高速专能化数控机床

合集下载

数控机床技术发展现状及趋势

数控机床技术发展现状及趋势

数控机床技术发展现状及趋势赵学明(广东工业大学,广东广州510006)摘要:现在世界上很多发达的工业化国家在生产中广泛应用数控机床。

随着电子技术和控制技术的飞速发展,当今的数控系统功能已经非常强大,而且随着数控技术的不断发展和应用领域的扩大,他对国计民生的一些重要行业的发展起着越来越重要的作用。

随着科学技术的发展,世界先进技术的兴起和不断成熟,对数控技术提出了更高的要求。

当今数控机床正在不断采用最新成果,朝着高速化、超精度化、多功能化、智能化、系统化、网络化、高可靠性与环保等方向发展。

关键字:数控机床、技术、现状、发展趋势引言从20世纪中叶数控技术出现以来,数控机床给机械制造业带来了革命性的变化。

数控加工具有如下特点:加工柔性好,加工精度高,生产率高,减轻操作者劳动强度、改善劳动条件,有利于生产管理的现代化以及经济效益的提高。

数控机床是一种高度机电一体化的产品,适用于加工多品种小批量零件、结构较复杂、精度要求较高的零件、需要频繁改型的零件、价格昂贵不允许报废的关键零件、要求精密复制的零件、需要缩短生产周期的急需零件以及要求100%检验的零件。

数控机床的特点及其应用范围使其成为国民经济和国防建设发展的重要装备。

进入21世纪,我国经济与国际全面接轨,进入了一个蓬勃发展的新时期。

机床制造业既面临着机械制造业需求水平提升而引发的制造装备发展的良机,也遭遇到加入世界贸易组织后激烈的国际市场竞争的压力,加速推进数控机床的发展是解决机床制造业持续发展的一个关键。

随着制造业对数控机床的大量需求以及计算机技术和现代设计技术的飞速进步,数控机床的应用范围还在不断扩大,并且不断发展以更适应生产加工的需要。

1数控机床的简单介绍车、铣、刨、磨、镗、钻、电火花、剪板、折弯、激光切割等都是机械加工方法,所谓机械加工,就是把金属毛坯零件加工成所需要的形状,包含尺寸精度和几何精度两个方面。

能完成以上功能的设备都称为机床,数控机床就是在普通机床上发展过来的,数控的意思就是数字控制。

高档数控机床高速精密电主 轴关键技术及应用 公告

高档数控机床高速精密电主 轴关键技术及应用 公告

高档数控机床高速精密电主轴关键技术及应用公告全文共四篇示例,供读者参考第一篇示例:高档数控机床高速精密电主轴关键技术及应用随着科技的不断发展,数控机床作为制造业的重要装备之一,正逐渐成为制造业的主力军。

而高档数控机床的核心部件之一——高速精密电主轴,更是决定了整个机床性能和加工质量的关键部件。

本文将重点介绍高档数控机床高速精密电主轴的关键技术及应用。

一、高速精密电主轴的定义和特点高速精密电主轴是数控机床上用于驱动刀具旋转的核心部件,它直接影响了机床的加工精度、效率和稳定性。

一般来说,高速精密电主轴具有以下几个特点:1. 高速转速:高速精密电主轴的工作转速通常在10000rpm以上,甚至可以达到50000rpm以上。

高转速可以提高加工效率,缩短加工周期。

2. 高精度:高速精密电主轴需要具有极高的旋转精度和稳定性,以保证加工的精度和表面质量。

4. 高功率密度:高速精密电主轴需要具有高功率密度,以满足大功率输出的要求,同时尽可能减小轴体体积和重量。

1. 轴承技术:高速精密电主轴的轴承是其最关键的部件之一,直接影响轴的精度、稳定性和寿命。

目前主要采用陶瓷球轴承、陶瓷滚珠轴承和气体轴承等高速轴承技术。

2. 动平衡技术:高速精密电主轴在旋转时会产生不小的离心力,需要采用动平衡技术来消除不平衡导致的振动和噪音。

3. 冷却技术:高速精密电主轴在高速运转时会产生大量热量,需要采用有效的冷却技术来保持轴的温度稳定,避免发热过高导致零部件热变形。

4. 控制技术:高速精密电主轴需要配备精密的控制系统,以实现精准的转速控制、负载检测和自适应控制等功能。

5. 结构设计:高速精密电主轴的结构设计需要考虑到刚性和轻量化的平衡,同时保证轴体的稳定性和可靠性。

高速精密电主轴广泛应用于汽车、航空航天、铁路、军工等领域,主要用于高精度、高效率的加工。

具体应用包括精密零件加工、高速铣削、高速车削、高速钻孔等领域。

目前国内外一些知名数控机床制造商,如哈斯、西铁城、FANUC 等,都大量采用了高速精密电主轴技术,使其生产的数控机床具有更高的加工精度和效率,受到了市场的广泛认可。

数控机床的发展历史及其技术的发展趋势

数控机床的发展历史及其技术的发展趋势

3、在关键技术的应用方面,伺服驱动技术、数控系统技术和机械结构技术 都在不断发展,其中伺服驱动技术和数控系统技术的数字化、高频化、集成化, 以及机械结构技术的高刚度、高精度、高可靠性都是当前发展的主要方向。
综上所述,数控机床的关键技术和发展趋势对制造业的发展至关重要。未来, 随着科学技术的不断进步和创新,我们有理由相信,数控机床的关键技术和发展 趋势将会有更大的突破和创新。
2、虚拟现实/增强现实技术在数 控机床上的应用
虚拟现实(VR)和增强现实(AR)技术的引入,为数控机床的操作和维护提 供了全新的视角。通过VR技术,可以将加工过程进行模拟仿真,帮助操作人员提 前发现潜在的错误和问题,提高实际加工过程中的安全性。而AR技术则可以将加 工信息实时叠加到实际场景中,使操作人员能够更加直观地了解设备状态和加工 进度,提高生产效率。
高速化指的是数控机床的加工速度不断提高,高精度化则是指数控机床的加 工精度不断提高。复合化是指数控机床具备多种加工功能,能够实现一机多能。 智能化则是指数控机床具备智能化的加工能力和自我诊断修复功能。
三、数控机床关键技术分析
1、伺服驱动技术:伺服驱动技术是数控机床的重要组成部分,其性能直接 影响到数控机床的加工精度和速度。目前,伺服驱动技术正朝着数字化、高频化、 集成化方向发展,其中数字化伺服驱动技术通过提高脉冲频率和采样率,能够大 幅度提高伺服系统的性能。
四、结论
数控机床作为现代制造业的核心设备,其性能和使用寿命直接影响到生产效 率和产品质量。本次演示通过对数控机床的关键技术和发展趋势进行分析,得出 以下结论:
1、数控机床的关键技术包括伺服驱动技术、数控系统技术、机械结构技术 等,这些技术的发展程度直接决定了数控机床的性能和使用寿命。

铝合金高效高速数控加工机床最新发展

铝合金高效高速数控加工机床最新发展

铝合金高效高速数控加工机床最新发展高效高速加工技术(HEM-HSM)实际上是一种工序复合化高速加工技术,即在一台高功能高速数控(MC)机床上,实现对零件高金属切除率mrr(metal removal rate)的高速粗加工/高速半粗加工(HEM)和高零件表面积切除速率的高速半精加工/高速精加工(HSM)多种工序的复合加工,和常规切削加工和典型高速加工技术(HSM)相比,HEM-HSM加工具有明显的优势,是一种高加工生产率与高加工质量集成融合的高速加工技术。

能实现这种一次装夹完成粗精工序复合加工(HEM-HSM)的高速数控加工机床可称为高效高速数控加工机床。

现今,用于HEM-HSM加工应用的高效高速数控MC机床多为五轴联动和配备有高功率高转速/高转矩主轴,并已成为许多航宇制造业用户特别关注的现代化先进关键制造装备之一。

为此,许多世界着名的制造商都为航宇制造业推出了多种类型用于大型铝合金材和钛合金材整体结构件HEM-HSM加工应用的五轴联动高速数控MC机床,实现高效率高速粗加工和高质量高速精加工的良好融合,满足用户对高生产率大型高速加工设备的迫切需要。

应指出的是,用于诸如铝合金等轻合金材的HEM-HSM加工设备和用于诸如钛合金等硬合金材的HEM-HSM加工设备具有较大的不同。

近10多年来,适用于轻负载切削的高功率高速主轴和高速设计制造技术取得了显着进步,同时对铝合金材HEM-HSM加工技术及其工程应用研究也已比较成熟,因而铝合金高效高速数控MC 机床在航宇制造业得到较广泛应用。

本文将仅对用于铝合金材大型复杂整体构件高效高速数控MC机床的应用现状和最新发展作一讨论与介绍。

铝合金材HEM-HSM加工需要高功率高转速主轴用于大型铝合金材航宇整体结构件HEM-HSM加工应用的高速数控MC机床,机床主轴应具有足够高的功率、转速、适当转矩和足够宽的可调控的转速范围,也就是说要求机床主轴功率/转矩每转速特性应适合于航宇铝合金等轻合金材的高效高速切削加工之工艺要求。

数控机床的发展趋势

数控机床的发展趋势

数控机床的发展趋势【内容摘要】随着科学技术的发展、世界先进制造技术的兴起和不断成熟,对数控加工技术提出了更高的要求,超高速切削、超精密加工等技术的应用,对数控机床的数控系统、伺服性能、主轴驱动、机床结构等提出了更高的性能指标。

制造技术和装备就是人类生产活动的最基本的生产资料,而数控技术又是当今先进制造技术和装备最核心的技术。

当今世界各国制造业广泛采用数控技术,以提高制造能力和水平,提高对动态多变市场的适应能力和竞争能力。

如今数控机床正在不断采用最新技术成果,朝着高速化、多功能化、智能化、数控系统小型化、数控编程自动化、更高可靠性等方向发展。

【关键词】:数控技术发展趋势机械制造智能功能从1952年美国麻省理工学院研制出第一台试验性数控系统,到现在已走过了半个世纪历程。

随着电子技术和控制技术的飞速发展,当今的数控系统功能已经非常强大,与此同时加工技术以及一些其他相关技术的发展对数控系统的发展和进步提出了新的要求。

一、性能的发展方向1、高速度、高精度化高速化是指数控机床的高速切削和高速插补进给,目标是在保证加工精度的前提下,提高加工速度。

高精度是指数控机床能够达到的分辨率、定位精度、重复定位精度等。

效率、质量是先进制造技术的主体。

高速、高精加工技术可极大地提高效率,提高产品的质量和档次,缩短生产周期和提高市场竞争力。

近年来,电主轴、直线电机以及新型刀具的应用,使数控机床的加工速度得到了极大的提高,车削和铣削速度已达到5000~8000m/min以上;主轴转数在30000r/min(有的高达100000r/min)以上;进给速度在分辨率为1um时,达到100m/min(有的到200m/min)以上;分辨率为0.1um时,达到24m/min以上;自动换刀速度在1s 以内;小时段插补进给速度达到12m/min。

加工精度方面,普通机床的加工精度已经由10um提高到5um,紧密级加工中心则由3~5um提高到1~1.5um,而超精密加工精度已经开始进入纳米级(0.001um)。

简述数控机床的发展趋势

简述数控机床的发展趋势

简述数控机床的发展趋势
随着科技的不断发展,数控机床呈现出以下几个发展趋势:
1.高速化。

随着机床控制系统和驱动系统的配套提高,数控机床的加工速度将不断提高,可以满足更高精度和更高效率的生产需求。

2.智能化。

数控机床将向智能化方向发展,实现自动化作业和在线监控。

其系统将集成多种智能技术,如CAD/CAM、人工智能等,提高加工质量和效率。

3.精度提高。

随着制造行业对精度和稳定性的要求越来越高,数控机床将不断提高加工精度,满足高精度零部件的生产需求。

4.节能环保。

数控机床对能源的需求不断增加,环保和节能已经成为制造企业的重要任务。

因此,未来数控机床将偏向发展节能环保的技术和策略。

现代数控机床 高速化发展的最新动向

现代数控机床 高速化发展的最新动向
法 的 不 同 而 不 同 ,如 图 2所 示 。 1 0年 所 能 达 到 的 9 9
d n极限值在 2 X 1 。 左右 ,而今 该值 已能达 3 X 1 。 0 0
左右 。


切 削 加 工 的 高 速 化 需 求 是 现 代 数 控 机 床 和 加 工

且至 2 1 年 其产 值 00 将 超 过机 床市 场 总 产值的4 % 。 0
2. 进给 系 统 的高 速化 发展
一.、


从 加 工技 术层 面考 虑 ,机 床 主轴 系统 和 进给 系
统 的 高 速 化 发 展 需 要 协 调 进 行 。 然 而 从 技 术 进 步 的
中心 向高速 化 发展 的直 接 动 力 ,高 速切 削机 床 应运 而生 ,并促 使高速主轴 系统 、快速进给 系统 以及 配套
的高 性能 CN C控 制系统 、高效 高精度 测量 测试 系统 等高 速化 单元 在 高速 切 削机床 中普及 和推 广 。
时 阋庳
1. 主轴 系统 的 高速 化 发展
图 1 I O 展 出的主轴转速高于 10 0/ n JMT F O 0 r mi的机床统计数据 况 下 已能 满足 要 求 。 因此 ,脂 润滑 方法 的使 用 将会 以电主 轴 为代 表 的高 速主 轴 的应 用推 动 了高 速 持 续 增 加 。
第o 期 数控机床市场 . 9 . 2 3
图 1是 NSK 汇 总 的 2O 年 间 日本 国 际机 床展
图 2速度因数 d值 的变迁 n
因为重 切 削减 少 ,对 适于 低速 使用 的高 刚度 滚
(I O )展 出的主轴转速高于 10 0/ n的所谓高 子轴 承 的需 求增 加 不 多 ,而球 轴 承或 比重 较 小 的陶 JMT F 0 r mi O

一种高速加工专用的开放式高档数控系统

一种高速加工专用的开放式高档数控系统

的速 度 与 机 床 动 态 加
减速 特性有 关 , 即与机 床 主轴 允 许 的加 速 度
a及 其 加 减 速 的 允 许 变 化 率 J—d / t a d_ 有 1
图 1 无 L o h a 或 L o o k ed a ok 的数量不够 时容易过切
有一般高档数控 系统所 具有的功能 以外 , 特别增 加 了
纳米插补 、D刀具补偿 功能及 坐标系寻位补 偿 ( o 3 Gl )
功能 ( 五轴联 动机 床 加工 的关 键功 能 ) 高达 5 0 ; 0 0程 序段 的满 足高速 加工的提前预处理功能 ( 所谓前 瞻控
制 )它还具有很 强的抑 制外 部扰动 力的能力 , ; 适合控 制 高速高 精度 的直 线 电机 ; 有标 准 以太 网 ( C / 具 T P I ) 口的网络功 能等 等 。通 过适 当裁 剪 , 系 统可 P接 该
于 2 0 年 6 7日通过 江 苏省科 技 厅 的成果 鉴定 , 06 月 被 评价为“ 系 统在 技 术 上 达到 了 当前 国际 先 进水 该 平” 。该数 控系统作 为江 苏 省 20 06年科 技成 果 转 化 项 目, 获得 了科 技厅 10 0 0 万元 的无偿拨 款资助 。
S V2 0 N型数 控 系统 中, 段 NC代 码 连 续 轮廓 K 03 多 数控机 床 在 复 杂 曲面 的高 速 加 工 中 , 由于 N C 18 ・ 0 《 新技 术新 工艺》・ 新装 备及 其应用 2 0 0 7年 第 3期

个新 高度 。 关键 词 : 开放式 ; 数控 系统 ; 高速 高精度 中图分 类号 : 2 3 4 TP 7 . 文献标 识码 : A
日本 F ANUC在 2 0 0 4年 1 2月东 京 国际 机床 展 和 2 0 年 2月上 海 国际机 床 展 上展 出 了其 最新 06

数控车床技术发展现状及趋势

数控车床技术发展现状及趋势

数控车床技术发展现状及趋势一、本文概述数控车床,作为现代制造业的核心设备之一,其技术发展水平直接关系到加工精度、生产效率和产品质量。

随着科技的日新月异,数控车床技术也在持续进步,不断满足复杂多变的制造需求。

本文旨在探讨数控车床技术的当前发展现状,分析其内在的技术特点与优势,并展望未来的发展趋势。

通过深入研究数控车床的控制系统、驱动技术、加工工艺等关键领域,本文期望为相关行业的从业者和技术人员提供有价值的参考信息,推动数控车床技术的进一步创新和应用。

二、数控车床技术发展现状数控车床技术作为现代制造业的核心组成部分,经历了从简单的数控编程到高度集成化和智能化的变革。

目前,数控车床技术的发展现状主要体现在以下几个方面:数控系统智能化:随着人工智能和大数据技术的不断融入,数控车床的控制系统日趋智能化。

现代数控系统能够自动识别材料类型、厚度和硬度,并自动调整切削参数以达到最优的加工效果。

高精度与高效率:随着超精密加工技术和新型切削工具的应用,数控车床的加工精度得到了显著提升。

同时,通过优化数控算法和机床结构,提高了加工效率,减少了非生产时间。

复合加工能力:现代数控车床不仅具备车削、铣削、钻孔等基本功能,还能实现磨削、激光加工等多种加工方式的复合,从而在一台机床上完成复杂零件的多工序加工。

模块化与标准化:数控车床的设计制造越来越倾向于模块化和标准化,这不仅简化了生产流程,降低了制造成本,还有利于机床的维护和升级。

网络安全与远程监控:随着工业0和物联网技术的发展,数控车床的网络安全和远程监控成为新的关注点。

现代数控系统配备了完善的安全防护措施,并通过云平台实现远程故障诊断和监控,大大提高了设备的运行可靠性和维护效率。

绿色环保与节能减排:数控车床在设计和制造过程中越来越注重绿色环保和节能减排。

通过优化机床结构、减少空载时间和使用环保切削液等措施,有效降低了能耗和污染排放。

数控车床技术在高精度、高效率、复合加工、智能化和网络化等方面取得了显著进展,为现代制造业的转型升级提供了有力支撑。

机械行业高效数控机床与研发方案

机械行业高效数控机床与研发方案

机械行业高效数控机床与研发方案第一章绪论 (2)1.1 研究背景 (2)1.2 研究目的与意义 (3)1.3 研究内容与方法 (3)第二章高效数控机床研发 (4)2.1 数控机床发展趋势 (4)2.2 高效数控机床关键技术研究 (4)2.3 高效数控机床设计原则 (4)2.4 高效数控机床功能优化 (4)第三章研发 (5)3.1 技术发展概述 (5)3.2 关键技术研究 (5)3.3 设计与仿真 (5)3.4 功能评估与优化 (6)第四章高效数控机床与集成技术 (6)4.1 集成技术概述 (6)4.2 数控机床与集成方案设计 (6)4.2.1 硬件集成设计 (6)4.2.2 软件集成设计 (6)4.2.3 人机交互设计 (6)4.3 集成系统控制策略 (7)4.3.1 控制策略原理 (7)4.3.2 控制策略实现 (7)4.4 集成系统功能评价 (7)第五章高效数控机床与控制系统 (7)5.1 控制系统设计原则 (7)5.2 控制系统硬件设计 (8)5.3 控制系统软件设计 (8)5.4 控制系统功能测试与优化 (8)第六章高效数控机床与传感器技术 (9)6.1 传感器技术概述 (9)6.2 传感器选型与优化 (9)6.2.1 传感器选型 (9)6.2.2 传感器优化 (9)6.3 传感器信号处理与分析 (9)6.3.1 信号预处理 (9)6.3.2 信号分析 (10)6.4 传感器在高效数控机床与中的应用 (10)6.4.1 位置检测 (10)6.4.2 力控制 (10)6.4.3 温度监测 (10)6.4.4 姿态检测 (10)6.4.5 振动监测 (10)第七章高效数控机床与安全与可靠性 (10)7.1 安全与可靠性概述 (10)7.2 安全防护措施 (11)7.3 可靠性分析方法 (11)7.4 可靠性优化策略 (11)第八章高效数控机床与应用案例分析 (12)8.1 数控机床应用案例 (12)8.1.1 案例一:某汽车制造企业数控机床应用 (12)8.1.2 案例二:某航空航天企业数控机床应用 (12)8.2 应用案例 (12)8.2.1 案例一:某家电制造企业应用 (12)8.2.2 案例二:某食品加工企业应用 (12)8.3 集成应用案例分析 (13)8.3.1 案例一:某大型制造企业集成应用 (13)8.3.2 案例二:某智能制造企业集成应用 (13)8.4 应用前景与展望 (13)第九章高效数控机床与产业发展现状与趋势 (13)9.1 产业发展现状 (13)9.2 产业政策与规划 (13)9.3 市场需求与竞争态势 (14)9.3.1 市场需求 (14)9.3.2 竞争态势 (14)9.4 发展趋势与挑战 (14)9.4.1 发展趋势 (14)9.4.2 挑战 (14)第十章总结与展望 (15)10.1 研究成果总结 (15)10.2 存在问题与不足 (15)10.3 研究展望与建议 (15)第一章绪论1.1 研究背景我国经济的快速发展,机械行业作为国民经济的重要支柱,对高效、精密、自动化生产的需求日益增长。

数控机床发展历史

数控机床发展历史

机床数控改造1 数控系统发展简史及趋势1946年诞生了世界上第一台电子计算机,这表明人类创造了可增强和部分代替脑力劳动的工具。

它与人类在农业、工业社会中创造的那些只是增强体力劳动的工具相比,起了质的飞跃,为人类进入信息社会奠定了基础。

6年后,即在1952年,计算机技术应用到了机床上,在美国诞生了第一台数控机床。

从此,传统机床产生了质的变化。

近半个世纪以来,数控系统经历了两个阶段和六代的发展。

1.1 数控(NC)阶段(1952~1970年)早期计算机的运算速度低,对当时的科学计算和数据处理影响还不大,但不能适应机床实时控制的要求。

人们不得不采用数字逻辑电路"搭"成一台机床专用计算机作为数控系统,被称为硬件连接数控(HARD-WIRED NC),简称为数控(NC)。

随着元器件的发展,这个阶段历经了三代,即1952年的第一代--电子管;1959年的第二代--晶体管;1965年的第三代--小规模集成电路。

1.2 计算机数控(CNC)阶段(1970年~现在)到1970年,通用小型计算机业已出现并成批生产。

于是将它移植过来作为数控系统的核心部件,从此进入了计算机数控(CNC)阶段(把计算机前面应有的"通用"两个字省略了)。

到1971年,美国INTEL公司在世界上第一次将计算机的两个最核心的部件--运算器和控制器,采用大规模集成电路技术集成在一块芯片上,称之为微处理器(MICROPROCESSOR),又可称为中央处理单元(简称CPU)。

到1974年微处理器被应用于数控系统。

这是因为小型计算机功能太强,控制一台机床能力有富裕(故当时曾用于控制多台机床,称之为群控),不如采用微处理器经济合理。

而且当时的小型机可靠性也不理想。

早期的微处理器速度和功能虽还不够高,但可以通过多处理器结构来解决。

由于微处理器是通用计算机的核心部件,故仍称为计算机数控。

到了1990年,PC机(个人计算机,国内习惯称微机)的性能已发展到很高的阶段,可以满足作为数控系统核心部件的要求。

数控机床的发展趋势

数控机床的发展趋势

3 按控制方式分类
(1)开环控制(Open Loop Control)即不带位置测 量元件,数控装置根据控制介质上旳指令信号, 经控制运算发出指令脉冲,使伺服驱动元件转过 一定旳角度,并经过传动齿轮、滚珠丝杠螺母副, 使执行机构(如工作台)移动或转动。特点是没 有来自位置测量元件旳反馈信号,对执行机构旳 动作情况不进行检验,指令流向为单向,控制精 度较低。
CIMS旳构成能够分下列几种部分:
(1)设计过程
(2)加工制造过程
(3)计算机辅助生产管理 (4)集成措施及技术
思索题:
1、 数控机床由哪几部分构成?简述数控机床各构成部分 旳作用。
2 、什么是数字控制、柔性制造单元(FMC)、直接数控 (DNC)?
3、 什么是点位控制?
4、 什么是开环控制、闭环控制和半闭环控制系统?
(9)数控工具磨床(NC Tool Grinding Machine) (10)数控坐标磨床(NC Jig Grinding Machine) (11)数控电火花加工机床(NC Dieseling Electric
Discharge Machine) (12)数控线切割机床(NC Wire Discharge Machine) (13)数控激光加工机床(NC Laser Beam Machine) (14)数控冲床(NC Punching Press) (15)加工中心
(3)柔性制造系统(Flexible Manufacturing System)是 由加工系统(由一组数控机床和其他自动化工艺设备, 如清洗机、成品试验机、喷漆机等构成)、物料自动 储运系统和信息控制系统三者相结合,由中央计算机 管理使之自动运转旳制造系统。
2 计算机集成制造系统(Computer Integrated Manufacturing System)

数控机床的未来发展趋势

数控机床的未来发展趋势

数控机床的未来发展趋势目前,数控机床的发展日新月异,高速化、高精度化、复合化、智能化、开放化、并联驱动化、网络化、极端化、绿色化已成为数控机床发展的趋势和方向。

中国作为一个制造大国,主要还是依靠劳动力、价格、资源等方面的比较优势,而在产品的技术创新与自主开发方面与国外同行的差距还很大。

中国的数控产业不能安于现状,应该抓住机会不断发展,努力发展自己的先进技术,加大技术创新与人才培训力度,提高企业综合服务能力,努力缩短与发达国家之间的差距。

力争早日实现数控机床产品从低端到高端、从初级产品加工到高精尖产品制造的转变,实现从中国制造到中国创造、从制造大国到制造强国的转变。

1、高速化随着汽车、国防、航空、航天等工业的高速发展以及铝合金等新材料的应用,对数控机床加工的高速化要求越来越高。

(1)主轴转速:机床采用电主轴(内装式主轴电机),主轴最高转速达200000r/min;(2)进给率:在分辨率为0.01μm时,最大进给率达到240m/min且可获得复杂型面的精确加工;(3)运算速度:微处理器的迅速发展为数控系统向高速、高精度方向发展提供了保障,开发出CPU已发展到32位以及64位的数控系统,频率提高到几百兆赫、上千兆赫。

由于运算速度的极大提高,使得当分辨率为0.1μm、0.01μm时仍能获得高达24~240m/min的进给速度;(4)换刀速度:目前国外先进加工中心的刀具交换时间普遍已在1s左右,高的已达0.5s。

德国Chiron公司将刀库设计成篮子样式,以主轴为轴心,刀具在圆周布置,其刀到刀的换刀时间仅0.9s。

2、高精度化数控机床精度的要求现在已经不局限于静态的几何精度,机床的运动精度、热变形以及对振动的监测和补偿越来越获得重视。

(1)提高CNC系统控制精度:采用高速插补技术,以微小程序段实现连续进给,使CNC控制单位精细化,并采用高分辨率位置检测装置,提高位置检测精度(日本已开发装有106脉冲/转的内藏位置检测器的交流伺服电机,其位置检测精度可达到0.01μm/脉冲),位置伺服系统采用前馈控制与非线性控制等方法;(2)采用误差补偿技术:采用反向间隙补偿、丝杆螺距误差补偿和刀具误差补偿等技术,对设备的热变形误差和空间误差进行综合补偿。

数控机床十大品牌

数控机床十大品牌

成功案例二
总结词
高精度、高效率、高可靠性
详细描述
在航空制造领域,对于加工精度和效率的要求非常高。该品牌数控机床具有高精度、高效率和高度可靠性,能够 满足航空制造领域对于高质量、高性能和高产量的需求。通过不断的技术创新和升级,该品牌数控机床在航空制 造领域的应用越来越广泛。
成功案例三
要点一
总结词
高精度、高效、灵活性
总结:数控机床十大品牌的现状与特点
德国西门子:作为全 球知名的电气化、自 动化和机器人制造商 ,西门子在数控机床 领域也有着深厚的技 术背景和市场份额。 其产品特点为高精度 、高可靠性、易操作 和维护。
日本发那科:作为全 球领先的数控系统供 应商,发那科的产品 广泛应用于机床、机 器人、汽车制造等领 域。其产品优势为高 速度、高精度、良好 的用户界面和智能化 控制。
瑞士ABB集团:ABB 集团在机器人、自动 化和数字化制造领域 具有世界领先地位。 其数控机床产品以高 精度、高刚性和高效 率著称,同时具有广 泛的应用领域和用户 认可度。
中国沈阳机床:作为 中国最大的机床制造 商之一,沈阳机床的 产品覆盖面广,技术 水平高。其数控机床 产品以高精度、高稳 定性和良好的服务支 持受到国内外用户的 赞誉。
Makino
Makino是一家日本的数控机床制造商,以生产高端数控机床而闻名。其产品包括铣床、加工中心、车床等,精度高 且稳定。
Okuma
Okuma是另一家日本的数控机床制造商,其产品包括大型加工中心、数控铣床等,机械性能好且耐用。
品牌历史及发展
01 Haas
Haas成立于1953年,总部位于美国加利福尼亚州 ,最初是一家小型机械修理店,逐渐发展成为全 球最大的机床制造商之一。

第1章 数控机床概论

第1章 数控机床概论

第1章数控机床概述学习目标:数控机床是典型的机电一体化产品,是现代制造业的关键设备。

本章主要讲述数控机床的基本概念、数控机床的分类以及数控机床的技术与发展水平等。

本章要求理解并掌握数控机床的基本概念和分类,了解数控技术的发展趋势以及以数控机床为基础的自动化生产系统的发展。

1.1 数控机床的基本概念1.1.1 数控机床及其特点数控(Numerical Control,NC)——数字控制,用数字和符号构成的数字化信息自动控制机床运转的技术。

数控机床(Numerically Controlled Machine Tool )——采用了数控技术的机床。

数控机床是一种高效、新型的自动化机床,具有广泛的应用前景。

它与普通机床相比具有以下特点:(1)适应性、灵活性好(2)精度高、质量稳定(3)生产效率高(4)劳动强度低、劳动条件好(5)有利于现代化生产和管理(6)使用、维护技术要求高1.1.2 数控机床的组成数控机床的种类很多,但任何一种数控机床主要由控制介质、数控系统、伺服系统和机床主体四部分组成,如图1-1所示。

此外数控机床还有许多辅助装置,如自动换刀装置,自动工作台交换装置自动对刀仪,自动排屑装置及电、液、气、冷却、润滑、防护等装置。

图1-1 数控机床的组成(1)控制介质是指将零件加工信息传送到控制装置中去的程序载体。

(2)数控系统是数控机床的核心。

(3)伺服系统是数控系统的执行机构之一,执行由CNC装置输出的运动指令。

(4)机床主体也称主机,它包括机床的主运动部件、进给运动部件、执行部件和基础部件。

(5)辅助装置是数控机床在实现整机的自动化控制中,为了提高生产效率、加工精度、还需要配备许多辅助装置,如液压和气动装置、自动换刀装置、自动工作台交换装置、自动对刀装置、自动排屑装置等。

1.1.3 数控机床的工作过程如图1-2所示,数控机床的加工,首先要将被加工零件图样上的几何信息和工艺信息用规定的代码和格式编写成加工程序,然后将加工程序输入到数控系统,在数控系统控制软件的支持下,经过处理与计算后,发出相应的控制命令,再通过伺服系统使机床按预定的轨迹运动,从而完成零件的加工。

数控机床的发展及应用简述

数控机床的发展及应用简述

数控机床的发展及应用简述一、数控机床的定义与发展概况1. 数控机床的概念数控机床是指通过程序控制工件加工过程的机床。

与传统机床相比,数控机床具有自动化程度高、精度高、生产效率高等特点。

其核心是数控系统,通过预先编写工艺程序,实现对工件的精确加工。

2. 数控机床的发展历程数控机床的发展可追溯到20世纪50年代,最早应用于航空航天和国防工业领域。

经过几十年的发展,数控机床技术逐渐成熟,并逐渐应用于汽车制造、船舶制造、模具制造等各个行业。

二、数控机床的应用领域1. 汽车制造在汽车制造领域,数控机床主要应用于汽车车身、发动机零部件、底盘等零部件的加工。

通过数控机床的高精度和高效率加工,可以提高汽车零部件的质量和生产效率。

2. 船舶制造在船舶制造领域,数控机床主要应用于船体结构、船舶零部件和船舶配套设备的加工。

数控机床可以实现对复杂形状的加工,提高船舶的结构强度和航行性能。

3. 模具制造在模具制造领域,数控机床主要应用于高精度、高复杂度的模具制造。

通过数控机床可以实现对各种复杂形状的加工,提高模具的精度和加工效率。

4. 刻字雕刻在刻字雕刻领域,数控机床可以实现对各种材料的刻字和雕刻。

通过数控机床的高精度和高速度加工,可以实现对精细字体和复杂图案的加工。

5. 其他领域除了以上应用领域外,数控机床还广泛应用于航空航天、电子、仪器仪表、医疗器械等领域。

通过数控机床的应用,可以提高产品的质量和生产效率,推动产业的升级。

三、数控机床的发展趋势1. 高速化随着工业自动化的发展,对数控机床加工速度的要求越来越高。

未来数控机床将继续提高加工速度,实现更高的生产效率。

2. 智能化智能化是数控机床发展的重要方向。

未来数控机床将实现自动化调整工艺参数、自动切换加工工具等功能,提高机床的智能化水平。

3. 网络化通过网络连接,数控机床可以实现远程监控和远程操作。

未来数控机床将实现远程故障诊断、远程维护等功能,提高机床的可靠性和可维护性。

数控机床的分类

数控机床的分类

数控机床的分类
数控机床通常指的是使用数控装置的机床,它们可以根据不同的分类方式分为不同的种类,大致可以分为以下几类。

按照加工方式分类
1.钻床数控机床:主要用于钻孔和点焊等工艺。

2.铣床数控机床:主要用于金属、塑料、木材等材料的切削加工。

3.车床数控机床:主要用于旋转体的加工。

4.磨床数控机床:主要用于精密零件的磨削加工。

5.喷水切割机床:主要用于各种材料的切割、雕刻和加工。

按照传动方式分类
1.直线导轨数控机床:采用直线导轨对机床进行控制和运转的方式。

2.滑块导轨数控机床:采用滑块导轨对机床进行控制和运转的方式。

3.滚珠丝杠数控机床:主要用于高速、高精度、高负荷的工作模式。

按照控制方式分类
1.开放式数控机床:开放式数控机床可通过编程控制其工作模式,灵活
性高。

2.封闭式数控机床:封闭式数控机床一般是由专业的技术人员进行编程
和操作,安全性高。

按照加工精度分类
1.通用数控机床:主要用于大批量生产、加工效率高,适用于一般精度
要求的加工。

2.高精度数控机床:主要用于加工高精度要求的零件和工件。

按照控制器类型分类
1.FANUC数控机床:由日本FANUC公司生产的数控机床。

2.西门子数控机床:由德国西门子公司生产的数控机床。

3.三菱数控机床:由日本三菱公司生产的数控机床。

4.GSK数控机床:由国产公司GSK生产的数控机床。

总之,数控机床的分类是一件复杂而又多样的事情。

随着技术的不断发展,各种新型数控机床不断涌现,未来数控机床创新将会是一个永不停息,不断迭代更新的过程。

数控机床的智能化自动化技术解析

数控机床的智能化自动化技术解析

数控机床的智能化自动化技术解析随着科技的不断发展,数控机床的智能化自动化技术也得到了长足的进步。

在工业生产中,数控机床的应用已经成为不可或缺的一部分。

本文将对数控机床的智能化自动化技术进行解析,探讨其对工业生产的影响和未来发展趋势。

一、数控机床的智能化技术数控机床的智能化技术是指通过计算机控制系统对机床进行智能化管理和操作。

这种技术可以实现机床的自动化、高效化和精度控制,提高生产效率和产品质量。

1. 自动化控制系统数控机床的自动化控制系统是实现智能化的核心。

它由硬件和软件两部分组成,硬件部分包括传感器、执行机构和控制器等,软件部分则是通过编程实现对机床的控制和管理。

2. 数据采集与处理数控机床通过传感器采集工作过程中的各种数据,如温度、压力、振动等。

这些数据经过处理和分析,可以得出机床的工作状态和故障预警,从而及时采取措施进行维修和保养。

3. 智能化操作界面传统的数控机床操作界面通常是一些按钮和旋钮,操作起来相对繁琐。

而智能化操作界面则采用触摸屏等现代化设备,操作更加简便直观。

同时,还可以通过图形化界面实现对机床的远程监控和控制。

二、数控机床智能化自动化技术的影响数控机床的智能化自动化技术对工业生产产生了巨大的影响,主要体现在以下几个方面:1. 提高生产效率智能化自动化技术使得数控机床的操作更加简便,减少了人工操作的繁琐和误差。

同时,机床的自动化控制系统可以实现连续加工和高速切削,大大提高了生产效率。

2. 提高产品质量智能化自动化技术可以实现对机床的精确控制,保证了产品的精度和稳定性。

同时,通过数据采集和处理,可以及时发现和修复机床的故障,减少了因机床问题导致的产品质量不稳定的情况。

3. 降低生产成本数控机床的智能化自动化技术可以减少人工操作和能源消耗,降低了生产成本。

同时,通过数据分析和优化,还可以提高机床的利用率,进一步降低生产成本。

三、数控机床智能化自动化技术的未来发展趋势随着科技的不断进步,数控机床的智能化自动化技术还有很大的发展空间。

什么是CNC加工中心

什么是CNC加工中心

所谓CNC加工中心,是指一种装有程序控制系统的自动化机床。

其中,CNC的全称是是“Computer numerical control”,即计算机数字控制机床,俗称数控机床。

CNC加工中心属于数控机床中的一类,主要是由机械设备与数控系统组成,适用于对各种复杂零件进行加工。

作为高度机电一体化的产品,CNC加工中心自备刀库,具有自动换刀功能,工件一次装夹后,可以连续进行钻、镗、铣、铰、攻丝等多道工序的加工工作,大大减少了工件装夹时间以及测量和机床调整等辅助工序时间。

除此之外,CNC加工中心还具备很强的综合加工能力,常被用于加工形状复杂、工序多、精度要求高的工件,例如加工箱体类工件、复杂曲面类工件、异形类工件、盘类工件、套类工件、板类工件等等,能够产生良好的经济效果。

可以说,CNC加工中心是高效、高速、自动化技术和数控技术的优秀组合,是高性能与经济性的结合,也是目前应用较为广泛的数控机床之一。

CNC加工中心是从数控铣床发展而来的机床,一台CNC加工中心可以完成铣削、钻削、镗削等多种工艺需求,现已广泛应用于各大行业的加工生产。

CNC加工中心主要有以下优点:1、加工精度高,具有较高的加工质量;2、可进行多坐标的联动,能加工形状复杂的零件;3、加工零件改变时,一般只需要更改数控程序,可节省生产准备时间;4、机床本身的精度高、刚性大,可选择有利的加工用量,生产率高(一般为普通机床的3~5倍);5、机床自动化程度高,可以减轻劳动强度;6、批量化生产,产品质量容易控制。

以上就是对CNC加工中心的介绍,更多详情可以咨询南京汉瑞斯精密机械有限公司。

南京汉瑞斯精密机械有限公司是一家专业的精密数控设备销售服务商,拥有长达三十年行业经验,专门从事为模具和产品制造工业界客户提供高品质、高效率、低成本的加工设备和各种模具设备维修、改造和系统(三菱、法那科)的设计、安装、维修。

QD-JD 3.5 无级变速主传动系统

QD-JD 3.5 无级变速主传动系统




(1)设Z=2,传动比i1、i2;且i1>i2,则级比 φ=i1 /i2=RF; 要使主轴转速连续,功率无缺口的条件是 φ≤RDP(即RF ≤RDP),这与要求主轴恒功率区 变速范围Rnp尽量大相矛盾,否则主轴转速 不连续,功率有缺口。 如图2所示
图2
图3


由图2看出,采用一个Z=2的变速组(即Ⅱ 轴为主轴),只有级比φ≤ RDP时主轴恒功率 区转速连续,但主轴Rnp很小,不能满足机 床要求。 若再增加一个Z=2的传动组,(如图2Ⅱ— Ⅲ轴),主轴(Ⅲ轴)Rnp扩大范围很宽,但要 经常换档且操纵机构复杂,主轴转速不连 续,功率有缺口,因此不可取。
7). 设计主传动系统图
设计主传动系统较为简 单,采用一级齿轮(或带轮) 定比传动和三联滑移齿轮 变速组实现分级变速机构 较为理想,主轴恒功率区 范围较宽,功率无缺口, 转速连续,若设计得较为 理想的微小功率缺口,主 轴的变速范围还可增大, 能满足机床要求。
4a 图4
4b
举例
已知某中型数控车床,主轴变速范 围Rn=100,nmax=2500r/min,nmin= 25 r/min,最大切削功率10 kW,在最 低转速工作时功率3.01 kW。试确定电 机的额定功率及电机实用的最低转速。 主传动机械总效率系数η=0.9。
P106例3-3 主传动转速图和功率特性图
4000
1500
3550 n 1880 1400 900 710 450
355 180 112 56 28
60
10
14
p/kw 28
连续调速段



14-180、56-710 恒转矩调速段 28-355、112-1400 恒转矩调速 180-450、710-1800、355-900、 1400-3550 恒功率调速 出现转速的重合
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

王震东徐州师范大学电气工程及自动化学院08电41班目录1摘要 (4)2高速专能化数控机床主传动无级调速 (5)2.1选用内装式主轴电机(即电主轴) (5)2.2选用输出转换型主轴电机 (5)3电机计算 (8)3.1确定初选电机功率 (8)3.2确定最小输出功率 (8)3.3电机适用的最低转速 (9)3.4计算电机额定转速 (9)3.5主轴变速系统其他参数的计算 (9)3.6主传动系统图 (9)4算例 (10)王震东徐州师范大学电气工程及自动化学院08电41班5结论 (11)6参考文献 (12)王震东徐州师范大学电气工程及自动化学院08电41班高速专能化数控机床、通用化数控机床的控制王震东徐州师范大学电气工程及自动化学院 08电41班关键字:高速专能化数控机床、通用化数控机床、控制1 摘要80年代以来,电控技术的发展,交流变频无级调速主轴电机使数控机床主传动实现无级调速,解决了直流电机长期运转产生整流火花和电刷磨损的难题。

曾为主要动力源的直流调速电机,在多数数控机床主旋转运动中逐渐由交流调速主轴电机取代。

无级调速主传动系统按品种和工艺范围的不同,分为两类,一类是高速专能化数控机床,一类是通用化数控机床。

这两类机床的主传动系统的设计有较大差别,传动方案也大不相同。

本文就上述两类机床进行分析,给出设计方案及相关参数,对串联分级变速机构的主传动无级调速系统的设计方法,从理论上加以分析论述。

最后给出一个设计示例。

Professionals can turn high-speed CNC machine tools, universal control of CNC machine toolsWangzhenDongElectrical Engineering and Automation, Xuzhou Normal University 41 Class 08 electricAbstract:80 years, electronic control technology, variable speed spindle motor AC inverter to realize stepless speed CNC machine tool main drive, to solve the long-term operation of the DC rectifier produces sparks and brush wear problems. Who have the main power source of the DC motor speed, in most CNC machine tools in the main rotation gradually replaced by the AC variable speed spindle motor.Variable speed main drive system and process according to the scope of the different species, divided into two categories, one can of high-speed CNC machine tools designed, one is universal CNC machine tools. The main two types of machine tool drive system are very different, the transmission program is also very different.This paper analyzes the above two types of machine tools, design and related parameters are given on the classification series stepless speed change mechanism of the main drive system design approach, in theory, be analyzed and discussed. Finally, a design example.王震东徐州师范大学电气工程及自动化学院08电41班王震东徐州师范大学电气工程及自动化学院 08电41班Key words :Professionals can turn high-speed CNC machine tools 、 universal CNC machine tools 、control2 高速专能化数控机床主传动无级调速对要求主轴转速高,变速范围和恒功率区变速范围都较小的数控磨床、高精密数控车床等,工作时除了高速外,切削深度和进给量相对都小,而切削功率和转矩也小,通常不必选用大功率的交流无级调速主轴电机,也不需要串联分级变速机构和增大恒转矩区的转矩。

只要根据具体设计要求,选用合适的交流无级调速的主轴电机,采用相应的下列传动方案之一,就可实现要求的功能。

2.1 选用内装式主轴电机(即电主轴)所谓内装式主轴电机,就是主轴箱和电机融为一体,电机转子就是主轴,主轴是中空的,头部是标准结构,便于安装卡盘和刀具,电机座就是主轴箱体,可安装在床身上。

除此外,无任何中间传动件,结构简单,传动精度和机械效率都很高。

主轴的实际工作转速高于电机的基本转速nd,nd =1500 r/min,小功率的nd =2000 r/min ,这类机床的恒功率区变速范围小,通常都在3-5,内装式主轴电机完全能满足要求。

目前国外这类数控机床和加工中心主轴最高转速可达到几万转,一般都在5000-6000 r/min ,我国因刀具技术水平限制,最高转速5000 r/min ,一般都在3500 r/min 左右,已有成套设备生产供应。

2.2 选用输出转换型主轴电机这种电机既能变频调速,又能切换绕组(即变级)分档变速,使电机本身的调速范围和恒功率区调速范围增大,以满足机床主轴较大变速范围的要求。

若电机输出轴与机床主轴之间采用多联V 型带或齿型带降速传动,可实现低速增转矩功能。

目前,皮带传动的小型机床转矩可达到245 N·m ,中型机床转矩大于490 N ·m ,大型机床达到785-1177 N ·m 。

主轴系统和进给系统有很大的差别。

根据机床主传动的工作特点,早期的机床主轴传动全部采用三相异步电动机加上多级变速箱的结构。

随着技术的不断发展,机床结构有了很大的改进,从而对主轴系统提出了新的要求,而且因用途而异。

在数控机床中,数控车床占42%,数控机床的钻镗铣床占33%,数控磨床、冲床占23%,其他只占2%。

为了满足量大面广的前两类数控机床的需要,对主轴传动提出了下述要求:主传动电动机应有2.2~250kW 的功率范围;要有大的无级调速范围,如能在1:100~1000范围内进行恒转矩调速和1:10的恒功率调速;要求主传动有四象限的驱动能力;为了满足螺纹车削,要求主轴能与进给实行同步控制;在加工中心上为了自动换刀,要求主轴能进行高精度定向停位控制,甚至要求主轴具有角度分度控制功能等等。

主轴传动和进给传动一样,经历了从普通三相异步电动机传动到直流主轴传动,而随着微处理器技术和大功率晶体管技术的进展,现在又进入了交流主轴伺服系统的时代,目前已很少见到在数控机床上有使用直流主轴伺服系统了。

但是国内生产的交流主轴伺服系统的产品尚很少见,说明我们在这个领域的知识水平还很欠缺,大多采用进口产品,因此我们在这方面的发展潜能还是很大的,还有待我们去进一步完善和发展。

交流伺服电动机有永磁式同步电动机和笼型异步电动机两种结构形式,而且绝大多数采用永磁式同步电动机的结构形式。

而交流主轴电动机的情况则不同,交流主轴电动机均采用异步电动机的结构形式,这是因为,一方面受永磁体的限制,当电动机容量做得很大时,电动机成本会很高,对数控机床来讲无法接受采用;另一方面,数控机床的主轴传动系统不必像进给伺服系统那样要求如此高的性能,采用成本低的异步电动机进行矢量闭环控制,完全可满足数控机床主轴的要求。

但对交流主轴电动机性能要求又与普通异步电动机不同,要求交流主轴电动机的输出特性曲线(输出功率与转速关系)是在基本速度以下时为恒转矩区域,而在基本速度以上时为恒功率区域。

交流主轴控制单元与进给系统一样,也有模拟式和数字式两种,现在所见到的国外交流主轴控制单元大多都是数字式的。

下图 示出了交流主轴控制单元的框图。

伺服电动机的传递函数为:王震东徐州师范大学电气工程及自动化学院 08电41班G ﹙s ﹚=K/S ﹙Tm+1﹚⑴积分控制电路及输入输出波形其传递函数为:G ﹙s ﹚=1/s图2-1图2-2⑵微分控制电路及输入输出波形其传递函数为:G ﹙s ﹚=s王震东徐州师范大学电气工程及自动化学院 08电41班(a)输入波形;(b)输出波形图2-3⑶ PWM 控制电路的基本构成及工作原理:开关电源一般都采用脉冲宽度调制(PWM )技术,其特点是频率高,效率高,功率密度高,可靠性高。

然而,由于其开关器件工作在高频通断状态,高频的快速瞬变过程本身就是一电磁骚扰(EMD )源,它产生的EMI 信号有很宽的频率范围,又有一定的幅度。

若把这种电源直接用于数字设备,则设备产生的EMI 信号会变得更加强烈和复杂.由于各个变换通道交叉开闭,电流相互叠加,大大减少了输入、输出电流纹波,减小了电磁干扰EMI 。

电流纹波的减少,使传统的昂贵的、不易安装的电解电容器可以采用小型的贴片陶瓷电容来代替。

参看图2-4 中输出电流纹波的示意图,2个通道的IL 纹波电流相互叠加,结果使输出电容上承受的纹波电流减小。

图2-4它们的工作过程简述如下:由数控系统来的速度指令(如10V 时相当于6000r/min 或4500r/min )在比较器中与检测器的信号相与之后,经比例积分回路3将速度误差信号放大作为转矩指令电压输出,再经绝对值回路4使转矩指令电压永远为正。

然后经函数发生器6(它的作用是当电动机低速时提高转矩指令电压),送到V /F 变换器7,变成误差脉冲(如10V 相当于200kHz )。

该误差脉冲送到微处理器8并与四倍回路17送来的速度反馈脉冲进行运算。

在此同时,交预先写在微处理器部件中的ROM中的信息读出,分别送出振幅和王震东徐州师范大学电气工程及自动化学院 08电41班相位信号,送到DA 强励磁9和DA 振幅器10。

DA 强励磁回路用于控制增加定子电流的振幅,而DA 振幅器用于产生与转矩指令相对应的电动机定子电流的振幅。

相关文档
最新文档