数学试题分类解析汇编(160套60专题)专题2:实数的运算一、选择题1. (2012山西省2分)计算:﹣2﹣5的结果是【 】 A . ﹣7B .﹣3 C . 3 D .7【答案】A 。
【考点】有理数的加法。
【分析】根据有理数的加法运算法则计算即可:﹣2﹣5=﹣(2+5)=﹣7。
故选A 。
2. (2012广东佛山3分)与2÷3÷4运算结果相同的是【 】A .4÷2÷3B .2÷(3×4)C .2÷(4÷2)D .3÷2÷4【答案】B 。
【考点】有理数的乘除运算。
【分析】根据连除的性质可得:2÷3÷4=2÷(3×4)。
故选B 。
3. (2012广东梅州3分)012⎛⎫-- ⎪⎝⎭=【 】A .﹣2B .2C .1D .﹣1 【答案】D 。
【考点】零指数幂。
【分析】根据任何非0数的0次幂等于1解答即可:01=12⎛⎫--- ⎪⎝⎭。
故选D 。
4. (2012广东肇庆3分)计算2-的结果是【】3+A.1 B.1-C.5 D.5-【答案】B。
【考点】有理数的加法。
【分析】根据有理数的加法运算法则计算即可得解:-3+2=-(3-2)=-1。
故选B。
5. (2012浙江杭州3分)计算(2﹣3)+(﹣1)的结果是【】A.﹣2 B.0 C.1 D.2【答案】A。
【考点】有理数的加减混合运算。
【分析】根据有理数的加减混合运算的法则进行计算即可得解:(2﹣3)+(﹣1)=﹣1+(﹣1)=﹣2。
故选A。
6. (2012浙江嘉兴、舟山4分)(﹣2)0等于【】A. 1 B. 2 C.0 D.﹣2【答案】A。
【考点】零指数幂。
【分析】根据不等于0的数的零次幂为0的定义,直接得出结果:(﹣2)0=1。
故选A。
7. (2012浙江宁波3分)(﹣2)0的值为【】A.﹣2 B.0 C.1 D.2【答案】C。
2012年全国中考数学试题分类解析汇编(159套63专题)专题32_图形的镶嵌与图形的设计(附答案)
2012年全国中考数学试题分类解析汇编(159套63专题)专题32:图形的镶嵌与图形的设计一、选择题1. (2012安徽省4分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是【】A.10B.54 D.10或174 C. 10或522. 7. (2012四川广元3分)下面的四个图案中,既可以用旋转来分析整个图案的形成过程,又可以用轴对称来分析整个图案的形成过程的图案有【】A. 4个B. 3个C. 2个D. 1个3. (2012贵州铜仁4分)如图,第①个图形中一共有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,…则第⑩个图形中平行四边形的个数是【】A.54B.110C.19D.1094. (2012山东济宁3分)如图,将矩形ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=12厘米,EF=16厘米,则边AD的长是【】A .12厘米B .16厘米C .20厘米D .28厘米5. (2012山东枣庄3分)如图,从边长为(a 4+)cm 的正方形纸片中剪去一个边长为(a 1+)cm 的正方形(a 0>),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为【 】A .22(2a 5a )cm +B .2(3a 15)cm +C .2(6a 9)cm +D .2(6a 15)cm +6. (2012山东潍坊3分)甲乙两位同学用围棋子做游戏.如图所示,现轮到黑棋下子,黑棋下一子后白棋再下一子,使黑棋的5个棋子组成轴对称图形,白棋的5个棋子也成轴对称图形.则下列下子方法不正确的是【 】.[说明:棋子的位置用数对表示,如A 点在(6,3)]A .黑(3,7);白(5,3)B .黑(4,7);白(6,2)C .黑(2,7);白(5,3)D .黑(3,7);白(2,6)7. (2012广西贵港3分)如果仅用一种多边形进行镶嵌,那么下列正多边形不能够...将平面密铺的是【 】 A .正三角形B .正四边形C .正六边形D .正八边形 二、填空题1. (2012四川成都4分)如图,长方形纸片ABCD 中,AB=8cm ,AD=6cm ,按下列步骤进行裁剪和拼图:第一步:如图①,在线段AD上任意取一点E,沿EB,EC剪下一个三角形纸片EBC(余下部分不再使用);第二步:如图②,沿三角形EBC的中位线GH将纸片剪成两部分,并在线段GH上任意取一点M,线段BC上任意取一点N,沿MN将梯形纸片GBCH剪成两部分;第三步:如图③,将MN左侧纸片绕G点按顺时针方向旋转180°,使线段GB与GE重合,将MN右侧纸片绕H点按逆时针方向旋转180°,使线段HC与HE重合,拼成一个与三角形纸片EBC面积相等的四边形纸片.(注:裁剪和拼图过程均无缝且不重叠)则拼成的这个四边形纸片的周长的最小值为▲ cm,最大值为▲ cm.2. (2012贵州遵义4分)在4×4的方格中有五个同样大小的正方形如图摆放,移动其中一个正方形到空白方格中,与其余四个正方形组成的新图形是一个轴对称图形,这样的移法共有▲ 种.三、解答题1. (2012山西省6分)实践与操作:如图1是以正方形两顶点为圆心,边长为半径,画两段相等的圆弧而成的轴对称图形,图2是以图1为基本图案经过图形变换拼成的一个中心对称图形.(1)请你仿照图1,用两段相等圆弧(小于或等于半圆),在图3中重新设计一个不同的轴对称图形.(2)以你在图3中所画的图形为基本图案,经过图形变换在图4中拼成一个中心对称图形.2. (2012四川广安8分)现有一块等腰三角形板,量得周长为32cm,底比一腰多2cm,若把这个三角形纸板沿其对称轴剪开,拼成一个四边形,请画出你能拼成的各种四边形的示意图,并计算拼成的各个四边形的两条对角线长的和.3. (2012辽宁鞍山8分)如图,某社区有一矩形广场ABCD,在边AB上的M点和边BC上的N点分别有一棵景观树,为了进一步美化环境,社区欲在BD上(点B除外)选一点P再种一棵景观树,使得∠MPN=90°,请在图中利用尺规作图画出点P的位置(要求:不写已知、求证、作法和结论,保留作图痕迹).4. (2012贵州遵义4分)cm的正方形ABCD沿直线l向右翻动(不滑动),当正方形连续翻动6次后,正方形的中心O经过的路线长是▲ cm.(结果保留π)5. (2012贵州铜仁5分)某市计划在新竣工的矩形广场的内部修建一个音乐喷泉,要求音乐喷泉M到广场的两个入口A、B的距离相等,且到广场管理处C的距离等于A和B之间距离的一半,A、B、C的位置如图所示,请在原图上利用尺规作图作出音乐喷泉M的位置,(要求:不写已知、求作、作法和结论,保留作图痕迹,必须用铅笔作图)6. (2012山东德州8分)有公路l1同侧、l2异侧的两个城镇A,B,如下图.电信部门要修建一座信号发射塔,按照设计要求,发射塔到两个城镇A,B的距离必须相等,到两条公路l1,l2的距离也必须相等,发射塔C应修建在什么位置?请用尺规作图找出所有符合条件的点,注明点C的位置.(保留作图痕迹,不要求写出画法)7. (2012山东济宁5分)如图,AD 是△ABC 的角平分线,过点D 作DE ∥AB ,DF ∥AC ,分别交AC 、AB 于点E 和F .(1)在图中画出线段DE 和DF ;(2)连接EF ,则线段AD 和EF 互相垂直平分,这是为什么?8. (2012广西桂林8分)如图,△ABC 的顶点坐标分别为A(1,3)、B(4,2)、C(2,1).(1)作出与△ABC 关于x 轴对称的△A 1B 1C 1,并写出A 1、B 1、C 1的坐标;(2)以原点O 为位似中心,在原点的另一侧画出△A 2B 2C 2,使22AB1A B 2 .9. (2012江西南昌5分)如图,有两个边长为2的正方形,将其中一个正方形沿对角线剪开成两个全等的等腰直角三角形,用这三个图片分别在网格备用图的基础上(只要再补出两个等腰直角三角形即可),分别拼出一个三角形、一个四边形、一个五边形、一个六边形.10. (2012吉林长春6分)图①、图②均为4×4的正方形网格,线段AB 、BC 的端点均在网点上.按要求在图①、图②中以AB 和BC 为边各画一个四边形ABCD .要求:四边形ABCD 的顶点D 在格点上,且有两个角相等(一组或两组角相等均可);所画的两个四边形不全等.11. (2012吉林省7分)在平面直角坐标系中,点A 关于y 轴的对称点为点B ,点A 关于原点O 的对称 点为点C .(1)若A 点的坐标为(1,2),请你在给出的坐标系中画出△ABC .设AB 与y 轴的交点为D ,则 AD OABC S S △△=________;(2)若点A 的坐标为(a ,b )(ab≠0),则△ABC 的形状为_______.12. (2012黑龙江绥化6分)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC的顶点均在格点上,O、M也在格点上.(1)画出△ABC关于直线OM对称的△A1B1C1;(2)画出△ABC绕点O按顺时针方向旋转90°后所得的△A2B2C2;(3)△A1B1C1与△A2B2C2组成的图形是轴对称图形吗?如果是轴对称图形,请画出对称轴.13. (2012黑龙江哈尔滨6分)图l、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1.点A和点B在小正方形的顶点上.(1)在图1中画出△ABC(点C在小正方形的顶点上),使△ABC为直角三角形(画一个即可);(2)在图2中画出△ABD(点D在小正方形的顶点上),使△ABD为等腰三角形(画一个即可);14. (2012黑龙江黑河、齐齐哈尔、大兴安岭、鸡西6分)顶点在网格交点的多边形叫做格点多边形,如图,在一个9 X 9的正方形网格中有一个格点△ABC.设网格中小正方形的边长为l个单位长度.(1)在网格中画出△ABC向上平移4个单位后得到的△A l B l C l.(2)在网格中画出△ABC绕点A逆时针旋转900后得到的△AB2C2(3)在(1)中△ABC向上平移过程中,求边AC所扫过区域的面积.15. (2012黑龙江龙东地区6分)如图,方格纸中每个小正方形的边长都是单位1,△ABC的三个顶点都在格点上,结合所给的平面直角坐标系解答下列问题:(1)将△ABC向右平移3个单位长度再向下平移2个单位长度,画出两次平移后的△A1B1C1;(2)写出A1、C1的坐标;(3)将△A1B1C1绕C1逆时针旋转90°,画出旋转后的△A2B2C1,求线段B1C1旋转过程中扫过的面积(结果保留π)。
2012全国各地中考数学解析汇编(按章节考点整理)-第21章(精)
(最新最全)2012年全国各地中考数学解析汇编(按章节考点整理)第二十一章 勾股定理 21.1勾股定理(2012广州市,7, 3分)在Rt △ABC 中,∠C=90°,AC=9,BC=12,则点C 到AB 的距离是( )A. 365B. 1225C. 94D. 334D C BA【解析】首先根据勾股定理求出直角三角形的斜边,利用直角三角形面积的两种求法,求出点C 到AB 的距离。
【答案】由勾股定理得AB=2222912a b +=+=15,根据面积有等积式11BC=AB CD 22AC ••,于是有CD=365。
【点评】本题用了考查常用的勾股定理,直角三角形根据面积得到的一个等积式,列方程求线段CD 的长。
(2012安徽,10,4分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是( )A.10B.54C. 10或54D.10或172解析:考虑两种情况.要分清从斜边中点向哪个边沿着垂线段过去裁剪的.解答:解:如下图,54)44()22(22=++⨯,1054)44()32(22=++⨯故选C.点评:在几何题没有给出图形时,有的同学会忽略掉其中一种情况,错选A或B;故解决本题最好先画出图形,运用数形结合和分类讨论的数学思想进行解答,避免出现漏解.(2012四川省南充市,14,4分) 如图,四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,若四边形ABCD的面积是24cm2,则AC长是_____________cm.【解析】过点A作A E⊥BC于点E,AF⊥CD交CD的延长线于点F.则⊿ABE≌⊿ADF,得AE=AF,进一步证明四边形AECF是正方形,且正方形AECF与四边形ABCD的面积相等.则AE=,所以22264324=26AC AE===.【答案】43【点评】本题考查了三角形的全等变换、正方形的性质以及勾股定理.解题的关键是正确的做出旋转的全等变换,将四边形的问题转化成正方形的问题来解决.(2012山东省荷泽市,16(2),6)(2)如图,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D、E两点的坐标.【解析】根据折叠问题及矩形的性质,可以利用勾股定理求出线段的长来确定点的坐标.【答案】(1)依题意可知,折痕AD是四边形OAED的对称轴,∴在Rt ABE∆中,10,8===,2222AE AO AB=-=-=,BE AE AB1086∴=,(4,8)4CE∴.E在Rt DCE∆中,222+=,DC CE DE又DE OD=,222∴-+=,OD OD(8)4∴=,(0,5)5OD∴.D【点评】在平面直角坐标系中,求点的坐标实质就是求这个点到两轴的距离,也就是求线段的长,求线段的就是利用勾股定理、三角函数或相似三角形的对应边成比例.(2012贵州贵阳,8,3分)如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交BC 的延长线于F,若∠F=30°,DE=1,则EF的长()A.3B.2C.3D.1解析:由已知得,BF=2BD=AB,所以FC=AD,不难得到Rt△FE C≌Rt△AED,故得EC=ED=1,结合∠F=30°,∠FCE=90°,可得EF=2EC=2.解答:选B.点评:本题主要考查“直角三角形中30°度角所对的直角边等于斜边的一半”的知识,也涉及到全等三角形的判定与性质,相对综合.(2012浙江省嘉兴市,6,4分)如图,A、B两点在河的两岸,要测量这两点之间的距离,测量者在与A同侧的河岸边选定一点C,测出AC=a米,∠A=90° , ∠C=40° ,则AB等于( )米A. asin4o°B. acos40°C.atan4o°D.atan40【解析】如图,在Rt △ABC 中,∵∠A=90° , ∠C=40° , AC=a 米,∴tan40°=AB AC,∴A B =atan4o°, 故选C.【答案】C.【点评】本题要求适当选用三角函数关系,解直角三角形.22.2 勾股定理的逆定理22.3 直角三角形的性质(2012浙江省湖州市,5,3分)如图,在Rt △ABC 中,∠ACB=900,AB=10,CD 是AB 边上的中线,则CD 的长是( )A.20B.10C.5D.25【解析】直角三角形斜边上的中线等于斜边的一半,故CD=21AB=21×10=5.【答案】选:C .【点评】此题考查的是直角三角形的性质,属于基础题。
(最新最全)2012年全国各地中考数学解析汇编(按章节考点整理)分3个考点精选48题)
(最新最全)2012年全国各地中考数学解析汇编(按章节考点整理)第十一章 因式分解(分3个考点精选48题)11.1 提公因式法(2012北京,9,4)分解因式:269mn mn m ++= .【解析】原式=m (n 2+6n +9)=m (n +3)2【答案】m (n +3)2【点评】本题考查了提公因式及完全平方的知识点。
(2012广州市,13, 3分)分解因式a 2-8a 。
【解析】提取公因式即可分解因式。
【答案】:a(a -8).【点评】本题考查了因式分解的方法。
比较简单。
(2012浙江省温州市,5,4分)把24a a -多项式分解因式,结果正确的是( )A. ()4a a -B. (2)(2)a a +-C. (2)(2)a a a +-D. 2(2)4a --【解析】分解因式按“一提二套”原则:有公因式的先提取公因式,再套用平方差公式或完全平方公式,本题可直接提公因式.【答案】A【点评】有公因式的要先提取公因式,然后再考虑运用平方差公式或完全平方公式进行分解.因式分解要分解到每个多项式因式都不能再分解为止,此题较基础.(湖南株洲市3,9)因式分解:22a a -= .【解析】22(2)a a a a -=-【答案】(2)a a -【点评】本题主要考查因式分解的常用方法及步骤:先提取公因式,再运用公式法进行分解. (2012四川成都,1l ,4分)分解因式:25x x -=________.解析:因式分解的基本方法是提取公因式法、公式法、分组分解法。
本题只有两项,所以,只能用提取公因式法和平方差公式法。
观察可知有公因式x ,提取公因式法分解为x(x-5)。
答案:x(x-5)。
点评:公因式的确定方法是:系数是各项系数的最大公约数,字母是各项都有的字母,指数取最小。
(2012湖北随州,11,4分)分解因式:249x -=______________________。
解析:22249(2)3(23)(23)x x x x -=-=+-。
2012年全国中考数学试题分类解析汇编开放探究型问题讲解
2012年全国中考数学试题分类解析汇编专题58:开放探究型问题一、选择题二、填空题1. (2012陕西省3分)在同一平面直角坐标系中,若一个反比例函数的图象与一次函数y=2x+6-的图象无公共点,则这个反比例函数的表达式是▲ (只写出符合条件的一个即可).【答案】5yx=(答案不唯一)。
【考点】开放型问题,反比例函数与一次函数的交点问题,一元二次方程根与系数的关系。
【分析】设反比例函数的解析式为:kyx=,联立y=2x+6-和kyx=,得k2x+6x-=,即22x6x+k0-=∵一次函数y=2x+6-与反比例函数kyx=图象无公共点,∴△<0,即268k0< --(),解得k>9 2。
∴只要选择一个大于92的k值即可。
如k=5,这个反比例函数的表达式是5yx=(答案不唯一)。
2. (2012广东湛江4分)请写出一个二元一次方程组▲ ,使它的解是x=2y=1⎧⎨-⎩.【答案】x+y=1x+2y=0⎧⎨⎩(答案不唯一)。
【考点】二元一次方程的解。
【分析】根据二元一次方程解的定义,围绕x=2y=1⎧⎨-⎩列一组等式,例如:由x+y=2+(-1)=1得方程x+y=1;由x-y=2-(-1)=3得方程x-y=3;由x+2y=2+2(-1)=0得方程x+2y=0;由2x+y=4+(-1)=3得方程2x+y=3;等等,任取两个组成方程组即可,如x+y=1x+2y=0⎧⎨⎩(答案不唯一)。
3. (2012广东梅州3分)春蕾数学兴趣小组用一块正方形木板在阳光做投影实验,这块正方形木板在地面上形成的投影是可能是▲ (写出符合题意的两个图形即可)【答案】正方形、菱形(答案不唯一)。
【考点】平行投影。
【分析】根据平行投影的特点:在同一时刻,平行物体的投影仍旧平行。
所以,在同一时刻,这块正方形木板在地面上形成的投影是平行四边形或特殊的平行四边形,例如,正方形、菱形(答案不唯一)。
4. (2012浙江衢州4分)试写出图象位于第二、四象限的一个反比例函数的解析式▲ .【答案】1y=x-(答案不唯一)。
2012年全国中考数学试题分类解析汇编(159套63专题)专题45_梯形(附答案)
2012年全国中考数学试题分类解析汇编(159套63专题)专题45:梯形一、选择题1. (2012广东广州3分)如图,在等腰梯形ABCD中,BC∥AD,AD=5,DC=4,DE∥AB交BC 于点E,且EC=3,则梯形ABCD的周长是【】A.26 B.25 C.21 D.202. (2012江苏无锡3分)如图,梯形ABCD中,AD∥BC,AD=3,AB=5,BC=9,CD的垂直平分线交BC于E,连接DE,则四边形ABED的周长等于【】A. 17 B.18 C.19 D.203. (2012福建漳州4分)如图,在等腰梯形ABCD中,AD∥BC,AB=DC,∠B=80o,则∠D的度数是【】A.120o B.110o C.100o D.80o4. (2012湖北十堰3分)如图,梯形ABCD中,AD∥BC,点M是AD的中点,且MB=MC,若AD=4,AB=6,BC=8,则梯形ABCD的周长为【】A.22 B.24 C.26 D.285. (2012四川宜宾3分)如图,在四边形ABCD中,DC∥AB,CB⊥AB,AB=AD,CD=12 AB,点E、F分别为AB.AD的中点,则△AEF与多边形BCDFE的面积之比为【】A.17B.16C.15D.146. (2012四川达州3分)如图,在梯形ABCD中,AD∥BC,E、F分别是AB、CD的中点,则下列结论:①EF∥AD;②S△ABO=S△DCO;③△OGH是等腰三角形;④BG=DG;⑤EG=HF。
其中正确的个数是【】A、1个B、2个C、3个D、4个7. (2012山东临沂3分)如图,在等腰梯形ABCD中,AD∥BC,对角线AC.BD相交于点O,下列结论不一定正确的是【】A.AC=BD B.OB=OC C.∠BCD=∠BDC D.∠ABD=∠ACD8. (2012山东烟台3分)如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为【】A .4B .5C .6D .不能确定9. (2012广西北海3分)如图,梯形ABCD 中AD//BC ,对角线AC 、BD 相交于点O ,若AO∶CO =2:3,AD =4,则BC 等于:【 】A .12B .8C .7D .610. (2012广西贵港3分)如图,在直角梯形ABCD 中,AD//BC ,∠C=90°,AD =5,BC=9,以A 为中心将腰AB 顺时针旋转90°至AE ,连接DE ,则△ADE 的面积等于【 】A .10B .11C .12D .1311. (2012内蒙古呼和浩特3分)已知:在等腰梯形ABCD 中,AD∥BC,AC⊥BD,AD=3,BC=7,则梯形的面积是【 】A .25B .50C .D 12. (2012黑龙江龙东地区3分)如图,已知直角梯形ABCD 中,AD∥BC,∠ABC=90°,AB=BC=2AD ,点E 、F 分别是AB 、BC 边的中点,连接AF 、CE 交于点M ,连接BM 并延长交CD 于点N ,连接DE 交AF 于点P ,则结论:①∠ABN=∠CBN; ②DE∥BN; ③△CDE 是等腰三角形;④EM 3 :; ⑤EPM ABCD 1S S 8∆=梯形,正确的个数有【 】A. 5个B. 4个C. 3个D. 2个二、填空题1. (2012上海市4分)如图,已知梯形ABCD ,AD∥BC,BC=2AD ,如果AD=aAB=b ,那么AC = ▲ (用a b,表示).2. (2012江苏南通3分)如图,在梯形ABCD 中,AB∥CD,∠A+∠B=90º,AB =7cm ,BC=3cm ,AD =4cm ,则CD = ▲ cm .3. (2012江苏扬州3分)已知梯形的中位线长是4cm ,下底长是5cm ,则它的上底长是 ▲ cm .4. (2012福建厦门4分)如图,在等腰梯形ABCD 中,AD∥BC,对角线AC 与BD 相交于点O ,若OB =3,则OC = ▲ .5. (2012湖北咸宁3分)如图,在梯形ABCD 中,AD∥BC,︒=∠90C ,BE 平分∠ABC 且交CD 于E ,E 为CD 的中点,EF∥BC 交AB 于F ,EG∥AB 交BC 于G ,当2=AD ,12=BC 时,四边形BGEF 的周长为 ▲ .6. (2012湖北黄冈3分)如图,在梯形ABCD 中,AD∥BC ,AD=4,AB=CD=5,∠B=60°,则下底BC 的长为 ▲ .7. (2012湖南长沙3分)如图,等腰梯形ABCD 中,AD∥BC,AB=AD=2,∠B=60°,则BC 的长为▲ .8. (2012湖南常德3分)若梯形的上底长是10厘米,下底长是30厘米,则它的中位线长为 ▲ 厘米。
2012年全国各地中考数学方案设计问题试题归总
2012年全国各地中考数学方案设计问题试题归总2012年全国各地中考数学解析汇编41 方案设计问题(2012北海,23,8分)23.某班有学生55人,其中男生与女生的人数之比为6:5。
(1)求出该班男生与女生的人数;(2)学校要从该班选出20人参加学校的合唱团,要求:①男生人数不少于7人;②女生人数超过男生人数2人以上。
请问男、女生人数有几种选择方案?【解析】(1)根据题目中的等量关系,设出未知数,列出方程,并求解,得男生和女生的人数分别为30人,25人。
(2)根据题意列出不等式组,并求解。
又因为人数不能为小数,列出不等式组的整数解,可以得出有两种方案。
【答案】解:(1)设男生有6x人,则女生有5x人。
1分依题意得:6x+5x=55 2分∴x=5 ∴6x=30,5x=25 3分答:该班男生有30人,女生有25人。
4分(2)设选出男生y人,则选出的女生为(20-y)人。
5分由题意得: 6分解之得:7≤y<9 ∴y 的整数解为:7、8。
7分当y=7时,20-y=13 当y=8时,20-y=12 答:有两种方案,即方案一:男生7人,女生13人;方案二:男生8人,女生12人。
8分【点评】本题是方程和不等式组的应用,使用性比较强,适合方案设计。
解题时注意题目的隐含条件,就是人数必须是非负整数。
是历年中考考查的知识点,平时教学的时候多加训练。
难度中等。
24.(2012年广西玉林市,24,10分)一工地计划租用甲、乙两辆车清理淤泥,从运输量来估算:若租两辆车合运,10天可以完成任务;若单独租用乙车完成任务则比单独租用甲车完成任务多用15天.(1)甲、乙两车单独完成任务分别需要多少天?(2)已知两车合运共需租金65000元,甲车每天的租金比乙车每天的租金多1500元.试问:租甲乙车两车、单独租甲车、单独租乙车这三种方案中,哪一种租金最少?请说明理由.分析:(1)设甲车单独完成任务需要x天,乙单独完成需要y天,根据题意所述等量关系可得出方程组,解出即可;(2)结合(1)的结论,分别计算出三种方案各自所需的费用,然后比较即可.解:(1)设甲车单独完成任务需要x天,乙单独完成需要y天,由题意可得: ,解得:即甲车单独完成需要15天,乙车单独完成需要30天;(2)设甲车租金为a,乙车租金为b,则根据两车合运共需租金65000元,甲车每天的租金比乙车每天的租金多1500元可得: ,解得:. ①租甲乙两车需要费用为:65000元;②单独租甲车的费用为:15×4000=60000元;③单独租乙车需要的费用为:30×2500=75000元;综上可得,单独租甲车租金最少.点评:此题考查了分式方程的应用,及二元一次方程组的知识,分别得出甲、乙单独需要的天数,及甲、乙车的租金是解答本题的关键. 27.(2012黑龙江省绥化市,27,10分)在实施“中小学校舍安全工程”之际,某县计划对A、B两类学校的校舍进行改造.根据预测,改造一所A类学校和三所B类学校的校舍共需资金480万元,改造三所A类学校和一所B类学校的校舍共需资金400万元.⑴ 改造一所A类学校和一所B类学校的校舍所需资金分别是多少万元?⑵ 该县A、B两类学校共有8所需要改造.改造资金由国家财政和地方财政共同承担,若国家财政拨付资金不超过770万元,地方财政投入的资金不少于210万元,其中地方财政投入到A、B两类学校的改造资金分别为每所20万元和30万元,请你通过计算求出有几种改造方案,每个方案中A、B两类学校各有几所.【解析】解:(1)等量关系为:①改造一所A类学校和三所B类学校的校舍共需资金480万元;②改造三所A类学校和一所B类学校的校舍共需资金400万元;设改造一所A类学校的校舍需资金x万元,改造一所B类学校的校舍所需资金y万元,则,解得答:改造一所A类学校的校舍需资金90万元,改造一所B类学校的校舍所需资金130万元.(2)不等关系为:①地方财政投资A类学校的总钱数+地方财政投资B类学校的总钱数≥210;②国家财政投资A类学校的总钱数+国家财政投资B类学校的总钱数≤770.设A类学校应该有a所,则B类学校有(8-a)所.则,解得∴1≤a≤3,即a=1,2,3.答:有3种改造方案.方案一:A 类学校有1所,B类学校有7所;方案二:A类学校有2所,B类学校有6所;方案三:A类学校有3所,B类学校有5所.【答案】⑴改造一所A类学校和一所B类学校的校舍所需资金分别是90万元、130万元;⑵共有三种方案.方案一:A类学校1所,B类学校7所;方案二:A类学校2所,B类学校6所;方案三:A类学校3所,B类学校5所.【点评】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.理解“国家财政拨付的改造资金不超过770万元,地方财政投入的资金不少于210万元”这句话中包含的不等关系是解决本题的关键.难度中等.22. (2012山东莱芜, 22,10分)(本题满分10分)为表彰在“缔造完美教室”活动中表现积极的同学,老师决定购买文具盒与钢笔作为奖品.已知5个文具盒、2支钢笔共需100元;4个文具盒、7支钢笔共需161元. (1)每个文具盒、每支钢笔个多少元?(2)时逢“五一”,商店举行“优惠促销”活动,具体办法如下:文具盒“九折”优惠;钢笔10支以上超出部分“八折”优惠.若买x个文具盒需要元,买x支钢笔需要元;求、关于x的函数关系式;(3)若购买同一种奖品,并且该奖品的数量超过10件,请你分析买哪种奖品省钱. 【解析】(1)设每个文具盒x元,每支钢笔y元,可列方程组得,解之得答:每个文具盒14元,每支钢笔15元. ……………………………………………………..4分(2)由题意知,y1关于x的函数关系式为y1=14×90%x,即y1=12.6x. 由题意知,买钢笔10以下(含10支)没有优惠,故此时的函数关系式为y2=15x. 当买10支以上时,超出部分有优惠,故此时函数关系式为y2=15×10+15×80%(x-10)即y2=12x+30 . ……………………………………………………..7分(3)当y1< y2即12.6x<12x+30时,解得x<50; 当y1= y2即12.6x=12x+30时,解得x=50; 当y1> y2即12.6x>12x+30时,解得x>50. 综上所述,当购买奖品超过10件但少于50件时,买文具盒省钱;当购买奖品超过50件时,买文具盒和买钢笔钱数相等;当购买奖品超过50件时,买钢笔省钱. . ……………………………………………………..10分【答案】(1)答:每个文具盒14元,每支钢笔15元. (2)y1=12.6x; y2=12x+30. (3)当购买奖品超过10件但少于50件时,买文具盒省钱;当购买奖品超过50件时,买文具盒和买钢笔钱数相等;当购买奖品超过50件时,买钢笔省钱. 【点评】本题考察了列二元一次方程组解实际问题,求一次函数的解析式和利用一元一次不等式组选择最优化的方案。
2.2方案设计(热点题型)·数学中考分类精粹
3 0 0元. ( ) 由每辆 汽 车 上 至 少 要 有 1 名 老 师 , 汽车总数不能大 2 2 3 4+6( ) 取整为 6 辆, 综合起来可知汽车总数为 6 辆 . 4 5 设 租用 m 辆大车 , 则租车费用 Q( 单位 : 元) 是 m 的函数 , ( ; 即 Q=4 0 0 m+3 0 0 6-m) 化简为 Q=1 0 0 m+18 0 0. 于6辆; 由要保证2 汽车总数不能小于 4 0 名 师 生 有 车 坐,
过 23 求最省钱的租车方案 . 0 0元,
2 辆大车一辆小车 共 需 租 车 费 11 0 0元 列出方程组解答即 可. 时, 要有一定的 预 见 . 根 据 题 意, 得 到 汽 车 总 数 应 为 6 辆. 再 根据 总租车费用不超过 23 0 0 元 求出租用大车或小车 的 辆 数的范围 , 再决策出最省钱的租车方案 . 的租车费是 y 元 . ʌ ( ) 完全解答 ɔ 设 大 车 每 辆 的 租 车 费 是 x 元, 小车每辆 1 ) 第( 问是 一 道 省 钱 租 车 的 方 案 设 计 问 题 , 在设计方案 2
根据以上信息 , 解答下列问题 :
18 2 0元. ( ) 求购买一套 A 型 课 桌 凳 和 一 套 B 型 课 桌 凳 各 需 多 少 1 ( ) 学校根据实际情况 , 要求购买这两种课桌凳的总费用 2 不能超过 4 并且购买 A 型课桌凳的数量不 08 8 0元, 该校本次购买 A 型和 能超过 B 型课桌凳数 量 的 2 , 3 B 型课桌凳共有几种方案 ? 哪种方案的总费用最低 ? 元;
直接根据 租用 1 辆大车 2 辆小车共需租车费 10 租用 0 0元;
为 奖 励 在 文 艺 汇 演 中 表 现 突 出 的 同 学, 2.( 2 0 1 2������ 辽宁 铁 岭 ) 如果买 2 个笔记本和 5 枝钢笔 , 则需要 3 1元. ( ) 求每个笔记本和每枝钢笔各多少元 ; 1 ( ) 班主任给小亮的班费是 1 需要奖励的同学是 2 2 0 0 元, 4名 ( , 每人奖励一件奖品 ) 若购买的钢笔数不少于笔记本 数, 求小亮有哪几种购买方案 . 小亮发现 , 如果买 1 个 笔 记 本 和 3 枝 钢 笔 , 则需要1 8 元; 班 主 任 派 生 活 委 员 小 亮 到 文 具 店 为 获 奖 同 学 购 买 奖 品.
2012年中考数学分类解析(159套63专题)专题42_解直(精)
2012年全国中考数学试题分类解析汇编(159套63专题专题42:解直角三角形和应用一、选择题1. (2012广东深圳3分小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上;如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡角为300,同一时刻,一根长为l 米、垂直于地面放置的标杆在地面上的影长为2米,则树的高度为【】A.(6米B.12米C.(4+米 D .10米【答案】A 。
【考点】解直角三角形的应用(坡度坡角问题,锐角三角函数定义,特殊角的三角函数值,相似三角形的判定和性质。
【分析】延长AC 交BF 延长线于E 点,则∠CFE=30°。
作CE⊥BD 于E ,在Rt△CFE 中,∠CFE=30°,CF=4,在Rt△CED 中,CE=2,∵同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,∴DE=4。
∵△DCE∽△DAB,且CE :DE=1:2,∴在Rt△ABD 中,AB=12BD=(12=A 。
2. (2012浙江嘉兴、舟山4分如图,A 、B 两点在河的两岸,要测量这两点之间的距离,测量者在与A 同侧的河岸边选定一点C ,测出AC=a 米,∠A=90°,∠C=40°,则AB 等于【】米.A . asin40°B . acos40°C . atan40°D .0atan40【答案】C 。
【考点】解直角三角形的应用,锐角三角函数定义。
【分析】∵△ABC 中,AC=a 米,∠A=90°,∠C=40°,∴AB=atan40°。
故选C 。
3. (2012福建福州4分如图,从热气球C 处测得地面A 、B 两点的俯角分别为30°、45°,如果此时热气球C 处的高度CD 为100米,点A 、D 、B 在同一直线上,则AB 两点煌距离是【】A .200米B .2003米C .2203米D .100(3+1米【答案】D 。
2012年中考数学复习考点解密 操作设计型问题(含解析)
2 012年中考数学二轮复习考点解密操作设计型问题第一部分讲解部分一.专题诠释操作设计型中考题是指与设计几何图案有关的问题,它把代数计算与几何作图融为一体,新颖独特,是中考试题中一道亮丽的风景.这类问题格调清新,不但有利于考查学生的识图能力、计算能力、动手操作能力和空间想象能力,而且能够充分体现义务教育阶段《数学课程标准(修订稿)》倡导的“学生的数学学习内容应当是现实的、有意义的、富有挑战性的”新课程理念.二.解题策略和解法精讲平移、轴对称、旋转、位似等图形变换知识是解决图案设计型问题的重要理论工具.因此,要想圆满地解答这类问题,必须要掌握几种图形变换的相关知识。
解决图案设计类问题,关键是要学会自觉地运用平移、轴对称、旋转、位似等图形变换知识去观察、分析、抽象、概括所给的实际问题,揭示其数学本质,使实际问题转化为我们熟悉的数学问题,从而达到问题的解决.三.考点精讲纵览2011年全国各地中考题,图案设计型问题主要是通过两种形式来表现的,一是给出设计好的图案,让考生指出图案的特征或求出图案的性质;二是让考生利用图形的变换知识设计出和谐、丰富、美观的几何图形.考点一:辨别图案的对称类型这类中考题,给出设计好的图案,让考生辨别它是平移变换图形、轴对称图形、中心对称图形和位似变换图形中的哪一种图形或哪几种图形.这类题通常以选择题的形式出现,属于基础题.例1 (2011·浙江)下列图形中,既是轴对称图形又是中心对称图形的是().解析:根据轴对称图形和中心对称图形的定义可知,图案1是轴对称图形,但不是中心对称图形;图案2和图案3是中心对称图形,不是轴对称图形;图案4是轴对称图形,又是中心对称图形.因此本题选择D .【评析】这道中考题取材于现实生活中的图案,这一极富现实情景的几何图形,对学生来说并不陌生,但他们能否有一双慧眼来发现生活中的数学问题,是解决问题的关键.因此,教师的教学应该密切联系蕴涵丰富数学思想的现实生活,培养学生发现问题、提出问题、分析问题、解决问题的能力.考点二:判断图案变换后的位置这类中考题,题面提供一个图案,给出变换的条件,要求考生根据心智操作活动来变换图案,并判断出图案的最终位置.这类题在中考试卷中通常是以选择题和填空题的形式出现,属于中等题.例2 (2011·内蒙古乌兰察布)将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图1.在图2中,将骰子向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成一次变换.若骰子的初始位置为图1所示的状态,那么按上述规则连续完成10次变换后,骰子朝上一面的点数是( )A .6B .5C .3D .2解析:根据骰子的变换规则,骰子每次变换后朝上一面的点数的变化是这样的:3(开始)→ 5→ 6→ 3→ 5→ 6→ 3 ……这就是说,连续变换3次后,朝上一面的点数就会重复出现,而13310⋅⋅⋅⋅⋅⋅=÷,所以10次变换后骰子朝上一面的点数是5.【评析】这道中考题设计新颖、独特,以骰子的翻转、旋转为载体,将变换的规律(三次变换为一周期)蕴含其中.当然学生在解答问题时,不可能在考场上实际操作实物来完成,只能通过心智操作活动来进行图形的变换操作,从中发现规律,得出结论.本题考查了学生的阅读理解能力和空间想象能力,具有很强的探索性和创造性,能较好地激发学生的探究欲望.这道新颖而不怪癖的中考题,为我们编制试题提供了一种切实可行的方案.考点三:探求设计的图案性质这一类中考题,通常是先描述一个图案的设计过程,然后让我们根据图案的设计过程来探求它蕴涵的数学性质.这类试题一般难度不太大,但具有一定的综合性,属于中等难度题.例3 (2011·山东聊城)将两块大小相同的含30°角的直角三角板(∠BAC =∠B ′A ′C =30°)按图①方式放置,固定三角板A ′B ′C ,然后将三角板ABC 绕直角顶点C 顺时针方向旋转(旋转角小于90°)至图②所示的位置,AB 与A ′C 交于点E ,AC 与A ′B ′交于点F ,AB 与A ′B ′相交于点O .图1 图2(1)求证:△BCE ≌△B ′CF ;(2)当旋转角等于30°时,AB 与A ′B ′垂直吗?请说明理由.解析:(1)因∠B =∠B /,BC =B /C ,∠BCE =∠B /CF ,所以△BCE ≌△B ′CF ;(2)AB 与A ′B ′垂直,理由如下:旋转角等于30°,即∠ECF =30°,所以∠FCB /=60°,又∠B =∠B /=60°,根据四边形的内角和可知∠BOB /的度数为360°-60°-60°-150°=90°,所以AB 与A ′B ′垂直。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年中考数学方案设计问题试题整理汇集解析
2012全国各地中考数学试题分考点解析汇编方案设计问题填空题1. (2011黑龙江鸡西,18,3分)某班级为筹备运动会,准备用365元购买两种运动服,其中甲种运动服20元/套,乙种运动服35元/套,在钱都用尽的条件下,有几种购买方案. 考点:二元一次方程的应用。
分析:设甲中运动服买了x套,乙种买了y套,根据,准备用365元购买两种运动服,其中甲种运动服20元/套,乙种运动服35元/套,在钱都用尽的条件下可列出方程,且根据x,y必需为整数可求出解.解答:解:设甲中运动服买了x套,乙种买了y套,20x+35y=365 x= 当y=3时,x=13 当y=7时,x=6.所以有两种方案.故答案为2.点评:本题考查理解题意的能力,关键是根据题意列出二元一次方程然后根据解为整数确定值从而得出结果.
三、解答题 1. (2011山东日照,22,9分)某商业集团新进了40台空调机,60台电冰箱,计划调配给下属的甲、乙两个连锁店销售,其中70台给甲连锁店,30台给乙连锁店.两个连锁店销售这两种电器每台的利润(元)如下表:空调机电冰箱甲连锁店 200 170 乙连锁店 160 150 设集团调配给甲连锁店x台空调机,集团卖出这100台电器的总利润为y(元).(1)求y关于x的函数关系式,并求出x的取值范围;(2)为了促销,集团决定仅对甲连锁店的空调机每台让利a元销售,其他的销售利润不变,并且让利后每台空调机的利润仍然高于甲连锁店销售的每台电冰箱的利润,问该集团应该如何设计调配方案,使总利润达到最大?考点:一次函数的应用。
专题:优选方案问题。
分析:(1)首先设调配给甲连锁店电冰箱(70�x)台,调配给乙连锁店空调机(40�x)台,电冰箱(x�10)台,列出不等式方程组求解即可;(2)由(1)可得几种不同的分配方案;依题意得出y与a的关系式,解出不等式方程后可得出使利润达到最大的分配方案.解答:解:(1)根据题意知,调配给甲连锁店电冰箱(70�x)台,调配给乙连锁店空调机(40�x)台,电冰箱(x�10)台,(1分)则y=200x+170(70�x)+160(40�x)+150(x�10),即y=20x+16800.(2分)∵ ∴10≤x≤40.(3分)∴y=20x+168009(10≤x≤40);(4分)
(2)按题意知:y=(200�a)x+170(70�x)+160(40�x)+150(x�10),即y=(20�a)x+16800.(5分)∵200�a>170,∴a<30.(6分)当0<a<20时,x=40,即调配给甲连锁店空调机40台,电冰箱30台,乙连锁店空调0台,电冰箱30台;当a=20时,x的取值在
10≤x≤40内的所有方案利润相同;当20<a<30时,x=10,即调配给甲连锁店空调机10台,电冰箱60台,乙连锁店空调30台,电冰箱0台;(9分)点评:本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题意,(1)根据40台空调机,60台电冰箱都能卖完,列出不等式关系式即可求解;(2)由(1)关系式,结合让利后每台空调机的利润仍然高于甲连锁店销售的每台电冰箱的利润,列不等式解答,根据a的不同取值范围,代入利润关系式解答. 2. (2011陕西,20,8分)一天,某校数学课外活动小组的同学们,带着皮尺去测量某河道因挖沙形成的“圆锥形坑”的深度,来评估这些深坑对河道的影响.如图是同学们选择(确保测量过程中无安全隐患)的测量对象,测量方案如下:①先测量出沙坑坑沿圆周的周长约为34.54米;②甲同学直立于沙坑坑沿圆周所在平面上,经过适当调整自己所处的位置,当他位于点B时,恰好他的视线经过沙坑坑沿圆周上的一点A看到坑底S(甲同学的视线起点C与点A、点S三点共线).经测量:AB=1.2米,BC=1.6米.根据以上测量数据,求“圆锥形坑”的深度(圆锥的高).(π取3.14,结果精确到0.1米)考点:相似三角形的应用;圆锥的计算。
专题:几何图形问题。
分析:取圆锥底面圆心O,连接OS、OA,OS∥BC可得出△SOA∽△CBA,再由相似三角形的对应边成比例即可解答.解答:解:取圆锥底面圆心O,连接OS、OA,则∠O=∠ABC=90°,OS∥BC,∴∠ACB=∠ASO,∴△SOA∽△CBA,∴ = ,∴OS= ,∵OA= ≈5.5,BC=1.6,A1.2,∴OS= ≈7.3,∴“圆锥形坑”的深度约为7.3米.故答案为:7.3米.
点评:本题考查的是相似三角形在实际生活中的运用,根据题意作出辅助线,构造出相似三角形是解答此题的关键. 3. (2011陕西,21,8分)2011年4月28日,以“天人长安,创意自然-------城市与自然和谐共生”为主题的世界园艺博览会在西安隆重开园.这次
世园会的门票分为个人票、团体票两大类,其中个人票设置有三种:夜票(A)平日普通票(B)指定日普通票(C) 60 100 150 某社区居委会为奖励“和谐家庭”,欲购买个人票100张,其中B种票张数是A种票张数的3倍还多8张.设需购A种票张数为x,C种票张数为y.(1)写出y与x 之间的函数关系式;(2)设购票总费用为w元,求出w(元)与x(张)之间的函数关系式;(3)若每种票至少购买1张,其中购买A种票不少于20张,则共有几种购票方案?并求出购票总费用最少时,购买A、B、C三种票的张数.考点:一次函数的应用;一元一次不等式组的应用。
专题:优选方案问题。
分析:(1)根据A、B、C三种票的数量关系列出y与x的函数关系式;(2)根据三种票的张数、价格分别算出每种票的费用,再算出总数w,即可求出W(元)与X(张)之间的函数关系式;(3)根据题意求出x的取值范围,根据取值可以确定有三种方案购票,再从函数关系式分析w随x的增大而减小从而求出最值,即购票的费用最少.解答:解(1)B中票数为:3x+8 则y=100�x�3x�8化简得, y=�4x+92 即y与x之间的函数关系式为:y=�4x+92 (2)w=60x+100(3x+8)+150(�4x+92)化简得, w=�240x+14600 即购票总费用W与X(张)之间的函数关系式为:w=�240x+14600 (3)由题意得,解得,20≤x <23 ∵x是正整数,∴x可取20、21、22 那么共有3种购票方案.从函数关系式w=�240x+14600可以看出w随x的增大而减小,当x=22时,w的最值最小,即当A票购买22张时,购票的总费用最少.购票总费用最少时,购买A、B、C三种票的张数分别为22、74、4.点评:本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题.注意利用一次函数求最值时,关键是应用一次函数的性质;即由函数y随x的变化,结合自变量的取值范围确定最值. 4. (2011四川广安,27,9分)广安市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装
修费每平方米80元,试问哪种方案更优惠?考点:一元二次方程的应用,增长(降低)率问题,方案选择问题.专题:一元二次方程、最优化方案问题.分析:(1)设平价每次下调的百分率为,则第一次下调后的价格为元,第二次下调是在元的基础上进行的,下调后的价格为元,即,由此可列出一元二次方程求解.(2)根据题意分别计算两种优惠方案可以优惠的钱数,通过比较大小即可作出判断.解答:(1)设平均每次下调的百分率x,则6000(1-x)2=4860.解得:x1=0.1,x2=1.9(舍去).∴平均每次下调的百分率10%.(2)方案①可优惠:4860×100×(1-0.98)=9720元方案②可优惠:100×80=8000元.∴方案①更优惠.点评:对于平均增长(降低)率问题,应用公式可直接列方程,为增长率(降低)前的基础数量,为增长率(降低率),为增长(降低)的次数,为增长(降低)后的数量.要注意根据具体问题的实际意义检验结果的合理性.。