坐标系与参数方程晚练专题练习(四)带答案人教版新高考分类汇编
高考数学压轴专题人教版备战高考《坐标系与参数方程》全集汇编及答案解析
高考数学《坐标系与参数方程》课后练习一、131.设x 、y 满足223412,x y +=则2x y +的最大值为( )A .2B .3C .4D .6【答案】C 【解析】 【分析】由223412x y +=得出22143x y +=,表示椭圆,写出椭圆的参数方程,利用三角函数求2x y +的最大值.【详解】由题可得:22143x y +=则2cos (x y θθθ=⎧⎪⎨=⎪⎩为参数),有22cos x y θθ+=+14sin 22con θθ⎛⎫=+ ⎪ ⎪⎝⎭4sin 6πθ⎛⎫=+⎪⎝⎭. 因为1sin 16πθ⎛⎫-≤+≤ ⎪⎝⎭, 则: 44sin 46πθ⎛⎫-≤+≤ ⎪⎝⎭,所以2x y +的最大值为4. 故选:C. 【点睛】本题主要考查与椭圆上动点有关的最值问题,利用椭圆的参数方程,转化为三角函数求最值.2.在平面直角坐标系xOy 中,曲线C的参数方程为sin x y θθ⎧=⎪⎨=⎪⎩(θ为参数),直线l的方程为4x y +=,则曲线C 上的点到直线l 的距离的最小值是( ) ABC .1D .2【答案】B 【解析】 【分析】设曲线C上任意一点的坐标为),sinθθ,利用点到直线的距离公式结合辅助角公式可得出曲线C上的点到直线l的距离的最小值.【详解】设曲线C上任意一点的坐标为),sinθθ,所以,曲线C上的一点到直线l的距离为d==42sinπθ⎛⎫-+⎪=当()232k k Zππθπ+=+∈时,d取最小值,且mind== B.【点睛】本题考查椭圆参数方程的应用,考查椭圆上的点到直线距离的最值问题,解题时可将椭圆上的点用参数方程表示,利用三角恒等变换思想求解,考查运算求解能力,属于中等题.3.在极坐标系中,曲线1C的极坐标方程为2sinρθ=,曲线2C的极坐标方程为ρθ=,若曲线1C与2C交于A、B两点,则AB等于()A.1BC.2D.【答案】B【解析】【分析】由题意可知曲线1C与2C交于原点和另外一点,设点A为原点,点B的极坐标为()(),0,02ρθρθπ>≤<,联立两曲线的极坐标方程,解出ρ的值,可得出ABρ=,即可得出AB的值.【详解】易知,曲线1C与2C均过原点,设点A为原点,点B的极坐标为()(),0,02ρθρθπ>≤<,联立曲线1C与2C的坐标方程2sinρθρθ=⎧⎪⎨=⎪⎩,解得3πθρ⎧=⎪⎨⎪=⎩,因此,ABρ==故选:B.【点睛】本题考查两圆的相交弦长的计算,常规方法就是计算出两圆的相交弦方程,计算出弦心距,利用勾股定理进行计算,也可以联立极坐标方程,计算出两极径的值,利用两极径的差来计算,考查方程思想的应用,属于中等题.4.以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,已知直线l 的参数方程是13x t y t =+⎧⎨=-⎩(t 为参数),圆C 的极坐标方程是4cos ρθ=,则直线l 被圆C 截得的弦长为( ) AB.CD.【答案】D 【解析】 【分析】先求出直线和圆的普通方程,再利用圆的弦长公式求弦长. 【详解】由题意得,直线l 的普通方程为y =x -4, 圆C 的直角坐标方程为(x -2)2+y 2=4, 圆心到直线l 的距离d=,直线l 被圆C 截得的弦长为= 【点睛】(1)本题主要考查参数方程极坐标方程与普通方程的互化,意在考察学生对这些知识的掌握水平和分析推理计算能力.(2)求直线和圆相交的弦长,一般解直角三角形,利用公式||AB =.5.已知曲线T的参数方程1x ky ⎧=⎪⎪⎨⎪=⎪⎩(k 为参数),则其普通方程是()A .221x y +=B .()2210x y x +=≠ C.00x y x ⎧>⎪=⎨<⎪⎩D.y =0x ≠)【答案】C 【解析】 【分析】 由已知1x k =得1k x=代入另一个式子即可消去参数k ,要注意分类讨论。
高考数学压轴专题人教版备战高考《坐标系与参数方程》分类汇编附答案解析
新高中数学《坐标系与参数方程》专题解析一、131.设x 、y 满足223412,x y +=则2x y +的最大值为( )A .2B .3C .4D .6【答案】C 【解析】 【分析】由223412x y +=得出22143x y +=,表示椭圆,写出椭圆的参数方程,利用三角函数求2x y +的最大值.【详解】由题可得:22143x y +=则2cos (x y θθθ=⎧⎪⎨=⎪⎩为参数),有22cos x y θθ+=+14sin 22con θθ⎛⎫=+ ⎪ ⎪⎝⎭4sin 6πθ⎛⎫=+⎪⎝⎭. 因为1sin 16πθ⎛⎫-≤+≤ ⎪⎝⎭, 则: 44sin 46πθ⎛⎫-≤+≤ ⎪⎝⎭,所以2x y +的最大值为4. 故选:C. 【点睛】本题主要考查与椭圆上动点有关的最值问题,利用椭圆的参数方程,转化为三角函数求最值.2.已知直线2sin 301sin 30x t y t ︒︒⎧=-⎨=-+⎩(t 为参数)与圆228x y +=相交于B 、C 两点,则||BC 的值为( )A.BC.D.2【答案】B 【解析】 【分析】根据参数方程与普通方程的互化方法,然后联立方程组,通过弦长公式,即可得出结论. 【详解】曲线2sin 301sin 30x t y t ︒︒⎧=-⎨=-+⎩(t 为参数),化为普通方程1y x =-, 将1y x =-代入228x y +=,可得22270x x --=, ∴BC ==,故选B . 【点睛】本题主要考查把参数方程、极坐标方程化为直角坐标方程的方法,考查直线与圆的位置关系,属于中档题.3.在符合互化条件的直角坐标系和极坐标系中,直线l :20y kx ++=与曲线C :2cos ρθ=相交,则k 的取值范围是( )A .34k <-B .34k ≥-C .k R ∈D .k R ∈但0k ≠【答案】A 【解析】分析:一般先将原极坐标方程2cos ρθ=两边同乘以ρ后,把极坐标系中的方程化成直角坐标方程,再利用直角坐标方程进行求解即可.详解:将原极坐标方程2cos ρθ=,化为:22cos ρρθ=,化成直角坐标方程为:2220x y x +-=, 即22(1)1x y -+=.则圆心到直线的距离d =由题意得:1d <,即1d =<,解之得:34k <-. 故选A .点睛:本题考查点的极坐标和直角坐标的互化,利用直角坐标与极坐标间的关系,即利用cos x ρθ=,sin y ρθ=,222x y ρ=+,进行代换即得.4.在极坐标系中,已知圆C 经过点6P π⎛⎫⎪⎝⎭,,圆心为直线sin 4πρθ⎛⎫+= ⎪⎝⎭轴的交点,则圆C 的极坐标方程为 A .4cos ρθ=B .4sin ρθ=C .2cos ρθ=D .2sin ρθ=【答案】A 【解析】 【分析】求出圆C 的圆心坐标为(2,0),由圆C 经过点6P π⎛⎫⎪⎝⎭,得到圆C 过极点,由此能求出圆C 的极坐标方程. 【详解】在sin 4πρθ⎛⎫+= ⎪⎝⎭中,令0θ=,得2ρ=, 所以圆C 的圆心坐标为(2,0). 因为圆C 经过点6P π⎛⎫⎪⎝⎭,,所以圆C 的半径2r ==,于是圆C 过极点,所以圆C 的极坐标方程为4cos ρθ=. 故选A 【点睛】本题考查圆的极坐标方程的求法,考查直角坐标方程、参数方程、极坐标方程的互化等基础知识,考查运算求解能力,考查函数与方程思想,属于中档题.5.将正弦曲线sin y x =先保持纵坐标y 不变,将横坐标缩为原来的12;再将纵坐标y 变为原来的3倍,就可以得到曲线3sin 2y x =,上述伸缩变换的变换公式是( )A .1'2'3x x y y⎧=⎪⎨⎪=⎩B .'2'3x xy y =⎧⎨=⎩C .'21'3x x y y =⎧⎪⎨=⎪⎩D .1'21'3x x y y ⎧=⎪⎪⎨⎪=⎪⎩【答案】A 【解析】 【分析】首先设出伸缩变换关系式,把伸缩变换关系式代入变换后的方程,利用系数对应相等,可得答案。
坐标系与参数方程强化训练专题练习(四)带答案人教版新高考分类汇编
高中数学专题复习《坐标系与参数方程》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)请点击修改第I卷的文字说明评卷人得分一、选择题1.直线323y x=+与圆心为D的圆33cos,([0,2))13sinxyθθπθ⎧=+⎪∈⎨=+⎪⎩交于A、B两点,则直线AD与BD的倾斜角之和为()(A)76π(B)54π(C)43π(D)53π(汇编重庆理)第II卷(非选择题)请点击修改第II卷的文字说明评卷人得分二、填空题2.已知曲线22x ty t=⎧⎨=-⎩(t为参数)与x轴,y轴交于A、B两点,点C在曲线2cos 4sin ρθθ=--上移动,ABC ∆面积的最大值为 14 .3.曲线⎩⎨⎧+=-=1212t y t x (t 为参数)的焦点坐标是_____.(汇编上海理,8)评卷人得分 三、解答题4.[选修4-4:坐标系与参数方程](本小题满分10分)圆C 的参数方程为12cos ,32sin x y θθ=+⎧⎪⎨=+⎪⎩(θ为参数),设P 是圆C 与x 轴正半轴的交点.以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.设过点P 的圆C 的切线为l ,求直线l 的极坐标方程.5.选修4—4:坐标系与参数方程在平面直角坐标系xOy 中,圆的参数方程为22cos ,()2sin x y a a a =+⎧⎨=⎩为参数,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.求:(1)圆的直角坐标方程;(2)圆的极坐标方程.6.在极坐标系中,点A ⎝⎛⎭⎫22,-π4,圆O 1:ρ=4cos θ+4sin θ. (1) 将圆O 1的极坐标方程化为直角坐标方程;(2) 判断点A 与圆O 1的位置关系.7.在极坐标系() (02π)ρθθ<≤, 中,求曲线2sin ρθ=与cos 1ρθ=的交点Q 的极坐标.8.求经过极点9(0,0),(6,),(62,)24O A B ππ三点的圆的极坐标方程.9.以平面直角坐标系的原点O 为极点,x 轴的正半轴为极轴,且在两种坐标系中取相同的长度单位.直线l 极坐标方程为sin()224πρθ+=,圆C 的参数方程为3cos 5()3sin 5x t t y t =+⎧⎨=+⎩其中为参数. (1)将直线l 极坐标方程化成直角坐标方程;(2)试判断直线l 与圆C 的位置关系.【参考答案】***试卷处理标记,请不要删除评卷人得分 一、选择题1.C 数形结合 301-=∠α βπ-+=∠302由圆的性质可知21∠=∠βπα-+=-∴ 3030故=+βα43π 第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分 二、填空题2.3.(0,1)解析:将参数方程化为普通方程:(y -1)2=4(x+1)该曲线为抛物线y2=4x 分别向左,向上平移一个单位得来.解析:(0,1)解析:将参数方程化为普通方程:(y -1)2=4(x +1)该曲线为抛物线y 2=4x 分别向左,向上平移一个单位得来. 评卷人得分 三、解答题4. 解:由题设知,圆心(1,3)C ,(2,0)P ,∠CPO =60°,故过P 点的切线的倾斜角为30°. ····························································3分设(,)M ρθ是过P 点的圆C 的切线上的任一点,则在△PMO 中,∠MOP =θ,030OMP θ∠=-,0150OPM ∠=.由正弦定理得sin sin OM OP OPM OMP=∠∠,于是002sin150sin(30)ρθ=-, 即0cos(60)1 ρθ+=(或0s i n (30)1ρθ-=)即为所求切线的极坐标方程. (10)分5. 选修4—4:坐标系与参数方程解:(1)圆的直角坐标方程为22(2)4x y -+=. …………………5分(2)把c o s s i n ,x y ρθρθ=⎧⎨=⎩代入上述方程,得圆的极坐标方程为4cos ρθ=.…………………10分6.选修44:坐标系与参数方程解:(1) 圆O 1:ρ=4cos θ+4sin θρ2=4ρcos θ+4ρsin θx 2+y 2=4x +4y.(5分) (2) A ⎝⎛⎭⎫22,-π4A(2,-2).AO 1=(2-2)2+(-2-2)2=4>22=R ,点在圆外.(10分)7.命题立意:本题主要考查直线与圆的极坐标方程,考查运算求解能力. 解:将直线cos 1ρθ=与圆2s i n ρθ=分别化为普通方程得, 直线1x =与圆22(1)1x y +-=,(6分)易得直线1x =与圆22(1)1x y +-=切于点Q ()1 1,, 所以交点Q 的极坐标是()π2 4,.(10分) 8.9.解:(1)直线l 极坐标方程可化为sin cos 4ρθρθ+=,…………………3分 由cos x ρθ=,sin y ρθ=,故直线l 的直角坐标方程为40x y +-=. ……………………7分(2)圆C 的参数方程化为普通方程为22(5)(5)9x y -+-=,………………10分 因为圆心(5,5)到直线l 的距离|554|3232d +-==>, ………… 13分 所以直线l 与圆C 相离. ……………………14分。
高考数学压轴专题人教版备战高考《坐标系与参数方程》分类汇编及答案
【高中数学】高考数学《坐标系与参数方程》解析一、131.若,a b ∈R ,且2210a b += ,则-a b 的取值范围是( )A .552,2-⎡⎤⎣⎦B .210,210⎡⎤-⎣⎦C .10,10⎡⎤-⎣⎦D .()5,5-【答案】A 【解析】 【分析】利用参数方程,令10cos ,10sin a b αα==,转化为10(cos sin )25cos 4a b πααα⎛⎫-=+ ⎪⎝-⎭=求解.【详解】令10cos ,10sin a b αα==则10(cos sin )25cos 4a b πααα⎛⎫-=+⎪⎝-⎭= 所以2,255a b -∈-⎡⎤⎣⎦故选:A 【点睛】本题主要考查参数方程的应用,还考查了换元的思想和运算求解的能力,属于基础题.2.在同一直角坐标系中,曲线经过伸缩变换后所得到的曲线A .B .C .D .【答案】C 【解析】 【分析】 由,得代入函数,化简可得出伸缩变换后所得曲线的解析式。
【详解】由伸缩变换得,代入,有,即.所以变换后的曲线方程为.故选:C 。
【点睛】本题考查伸缩变换后曲线方程的求解,理解伸缩变换公式,准确代入是解题的关键,考查计算能力,属于基础题。
3.已知曲线T 的参数方程2111x ky k k ⎧=⎪⎪⎨⎪=-⎪⎩(k 为参数),则其普通方程是()A .221x y +=B .()2210x y x +=≠ C .221,01,0x x y x x ⎧->⎪=⎨--<⎪⎩D .21y x =-0x ≠)【答案】C 【解析】 【分析】 由已知1x k =得1k x=代入另一个式子即可消去参数k ,要注意分类讨论。
【详解】由题意1x k =Q 1k x ∴=代入211y k k =-211y x x ⎛⎫=- ⎪⎝⎭221y x x x-∴=①当0x >时21y x ∴=-②当0x <时21y x ∴=--综上221,01,0x x y x x ⎧->⎪=⎨--<⎪⎩故选:C 【点睛】本题考查曲线的普通方程的求法,考查直角坐标方程、参数方程的互化等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想及分类讨论思想,是基础题.4.已知曲线C 的极坐标方程为:2cos 4sin ρθθ=-,P 为曲线C 上的动点,O 为极点,则PO 的最大值为( ) A .2 B .4CD.【答案】D 【解析】 【分析】把极坐标方程变成直角坐标方程,通过最大距离d r =+求得答案。
坐标系与参数方程午练专题练习(四)带答案人教版高中数学考点大全
高中数学专题复习《坐标系与参数方程》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分 一、选择题1.下列以t 为参数的参数方程所表示的曲线中,与xy =1所表示的曲线完全一致的是( )(汇编上海理,14)A .⎪⎩⎪⎨⎧==-2121t y t x B .⎪⎩⎪⎨⎧==||1||t y t x C .⎩⎨⎧==t y t x sec cos D .⎩⎨⎧==ty t x cot tan第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分 二、填空题2.在平面直角坐标系xoy 中,以直角坐标系原点O 为极点,x 轴的正半轴为极轴建立极坐标系,则点(1,3)-化为极坐标为_______________.3.在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.若极坐标方程为c o s 4ρθ=的直线与曲线23x t y t⎧=⎪⎨=⎪⎩(t 为参数)相交于,A B 两点,则______AB =(汇编年普通高等学校招生统一考试重庆数学(理)试题(含答案)) 评卷人得分 三、解答题4.【题文】[选修 4 - 4:坐标系与参数方程](本小题满分10分) 在直角坐标系xoy 中,直线l 的参数方程为122322x t y t ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数),若以直角坐标系xOy 的O 点为极点,Ox 为极轴,且长度单位相同,建立极坐标系,得曲线C 的极坐标方程为2cos()4πρθ=-.直线l 与曲线C 交于,A B 两点,求AB . 【结束】5.已知曲线1C 的参数方程为45cos ,55sin x t y t =+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2sin ρθ=.(Ⅰ)把1C 的参数方程化为极坐标方程;(Ⅱ)求1C 与2C 交点的极坐标(0,02ρθπ≥≤<).(汇编年高考课标Ⅰ卷(文))选修4—4:坐标系与参数方程6.已知圆C 的参数方程为()为参数θθθ⎩⎨⎧+=+=sin 23,cos 21y x ,若P 是圆C 与x 轴正半轴的交点,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,设过点P 的圆C 的切线为l ,求直线l 的极坐标方程.7.若两条曲线的极坐标方程分别为1=ρ与θρsin 2=,它们相交于B A ,两点,求线段AB 的长.8.直线33,2()12x s s y s ⎧=-+⎪⎪⎨⎪=⎪⎩为参数和曲线1,()1x t t t y t t ⎧=+⎪⎪⎨⎪=-⎪⎩为参数相交于A 、B 两点.求线段AB 的长.9.求经过极点9(0,0),(6,),(62,)24O A B ππ三点的圆的极坐标方程.【参考答案】***试卷处理标记,请不要删除评卷人得分 一、选择题1.ABC解析:D解析:由已知xy =1可知x 、y 同号且不为零,而A 、B 、C 选项中尽管都满足xy =1,但x 、y 的取值范围与已知不同.第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分 二、填空题2.3.16 评卷人得分 三、解答题4.5.解:(1)将45cos 55sin x t y t=+⎧⎨=+⎩,消去参数t,化学普通方程22(4)(5)25x y -+-=, 即 1C : 22810160x y x y +--+=,将22cos ,810160sin x p x y x y y p θθ=⎧+--+=⎨=⎩代入得28cos 10sin 160ρρθρθ--+=;所以1C 极坐标方程为28cos 10sin 160ρρθρθ--+=.(2)2C 的普通方程为2220x y y +-=,2222810160=1=0y=2y=2.20x y x y x x x y y ⎧+--+=⎧⎧⎪⎨⎨⎨+-=⎪⎩⎩⎩,,,解得或, 所以12C C 与交点的极坐标为(2,),(2,)42ππ. 6.(C )解:由题设知,圆心 ()()0.2, 3,1P C ………………………………………………2分∠CPO=60°,故过P 点的切线飞倾斜角为30° ……………………………………4分设()θρ,M ,是过P 点的圆C 的切线上的任一点,则在△PMO 中,∠MOP =θ 00150, 30=∠-=∠OPM OMP θ 由正弦定理得()θρ-=∴∠=∠0030sin 2sin150, sin sin OMP OP OPM OM ……………7分 ()()()130sin 160cos 00=-=+∴θρθρ或,即为所求切线的极坐标方程。
坐标系与参数方程练习题及参考答案
高二年数学选修4-4坐标系与参数方程测试班级:__________________ 座号:______ :___________________成绩:___________ 一、选择题〔共12题,每题5分〕1、点M的直角坐标是(1-,那么点M 的极坐标为〔 〕 A .(2,)3πB .(2,)3π-C .2(2,)3πD .(2,2),()3k k Z ππ+∈ 2、极坐标系中,以下各点与点P 〔ρ,θ〕〔θ≠k π,k ∈Z 〕关于极轴所在直线对称的是 〔 〕A .〔-ρ,θ〕B .〔-ρ,-θ〕C .〔ρ,2π-θ〕D .〔ρ,2π+θ〕 3.点P 的极坐标为〔1,π〕,那么过点P 且垂直于极轴的直线的极坐标方程是 〔 〕A .ρ=1B .ρ=cosθC .ρ=-θcos 1D .ρ=θcos 14.以极坐标系中的点〔1,1〕为圆心,1为半径的圆的方程是 〔 〕A .ρ=2cos(θ-4π) B .ρ=2sin(θ-4π) C .ρ=2cos(θ-1) D .ρ=2sin(θ-1) 5.极坐标方程cos 2sin 2ρθθ=表示的曲线为〔 〕A .一条射线和一个圆B .两条直线C .一条直线和一个圆D .一个圆 6.假设直线的参数方程为12()23x tt y t=+⎧⎨=-⎩为参数,那么直线的斜率为〔 〕A .23 B .23- C .32 D .32- 7.在极坐标系中,以〔2,2πa 〕为圆心,2a为半径的圆的方程为〔 〕A .θρcos a =B .θρsin a =C .a =θρcosD .a =θρsin8.曲线的参数方程为⎩⎨⎧-=+=12322t y t x (t 是参数),那么曲线是〔 〕A .线段B .双曲线的一支 C.圆 D.射线 9、在同一坐标系中,将曲线y=2sin3x 变为曲线y=sinx 的伸缩变换是〔 〕A .⎪⎩⎪⎨⎧==//213y y x xB .⎪⎩⎪⎨⎧==y y xx 213//C .⎩⎨⎧==//23y y x xD .⎩⎨⎧==y y x x 23// 10.以下在曲线sin 2()cos sin x y θθθθ=⎧⎨=+⎩为参数上的点是〔 〕A .1(,2B .31(,)42-C .D . 11、直线:3x-4y-9=0与圆:⎩⎨⎧==θθsin 2cos 2y x ,(θ为参数)的位置关系是( )A.相切B.相离C.直线过圆心D.相交但直线不过圆心12、设P(x ,y)是曲线C :⎩⎨⎧θ=θ+-=sin y ,cos 2x 〔θ为参数,0≤θ<2π〕上任意一点,那么yx的取值范围是 〔 〕A .[-3,3]B .〔-∞,3〕∪[3,+∞]C .[-33,33]D .〔-∞,33〕∪[33,+∞]二、填空题〔共8题,各5分〕1、点A 的直角坐标为〔1,1,1〕,那么它的球坐标为 ,柱坐标为2、曲线的1cos 3sin --=θθρ直角坐标方程为____________________3、直线3()14x att y t=+⎧⎨=-+⎩为参数过定点_____________4、设()y tx t =为参数那么圆2240x y y +-=的参数方程为__________________________。
高考数学压轴专题人教版备战高考《坐标系与参数方程》真题汇编含答案
新数学《坐标系与参数方程》高考复习知识点一、131.已知圆的极坐标方程为4sin 4P πθ⎛⎫=- ⎪⎝⎭,则其圆心坐标为( ) A .2,4π⎛⎫⎪⎝⎭B .32,4π⎛⎫ ⎪⎝⎭ C .2,4π⎛⎫-⎪⎝⎭D .()2,0【答案】B 【解析】 【分析】把圆的极坐标方程化为直角坐标方程,求得圆心坐标(,再根据极坐标与直角坐标的互化公式,即可求解. 【详解】由题意知,圆的极坐标方程为4sin 4πρθ⎛⎫=-⎪⎝⎭,即ρθθ=-,即2sin cos ρθθ=-,所以220x y ++-=,所以圆心坐标为(, 又由cos sin x y ρθρθ=⎧⎨=⎩,可得圆心的极坐标为3(2,)4π,故选B. 【点睛】本题主要考查了极坐标与直角坐标的互化,及圆的方程应用,其中解答中熟记极坐标与直角坐标的互化公式,把极坐标化为直角坐标方程是解答的关键,着重考查了运算与求解能力,属于基础题.2.将正弦曲线sin y x =先保持纵坐标y 不变,将横坐标缩为原来的12;再将纵坐标y 变为原来的3倍,就可以得到曲线3sin 2y x =,上述伸缩变换的变换公式是( )A .1'2'3x x y y⎧=⎪⎨⎪=⎩B .'2'3x xy y =⎧⎨=⎩C .'21'3x xy y =⎧⎪⎨=⎪⎩D .1'21'3x x y y ⎧=⎪⎪⎨⎪=⎪⎩【答案】A 【解析】 【分析】首先设出伸缩变换关系式,把伸缩变换关系式代入变换后的方程,利用系数对应相等,可得答案。
【详解】解:由sin y x =变成3sin 2y x ='' 设伸缩变换为(,0)x xy yλλμμ'=⎧>⎨'=⎩,代入3sin 2y x ='',得3sin 2y x μλ=,又因为sin y x =,则312μλ=⎧⎪⎨=⎪⎩,得123x x y y ⎧'=⎪⎨⎪'=⎩,故选A 。
坐标系与参数方程晚练专题练习(四)附答案人教版新高考分类汇编
(Ⅱ)将直线l的参数方程化为直角坐标方程,得 ………………………………………6分
令 ,得 ,即 点的坐标为(2,0).又曲线 为圆,圆 的圆心坐标为(1,0),
半径 ,则
………………………………………………
A、1B、2C、3D、4
第II卷(非选择题)
请点击修改第II卷的文字说明
评卷人
得分
二、填空题
2.极坐标方程为 表示的圆的半径为___________【..1】
二解答题
3.已知曲线 的极坐标方程是 ,那么它的直角坐标方程是▲.
评卷人
得分
三、解答题
4.求圆 被直线 ( 是参数 截得的弦长.
5.在平面直角坐标系 中,圆 的参数方程为 为参数, ,以 为极点, 轴正半轴为极轴建立极坐标系,直线 的极坐标方程为 若圆 上的点到直线 的最大距离为 ,求 的值.
即: ,即 ,………………4分
即: ,………………7分
所以圆心到直线的距离 ,即直线经过圆心,………………9分
所以直线截得的弦长为 .………………10分
5.因为圆 的参数方程为 ( 为参数, ),消去参数得,
,所以圆心 ,半径为 ,……3分
因为直线 的极坐标方程为 ,化为普通方程为 ,………6分
圆心 到直线 的距离为 ,……………………8分
又因为圆 上的点到直线 的最大距离为3,即 ,所以 .…10分
6.椭圆的普通方程为 ,左焦点为 ,…………………………………4分
直线 ( 为参数)的普通方程为 ,……………………………8分
所求直线方程为 ,即 .…………………………………10分
7.解:(Ⅰ)曲线 的极坐标方程可化为 ……………………………………………2分
坐标系与参数方程单元过关检测卷(四)带答案人教版高中数学新高考指导
高中数学专题复习《坐标系与参数方程》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分 一、选择题1.点P (1,0)到曲线⎩⎨⎧==ty t x 22(其中参数t ∈R )上的点的最短距离为( )A .0B .1C .2D .2(汇编全国理,6)第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分 二、填空题2. 参数方程2,(cos 3tan ,x y θθθ⎧=⎪⎨⎪=⎩为参数)化为普通方程为___________.3.已知曲线C 的参数方程为2co s 2s i nx t y t ⎧=⎪⎨=⎪⎩(t 为参数),C 在点()1,1处的切线为l ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,则l 的极坐标方程为_____________.(汇编年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))(坐标系与参数方程选讲选做题) 评卷人得分 三、解答题4. (本小题满分12分)已知直线l 的参数方程:12x t y t =⎧⎨=+⎩(t 为参数)和圆C 的极坐标方程:)4sin(22πθρ+=. (1)将直线l 的参数方程化为普通方程,圆C 的极坐标方程化为直角坐标方程;(2)求直线l 与圆C 相交所截得弦长.5.(选修4—4:坐标系与参数方程)已知曲线C 的参数方程为2cos 2sin x t y t=⎧⎨=⎩(t 为参数),曲线C 在点(13),处的切线为l .以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,求l 的极坐标方程.6.若两条曲线的极坐标方程分别为)3cos(21πθρρ+==与,它们相交于A 、B 两点,求线段AB 的长。
7.已知曲线C 的极坐标方程是2sin ρθ=,直线l 的参数方程是32,545x t y t ⎧=-+⎪⎨⎪=⎩(t 为参数).(Ⅰ)将曲线C 的极坐标方程化为直角坐标方程;(Ⅱ)设直线l 与x 轴的交点是M ,N 是曲线C 上一动点,求MN 的最大值.8. 在平面直角坐标系中,动点P 的坐标(x,y )满足方程组:⎪⎩⎪⎨⎧-=+=--θθsin )22(cos )22(k k k k y x (1)若k 为参数,θ为常数(Z k k ∈≠,2πθ),求P 点轨迹的焦点坐标。
高考数学压轴专题人教版备战高考《坐标系与参数方程》全集汇编含答案
【最新】高考数学《坐标系与参数方程》练习题一、131.已知曲线Γ的参数方程为(3cos ln x t t t y t ⎧=-⎪⎨=⎪⎩其中参数t R ∈,,则曲线Γ( ) A .关于x 轴对称 B .关于y 轴对称C .关于原点对称D .没有对称轴【答案】C 【解析】 【分析】设()x f t =,()y g t = t R ∈,首先判断这两个函数都是奇函数,然后再判断函数关于原点对称. 【详解】设()x f t =,()y g t = t R ∈()()()()()333cos cos cos f t t t t t t t t t t x -=----=-+=--=-,()x f t ∴=是奇函数, ()()((ln ln g t g t t t -+=-+++((ln ln ln10t t =-+== ,()y g t ∴=也是奇函数,设点()()(),P f t g t 在函数图象上,那么关于原点的对称点是()()(),Q f t g t --,()f t Q 和()g t 都是奇函数,所以点Q 的坐标是()()(),Q f t g t --,可知点Q 在曲线上,∴ 函数图象关于原点对称.故选:C 【点睛】本题考查函数图象和性质的综合应用,意在考查转化与计算能力,属于中档题型.2.设曲线C 的参数方程为5cos ()15sin x y θθθ⎧=⎪⎨=-+⎪⎩为参数,直线l 10y -+=,则曲线C 上到直线l 的距离为52的点的个数为( ) A .1 B .2C .3D .4【答案】C【解析】 【分析】将圆C 化为普通方程,计算圆心到直线l 的距离,通过比较所求距离与52的关系即可得到满足条件的点的个数. 【详解】化曲线C 的参数方程为普通方程:()()223125x y -++=,圆心()3,1-到直线310x y -+=的距离3115522d ++==<, 所以直线和圆相交,过圆心和l 平行的直线和圆的2个交点符合要求, 与l 平行且与圆相切的直线和圆的一个交点符合要求,故有3个点符合题意, 故选C 【点睛】解决这类问题首先把曲线C 的参数方程为普通方程,然后利用圆心到直线的距离判断直线与圆的位置关系得出结论.3.曲线2cos sin x y θθ=⎧⎨=⎩(θ为参数)上的点到原点的距离的最大值为( )A .1B .3C .2D .4【答案】C 【解析】 【分析】根据点到直线的距离求最值. 【详解】曲线2cos sin x y θθ=⎧⎨=⎩(θ为参数)上的点到原点的距离为:2224cos sin 13cos 2θθθ+=+…,当且仅当cos 1θ=±时取得等号 故选C. 【点睛】本题考查椭圆参数方程的应用.4.参数方程(为参数)所表示的图象是A .B .C .D .【答案】D 【解析】 【分析】 由,得,代入,经过化简变形后得到曲线方程,但需注意曲线方程中变量、的符号,从而确定曲线的形状。
高考数学压轴专题人教版备战高考《坐标系与参数方程》难题汇编含答案
数学《坐标系与参数方程》高考知识点一、131.已知M 点的极坐标为(2,)6π--,则M 点关于直线2πθ=的对称点坐标为( )A .(2,)6πB .(2,)6π-C .(2,)6π-D .11(2,)6π- 【答案】A 【解析】M 点的极坐标为2,6π⎛⎫-- ⎪⎝⎭,即为5(2,)6π∴ M 点关于直线2πθ=的对称点坐标为(2,)6π,选A.点睛:(,)(,),ρθρθπ=-+(,)ρθ关于2πθ=对称点为(,)ρπθ-,关于0θ=对称点为(,)ρθ-.2.将直线1x y -=变换为直线326x y -=的一个伸缩变换为( )A .23x xy y ''=⎧⎨=⎩B .32x xy y ''=⎧⎨=⎩C .1312x x y y ⎧=⎪⎪⎨=''⎪⎪⎩D .1213x x y y ⎧=⎪⎪⎨=''⎪⎪⎩【答案】A 【解析】 【分析】设伸缩变换的公式为(0,0)x ax a b y by =⎧>>⎨⎩'=',则11x x ay y b ⎧=⎪⎪⎨=''⎪⎪⎩,代入直线1x y -=的方程,变换后的方程与直线326x y -=的一致性,即可求解. 【详解】由题意,设伸缩变换的公式为(0,0)x ax a b y by =⎧>>⎨⎩'=',则11x x ay y b ⎧=⎪⎪⎨=''⎪⎪⎩代入直线1x y -=的方程,可得111x y a b''-=,要使得直线111x y a b''-=和直线326x y -=的方程一致, 则112a =且113b =,解得2,3a b ==, 所以伸缩变换的公式为23x xy y ''=⎧⎨=⎩,故选A .【点睛】本题主要考查了图形的伸缩变换公式的求解及应用,其中解答中熟记伸缩变换公式的形式,代入准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.3.设曲线C 的参数方程为5cos ()15sin x y θθθ⎧=⎪⎨=-+⎪⎩为参数,直线l 10y -+=,则曲线C 上到直线l 的距离为52的点的个数为( ) A .1 B .2C .3D .4【答案】C 【解析】 【分析】将圆C 化为普通方程,计算圆心到直线l 的距离,通过比较所求距离与52的关系即可得到满足条件的点的个数. 【详解】化曲线C 的参数方程为普通方程:(()22125x y ++=,圆心)1-10y -+=的距离3115522d ++==<, 所以直线和圆相交,过圆心和l 平行的直线和圆的2个交点符合要求, 与l 平行且与圆相切的直线和圆的一个交点符合要求,故有3个点符合题意, 故选C 【点睛】解决这类问题首先把曲线C 的参数方程为普通方程,然后利用圆心到直线的距离判断直线与圆的位置关系得出结论.4.在满足极坐标和直角坐标互的化条件下,极坐标方程222123cos 4sin ρθθ=+经过直角坐标系下的伸缩变换123x x y y⎧=⎪⎪⎨=''⎪⎪⎩后,得到的曲线是( ).A .直线B .椭圆C .双曲线D .圆【答案】D 【解析】 【分析】先把极坐标方程化为直角坐标方程,再经过直角坐标系下的伸缩变换,把直角坐标方程中的x ,y 分别换成得2x ',3y ',由此能求出结果. 【详解】 ∵极坐标方程222123+4cos sin ρθθ=∴22223cos 4sin 12ρθρθ+=∴直角坐标方程为223412x y +=,即22143x y +=∴经过直角坐标系下的伸缩变换123x x y y⎧=⎪⎪⎨=''⎪⎪⎩后得到的曲线方程为22(2)(3)143x y ''+=,即22()()1x y ''+=. ∴得到的曲线是圆 故选D. 【点睛】本题考查曲线形状的判断,是基础题,解题时要认真审题,注意极坐标方程、直角坐标方程和直角坐标系下的伸缩变换公式的合理运用.5.在同一直角坐标系中,曲线经过伸缩变换后所得到的曲线A .B .C .D .【答案】C 【解析】 【分析】由,得代入函数,化简可得出伸缩变换后所得曲线的解析式。
高考数学压轴专题人教版备战高考《坐标系与参数方程》分类汇编附答案
新数学《坐标系与参数方程》复习知识点(1)一、131.已知点(),x y 在圆22()(23)1x y -=++上,则x y +的最大值是( ) A .1 B .1- C .21- D .21--【答案】C 【解析】 【分析】设圆上一点()2,3P cos sin αα+-,则1x y sin cos αα+=+-,利用正弦型函数求最值,即可得出结论 【详解】设22(2)(3)1x y -++=上一点()2,3P cos sin αα+-,则2312sin 1214x y cos sin sin cos πααααα⎛⎫+=++-=+-=+-≤- ⎪⎝⎭,故选:C 【点睛】本题考查圆的参数方程的应用,考查正弦型函数的最值2.极坐标cos ρθ=和参数方程12x ty t =--⎧⎨=+⎩(t 为参数)所表示的图形分别是A .直线、直线B .直线、圆C .圆、圆D .圆、直线【答案】D 【解析】由ρ=cos θ得ρ2=ρcos θ,∴x 2+y 2=x ,即12x ⎛⎫-⎪⎝⎭ 2+y 2=14. 它表示以1,02骣琪琪桫为圆心,以12为半径的圆. 由x =-1-t 得t =-1-x ,代入y =2+t 中,得y =1-x 表示直线.3.在极坐标中,为极点,曲线:上两点对应的极角分别为,则的面积为 A .B .C .D .【答案】A 【解析】 【分析】将、两点的极角代入曲线的极坐标方程,求出、,将、的极角作差取绝对值得出,最后利用三角形的面积公式可求出的面积。
【详解】 依题意得:、,,所以,故选:A 。
【点睛】本题考查利用极坐标求三角形的面积,理解极坐标中极径、极角的含义,体会数与形之间的关系,并充分利用正弦、余弦定理以及三角形面积公式求解弦长、角度问题以及面积问题,能起到简化计算的作用。
4.以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,已知直线l 的参数方程是13x t y t =+⎧⎨=-⎩(t 为参数),圆C 的极坐标方程是4cos ρθ=,则直线l 被圆C 截得的弦长为( )A 14B .14C 2D .22【答案】D 【解析】 【分析】先求出直线和圆的普通方程,再利用圆的弦长公式求弦长. 【详解】由题意得,直线l 的普通方程为y =x -4, 圆C 的直角坐标方程为(x -2)2+y 2=4, 圆心到直线l 的距离d 20422--=,直线l 被圆C 截得的弦长为222(2)22-= 【点睛】(1)本题主要考查参数方程极坐标方程与普通方程的互化,意在考察学生对这些知识的掌握水平和分析推理计算能力.(2) 求直线和圆相交的弦长,一般解直角三角形,利用公式22||2AB r d =-.5.若实数x ,y 满足()()22512196x y ++-=,则22x y +的最大值为( )A .1B .14C .729D .27【答案】C 【解析】 【分析】设14cos 5x t =-,14sin 12y t =+,利用辅助角公式可得22x y +()364sin 365t α=-+,由三角函数的有界性可得结果.【详解】由222(5)(12)19614x y ++-==,2251211414x y +-⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭, 令5cos 14x t +=, 12sin 14y t -=, 则14cos 5x t =-,14sin 12y t =+,因此22xy +22(14cos 5)(14sin 12)t t =-++140cos 336sin 365t t =-++1252813sin cos 3651313t t ⎛⎫=⨯⨯⨯-⨯+ ⎪⎝⎭()364sin 365t α=-+(其中5sin 13α=,12cos 13α=) 又1sin()1t α-≤-≤Q221729x y ∴≤+≤因此最大值为729,故选C. 【点睛】本题主要考查圆的参数方程的应用,考查了辅助角公式以及三角函数的有界性,属于综合题.6.如图,边长为4的正方形ABCD 中,半径为1的动圆Q 的圆心Q 在边CD 和DA 上移动(包含端点A 、C 、D ),P 是圆Q 上及其内部的动点,设BP mBC nBA =+u u u v u u u v u u u v(,m n ∈R ),则m n +的取值范围是( )A .[221]B .[422,42]-+C .22[1]22-+ D .22[144-+ 【答案】D【解析】 【分析】建立如图所示平面直角坐标系,可得,BA BC u u u r u u u r的坐标,进而可得BP u u u r的坐标.分类讨论,当动圆Q 的圆心在CD 上运动或在AD 上运动时,利用圆的参数方程相关知识,设出点P 坐标,再利用三角函数求m n +的最值. 【详解】解:建立如图所示平面直角坐标系,可得,(0,4),(4,0)BA BC ==u u u r u u u r ,可得(4,0)(0,4)(4,4)BP m n m n =+=u u u r,当点Q 在CD 上运动时,设(4,),[0,4]Q t t ∈,则点P 在圆Q :22(4)()1x y t -+-=上及内部,故可设(4cos ,sin ),(,01)P r t r R r θθθ++∈≤≤,则(4cos ,sin )BP r t r θθ=++u u u r,44cos 4sin m r n t r θθ=+⎧∴⎨=+⎩, 444(sin cos )42sin 4m n t r t r πθθθ⎛⎫∴+=+++=+++ ⎪⎝⎭,04,01,t r R θ≤≤≤≤∈Q ,当50,1,4t r πθ===时,m n +取最小值为424-,即214-; 当4,1,4t r πθ===时,m n +取最大值为824+,即224+m n ∴+的取值范围是221244⎡-+⎢⎣⎦; 当点Q 在AD 上运动时,设(,4),[0,4]Q s s ∈,则点P 在圆Q :22()(4)1x s y -+-=上及其内部,故可设(cos ,4sin ),(,01)P s r r R r θθθ++∈≤≤,则(cos ,4sin )BP s r r θθ=++u u u r,4cos 44sin m s r n r θθ=+⎧∴⎨=+⎩,444(sin cos )4sin 4m n s r s πθθθ⎛⎫∴+=+++=+++ ⎪⎝⎭,04,01,s r R θ≤≤≤≤∈Q ,当50,1,4s r πθ===时,m n +取最小值为44-,即14-;当4,1,4s r πθ===时,m n +,即24+,m n ∴+的取值范围是1244⎡-+⎢⎣⎦; 故选:D . 【点睛】本题考查了向量的坐标运算、点与圆的位置关系,考查了分类讨论思想方法,考查了推理能力与计算能力,属于中档题.7.将点的直角坐标(-化为极径ρ是正值,极角在0到2π之间的极坐标是( )A .24,3π⎛⎫ ⎪⎝⎭B .54,6π⎛⎫ ⎪⎝⎭C .6π⎛⎫⎪⎝⎭D .3π⎛⎫⎪⎝⎭【答案】A 【解析】 【分析】由P 点的直角坐标(-,可得tan yxρθ==,再利用P 点在第二象限且极角在0到2π之间即可求. 【详解】解:∵点P 的直角坐标(-,∴4ρ===,tan y x θ=== 又点P 在第二象限,极角θ在0到2π之间,∴23πθ=. ∴满足条件的点P 的极坐标为24,3π⎛⎫⎪⎝⎭.故选:A . 【点睛】考查直角坐标和极坐标的互化. 极坐标概念:点M 的极坐标:设M 是平面内一点,极点O 与点M 的距离||OM 叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的∠xOM 叫做点M 的极角,记为θ.有序数对(,)ρθ叫做点M 的极坐标,记为(,)M ρθ.8.参数方程21,11x ty t t ⎧=⎪⎪⎨⎪=-⎪⎩(t 为参数)所表示的曲线是( )A .B .C .D .【答案】D【解析】 【分析】消参化简整理得221x y +=,即得方程对应的曲线. 【详解】 将1t x =代入y =,化简整理得221x y +=,同时x 不为零,且x ,y 的符号一致, 故选:D. 【点睛】本题主要考查参数方程与普通方程的互化,考查圆的方程,意在考查学生对这些知识的理解掌握水平和分析推理能力.9.化极坐标方程2cos 20ρθρ-=为直角坐标方程为( ) A .2202x y y +==或 B .2x =C .2202x y x +==或D .2y =【答案】C 【解析】由题意得,式子可变形为(cos 2)0ρρθ-=,即0ρ=或cos 20ρθ-=,所以x 2+y 2=0或x=2,选C.【点睛】由直角坐标与极坐标互换公式222cos sin x y x y ρθρθρ=⎧⎪=⎨⎪+=⎩,利用这个公式可以实现直角坐标与极坐标的相互转化.10.若点P的直角坐标为(1,,则它的极坐标可以是( ) A .52,3π⎛⎫ ⎪⎝⎭B .42,3π⎛⎫ ⎪⎝⎭C .72,6π⎛⎫ ⎪⎝⎭D .112,6π⎛⎫ ⎪⎝⎭【答案】A 【解析】 【分析】设点P 的极坐标为()(),02ρθθπ≤<,计算出ρ和tan θ的值,结合点P 所在的象限求出θ的值,可得出点P 的极坐标. 【详解】设点P 的极坐标为()(),02ρθθπ≤<,则2ρ==,tan θ==.由于点P 位于第四象限,所以,53πθ=,因此,点P 的极坐标可以是52,3π⎛⎫⎪⎝⎭,故选:A. 【点睛】本题考查点的直角坐标化极坐标,要熟悉点的直角坐标与极坐标互化公式,同时还要结合点所在的象限得出极角的值,考查运算求解能力,属于中等题.11.化极坐标方程ρ2cos θ-ρ=0为直角坐标方程为( ) A .x 2+y 2=0或y =1 B .x =1 C .x 2+y 2=0或x =1 D .y =1【答案】C 【解析】 【分析】先化简极坐标方程,再代入极坐标化直角坐标的公式得解. 【详解】由题得22(cos 1)0,0cos 1,0 1.x y x ρρθρρθ-=∴==∴+==或或 故答案为C. 【点睛】(1)本题主要考查极坐标和直角坐标互化,意在考查学生对这些知识的掌握水平和分析推理能力.(2) 求点的极坐标一般用公式222=tan x y y x ρθ⎧+⎪⎨=⎪⎩,求极角时要先定位后定量.把极坐标化成直角坐标,一般利用公式cos sin x y ρθρθ=⎧⎨=⎩求解.(3)本题容易漏掉220x y +=.12.设x 、y 满足223412,x y +=则2x y +的最大值为( )A .2B .3C .4D .6【答案】C 【解析】 【分析】由223412x y +=得出22143x y +=,表示椭圆,写出椭圆的参数方程,利用三角函数求2x y +的最大值.【详解】由题可得:22143x y +=则2cos (x y θθθ=⎧⎪⎨=⎪⎩为参数),有22cos x y θθ+=+142con θθ⎛⎫=+⎪⎪⎝⎭4sin 6πθ⎛⎫=+ ⎪⎝⎭.因为1sin 16πθ⎛⎫-≤+≤ ⎪⎝⎭, 则: 44sin 46πθ⎛⎫-≤+≤ ⎪⎝⎭, 所以2x y +的最大值为4. 故选:C. 【点睛】本题主要考查与椭圆上动点有关的最值问题,利用椭圆的参数方程,转化为三角函数求最值.13.已知圆的极坐标方程为4sin 4P πθ⎛⎫=- ⎪⎝⎭,则其圆心坐标为( ) A .2,4π⎛⎫⎪⎝⎭B .32,4π⎛⎫ ⎪⎝⎭ C .2,4π⎛⎫-⎪⎝⎭D .()2,0【答案】B 【解析】 【分析】把圆的极坐标方程化为直角坐标方程,求得圆心坐标(,再根据极坐标与直角坐标的互化公式,即可求解. 【详解】由题意知,圆的极坐标方程为4sin 4πρθ⎛⎫=-⎪⎝⎭,即ρθθ=-,即2sin cos ρθθ=-,所以220x y ++-=,所以圆心坐标为(, 又由cos sin x y ρθρθ=⎧⎨=⎩,可得圆心的极坐标为3(2,)4π,故选B. 【点睛】本题主要考查了极坐标与直角坐标的互化,及圆的方程应用,其中解答中熟记极坐标与直角坐标的互化公式,把极坐标化为直角坐标方程是解答的关键,着重考查了运算与求解能力,属于基础题.14.在平面直角坐标系中,O 为原点,()1,0A -,(0B ,()30C ,,动点D 满足1CD =u u u r, 则OA OB OD ++u u u r u u u r u u u r的取值范围是( )A .[]46,B.⎤⎦ C.⎡⎣D.⎤⎦【答案】D 【解析】试题分析:因为C 坐标为()3,0且1CD =,所以动点D 的轨迹为以C 为圆心的单位圆,则D 满足参数方程3cos {sin D D x y θθ=+=(θ为参数且[)0,2θπ∈),所以设D 的坐标为为()[)()3cos ,sin 0,2θθθπ+∈,则OA OB OD ++=u u u r u u u r uu u r=因为2cos θθ+的取值范围为⎡⎡=⎢⎣⎣1==1==,所以OA OB OD ++u u u r u u u r uu u r的取值范围为1⎤=⎦,故选D.考点:参数方程 圆 三角函数15.方程sin cos k ρθθ=++ 的曲线不经过极点,则k 的取值范围是( ) A .0k ≠B .k R ∈C.k >D .k …【答案】C 【解析】 【分析】由题意可知,极点不在方程表示的sin cos k ρθθ=++曲线上,可知sin cos k θθ+=-无解,利用辅助角公式得出4sin cos πθθθ⎛⎫+=+ ⎪⎝⎭,结合正弦函数的性质,即可得出k 的取值范围. 【详解】当0ρ=时,sin cos k θθ+=-,则此方程无解由4sin cos πθθθ⎛⎫+=+≤ ⎪⎝⎭k >时,方程无解.故选:C【点睛】本题主要考查了点与直线的位置关系,涉及了正弦函数的性质,属于中档题.16.在极坐标系中,圆ρ=-2sinθ的圆心的极坐标系是A .(1,)2πB .(1,)2π-C .(1,0)D .(1,π)【答案】B【解析】【分析】【详解】由题圆2sin ρθ=-,则可化为直角坐标系下的方程, 22sin ρρθ=-,222x y y +=-,2220x y y =++,圆心坐标为(0,-1), 则极坐标为1,2π⎛⎫- ⎪⎝⎭,故选B. 考点:直角坐标与极坐标的互化.17.在极坐标系中,曲线1C 的极坐标方程为2sin ρθ=,曲线2C 的极坐标方程为2cos ρθ=。
高考数学压轴专题人教版备战高考《坐标系与参数方程》专项训练及解析答案
新高考数学《坐标系与参数方程》专题解析一、131.在极坐标系中,点(),ρθ与(),ρπθ--的位置关系为( ) A .关于极轴所在直线对称 B .关于极点对称 C .重合 D .关于直线()2R πθρ=∈对称【答案】A 【解析】 【分析】由点(),ρπθ--和点(,)ρθ-为同一点. 则比较点(,)ρθ-和点(),ρθ,可推出点(),ρθ与(),ρπθ--的位置关系.【详解】解:点(),ρπθ--与点(),ρθ-是同一个点,(),ρθ-与点(),ρθ关于极轴对称.∴点(),ρθ与(),ρπθ--关于极轴所在直线对称.故选:A. 【点睛】考查极坐标的位置关系.题目较为简单,要掌握极坐标的概念.2.椭圆3cos (4sin x y θθθ=⎧⎨=⎩为参数)的离心率是( )A .4B C .2D 【答案】A 【解析】 【分析】先求出椭圆的普通方程,再求其离心率得解. 【详解】椭圆3cos 4sin x y θθ=⎧⎨=⎩的标准方程为221916x y +=,所以.所以e =4. 故答案为A 【点睛】(1) 本题主要考查参数方程和普通方程的互化,考查椭圆的简单几何性质,意在考查学生对这些知识的掌握水平和分析推理计算能力. (2)在椭圆中,222,.c c a b e a=-=3.221x y +=经过伸缩变换23x xy y''=⎧⎨=⎩后所得图形的焦距( ) A .25 B .213C .4D .6【答案】A 【解析】 【分析】用x ′,y '表示出x ,y ,代入原方程得出变换后的方程,从而得出焦距. 【详解】由23x x y y ''=⎧⎨=⎩得2 3x x y y '⎧=⎪⎪⎨'⎪=⎪⎩,代入221x y +=得22 149x y ''+=, ∴椭圆的焦距为29425-=,故选A .【点睛】本题主要考查了伸缩变换,椭圆的基本性质,属于基础题.4.在同一直角坐标系中,曲线经过伸缩变换后所得到的曲线A .B .C .D .【答案】C 【解析】 【分析】 由,得代入函数,化简可得出伸缩变换后所得曲线的解析式。
坐标系与参数方程二轮复习专题练习(四)附答案高中数学
(1)将圆O1的极坐标方程化为直角坐标方程;
(2)判断点A与圆O1的位置关系.
7.若两条曲线的极坐标方程分别为 与 ,它们相交于 两点,求线段 的长.
8.在平面直角坐标系xOy中,动圆 ( R)的
圆心为 ,求 的取值范围.
9.已知圆 的参数方程为 ( 为参数),若 是圆 与 轴正半轴的交点,以圆心 为极点, 轴的正半轴为极轴建立极坐标系,求过点 的圆 的切线的极坐标方程.
C.y= D.y= +1(汇编全国理,9)
第II卷(非选择题)
请点击修改第II卷的文字说明
评卷人
得分
二、填空题
2.在极坐标系中,圆 的圆心的极坐标是▲.
3.已知曲线 的极坐标方程为 .以极点为原点,极轴为 轴的正半轴建立直角坐标系,则曲线 的参数方程为____________.(汇编年高考广东卷(文))(坐标系与参数方程选做题)
评卷人
得分
三、解答题
4.(选修4—4:坐标系与参数方程)
已知曲线 的参数方程为 ( 为参数),曲线 在点 处的切线为 .以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,求 的极坐标方程.
5.在平面直角坐标系 中,已知 , , , ,其中 .设直线 与 的交点为 ,求动点 的轨迹的参数方程(以 为参数)及普通方程.
高中数学专题复习
《坐标系与参数方程》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I卷(选择题)
请点击修改第I卷的文字说明
评卷人
得分
一、选择题
坐标系与参数方程一轮复习专题练习(四)附答案人教版高中数学考点大全
所以圆心 到直线 的距离为 ,
由则 ,解得 (舍)或 ,所以 .……………10分
3.已知直线 的参数方程是 ,则 在 轴上的截距为___ ______.
评卷人
得分
三、解答题
4.求直线 ( 为参数)被曲线 所截得的弦长.
5.已知圆C的参数方程为 ( 为参数),以原点为极点, 轴的正半轴为极轴建立极坐标系,直线的极坐标方程为 ,求直线截圆C所得的弦长。
6.若 为参数, 为常数,把参数方程 化为普通方程.
得 ,即 .……………10分.
7.
8.(选修4-4:坐标系与参数方程)
由 得 ,两式平方后相加得 ,………………………4分
∴曲线 是以 为圆心,半径等于 的圆.令 ,
代入并整理得 .即曲线 的极坐标方程是ห้องสมุดไป่ตู้.…………………………10分
9.解:(1)圆 的直角坐标方程为 .………3分
(2) ,化为一般式得: .
7.在极坐标系中,O为极点,求过圆C: 的圆心C且与直线OC垂直的直线 的极坐标方程。
8.在直角坐标系 中,已知曲线 的参数方程是 ( 是参数),若以 为极点, 轴的正半轴为极轴,取与直角坐标系中相同的单位长度,建立极坐标系,求曲线 的极坐标方程.
9.选修4—4:坐标系与参数方程
已知曲线 的极坐标方程为 .以极点为直角坐标原点,极轴为 轴正向建立平面直角坐标系.
高中数学专题复习
《坐标系与参数方程》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I卷(选择题)
请点击修改第I卷的文字说明
高考数学压轴专题人教版备战高考《坐标系与参数方程》全集汇编
新数学《坐标系与参数方程》试卷含答案(1)一、131.已知圆的极坐标方程为4sin 4P πθ⎛⎫=- ⎪⎝⎭,则其圆心坐标为( ) A .2,4π⎛⎫⎪⎝⎭B .32,4π⎛⎫ ⎪⎝⎭ C .2,4π⎛⎫-⎪⎝⎭D .()2,0【答案】B 【解析】 【分析】把圆的极坐标方程化为直角坐标方程,求得圆心坐标(,再根据极坐标与直角坐标的互化公式,即可求解. 【详解】由题意知,圆的极坐标方程为4sin 4πρθ⎛⎫=-⎪⎝⎭,即ρθθ=-,即2sin cos ρθθ=-,所以220x y ++-=,所以圆心坐标为(, 又由cos sin x y ρθρθ=⎧⎨=⎩,可得圆心的极坐标为3(2,)4π,故选B. 【点睛】本题主要考查了极坐标与直角坐标的互化,及圆的方程应用,其中解答中熟记极坐标与直角坐标的互化公式,把极坐标化为直角坐标方程是解答的关键,着重考查了运算与求解能力,属于基础题.2.极坐标cos ρθ=和参数方程12x ty t =--⎧⎨=+⎩(t 为参数)所表示的图形分别是A .直线、直线B .直线、圆C .圆、圆D .圆、直线【答案】D 【解析】由ρ=cos θ得ρ2=ρcos θ,∴x 2+y 2=x ,即12x ⎛⎫- ⎪⎝⎭ 2+y 2=14. 它表示以1,02骣琪琪桫为圆心,以12为半径的圆. 由x =-1-t 得t =-1-x ,代入y =2+t 中,得y =1-x 表示直线.3.参数方程(为参数)所表示的图象是A .B .C .D .【答案】D 【解析】 【分析】 由,得,代入,经过化简变形后得到曲线方程,但需注意曲线方程中变量、的符号,从而确定曲线的形状。
【详解】 由题意知将代入,得,解得,因为,所以.故选:D 。
【点睛】本题考查参数方程与普通方程之间的转化,参数方程化普通方程一般有以下几种消参方法:①加减消元法;②代入消元法;③平方消元法。
消参时要注意参数本身的范围,从而得出相关变量的取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学专题复习
《坐标系与参数方程》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上
第I 卷(选择题)
请点击修改第I 卷的文字说明 评卷人
得分
一、选择题
1.设曲线C 的参数方程为23cos 13sin x y θ
θ=+⎧⎨
=-+⎩
(θ为参数),直线l 的方程为
320x y -+=,则曲线C 上到直线l 距离为710
10
的点的个数为 A 、1 B 、2
C 、3
D 、4
第II 卷(非选择题)
请点击修改第II 卷的文字说明 评卷人
得分
二、填空题
2.极坐标方程为cos 3sin 0ρθθ-+=表示的圆的半径为___________【..1 】 二 解答题
3.已知曲线C 的极坐标方程是4cos ρθ=,那么它的直角坐标方程是 ▲ . 评卷人
得分
三、解答题
4.求圆3cos ρθ=被直线22,
14x t y t =+⎧⎨
=+⎩
(t 是参数)截得的弦长.
5.在平面直角坐标系xOy 中,圆C 的参数方程为θθθ(sin 2
2
,cos 2
2
⎪⎪
⎩
⎪
⎪⎨
⎧
+-=+-=r y r x 为参
数,)0>r ,以O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为
,1)4
sin(=+
π
θρ若圆C 上的点到直线l 的最大距离为3,求r 的值.
6.在平面直角坐标系xoy中,求过椭圆5cos (3sin x y ϕ
ϕϕ=⎧⎨=⎩参数)的左焦点与直线
1(42x t
t y t =+⎧⎨
=-+⎩
为参数)垂直的直线的参数方程.
7.已知曲线C 的极坐标方程是2sin ρθ=,直线l 的参数方程是32,
545x t y t ⎧=-+⎪⎨⎪=⎩(t 为
参数). (Ⅰ)将曲线C 的极坐标方程化为直角坐标方程;
(Ⅱ)设直线l 与x 轴的交点是M ,N 是曲线C 上一动点,求MN 的最大值.
8.已知曲线C 的方程22332y x x =-,设y tx =,t 为参数,求曲线C 的参数方程.
9.已知曲线C :3x 2
+4y 2
-6=0(y ≥0). (Ⅰ)写出曲线C 的参数方程;
(Ⅱ)若动点P(x,y)在曲线C 上,求z=x+2y 的最大值与最小值.
【参考答案】***试卷处理标记,请不要删除
评卷人
得分
一、选择题
1.B
解析:化曲线C 的参数方程为普通方程:2
2
(2)(1)9x y -++=,圆心(2,1)-到直线320x y -+=的距离|23(1)2|710310
10d -⨯-+
=
=<,直线和圆相交,过圆心和l 平行的直线和圆的2个交点符合要求,又710710
31010
>-,在直线l 的另外一侧没有圆上的点符合要求,所以选B.
【方法总结】解决这类问题首先把曲线C 的参数方程为普通方程,然后利用圆心到直线的距离判断直线与圆的位置关系,这就是曲线C 上到直线l 距离为
710
10
,
然后再判断知
710710
31010
>-,进而得出结论. 第II 卷(非选择题)
请点击修改第II 卷的文字说明 评卷人
得分
二、填空题
2. 3.; 评卷人
得分
三、解答题
4.选修4-4:坐标系与参数方程 解:将极坐标方程转化成直角坐标方程:
3cos ρθ=即:223x y x +=,即2239
()24
x y -+=, ………………4分
2214x t
y t
=+⎧⎨
=+⎩即:23x y -=, ………………7分 所以圆心到直线的距离2
2
3
203202(1)
d ⨯--==+-,即直线经过圆心,………………9分
所以直线截得的弦长为3. ………………10分
5.因为圆C 的参数方程为2
cos ,2
2
sin 2
x r y r θθ⎧
=-+⎪⎪
⎨
⎪=-+⎪⎩
(θ为参数,0r >),消去参数得,
()2
2
222022x y r r ⎛⎫⎛⎫+++=> ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,所以圆心22,2
2C ⎛⎫-- ⎪ ⎪⎝⎭,半径为r ,……3分
因为直线l 的极坐标方程为sin()14
ρθπ+=,化为普通方程为2x y +=,………6分
圆心C 到直线2x y +=的距离为22222
22
d -
--=
=,……………………8分
又因为圆C 上的点到直线l 的最大距离为3,即3d r +=,所以321r =-=.…10分
6.椭圆的普通方程为22
1259
x y +=,左焦点为
(4,0)-,…………………………………4分
直线1,42x t y t =+⎧⎨=-+⎩
(t 为参数)的普通方程为
260x y --=,……………………………8分
所求直线方程为1
(4)2
y x =-+,即240x y ++=. …………………………………10分 7
.
解
:
(
Ⅰ
)
曲
线
C
的极坐标方程可化为
22sin ρρθ= ……………………………………………2分
又222,cos ,sin x y x y ρρθρθ+===,所以曲线C 的直角坐标方程为
2220x y y +-=…………4分
(Ⅱ)将直线
l
的参数方程化为直角坐标方程,得
4(2)3
y x =--………………………………………6分
令0y =,得2x =,即M 点的坐标为(2,0).又曲线C 为圆,圆C 的圆心坐标为
(1,0), 半径1r =,则
5MC =…………………………………………………………………………………8分
所以51MN MC r +=+≤……………………………………10分
8.解:将y tx =代入22332y x x =-,
得222332t x x x =-,即32223x t x =-(). ………………………………4分
当 x =0时,y =0;
当0x ≠时, 2
32t x -=. ………………………………………6分
从而3
32t t y -=. ………………………………………8分
∵原点(0,0)也满足23
3232
t x t t y ⎧-=⎪⎪⎨-⎪=⎪⎩,, ∴曲线C 的参数方程为2
33232
t x t t y ⎧-=⎪⎪⎨-⎪=⎪⎩,(t 为参数). ……………………………10分
9. (Ⅰ)
2cos 16sin 2x y θθ⎧=⎪⎨=⎪
⎩
(0≤θ≤π,θ为参
数) ……………………………………4分 (Ⅱ)设点P 的坐标为1
(2cos ,
6sin ),(0)2
θθθπ≤≤,则 z=x+2y=2cos 6sin θθ+=1322(cos sin )22θθ+=22sin()6
π
θ+. (6)
分
∵0≤θ≤π,∴
76
6
6π
π
πθ≤+
≤
,∴1sin()126
π
θ-≤+≤, ∴当1
sin()62
π
θ+
=-,即θ=π时,z=x+2y 取得最小值是-2; 当sin()16
π
θ+=,即3
π
θ=
时,z=x+2y 取得最大值是22. ………………………
10分。