相似三角形第一讲
第一讲相似三角形的性质与判定
第一讲 相似三角形的性质与判定一、知识要点1.相似三角形的定义:对应角相等,对应边的比相等的两个三角形。
对应边的比叫做相似比。
三条平行线截两条直线所得的对应线段的比相等。
2.相似三角形的判定:①平行法②三组对应边的比相等(类似于三角形全等判定“SSS ”)③两组对应边的比相等,且夹角相等(类似于三角形全等判定“SAS ”)④两角对应相等(AA)直角三角形中斜边、直角边对应比相等(类似于直角三角形全等判定“HL ”)。
相似三角形的基本图形:判断三角形相似,若已知一角对应相等,可先考虑另一角对应相等,注意公共角或对顶角或同角(等角)的余角(或补角)相等,若找不到第二对角相等,就考虑夹这个角的两对应边的比相等;若无法得到角相等,就考虑三组对应边的比相等。
3.相似三角形的性质:①对应角相等②对应边的比相等③对应的高、中线、角平分线、周长之比等于相似比④对应的面积之比等于相似比的平方。
4.相似三角形的应用:求物体的长或宽或高;求有关面积等。
二、考点精讲考点一:平行线分线段成比例例1、(2014广东肇庆)如图,已知直线a ∥b ∥c ,直线m 、n 与a 、b 、c 分别交于点A 、C 、E 、B 、D 、F ,AC = 4,CE = 6,BD = 3,则BF =( )A . 7B . 7.5C . 8D . 8.52.下列各组线段中,能成比例的是 ( )A 、 1㎝,3㎝,4㎝,6㎝B 、 30㎝,12㎝,0.8㎝,0.2㎝C 、 0.1㎝,0.2㎝,0.3㎝,0.4㎝D 、 12㎝,16㎝,45㎝,60㎝3. 如果线段2=a ,且a 、b 的比例中项为10,那么线段b = 。
4、若x :y =3,则x :(x+y)=_______5. 在长度为1的线段上找到两个黄金分割点P、Q.则PQ=( )A .215-B .53- C.25- D .253-6. 已知0432≠==cb a ,则cb a +的值为( )A.54B.45C.2D.21 考点二:相似三角形的判定例2、(2013湖北荆州)如图,P 为线段AB 上一点,AD 与BC 交于E ,∠CPD =∠A =∠B ,BC 交PD 于F ,AD 交PC 于G ,则图中相似三角形有( )A .1对B .2对C .3对D .4对 例3.如图,在矩形ABCD 中,AB=6,BC=8,沿直线MN 对折,使A 、C 重合,直线MN 交AC 于O.(1)求证:△COM∽△CBA; (2)求线段OM 的长度.练习:1.下列各组三角形一定相似的是( )A .两个直角三角形B .两个钝角三角形C .两个等腰三角形D .两个等边三角形 2.如图,DE∥BC,EF∥AB,则图中相似三角形一共有( ) A .1对 B .2对 C .3对 D .4对3、如图,P 是Rt ΔABC 的斜边BC 上异于B 、C 的一点,过点P 做直线截 ΔABC ,使截得的三角形与ΔABC 相似,满足这样条件的直线共有( )第2题4.如图,∠ADC =∠ACB 5.如图,AD ∥EF ∥BC 考点三:相似三角形的性质例4、(2013山东烟台)如图,△ABC 中,点D 在线段BC 上, 且△ABC ∽△DBA ,则下列结论一定正确的是( )A .AB 2=BC ·BD B .AB 2=AC ·BD C .AB ·AD =BD ·BC D .AB ·AD =AD ·CD例5、(2014浙江嘉兴)如图,边长为4的等边△ABC 中,DE 为中位线,则四边形BCED 的面积为( )AD E(A )32(B )33(C )34(D )36例6(2012•重庆)已知△ABC ∽△DEF ,△ABC 的周长为3,△DEF 的周长为1,则ABC 与△DEF 的面积之比为 .练习:1.(2014青海西宁,10,3分)如图6,在等边△ABC 中,D 为BC 边上一点,E 为AC 边上一点,且∠ADB +∠EDC =120°,BD =3,CE =2,则△ABC 的边长为()A .9B .12C .16D .18Q PECDBA2.(2013四川雅安,9,3分)如图,D 、E 、F 分别为△ABC 三边的中点,则下列说法中不正确的为( )A .△ADE ∽△ABCB .AFC ABF S S △△= C .ABC ADE S S △△41=D .DF=EF 3.(2013辽宁丹东,16,3分)已知:如图,DE 是△ABC 的中位线,点P 是DE 的中点,CP 的延长线交AB 于点Q ,那么:DPQ ABC S S ∆∆=______________.三、反馈练习反馈题1:如图,梯形ABCD 中,AB∥CD,E 为DC 中点,直线BE 交AC 于F ,交AD 的延长线于G ;请说明:EF·BG=BF·EG反馈题2,如图,⊙O 是△ABC 的外接圆,圆心O 在AB 上,过点B 作⊙O 的切线交AC 的延长线于点D 。
第一讲相似三角形的判定及有关性质
SADE 1 , 解:因为DE∥BC,所以△ADE∽△ABC,所以 SABD 2
1 3 所以SADE SABC , SDECB SABC , 4 4 SADE 1 所以 . S DECB 3
2
4.如图,Rt△ABC中,∠C=90°,CD是斜边上的高,AC=5, BC=8,则S△CDA∶S△CDB等于(
点评
比例求值,求面积,求线段长,它们是一个有机的统一
体,它们可以互为条件,以相似三角形为核心,有时借助平行线分 线段成比例定理,演绎出众多题型和方法.
【变式迁移】 2.如图,平行四边形ABCD中,AE∶EB=1∶2,若△AEF的面 积等于6cm2,则△ADF的面积等于 18 cm2.
解:由题意得△AEF与△CDF为相似三角形,又AE∶CD=1∶3, 由△AEF的面积为6cm2得△CDF的面积为54cm2, 又S△ADF∶S△CDF=1∶3,所以S△ADF=18cm2.
解:因为AD⊥BC,所以△ADB是直角三角形, 又DE⊥AB,由射影定理,AD2=AE·AB, 同理可得,AD2=AF·AC,
AE AC 3 . 所以AE·AB=AF·AC,所以 AF AB 4
拓展练习1:如图,在RtABC中,AF 是斜边BC上的 高线,且BD DC FC 1,则AC
图5
B
图4
C
推论1 经过梯形一腰的中点与底平行的 推论2
直线,必平分另一腰。
符号语言: ∵在梯形ABCD,AD∥EF∥BC,AE=EB ∴DF=FC
经过三角形一边的中点与另一
边平行的直线,必平分第三边。
符号语言 ∵△ABC中,EF∥BC,AE=EB ∴AF=FC
相似三角形知识讲义终极版
相似三角形知识讲义(第一课时)一: 相似图形形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形.二:相似变换 由一个图形到另一个图形,在改变的过程中保持形状不变(大小方向和位置可变),这样的图形改变叫做图形的相似变换。
图形相似变换的性质 1.图形的相似变换不改变图形中每一个角的大小;2.图形相似变换后对应线段都扩大(或缩小)相同的倍数,这个数叫相似比。
三:相似三角形成比例线段一: 比例线段的相关概念如果选用同一单位量得两条线段b a ,的长度分别为n m ,,那么就说这两条线段的比是nm b a =,或写成n m b a ::=. 注意:在求线段比时,线段单位要统一,单位不统一应先化成同一单位. 在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段.注意:(1)当两个比例式的每一项都对应相同,两个比例式才是同一比例式.(2)比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:ad c b =. (3) 比例内项、比例外项、比例中项相关概念练习.下列线段能成比例线段的是( )(A)1cm,2cm,3cm,4cm (B)1cm,2cm,22cm,2cm (C)2cm,5cm,3cm,1cm (D)2cm,5cm,3cm,4cm二: 比例的性质基本性质:(1)bc ad d c b a =⇔=::;(2)b a c b c c a ⋅=⇔=2::.注意:由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如bc ad =,除了可化为d c b a ::=,还可化为d b c a ::=,b a d c ::=,c a d b ::=,c d a b ::=,b d a c ::=,a b c d ::=,a c b d ::=.更比性质(交换比例的内项或外项):()()()a b c d a c d c b d b a d b c a ⎧=⎪⎪⎪=⇒=⎨⎪⎪=⎪⎩,交换内项,交换外项.同时交换内外项 合比性质:dd c b b a d c b a ±=±⇒=. 发生同样和差变化比例仍成立.如:⎪⎪⎩⎪⎪⎨⎧+-=+--=-⇒=dc d c b a b a c c d a a b d c b a 等等.等比性质: 如果)0(≠++++====n f d b n m f e d c b a ,那么ba n f db m ec a =++++++++ . 注意:(1)此性质的证明运用了“设k 法” ,这种方法是有关比例计算,变形中一种常用方法.(2)应用等比性质时,要考虑到分母是否为零.(3)可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.如:ba f db ec a f ed c b a fe d c b a =+-+-⇒=--=⇒==32323322;其中032≠+-f d b .《比例的性质》练习题一、填空题1.如果线段a=3,b=12,那么线段a 、b 的比例中项x=___________。
第一讲 相似三角形的判定及有关性质(6)
A
B´
C´ D´
O周长 AD k. O周长 AD
AD 2 ( ) O面积 2 k 2. O面积 ( AD ) 2 2
问题2 两个相似三角形的内切圆的直径比,周长 比,面积比与相似比有什么关系?
结论:两个相似三角形的内切圆的直径比,周长比 等于相似比;面积比等于相似比的平方。
解:设正方形PQMN为加工成 的正方形零件.边QM在BC上, 顶点P,N分别在AB,AC上. △ABC的高与边PN相交于点 E.设正方形的边长为xcm. PN // BC
A P E
N
x
APN ∽ ABC 12 x x AE PN 12 24 AD BC
B
Q
D
M
C
x 8(cm )
习题1.4 2.如图,△ABC中∠BAC=60°CD⊥AB
1 求证:BD=AB- AC 2
B D
60° A C
3.如图,已知线段a,b.求作线段a和b的比例中项。 a b
BC2 BD AB 8 10 80, 解得BC 8 5.
习题1.4 1. 直角△ABC中已知:CD=60 AD=25
求:BD,AB,AC,BC的长
BD=144,AB=169,AC=65,BC=156
例2 △ABC中,顶点C在AB边上的射影为D,且
CD² =AD· DB 求证: △ABC是直角三角形。
R
r
四 直角三角形的射影定理
点在直线上的正射影 从一点向一直线所引垂线 的垂足,叫做这个点在这条直线上的正射影。
A A B
M
A´
A
N
M
A´
B´
N
一条线段在直线上的正射影 线段的两个端点在 这条直线上的正射影间的线段。
第一讲相似三角形的判断及有关性质
E
∴△ABC∽△ABC
C
例 如图,已知D、E、F分别是△ABC三边、 BC、CA、AB的中点. 求证:△DEF∽△ABC
证明:∵线段EF、FD、DE都是 △ABC的中位线
EF 1 1 1 BC , FD CA, DE AB 2 2 2
A F E D C
EF FD DE 1 BC CA AB 2
证明: 作 DE//BC,交AC于E
AD AE ' AB AC AD AE AB AC AE AE ' AC AC
D
E
E
采用了“同一法” B 的间接证明
C
∴AE=AE 因此E与点E重合即DE与DE重合, 所以 DE//BC
当一个命题的条件和结论所指的概念唯一存在 时,若直接证明有困难,就不妨改为去证它的 逆否命题,然后根据唯一性的原理断言命题为 真,这种解题方法叫做同一法 用同一法解题一般有三个步骤: ①先作出一个符合结论的图形,然后推证出所 作的图形符合已知条件; ②根据唯一性,证明所作出的图形与已知的图 形是全等的或重合的; ③从而说明已知图形符合结论.
(3)三边对应成比例,两三角形相似.
A
A
B
B
C
C
预备定理
平行于三角形一边的直线和其他两边(或 两边的延长线)相交,所构成的三角形与原 三角形相似.
A D E D A
E
B
C
C
B
判定定理1
对于任意两个三角形,如果一个三 角形的两个角与另一个三角形的两个 角对应相等,那么这两个三角形相似.
简述:两角对应相等,两三角形相似
C B O D A
例2 △ABC中,顶点C在AB边上的射影为D,且
高中数学 第一讲 相似三角形的判定及有关性质 三 相似
三相似三角形的判定及性质1.相似三角形的判定1.了解三角形相似的定义,掌握相似三角形的判定定理以及直角三角形相似的判定方法.2.会证明三角形相似,并能解决有关问题.1.相似三角形(1)定义:对应角____,对应边成____的两个三角形叫做相似三角形,相似三角形______的比值叫做相似比(或相似系数).(2)记法:两个三角形相似,用符号“∽”表示,例如△ABC与△A′B′C′相似,记作△ABC∽△A′B′C′.①三角形相似与三角形全等不同,全等三角形一定相似,但相似三角形不一定全等.②三角形相似定义中的“对应边成比例”是三组对应边分别成比例.③相似三角形对应顶点的字母必须写在相应的位置上,这一点与全等三角形是一致的;例如△ABC和△DEF相似,若点A与点E对应,点B与点F对应,点C与点D对应,则记为△ABC∽△EF D.【做一做1】已知△ABC∽△A′B′C′,下列选项中的式子,不一定成立的是( ) A.∠B=∠B′ B.∠A=∠C′C.ABA′B′=BCB′C′D.ABA′B′=ACA′C′2判定三角形相似的三种基本图形(1)平行线型:(2)相交线型:(3)旋转型:【做一做2-1】如图所示,在△ABC 中,FD ∥GE ∥BC ,则与△AFD 相似的三角形有( )A .1个B .2个C .3个 D .4个【做一做2-2】如图所示,DE 与BC 不平行,当AB AC=__________时,△ABC ∽△AE D .3.直角三角形相似的判定定理(1)如果两个直角三角形有一个____对应相等,那么它们相似; (2)如果两个直角三角形的两条直角边对应成____,那么它们相似.(3)如果一个直角三角形的____和一条____边与另一个三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.直角三角形被斜边上的高分成的两个直角三角形分别与原三角形相似. 在证明直角三角形相似时,要特别注意利用直角这一条件. 【做一做3】在△ABC 和△A ′B ′C ′中,∠A =∠A ′=90°,AB A ′B ′=BCB ′C ′,∠B =35°,则∠C ′=__________.答案:1.(1)相等 比例 对应边【做一做1】B 很明显选项A ,C ,D 均成立.因为∠A 和∠C ′不是对应角,所以∠A =∠C ′不一定成立.2.相交 相似 相等 相似 比例 相等 比例 第三边 比例 【做一做2-1】B ∵ FD ∥GE ∥BC , ∴△AFD ∽△AGE ∽△ABC ,故与△AFD 相似的三角形有2个.【做一做2-2】AE AD△ABC 与△ADE 有一个公共角∠A ,当夹∠A 的两边对应成比例,即AB AC =AEAD时,这两个三角形相似. 3.(1)锐角 (2)比例 (3)斜边 直角 【做一做3】55° ∵∠A =∠A ′=90°, ∴△ABC 和△A ′B ′C ′均是直角三角形.又AB A ′B ′=BCB ′C ′,∴△ABC ∽△A ′B ′C ′. ∴∠C ′=∠C ,又∠B =35°,∴∠C =90°-∠B =90°-35°=55°,∴∠C ′=55°.同一法证明几何问题剖析:当直接证明一个几何问题比较困难时,往往采用间接证明的方法.“同一法”就是一种间接证明的方法.应用同一法证明问题时,往往先作出一个满足命题结论的图形,然后证明图形符合命题的已知条件,确定所作图形与题设条件所指的图形相同,从而证明命题成立.例如,如图所示,已知PQ ,T R 为⊙O 的切线,P ,R 为切点,PQ ∥R T.证明PR 为⊙O 的直径.证明:如图,延长PO 交R T 于点R ′,∵PO ⊥PQ ,∴PR ′⊥PQ .∵PQ ∥RT ,∴PR ′⊥RT ,即OR ′⊥RT . 又∵TR 为⊙O 的切线,R 为切点, ∴OR ⊥RT ,∴点R ′与点R 重合, ∴PR 为⊙O 的直径.由上例可以看出,同一法证明几何问题的步骤:(1)先作出一个符合结论的图形,然后推证出所作的图形符合已知条件;(2)根据唯一性,证明所作出的图形与已知的图形是全等的或重合的;(3)说明已知图形符合结论.题型一 判定三角形相似 【例题1】如图,已知AB AD =BC DE =ACAE,求证:△ABD ∽△ACE .分析:由于已知AB AD =AC AE ,得AB AC =ADAE,则要证明△ABD ∽△ACE ,只需证明∠DAB =∠EAC 即可.反思:(1)本题中,∠DAB 与∠EAC 的相等关系不易直接找到,这里用∠BAC =∠EAD ,在∠BAC 和∠EAD 中分别减去同一个角∠DAC ,间接证明.(2)判定两个三角形相似时,关键是分析已知哪些边对应成比例,哪些角对应相等,根据三角形相似的判定定理,还缺少什么条件就能推导出结论.题型二 判定直角三角形相似【例题2】如图,已知在正方形ABCD 中,P 是BC 上的点,且BP =3PC ,Q 是CD 的中点,求证:△ADQ ∽△QCP .分析:由于这两个三角形都是直角三角形,且已知条件是线段间的关系,故考虑证明对应边成比例,即只需证明AD QC =DQCP即可. 反思:直角三角形相似的判定方法很多,既可根据一般三角形相似的判定方法判定,又有其独特的判定方法,在求证、识别的过程中,可由已知条件结合图形特征,确定合适的方法.题型三 证明线段成比例【例题3】如图,在△ABC 中,∠ABC =2∠C ,BD 平分∠ABC ,求证:AB AC =CDBC.分析:所要证明的等式中的四条线段AB ,AC ,CD ,BC 分别在△ABC 和△BCD 中,但这两个三角形不相似,由题意可得BD =CD ,这样AB ,AC ,BD ,BC 分别在△ABC 和△ABD 中,只需证明这两个三角形相似即可.反思:证明线段成比例,常把等式中的四条线段分别看成两个三角形的两条边,再证明这两个三角形相似即可,若这四条线段不能分别看成两个三角形的两边,则利用相等线段进行转化,如本题中把CD 转化为B D .题型四 证明两直线平行【例题4】如图,△ABC 中,D 是BC 的中点,M 是AD 上一点,BM ,CM 的延长线分别交AC ,AB 于F ,E 两点.求证:EF ∥B C .分析:要证明EF ∥BC ,想通过角之间的关系达到目的显然是不可能的,而要利用成比例线段判定两条直线平行的判定定理,图中又没有平行条件,因此要设法作出平行线,以便利用判定定理.在作平行线时,要充分考虑到中点D 的应用.反思:常利用引理来证明两条直线平行,如本题中的三种证法,其关键是证明其对应线段成比例,这样又转化为证明线段成比例,其证明方法有:利用中间量,如本题证法一;转化为线段成比例,如本题证法二;既用中间量,又转化为线段成比例,如本题证法三.答案:【例题1】证明:因为AB AD =BC DE =ACAE,所以△ABC ∽△ADE .所以∠BAC =∠EAD ,∠BAC -∠DAC =∠EAD -∠DAC ,即∠DAB =∠EAC . 又AB AD =AC AE ,即AB AC =ADAE,所以△ABD ∽△ACE . 【例题2】证明:在正方形ABCD 中,∵Q 是CD 的中点,∴AD QC =2.∵BP PC =3,∴BCPC =4.又BC =2DQ ,∴DQCP=2.在△ADQ 和△QCP 中, AD QC =DQCP=2,∠C =∠D =90°, ∴△ADQ ∽△QCP .【例题3】证明:∵ BD 平分∠ABC ,∴∠DBC =∠DBA =12∠ABC ,又∠ABC =2∠C ,∴∠DBA =∠DBC =∠C , ∴BD =CD .在△ABD 和△ACB 中, ∠A =∠A ,∠DBA =∠C ,∴△ABD ∽△ACB ,∴AB AC =BD BC ,∴AB AC =CDBC.【例题4】证法一:延长AD 至G ,使DG =MD ,连接BG ,CG ,如下图所示.∵BD =DC ,MD =DG ,∴四边形BGCM 为平行四边形.∴EC ∥BG ,FB ∥CG .∴AE AM AB AG =,AF AMAC AG =, ∴AE AF AB AC=.∴EF ∥BC . 证法二:过点A 作BC 的平行线,与BF ,CE 的延长线分别交于G ,H 两点,如图所示.∵AH ∥DC ,AG ∥BD , ∴AH DC =AM MD ,AG BD =AM MD ,∴AH DC =AGBD .∵BD =DC ,∴AH =AG .∵HG ∥BC ,∴AE EB =AH BC ,AF FC =AGBC .∵AH =AG ,∴AE EB =AFFC.∴EF ∥BC .证法三:过点M 作BC 的平行线,分别与AB ,AC 交于G ,H 两点,如下图所示.则GM BD =AM AD ,MH DC =AMAD ,∴GM BD =MH DC. ∵BD =DC ,∴GM =MH .∵GH ∥BC ,∴EM EC =GM BC ,FM FB =MHBC .∵GM =MH ,∴EM EC =FMFB.∴EF ∥BC .1如图所示,在△ABC 中,DE ∥BC ,点F 是BC 上一点,AF 交DE 于G ,则与△ADG 相似的是( )A .△AEGB .△ABFC .△AFCD .△ABC2如图,在△ABC 中,∠BAC =90°,AD ⊥BC ,垂足为D ,DE ⊥AB ,垂足为E ,则图中与Rt△ADE 相似的三角形个数为( )A .1B .2C .3D .4 3如图所示,∠BAC =∠DCB ,∠CDB =∠ABC =90°,AC =a ,BC =b .则BD =__________(用a ,b 表示).4如图所示,O 是△ABC 内一点,且AB ∥A ′B ′,BC ∥B ′C ′.求证:AC ∥A ′C ′.5如图,已知在△ABC 中,AB =AC ,∠A =36°,BD 是∠ABC 的平分线,求证:AD 2=DC ·A C .答案:1.B 在△ABF 中,DG ∥BF ,则△ADG ∽△ABF .2.D 题图中Rt△CBA ,Rt△CAD ,Rt△ABD ,Rt△DBE 均与Rt△ADE 相似.3.b 2a 由题意,可得△ABC ∽△CDB ,∴AC BC =BC BD,∴BD =BC 2AC =b 2a.4.证明:∵AB ∥A ′B ′,∴OA ′OA =OB ′OB.又∵BC ∥B ′C ′,∴OB ′OB =OC ′OC.∴OA′OA=OC′OC.∴AC∥A′C′.5.分析:有一个角是36°的等腰三角形,它的底角是72°,而BD是底角的平分线,所以∠CBD=36°,则可推出△ABC∽△BCD,进而由相似三角形对应边成比例推出线段之间的比例关系.证明:∵∠A=36°,AB=AC,∴∠ABC=∠C=72°.又∵BD平分∠ABC,∴∠ABD=∠CBD=36°.∴AD=BD=BC,且△ABC∽△BCD.∴BC∶AB=CD∶BC.∴BC2=AB·CD.又BC=AD,AB=AC,∴AD2=AC·CD.。
第1讲(学生)相似三角形精讲
第1讲 :相似三角形【基础知识】知识点1:相似图形形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形. 知识点2 比例线段的相关概念如果选用同一单位量得两条线段b a ,的长度分别为n m ,,那么就说这两条线段的比是nmb a =,或写成n m b a ::=. 注意:在求线段比时,线段单位要统一,单位不统一应先化成同一单位.在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段. 注意:(1)当两个比例式的每一项都对应相同,两个比例式才是同一比例式.(2)比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:ad cb =.知识点3 :比例的性质 基本性质:(1)bc ad d c b a =⇔=::;(2)b a c b c c a ⋅=⇔=2::. 注意:由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如bc ad =,除了可化为d c b a ::=,还可化为d b c a ::=,b a d c ::=,c a d b ::=,c d a b ::=,b d a c ::=,a b c d ::=,a c b d ::=. 更比性质(交换比例的内项或外项):()()()a bc d a c d cb d b ad bc a ⎧=⎪⎪⎪=⇒=⎨⎪⎪=⎪⎩,交换内项,交换外项.同时交换内外项反比性质(把比的前项、后项交换):cd a b d c b a =⇒=. 合比性质:dd c b b a d c b a ±=±⇒=. 注意:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间发生同样和差变化比例仍成立.如:⎪⎪⎩⎪⎪⎨⎧+-=+--=-⇒=dc d c b a b a ccd a a b d c b a 等等.等比性质:如果)0(≠++++====n f d b nm f e d c b a ,那么b an f d b m e c a =++++++++ .注意:(1)此性质的证明运用了“设k 法” ,这种方法是有关比例计算,变形中一种常用方法. (2)应用等比性质时,要考虑到分母是否为零.(3)可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.如:ba f db ec a f ed c b a fe d c b a =+-+-⇒=--=⇒==32323322;其中032≠+-f d b .知识点4 :比例线段的有关定理平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例. 推论:(1)平行于三角形一边直线截其它两边(或两边的延长线)所得对应线段成比例.(2)平行于三角形一边并且和其它两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例.定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形第三边. 知识点5 :黄金分割把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 215-=≈0.618AB .知识点6 :相似三角形的概念对应角相等,对应边成比例的三角形,叫做相似三角形. 相似用符号“∽”表示,读作“相似于” .相似三角形对应边的比叫做相似比(或相似系数). 相似三角形对应角相等,对应边成比例. 注意:①对应性:即两个三角形相似时,通常把表示对应顶点的字母写在对应位置上,这样写比较容易找到相似三角形的对应角和对应边. ②顺序性:相似三角形的相似比是有顺序的. ③两个三角形形状一样,但大小不一定一样.④全等三角形是相似比为1的相似三角形.二者的区别在于全等要求对应边相等,而相似要求对应边成比例. 知识点7 :相似三角形的基本定理定理:平行于三角形一边的直线和其它两边(或两边延长线)相交,所构成的三角形与原三角形相似.定理的基本图形:用数学语言表述是: BC DE // ,ADE ∆∴∽ABC ∆.知识点8 :相似三角形的等价关系(1)反身性:对于任一ABC ∆有ABC ∆∽ABC ∆.(2)对称性:若ABC ∆∽'''C B A ∆,则'''C B A ∆∽ABC ∆.(3)传递性:若ABC ∆∽C B A '∆'',且C B A '∆''∽C B A ''''''∆,则A B C ∆∽C B A ''''''∆.知识点9:三角形相似的判定方法1、定义法:对应角相等,对应边成比例的两个三角形相似.2、平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.3、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似.4、判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似.5、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.简述为:三边对应成比例,两三角形相似.6、判定直角三角形相似的方法: (1)以上各种判定均适用.(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.(3)直角三角形被斜边上的高分成的两个直角三角形与原三角形相似.直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。
第一讲 相似三角形的判定及有关性质(3)
l
D E
二.平行线分线段成比例定理: 三条平行线截两条直线, 所得的对应线段成比例。
A B
l1
l2
F
C
l3
推论: 平行于三角形一边的直线截其他两边 (或两边的延长线)所得的对应线段成 比例。
l
A D E
l
l1
l2
C
l
E A
l
D
l1
l2
B
B
l3
C
l3
例3 用平行于三角形一边且和其他两边相交的 直线截三角形,所截得的三角形三边与原三角形 三边对应成比例。 已知:△ABC中, DE//BC,DE分别交AB,AC 于点D,E. A
AD AE DE . 求证: AB AC BC
B D E
F
C
分析:构造一组平行线,使AE,AC,DE,BC为其 截得的线段.
例3 已知:△ABC中, DE//BC,DE分别交
AB,AC 于点D,E.
AD AE DE 求证: AB AC BC .
D
A
E
证明:过点E作EF//AB,
AD AE BF AE DE // BC, EF // AB, AB AC , BC AC .
探究:平行线改为平面后,应考虑两种情形:
l与l 共面 l与l 异面
G
l
C B
A
D
B
A P
D E
E
Q F
F
C
R
l
l
l1
l
三.相似三角形的判定及性质 1.相似三角形的判定
定义 对应角相等,对应边成比例的两个三角 形叫做相似三角形。(三角三边) 相似三角形对应边的比值叫做相似比 (或相似系数)。
第一讲(三)相似三角形判定与性质
E
AC边上的点, 且DE // BC.由上一节的例
3可知, ADE和ABC对应边成比例.又 B 图1 16
C
由DE // BC可得, ADE B, AED
C,而A是公共角,因此ADE ~ ABC. E
D
探究 如果 D、E交于BA、CA的延长
线上,且DE // BC 图1 17,那么结论是
因此在D、E的变化过程中, ADE的边长在改变,而角的大
小 始 终 不 变.这 说 明, 只 要 两 个 三 角 形 的 三 个对 应 角 相 等,
那么它们就相似.又由于三角形的内角和为1800 ,所以只要
两 个 三 角 形 中 有 两 个 对应 角 相 等, 那 么 第 三 个 对 应 角 一 定
是同弧上的圆周角.故ACE ABE .则BCE ABE.
又因为BED CEB,故EBD ~ ECB.因此 EB DB . EC CB
A
D1 D
D2
E1 E E2
B
C
图1 18
探究 沿着"从运动变化中找不变性"的思路,可 以发现 ,在图1 18中,对于 DE 的任意一个位置,
判定定理3 对于任意两个三角形,如果一个 三角形的三边 和另一个三角形的三条边对 应成比例, 那么这两个三角形相似. 简述为: 三 边 对 应 成 比 例, 两 三 角 形 相 似.
已知:图1 25, 在ABC和A`B`C`中,
A`
A`B` B`C` C`A`. AB BC CA 求证 : A`B`C`~ ABC .
交圆于一点E .求证 : EB DB .
EC CB
E
分析 要证 EB DB ,应考虑EB、EC、 EC CB
第一讲相似三角形——比例线段
第一讲 相似三角形——相似与比例线段第一课时一.放缩与相似 1. 相似形的概念一般地,把一个图形放大或缩小,得到的图形和原来的图形,形状一定相同。
我们把形状相同的两个图形叫做相似形。
2. 相似形的特征 (1) 相似三角形的特征∠A' =∠A ; ∠B'=∠B; ∠C' =∠CBCC B AC C A AB B A 111111===K (2) 相似多边形的特征推论:如果两个多边形相似,他们必定同为n 边形,而且各角对应相等,各边对应成比例。
【典型例题】1. 如果一张地图的比例尺为1:3000000,在地图上量得大连到长春的距离为25cm ,那么长春到大连的实际距离为 千米。
【同类变式】2. 在地图上,都标有比例尺。
现在一张比例尺为1:5000的图纸上,量得∆ABC 的三边:AC=3cm,BC=4cm,AB=5cm,求这个图纸所反映的实际∆A'B'C'的周长是多少米?3. 某两地在比例尺为1:5000000的地图上的距离是30cm ,两地的实际距离是多少?如果在该地图上A 地(正方形场地)面积是3cm 2,问该地实际面积是_________ 4. 下列说法正确的有( )个(1)有一个角是100o的等腰三角形相似 (2)有一个角是80o的等腰三角形相似 (3)所有的等腰直角三角形相似 (4)所有的正六边形都相似 (5)所有的矩形都相似 (6)所有的正方形都相似 A .2个 B. 3个 C. 4个 D. 5个5. 一张长方形纸片对折后所得的长方形与原长方形是相似形,求原长方形的长与宽之比。
【同类变式】6. E 、F 分别为矩形ABCD 的边AD 、BC 的中点,若矩形ABCD 与矩形EABF 相似,AB=1。
求矩形ABCD 的面积。
7. 在相同时刻的物高和影长成正比例,如果在某时,旗杆在地面上的影长为10m 此时身高是1.8米,小明的影长是1.5米,求旗杆的高度。
高中数学第一讲相似三角形的判定及有关性质1.3相似三角形的判定及性质第2课时相似三角形的性质课件新人教A
1.相似三角形的性质常用于: (1)计算边长、周长、面积等; (2)用来证明线段成比例、角相等,在进行计算时常 常结合方程的思想进行. 2.研究相似三角形的性质时,切记从相似比入手即 可,涉及线段的比均等于相似比,只有面积的比是相似 比的平方.
[典例 在▱ABCD 中,E 是 BA 延长线上任一点, EC 交 AD 于 F,已知 S△BCE=m,S△DCF=n.求平行四边形 的面积.
类型 2 利用相似三角形的性质证明等量关系
[典例 2] 如图所示,在梯形 ABCD 中, AD∥BC,AC 与 BD 相交于 E,BF∥CD 交 CA 的延长线于点 F.
求证:EF·AD=EC·BC. 证明:因为 AD∥BC,
所以△ADE∽△CBE,
[变式训练]如图所示,四边形 ABCD 中,AC 为 AB, AD 的比例中项,且 AC 平分∠DAB.求证:
(1)△ABC∽△ACD; (2)BC2∶CD2=AB∶AD. 证明:(1)因为 AB∶AC=AC∶AD,
且∠DAC=∠BAC,
第一讲 相似三角形的判定及有关性质
[知识提炼·梳理]
(1)相似三角形对应高的比、对应中线的比和对应角 平线的比都等于相似比.
(2)相似三角形周长的比等于相似比. (3)相似三角形面积的比等于相似比的平方. (4)相似三角形外接圆的直径比、周长比等于相似比, 外接圆的面积比等于相似比的平方.
类型 1 利用相似三角形的性质进行计算(互动探究)
相似三角形的性质一课件
角边相似
如果一个三角形的两个角与另一个三 角形的一对对应角相等,并且这两个 角的夹边成比例,则这两个三角形相 似。
如果两个三角形的三组对应边成比例 ,则这两个三角形相似。
性质与定理
对应角相等
相似三角形对应角相等,即 $angle A_1 = angle A_2, angle B_1 = angle B_2, angle C_1 = angle C_2$。
对应边成比例
如果两个三角形相似,则它们的对应边长之间存在一定的比例关系。
这个比例称为相似比,是判定两个三角形是否相似的重要依据。
对应边之间的比例关系可以用数学公式表示,即 a/b = c/d = ... = k,其中 a, b, c, d, ... 是对应边的长度,k 是相似比。
面积比等于相似比的平方
BIG DATA EMPOWERS TO CREATE A NEW ERA
相似三角形的性质一ppt课
件
• 相似三角形的定义 • 相似三角形的性质 • 相似三角形的应用 • 相似三角形的判定定理 • 相似三角形的性质定理 • 相似三角形的综合应用
目录
CONTENTS
01
相似三角形的定义
BIG DATA EMPOWERS TO CREATE A NEW
应用。
在数学竞赛中的应用
相似三角形是数学竞赛中常见的知识点之一,对于提高学生的数学竞赛 成绩有着重要的作用。
在数学竞赛中,相似三角形常常与其它知识点结合,形成综合性题目, 考察学生的数学综合素质。
掌握相似三角形的性质和判定方法,对于解决数学竞赛中的难题和压轴 题至关重要。
THANKS
感谢观看
04
相似三角形的判定定理
BIG DATA EMPOWERS TO CREATE A NEW
第一讲相似三角形及性质
第一讲 相似三角形及性质一、知识点 1、相似三角形1)定义:如果两个三角形中,三角________,三边__________,那么这两个三角形叫做相似三角形。
2)性质:两个相似三角形中,________相等、________成比例。
3)相似比:两个相似三角形的________的比,叫做这两个三角形的相似比。
如△ABC 与△DEF 相似,记作△ABC ∽△DEF 。
相似比为k 。
4)判定:①定义法:_______________________________的两个三角形相似。
②三角形相似的预备定理:平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似。
③三角形相似的判定定理:判定定理1:________________的两三角形相似.判定定理2:________________________________________________________的两个三角形相似. 判定定理3:________________________________________________________的两个三角形相似. 5)直角三角形相似判定定理:____________________________的两直角三角形相似。
____________________________的两直角三角形相似6)射影定理:斜边的高分直角三角形所成的两个直角三角形与原直角三角形相似. 射影定理: CD ²=AD ·BD , AC ²=AD ·AB , BC ²=BD ·BA①相似三角形________________、_____________________________.②相似三角形______________________________________________都等于相似比(对应边的比). ③相似三角形对应面积的比等于____________. 9)相似的应用:位似1)定义:如果两个多边形不仅相似,而且对应顶点的连线相交于一点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比。
(完整)相似三角形精品PPT资料精品PPT资料
基础训练
口答: (4)如图,正方形的边长a=10,菱形的
边长b=5,它们相似吗?请说明理由.
倍 速 课 时 学 练
基础训练
6 65╰0
3
800
图中是人们从平面镜及哈哈镜里看到的不同镜像,它们相似吗?
如果两个多边形对应边成比例,对应角相等,那么这两个多边形相似.
• 练习: 成比例线段,并用比例式表示.
课 时 学 练
探索一
图中两个四边形是相似形,仔细观察这两 个图形,它们对应边之间存在怎样的关系? 对应角之间又有什么关系?
倍 速 课 时 学 练
探索二
再看看图中两个相似的五边形,是否 与你观察所得到的结果一样?
倍 速 课 时 学 练
形成认识:
1.相似多边形的特征:
对应边成比例,对应角相等.
符号语言(以四边形为例):
a =360°-(77°+83°+117°)=83° y的长度和角度a的大小.
800
x
5
• ⑴如图1,则x= 2.5,y 这些图形都有什么共同特征?
两个任意三角形是相似图形吗?
比是_________.
= 1,.5 α= ;90 这些图形都有什么共同特征?
0
相似图形:我们把这种形状相同的图形说成是相似图形
╮1250
y
图1
α╭ 3
用复印机把一个图形放大或缩小所所得的图形,也都与原来的图形相似.
• ⑵如图2,x= 22.5. 义务教育课程标准实验教科书
实际的建筑物和它的模型是相似的;
义务教育课程标准实验教科书
倍如果两个多边形对应边成比例,对应角相等,那么这两个多边形相似.
30
15
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 一 讲 图形的相似与比例线段
知识要点:
1、成比例线段:对于四条线段a,b,c,d ,如果其中两条线段的比与另两条线段的比相等,如
d
c
b a =(即ad=b
c )
,我们就说这四条线段是成比例线段,简称比例线段. 2.比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:a
d c b =. 3. 比例的性质
更比性质(交换比例的内项或外项):
()()()a b
c d a c d c b d b a
d b
c a ⎧=⎪⎪
⎪=⇒=⎨⎪⎪=⎪⎩
,
交换内项,交换外项.
同时交换内外项
反比性质(把比的前项、后项交换):c
d a b d c b a =⇒=. 合比性质:
d
d c b b a d c b a ±=±⇒=. 等比性质:
如果
)0(≠++++====n f d b n
m
f e d c b a ,那么
b a n f d b m e
c a =++++++++ . 2、相似多边形的特征:相似多边形的对应角相等,对应边的比相等.
反之,如果两个多边形的对应角相等,对应边的比相等,那么这两个多边形相似. 3、相似比:相似多边形对应边的比称为相似比.
第一部分【能力提高】 1.若
3
7
53=+b b a ,则b a 的值是__________
2..已知
432z y x ==,求y
x z
y x -+-33的值 3. 如果
0432≠==c b a ,求:b
c a c b a 24235-++-的值 4.已知两数4和8,试写出第三个数,使这三个数中,其中一个数是其余两个数的比例中项,
第三个数是________(只需写出一个)
5.线段x ,y 满足1:4:)4(2
2
=+xy y x ,求y x :的值
6.若3x =x
4
,则x 等于( ) (A)12 (B)2 3 (C)- 2 3 (D)±2 3
D A
C
B
7.已知y 是3,6,8的第四比例项,则y 等于( )(A)4 3 (B)16 (C)12 (D)4 8.若(m+n):n=5:2,则m:n 的值是( )
(A)5:2 (B)2:3 (C)3:2 (D)2:5 9.若a b =c
d
,下列各式中正确的个数有( )
a d = c d , d:c = b:a, a
b = a 2b 2 , a b = c+5d+5 , a b = a+
c a+
d , c d = ma mb (m ≠0) (A)1 (B)2 (C)3 (D)4
10.把m=ab
c 写成比例式,且使m 为第四比例项 ;
11若线段a=5cm ,b=10cm,c=4dm,d=2cm,它们是否成比例线段 ; 12.已知x y =5
3
,则(x+y):(x-y)= ;
13.已知S 正方形=S 矩形,矩形的长和宽分别为10cm 和6cm ,则正方形的边长为 14.在Rt ΔABC 中,∠C=90°, ∠A=30°则a:b:c= 15.已知x:y=2:3,则(3x+2y ):(2x-3y)= 16.已知5x-8y=0,则
x+y x = 8、已知x 5 =y 3 =z 4 ,则2x+y-z
x+3y+z
= 17.已知5x+y 3x-2y =12 ,则x y = , x+y
x-y = ;
18.已知a:b:c=2:3:7,且a-b+c=12,求2a+b-3c 的值;
19.已知b+c a =c+a b =a+b c ,求a+b
c 的值。
20.平面镜中的四边形与原四边形之间属于 关系;放大镜中的四边形与原四边形之间属于 关系.
21.观察下列图形中,形状相同的是 .(只须填写序号)
22.如上图,等腰Rt △ABC 中,AB=AC ,∠BAC=90°,AD ⊥BC ,则图中的△ABD 与△ACD 之间
的关系是 ,△ABD 与△ABC 之间的关系是 .
23.下列说法:①所有的等腰三角形都相似;②所有的等边三角形都相似;③所有等腰直角三角形都相似;④所有的直角三角形都相似.其中正确的是 .
24.(1)两个三角形相似,其中一个三角形两内角分别为40°、60°,那么另一个三角形
最小内角的度数是 ,最大内角的度数是 .
(2)△ABC ∽△A 1B 1C 1,其中∠B=60°,∠C 1=70°,则∠A= .
25.比例的基本性质:如果a ∶b=c ∶d ,那么 ,其中a 、d 叫做比的外项,b 、c 叫做比的内项,简单的说 之积等于 之积.特别地,若
E
B
C
A D
E
B
C
A D a ∶b=b ∶c ,那么 ,此时b 叫做a 、c 的比例中项. 26.已知
AB DE
AC DF
=
,则 ² = ² ;若P A Q C P B Q D ⋅=⋅,则=.
27.下列线段中,成比例线段是( ).
(A)1,2,3,4 (B)1, 2 ,2,2 2 (C) 1, 2 , 3 , 5 (D)2,3,4,5 28.将三角形纸片(△ABC )按如图所示的方式折叠,使点B 落在 边AC 上,记为点B ′,折痕为EF .已知AB=AC=3,BC=4,
若以点△ABC ∽△B ′FC ,那么BF 的长度是 .
29.四边形ABCD 与EFGH 相似, 求角α、β的大小和EH 的长度x.
第二部分【综合运用】
1.如图,有一个格点三角形(顶点是格点的三角形),请在图中画出三个不同的格点三角形
与之相似,并直接写出新三角形与原三角形对应边的比值(相似比).
相似比:
2.如图,已知△ABC ∽△ADE ,AB=6BD ,且△ABC 与△ADE 的周长差为4,求△ABC 与△ADE
的周长.
3.在△ABC 中,点E 在AC 上,点D 在AB 上,且AD AE
DB EC
=. (1)若AB=12,AE=4,EC=6,求AD 的长; (2
)求证:DB EC
AB AC
=.
第 1 讲作业
1.如图所示,每个大正方形均由边长为1的小正方形组成,则下列左图四个三角形(阴影部分)中能与ΔABC相似的是( ).
(A) (B) (C) (D)
2.图中是两颗形状相同的星星,则x的值是( ).
(A)15 (B)12 (C)10 (D)8
3.如果一个直角三角形有两条边长分别是6和8,另一个与
它相似的直角三角形的三边长分别是3和4及x,则x的
值( ).
(A)只有1个 (B)可以有2个
(C)有2个以上但有限 (D)有无数个
4.下列说法:①相似三角形一定全等;②不相似的三角形一定不全等;③全等的三角形不一定相似;④全等的三角形一定相似.其中正确的是( ).
(A)①② (B)②③ (C)②④ (D)③④
5.下列各组线段中,能成比例的是( ).
(A)1,3,4,6 (B)30,12,0.8,0.2
(C)0.1,0.2,0.3,0.4 (D)12,16,45,60
6.如图,已知AB :DB=AC :EC,AD=15cm,AB=40cm,AC=28cm,
则AE= .
7.若△ABC与△A1B1C1相似,△A1B1C1与△A2B2C2相似,则△ABC与△A2B2C2的关系是 . 8.△ABC中,AB=12 cm,BC=18 cm,AC=24 cm,若△A′B′C′∽△ABC,且△A′B′C′的周长为81 cm,求△A′B′C′各边的长.。